WorldWideScience

Sample records for capacity diesel engine

  1. Handbook of diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Tschoeke, Helmut (eds.) [Magdeburg Univ. (Germany). Inst. of Mobile Systems; Mollenhauer, Klaus

    2010-07-01

    The diesel engine continues to be the most cost effective internal combustion engine for motor vehicles as well as mobile and stationary machines. Given the discussion of CO2, the diesel engine is superior to all other drive engines in terms of flexibility, performance, emissions and ruggedness. The intensive search for alternative drive concepts, e. g. hybrid or purely electric drives, has revealed the advantages of the diesel engine for cost effective long distance use wherever high energy densities of energy carriers are indispensible, i. e. storage capacities are low. This English edition of the Handbook of Diesel Engines provides a comprehensive overview of diesel engines of every size from small single cylinder engines up through large two-stroke marine engines. Fifty-eight well-known experts from industry and academia collaborated on this handbook. In addition to the fundamentals and design of diesel engines, it specifically treats in detail the increasingly important subjects of energy efficiency, exhaust emission, exhaust gas aftertreatment, injection systems, electronic engine management and conventional and alternative fuels. This handbook is an indispensable companion in the field of diesel engines. It is geared toward both experts working in research and development and the industry and students studying engineering, mechatronics, electrical engineering or electronics. Anyone interested in learning more about technology and understanding the function and interaction of the complex system of the diesel engine will also find their questions answered. (orig.)

  2. Parametric Study of Jatropha Blended Gasoline Fuel In Compression Ignition Engine Of A Small Capacity Diesel Engine

    Directory of Open Access Journals (Sweden)

    Benjamin Ternenge Abur

    2014-11-01

    Full Text Available In this study, Jatropha Biodiesel was tested in a single cylinder direct-injection diesel engine to investigate the operational parameters of a small capacity diesel engine under six engine loads. Here the jatropha oil is used as a non edible oil to produce the biodiesel. The investigated blends were 40/60%, 30/70%, 20/80% and 100% jatropha biodiesel at various loads. The jatropha biodiesel was obtained from National Research Institute for Chemical Technology Zaria-Nigeria and was within EN, BIS and Brazil specifications for biodiesel. Each blend was tested on a short term basis of three hours. The result shows that the brake thermal efficiency increased for all tested blends at lower engine loads and decreases at higher engine loads. The specific fuel consumption (S.F.C increased for lower blends compared to neat jatropha oil while higher engine powers were obtained for lower blends compared to neat jatropha oil. In all the investigated operational parameters, the diesel reference fuel had better performance to jatropha biodiesel blends except in the percentage heat loss to the exhaust where jatropha biodiesel blends had better performance.

  3. Diesel Engine Tribology

    DEFF Research Database (Denmark)

    Christiansen, Christian Kim

    Recent years have seen an increase in the wear rate of engine bearings, subsequently followed by bearing failure, for the large two-stroke diesel engines used for ship propulsion. Here, the engine bearings include main, big end and crosshead bearings, with the bearing type used being the journal...... bearing, belonging to the class of ‘hydrodynamic bearings’. This implies that the load carrying capacity is generated by a relative movement of the involved components, i.e. avelocity-driven operation. For the engine application, the velocity stems from the engine RPM. However, to comply with the latest...... emission requirements as well as attempting to minimise fuel expenses, the engine speed has been lowered together with an increase in the engine mean pressure which in terms lead to larger bearing loads. With worsened operating conditions from two sides, the encountered problems are understandable...

  4. Diesel Engine Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  5. Adiabatic turbocompound diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kamo, R.; Bryzik, W.

    1984-02-01

    The research and development of an adiabatic turbocompound engine have shown that the concept is feasible. The ability to meet the performance and sociability goals of the future power plants has been demonstrated. Low brake specific fuel consumption, low smoke and particulates, better NO /SUB x/ -BSFC trade-off, excellent multifuel capability, white smoke suppression, and potentially lower maintenance and greater reliability and durability are some of the attributes. The absence of the water cooling system adds to its attractiveness because of lower installed weight, cost, and reduction in parasitic losses. The operating environment of an adiabatic engine is shown as the basis for analysis and designing of adiabatic components. The types of material which can satisfy the needs of an adiabatic engine are presented. These materials include high temperature metals, high performance ceramics, and glass ceramics. The use of a turbocompound system to utilize the increased exhaust energy of an adiabatic engine is covered. A minimum fuel consumption of 0.285 lb/bhp-hr was achieved at 200 psi BMEP. Although the technical feasibility and viability of an adiabatic engine was demonstrated, the adiabatic diesel engine has problems which must be solved before it becomes a commercially viable product. These problem areas where more work is required are discussed.

  6. Noise Optimization in Diesel Engines

    Directory of Open Access Journals (Sweden)

    S. Narayan

    2014-04-01

    Full Text Available Euro 6 norms emphasize on reduction of emissions from the engines. New injection methods are being adopted for homogenous mixture formation in diesel engines. During steady state conditions homogenous combustion gave noise levels in lower frequencies. In this work noise produced in a 440 cc diesel engine has been investigated. The engine was run under various operating conditions varying various injection parameters.

  7. Reeds diesel engine troubleshooting handbook

    CERN Document Server

    Pickthall, Barry

    2013-01-01

    Most diesel engines will develop a problem at some point in their lives, but armed with the right knowledge a skipper needn't worry. The Reeds Diesel Engine Troubleshooting Handbook is a compact, pocket-sized guide to finding solutions to all of the most common engine problems, and many of the less common ones too. The perfect format for quick reference on board, this book will help skippers fix troublesome engines themselves, avoiding costly engineer fees if the problem is simple to sort out, or enabling an emergency patch-up for a more serious problem until they can get back to port. Each to

  8. Problems diagnosis in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Leugner, L.

    1986-10-01

    Diagnosis of engine problems in diesel engines used in Western Canadian coal mines is discussed. Areas to which attention must be paid include the air cleaners, turbocharger, engine compression and the fuel system. Exhaust smoke should be analysed to help diagnose combustion related problems.

  9. Thermical Load Calculation and Capacity of Cooling and Venting Equipment of a Diesel Engine Emissions Study Bench; Calculo de Cargas Termicas y Capacidad de los Equipos de Refrigeracion y Ventilacion de un Banco de Estudio de Emisiones de Motores Diesel

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Garcia, E.; Fonseca Gonzalez, N. A.

    2005-07-01

    The present report tries to develop the calculation of thermical loads and to define the capacity of the equipments of cooling and ventilation that should have the engines test bench that is being ensemble in the installation of the CIEMAT named {sup D}iesel engine emissions study bench (E65-P0). The test bench is formed essentially by a dynamometrical brake and an engine connected at previous one, both of them inside a cabin of isolation acoustic. The thermical loads to be dissipated will be calculated for all the elements that compose the bench and considering his maximum values, to determine the suitable system of cooling air - water of the devices and ventilation in the cabin. (Author) 2 refs.

  10. Fuel preheater for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Crossett, J.J.; Crossett, M.C.

    1987-10-13

    A unit for preheating fuel for diesel engines is described having an engine coolant system and a lubrication system utilizing a flowable lubricant. The unit comprises a housing providing a fluid-tight enclosure, a heat exchange coil positioned in and spaced above the bottom of the enclosure and having loops providing a continuous path for the flow of the fuel to be heated. The heat exchange coil has at least one foot of length for each 25 cubic inches of volume of the enclosure and a diesel fuel outlet in the housing connected to one end of the heat exchange coil, a diesel fuel outlet in the housing and connected to the other end of the heat exchange coil, an inlet in the housing for connection of the interior of the enclosure surrounding the coil to a source of a hot heat exchange medium in a diesel engine so as to provide a source of heat for heating the heat exchange coil. An outlet near the top of the housing provides for return of the heat exchange medium to a diesel engine, and spray tube means extend horizontally from the inlet for the heat exchange medium and along the bottom of the housing beneath substantially the entire length of the heat exchange coil. The means have upwardly directed openings to provide for discharge of the heat exchange medium toward the coil and agitation of the heat exchange medium in the enclosure around and over the heat exchange coil.

  11. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  12. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2016-08-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  13. Diesel Engine Light Truck Application

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  14. CDMA systems capacity engineering

    CERN Document Server

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  15. Thermal barrier coatings application in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.

    1995-10-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his `Adiabatic Diesel Engine` in the late 70`s. Kamo`s concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo`s work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as `convection vive.` Woschni`s work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components.

  16. Multimodel Control of Diesel Engines

    Science.gov (United States)

    Cirstoiu, Silviu; Popescu, Dumitru; Dimon, Catalin; Olteanu, Severus

    2017-01-01

    In this article it is proposed and designed a modern control configuration of the type multicontroler-multimodel (MM) that pilots the nonlinear combustion process of the Diesel engine, needed to adjust the pressure in the intake manifold and the airflow circulating through the compressor. The MM simulator developed by the authors allows the implementation of control systems represented by pairs (Mi, Ci) with the Mi candidate closest to the current operating point of the process and the paired controller Ri, for controlling the key parameters of the combustion process. The proposed configuration is built with robust controllers and thus it is able to ensure superior performance, tolerance to nonlinearities and parametric and structural perturbations in the system.

  17. Series 190 Diesel Engines Used in China's Oil Drilling

    Institute of Scientific and Technical Information of China (English)

    Liu Qimin

    1996-01-01

    @@ Jinan Diesel Engine Works, located in Jinan,Shandong Province, was established more than 70 years ago. Now it produces series 190 diesel engines and diesel generating sets. Over 95 percent of land drilling power engines used in China are from Jinan Diesel Engine Works.

  18. Cummins advanced turbocompound diesel engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  19. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  20. Thermal barrier coatings application in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.

    1995-03-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70`s by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  1. Dual fuel diesel engine operation using LPG

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  2. Cummins advanced turbocompound diesel-engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    The turbocompound diesel engine has been under development since 1972. Development reached a mature stage following the evolution of three power turbine and gear train designs. In 1978, the Department of Energy sponsored a program for comprehensive vehicle testing of the turbocompound engine. Upon successful completion of the vehicle test program, an advanced turbocompound diesel engine program was initiated in 1980 to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. This paper presents the individual and cumulative performance gains achieved with the advanced turbocompound engine improvements.

  3. Cleaning the Diesel Engine Emissions

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforc...

  4. Power Balancing of Inline Multicylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available In this work, a simplified methodology is presented for power balancing by reducing the amplitude of engine speed variation, which result in excessive torsional vibrations of the crankshaft of inline six-cylinder diesel engine. In modern fuel injection systems for reciprocating engines, nonuniform cylinder-wise torque contribution is a common problem due to nonuniform fuel supply due to a defect in fuel injection system, causing increased torsional vibration levels of the crankshaft and stress of mechanical parts. In this paper, a mathematical model for the required fuel adjustment by using amplitude of engine speed variation applied on the flywheel based on engine dynamics is suggested. From the found empirical relations and FFT analysis, the amplitude of engine speed variation (i.e., torsional vibration levels of the crankshaft of inline six-cylinder diesel engine genset can be reduced up to 55%. This proposed methodology is simulated by developing MATALB code for uniform and nonuniform working of direct injection diesel engine of SL90 type manufactured by Kirloskar Oil Engine Ltd., Pune, India.

  5. Insulated Piston Heads for Diesel Engines

    Science.gov (United States)

    Tricoire, A.; Kjellman, B.; Wigren, J.; Vanvolsem, M.; Aixala, L.

    2009-06-01

    Widely studied in the 1980s, the insulation of pistons in engines aimed at reducing the heat losses and thus increasing the indicated efficiency. However, those studies stopped in the beginning of the 1990s because of NO x emission legislation and also because of lower oil prices. Currently, with the improvement of exhaust after treatment systems (diesel particulate filter, selective catalytic reduction, and diesel oxidation catalyst) and engine technologies (exhaust gas recirculation), there are more trade-offs for NO x reduction. In addition, the fast rise of the oil prices tends to lead back to insulation technologies in order to save fuel. A 1 mm thick plasma sprayed thermal barrier coating with a graded transition between the topcoat and the bondcoat was deposited on top of a serial piston for heavy-duty truck engines. The effects of the insulated pistons on the engine performance are also discussed, and the coating microstructure is analyzed after engine test.

  6. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  7. Light-duty diesel engine development status and engine needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  8. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  9. Real Otto and Diesel Engine Cycles.

    Science.gov (United States)

    Giedd, Ronald

    1983-01-01

    A thermodynamic analysis of the properties of otto/diesel engines during the time they operate with open chambers illustrates applicability of thermodynamics to real systems, demonstrates how delivered power is controlled, and explains the source of air pollution in terms of thermodynamic laws. (Author/JN)

  10. Exploring Low Emission Lubricants for Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  11. Improvement of thermal effciency in diesel engine. Diesel engine no koritsu kojo

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. (Isuzu Ceramics Research Inst. Co. Ltd., Kanagawa, (Japan))

    1993-04-05

    Diesel engines cause worsening air pollution due to much more discharge of nitrogen oxides than gasoline engines, however for reduction of carbon dioxide, Diesel engines consuming less fuel are better than gasoline engines for protection of the global environment. Theoretical thermal efficiency is larger as compression ratio and isochronic burnup are bigger, hence such an engine is needed that is made on the basis of a Diesel engine, whose compression ratio is twice or more larger than that of gasoline engine and which has good thermal efficiency, and reduces its nitrogen oxides by the development of the combustion technique by means of controlling combustion temperature as well as fuel equivalent ratio. With regard to the improvement of thermal efficiency of Diesel engines, it can be attained, utilizing the respective features of the antechamber-type and the direct injection-type Diesels, by burning the homogeneous mixture, whose fuel equivalent ratio is big, in the initial stage and by controlling the main combustion period in the main chamber short. inaddition, a radiation shield-type turbocompound engine has been test fabricated and rough explanations are given on its structure, its combustion and the recovery of its exhaust gas energy. 5 refs., 6 figs., 1 tab.

  12. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel...

  13. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    Science.gov (United States)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-07-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  14. Restoring diesel engine camshafts by laser treatement

    Science.gov (United States)

    Astashkevich, B. M.; Zinov'ev, G. S.; Voronin, I. N.

    1996-12-01

    The reliability of parts of the gas-distributing mechanism and drives of fuel pumps determines to a great degree the operating conditions of cylinder-piston parts and the economic characteristics of diesel engines. Intense wear of the camshaft pair disturbs the distribution phases and the lead angle of fuel supply to the diesel cylinders and increases the rigidity of the operation of the connecting rod-piston group. This causes incomplete combustion of fuel and fuming, a rise in the temperature of exhaust gases, sticking of the rings in the piston grooves and their premature failure, wear cracks, and chips and failure of the parts of the cylinder-piston unit, decreasing the efficiency of the diesel. Laser surface treatment is used to restore cams. It makes it possible to increase substantially the wear resistance of cams and restore their worn surfaces. This paper concerns the characteristics of the cams after such a treatment.

  15. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  16. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil.

    Science.gov (United States)

    Palanisamy, Nandhini; Ramya, Jayaprakash; Kumar, Srilakshman; Vasanthi, Ns; Chandran, Preethy; Khan, Sudheer

    2014-01-01

    Petroleum based products are the major source of energy for industries and daily life. Leaks and accidental spills occur regularly during the exploration, production, refining, transport, and storage of petroleum and petroleum products. In the present study we isolated the bacteria from diesel contaminated soil and screened them for diesel biodegradation capacity. One monoculture isolate identified by 16S rRNA gene sequence analysis to be Acinetobacter baumannii was further studied for diesel oil biodegradation. The effects of various culture parameters (pH, temperature, NaCl concentrations, initial hydrocarbon concentration, initial inoculum size, role of chemical surfactant, and role of carbon and nitrogen sources) on biodegradation of diesel oil were evaluated. Optimal diesel oil biodegradation by A. baumanii occurred at initial pH 7, 35°C and initial hydrocarbon concentration at 4%. The biodegradation products under optimal cultural conditions were analyzed by GC-MS. The present study suggests that A. baumannii can be used for effective degradation of diesel oil from industrial effluents contaminated with diesel oil.

  17. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    Science.gov (United States)

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  18. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.

    Science.gov (United States)

    Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md

    2006-02-01

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.

  19. Hygroscopic properties of Diesel engine soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  20. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  1. Clean and Efficient Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  2. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  3. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    Directory of Open Access Journals (Sweden)

    Ekkachai Sutheerasak

    2014-06-01

    Full Text Available Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree of spray angle and decrease 13.90 % of fuel injection pressure to compare with non-preheated oil. As engine preformance testing results, preheated diesel oil increase 26.20% of thermal efficiency and decrease 4.30 % of BSFC, as preheated bio-diesel oil increase 30% of thermal efficiency and decrease 29.90 % of BSFC to compare with non-preheated oil.

  4. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    Science.gov (United States)

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  5. Investigation of Diesel Engine Performance Based on Simulation

    OpenAIRE

    Semin; Rosli A. Bakar; Abdul R. Ismail

    2008-01-01

    The single cylinder modeling and simulation for four-stroke direct-injection diesel engine requires the use of advanced analysis and development tools to carry out of performance the diesel engine model. The simulation and computational development of modeling for the research use the commercial of GT-SUITE 6.2 software. In this research, the one dimensional modeling of single cylinder for four-stroke direct-injection diesel engine developed. The analysis of the model is combustion performanc...

  6. Effects of diesel and bio-diesel oils temperature on spray and performance of a diesel engine

    OpenAIRE

    Ekkachai Sutheerasak

    2014-01-01

    Research paper is the spray and engine performance investigation from preheated diesel and biodiesel oils at fuel temperature from 60 to 90 o C by comparing with non-preheated oil. In the experiment, there are fuel injection modeling and diesel engine testing, which is direct injection, 4 stroke and 4 cylinders. Results of fuel spray show that preheated diesel oil increase 4.7degree of spray angle and decrease 4.30 % of fuel injection pressure, as preheated bio-diesel oil increase 7.6degree o...

  7. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  8. Investigation of Diesel Engine Performance Based on Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The single cylinder modeling and simulation for four-stroke direct-injection diesel engine requires the use of advanced analysis and development tools to carry out of performance the diesel engine model. The simulation and computational development of modeling for the research use the commercial of GT-SUITE 6.2 software. In this research, the one dimensional modeling of single cylinder for four-stroke direct-injection diesel engine developed. The analysis of the model is combustion performance process in the engine cylinder. The model simulation covers the full engine cycle consisting of intake, compression, power and exhaust. In this model it can to know the diesel engine performance effect with simulation and modeling in any speeds (rpm parameters. The performance trend of the diesel engine model developed result of this model based on the theoretical and computational model shows in graphics in the paper.

  9. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE.

  10. The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Sehmus [Technical Education Faculty, Automotive Division, Batman University, Batman (Turkey); Bulut, Huesamettin [Department of Mechanical Engineering, Osmanbey Campus, Harran University, 63100 Sanliurfa (Turkey); Oener, Cengiz [Technical Education Faculty, Automotive Division, Firat University, Elazig (Turkey)

    2008-08-15

    The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with conventional diesel fuel. Various techniques and methods are used to solve the problems resulting from high viscosity. One of these techniques is fuel blending. In this study, a blend of 50% sesame oil and 50% diesel fuel was used as an alternative fuel in a direct injection diesel engine. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power and torque of the mixture of sesame oil-diesel fuel are close to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that blend of sesame oil and diesel fuel can be used as an alternative fuel successfully in a diesel engine without any modification and also it is an environmental friendly fuel in terms of emission parameters. (author)

  11. Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

    Institute of Scientific and Technical Information of China (English)

    HUANG Yongcheng; ZHOU Longbao; PAN Keyu

    2007-01-01

    Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder directinjection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation.

  12. Speed control of automotive diesel engines

    Science.gov (United States)

    Outbib, Rachid; Graton, Guillaume; Dovifaaz, Xavier; Younes, Rafic

    2014-04-01

    This paper deals with Diesel engine control. More precisely, a model-based approach is considered to stabilise engine speed around a defined value. The model taken into account is nonlinear and contains explicitly the expression of fuel conversion efficiency. In general in the literature, this experimentally obtained quantity is modelled with either a polynomial or an exponential form (see for instance Younes, R. (1993). Elaboration d'un modèle de connaissance du moteur diesel avec turbocompresseur à géométrie variable en vue de l'optimisation de ses émissions. Ecole Centrale de Lyon; Omran, R., Younes, R., Champoussin, J., & Outbib, R. (2011). New indicated mean effective pressure (IMEP) model for predicting crankshaft movement. Energy Conversion and Management, 52, 3376-3382). This paper focuses on engine speed feedback stabilisation when fuel conversion efficiency is modelled with an exponential form, which is more suitable for automative applications. Simulation results are proposed to highlight the closed-loop control performances.

  13. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  14. Conversion of diesel engines for natural gas engines; Conversao de motores diesel para gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Mauro Junior, Leonardo; Almeida, Silvio Carlos Anibal de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: leonardomauro@terra.com.br, e-mail: silvio@gmail.com

    2006-07-01

    The present project approach the conversion of a Scania engine DSI 11, originally Diesel cycle, used for stationary generation, to operate at a Otto cycle natural gas. The conversion dedicated to Otto cycle allows a better performance at a lower cost generation to the consumer providing an energy economy when operating at a peak hours compared with the fees charged by the distributors. In the power range of this engine (231 kw), there is no other engine available at the brazilian market. An economic study of the conversion shows that the cost is significantly less than the importation of a similar engine. (author)

  15. Combustion and emissions of the diesel engine using bio-diesel fuel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated.The results illustrate that the combustion happens in advance and the ignition delay period is shortened.The initial heat release peak declines a little,the corresponding crankshaft angle changes in advance,and the combustion duration is prolonged.The economic performance and emission features of diesel engines using diesel fuel and bio-diesel fuel are compared.The results also show that the specific fuel consumption of bio-diesel increases by about 12% .The emissions,such as CO,HC,and particulate matter decrease remarkably whereas NOx increases a little.

  16. Laser-based diagnostics on NO in a diesel engine

    NARCIS (Netherlands)

    Brugman, Theodorus Maria

    1999-01-01

    Of all internal combustion engines diesel engines tend to be the most efficient. However, this high efficiency is coupled with specific emissions of nitric oxides (NOx = NO and NO2) and soot. Such emissions are best fought against at their very source: the diesel combustion process itself. The objec

  17. Semi-empirical model to evaluate the performance of natural gas powered diesel engines; Modelo semi-empirico para avaliacao do desempenho de motores diesel consumindo gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Ricardo Hernandez [Universidade Federal de Uberlandia (UFU), MG (Brazil). Faculdade de Engenharia Mecanica], e-mail: ricardo.pereira@mecanica.ufu.br; Braga, Carlos Valois Maciel; Braga, Sergio Leal [Pontificia Universidade Catolica do Rio de Janeiro (DEM/PUC-Rio), RJ (Brazil). Dept. de Engenharia Mecanica], e-mails: valois@puc-rio.br, slbraga@puc-rio.br

    2010-04-15

    The performance of four different engines were measured, all powered by the dual fuels diesel/natural gas and mounted on a dynamometer bench. The tested engines were selected for their construction and operational characteristics, representing diesel engines for different applications (capacity, speed range, with/without turbo charging and combustion air cooling). Experimental points were obtained for wide parameter ranges with influence on engine performance. The replacement rate of diesel with natural gas was varied to identify the mix where the dual fuel operation was possible. Although the study focus was on performance, data on particulate pollutant emissions were also recorded, not only during the original diesel operation but also for the dual fuels. The results indicate that, for most operational fields of the engines tested, only part of the gas actually burns. (author)

  18. Design and Research of the EQ6105DTAA Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The EQ6105DTAA diesel engine which first pattern en gi ne is EQD6105T is developed through the original EQ6102 diesel engine and other advanced engine structures. This paper analyses performance parameters, general layout and parts design process of the diesel engine. The development cycle is s horten by CAD/CAE/CAM technology. Through experiment, the general performance of the engine is in keeping ahead in our country. With boosting mid-cooling technology and related designing correction in EQ6105 DTAA...

  19. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    Science.gov (United States)

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  20. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  1. IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, Andre L.

    2000-08-20

    As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  3. Modal extraction on a diesel engine in operation

    DEFF Research Database (Denmark)

    Møller, Nis; Herlufsen, Henrik; Brincker, Rune

    2000-01-01

    In this paper an output only modal testing and identification of a diesel engine is presented. The only loading on the engine is the unknown loading from the engine itself. Two test cases were considered: engine run-up, and engine Run-Down. The response data were analyzed using two different...

  4. Modal Extraction on a Diesel Engine in Operation

    DEFF Research Database (Denmark)

    Møller, N.; Brincker, Rune; Andersen, P.

    2000-01-01

    In this paper an output only modal testing and identification of a diesel engine is presented The only loading on the engine is the unknown loading from the engine itself. Two test cases were considered: engine run-up, and engine Run-down. The response data were analysed using two different...

  5. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  6. Natural gas in a D. I. diesel engine. A comparison of two different ways. [Direct injection diesel enginer

    Energy Technology Data Exchange (ETDEWEB)

    Jun-ming, Qu; Sorenson, S.C.; Kofoed, E.

    1987-01-01

    A D.I. diesel engine was modified for natural gas operation with pilot injection and with spark ignition so that a comparative analysis of these two different ways of using natural gas could be made. The results of the experiments indicate that for a diesel engine, it is possible that the operating characteristics of a straight natural gas engine are comparable with those of a diesel/gas engine at the same compression ratio and speed. For a dual fuel engine with pilot injection the best diesel/gas ratio by energy content is approximately 20/80 at full load operation. For straight natural gas engine with spark ignition, quality governed natural gas operation has good efficiency but poor NOx emissions. This problem could be improved through throttle controlled operation. These two different ways of using natural gas are best suited to stationary engines.

  7. Diesel engines in practice. 8. rev. ed. Dieselmotoren-Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Baentsch, E.

    1987-01-01

    The well-known manual has been completely revised and re-edited. A brief historical and economic review is followed by a discussion of the following subjects: Torque and power; fuel consumption; lube oil and cooling water; mass balance in multicylinder engines; oversquare and undersquare engines; suction engines and supercharged engines; two-stroke and four-stroke engines; engine selection; combustion processes; exhaust emissions; diesel engines in operation; cooling; piping; lubrication; starting; practical tests; variable-fuel engines. (HWJ).

  8. Effect ofHydrogen Use on Diesel Engine Performance

    Science.gov (United States)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  9. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  10. Supercritical fluid mixing in Diesel Engine Applications

    Science.gov (United States)

    Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum

    2014-11-01

    A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).

  11. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  12. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  13. Experimental studies on a DI diesel engine fueled with bioethanol-diesel emulsions

    Directory of Open Access Journals (Sweden)

    Dulari Hansdah

    2013-09-01

    Full Text Available This paper explores the possibility of utilizing bioethanol obtained from Madhuca Indica flower as an alternative fuel in a direct injection (DI diesel engine. Three different percentages of bioethanol (5%, 10%, and 15% on volume basis were emulsified with diesel proportionality with the help of a surfactant. The emulsions were designated as BMDE5, BMDE10, and BMDE15 where the numeric value refers to the percentage of bioethanol. The emulsions were tested as fuels in a single cylinder, four stroke, and air cooled DI diesel engine developing a power of 4.4 kW at 1500 rpm. Results indicated that the bioethanol–diesel emulsions exhibited a longer ignition delay by about 2.2 °CA than that of diesel operation at full load. Overall, the nitric oxide (NO and smoke emissions were found to be lesser by about 4% and 20%, respectively, with the bioethanol–diesel emulsions compared to that of diesel operation at full load. The BMDE5 emulsion gave a better performance and lower emissions compared to that of BMDE10 and BMDE15. It is suggested that the bioethanol produced from Madhuca Indica flower can be used as a potential alternative fuel replacing 5% of petroleum diesel.

  14. Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

    Institute of Scientific and Technical Information of China (English)

    Yongcheng HUANG; Shangxue WANG; Longbao ZHOU

    2008-01-01

    Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experi-mental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than con-ventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shor-tened; the peak values of premixed burning rate, the com-bustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation, Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

  15. Nano Catalysts for Diesel Engine Emission Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar [ORNL; Yang, Xiaofan [ORNL; Debusk, Melanie Moses [ORNL; Mullins, David R [ORNL; Mahurin, Shannon Mark [ORNL; Wu, Zili [ORNL

    2012-06-01

    The objective of this project was to develop durable zeolite nanocatalysts with broader operating temperature windows to treat diesel engine emissions to enable diesel engine based equipment and vehicles to meet future regulatory requirements. A second objective was to improve hydrothermal durability of zeolite catalysts to at least 675 C. The results presented in this report show that we have successfully achieved both objectives. Since it is accepted that the first step in NO{sub x} conversion under SCR (selective catalytic reduction) conditions involves NO oxidation to NO{sub 2}, we reasoned that catalyst modification that can enhance NO oxidation at low-temperatures should facilitate NO{sub x} reduction at low temperatures. Considering that Cu-ZSM-5 is a more efficient catalyst than Fe-ZSM-5 at low-temperature, we chose to modify Cu-ZSM-5. It is important to point out that the poor low-temperature efficiency of Fe-ZSM-5 has been shown to be due to selective absorption of NH{sub 3} at low-temperatures rather than poor NO oxidation activity. In view of this, we also reasoned that an increased electron density on copper in Cu-ZSM-5 would inhibit any bonding with NH{sub 3} at low-temperatures. In addition to modified Cu-ZSM-5, we synthesized a series of new heterobimetallic zeolites, by incorporating a secondary metal cation M (Sc{sup 3+}, Fe{sup 3+}, In{sup 3+}, and La{sup 3+}) in Cu exchanged ZSM-5, zeolite-beta, and SSZ-13 zeolites under carefully controlled experimental conditions. Characterization by diffuse-reflectance ultra-violet-visible spectroscopy (UV-Vis), X-ray powder diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS) and electron paramagnetic resonance spectroscopy (EPR) does not permit conclusive structural determination but supports the proposal that M{sup 3+} has been incorporated in the vicinity of Cu(II). The protocols for degreening catalysts, testing under various operating conditions, and accelerated aging

  16. Performance and Emission Characteristics of Low Heat Rejection Diesel Engine Fueled with Biodiesel and High Speed Diesel

    Directory of Open Access Journals (Sweden)

    T. Gopinathan

    2014-10-01

    Full Text Available Depleting petroleum reserves on the earth and increasing concerns about the environment leads to the question for fuels which are eco-friendly safer for human beings. The objective of present study was to investigate the effect of coating on cylinder head of a Diesel engine on the performance and emission characteristics of exhaust gases using Bio Diesel and High Speed Diesel (HSD as a fuel. In this study the effect of Tin and Hard Chrome coating on the performance and emission characteristics of diesel engine was investigated using Bio Diesel and High Speed Diesel as a fuel. For this purpose the cylinder head of the test engine were coated with a Tin and Hard Chrome of 100 µ thick by the Electroplating method. For comparing the performance of the engine with coated components with the base engine, readings were taken before and after coating. To make the diesel engine to work with Bio Diesel and High Speed Diesel a modification was done. The engine’s performance was studied for both Bio Diesel and High Speed Diesel with and without Tin, Hard Chrome coating. Also the emissions values are recorded to study the engine’s behavior on emissions. Satisfactory performance was obtained with Tin and Hard Chrome coating compared with a standard diesel engine. The brake thermal efficiency was increased up to 2.08% for High Speed Diesel with Tin coating and there was a significant reduction in the specific fuel consumption. The CO emission in the engine exhaust decreases with coating. Using Bio Diesel and High Speed Diesel fuel for a LHR diesel engine causes an improvement in the performance characteristics and significant reduction in exhaust emissions.

  17. Wood pyrolysis oil for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  18. Monitoring diesel engine parameters based on FBG probe

    Science.gov (United States)

    Zhang, Hao; Jiang, Qi; Wang, Bao-yan; Wang, Jun-jie

    2016-09-01

    This paper proposes an unprecedented systematic approach for real-time monitoring the temperature and flow of diesel engine by using embedded fiber Bragg grating (FBG). By virtue of FBG's temperature effect, we design a novel sensitive FBG temperature sensing probe to measure the temperature of cylinder head and inlet flow of diesel engine. We also establish the corresponding software platform for intuitive data analysis. The experimental and complementary simulation results simultaneously demonstrate that the FBG-based optical fiber technique possesses extraordinary reproducibility and sensitivity, which makes it feasible to monitor the temperature and inlet flow of diesel engine. Our work can provide an effective way to evaluate the thermal load of cylinder head in diesel engine.

  19. DIESEL ENGINES' VIBROACOUSTIC SIGNATURE EXTRACTION BY WAVELET PACKET TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    邹剑; 陈进; 邹军; 耿遵敏

    2002-01-01

    Multisource unstable impulsive excitations, time-varying transmission path, concentrated mode, dispersion and reverberation that are important characteristics of reciprocating machines such as diesel engines result in wide-band non-stationary vibroacoustic responses which influence the effective extraction of vibroacoustic signatures and become a key factor to limit diesel engines' vibration diagnosis. In this paper, a serial theoretical deduction on the unstable dynamic properties of diesel engines was made; the mechanism of non-stationary vibroacoustic responses was elucidated. Based upon that, the wavelet packet technique was introduced. The reason for the existence of frequency aliasing in the Paley series from wavelet packets' decomposition was analyzed, and the wavelet packet frequency-shifting algorithm was given. Experiments on 190 serial diesel engines verify the given method's significant validity in vibroacoustic signature extraction and reciprocating machines' vibration diagnosis.

  20. Test and Analysis for Spraying Ammonia in Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    周华祥; 刘敬平; 贺力克; 陈方; 申奇志; 骆锐; 周正

    2011-01-01

    A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine' s combustion chamber when the combustion temperature decreases to 1 573 - 1 073 K, NOx generated could be reduced to 1.11 g/( kW· h). Based on PRF combustion mechanism, NO was tested by using the heavy-duty diesel engine test cycle of ESC thirteen conditions , the ammonia spray angle and amount were tested and optimized in different conditions. The test results show that the thermal efficiency of Diesel engine does not decrease while NO exhaust decreases.

  1. Activated carbon use in treating diesel engine exhausts

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G.; Babyak, R.A. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1996-10-01

    Several active carbon materials were observed to be particularly effective in processes for the removal of nitrogen oxides from exhaust gases. This paper describes the application of active carbon materials to two diesel engine exhaust gases at McClellan AFB in California. More specifically, one application involved a large diesel engine that supplies emergency power at the Base, and the second involved a mobile diesel-fueled generator that provides auxiliary power to aircraft. The designs of systems to control emissions for each application are discussed, and the results of tests on laboratory-scale, pilot-scale, and full-scale systems are presented.

  2. Performance, emission and economic assessment of clove stem oil-diesel blended fuels as alternative fuels for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2008-05-15

    In this study the performance, emission and economic evaluation of using the clove stem oil (CSO)-diesel blended fuels as alternative fuels for diesel engine have been carried out. Experiments were performed to evaluate the impact of the CSO-diesel blended fuels on the engine performance and emissions. The societal life cycle cost (LCC) was chosen as an important indicator for comparing alternative fuel operating modes. The LCC using the pure diesel fuel, 25% CSO and 50% CSO-diesel blended fuels in diesel engine are analysed. These costs include the vehicle first cost, fuel cost and exhaust emissions cost. A complete macroeconomic assessment of the effect of introducing the CSO-diesel blended fuels to the diesel engine is not included in the study. Engine tests show that performance parameters of the CSO-diesel blended fuels do not differ greatly from those of the pure diesel fuel. Slight power losses, combined with an increase in fuel consumption, were experienced with the CSO-diesel blended fuels. This is due to the low heating value of the CSO-diesel blended fuels. Emissions of CO and HC are low for the CSO-diesel blended fuels. NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel operation mode. A remarkable reduction in the exhaust smoke emissions can be achieved when operating on the CSO-diesel blended fuels. Based on the LCC analysis, the CSO-diesel blended fuels would not be competitive with the pure diesel fuel, even though the environmental impact of emission is valued monetarily. This is due to the high price of the CSO. (author)

  3. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  4. Capacity Building for Engineering Education

    DEFF Research Database (Denmark)

    de Graaff, Erik; Deboer, Jennifer

    2015-01-01

    The International Institute for Developing Engineering Academics (IIDEA) is a joint initiative from IFEES and SEFI, aiming to provide all the engineering education associations, institutions and other engineering education stakeholders a clearing house of high caliber and world-class engineering ...... and universities are being challenged to incorporate innovative tools in their classrooms as well as to prepare students to research and innovate themselves. The paper will present an overview of IIDEA activities and aims to evaluate the success of the capacity building workshops....

  5. EXPERIMENTAL EVALUATION OF A DIESEL ENGINE WITH BLENDS OF DIESEL-PLASTIC PYROLYSIS OIL

    Directory of Open Access Journals (Sweden)

    Mr. Rajesh Guntur,

    2011-06-01

    Full Text Available Environmental degradation and depletion of oil reserves are matters of great concern around the globe. Developing countries like India depend heavily on crude oil import of about 125 Mt per annum (7:1diesel/gasoline. Diesel being the main transportation fuel in India, finding a suitable fuel alternative to diesel is an urgent need. In this context, pyrolysis of waste plastic solid is currently receiving renewed interest. Waste plastic pyrolysis oil is suitable for compression ignition engines and more attention is focused in India because of its potential to generate large-scale employment and relatively low environmental degradation. In the present work the performance and emission characteristics of a single cylinder, constant speed, and direct injection diesel engine using waste plastic pyrolysis oil blends as an alternate fuel were evaluated and the results are compared with the standard diesel fuel operation. Results indicated that the brake thermal efficiency was highercompared to diesel at part load condition. Carbon monoxide, Carbon dioxide and hydrocarbon emissions were higher and oxygen emission was lower compared to diesel operation.

  6. Performance investigations of a diesel engine using ethyl levulinate-diesel blends

    Directory of Open Access Journals (Sweden)

    Zhi-wei Wang

    2012-11-01

    Full Text Available Ethyl levulinate (EL can be produced from bio-based levulinic acid (LA and ethanol. Experimental investigations were conducted to evaluate and compare the performances and exhaust emission levels of ethyl levulinate as an additive to conventional diesel fuel, with EL percentages of 5%, 10%, 15% (with 2% n-butanol, and 20% (with 5% n-butanol, in a horizontal single-cylinder four stroke diesel engine. Brake-specific fuel consumptions of the EL-diesel blends were about 10% higher than for pure diesel because of the lower heating value of EL. NOx and CO2 emissions increased with engine power with greater fuel injections, but varied with changing EL content of the blends. CO emissions were similar for all of the fuel formulations. Smoke emissions decreased with increasing EL content.

  7. Dimethyl Ether as a Fuel for Diesel Engines

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.

    1999-01-01

    DME has recently been shown to be an attractive high cetane fuel for diesel engines, offering the advantages of soot free operation, with low engine noise, the potential for low NOx emissions, and low reactivity emissions of hydrocarbons and unburned fuel. DME has physical characteristics similar...... of engine fuels systems in regard to lubricity and suitable sealing materials....

  8. Development of catalyst for diesel engine; Diesel engine yo shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, H.; Furutani, T.; Nagami, T. [Toyota Motor Corp., Aichi (Japan); Aono, N.; Goshima, H.; Kasahara, K. [Cataler Industrial Co. Ltd., Shizuoka (Japan)

    1997-10-01

    The new concept catalyst for diesel engine has been developed. When the exhaust temperature is low, SOF and HC are temporarily adsorbed by the adsorbent within the catalyst and are oxidized as the temperature rise. The process of this development have manifested as follows. (1) The coating material is important factor to govern the oxidation activity. (2) SOF is reduced by the coating material in low temperature less than 200degC. (3) The coating material, which has low SO2 adsorbing rate suppress the sulfate formation at high temperature. 2 refs., 11 figs., 1 tab.

  9. Performance and Emission Assessment of Multi Cylinder Diesel Engine using Surfactant Enhanced Water in Diesel Emulsion

    Directory of Open Access Journals (Sweden)

    Khan Mohammed Yahaya

    2014-07-01

    Full Text Available A four stroke, four cylinder, In-direct injection diesel engine was used to study the effect of emulsified diesel fuel with 5% water by volume on the engine performance and on the main pollutant emissions. The experiments were conducted in the speed range from 1000 to 4500 rpm at full load conditions. It was found that, in general, using emulsified fuel improves the engine performance with slight increase in emissions. While the BSFC has a minimum value for 5% water and at all rpm, the torque, the power and the BMEP are found to have maximum values under these conditions when compared conve ntional disel. CO2 was found to increase with engine speed whereas increase in CO and NOX were minimum. In this work water in diesel emulsion was prepared by a mechanical homogenizer and their physical and chemical properties were examined.

  10. Tomorrows diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    This paper analyzes the different ways of reducing the pollutants emissions from diesel engines in order to follow the future French environmental regulations. The combustion in diesel engines is analyzed first: principle and consequences, calculated combustion, pollution units, influences of ambient air conditions on NO{sub x} production, maximum legal pollutant concentration limits (French regulation for fixed installations, NO{sub x}, CO, HC and dust limit values), influence of fuel composition. Then the existing methods for the reduction of pollutants emissions are analyzed and compared with respect to their cost: mechanical adjustment of engines, water injection, exhaust gases recirculation, treatment of fumes. (J.S.) 4 refs.

  11. An Overview of Effect of Automotive Diesel Engines in Future

    Directory of Open Access Journals (Sweden)

    K. M. Venkatesh

    2012-08-01

    Full Text Available The roll of the vehicle for the transportation of people and goods will become more important all over the world. The reciprocating engine, burning petroleum, will continue to be demanded in the future as the most practical power plant to power the vehicle. The diesel engine, which has the highest thermal efficiency among engines, will become more valuable, considering the increasing threat of the limited energy resources and global warming due to CO2 emission. Therefore, diesel engine technology must be one of the most important technological fields for the future. The current status of performance, fuel economy and exhaust emissions of vehicle diesel engines is summarized in this paper, and the possibility of further technological advancement is discussed. In this discussion, various technologies focusing on the simultaneous reduction of fuel consumption and exhaust emissions by combustion and cycle efficiency improvement are reviewed. Direct injection passenger car diesel engines incorporating those technologies are built and achieved very low fuel consumption and exhaust emissions. The result of these studies shows the diesel engines high potential of further improvement in fuel economy and exhaust emissions in the future, meeting social demand of the world.

  12. AN OVERVIEW OF EFFECT OF AUTOMOTIVE DIESEL ENGINES IN FUTURE

    Directory of Open Access Journals (Sweden)

    K.M.Venkatesh

    2012-06-01

    Full Text Available The roll of the vehicle for the transportation of people and goods will become more important all over the world. The reciprocating engine, burning petroleum, will continue to be demanded in the future as the most practical power plant to power the vehicle. The diesel engine, which has the highest thermal efficiency among engines, will become more valuable, considering the increasing threat of the limited energy resources and global warming due to CO2 emission. Therefore, diesel engine technology must be one of the most important technological fields for the future. The current status of performance, fuel economy and exhaust emissions of vehicle diesel engines is summarized in this paper, and the possibility of further technological advancement is discussed. In this discussion, various technologies focusing on the simultaneous reduction of fuel consumption and exhaust emissions by combustion and cycle efficiency improvement are reviewed. Direct injection passenger car diesel engines incorporating those technologies are built and achieved very low fuel consumption and exhaust emissions. The result of these studies shows the diesel engines high potential of further improvement in fuel economy and exhaust emissions in the future, meeting social demand of the world.

  13. Combustion of the alternative marine diesel fuel LCO in large diesel engines; Verbrennung des alternativen Marinekraftstoffs LCO in Grossdieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Struckmeier, Daniel; Takasaki, Koji; Tajima, Hiroshi [Kyushu Univ., Fukuoka (JP). Lab. of Engine and Combustion (ECO)

    2008-11-15

    Large diesel engines represent the heart of the ships, which transport worldwide about 80% of the goods over the sea route these days. Regimentations of the IMO are planning drastic reductions of nitrogen oxide and sulfur oxide emission limitations from marine diesel engines. At the Laboratory of Engine and Combustion (ECO) of the Kyushu University in Fukuoka (Japan), experiments were carried out on a medium size, single cylinder, diesel engine with two-stroke technology in order to investigate the use of Light Cycle Oil (LCO) in large diesel engines with new combustion processes. (orig.)

  14. Documentation of the Benson Diesel Engine Simulation Program

    Science.gov (United States)

    Vangerpen, Jon

    1988-01-01

    This report documents the Benson Diesel Engine Simulation Program and explains how it can be used to predict the performance of diesel engines. The program was obtained from the Garrett Turbine Engine Company but has been extensively modified since. The program is a thermodynamic simulation of the diesel engine cycle which uses a single zone combustion model. It can be used to predict the effect of changes in engine design and operating parameters such as valve timing, speed and boost pressure. The most significan change made to this program is the addition of a more detailed heat transfer model to predict metal part temperatures. This report contains a description of the sub-models used in the Benson program, a description of the input parameters and sample program runs.

  15. A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, T.K. [Mechanical Engineering Department, Tezpur University, Napaam, Tezpur, Assam 784028 (India); Baruah, D.C. [Energy Department, Tezpur University, Napaam, Tezpur, Assam 784028 (India)

    2010-03-15

    Among the alternative fuels, biodiesel and its blends are considered suitable and the most promising fuel for diesel engine. The properties of biodiesel are found similar to that of diesel. Many researchers have experimentally evaluated the performance characteristics of conventional diesel engines fuelled by biodiesel and its blends. However, experiments require enormous effort, money and time. Hence, a cycle simulation model incorporating a thermodynamic based single zone combustion model is developed to predict the performance of diesel engine. The effect of engine speed and compression ratio on brake power and brake thermal efficiency is analysed through the model. The fuel considered for the analysis are diesel, 20%, 40%, 60% blending of diesel and biodiesel derived from Karanja oil (Pongamia Glabra). The model predicts similar performance with diesel, 20% and 40% blending. However, with 60% blending, it reveals better performance in terms of brake power and brake thermal efficiency. (author)

  16. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  17. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    Science.gov (United States)

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  18. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lyes Tarabet

    2012-01-01

    Full Text Available Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v% at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  19. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  20. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    Science.gov (United States)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  1. Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Florian Zurbriggen

    2016-01-01

    Full Text Available This paper investigates the combustion phasing control of natural gas-diesel engines. In this study, the combustion phasing is influenced by manipulating the start and the duration of the diesel injection. Instead of using both degrees of freedom to control the center of combustion only, we propose a method that simultaneously controls the combustion phasing and minimizes the amount of diesel used. Minimizing the amount of diesel while keeping the center of combustion at a constant value is formulated as an optimization problem with an equality constraint. A combination of feedback control and extremum seeking is used to solve this optimization problem online. The necessity to separate the different time scales is discussed and a structure is proposed that facilitates this separation for this specific example. The proposed method is validated by experiments on a test bench.

  2. JET BREAKUP AND SPRAY FORMATION IN A DIESEL ENGINE.

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.; LI,X.; KIM,M.N.; OH,W.; MARCHESE,A.; SAMULYAK,R.; TZANOS,C.

    2003-06-17

    The breakup of injected fuel into spray is of key interest to the design of a fuel efficient, nonpolluting diesel engine. We report preliminary progress on the numerical simulation of diesel fuel injection spray with the front tracking code FronTier. Our simulation design is set to match experiments at ANL, and our present agreement is semi-quantitative. Future efforts will include mesh refinement studies, which will better model the turbulent flow.

  3. Experimental investigation and modeling of diesel engine fuel spray

    OpenAIRE

    Kolodnytska, R. V.; Karimi, K; Crua, C.; Heikal, M. R.; Sazhina, E. M.

    2008-01-01

    A model for spray penetration in diesel engines is suggested. It is based on momentum conservation for a realistic mass flow rate transient profile. The modelling approach is based on tracking of centre-of-fuel-mass (COFM) of injected diesel fuel. The model was validated for Bosch and Delphi injectors using the data obtained at Sir Harry Ricardo automotive centre, University of Brighton, UK. The model is shown to produce a good agreement with the experimental data until ...

  4. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  5. Product audit for heavy duty diesel engines in production environment

    Science.gov (United States)

    Suh, Sanghoon; Beresford, Jim

    2005-09-01

    A product audit at manufacturing plants has become more important due to the customer's requirements on product quality. Noise and vibration performance have been a primary concern for gas engines and small size diesel engines. Lately, more interest has been shown by truck manufacturers about engine noise for heavy duty diesel application. It has been regarded that acoustic measurements requires dedicated measurement environment for detailed study. This case study shows that acoustic measurements can be performed at performance cell without any dedicated acoustic treatment at the manufacturing plant to identify some of the noise characteristics with proper preparation. Order tracking and loudness were used to identify two different characteristics related to front gear train in heavy duty diesel engines. In addition, the coordination between technical organization and manufacturing plant for the data acquisition and analysis is discussed.

  6. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    OpenAIRE

    Teerawat Apichato; Gumpon Prateepchaikul1

    2003-01-01

    Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term perfor...

  7. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  8. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    Science.gov (United States)

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.

  9. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  10. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of stea

  11. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  12. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    Science.gov (United States)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  13. THE DIESEL ENGINE'S CHALLENGE IN THE NEW MILLENIUM

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, John W.

    2000-08-20

    Diesel engines are the dominant propulsion engine of choice for most of the commercial surface transportation applications in the world. Consider agricultural uses: Diesel engine power is used to prepare the soil, transport the bulk seed or seedlings, pump irrigation water, and spray fertilizers, mechanically harvest some crops and distribute the produce to market. Diesel engines power virtually all of the off-highway construction equipment. Deep water commercial freighters or containerships are almost all diesel engine powered. The passenger ships are primarily either diesel or a combination of diesel and gas turbine, referred to as CODAG or CODOG.

  14. Stationary engine test of diesel cycle using diesel oil and biodiesel (B100); Ensaio de motores estacionarios do ciclo diesel utilizando oleo diesel e biodiesel (B100)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Ednildo Andrade [Universidade Federal da Bahia (DEQ/DEM/EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Dept. de Engenharia Quimica], Email: ednildo@ufba.br; Santos, Danilo Cardoso [Universidade Federal da Bahia (PPEQ/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Souza, Daniel Vidigal D.; Peixoto, Leonardo Barbosa; Franca, Tiago [Universidade Federal da Bahia (DEM/UFBA), Salvador, BA (Brazil). Dept. de Engenharia Mecanica

    2006-07-01

    This work objectified to test an engine stationary of the cycle diesel, having as combustible diesel fossil and bio diesel. The characteristic curves of power, torque and emissions versus rotation of the engine was elaborated. The survey of these curves was carried through in the Laboratorio de Energia e Gas da Escola Politecnica da UFBA, which makes use of two stationary dynamometers and the one of chassis and necessary instrumentation for you analyze of the exhaustion gases. The tested engine was of the mark AGRALE, M-85 model stationary type, mono cylinder, with power NF (NBRISO 1585) Cv/kw/rpm 10/7,4/2500. The assays had been carried through in a hydraulically dynamometer mark Schenck, D-210 model. The fuel consumption was measured in a scale marks Filizola model BP-6, and too much ground handling equipment such as: water reservoir, tubings, valves controllers of volumetric outflow, sensors and measurers of rotation, torque, mass, connected to a system of acquisition of data on line. The emissions of the gases (CO, CO{sub 2}, and NOx), were measured by the analytical Tempest mark, model 100. The engine operated with oil diesel and bio diesel of oils and residual fats (OGR). In the tests, the use of the fuel derived from oil and the gotten ones from OGR was not detected significant differences how much. In this phase already it can show to the immediate possibility of the substitution of the oil diesel for bio diesel as combustible in the stationary engines of low power (author)

  15. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions.

  16. Capture of Heat Energy from Diesel Engine Exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  17. Emission characteristics of a turbocharged diesel engine fueled with gas-to-liquids

    Institute of Scientific and Technical Information of China (English)

    WU Tao; ZHANG Wugao; FANG Junhua; HUANG Zhen

    2007-01-01

    Emission characteristics of a turbocharged,intercooled,heavy-duty diesel engine operating on neat gas-toliquids (GTL) and blends of GTL with conventional diesel were investigated and a comparison was made with those of diesel fuel.The results show that nitrogen oxides (NOx),smoke,and particulate matter (PM) emissions can be decreased when operating on GTL and diesel-GTL blends.Engine emissions decrease with an increase of GTL fraction in the blends.Compared with diesel fuel,an engine operatingon GTL can reduce NOx,PM,carbon monoxide (CO),and hydrocarbon (HC) by 23.7%,27.6%,16.6% and 12.9% in ECE R49 13-mode procedure,respectively.Engine speed and load have great influences on emissions when operating on diesel-GTL blends and diesel fuel in the turbocharged diesel engine.The study indicates that GTL is a promisingalternative fuel for diesel engines to reduce emissions.

  18. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, P. [Dept. of Mechanical Engineering, K I T S, Warangal- 506015, A. P. (India); Appa Rao, B.V. [Dept. of Marine Engineering, Andhra University, Visakhapatnam-530003, A. P. (India)

    2012-07-01

    The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME) is used with additive Triacetin (T) at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load). The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  19. Analysis of Oxygenated Component (butyl Ether) and Egr Effect on a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx. Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.

  20. Performance and emission characteristics of diesel engine with COME-Triacetin additive blends as fuel

    Directory of Open Access Journals (Sweden)

    P. Venkateswara Rao, B. V. Appa Rao

    2012-01-01

    Full Text Available The Triacetin [C9H14O6] additive is used an anti-knocking agent along with the bio-diesel in DI- diesel engine. In the usage of diesel fuel and neat bio-diesel knocking can be detected to some extent. The T- additive usage in the engine suppressed knocking, improved the performance and reduced tail pipe emissions. Comparative study is conducted using petro-diesel, bio-diesel, and with various additive blends of bio-diesel on DI- diesel engine. Coconut oil methyl ester (COME is used with additive Triacetin (T at various percentages by volume for all loads (No load, 25%, 50%, 75% and full load. The performance of engine is compared with neat diesel in respect of engine efficiency, exhaust emissions and combustion knock. Of the five Triacetin- biodiesel blends tried, 10% Triacetin combination with biodiesel proved encouraging in all respects of performance of the engine.

  1. Heat Transfer in Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent

    Heat transfer between the cylinder gas and the piston surface during combustion in large two-stroke uniflow scavenged marine diesel engines has been investigated in the present work. The piston surface experiences a severe thermal load during combustion due to the close proximity of the combustion...... marine diesel engines. The contribution from thermal radiation to the piston surface heat flux was not investigated in the present work, but a coarse estimation of the magnitude was performed. The obtained estimations indicate a peak piston surface heat flux level in the interval from about 1 MW/m2...... and up to 9.5 MW/m2 with the actual value probably being in the lower part of this interval. This is about the same magnitude as that previously reported for automotive size diesel engines. The obtained interval is relatively large, but a more accurate prediction is difficult to achieve with the applied...

  2. The use of tyre pyrolysis oil in diesel engines.

    Science.gov (United States)

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  3. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  4. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  6. Experimental combustion analysis of a hsdi diesel engine fuelled with palm oil biodiesel-diesel fuel blends

    OpenAIRE

    JOHN AGUDELO; ELKIN GUTIÉRREZ; PEDRO BENJUMEA

    2010-01-01

    Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB), No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively). To isolate the fuel effect, tests were executed at constant po...

  7. A Simulation Study on A Diesel Engine Assembly Line

    Institute of Scientific and Technical Information of China (English)

    刘庆华; 吴桂花

    2002-01-01

    Nowadays in China, as the economic reform goes further and the central government increasingly demands for raising productivity, more and more state-owned factories begin to turn their heads back to problems arising from their production systems. With the co-operation of Tianjin Diesel Engine Factory, we conducted a simulation study on its diesel engine assembly line, using GPSS as our major simulation language tool. This paper describes the model we constructed, simulation experiments we made on the model, and some conclusions we drew from the simulation study.

  8. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R. [Texaco Technology Ghent (Belgium)

    1997-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  10. Performance characteristics of a diesel engine with deccan hemp oil

    Energy Technology Data Exchange (ETDEWEB)

    O.D. Hebbal; K. Vijayakumar Reddy; K. Rajagopal [Poojya Doddappa Appa College of Engineering, Gulbarga (India)

    2006-10-15

    In this present investigation deccan hemp oil, a non-edible vegetable oil is selected for the test on a diesel engine and its suitability as an alternate fuel is examined. The viscosity of deccan hemp oil is reduced first by blending with diesel in 25/75%, 50/50%, 75/25%, 100/0% on volume basis, then analyzed and compared with diesel. Further blends are heated and effect of viscosity on temperature was studied. The performance and emission characteristics of blends are evaluated at variable loads of 0.37, 0.92, 1.48, 2.03, 2.58, 3.13 and 3.68 kW at a constant rated speed of 1500 rpm and results are compared with diesel. The thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC) are well comparable with diesel, and emissions are a little higher for 25% and 50% blends. At rated load, smoke, carbon monoxide (CO), and unburnt hydrocarbon (HC) emissions of 50% blend are higher compared with diesel by 51.74%, 71.42% and 33.3%, respectively. For ascertaining the validity of results obtained, pure deccan hemp oil results are compared with results of jatropha and pongamia oil for similar works available in the literature and were well comparable. From investigation it has been established that, up to 25% of blend of deccan hemp oil without heating and up to 50% blend with preheating can be substituted for diesel engine without any engine modification. 27 refs., 13 figs., 2 tabs.

  11. 40 CFR 86.341-79 - Diesel engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine dynamometer test run. 86.341-79 Section 86.341-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....341-79 Diesel engine dynamometer test run. (a) This section applies to Diesel engines only....

  12. Conversion of a diesel engine to a spark ignition natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  13. Fault detection and diagnosis of diesel engine valve trains

    Science.gov (United States)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  14. Evaluation of Diesel Engine Noise Reduction Measures Based on Hierarchy Diagnosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effect of different noise reduction measures for diesel engines was evaluated based on hierarchy diagnosis. The hierarchy diagnosis chart and hierarchy judgment matrix were given.Through evaluation of noise reduction measures, the main strategies of noise reduction were found.The result shows that the noise reduction level of different frequency belts varies from measure to measure. The reduction capacity of different measures could not add simply, which relates to the problem of parameter matching.

  15. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine

    Directory of Open Access Journals (Sweden)

    Lino Guzzella

    2013-07-01

    Full Text Available In this paper we demonstrate the potential of combining electric hybridization with a dual-fuel natural gas-Diesel engine. We show that carbon dioxide emissions can be reduced to 43 gram per kilometer with a subcompact car on the New European Driving Cycle (NEDC. The vehicle is operated in charge-sustaining mode, which means that all energy is provided by the fuel. The result is obtained by hardware-in-the-loop experiments where the engine is operated on a test bench while the rest of the powertrain as well as the vehicle are simulated. By static engine measurements we demonstrate that the natural gas-Diesel engine reaches efficiencies of up to 39.5%. The engine is operated lean at low loads with low engine out nitrogen oxide emissions such that no nitrogen oxide aftertreatment is necessary. At medium to high loads the engine is operated stoichiometrically, which enables the use of a cost-efficient three-way catalytic converter. By vehicle emulation of a non-hybrid vehicle on the Worldwide harmonized Light vehicles Test Procedure (WLTP, we demonstrate that transient operation of the natural gas-Diesel engine is also possible, thus enabling a non-hybridized powertrain as well.

  16. Swirling flow in a two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Hemmingsen, Casper Schytte; Ingvorsen, Kristian Mark; Walther, Jens Honore

    2013-01-01

    Computational fluid dynamic simulations are performed for the turbulent swirling flow in a scale model of a low-speed two-stroke diesel engine with a moving piston. The purpose of the work is to investigate the accuracy of different turbulence models including two-equation Reynolds- Averaged Navier...

  17. TRIBOLOGICAL PERFORMANCE OF PISTON RING IN MARINE DIESEL ENGINE

    DEFF Research Database (Denmark)

    Imran, Tajammal; Klit, Peder; Felter, Christian

    From a tribology point of view, it is the two dead centers that are the main area of interest for experimental study of piston rings in large marine diesel engines. Therefore, in this work the performance of piston rings is studied to mark the importance of the two dead centers. A test rig based...

  18. Two Stroke Diesel Engines for Large Ship Propulsion

    DEFF Research Database (Denmark)

    Haider, Sajjad

    In low speed large two-stroke marine diesel engines, uniflow scavenging is used to remove the exhaust gases from the cylinder and fill the cylinder with fresh air charge for the next cycle. The swirl enhances the mixing of fuel with air and improves combustion efficiency. The thesis focuses on ch...

  19. Dynamic programming for Integrated Emission Management in diesel engines

    NARCIS (Netherlands)

    Schijndel, J. van; Donkers, M.C.F.; Willems, F.P.T.; Heemels, W.P.M.H.

    2014-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that aims at minimizing the operational costs of diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In previous work on IEM, a suboptimal real-time implementable solution w

  20. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue consumpti

  1. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  2. The Feasibility of Oil Analysis for Air Force Diesel Engines

    Science.gov (United States)

    1979-06-01

    analyses conducted by Mobil include automated Brookfield viscosity, membrane filtration in pentane for insolubles, and differential infrared analysis for...considered, such as microfiltration for particle size distribution and infrared (for oxida- tion and possibly nitration). Because of the limited...military (AOAP) sectors , it may be inferred that a large segment of those organizations concerned with diesel engine maintenance and utilization is

  3. Automated Model Fit Method for Diesel Engine Control Development

    NARCIS (Netherlands)

    Seykens, X.; Willems, F.P.T.; Kuijpers, B.; Rietjens, C.

    2014-01-01

    This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is consider

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IX, ENGINE COMPONENTS.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, FUNCTION, AND MAINTENANCE OF DIESEL ENGINE CRANKSHAFTS, CAMSHAFTS, AND ASSOCIATED BEARINGS. TOPICS ARE SHAFTS AND BEARINGS, CAMSHAFTS, BEARINGS AND THEIR MAINTENANCE, AND DETECTING FAILURE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED…

  5. Evaluation of properties for lubricant filter in diesel engines

    Institute of Scientific and Technical Information of China (English)

    赵新泽; 程天; 张彩香

    2004-01-01

    The properties of lubricant filters in diesel engines directly affect operation of the lubricant system,and lubricant filters are apt to be impacted by many factors. Therefore, scientific and sensible methods evaluating the properties for lubricant filter diesel engines are necessary to monitor filter properties on line and dynamically. This paper applies ferrographic techniques and adopts sampling methods that oil specimens are synchronously obtained in front of and behind filter elements to monitor the filters of ISUZU DA - 220 diesel engine in two FDS0 forklifts. Results show that the combination of ferrographic techniques and above sampling methods is effective in analyzing the whole operating process of filters used in diesel engines. The service life and ruined type of filter can be estimated through the relationship between ferrographic readings in front and behind of filter and operation time. Furthermore, through a great deal of tests, a series of experimental curves of readings and time and characteristic parameters for filters used in different machines can be gained, which has guiding significance to the selection and maintenance of the filters. But because of the limitation of the ferrographic technique, the debris on the substrate prevents determination of sizes. It is difficult to judge accurately the size of debris that a filter can filter.

  6. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  7. Comparative Performance of Direct Injection Diesel Engines Fueled Using Compressed Natural Gas and Diesel Fuel Based on GT-POWER Simulation

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2008-01-01

    The paper is investigated the application of compressed natural gas (CNG) as an alternative fuel and its performance effect in the diesel engines using GT-POWER computational simulation. The CNG as an alternative fuel for four stroke diesel engine modeling was developed from the real diesel engine using GT-POWER computational model with measure all of engine components size. The computational model will be running on mono CNG fuel and mono diesel fuel to simulate and investigate the engine pe...

  8. STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinjun; HAI Jingtao; SHI Jianzhong; LI Xuesong; YANG Qing; WANG Shangyong

    2006-01-01

    A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min-1 steadily and the power is about 68 kW/(4 kr · min-1).

  9. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  10. Experimental investigation on performance characteristics of a diesel engine using diesel-water emulsion with oxygen enriched air

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2017-03-01

    Full Text Available Diesel engines occupy a crucial position in automobile industry due to their high thermal efficiency and high power to weight ratio. However, they lag behind in controlling air polluting components coming out of the engine exhaust. Therefore, diesel consumption should be analyzed for future energy consumption and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines, which include biodiesel, alcohol-diesel emulsions and diesel water emulsions. Among them the diesel water emulsion is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency. But the major problem associated with emulsions is the ignition delay, since this is responsible for the power and torque loss. A reduction in NOx emission was observed due to reduction in combustion chamber temperature as the water concentration increases. However the side effect of emulsified diesel is a reduction in power which can be compensated by oxygen enrichment. The present study investigates the effects of oxygen concentration on the performance characteristics of a diesel engine when the intake air is enriched to 27% of oxygen and fueled by 10% of water diesel emulsion. It was found that the brake thermal efficiency was enhanced, combustion characteristics improved and there is also a reduction in HC emissions.

  11. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  12. Application of thermal barrier coating in a Diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Buyukkaya, E. [Dept. of Mechanical Engineering, Sakarya Univ., Sakarya (Turkey); Demirkiran, A.S. [Dept. of Metallurgical and Materials Science Engineering, Sakarya Univ., Sakarya (Turkey); Cerit, M.

    2004-07-01

    In this study, an investigation of the effects of ceramic coatings on Diesel engine performance and exhaust emissions was presented. Tests were carried out a range of engine speeds at low, middle and high load conditions for a standard engine and a ceramic-coated engine. Cylinder head and valves of an engine were coated with a 0.35 mm thickness of CaZrO{sub 3} over a 0.15 mm thickness of NiCrAl bond coat. Pistons were also coated with MgZrO{sub 3}. The coatings were produced using atmospheric plasma spray technique. Specific fuel consumption values of insulated engine were lower than standard engine (about 1-6%). Due to the better combustion efficiency in the coated engine, particulate emissions were lower than the standard engine (about 48%). (orig.)

  13. Toxicity of effluents emitted by the diesel engines vehicles; Toxicite des effluents emis par les vehicules a moteur diesel

    Energy Technology Data Exchange (ETDEWEB)

    Alcon, St.

    1998-04-29

    The exhaust gases of diesel engine vehicles are atmospheric pollutants. They are characterised by a gaseous phase and a particulate phase. The diesel particulates are composed of a nucleus formed with elementary carbon, forming aggregates that absorb the organic by-products at their surface. A first part treats the effluents of diesel engine vehicles: their characteristics, the factors influencing the diesel emissions, the noxiousness of the gaseous phase, the kinetics and the metabolism of the particulate phase and analysis methods. A second part tackles the experimental toxicity of diesel effluents on insisting on the nature of exposures, the mutagenicity, the carcinogenicity, the effects on the reproduction function and immuno-toxicity. A third part is devoted to the toxicity for man with epidemiology data and some studies under controlled exposures. Then, a fourth part, explains the toxicity mechanisms and the action modes of diesel effluents on the carcinogen effects and on respiratory diseases. (N.C.)

  14. Improvement of fuel injection system of locomotive diesel engine.

    Science.gov (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  15. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    Science.gov (United States)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  16. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  17. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  18. Study of combustion and emission characteristics of turbocharged diesel engine fuelled with dimethylether

    Institute of Scientific and Technical Information of China (English)

    Junhua WU; Zhen HUANG; Xinqi QIAO; Jun LU; Junjun ZHANG; Liang ZHANG

    2008-01-01

    An experimental study of a turbocharged diesel engine operating on dimethyl ether (DME) was conducted. The combustion and emission characteristics of the DME engine were investigated. The results show that the maximum torque and power of DME are greater than those of diesel, particularly at low speeds; the brake specific fuel consum-ption of DME is lower than that of diesel at low and middle engine speeds, and the injection delay of DME is longer than that of diesel. However, the maximum cylinder pressure, maximum pressure rise rate and combustion noises of the DME engine are lower than those of diesel. The combustion velocity of DME is faster than that of diesel, resulting in a shorter combustion duration of DME. Compared with the diesel engine, NOx emission of the DME engine is reduced by 41.6% on ESC data. In addition, the DME engine is smoke free at any operating condition.

  19. 78 FR 50317 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Science.gov (United States)

    2013-08-19

    ... approved under Type Certificate No. 3A13, is an aluminum, four place, single engine airplane with a... considered universally applicable to all types of possible diesel engines and diesel engine installations. However, after reviewing the Cessna installation, the SMA engine type, the SMA engine requirements,...

  20. Experimental investigation on a DI diesel engine fuelled with Madhuca Indica ester and diesel blend

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai (India); Puhan, Sukumar [Department of Mechanical Engineering, Veltech Engineering College, Avadi, Chennai (India)

    2010-06-15

    Biodiesel is a fatty acid alkyl ester, which is renewable, biodegradable and non-toxic fuel which can be derived from any vegetable oil by transesterification. One of the popularly used biodiesel in India is Mahua oil (Madhuca Indica). In the present investigation Mahua oil was transesterified using methanol in the presence of alkali catalyst and was used to study the performance and emission characteristics. The biodiesel was tested on a single cylinder, four stroke compression ignition engine. Engine performance tests showed that power loss was around 13% combined with 20% increase in fuel consumption with Mahua oil methyl ester at full load. Emissions such as carbon monoxide, hydrocarbon were lesser for Mahua ester compared to diesel by 26% and 20% respectively. Oxides of nitrogen were lesser by 4% for the ester compared to diesel. (author)

  1. Comparative Performance of Direct Injection Diesel Engines Fueled Using Compressed Natural Gas and Diesel Fuel Based on GT-POWER Simulation

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The paper is investigated the application of compressed natural gas (CNG as an alternative fuel and its performance effect in the diesel engines using GT-POWER computational simulation. The CNG as an alternative fuel for four stroke diesel engine modeling was developed from the real diesel engine using GT-POWER computational model with measure all of engine components size. The computational model will be running on mono CNG fuel and mono diesel fuel to simulate and investigate the engine performance effect on the difference fuel. Output of the model simulation shown the effect of diesel engine fueled by CNG performance effect were simulated in any engine speeds parameters.

  2. Combustion Analysis and Knock Detection in Single Cylinder DI-Diesel Engine Using Vibration Signature Analysis

    OpenAIRE

    Y.V.V.SatyanarayanaMurthy

    2011-01-01

    The purpose of this paper is to detect the “knock” in Diesel engines which deteriorate the engine performance adversely. The methodology introduced in the present work suggests a newly developed approach towards analyzing the vibration analysis of diesel engines. The method is based on fundamental relationship between the engine vibration pattern and the relative characteristics of the combustion process in each or different cylinders. Knock in diesel engine is detected by measuring the vibra...

  3. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  4. Steam bottoming cycle for an adiabatic diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, E.; Demler, R.; Krepchin, I.; Walker, D.

    1984-03-01

    A study of steam bottoming cycles using adiabatic diesel engine exhaust heat projected substantial performance and economic benefits for long haul trucks. A parametric analysis of steam cycle and system component variables, system cost, size and performance was conducted. An 811 K/6.90 MPa state-of-the-art reciprocating expander steam system with a monotube boiler and radiator core condenser was selected for preliminary design. When applied to a NASA specified turbo-charged adiabatic diesel the bottoming system increased the diesel output by almost 18%. In a comparison of the costs of the diesel with bottoming system (TC/B) and a NASA specified turbocompound adiabatic diesel with after-cooling with the same total output, the annual fuel savings less the added maintenance cost was determined to cover the increased initial cost of the TC/B system in a payback period of 2.3 years. Also during this program steam bottoming system freeze protection strategies were developed, technological advances required for improved system reliability were considered and the cost and performance of advanced systems were evaluated.

  5. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines.

  6. Effects of Aftermarket Control Technologies on Gas and Particle Phase Oxidative Potential from Diesel Engine Emissions

    Science.gov (United States)

    Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) with var...

  7. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  8. Tomorrow`s diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    After a review of the main principles governing combustion in diesel engines and the influence of ambient air conditions on pollutant emissions (and more especially NOx), emission level limits concerning NOx, CO, HC and ashes are presented and discussed according to their applications in the various types of diesel engines. The influence of fuel type is also examined and several ways to reduce NOx emissions in liquid fuel diesel engines are reported: mechanical modifications (compression ratio), water injection, exhaust gas recirculation, exhaust gas processing, fume and ash filtration. Cost issues are also discussed, through comparisons with gas turbines

  9. Two-zone modeling of diesel / biodiesel blended fuel operated ceramic coated direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    B. Rajendra Prasath, P. Tamil Porai, Mohd. F. Shabir

    2010-11-01

    Full Text Available A comprehensive computer code using ”C” language was developed for compression ignition (C.I engine cycle and modified in to low heat rejection (LHR engine through wall heat transfer model. Combustion characteristics such as cylinder pressure, heat release, heat transfer and performance characteristics such as work done, specific fuel consumption (SFC and brake thermal efficiency (BTE were analysed. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. The effect of coating on engine heat transfer was analysed using a gas-wall heat transfer calculations and total heat transfer was based on ANNAND’s combined heat transfer model. The predicted results are validated through the experiments on the test engine under identical operating conditions on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha seed oil blended with diesel was used in both conventional and LHR engine. The simulated combustion and performance characteristics are found satisfactory with the experimental results.

  10. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  11. Desempenho comparativo de um motor de ciclo diesel utilizando diesel e misturas de biodiesel Comparative performance of a cycle diesel engine using diesel and biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Ronald Leite Barbosa

    2008-10-01

    fixation of man country life, the excellent and varied climatic conditions and several types of terrain become the country, with extensive workable areas, stand out in the world scenery if considering its great potentiality on generation of alternative fuels. The environmental preservation, important subject nowadays, makes that the human being work in searches for the development of alternative energies, mainly those originating from renewable and biodegradable sources of sustantable character. Taking in consideration those searches, the purpose of this work was to evaluate the performance of a diesel engine working in different moments with mineral diesel and mixtures of mineral diesel and biodiesel in the equivalent proportions B2 (98% mineral diesel and 2%biodiesel, B5 (95% mineral diesel and 5%biodiesel, B20 (80% mineral diesel and 20%biodiesel, and, finally, B100 (100% biodiesel. The rehearsal was accomplished in the dependences of the Engineering Department at UFLA - Federal University of Lavras, in Lavras, Minas Gerais, in July, 2005. For the accomplishment of the rehearsals it, was used an engine cycle diesel of a tractor VALMET 85 id, of 58,2kW (78 cv, following it methodology established by the norm NBR 5484 of ABNT (1985, that refers to the rehearsal dynamometric of engines cycle Otto and Diesel being proceeded. One noticed ended that the potency of the motor when using biodiesel was lower than one when using mineral diesel. One observed that, in some rotations, the mixtures B5 and B20 presented the same potency or even higher, in some situations, than the one when if using mineral diesel. The best thermal efficiency of the motor was verified in the rotation of 540 rpm of equivalent TDP to 1720 rpm of the motor.

  12. Diesel particle filter and fuel effects on heavy-duty diesel engine emissions.

    Science.gov (United States)

    Ratcliff, Matthew A; Dane, A John; Williams, Aaron; Ireland, John; Luecke, Jon; McCormick, Robert L; Voorhees, Kent J

    2010-11-01

    The impacts of biodiesel and a continuously regenerated (catalyzed) diesel particle filter (DPF) on the emissions of volatile unburned hydrocarbons, carbonyls, and particle associated polycyclic aromatic hydrocarbons (PAH) and nitro-PAH, were investigated. Experiments were conducted on a 5.9 L Cummins ISB, heavy-duty diesel engine using certification ultra-low-sulfur diesel (ULSD, S ≤ 15 ppm), soy biodiesel (B100), and a 20% blend thereof (B20). Against the ULSD baseline, B20 and B100 reduced engine-out emissions of measured unburned volatile hydrocarbons and PM associated PAH and nitro-PAH by significant percentages (40% or more for B20 and higher percentage for B100). However, emissions of benzene were unaffected by the presence of biodiesel and emissions of naphthalene actually increased for B100. This suggests that the unsaturated FAME in soy-biodiesel can react to form aromatic rings in the diesel combustion environment. Methyl acrylate and methyl 3-butanoate were observed as significant species in the exhaust for B20 and B100 and may serve as markers of the presence of biodiesel in the fuel. The DPF was highly effective at converting gaseous hydrocarbons and PM associated PAH and total nitro-PAH. However, conversion of 1-nitropyrene by the DPF was less than 50% for all fuels. Blending of biodiesel caused a slight reduction in engine-out emissions of acrolein, but otherwise had little effect on carbonyl emissions. The DPF was highly effective for conversion of carbonyls, with the exception of formaldehyde. Formaldehyde emissions were increased by the DPF for ULSD and B20.

  13. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  14. Evaluation of engine performance, emissions, of a twin cylinder diesel engine fuelled with waste plastic oil and diesel blends with a fraction of methanol

    Directory of Open Access Journals (Sweden)

    Y. Tarun

    2014-03-01

    Full Text Available A comprehensive study on the methanol and waste plastic oil as an alternative fuel has been carried out. This report deals with the exhaust emission of waste plastic fuel on twin cylinder diesel engine. The objectives of this report are to analyse the fuel consumption and the emission characteristic of a twin cylinder diesel engine that are using waste plastic oil compared to usage of ordinary diesel that are available in the market. This report describes the setups and the procedures for the experiment which is to analyse the emission characteristics and fuel consumption of diesel engine due to usage of the both fuels. Detail studies about the experimental setup and components have been done before the experiment started. Data that are required for the analysis is observed from the experiments. Calculations and analysis have been done after all the required data needed for the thesis is obtained. The experiment used diesel engine with no load which means no load exerted on it. A four stroke Twin cylinder diesel engine was adopted to study the brake thermal efficiency, brake specific energy consumption, mechanical efficiency, brake power, volumetric efficiency, indicated thermal efficiency and emissions at full load with the fuel of fraction methanol in bio-diesel. In this study, the diesel engine was tested using methanol blended with bio-diesel at certain mixing ratios of (WPO: Diesel 20:80, 40:60 and 60:40 methanol to bio-diesel respectively. By the end of the report, the successful of the project have been started which is Kirloskar engine is able to run with waste plastic oil (WPO but the engine needs to run by using diesel fuel first, then followed by waste plastic oil and finished with diesel fuel as the last fuel usage before the engine turned off. The performance of the engine using blended fuel compared to the performance of engine with diesel fuel. Experimental results of blended fuel and diesel fuel are also compared.   Keywords

  15. Comparative investigation of diesel and mixed liquefied petroleum gas/diesel injection engines

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J.; Bian, Y.; Qi, D.; Cheng, Q.; Wu, T. [Changan University, Xian (China). Automobile Faculty

    2004-05-01

    Experiments are conducted on engine performance and sprays and a characteristics analysis is made between diesel and mixed liquefied petroleum gas (LPG)/diesel injection engines. The performance test results show that with LPG the mixed ratio increases, engine power reduces slightly, fuel consumption and engine noise have almost no change, pollutant emissions of smoke, CO and NO{sub x} at full load are improved significantly, but the amount of unburned HC increases. The experimental results of the sprays indicate that because of flash boiling injection of mixed fuel, mean diameters in a spray decrease, the number distribution curve of fuel droplet size moves towards smaller diameters, small-size droplet numbers increase, spray quality is good and engine smoke reduces accordingly. Because large-size droplet diameters show almost no change and small-size droplet diameters decrease, the relative span factor and dispersion boundary factor of the droplet diameter increase. High-resolution digital camera photography is invaluable when carrying out a comparative investigation of spray. (author)

  16. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Science.gov (United States)

    2011-04-11

    ... under Type Certificate No. A47CE, is a fully composite, four place, single-engine airplane with a... applicable to all ] types of possible diesel engines and diesel engine installations. However, after reviewing the DAI installation, the Austro engine type, the Austro Control GmbH (ACG) requirements,...

  17. EFFECTS OF ETHANOL-DIESEL EMULSIONS ON THE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF DI DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    R. Parthasarathi

    2014-01-01

    Full Text Available The main objective of this study is to analyze the different ratio of emulsified fuels on the performance, emission and combustion characteristics of four stroke single cylinder kirloskar TV-I direct injection compression ignition engine and compared with diesel fuel under different engine loads with constant engine speed of 1500 rpm. Four kinds of test fuels were prepared namely 80% diesel, 10% ethanol and 10% surfactant (Identified as D80E10; 70% diesel, 20% ethanol and 10% surfactant (denoted as D70 E20; 60% diesel 30% ethanol and 10% surfactant (denoted as D60 E30; 50% diesel, 40% ethanol and 10% surfactant (denoted as D50 E40 by volume respectively. In this test, Benzal konium chloride is added as an emulsifier to the diesel-ethanol blend to prevent layer formation and to make it a homogeneous blend. At maximum brake power, the comparison of best emulsified fuel ratio with diesel fuel results showed improvement in brake thermal efficiency with decrease in specific fuel consumption and smoke. The NOX, HC, CO2, cylinder pressure and heat release rate for D50 E40 emulsions are higher when compared to diesel fuel.

  18. Modeling of Nitric Oxide Formation in Single Cylinder Direct Injection Diesel Engine Using Diesel-Water Emulsion

    Directory of Open Access Journals (Sweden)

    K. Kannan

    2009-01-01

    Full Text Available Problem statement: Water injection into the combustion chamber of diesel engine found to be one of best method for in-cylinder control of NOx formation. Approach: The combustion of water-diesel emulsion in diesel engine was simulated using a computer program to estimate the heat release rate, cylinder pressure, brake thermal efficiency, brake specific fuel consumption and NO formation. Results: The numerical simulation was performed at different equivalence ratios, engine speeds and water percentages. The numerical simulation was preferred to study the combustion behavior and emission of diesel engine because the experimental investigations were time consuming and costly affair. Conclusion/Recommendations: Experiments also conducted to validate the predicted results of computer simulation. Though the zero dimensional simulation models predicted NO formation during combustion process, the first appearance of NO could not be identified using this method which can be solved by CFD technique.

  19. Reducing the viscosity of Jojoba Methyl Ester diesel fuel and effects on diesel engine performance and roughness

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Mech. Eng. Dept., UAE University, Al-Ain, Abu Dhabi 17555 (United Arab Emirates)

    2009-07-15

    An experimental investigation has been carried out to test two approaches to reduce the viscosity of the Jojoba Methyl Ester (JME) diesel fuel. The first approach is the heating of the fuel to two temperatures of 50 and 70 C as compared to the base ambient temperature and to diesel fuel too. The second approach is adding one chemical which is considered by its own as alternative and renewable fuel which is Diethyl Ether (DEE). The viscosity has been reduced by both methods to close to diesel values. The performance of a diesel engine using those fuels has been tested in a variable compression research engine Ricardo E6 with the engine speed constant at 1200 rpm. The measured parameters included the exhaust gas temperature, the ignition delay period, the maximum pressure rise rate, maximum pressure, and indicated mean effective pressure and maximum heat release rate. The engine performance is presented and the effects of both approaches are scrutinized. (author)

  20. Unsupervised Condition Change Detection In Large Diesel Engines

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Larsen, Jan

    2003-01-01

    This paper presents a new method for unsupervised change detection which combines independent component modeling and probabilistic outlier etection. The method further provides a compact data representation, which is amenable to interpretation, i.e., the detected condition changes can be investig...... be investigated further. The method is successfully applied to unsupervised condition change detection in large diesel engines from acoustical emission sensor signal and compared to more classical techniques based on principal component analysis and Gaussian mixture models....

  1. AC maintenance and repair manual for diesel engines

    CERN Document Server

    Pallas, Jean-Luc

    2013-01-01

    The aim of this book with its detailed step-by-step colour photographs and diagrams, is to enable every owner to fix their diesel engine with ease. Troubleshooting tables help diagnose potential problems, and there is advice on regular maintenance and winterising and repair. Jean-Luc Pallas's enthusiasm for passing on his knowledge, as well as his clear explanations, precise advice and step-by-step instructions make this a unique book.

  2. State of art and potentials of Diesel-/gas engines; Technischer Stand und Potentiale von Diesel-/Gasmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, H. [Motorenanlagenbau der Blohm und Voss Industrie GmbH, Hamburg (Germany)

    1997-03-01

    Sparked off by the demand on the gas engine sector, Diesel-/gas engines are increasingly developed and offered by many engine manufacturers. This engine type offers in contrast to the gas-Otto-engine many advantages with regard to the use of the most different burnable gases. (orig.) [Deutsch] Ausgeloest durch die Nachfrage auf dem Gasmotorensektor werden von vielen Motorenherstellern vermehrt Diesel-Gasmotoren entwickelt und angeboten. Dieser Motortyp bietet bei der Nutzung unterschiedlichster Brenngase gegenueber dem Gas-Otto-Motor viele Vorteile. (orig.)

  3. A Fuel Economy Study in Heavy Duty Diesel Engine Lubricants

    Institute of Scientific and Technical Information of China (English)

    Hiroshi Watanabe; Wim van Dam; Gary Parsons; Peter Kleijwegt

    2011-01-01

    Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests.

  4. [Effects of fuel properties on the performance of a typical Euro IV diesel engine].

    Science.gov (United States)

    Chen, Wen-miao; Wang, Jian-xin; Shuai, Shi-jin

    2008-09-01

    With the purpose of establishing diesel fuel standard for China National 4th Emission Standard, as one part of Beijing "Auto-Oil" programme, engine performance test has been done on a typical Euro IV diesel engine using eight diesel fuels with different fuel properties. Test results show that, fuel properties has little effect on power, fuel consumption, and in-cylinder combustion process of tested Euro IV diesel engine; sulfate in PM and gaseous SO2 emissions increase linearly with diesel sulfur content increase; cetane number increase cause BSFC and PM reduce and NOx increase; T90 decrease cause NOx reduce while PM shows trend of reduce. Prediction equations of tested Euro IV diesel engine's ESC cycle NOx and PM emissions before SCR response to diesel fuel sulfur content, cetane number, T90 and aromatics have been obtained using linear regression method on the base of test results.

  5. Neural Modeling and Control of Diesel Engine with Pollution Constraints

    CERN Document Server

    Ouladsine, Mustapha; Dovifaaz, Xavier; 10.1007/s10846-005-3806-y

    2009-01-01

    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identi?cation and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are ?exible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The present...

  6. A concise wall temperature model for DI Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Torregrosa, A.; Olmeda, P.; Degraeuwe, B. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Reyes, M. [Centro de Mecanica de Fluidos y Aplicaciones, Universidad Simon Bolivar (Venezuela)

    2006-08-15

    A concise resistor model for wall temperature prediction in diesel engines with piston cooling is presented here. The model uses the instantaneous in-cylinder pressure and some usually measured operational parameters to predict the temperature of the structural elements of the engine. The resistor model was adjusted by means of temperature measurements in the cylinder head, the liner and the piston. For each model parameter, an expression as a function of the engine geometry, operational parameters and material properties was derived to make the model applicable to other similar engines. The model predicts well the cylinder head, liner and piston temperature and is sensitive to variations of operational parameters such as the start of injection, coolant and oil temperature and engine speed and load. (author)

  7. The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwanam [Automobile Research Center, Chonnam National University, Gwangju 500-757 (Korea); Choi, Byungchul [School of Mechanical Systems Engineering, Chonnam National University, Gwangju 500-757 (Korea)

    2010-01-15

    Biofuel (biodiesel, bioethanol) is considered one of the most promising alternative fuels to petrol fuels. The objective of the work is to study the characteristics of the particle size distribution, the reaction characteristics of nanoparticles on the catalyst, and the exhaust emission characteristics when a common rail direct injection (CRDI) diesel engine is run on biofuel-blended diesel fuels. In this study, the engine performance, emission characteristics, and particle size distribution of a CRDI diesel engine that was equipped with a warm-up catalytic converters (WCC) or a catalyzed particulate filter (CPF) were examined in an ECE (Economic Commission Europe) R49 test and a European stationary cycle (ESC) test. The engine performance under a biofuel-blended diesel fuel was similar to that under D100 fuel, and the high fuel consumption was due to the lowered calorific value that ensued from mixing with biofuels. The use of a biodiesel-diesel blend fuel reduced the total hydrocarbon (THC) and carbon monoxide (CO) emissions but increased nitrogen oxide (NO{sub x}) emissions due to the increased oxygen content in the fuel. The smoke emission was reduced by 50% with the use of the bioethanol-diesel blend. Emission conversion efficiencies in the WCC and CPF under biofuel-blended diesel fuels were similar to those under D100 fuel. The use of biofuel-blended diesel fuel reduced the total number of particles emitted from the engine; however, the use of biodiesel-diesel blends resulted in more emissions of particles that were smaller than 50 nm, when compared with the use of D100. The use of a mixed fuel of biodiesel and bioethanol (BD15E5) was much more effective for the reduction of the particle number and particle mass, when compared to the use of BD20 fuel. (author)

  8. HC-PM COUPLING MODEL FOR PARTICULATE MATTER EMISSION OF DIESEL ENGINES

    Institute of Scientific and Technical Information of China (English)

    Tan Piqiang; Lu Jiaxiang; Deng Kangyao

    2005-01-01

    A rapid, phenomenological model that predicts particulate matter (PM) emission of diesel engines is developed and formulated. The model is a chemical equilibrium composition model, and is based on the formation mechanisms of PM and unburned hydrocarbon (HC) emissions of diesel engines. It can evaluate the emission concentration of PM via the emission concentration of HC. To validate the model, experiments are carried out in two research diesel engines. Comparisons of the model results with the experimental data show good agreement. The model can be used to evaluate the concentration of PM emission of diesel engines under lack of PM measuring instruments. In addition, the model is useful for computer simulations of diesel engines, as well as electronic control unit (ECU) designs for electronically controlled diesel engines.

  9. Effect of vegetable de-oiled cake-diesel blends on diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C.S. [Bharathiyar College of Engineering and Technology, Karaikal (India). MGR Educational and Research Inst.; Arivalagar, A.; Sendilvelan, S. [MGR Univ., Chennai (India). MGR Educational and Research Inst.; Arul, S. [Panimalar College of Engineering, Channai (India)

    2009-07-01

    This study evaluated the use of coconut oil methyl ester (COME) as a blending agent with the vegetable de-oiled cakes used in biodiesel production. Different proportions of the de-oiled cake were combined with diesel in order to investigate performance, emissions, and combustion characteristics. The experiments were conducted on a 4-stroke single cylinder, air-cooled diesel engine. Fuel flow rates were measured and a thermocouple was used to measure exhaust gas temperatures. A combustion analyzer was used to measure cylinder pressure and heat release rates. Brake thermal efficiency, brake power, and specific fuel consumption performance was monitored. Results of the study showed that rates of heat release were reduced for the de-oiled cake blended fuels as a result of the change in fuel molecular weight. The variation of NOx with load for neat diesel blends was examined. There was no variation of NOx emission up to 50 per cent of load for all blended oils, and it increased with load. Smoke density was reduced for all blends. Soot production was decreased by the oxygen present in the de-oiled cake. The study showed that fossil fuel oil consumption decreased by 14 to 15 per cent when the de-oiled biodiesel was used at low loads, and 4 to 5 per cent at peak loads. 10 refs., 4 tabs., 9 figs.

  10. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    Science.gov (United States)

    2014-10-01

    The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b

  11. Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications

    Science.gov (United States)

    2015-09-01

    ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine ...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine

  12. Selection оf Parameters for System of Diesel Engine Exhaust Gas Recirculation

    Directory of Open Access Journals (Sweden)

    G. M. Kukharionok

    2014-01-01

    Full Text Available The paper presents research results of various methods for recirculation of diesel engine exhaust gases. An influence of recirculation parameters on economic and ecological diesel engine characteristics has been evaluated in the paper. The paper considers an influence of turbocharger configuration on the intensity of gas recirculation. Specific features of the recirculation system operation in dynamic modes have been shown in the paper. The paper provides recommendations for selection of a diesel engine exhaust gas recirculation system.

  13. Spray and combustion visualization of bio-diesel in a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Pan Jianfeng

    2013-01-01

    Full Text Available By using the self-developed dynamic visualization photographic setup, this article investigated some major factors affecting the spray and combustion process of diesel engine fueled by biodiesel. The experimental results show: With the increase of biodiesel percentage, fuel injection advances slightly, the ignition delay becomes shorter and the duration of combustion lengthens. Engine speed has little effect on the spray. However, the combustion rate is increased and the burning time becomes shorter with the increase of engine speed, although the duration of combustion in terms of crank angle increases. With the increase of needle opening pressure, both the spray cone angle and the spray penetration of biodiesel increases, the atomization of spray improves, the ignition delay and the duration of combustion becomes shorter, the peak pressure increases.

  14. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  15. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    Science.gov (United States)

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  16. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    Directory of Open Access Journals (Sweden)

    Jilin Lei

    2011-01-01

    Full Text Available In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype and ethanol-diesel blends (E10, E15, E20 and E30 under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa. The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  17. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  18. EXPERIMENTAL DETERMINATION OF BRAKE THERMAL EFFICIENCY AND BRAKE SPECIFIC FUEL CONSUMPTION OF DIESEL ENGINE FUELLED WITH BIO-DIESEL

    Directory of Open Access Journals (Sweden)

    M. SHIVA SHANKAR

    2010-10-01

    Full Text Available The rapid depletion in world petroleum reserves and uncertainty in petroleum supply due to political and economical reasons, as well as, the sharp escalations in the petroleum prices have stimulated the search for alternatives to petroleum fuels. The situation is very grave in developing countries like India which imports 70% of the required fuel, spending 30% of her total foreign exchange earnings on oil imports. Petroleum fuels are being consumed by agriculture and transport sector for which diesel engine happens to be the prime mover. Diesel fuelled vehicles discharge significant amount of pollutants like CO, HC, NOx, soot, lead compounds which are harmful to the universe. Though there are wide varieties of alternative fuels available, the research has not yet provided the right renewable fuel to replace diesel. Vegetable oils due to their properties being close to diesel fuel may be a promising alternative for its use in diesel engines. The high viscosity and low volatility are the major drawbacks of the use of vegetable oils in diesel engines. India is the second largest cotton producing country in the world today. The cotton seeds are available in India at cheaper price. Experiments were conducted on 5.2 BHP single cylinder four stroke water-cooled variable compression diesel engine. Methyl ester of cottonseed oil is blended with the commercially available Xtramile diesel. Cottonseed oil methyl ester (CSOME is blended in four different compositions varying from 10% to 40% in steps of 10 vol%. Using these four blends and Xtramile diesel brake thermal efficiency (BTE and brake specific fuel consumption (BSFC are determined at 17.5 compression ratio.

  19. Heat Transfer in Two-Stroke Diesel Engines for Large Ship Propulsion

    DEFF Research Database (Denmark)

    Christiansen, Caspar Ask

    Demands on reducing the fuel consumption and harmful emissions from the compression ignition engines (diesel engines) have been continuously increasing in recent years. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. A very impo...

  20. Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-05-01

    Full Text Available To achieve energy saving and emission reduction for vehicle diesel engines, the organic Rankine cycle (ORC was employed to recover waste heat from vehicle diesel engines, R245fa was used as ORC working fluid, and the resulting vehicle diesel engine-ORC combined system was presented. The variation law of engine exhaust energy rate under various operating conditions was obtained, and the running performances of the screw expander were introduced. Based on thermodynamic models and theoretical calculations, the running performance of the vehicle diesel engine-ORC combined system was analyzed under various engine operating condition scenarios. Four evaluation indexes were defined: engine thermal efficiency increasing ratio (ETEIR, waste heat recovery efficiency (WHRE, brake specific fuel consumption (BSFC of the combined system, and improvement ratio of BSFC (IRBSFC. Results showed that when the diesel engine speed is 2200 r/min and diesel engine torque is 1200 N·m, the power output of the combined system reaches its maximum of approximately 308.6 kW, which is 28.6 kW higher than that of the diesel engine. ETEIR, WHRE, and IRBSFC all reach their maxima at 10.25%, 9.90%, and 9.30%, respectively. Compared with that of the diesel engine, the BSFC of the combined system is obviously improved under various engine operating conditions.

  1. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    Science.gov (United States)

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  2. PERFORMANCE AND EXHAUST GAS EMISSIONS ANALYSIS OF DIRECT INJECTION CNG-DIESEL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    RANBIR SINGH

    2012-03-01

    Full Text Available Existing diesel engines are under stringent emission regulation particularly of smoke and particulate matter in their exhaust. Compressed Natural Gas and Diesel dual fuel operation is regarded as one of the best ways to control emissions from diesel engines and simultaneously saving petroleum based diesel fuel. Dual fuel engineis a conventional diesel engine which burn either gaseous fuel or diesel or both at the same time. In the present paper an experimental research was carried out on a laboratory single cylinder, four-stroke variable compression ratio, direct injection diesel engine converted to CNG-Diesel dual fuel mode to analyze the performance and emission characteristics of pure diesel first and then CNG-Diesel dual fuel mode. The measurements were recorded for the compression ratio of 15 and 17.5 at CNG substitution rates of 30% and 60% and varying theload from idle to rated load of 3.5kW in steps of 1 up to 3kW and then to 3.5kW. The results reveal that brake thermal efficiency of dual fuel engine is in the range of 30%-40% at the rated load of 3.5 kW which is 11%-13% higher than pure diesel engine for 30% and 60% CNG substitution rates. This trend is observed irrespective of the compression ratio of the engine. Brake specific fuel consumption of dual fuel engine is found better than pure diesel engine at all engine loads and for both CNG substitution rates. It is found that there is drastic reduction in CO, CO2, HC, NOx and smoke emissions in the exhaust of dual fuel engine at all loads and for 30% and 60% CNG substitution rates by employing some optimum operating conditions set forth for experimental investigations in this study.

  3. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  4. Performance & Emissions Characteristics of a Four Stroke Diesel Engine Fuelled With Different Blends of Palmyra Oil with Diesel

    Directory of Open Access Journals (Sweden)

    T.Venkata Srinivasa Rao

    2015-04-01

    Full Text Available Diesel engines are used for automotive application because they have lower specific fuel consumption and superior efficiency compared to S.I engines. However in spite of these advantages NOx and smoke emissions from the diesel engines cause serious environmental problems. In the present work, biodiesel was produced from Palmyra oil. In this present work, investigations were carried out to study the performance, emission and combustion characteristics of Palmyra oil. The results were compared with diesel fuel, and the selected Palmyra oil fuel blends. For this experiment a single cylinder, four stroke, water cooled diesel engine was used. Tests were carried out over entire range of engine operation at varying conditions of load. To increase the engine performance parameters and to decrease the exhaust gas emissions with increase biodiesel concentration. The experimental results provide that the use of biodiesel in compression ignition engine is a viable alternative to diesel. Additive to add the Ethanol. The blending percentage in the steps of 10%, 20% & 30%.

  5. Increase of diesel car raises health risk in spite of recent development in engine technology.

    Science.gov (United States)

    Leem, Jong Han; Jang, Young-Kee

    2014-01-01

    Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to 0.25 μm. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

  6. Complete Modeling for Systems of a Marine Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    Hassan Moussa Nahim; Rafic Younes; Chadi Nohra; Mustapha Ouladsine

    2015-01-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine’s output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  7. [Application of PCA to diesel engine oil spectrometric analysis].

    Science.gov (United States)

    Liu, Tao; Tian, Hong-Xiang; Guo, Wen-Yong

    2010-03-01

    In order to study wear characteristics of a 6-cylinder diesel engine, six different working statuses were arranged by altering the clearance between cylinder and piston. Sixty-nine oil samples were taken from engine at different loads under 6 working statuses and analyzed by Spectroil M Instrument made in US. Principal component analysis (PCA) was applied to analyzing spectrometric data of sixty-nine oil samples and clustering those data according to elements and oil samples separately based on the weighted coefficient and principal component scores. All 21 elements were used in element clustering and only 6 wear-related elements, namely iron, chromium, aluminum, copper, plumbum and silicon, were used in sample clustering. It is shown that PCA effectively clustered oil spectrometric data into three different principal components according to elements. The projection of two different principal components exhibited five types of elements combinations, namely wear elements (Fe, Cr, Cu, Al and Pb), high concentration additives elements (Na, Zn, P, Ca and Mg), low concentration additives elements (Ba and B), base constituent of lubricating oils (C and H) and interferential elements (Ni, Ti, Mo, V, Ag and Sn). Furthermore, PCA clearly clustered oil samples according to different clearance between cylinder and piston in the diesel engine. The study suggests that analyzing oil spectrographic data by PCA could find the sources of different elements, monitor engine conditions and diagnose wear faults.

  8. Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    Science.gov (United States)

    Rashedul, Hasan Khondakar; Kalam, Md Abdul; Masjuki, Haji Hassan; Teoh, Yew Heng; How, Heoy Geok; Monirul, Islam Mohammad; Imdadul, Hassan Kazi

    2017-02-23

    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.

  9. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.

    Science.gov (United States)

    Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf

    2016-05-02

    Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

  10. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  11. Use of hazelnut kernel oil methyl ester and its blends as alternative fuels in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Guemues, M.; Atmaca, M. [Marmara Univ., Istanbul (Turkey). Mechanical Department

    2008-09-30

    Interest in vegetable oil as an alternative to diesel fuel in diesel engines has increased during the last few decades because reserves of petroleum fuel and its derivatives are diminishing rapidly, and because they have harmful effects on the environment. Numerous vegetable oil esters have been tried as alternatives to diesel fuel. Many researchers have reported that with the use of vegetable oil ester as a fuel in diesel engiens there is a decrease in harmful exhaust emissions and engine performance that is the equivalent of diesel fuel. Several studies have found that biodiesel emits far less of the most regulated pollutants than standard diesel fuel. Decreasing carbon dioxide (CO{sub 2}) emissions by using biodiesel contributes to reducing the greenhouse effect. Furthermore, diminishing carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO{sub x}), and smoke density improves air quality. Essential oils that have been tested in diesel engines are soybean, sunflower, corn, safflower, cottonseed, and rapeseed, which are categorized as edible oils; however, some edible oils, such as neat hazelnut kernel oil, have not been comprehensively tested as alternative fuel in diesel engines. In this study, hazelnut (Corylus avellana L.) kernel oil was evaluated as an alternative fuel in diesel engines. Firstly, the optimum transesteri.cation reaction conditions for hazelnut kernel oil, with respect to reaction temperature, volumetric ratio of reactants, and catalyst, were investigated. Secondly, an experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running on hazelnut kernel oil methyl ester and its blends with diesel fuel. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel are generally comparable to diesel fuel, according to engine performance and emissions.

  12. Environmental Pollution Assessment of Different Diesel Injector Location Of Direct-Injection Diesel Engines: Theoretical Study

    Directory of Open Access Journals (Sweden)

    Eyad S.M. Abu-Nameh

    2008-01-01

    Full Text Available An Analytical investigation on the effect of injector location of a four-stroke DI diesel engine on its pollutants’ emissions was carried out under different injector locations ranging from central to peripheral at different engine speeds ranging from 1000 rpm to 3000 rpm. The simulation results clearly indicated the advantages and disadvantages of the central location over the peripheral one. It revealed that near central location gave less carbon dioxide, smoke level and particulate matter on one hand, and higher levels of NOx, cylinder temperature and pressure (hence increased the mechanical and thermal stresses on the other hand. Further, near central location resulted in more rapid rate of burning and less duration of combustion and rapid rate of NOx formation per crank angle.

  13. Modelling of diesel engine fuelled with biodiesel using engine simulation software

    Science.gov (United States)

    Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul

    2012-06-01

    This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.

  14. Power turbines for an energy bonus from diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Rupp, M. (ABB Turbo Systems Ltd., Baden (Switzerland)); Nissen, M. (ABB Industrietechnik AG, Hamburg (Germany))

    1994-01-01

    ABB exhaust-gas turbochargers - more than 150,000 in all - are in service worldwide with diesel engines on board ships and locomotives as well as in stationary power plants. Thanks to the turbochargers, the original outputs of the engines are raised by about 300%. Modern high-power turbochargers are so efficient that some exhaust-gas energy can be drawn off for use in a power turbine. The extra power won in this way can be either transmitted via gearing to the engine crankshaft or converted into electrical energy by a generator. ABB has developed a compact, controlled power turbine-generator installation especially for marine applications. The first unit has been certified by Lloyds Register of Shipping and is providing electricity for the onboard electrical power supply of a large container ship operated by Maersk Line. (orig.)

  15. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  16. Diesel and gas engines: evolution facing new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Daverat, Ph. [Bergetat Monnoyeur (France)

    1997-12-31

    This paper analyzes the influence of new pollution regulations on the new design of diesel and gas engines with the example of Caterpillar`s experience, one of the leaders of diesel and gas engines manufacturers worldwide. The technical problems to solve are introduced first (reduction of NO{sub x}, SO{sub 2}, CO, unburned compounds and dusts), and then the evolution of engines and of exhaust gas treatment systems are described (fuel injection systems, combustion and ignition control, sensors, catalytic conversion and filtering systems). (J.S.)

  17. Butanol/diesel blends as a CI engine fuel. Physico-chemical and engine performance characteristics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, M.K.; Thakre, G.D.; Saxena, R.C.; Sharma, Y.K.; Jain, A.K.; Singal, S.K. [CSIR - Indian Institute of Petroleum, Dehradun, Uttrakhand (India)

    2013-06-01

    Recently, butanol produced by fermentation, known as bio-butanol has emerged as a new alternative fuel for CI engines. However, very little work has been carried out on its use in C.I. engine. In this context current paper deals with the characteristic properties and performance evaluation of butanol as a blending additive in diesel fuels. The butanol-diesel blends are prepared in varying concentrations of 5-l 0% and have been studied for their Corrosion, Tribology, distillation and Physico-chemical characteristics. These characteristics properties are then compared with those of diesel. The study reveals that the butanol-diesel blends offer better cetane number, improved corrosion behaviour and comparable distillation and tribological properties. The engine performance evaluation revealed comparable performance in terms of fuel economy as compared with diesel fuel. Hence, Butanol-diesel blends can be successfully used as an alternative fuel for CI engines. (orig.)

  18. Performance Analysis of Producer Gas Based Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. P. Yadav

    2013-02-01

    Full Text Available Producer gas is one out of the alternative fuels used in internal combustion engines. Conventionally, it is made by flowing air and steam through a thick coal or coke bed which ranges in temperature from red hot to low temperature. The oxygen in air burns the carbon to CO2. This CO2 gets reduced to CO by contacting with carbon above the combustion zone. The freed oxygen combines with carbon and steam gets dissociated which introduces hydrogen. Producer gas has a high percentage of nitrogen since air is used [1]. Thus, in the present work a gasifier is designed and developed which could gasify any form of biomass. In the present work waste wood chips, bagasse, rice husk, and eucalyptus, etc are used for gasification in a fabricated updraft gasifier to produce producer gas. The producer gas obtained from the developed gasifier is sent along with air into a diesel engine with diesel as the primary fuel and the performance characteristics ie brake thermal efficiency, exhaust gas temperature and brake specific energy consumption of the engine are studied along with economic analysis with and without aid of producer gas.

  19. Integrated modeling of nitrogen oxides formation in diesel engines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To account for the effects of both chemistry and flow turbulence,the present study proposes an integrated NO sub-model that combines the extended Zel'dovich mechanism and engine CFD computations to simulate the NO histories in a diesel engine.NOx sub-model parameters and pollutant formation mechanisms can be more easily investigated by solving the NOx sub-model.The new NO formation model incorporating the effects of hoth chemical kinetics and turbulent mixing was applied to simulate a diesel engine with a quiescent combustion chamber,and one with a re-entrant combustion chamber;the premise of the model being the reaction rate is mainlv determined by a kinetic timescale and a turbulent timescale.The results indicate that the predicted NO formulation from the new model agrees well with the measured data.As the utilization of fossil fuels continues to increase,the control of NOx emissions is a worldwide concern;and it is imperative to understand fully the NOx reaction processes in combustion systems.This technology has the Dotential to enhance the application of various combustion techniques used to reduce NOx emissions from practical combustion systems.

  20. FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel.

    Science.gov (United States)

    Popovicheva, Olga B; Kireeva, Elena D; Shonija, Natalia K; Vojtisek-Lom, Michal; Schwarz, Jaroslav

    2015-03-01

    Fourier transform infrared spectroscopy is applied as a powerful analytic technique for the evaluation of the chemical composition of combustion aerosols emitted by off-road engines fuelled by diesel and biofuels. Particles produced by burning diesel, heated rapeseed oil (RO), RO with ethylhexylnitrate, and heated palm oil were sampled from exhausts of representative in-use diesel engines. Multicomponent composition of diesel and biofuel particles reveal the chemistry related to a variety of functional groups containing carbon, hydrogen, oxygen, sulfur, and nitrogen. The most intensive functionalities of diesel particles are saturated C-C-H and unsaturated C=C-H aliphatic groups in alkanes and alkenes, aromatic C=C and C=C-H groups in polyaromatics, as well as sulfates and nitrated ions. The distinguished features of biofuel particles were carbonyl C=O groups in carboxylic acids, ketones, aldehydes, esters, and lactones. NO2, C-N and -NH groups in nitrocompounds and amines are found to dominate biofuel particles. Group identification is confirmed by complementary measurements of organic carbon (OC), elemental carbon, and water-soluble ion species. The relationship between infrared bands of polar oxygenated and non-polar aliphatic functionalities indicates the higher extent of the surface oxidation of biofuel particles. Findings provide functional markers of organic surface structure of off-road diesel emission, allowing for a better evaluation of relation between engine, fuel, operation condition, and particle composition, thus improving the quantification of environmental impacts of alternative energy source emissions.

  1. Taguchi Method for Investigating the Performance Parameters and Exergy of a Diesel Engine Using Four Types of Diesel Fuels

    OpenAIRE

    Dara K. Khidir; Soorkeu A. Atrooshi

    2016-01-01

    The effects of changes in engine operating parameters, i.e., engine speed, throttle and water temperature, for four types of diesel fuel (A, B, C and D) of different specific gravities, as supplied from local market and refineries, were studied and simultaneously optimized. The experiment design was based on Taguchi’s “L' 16” orthogonal table, and the engine was put to test at different engine speeds, throttling opening percentages and water temperatures, using different fuels. The data were ...

  2. Prediction and Analysis of Engine Friction Power of a Diesel Engine Influenced by Engine Speed, Load, and Lubricant Viscosity

    OpenAIRE

    Devendra Singh; Fengshou Gu; Fieldhouse, John D.; Nishan Singh; Singal, S. K.

    2014-01-01

    Automotive industries made a paradigm shift in selection of viscometrics of engine lubricant, from higher to lower viscosity grade, for improving fuel economy of vehicles. Engine fuel consumption is influenced by friction between the various engine components. Engine friction power (FP) of a direct injection diesel engine is calculated from the measured value of in-cylinder pressure signals at various operating conditions. For predicting FP, as a function of speed, load, and lubricant viscosi...

  3. THE EFFECT OF SKULDUGGERY IN FUEL OF DIESEL ENGINES ON THE PERFORMANCE OF I. C. ENGINE

    Directory of Open Access Journals (Sweden)

    Raed R. Jasem

    2013-05-01

    Full Text Available The current research aimed to study the effect of fraud in the diesel fuel on environmental pollution,  the study included two samples of diesel fuel., first sample is used currently in all diesel engines vehicles, and it produced in colander of oil  of Baiji, the second sample is producer manually from mixing of the Lubricating oils and kerosene with ratio(1/40, were prepared and tested in research laboratories and quality control of the North Refineries Company /BAIJI by using standard engine (CFR. comparison between two models of fuel in terms of the properties of the mixing fuel and the properties of diesel fuel standard. The results proved that the process of mixing these ,  leading to the minimization of Cetane number and flash point. While the viscosity increase in  mixing fuel, comparison with fuel producer in the refinery, and which identical to the minimum standard specifications of diesel fuel.The tests had been carried out using the engine of (TQ four stroke type (TD115 with a single-cylinder and compression ratio (21:1 a complement to the hydraulic type Dynamo meter (TD115.

  4. Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.

    Science.gov (United States)

    Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F

    2017-02-21

    Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO2, standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.

  5. Lightweight diesel engine designs for commuter type aircraft

    Science.gov (United States)

    Brouwers, A. P.

    1981-01-01

    Conceptual designs and performance of advanced technology lightweight diesel engines, suitable for commuter type aircraft power plants are defined. Two engines are discussed, a 1491 kW (2000 SHP) eight-cylinder engine and a 895 kW (1200 SHP) six-cylinder engine. High performance and related advanced technologies are proposed such as insulated cylinders, very high injection pressures and high compressor and turbine efficiencies. The description of each engine includes concept drawings, a performance analysis, and weight data. Fuel flow data are given for full and partial power up to 7620m altitude. The performance data are also extrapolated over a power range from 671 kW(900SHP) to 1864 kW (2500 SHP). The specific fuel consumption of the 1491 kW (2000 SHP) engine is 182 g/hWh (.299 lb/HPh) at cruise altitude, its weight 620 kg (1365 lb.) and specific weight .415 kg/kW (.683 lb/HP). The specific fuel consumption of the 895 kW (1200 SHP) engine is 187 g/hWh (.308 lb/HPh) at cruise altitude, its weight 465 kg (1025 lb.) and specific weight .520 kg/kW (.854 lb/HP).

  6. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    Science.gov (United States)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  7. Nitric oxide in a diesel engine : laser-based detection and interpretation

    NARCIS (Netherlands)

    Stoffels, G.G.M.

    1999-01-01

    Nitric oxide (NO) is one of the most polluting components in the exhaust gases of a diesel engines. Therefore, knowledge of the time and place where it is produced during the combustion process is of interest to find a way to reduce diesel engine emissions. Non-intrusive optical diagnostics, based

  8. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

    2003-08-24

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

  9. Engineering property test of kaolin clay contaminated by diesel oil

    Institute of Scientific and Technical Information of China (English)

    刘志彬; 刘松玉; 蔡奕

    2015-01-01

    Engineering property of kaolin clay contaminated by diesel oil was studied through a series of laboratory experiments. Oil contents (mass fraction) of 4%, 8%, 12%, 16% and 20% were selected to represent different contamination degrees, and the soil specimens were manually prepared through mixing and static compaction method. Initial water content and dry density of the test kaolin clay were controlled at 10% and 1.58 g/cm3, respectively. Test results indicate that since part of the diesel oil will be released from soil by evaporation, the real water content should be derived through calibration of the quasi water content obtained by traditional test method. As contamination degree of the kaolin clay increases, both liquid limit and plastic limit decrease, but there’s only a slight increase for plasticity index. Swelling pressure of contaminated kaolin clay under confined condition will be lowered when oil-content gets higher. Unconfined compressive strength (UCS) of the oil-contaminated kaolin clay is influenced by not only oil content but also curing period. Increase of contamination degree will continually lower UCS of the kaolin clay specimen. In addition, electrical resistivity of the contaminated kaolin clay with given water content decreases with the increase of oil content. However, soil resistivity is in good relationship with oil content and UCS. Finally, oil content of 8% is found to be a critical value for engineering property of kaolin clay to transit from water-dominated towards oil-dominated characteristics.

  10. Combustion and emission analysis of heavy-duty vehicle diesel engine

    Science.gov (United States)

    Sun, Zhixin; Wang, Xue; Wang, Xiancheng; Zhou, Jingkai

    2017-03-01

    Aiming at the research on combustion and emission characteristics of heavy-duty vehicle diesel engine, a bench test was carried out for PM and NOx emission for a certain type diesel engine under different speed and loads. Results shows that for this type of heavy-duty vehicle diesel engine, ignition delay is longer and the proportion of diffusion combustion increases under high speed of external characteristics conditions. Under the speed of 1400 r/min, ignition delay decreases with load increases, combustion duration shortened at first, then increases, the proportion of diffusion combustion increases. The ignition delay is longer and cylinder temperature is higher under lower speed external characteristics of diesel engine, the emissions of soot and NOx are heavier; with large load of external characteristics of diesel engine, the emissions of soot and NOx are heavy as well.

  11. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  12. The Influence of Light Weight Materials on Fuel Economy and Emissions in Heavy Duty Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Paul C.

    2000-08-20

    Technologies being developed that will allow for the substitution of aluminum for cast iron in engine heads and blocks, while maintaining performance and durability. Development of lightweight diesel engine technology: funded by NAVY, DOE and TACOM

  13. Performance and emission analysis of cottonseed oil methyl ester in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Hueseyin [Department of Automotive, Faculty of Technical Education, Batman University, Batman 72060 (Turkey); Bayindir, Hasan [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Dicle University, Diyarbakir, 21280 (Turkey)

    2010-03-15

    In this study, performance and emissions of cottonseed oil methyl ester in a diesel engine was experimentally investigated. For the study, cottonseed oil methyl ester (CSOME) was added to diesel fuel, numbered D2, by volume of 5%(B5), 20%(B20), 50%(B50) and 75%(B75) as well as pure CSOME (B100). Fuels were tested in a single cylinder, direct injection, air cooled diesel engine. The effects of CSOME-diesel blends on engine performance and exhaust emissions were examined at various engine speeds and full loaded engine. The effect of B5, B20, B50, B75, B100 and D2 on the engine power, engine torque, bsfc's and exhaust gasses temperature were clarified by the performance tests. The influences of blends on CO, NO{sub x}, SO{sub 2} and smoke opacity were investigated by emission tests. The experimental results showed that the use of the lower blends (B5) slightly increases the engine torque at medium and higher speeds in compression ignition engines. However, there were no significant differences in performance values of B5, B20 and diesel fuel. Also with the increase of the biodiesel in blends, the exhaust emissions were reduced. The experimental results showed that the lower contents of CSOME in the blends can partially be substituted for the diesel fuel without any modifications in diesel engines. (author)

  14. Coconut Oil Based Hybrid Fuels as Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Pranil Singh

    2010-01-01

    Full Text Available Problem statement: The use of vegetable oils as a fuel in diesel engines causes some problems due to their high viscosity compared with diesel. Various techniques and methods are used to solve the problems resulting from high viscosity. Approach: One of the techniques is the preparation of a microemulsion fuel, called a hybrid fuel. In this study, hybrid fuels consisting of coconut oil, ethanol and octan-1-ol were prepared with an aim to test their suitability as a fuel for diesel engines. Density, viscosity and gross calorific values of these fuels were determined and the fuels were used to run a direct injection diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel and coconut oil. Results: The experimental results show that the engine efficiency of the hybrid fuels is comparable to that of diesel. As the percentage of ethanol and/or octan-1-ol increased, the viscosity of the hybrid fuels decreased and the engine efficiency increased. The exhaust emissions were lower than those for diesel, except carbon monoxide, which increased. Conclusion/Recommendations: Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly.

  15. 77 FR 65840 - Section 610 Reviews of Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur...

    Science.gov (United States)

    2012-10-31

    ...-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements (Heavy-Duty 610... EPA's 610 Review related to Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur... Review of Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements...

  16. STUDY OF PERFORMANCE CHARACTERISTICS OF VARIABLE COMPRESSION RATIO DIESEL ENGINE USING ETHANOL BLENDS WITH DIESEL

    Directory of Open Access Journals (Sweden)

    NILESH MOHITE

    2012-06-01

    Full Text Available As the population of the world increases consumption of the energy also increases tremendously. With the current consumption rate if it has been quoted that there will be great shortage of petroleum products in upcoming decades, it will not be wrong. For this reason people are looking for alternative fuels. As ethanol is the main bio-product in the many industries now-a-days, it is better to develop the engine which can work on pure ethanol or one can add ethanol in the petrol or diesel and use the blends of that. For this purpose, it is necessary to check the performance characteristics and emissions of the blends of ethanol and also necessary to compare with the pure form of fuels. Again it is necessary to check the effect of compression ratio on the blends of ethanol. So in this paper the same has been conducted at basic level.

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  18. Diesel and gas engines: evolution following new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Deverat, Ph. [Bergerat Monnoyeur (France). Direction Industrie

    1997-12-31

    Engine emissions of CO, NMHC and ashes are easily lowered through a low-cost exhaust gas processing, while NOx processing in fumes is rather complex and environmentally hazardous; thus, engine manufacturers have emphasized their researches for NOx decrease on the engine design: lower combustion temperature in diesel engines through water cooling or air/air exchanger, lean mixture with excess air (open chamber or pre-chamber) in spark ignition gas engines. Examples of modifications in Caterpillar engines are given. Exhaust gas processing for CO, NMHC, NOx (3 way catalytic purifier, selective catalytic reduction) and ashes is also discussed

  19. Study of the combined plant for the generator diesel engine; Hatsudenki diesel engine no combined plant no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y. [Kumamoto Institute of Technology, Kumamoto (Japan); Hanada, S.; Watase, M.; Nakajima, T.

    1997-10-01

    It is intended to recover more effectively thermal energy currently discharged from marine vessels into air. This paper describes a diesel engine combined power generation system in which medium-order waste heat energy from a diesel engine for power generation in a marine vessel is recovered and utilized to operate a Rankine cycle system (using the waste gas as the high temperature source and sea water as the low temperature source), thus the thermal energy is recovered as a motive force. Two kinds of fluorocarbons and steam were discussed as a working fluid. Due to fluorocarbons making the whole system ultra-high in pressure, and from a viewpoint of high-temperature thermal stability, the temperature was remained at levels from 100 to 200 degC, and a single-stage expansion cycle was used. With the use of steam, a two-stage reheating cycle was employed, by which the temperature is raised fully up to 300 degC and effective head of fluid was taken largely. Ceramic paint was used as a means to prevent sulfur oxide corrosion when the system is used down to the dew point, and its effectiveness was verified. Motive force recovered by combining the steam two-stage reheating cycle and the ceramic painted heat collector was calculated, whereas electric power output of about 45 kW was obtained from a main generator with 450 PS. The derived thermal efficiency was about 26%. 2 refs., 24 figs., 2 tabs.

  20. Performance and Emission Characteristics of an IDI Diesel Engine Fuelled Biodiesel (Rubber Seed Oil and Palm Oil Mix Diesel Blends

    Directory of Open Access Journals (Sweden)

    Adam Ibrahim K.

    2014-07-01

    Full Text Available In this study crude rubber seed oil and palm oil were mixed at 50: 50 vol.feedstock’s blending methods is motivated by cost reduction and properties enhancement. Biodiesel was produced and thermo physical properties are studied. Blends of B5, B10 and B20 of biodiesel to diesel were prepared. Engine performance (torque, brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and emission (CO, NOx and exhaust gas temperature were evaluated in a 4 cylinder, natural aspirated, indirect injection (IDI diesel engine. The results indicated that at rated engine speed of 2500 rpm torque obtained were 87, 86, 85.3 and 85 Nm for neat diesel, B5, B10 and B20 respectively. Torque in all blends case yield between 0 to 5% lower than neat diesel. BTE were 27.58, 28.52, and 26.45% for B5, B10 and B20 compared to neat diesel 26.99%. At lower blends ratio BSFC was found to be lower and increased proportional to the blends ratio. The CO emission reduced but the exhaust gas temperature and NOx increased as blends ratio increases.

  1. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  2. Energy and Exergy Analyses of a Diesel Engine Fuelled with Biodiesel-Diesel Blends Containing 5% Bioethanol

    Directory of Open Access Journals (Sweden)

    Bahar Sayin Kul

    2016-10-01

    Full Text Available In this study, energy and exergy analysis were performed for a single cylinder, water-cooled diesel engine using biodiesel, diesel and bioethanol blends. Each experiment was performed at twelve different engine speeds between 1000 and 3000 rev/min at intervals of 200 rev/min for four different fuel blends. The fuel blends, prepared by mixing biodiesel and diesel in different proportions fuel with 5% bioethanol, are identified as D92B3E5 (92% diesel, 3% biodiesel and 5% bioethanol, D85B10E5 (85% diesel, 10% biodiesel and 5% bioethanol, D80B15E5(80% diesel, 15% biodiesel and 5% bioethanol and D75B20E5 (75% diesel, 20% biodiesel and 5% bioethanol. The effect of blends on energy and exergy analysis was investigated for the different engine speeds and all the results were compared with effect of D100 reference fuel. The maximum thermal efficiencies obtained were 31.42% at 1500 rev/min for D100 and 31.42%, 28.68%, 28.1%, 28% and 27.18% at 1400 rev/min, respectively, for D92B3E5, D85B10E5, D80B15E5, D75B20E5. Maximum exergetic efficiencies were also obtained as 29.38%, 26.8%, 26.33%, 26.15% and 25.38%, respectively, for the abovementioned fuels. As a result of our analyses, it was determined that D100 fuel has a slightly higher thermal and exergetic efficiency than other fuel blends and all the results are quite close to each other.

  3. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    Science.gov (United States)

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  4. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    Science.gov (United States)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  5. Use of calophyllum inophyllum biofuel blended with diesel in DI diesel engine modified with nozzle holes and its size

    Science.gov (United States)

    Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.

    2016-05-01

    Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.

  6. Study on Emission and Performance of Diesel Engine Using Castor Biodiesel

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2014-01-01

    performance of diesel engine using the castor biodiesel and its blend with diesel from 0% to 40% by volume. The acid-based catalyzed transesterification system was used to produce castor biodiesel and the highest yield of 82.5% was obtained under the optimized condition. The FTIR spectrum of castor biodiesel indicates the presence of C=O and C–O functional groups, which is due to the ester compound in biodiesel. The smoke emission test revealed that B40 (biodiesel blend with 40% biodiesel and 60% diesel had the least black smoke compared to the conventional diesel. Diesel engine performance test indicated that the specific fuel consumption of biodiesel blend was increased sufficiently when the blending ratio was optimized. Thus, the reduction in exhaust emissions and reduction in brake-specific fuel consumption made the blends of caster seed oil (B20 a suitable alternative fuel for diesel and could help in controlling air pollution.

  7. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.K.; Banerjee, Rahul; Deb, Madhujit [Mechanical Engineering Department, National Institute of Technology, Agartala, Tripura-799055 (India)

    2013-07-01

    Petroleum crude is expected to remain main source of transport fuels at least for the next 20 to 30 years. The petroleum crude reserves however, are declining and consumption of transport fuels particularly in the developing countries is increasing at high rates. Severe shortage of liquid fuels derived from petroleum may be faced in the second half of this century. In this paper, experiments are performed in a fur stroke, single cylinder, compression ignition diesel engine with dual fuel mode. Diesel and hydrogen are used as pilot liquid and primary gaseous fuel, respectively. The objective of this study is to find out the effects on combustion and performance parameters observed at diesel hydrogen fuel mixture for all the different loadings (2kg,4kg,6kg,8kg,10kg and 12kg) in the engine.

  8. Wastes to Reduce Emissions from Automotive Diesel Engines

    Directory of Open Access Journals (Sweden)

    Manuel Jiménez Aguilar

    2014-01-01

    Full Text Available The objective of the study was actually the investigation of the effect of various treatments on the ability of urine in absorbing greenhouse gases. Urine alone or mixed with olive-oil-mill waste waters (O, poultry litter (P, or sewage sludge (S was used on the absorption of CO2 and NOx from diesel exhaust. The absorption coefficient (0.98–0.29 g CO2/grNH4 was similar to other solvents such as ammonia and amines. The ranges of CO2 absorption(1.7–5.6 g/l and NO reduction (0.9–3.7 g/l in six hours indicate that on average 20 litres of urine could be needed to capture CO2 and NOx vehicle emissions from each covered kilometre. The best results of CO2 absorption and NOx reduction were for urine mixed with O, P and urine alone. These wastes could be used to capture CO2 and NOx from automotive diesel engines to reduce gas emissions. The proposed strategy requires further research to increase CO2 absorption and reduce the risks associated with waste-water reuse.

  9. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    Science.gov (United States)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  10. Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation)

    Energy Technology Data Exchange (ETDEWEB)

    Tsolakis, A.; Wyszynski, M.L.; Theinnoi, K. [Mechanical and Manufacturing Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Megaritis, A. [Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH (United Kingdom)

    2007-11-15

    The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NO{sub x} emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NO{sub x} emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NO{sub x} emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NO{sub x} at a cost of small increases of smoke and fuel consumption. (author)

  11. EFFECT OF SOYBEAN OIL BIOFUEL BLENDING ON THE PERFORMANCE AND EMISSIONS OF DIESEL ENGINE USING DIESEL-RK SOFTWARE

    Directory of Open Access Journals (Sweden)

    Mohamed F. Al-Dawody,

    2011-06-01

    Full Text Available The scope of the technology is to provide utility and comfort with no damage to the user or to the surroundings. For many years now, petroleum products and other fossil fuels have given us utility andcomfort in a variety of areas, but causes environmental problems which threaten wild and human life. In this study, the performance and emissions of single cylinder, four stroke, direct injection diesel engine operating on diesel oil and different Soybean Methyl Ester (SME blends have been investigated theoretically using thesimulation software Diesel-RK. Based on the computed modeling results it’s found that 41.3 %, 53.2 % & 62.6 % reduction in the Bosch smoke number obtained with B20% SME, B40 % SME and B100% SME respectively, compared to pure diesel operation. In addition a reduction in PM emissions is observed 47.2%, 60 % & 68% for the B20 % SME, B40 % SME, and B 100% SME respectively. On the average basis there is a reduction in the thermal efficiency, power, and SFC, for all SME blends by 2%, 3%, and 12% respectively compared to pure diesel fuel. All blending of SME produce higher NOx emissions more than 28% compared with pure diesel fuel. A parametric study of retarding injection timing, varying engine speed and compression ratio effects has been performed. Its observed that retarding the injection timing can reduce the increase in the NOx emissions to great extent. Among all tested fuels its noticed that B20% SME was the best tested fuel which gave the same performance results with good reduction in emissions as compared to pure diesel operation. A very good agreement was obtained between the results and the available theoretical and experimental results of other researchers.

  12. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    Science.gov (United States)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  13. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    Science.gov (United States)

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  14. A Comparative Study of Almond Biodiesel-Diesel Blends for Diesel Engine in Terms of Performance and Emissions

    Directory of Open Access Journals (Sweden)

    Nidal H. Abu-Hamdeh

    2015-01-01

    Full Text Available This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50 with diesel fuel (B0 were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO and oxides of nitrogen (NOx. Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured.

  15. Impact of Military JP-8 Fuel on Heavy Duty Diesel Engine Performance and Emissions

    Science.gov (United States)

    2005-12-07

    Filipi, Z., Assanis, D., Kuo, T.-W., Najt, P., Rask, R. “New Heat Transfer Correlation for the HCCI Engine Derived from Measurements of...Impact of Military JP-8 Fuel on Heavy Duty Diesel Engine Performance and Emissions Gerald Fernandes1, Jerry Fuschetto1, Zoran Filipi1 and Dennis...with the operation of a diesel engine with JP- 8 fuel due to its lower density and viscosity, but few experimental studies suggest that kerosene

  16. A Review on Liquid Spray Models for Diesel Engine Computational Analysis

    Science.gov (United States)

    2014-05-01

    used in order to establish hollow cone sprays as is typical for gasoline direct injection engines. These kinds of sprays are characterized by high...A Review on Liquid Spray Models for Diesel Engine Computational Analysis by Luis Bravo and Chol-Bum Kweon ARL-TR-6932 May 2014...Review on Liquid Spray Models for Diesel Engine Computational Analysis Luis Bravo and Chol-Bum Kweon Vehicle Technology Directorate, ARL

  17. Diagnosis and predictive maintenance of diesel engines based on correction and normalization models for oil analysis; Diagnostico y mantenimiento predictivo de motores diesel basado en modelos de correcion y normalizacion del analisis del aceite

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Henry [Universidad de Oriente, Puerto la Cruz (Venezuela). Escuela de Ingenieria y Ciencias Aplicadas. Dept. de Mecanica]. E-mail: hespinoz@dino.conicit.ve

    1995-07-01

    A predictive and diagnostic system for diesel engine is presented. The system is fundamented on correction and normalization of metallic concentrations in the oil. The correction was made by using mathematical models considering: filter effect and oil added. The normalization was accomplished by calculation of the equivalent concentration for a fixed size metallurgically normalized engine, having a constant capacity carter. The system predicts both: the time at witch a critical wearing failure appears, and the oil residual life. (author)

  18. Capacity Planning for Vertical Search Engines

    CERN Document Server

    Badue, Claudine; Almeida, Virgilio; Baeza-Yates, Ricardo; Ribeiro-Neto, Berthier; Ziviani, Artur; Ziviani, Nivio

    2010-01-01

    Vertical search engines focus on specific slices of content, such as the Web of a single country or the document collection of a large corporation. Despite this, like general open web search engines, they are expensive to maintain, expensive to operate, and hard to design. Because of this, predicting the response time of a vertical search engine is usually done empirically through experimentation, requiring a costly setup. An alternative is to develop a model of the search engine for predicting performance. However, this alternative is of interest only if its predictions are accurate. In this paper we propose a methodology for analyzing the performance of vertical search engines. Applying the proposed methodology, we present a capacity planning model based on a queueing network for search engines with a scale typically suitable for the needs of large corporations. The model is simple and yet reasonably accurate and, in contrast to previous work, considers the imbalance in query service times among homogeneous...

  19. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    Science.gov (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  20. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    Science.gov (United States)

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  1. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    Science.gov (United States)

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  2. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen [Institute of Power and Energy Engineering, Harbin Engineering University, No. 145-1, Nantong Street, Nangang District, Harbin 150001 (China); Litak, Grzegorz [Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  3. A Study of a Diesel Engine Based Micro-CHP System

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    energy savings of about 210 gallons oil equivalent per (4) The savings increased initially with the power capacity of the prime-mover, but flattened out at around 2 kW power output suggesting that a low power engine like the one tested is a good choice. (5) Reverse metering, that is, power returned to the electric grid when produced in excess of the local load, increased the primary energy savings significantly when using a 3kW to 5kW system with high fuel-to-electric efficiency. (6) In view of the current interest in plug-in electric or hybrid vehicles, the impact of night-time recharging on the micro-CHP operation was considered. Obviously, it will reduce the amount reverse metered and without reverse-metering, the primary energy savings were increased significantly. (7) The micro-CHP systems can contribute to the decrease of the carbon emissions of the local utility even with the use of diesel fuel and much more so with biodiesel use.

  4. Gas-oil/water emulsion fuel for automotive diesel engines. energia

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    In this paper the work performed within the contract EE-C-201-I is reported. The results achieved in the tests of high speed diesel engines with water in oil emulsion feeding system are summarized. First, carried out trials on test bench are described; then operation in light duty truck on the road and on roller test bench is reported and trials with constant speed diesel engine are related. Finally, the work about emulsion characterization is synthetized. The conclusion shows as the water in oil emulsion is a feeding system suitable for high speed diesel engine operation because BSFC, grade of smoke, exhaust temperature and emission are lowered without considerable troubles.

  5. Optimization of fuel supply map during starting process of electronic controlled diesel engine

    Institute of Scientific and Technical Information of China (English)

    Jinguang LIANG; Xiumin YU; Yue GAO; Yunkai WANG; Hongyang YU; Baoli GONG

    2008-01-01

    Tests were conducted to study influence of fuel supply map during the starting process of an electronic con-trolled diesel engine using an electronic controlled diesel engine which was made up of a CA498Z diesel engine, a VP37 elec-tronic controlled distributor injection pump management system and a VS100 calibration system. The calibration pro-cess of starting fuel supply map was educed under the principle of low HC emission and rapid starting velocity. The cal-ibration methods of starting fuel supply map were obtained.

  6. TA Research on Determining Some Performance Values by Using Proportional Mixture of Vegetable Oils and Diesel Fuel at a Diesel Engine

    Directory of Open Access Journals (Sweden)

    B. Kayisoglu

    2006-01-01

    Full Text Available The purpose of this particular study was to research the effects on characteristics of a diesel engine by using different diesel fuel and vegetable oil blends. As experimental material 6 LD 360 type diesel engine with single cylinder, direct injection, four cycles, 5.52 kW defined power was used. Nothing was changed on the diesel engine parts and refined vegetable oils were chosen to add into fuel oil. In this research, depending on the number of revaluation and time, the air intake inlet temperature, exhaust gas outlet temperature, fuel consumption, volume efficiency, engine oil pressure, cylinder indicated pressure, the quantity of soot were determined. The results in the of sunflower oil and diesel fuel blends were found better than the soybean oil and diesel fuel blends. In addition, lubrication oil of the engine by using the soybean and diesel fuel blends were get dirty excessively and viscosity of the engine lubrication oil was reduced more than the others. The results by using 75% diesel fuel+25% sunflower oil blend showed nearly the same results by using diesel fuel.

  7. Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Poon, Hiew Mun; Ng, Hoon Kiat

    2015-01-01

    This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised m...

  8. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... deflections or voltage output of analyzers with non-linear calibration curves shall be converted to... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  9. The program cyberdiesel for mathematical modeling of fuel supply and local intracylinder processes in a diesel engine with volumetric carburetion

    OpenAIRE

    Maschenko, V. Yu.

    2007-01-01

    The program CyberDiesel is developed on the basis of complex mathematical model of fuel supply and local intracylinder processes in a diesel engine with volumetric carburetion. The program is intended for solving practical problems of coordinating constructive and adjusting parameters of fuel equipment and combustion chamber of a diesel engine by mathematical modeling methods.

  10. Proposal for future trend of engine mechatronics in marine diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Higashino, Ichiro; Higashi, Tadanori (Ashiya Univ., Hyogo (Japan))

    1989-02-01

    A future condition of engine mechatronics in the marine diesel engines was proposed. As a result of investigation, it was understood that the diesel engine, as mechatronicalized for the land plant use with an already high technology, is done for the marine use as an amplification of applying that for the land plant use. The marine diesel engine, if only maintaining the good performance in all the operating conditions, is low in mechatronicalized effect as compared with that for the land plant use. Particularly, there is no expectation of effect on the large ship. While as a reply to an inquiry to 100 enterprises, expectation, in the all automation electronic control, was of, in the order of expectation, reliability, automation, energy and labor saving, and anomaly diagnosis, which showed the most desired expectation to be of reliability. In other words, the reliability is presently one of the weakest points to apply the electronic control, which inversely requires the solution for the reliability. However there can be no expectation of decrease in fuel coat due to the mechatronicalization. 13 refs., 1 tab.

  11. Lubrication and wear in diesel engine injection equipment fuelled by dimethyl ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius

    2003-01-01

    that jeopardise the high efficiency of the engine and increase the manufacturing costs. DME has a low toxicity and can be made from anything containing carbon including biomass. If DME is produced from cheap natural gas from remote locations, the price of this new fuel could even become lower than that of diesel......Dimethyl ether (DME) has been recognised as an excellent fuel for diesel engines for over one decade now. DME fueled engines emit virtually no particulate matter even at low NOx levels. DME has thereby the potential of reducing the diesel engine emissions without filters or other devices...... oil. Fueling diesel engines with DME presents two significant problems: The injection equipment can break down due to extensive wear and DME attacks nearly all known elastomers. The latter problem renders dynamic sealing diƣult whereas the first one involves the poor lubrication qualities of DME which...

  12. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    Science.gov (United States)

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  13. Combustion process evaluation in Diesel engines using the Second law analysis; Avaliacao do processo de combustao em motores diesel usando analise de segunda lei

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, Jose Velasquez; Milanez, Luiz Fernando [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia

    1990-12-31

    Exergy balance equations are applied to a thermodynamic model in order to evaluate the combustion process for diesel engines. Thermomechanical and chemical availabilities are determined as well as the irreversibility produced. Finally the model is used to analyze experimental data obtained for a single cylinder diesel engine, at full load condition. (author) 14 refs., 6 figs., 2 tabs.

  14. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  15. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  16. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  17. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  18. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Science.gov (United States)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  19. Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil

    Directory of Open Access Journals (Sweden)

    G.DURGA DEVI

    2012-07-01

    Full Text Available Diesel engines are widely used as power sources in medium and heavy-duty applications because of their lower fuel consumption and lower emissions of carbon monoxide (CO and unburned hydrocarbons (HC compared with gasoline engines. Rudolf Diesel, the inventor ofthe diesel engine, ran an engine on groundnut oil at the Paris Exposition of 1900. Since then, vegetable oils have been used as fuels when petroleum supplies were expensive or difficult to obtain. With the increased availability of petroleum in the 1940s, research into vegetable oils decreased. Since the oil crisis of the 1970s research interest has expanded in the area of alternative fuels. The difficulties associated with using raw vegetable oils in diesel engines identified in the literature are injector coking, severe engine deposits, filter gumming problems, piston ring sticking, and injector coking and thickening of the lubricating oil. The highviscosity and low volatility of raw vegetable oils are generally considered to be the major drawbacks for their utilization as fuels in diesel engines. Castor methyl ester (CME blends showed performance characteristics close to diesel. Therefore castor methylester blends can be used in CI engines in rural area for meeting energy requirement in various agricultural operations such as irrigation, threshing, indistries etc.

  20. EFFECT OF INJECTION PRESSURE ON PERFORMANCE AND EMISSIONS OF CNG DIESEL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    B.NAGESWARA RAO

    2014-07-01

    Full Text Available A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG–air charge. The CNG was inducted into the combustion chamber via intake manifold. The engine, operating in dual-fuel mode, has been tested on a wide range of operating conditions spanning different values of engine load at constant speed at different injector opening pressures for the pilot fuel (diesel. For all the tested operating conditions, the effect of CNG and diesel fuel injection pressure, together with the amount of fuel injected during the pilot injection, were analyzed on the engine performance, in terms of brake thermal efficiency and emission levels. An experimental investigation was carried out to find out the effect of injection pressure on performance and emissions of a diesel engine operated with CNG inducted into the engine. Behavior of the dual fuel engine at 10%, 20%, 30%, 40% and 50% substitution of CNG with respect to diesel was examined and compared them at different injection pressures

  1. Residual shale-oil/diesel-engine operating compatibility program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.; Derbidge, C.; Kuby, W.; Niven, H.; Richard, R.

    1983-10-01

    As part of a DOE study to determine the effective utilization of alternate fuels in medium-speed diesel engines, a residual shale oil (RSO) was fired in an APE-Allen, 1000-rpm, 9.5-in. bore diesel engine. Various fuel injection modes were considered. Based on a fuel characterization study and go/no-go tests, it was determined that the direct firing of 100 percent RSO gave performance comparable with that using No. 2 diesel fuel; consequently, performance/endurance tests were performed using 100 percent RSO. Conclusions of this test program are: Laboratory tests showed low levels of corrosion and deposit-causing elements. Therefore, corrosion and wear of engine components, when using RSO, should be no worse than for standard diesel fuel. The high wax content of RSO requires heating for supply, handling, and injection systems. Laboratory tests showed that the cetane number of RSO was equivalent to No. 2 diesel; hence, no engine modifications should be needed to burn RSO. The engine performance on RSO was essentially similar to standard diesel fuel. The thermal efficiency was slightly lower and Bosch smoke and particulates were slightly higher, especially at low load. Soft carbon deposits, formed on injectors when using RSO, did not affect performance. The 115-hour endurance test showed no significant performance deterioration. The deposit accumulation in combustion chambers and ports was not severe but was greater than standard diesel fuel would produce. Longer endurance tests are required to fully establish this conclusion. 41 figures, 21 tables.

  2. Modeling of engine parameters for condition-based maintenance of the MTU series 2000 diesel engine

    OpenAIRE

    Yue, Siew Peng

    2016-01-01

    Approved for public release; distribution is unlimited Condition-based maintenance (CBM) entails performing maintenance only when needed to save on resources and cost. Formulating a model that reflects the behavior of the marine diesel engine in its normal operating conditions would aid in making predictions of the behavior of a condition monitoring parameter. Modeling for CBM is a data-dependent process. Data acquisition, processing, and analysis are required for modeling the behavior of ...

  3. Characterization of polycyclic aromatic hydrocarbons from the diesel engine by adding light cycle oil to premium diesel fuel.

    Science.gov (United States)

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chung-Bang

    2006-06-01

    Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.

  4. Occupational exposure to diesel engine exhaust: a literature review.

    Science.gov (United States)

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A

    2009-07-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: ECparking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (ECunderground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies.

  5. Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    2010-01-01

    Experiments are conducted on a 4-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the base fuel and diglyme as the oxygenate component to investigate the particulate emissions of the engine under five engine loads at two engine speeds of 1800 rev min -1 and 2400 rev min -1. Blended fuels containing 5%, 10.1%, 15.2%, 20.4%, 25.7% and 53% by volume of diglyme, corresponding to 2%, 4%, 6%, 8%, 10% and 20% by mass of oxygen, are studied. The study shows that with the increase of oxygen in the fuel blends, smoke opacity, particulate mass concentration, NO x concentration and brake specific particulate emission are reduced at the two engine speeds. However, the proportion of soluble organic fraction is increased. For each blended fuel, the total particle number concentration is higher while the geometric mean diameter is smaller, compared with that of ultralow-sulfur diesel, though the particle number decreases with the oxygen content of the blended fuel. Furthermore, the blended fuels also increase the number concentrations of particles smaller than 100 nm.

  6. The Influence of Non-Esterification Biodiesel in AN Indirect Injection Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel as alternative energy source of the traditional petroleum fuels has increased interest, because environmental pollution based exhaust emissions from vehicle became serious. The advantage of biodiesel produced from esterification of vegetable and animal oils can be used without the modification of existing diesel engine, but glycerin is generated by production process. In this study, the usability of non-esterification biodiesel as an alternative fuel was investigated in an indirect injection diesel engine. The non-esterification biodiesel has not generated glycerin in esterification process and reduced the 20 percent of cost because it has not used methanol in the production process. Experiments were conducted by using the 5, 10 and 20 percentage of biodiesel and 4 and 8 percentage of biodiesel with 1 and 2 percentage of WDP in baseline diesel fuel. The smoke emission of biodiesel was reduced in comparison with diesel fuel, but power, torque and brake specific energy consumption was similar to diesel fuel.

  7. Research on H2 speed governor for diesel engine of marine power station

    Institute of Scientific and Technical Information of China (English)

    HUANG Man-lei

    2007-01-01

    The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.

  8. Studies on orange oil methyl ester in diesel engine with hemispherical and toroidal combustion chamber

    Directory of Open Access Journals (Sweden)

    Karthickeyan Viswanathan

    2016-01-01

    Full Text Available An investigation has been made to compare the emission characteristics of 20% orange oil methyl ester and 80% diesel in volumetric basis with Neat diesel in hemispherical combustion chamber and toroidal combustion chamber. Non-edible orange oil is selected and utilized to prepare alternative fuel to be utilized in Diesel engine. The traditional method of transestrification is employed for preparation orange oil methyl ester. The chemical properties of prepared methyl ester were determined using fouriertransform infrared spectroscopy method. Further its fuel properties were found based on American Society for Testing and Materials standards and compared with Neat diesel fuel properties. A compression ignition engine with electrical dynamometer test rig with gas analyzer has been used. It is observed that 1% of NOx and 4% of HC emission reduced in toroidal combustion chamber engine. However, smoke emission is found to be lower in hemispherical combustion chamber engine.

  9. Advanced Diesel Engine Component Development Program, final report - tasks 4-14

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, T.S.; Weber, K.E.

    1994-11-01

    The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

  10. CFD Studies of Split Injection on the Combustion and Emission Characteristics in DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    S Gavudhama karunanidhi

    2014-07-01

    Full Text Available In this study, the effect of split injection on the combustion and emissions in DI diesel engine is investigated using CFD tool .One of the important problems in reducing pollutant emission from diesel engines is trade-off between soot and NOx. Split injection is one of the most powerful tools that decrease soot and NOx emissions simultaneously. Split injection is defined as splitting the main single injection profile in two or more injection pulses with definite delay dwell between the injections. A four-stroke, single cylinder, diesel engine was taken into consideration at constant speed conditions . A model was developed for comprehensive predictions and assessments for variations in combustion phenomenon for DI diesel engines . By using the finite volume method the design and analysis of combustion chamber,emission characteristics were studied. The results of the split injection were compared with single injection and the optimum case of split injection was observed.

  11. INFLUENCE OF FUEL TEMPERATURE ON DIESEL ENGINE PERFORMANCE OPERATING WITH BIODIESEL BLEND

    Directory of Open Access Journals (Sweden)

    Rafidah Rahim

    2012-06-01

    Full Text Available This paper presents the study of the effect of temperature on diesel engine performance using a 5% biodiesel blend. A one-dimensional numerical analysis is used to simulate the four-cylinder diesel engine. The diesel engine simulation is used to study the characteristics of engine performance when the engine is operating with a fuel blend as an alternative fuel. The simulations are conducted at full load conditions where the temperature varies from 300 to 500 K. The results show that the maximum brake power and brake torque reduction was 1.39% and 1.13%, respectively for an engine operating with a fuel blend. It is shown that the insignificant different due to the small gap between energy content values. A decrease in the lower heating value caused an increase in the brake specific fuel consumption and thus, a reduction in the brake thermal efficiency of the engine performance at full load.

  12. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  13. Application of computers to the design and development on diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, W.

    1981-07-01

    Although diesel engine development still depends mainly on experience, empiricism, and experiments, a complete mathematical solution to the problems encountered is attempted. At a meeting held by UNICEG under the sponsorship of the British Science Research Council, universities and technical universities working in this field could present their findings to the industrial users, and experience could be exchanged. The paper reviews the recent developments in computer-aided design of diesel engines and describes the present state of the art.

  14. Simulation of a Two-Stroke Slow Speed Diesel Engine Using a Quasi-Dimensional Model

    OpenAIRE

    Mrzljak, Vedran; Medica, Vladimir; Bukovac, Ozren

    2016-01-01

    The paper describes a diesel engine quasi-dimensional numerical model, implemented in a previously developed 0D model. The presented model uses direct solution to the conservation equations set for cylinder pressure and zone temperatures without numerical iterations which are customary in these models. Numerical model validation was performed on a four-stroke diesel engine at four operating points. After successful validation, modifications were implemented in the numerical model allowing the...

  15. Computation of the Matching Performance of Diesel Engine with Variable Geometry Turbocharger

    Institute of Scientific and Technical Information of China (English)

    SHI Xin; MA Chao-chen

    2006-01-01

    To compute the matching performance of diesel engine with variable geometry turbocharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.

  16. Eucalyptus-Palm Kernel Oil Blends: A Complete Elimination of Diesel in a 4-Stroke VCR Diesel Engine

    Directory of Open Access Journals (Sweden)

    Srinivas Kommana

    2015-01-01

    Full Text Available Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05, PKE10 (palm kernel oil 90 + eucalyptus 10, and PKE15 (palm kernel 85 + eucalyptus 15. The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.

  17. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  18. Application of Brown’s Gas for a Diesel Engine Running on Rapeseed Oil

    OpenAIRE

    Alfredas Rimkus; Tomas Ulickas; Saugirdas Pukalskas; Paulius Stravinskas

    2012-01-01

    The article presents the analysis of possible applications of Brown’s gas to the diesel engine running on oil. The paper also contains a review of experimental works. The selected fuel combinations are as follows: diesel fuel, diesel fuel and Brown’s gas, oil (rapeseed oil) and oil and Brown’s gas. Test results have shown that an additional supply of Brown’s gas to the engine results in a decrease in the amounts of carbon monoxide (CO) and smoke level; however it increases the total emission ...

  19. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    Science.gov (United States)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  20. Ignition delay of dual fuel engine operating with methanol ignited by pilot diesel

    Institute of Scientific and Technical Information of China (English)

    Hongbo ZOU; Lijun WANG; Shenghua LIU; Yu LI

    2008-01-01

    An investigation on the ignition delay of a dual fuel engine operating with methanol ignited by pilot diesel was conducted on a TY1100 direct-injection diesel engine equipped with an electronic controlled methanol low-pressure injection system. The experimental results show that the polytropic index of compression process of the dual fuel engine decreases linearly while the ignition delay increases with the increase in methanol mass fraction. Compared with the conventional diesel engine, the igni-tion delay increment of the dual fuel engine is about 1.5° at a methanol mass fraction of 62%, an engine speed of 1600 r/min, and full engine load. With the elevation of the intake charge temperature from 20℃ to 40℃ and then to 60℃, the ignition delay of the dual fuel engine decreases and is more obvious at high temperature. Moreover, with the increase in engine speed, the ignition delay of the dual fuel engine by time scale (ms) decreases clearly under all engine operating conditions. However, the ignition delay of the dual fuel engine increases remark-ably by advancing the delivery timing of pilot diesel, espe-cially at light engine loads.

  1. Experimental investigations of the hydrogen addition effects on diesel engine performance

    Science.gov (United States)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  2. Experimental study of DI diesel engine performance using biodiesel blends with kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A.K.; Ameer Uddin, S.M.; Alam, M.M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2013-07-01

    The experimental investigation offers a comprehensive study of DI diesel engine performance using bio-diesel from mustard oil blends with kerosene. The vegetable oil without trans-esterification reaction have been blended with kerosene oil by volume in some percentage like 20%, 30%, 40% and 50% which have been named as M20 (20% mustard, 80% kerosene), M30 (30% mustard, 70% kerosene), M40 (40% mustard, 60% kerosene) and M50 (50% mustard, 50% kerosene). The properties of the bio-fuel blended with kerosene have been tested in the laboratories with maintaining different ASTM standards. Then a four stroke, single cylinder, direct injection diesel engine has been mounted on the dynamometer bed for testing the performance of the engine using the bio-diesel blends. Several engine parameters like bsfc, bhp, break mean effective pressure, exhaust gas temperature, lube oil temperature, sound level etc. have been determined. A comparison has been made for engine performance of different bio-diesel blends with kerosene with the engine performance of diesel fuel.

  3. Turbulence-combustion interaction in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Bencherif Mohamed

    2014-01-01

    Full Text Available The experimental measures of chemical species and turbulence intensity during the closed part of the engine combustion cycle are today unattainable exactly. This paper deals with numerical investigations of an experimental direct injection Diesel engine and a commercial turbocharged heavy duty direct injection one. Simulations are carried out with the kiva3v2 code using the RNG (k-ε model. A reduced mechanism for n-heptane was adopted for predicting auto-ignition and combustion processes. From the calibrated code based on experimental in-cylinder pressures, the study focuses on the turbulence parameters and combustion species evolution in the attempt to improve understanding of turbulence-chemistry interaction during the engine cycle. The turbulent kinetic energy and its dissipation rate are taken as representative parameters of turbulence. The results indicate that chemistry reactions of fuel oxidation during the auto-ignition delay improve the turbulence levels. The peak position of turbulent kinetic energy coincides systematically with the auto-ignition timing. This position seems to be governed by the viscous effects generated by the high pressure level reached at the auto-ignition timing. The hot regime flame decreases rapidly the turbulence intensity successively by the viscous effects during the fast premixed combustion and heat transfer during other periods. It is showed that instable species such as CO are due to deficiency of local mixture preparation during the strong decrease of turbulence energy. Also, an attempt to build an innovative relationship between self-ignition and maximum turbulence level is proposed. This work justifies the suggestion to determine otherwise the self-ignition timing.

  4. An experimental study on the effect of using gas-to-liquid (GTL fuel on diesel engine performance and emissions

    Directory of Open Access Journals (Sweden)

    M.A. Bassiony

    2016-09-01

    Full Text Available Gas to Liquid (GTL fuel is considered one of the most propitious clean alternative fuels for the diesel engines. The aim of this study was to experimentally compare the performance and emissions of a diesel engine fueled by GTL fuel, diesel, and a blend of GTL and diesel fuels with a mixing ratio of 1:1 by volume (G50 at various engine load and speed conditions. Although using the GTL and G50 fuels decreased slightly the engine maximum power compared to the diesel fuel, both the engine brake thermal efficiency and engine brake specific fuel consumption were improved. In addition, using the GTL and G50 fuels as alternatives to the diesel resulted in a significant decrease in engine CO, NOx, and SO2 emissions.

  5. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  6. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    Science.gov (United States)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  7. Effect of combustion chamber insulation on the performance of a low heat rejection diesel engine with exhaust heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, D.N. (Illinois Univ., Urbana, IL (USA). Dept. of Mechanical and Industrial Engineering)

    1989-01-01

    A computer simulation of the turbocharged turbocompound diesel engine system is used to study the effect of combustion chamber insulation on the performance of low heat rejection system configurations with exhaust heat recovery. The analysis is carried out for zirconia coatings of various thicknesses applied on the cylinder head and piston. It is found that an intercooled turbocompound engine derives a modest thermal efficiency benefit from insulation, e.g. 4.3% improvement at a 60% reduction in heat loss. The addition of Rankine compounding can improve the thermal efficiency of the turbocompounded engine by 10-14%, depending on the level of insulation and the system configuration. Furthermore, Rankine compounding can make the otherwise inferior performance of a non-intercooled engine match the performance of an intercooled engine. Finally, use of an insulating material of low conductivity and low heat capacity can increase the thermal efficiency benefits, but at the expense of increased component thermal loading. (author).

  8. Study of the noise characteristics of a six-cylinder diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Tung, V.T.C.; Crocker, M.J.

    1982-01-01

    This paper presents some of the results of a study of the noise emitted by a Cummins NTC-350 turbo-charged diesel engine. The relationships between engine noise and speed, load, temperature and cylinder pressure and its derivatives were examined. The results were compared with previous engine noise findings and predictions.

  9. Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)

    2011-01-15

    Conventional diesel engines with ethanol as fuel are associated with problems due to high self-ignition temperature of the fuel. The hot surface ignition method, wherein a part of the injected fuel is made to touch an electrically heated hot surface (glowplug) for ignition, is an effective way of utilizing ethanol in conventional diesel engines. The purpose of the present study is to investigate the effect of thermal insulation on ethanol fueled compression ignition engine. One of the important ethanol properties to be considered in the high compression ratio engine is the long ignition delay of the fuel, normally characterized by lower cetane number. In the present study, the ignition delay was controlled by partial insulation of the combustion chamber (low heat rejection engine) by plasma spray coating of yttria stabilized zirconia for a thickness of 300 {mu}m. Experiments were carried out on the glowplug assisted engine with and without insulation in order to find out the possible benefits of combustion chamber insulation in ethanol and diesel operation. Highest brake thermal efficiency of 32% was obtained with ethanol fuel by insulating the combustion chamber. Emissions of the unburnt hydrocarbons, oxides of nitrogen and carbon monoxides were higher than that of diesel. But the smoke intensity and was less than that of diesel engine. Volumetric efficiency of the engine was reduced by a maximum of 9% in LHR mode of operation. (author)

  10. Fault Detection of Inline Reciprocating Diesel Engine: A Mass and Gas-Torque Approach

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available Early fault detection and diagnosis for medium-speed diesel engines are important to ensure reliable operation throughout the course of their service. This work presents an investigation of the diesel engine combustion-related fault detection capability of crankshaft torsional vibrations. Proposed methodology state the way of early fault detection in the operating six-cylinder diesel engine. The model of six cylinders DI Diesel engine is developed appropriately. As per the earlier work by the same author the torsional vibration amplitudes are used to superimpose the mass and gas torque. Further mass and gas torque analysis is used to detect fault in the operating engine. The DFT of the measured crankshaft’s speed, under steady-state operating conditions at constant load shows significant variation of the amplitude of the lowest major harmonic order. This is valid both for uniform operating and faulty conditions and the lowest harmonic orders may be used to correlate its amplitude to the gas pressure torque and mass torque for a given engine. The amplitudes of the lowest harmonic orders (0.5, 1, and 1.5 of the gas pressure torque and mass torque are used to map the fault. A method capable to detect faulty cylinder of operating Kirloskar diesel engine of SL90 Engine-SL8800TA type is developed, based on the phases of the lowest three harmonic orders.

  11. Power generation using coir-pith and wood derived producer gas in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673 601, Kerala State (India)

    2006-10-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the potential of coir-pith and wood chips as the feedstock for gasifier is analyzed. The performance of the gasifier-engine system is analyzed by running the engine for various producer gas-air flow ratios and at different load conditions. The system is experimentally optimized with respect to maximum diesel savings and lower emissions in the dual fuel mode operation while using coir-pith and wood chips separately. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine while using wood chips in the dual mode operation is higher than that of coir-pith. The CO emission is higher in the case of dual fuel mode of operation as compared to that of diesel mode. In the dual fuel mode of operation, the higher diesel savings is achieved while using wood chips as compared to that of coir-pith. The comparison of the performance and emission characteristics of the dual fuel engine with diesel engine is also described. (author)

  12. Experimental Investigation Of Biogas-Biodiesel Dual Fuel Combustion In A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ramesha D. K.

    2015-06-01

    Full Text Available This study is an attempt at achieving diesel fuel equivalent performance from diesel engines with maximum substitution of diesel with renewable fuels. In this context the study has been designed to analyze the influence of B20 algae biodiesel as a pilot fuel in a biodiesel biogas dual fuel engine, and results are compared to those of biodiesel and diesel operation at identical engine settings. Experiments were performed at various loads from 0 to 100 % of maximum load at a constant speed of 1500 rpm. In general, B20 algae biodiesel is compatible with diesel in terms of performance and combustion characteristics. Dual fuel mode operation displays lower thermal efficiency and higher fuel consumption than for other fuel modes of the test run across the range of engine loads. Dual fuel mode displayed lower emissions of NOx and Smoke opacity while HC and CO concentrations were considerably higher as compared to other fuels. In dual fuel mode peak pressure and heat release rate were slightly higher compared to diesel and biodiesel mode of operation for all engine loads.

  13. Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Md Mofijur Rahman

    2016-05-01

    Full Text Available This paper investigated the prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engine. The biodiesel was produced using conventional transesterification process using the base catalyst (KOH. A multi-cylinder diesel engine was used to evaluate the performance and emission of 5% (B5 and 20% (B20 macadamia biodiesel fuel at different engine speeds and full load condition. It was found that the characteristics of biodiesel are within the limit of specified standards American Society for Testing and Materials (ASTM D6751 and comparable to diesel fuel. This study also found that the blending of macadamia biodiesel–diesel fuel significantly improves the fuel properties including viscosity, density (D, heating value and oxidation stability (OS. Engine performance results indicated that macadamia biodiesel fuel sample reduces brake power (BP and increases brake-specific fuel consumption (BSFC while emission results indicated that it reduces the average carbon monoxide (CO, hydrocarbons (HC and particulate matter (PM emissions except nitrogen oxides (NOx than diesel fuel. Finally, it can be concluded that macadamia oil can be a possible source for biodiesel production and up to 20% macadamia biodiesel can be used as a fuel in diesel engines without modifications.

  14. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Gumus, M. [Automotive Division, Department of Mechanical Education, Marmara University, Ziverbey, 34722 Istanbul (Turkey)

    2008-11-15

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  15. Experimental Thermal Analysis of Diesel Engine Piston and Cylinder Wall

    Directory of Open Access Journals (Sweden)

    Subodh Kumar Sharma

    2015-01-01

    Full Text Available Knowledge of piston and cylinder wall temperature is necessary to estimate the thermal stresses at different points; this gives an idea to the designer to take care of weaker cross section area. Along with that, this temperature also allows the calculation of heat losses through piston and cylinder wall. The proposed methodology has been successfully applied to a water-cooled four-stroke direct-injection diesel engine and it allows the estimation of the piston and cylinder wall temperature. The methodology described here combines numerical simulations based on FEM models and experimental procedures based on the use of thermocouples. Purposes of this investigation are to measure the distortion in the piston, temperature, and radial thermal stresses after thermal loading. To check the validity of the heat transfer model, measure the temperature through direct measurement using thermocouple wire at several points on the piston and cylinder wall. In order to prevent thermocouple wire entanglement, a suitable pathway was designed. Appropriate averaged thermal boundary conditions such as heat transfer coefficients were set on different surfaces for FE model. The study includes the effects of the thermal conductivity of the material of piston, piston rings, and combustion chamber wall. Results show variation of temperature, stresses, and deformation at various points on the piston.

  16. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  17. Production of Bio-Diesel to Neem oil and its performance and emission Analysis in two stroke Diesel Engine.

    Directory of Open Access Journals (Sweden)

    G.Mahesh BABU

    2013-02-01

    Full Text Available In India Neem tree is a widely grown up termed as a divine tree due to its wide relevance in many areas of study. This paper deals with Biodiesel production from neem oil, which is monoester produced usingtransesterification process. Biodiesel is a safe alternative fuel to replace traditional petroleum diesel. It has high lubricity, clean burning fuel and can be a fuel component for use in existing unmodified diesel engine. Neem (Azadirachita Indica is an evergreen tree, which is endemic to the Indian Sub-continent and has beenintroduced to many other areas intropics. The fuel properties of biodiesel including flash point-and fire point were examined. The engine properties and pollutant emissions characteristics under different biodiesel percentages were also studied. The results shows that the biodiesel produced using neem oil could reduce Carbon monoxide and smoke emissions significantly while the Nitrogen oxide emission changed slightly. Thus, the ester of this oil can be used as environment friendly alternative fuel for diesel engine.

  18. FORMALIZATION OF DIESEL ENGINE OPERATION CONSIDERING THE EVALUATION OF VELOCITY DURING THE COMBUSTION PROCESSES

    Directory of Open Access Journals (Sweden)

    V. P. Litvinenko

    2015-10-01

    Full Text Available Purpose. Under modern conditions the applying methods and design models as well as the evaluation of the operational characteristics of diesel engines do not completely take into consideration the specifics of the combustion processes. In part, such situation is characterized by the complexity of considering of varied by its nature processes that haven’t been completely investigated. In this context it is necessary to find the new methods and models which would provide relatively simple solutions through the use of integrated factors based on the analysis of parameters of diesel engines. Methodology. The proposed algorithms for the estimating of the combustion process in the form of volumetric and linear velocities is based on the well-known parameters of power and mean effective pressure and allows to compare the efficiency of their behavior in various versions of diesel engines. Findings. The author specified that the volumetric / linear velocity ratio is characterized by some strength and depends on the geometric dimensions of the cylinder-piston group. Due to the assumptions it has become possible to consider the operation of a diesel engine as a system comprising: 1 the subsystem that provides the possibility of obtaining the thermal energy; 2 the subsystem providing the thermal energy transformation; 3 the subsystem that provides the necessary diesel engine power depending on terms of combustion of air-fuel mixture. Originality. The author of the paper proposed the indices of volumetric and linear combustion velocity of air-fuel mixture in the engine cylinder, that allow to obtain the comparative value in different modifications taking into account the possible choice of optimum ratio. Practical value. The usage of indices of volumetric and linear velocities of the combustion processes in the engine cylinder combined with a mathematical model will simplify the method of diesels calculating. Parametric indices of the mentioned velocities

  19. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  20. Parametric Optimization of Regenerative Organic Rankine Cycle System for Diesel Engine Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hongjin Wang

    2015-09-01

    Full Text Available To efficiently recover the waste heat from a diesel engine exhaust, a regenerative organic Rankine cycle (RORC system was employed, and butane, R124, R416A, and R134a were used as the working fluids. The resulting diesel engine-RORC combined system was defined and the relevant evaluation indexes were proposed. First, the variation tendency of the exhaust energy rate under various diesel engine operating conditions was analyzed using experimental data. The thermodynamic model of the RORC system was established based on the first and second laws of thermodynamics, and the net power output and exergy destruction rate of the RORC system were selected as the objective functions. A particle swarm optimization (PSO algorithm was used to optimize the operating parameters of the RORC system, including evaporating pressure, intermediate pressure, and degree of superheat. The operating performances of the RORC system and diesel engine-RORC combined system were studied for the four selected working fluids under various operating conditions of the diesel engine. The results show that the operating performances of the RORC system and the combined system using butane are optimal on the basis of optimizing the operating parameters; when the engine speed is 2200 r/min and engine torque is 1215 N·m, the net power output of the RORC system using butane is 36.57 kW, and the power output increasing ratio (POIR of the combined system using butane is 11.56%.

  1. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    NARCIS (Netherlands)

    Mutlu, E.; Nash, D.G.; King, C.; Krantz, T.Q.; Preston, W.T.; Kooter, I.M.; Higuchi, M.; DeMarini, D.; Linak, W.P.; Ian Gilmour, M.

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this en

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXV, I--CATERPILLAR DIESEL ENGINE COOLING SYSTEM D-8 AND 824 MODELS, II--TIRES AND TIRE HARDWARE.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM AND TO PROVIDE A DESCRIPTION OF HEAVY TIRES AND WHEELS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) THEORY OF THE COOLING SYSTEM, (2) COOLING SYSTEM COMPONENTS, (3) MAINTENANCE TIPS (COOLING SYSTEM), (4)…

  3. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  6. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    Science.gov (United States)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  7. Piston surface heat transfer during combustion in large marine diesel engines

    DEFF Research Database (Denmark)

    Jensen, Michael Vincent; Walther, Jens Honore

    2010-01-01

    In the design process of large marine diesel engines information on the maximum heat load on the piston surface experienced during the engine cycle is an important parameter. The peak heat load occurs during combustion when hot combustion products impinge on the piston surface. Although the maximum...... with burning off piston surface material. In this work the peak heat load on the piston surface of large marine diesel engines during combustion was investigated. Measurements of the instantaneous surface temperature and surface heat flux on pistons in large marine engines are difficult due to expensive...... was calculated under different conditions in the numerical setup in order to obtain information of the actual peak heat flux experienced at the piston in large marine diesel engines during combustion. The variation of physical parameters influencing the heat transfer during combustion included a variation...

  8. Evaluation of a diesel engine running with stationary mixtures of soybean oil and reused oil diesel; Avaliacao de um motor diesel estacionario funcionando com misturas de oleo de soja reutilizado e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Maronhas, Maite E.S.; Fernandes, Haroldo C.; Siqueira, Wagner C.; Figueiredo, Augusto C. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: maronhas@gmail.com, haroldo@ufv.br, augusto.figueiredo@ufv.br

    2009-07-01

    The tests were conducted at the Laboratory of Agricultural Mechanization Department of Agricultural Engineering, Federal University of Vicosa using a stationary diesel engine Yanmar brand NS{sub B} 75, with nominal power of 5.8 kw at 2400 rpm, direct injection, and water cooled. This work aimed to examine the reuse of soybean oil to drive the engine stationary. Were used as fuel five mixtures of diesel oil (DO) and soybean oil (OS) re-used in the kitchen of the restaurant of the university in the proportions of 0-100%, 25-75%, 50-50%, 75-25 % and 100-0% respectively. The power and torque of the engine is higher for the mixture showed a 75% OD and 25% OS and 25% lower for DO and 75% OS. The lowest hourly consumption was with a mixture of 25% and 75% OD and OS was 15% lower than for the pure diesel. The values found justifying the use of mixtures of diesel and soybean oil reused, but the technical aspects, especially regarding the wear of the engine, must be evaluated to indicate the use after a long period of engine operation. (author)

  9. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review

    Energy Technology Data Exchange (ETDEWEB)

    No, Soo-Young [Chungbuk National University, Department of Biosystems Engineering, Cheongju 361-763 (Korea, Republic of)

    2011-01-15

    The use of inedible vegetable oils as an alternative fuel for diesel engine is accelerated by the energy crisis due to depletion of resources and increased environmental problems including the great need for edible oil as food and the reduction of biodiesel production cost, etc. Of a lot of inedible vegetable oils which can be exploited for substitute fuel as diesel fuel, seven vegetable oils, i.e., jatropha, karanja, mahua, linseed, rubber seed, cottonseed and neem oils were selected for discussion in this review paper. The application of jatropha oil as a liquid fuel for CI engine can be classified with neat jatropha oil, engine modifications such as preheating, and dual fuelling, and fuel modifications such as jatropha oil blends with other fuels, mostly with diesel fuel, biodiesel, biodiesel blends and degumming. Therefore, jatropha oil is a leading candidate for the commercialization of non-edible vegetable oils. There exists a big difference in the fuel properties of seven inedible vegetable oils and its biodiesels considered in this review. It is clear from this review that biodiesel generally causes an increase in NOx emission and a decrease in HC, CO and PM emissions compared to diesel. It was reported that a diesel engine without any modification would run successfully on a blend of 20% vegetable oil and 80% diesel fuel without damage to engine parts. This trend can be applied to the biodiesel blends even though particular biodiesel shows 40% blend. In addition, the blends of biodiesel and diesel can replace the diesel fuel up to 10% by volume for running common rail direct injection system without any durability problems. (author)

  10. INFLUENCE OF PALM METHYL ESTER (PME AS AN ALTERNATIVE FUEL IN MULTICYLINDER DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Mohd Hafizil M. Yasin

    2012-12-01

    Full Text Available Palm oil is one of the vegetable oil, which is converted to biodiesel through a transesterification process using methanol as the catalyst. Palm oil biodiesel or palm methyl ester (PME can be used in diesel engines without any modification, and can be blended with conventional diesel to produce different proportions of PME-diesel blend fuels. The physical properties of PME were evaluated experimentally and theoretically. The effect of using neat PME as fuel on engine performance and emissions was evaluated using a commercial four-cylinder four-stroke IDI diesel engine. The experimental results on an engine operated with PME exhibited higher brake specific fuel consumption in comparison with the conventional fuel. With respect to the in-cylinder pressure and heat release rate, these increased features by over 8.11% and 9.3% with PME compared to conventional diesel. The overall results show that PME surpassed the diesel combustion quality due to its psychochemical properties and higher oxygen content.

  11. Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application

    KAUST Repository

    Muthukumaran, N.

    2015-04-16

    In this study, production of hydrocarbon fuel from Calophyllum inophyllum oil has been characterized for diesel engine application, by appraising essential fuel processing parameters. As opposed to traditional trans-esterification process, the reported oil was cracked using a catalyst, as the latter improves the fuel properties better than the former. In a bid to make the production process economically viable, a waste and cheap catalyst, RFA (raw fly ash), has been capitalized for the cracking process as against the conventional zeolite catalyst. The fuel production process, which is performed in a fixed bed catalytic reactor, was done methodologically after comprehensively studying the characteristics of fly ash catalyst. Significantly, fly ash characterization was realized using SEM and EDS, which demarcated the surface and internal structures of fly ash particles before and after cracking. After the production of hydrocarbon fuel from C. inophyllum oil, the performed compositional analysis in GC-MS revealed the presence of esters, parfins and olefins. Followed by the characterization of catalytically cracked C. inophyllum oil, suitable blends of it with diesel were tested in a single cylinder diesel engine. From the engine experimental results, BTE (brake thermal efficiency) of the engine for B25 (25% cracked C. inophyllum oil and 75% diesel) was observed to be closer to diesel, while it decreased for higher blends. On the other hand, emissions such as HC (hydrocarbon), CO (carbon monoxide) and smoke were found to be comparable for B25 with diesel. © 2015 Elsevier Ltd. All rights reserved.

  12. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  13. DETERMINATION OF CO2 MASSES IN THE EXHAUST GASES OF THE MARINE DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Doru COSOFRET

    2016-05-01

    Full Text Available Currently, reducing CO2 emissions that contribute to the greenhouse effect is currently under attention of the relevant international bodies. In the field of maritime transport, in 2011 International Maritime Organization (IMO has taken steps to reduce emissions of CO2 from the exhaust gases of marine diesel engines on ships, by imposing their energy efficiency standards. In this regard, we conducted a laboratory study on a 4-stroke diesel engine naturally aspirated by using to power it diesel and different blends of biodiesel with diesel fuel. The purpose of the study was to determine the formulas for calculating the mass flow rates of CO2 from exhaust gases’ concentrations experimentally determined. Determining the mass flow of CO2 is necessary to calculate the energy efficiency coefficient of the ship to assess the energy efficiency of the board of the limits imposed by the IMO.

  14. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  15. A WEAR MODEL FOR DIESEL ENGINE EXHAUST VALVES

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2009-11-01

    The work summarized here comprises the concluding effort of a multi-year project, funded by the U.S. Department of Energy, Office of Vehicle Technologies. It supports the development of a better understanding of advanced diesel engine designs in which enhanced power density, energy efficiency, and emissions control place increasing demands upon the durability of engine materials. Many kinds of metallic alloys are used in engines depending on the operating stresses, temperatures, and chemical environments. Exhaust valves, for example, are subjected to high temperatures and repetitive surface contacts that place demands on durability and frictional characteristics of the materials. Valves must continue to seal the combustion chamber properly for thousands of hours of cyclic engine operation and under varying operating conditions. It was the focus of this effort to understand the wear processes in the valve-seat area and to develop a model for the surface deformation and wear of that important interface. An annotated bibliography is provided to illustrate efforts to understand valve wear and to investigate the factors of engine operation that affect its severity and physical manifestation. The project for which this modeling effort was the final task, involved construction of a high-temperature repetitive impact test system as well as basic tribology studies of the combined processes of mechanical wear plus oxidation at elevated temperatures. Several publications resulted from this work, and are cited in this report. The materials selected for the experimental work were high-performance alloys based on nickel and cobalt. In some cases, engine-tested exhaust valves were made available for wear analysis and to ensure that the modes of surface damage produced in experiments were simulative of service. New, production-grade exhaust valves were also used to prepare test specimens for experimental work along with the other alloy samples. Wear analysis of valves and seats

  16. Development of combustion management concept for natural-aspirated small diesel engine; Shizen kyuki kogata diesel engine no nensho seigyo concept no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Wada, T.; Kawano, T.; Shoji, M.; Kuniyosh, M.; Yamashita, O.; Nagao, A. [Mazda Motor Corp., Tokyo (Japan); Yoshikawa, S. [Zexel Corp., Tokyo (Japan)

    1997-10-01

    We have developed a combustion management concept for natural-aspirated small IDI diesel engines and achieved higher power, lower exhaust emissions and more comfort. The concept is related to improvements of intake volumetric efficiency, EGR effect, mixture formation caused by combustion chamber and spray characteristics, engine management system and after treatment device. This paper describes the concept and experimental results. 3 refs., 14 figs., 1 tab.

  17. IR spectroscopic investigation of the structure of water-fuel microemulsion for diesel engines

    Science.gov (United States)

    Vettegren', V. I.; Mamalimov, R. I.; Lozhkin, V. N.; Morozov, V. A.; Lozhkina, O. V.; Pimenov, Yu. A.

    2016-09-01

    The structures of a microemulsion formed by a surfactant (ammonium oleate), water drops of a linear size of 1-3 µm, and a diesel fuel has been investigated using IR spectroscopy. It has been found that ammonium oleate molecules in the microemulsion are dissociated on the positive NH4 + ion and the negative ion of the remaining part of the molecule, which forms the hydrogen bond with water molecules. This increases the rate of water, evaporation and leads to the more complete combustion of the diesel fuel. As a result, the concentration of harmful nitrogen oxides and soot particles in the exhaust gas of the diesel engine decreases.

  18. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...... in current diesel after-treatment techniques. The electrochemical system consisted of an electrochemical cell modified with NOx adsorbents and a diesel oxidation catalyst placed upstream of the cell. The system offers highly selective NOx reduction and a strong resistance to oxygen interference with almost...

  19. Combustion and Vibration Analysis of Idi- Diesel Engine Fuelled With Neat Preheated Jatropha Methyl Ester

    Directory of Open Access Journals (Sweden)

    Y.Ashok Kumar Reddy

    2014-03-01

    Full Text Available Experimentation is conducted on an IDI diesel engine and the results of combustion and vibration on IDI -Diesel engine fueled with the preheated Jatropha Methyl Ester (JME are presented. The Present research trend is to replace conventional diesel by renewable alternative fuels in view of fast depletion of petroleum reserves and to reduce the exhaust emissions from the engines without altering the basic design of the engine. Due to moderately higher viscosity effects, the direct use of biodiesel in C.I. engines is limited to 20% and the limitation is based on the NO emission also. In this work, the biodiesel is preheated using on line electronically controlled electrical preheating system before it enters into the injector. Experiments are conducted on a four stroke single cylinder IDI engine to find combustion and vibration characteristics of the engine with the preheated Jatropha Methyl Ester (JME heated to temperatures viz. 60,70,80,90 and 1000C. Normally thin oils due to heating may trigger fast burning leading to either detonation or knocking of the engine. This can be predicted by recording vibration on the cylinder head in different directions. The cylinder vibrations in the form of FFT and time waves have been analyzed to estimate the combustion propensity. Experiments are done using diesel, biodiesel and biodiesel at different preheated temperatures and for different engine loading conditions keeping the speed constant at 1500 rpm. Biodiesel preheated to 600C proved encouraging in all respects.

  20. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  1. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  2. ESEMISSION ANALYSIS OF SINGLE CYLINDER DIESEL ENGINE FUELED WITH PYROLYSIS OIL DIESEL AND IT’S BLEND WITH ETHANOL

    Directory of Open Access Journals (Sweden)

    Mr. Hirenkumar M. Patel

    2012-06-01

    Full Text Available Around the world, initiatives are being taken to replace gasoline and diesel fuel due to the impact of the fossil fuel crisis, increase in oil price, and the adoption of stringent emission norms. Increase in energy demand, stringent emission norms and depletion of oil resources led the researchers to find alternative fuels for internalcombustion engines. Many alternate fuels like Alcohols, Biodiesel, methanol, ethanol, LPG, CNG etc have been already commercialized in the transport sector. In this context, pyrolysis of solid waste is currently receiving renewed interest. Tests have been carried out to evaluate the emission analysis of a single cylinder direct injection diesel engine fueled with 10%, 15%, and 20% of tyre pyrolysis oil (TPO blended with diesel fuel (DF. The TPO was derived from waste automobile tires through vacuum pyrolysis. HC and CO emissions werefound to be higher at all loads due to the high aromatic content. Ethanol was added in concentration of 5%, 10% and 15% to reduce emission characteristics. Results show that CO and HC both reduced due to the addition of ethanol because ethanol is an oxygenated additives.

  3. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    Science.gov (United States)

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).

  4. Investigation of single and split injection strategies in an optical diesel engine

    OpenAIRE

    Herfatmanesh, Mohammad Reza

    2010-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 22/12/2010. This study investigates the effects of a split injection strategy on combustion performance and exhaust emissions in a high speed direct injection optical diesel engine. The investigation is focused on the effects of injection timing, quantity, and the dwell angle between the injections using commercially available diesel fuel. Three different split injection strategies including ...

  5. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  6. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  7. The effect of clove oil and diesel fuel blends on the engine performance and exhaust emissions of a compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Mbarawa, Makame [Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa)

    2010-11-15

    Diesel engines provide the major power source for transportation in the world and contribute to the prosperity of the worldwide economy. However, recent concerns over the environment, increasing fuel prices and the scarcity of fuel supplies have promoted considerable interest in searching for alternatives to petroleum based fuels. Based on this background, the main purpose of this investigation is to evaluate clove stem oil (CSO) as an alternative fuel for diesel engines. To this end, an experimental investigation was performed on a four-stroke, four-cylinder water-cooled direct injection diesel engine to study the performance and emissions of an engine operated using the CSO-diesel blended fuels. The effects of the CSO-diesel blended fuels on the engine brake thermal efficiency, brake specific fuel consumption (BSFC), specific energy consumption (SEC), exhaust gas temperatures and exhaust emissions were investigated. The experimental results reveal that the engine brake thermal efficiency and BSFC of the CSO-diesel blended fuels were higher than the pure diesel fuel while at the same time they exhibited a lower SEC than the latter over the entire engine load range. The variations in exhaust gas temperatures between the tested fuels were significant only at medium speed operating conditions. Furthermore, the HC emissions were lower for the CSO-diesel blended fuels than the pure diesel fuel whereas the NO{sub x} emissions were increased remarkably when the engine was fuelled with the 50% CSO-diesel blended fuel. (author)

  8. Performance of HCCI Diesel Engine under the Influence of Various Working and Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma

    2012-06-01

    Full Text Available Homogenous-charge-compression-ignition (HCCI engines have the benefit of high efficiency with low emissions of NO and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. Homogenous Compression ignition (HCCI is a combustion concept, which is a hybrid between Otto engine and Diesel engine. The other emissions like HC and CO are high but can be after treated by a catalyst. This paper reviews the Characteristics of HCCI combustion in direct injection diesel engines under various governing factors in HCCI operations such as injection timing, injection pressure, piston bowl geometry, compression ratio, intake charge temperature, exhaust gas recirculation (EGR and supercharging or turbo charging are discussed in this review. The effects of design and operating parameters on HCCI diesel combustion, emissions particularly NOx and soot are reviewed.

  9. Computational Visualization and Simulation of Diesel Engines Valve Lift Performance Using CFD

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available The paper visualized and simulated the intake and exhaust valve lift in the single-cylinder four-stroke direct injection diesel engine. The visualization and simulation computational development were using the commercial Computational Fluid Dynamics of STAR-CD 3.15A software and GT-SUITE 6.2 software. The one dimensional of valve lift modeling was developed using GT-POWER software and the visualization the model using STAR-CD. The model simulation covers the full engine cycle consisting of intake, compression, power and exhaust. The visualization and simulation shown the diesel engine intake and exhaust valve lifting and moving based on the crank angle degree parameters. The result of this visualization and simulation shows the intake and exhaust valve lift moving and air fluid flow of the diesel engine model.

  10. ANALYSIS OF EXHAUST GAS EMISSION IN THE MARINE TWO-STROKE SLOW-SPEED DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Branko Lalić

    2016-09-01

    Full Text Available This paper explores the problem of exhaust emissions of the marine two-stroke slow-speed diesel engines. After establishing marine diesel engine regulations and defining the parameters influencing exhaust emissions, the simulation model of the marine two-stroke slow-speed diesel engine has been developed. Furthermore, the comparison of numerical and experimentally obtained data has been performed, resulting in achieving the model validity at 100% load, which represents a requirement for further exhaust gas analysis. Deviations obtained at the real engine and the model range from 2% to 7%. An analysis of the influential parameters such as compression ratio, exhaust valve timing and fuel injection timing has been performed. The obtained results have been compared and conclusions have been drawn.

  11. Knock characteristics of dual-fuel combustion in diesel engines using natural gas as primary fuel

    Indian Academy of Sciences (India)

    O M I Nwafor

    2002-06-01

    This paper investigates the combustion knock characteristics of diesel engines running on natural gas using pilot injection as means of initiating combustion. The diesel engines knock under normal operating conditions but the knock referred to in this paper is an objectionable one. In the dual-fuel combustion process we have the ignition stage followed by the combustion stage. There are three types of knock: diesel knock, spark knock and knock due to secondary ignition delay of the primary fuel (erratic knock). Several factors have been noted to feature in defining knock characteristics of dual-fuel engines that include ignition delay, pilot quantity, engine load and speed, turbulence and gas flow rate.

  12. Evaluation Tests of Select Fuel Additives for Potential Use in U.S. Army Corps of Engineers Diesel Engines

    Science.gov (United States)

    2016-07-01

    emissions, increase agency use of renewable energy , and reduce the use of fossil fuels . For USACE floating plant, one of the main strategies of the USACE...Warrendale, PA: SAE International. Southern Research Institute, Advanced Energy and Transportation Technologies Department. 2009. Diesel fuel ...Institute, Advanced Energy and Transportation Technologies Department. 2010. Diesel fuel additives as applied to U.S. Army Corps of Engineers lock

  13. Parametric Study of the Scavenging Process in Marine Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Andersen, Fredrik Herland; Mayer, Stefan

    2015-01-01

    Large commercial ships such as container vesselsand bulk carriers are propelled by low-speed, uniflowscavenged two-stroke diesel engines. The integral in-cylinderprocess in this type of engine is the scavenging process,where the burned gas from the combustion process isevacuated through the exhaust...... in axial velocity and the formation ofcentral recirculation zones, known as vortex breakdown. Thispaper will present a CFD analysis of the scavenging process ina MAN B&W two-stroke diesel engine. The study include aparameter sweep where the operating conditions such as airamount, port timing and scavenging...

  14. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel.

    Science.gov (United States)

    Canakci, Mustafa

    2007-04-01

    In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO(x) increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO(x) and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine.

  15. Optimising the noise of future passenger car diesel engines; Geraeuschoptimierung kuenftiger PKW-Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Florian; Schaub, Joschka [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Steffens, Christoph; Kolbeck, Andreas [FEV GmbH, Aachen (Germany). Pkw-Dieselmotoren

    2013-02-01

    The Institute for Combustion Engines Aachen (VKA) at RWTH Aachen University and FEV have examined technical possibilities for improving the noise and comfort characteristics of future passenger car diesel engines. In the following article, the two research partners describe methods for acoustic optimisation by means of cylinder pressure-guided combustion control and design modifications to the engine. Subsequent engine tests confirmed a significant reduction in noise emissions. (orig.)

  16. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  17. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  18. Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel-biodiesel blends

    Science.gov (United States)

    Ashraful, A. M.; Masjuki, H. H.; Kalam, M. A.

    2015-11-01

    A comparative morphological analysis was performed on the exhaust particles emitted from a CI engine using different blending ratios of palm biodiesel at several operating conditions. It was observed from this experiment; peak particle concentration for PB10 at 1200 rpm is 1.85E + 02 and at 1500 rpm is 2.12E + 02. A slightly smaller amount of volatile material has found from the biodiesel samples compared to the diesel fuel sample. Thermogravimetric analysis (TGA) showed that the amount of volatile material in the soot from biodiesel fuels was slightly lower than that of diesel fuel. PB20 biodiesel blends reduced maximum 11.26% of volatile matter from the engine exhaust, while PB10 biodiesel blend reduced minimum 5.53% of volatile matter. On the other hand, the amount of fixed carbon from the biodiesel samples was slightly higher than diesel fuel. Analysis of carbon emissions, palm biodiesel (PB10) reduced elemental carbon (EC) was varies 0.75%-18%, respectively. Similarly, the emission reduction rate for PB20 was varies 11.36%-23.46% respectively. While, organic carbon (OC) emission rates reduced for PB20 was varied 13.7-49% respectively. Among the biodiesel blends, PB20 exhibited highest oxygen (O), sulfur (S) concentration and lowest silicon (Si) and iron (Fe) concentration. Scanning electron microscope (SEM) images for PB20 showed granular structure particulates with bigger grain sizes compared to diesel. Particle diameter increased under the 2100-2400 rpm speed condition and it was 8.70% higher compared to the low speed conditions. Finally, the results indicated that the composition and degree of unsaturation of the methyl ester present in biodiesel, play an important role in the chemical composition of particulate matter emissions.

  19. Simulation studies of diesel engine performance with oxygen enriched air and water emulsified fuels

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, D.N.; Baker, D. (Illinois Univ., Urbana, IL (USA)); Sekar, R.R.; Siambekos, C.T.; Cole, R.L.; Marciniak, T.J. (Argonne National Lab., IL (USA))

    1990-01-01

    A computer simulation code of a turbocharged, turbocompound diesel engine was modified to study the effects of using oxygen-enriched combustion air and water-emulsified diesel fuels. Oxygen levels of 21 percent to 40 percent by volume in the combustion air were studied. Water content in the fuel was varied from 0 percent to 50 percent mass. Simulation studies and a review and analysis of previous work in this area led to the following conclusions about expected engine performance and emissions: the power density of the engine is significantly increased by oxygen enrichment. Ignition delay and particulate emissions are reduced. Combustion temperatures and No{sub x} emissions are increased with oxygen enrichment but could be brought back to the base levels by introducing water in the fuel. The peak cylinder pressure which increases with the power output level might result in mechanical problems with engine components. Oxygen enrichment also provides an opportunity to use cheaper fuel such as No. 6 diesel fuel. Overall, the adverse effects of oxygen enrichment could be countered by the addition of water and it appears that an optimum combination of water content, oxygen level, and base diesel fuel quality may exist. This could yield improved performance and emissions characteristics compared to a state-of-the-art diesel engine. 9 refs., 8 figs.

  20. Compacted graphite iron – A material solution for modern diesel engine cylinder blocks and heads

    Directory of Open Access Journals (Sweden)

    Dr. Steve Dawson

    2009-08-01

    Full Text Available The demands for improved fuel economy, performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines, where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength, 45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron, CGI satisfi es durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently, there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume, potentially accounting for 10%–15% of the North American passenger vehicle fleet within the next four years.

  1. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  2. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of contro

  3. Compacted graphite iron-A material solution for modern diesel engine cylinder blocks and heads

    Institute of Scientific and Technical Information of China (English)

    Steve Dawson; SinterCast; Sweden

    2009-01-01

    The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine.Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.

  4. Robust Emission Management Strategy to Meet Real-World Emission Requirements for HD Diesel Engines

    NARCIS (Netherlands)

    Mentink, P.; Nieuwenhof, R. van den; Kupper, F.; Willems, F.; Kooijman, D.

    2015-01-01

    Heavy-duty diesel engines are used in different application areas, like long-haul, city distribution, dump truck and building and construction industry. For these wide variety of areas, the engine performance needs to comply with the real-world legislation limits and should simultaneously have a low

  5. Concentric camshaft system for gasoline and diesel engines; Konzentrische Verstellnockenwellen fuer Otto- und Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Steve [BorgWarner Morse TEC, Auburn Hills, MI (United States); Joergl, Volker; Becker, Michael [BorgWarner, Ludwigsburg (Germany); Stapelmann, Andreas [ThyssenKrupp Presta Camshafts Gruppe, Chemnitz (Germany)

    2011-10-15

    BorgWarner and ThyssenKrupp Presta have jointly developed a system of phaser and adjustable concentric camshafts that are applicable to both diesel and gasoline engines. Comprehensive simulation work and experimental investigations on an engine dyno have proven considerable potential for reducing emissions and improving fuel consumption. (orig.)

  6. The Effect of Bio-Fuel Blends and Engine Load on Diesel Engine Smoke Density for Sustainable Environment

    Directory of Open Access Journals (Sweden)

    Prof. R. K. Mandloi

    2010-10-01

    Full Text Available The diesel engine is a major contributor to air pollution especially within cities and along urban traffic routes. Therefore it has become very essential to develop the technology of IC engines, which will reduce the consumption of petroleum fuels and exhaust gas emissions. In fact, agricultural and transport sectors are almost diesel dependent. The various alternative fuel options researched for diesel are mainly biogas, producer gas, ethanol, methanol and vegetable oils. Out of all these, vegetable oils offer an advantage because of its comparable fuel properties with diesel and can be substituted between 20%-100%depending upon its processing. But as India stillimports huge quantity of edible oils, therefore, the use of non-edible oils of minor oilseeds like Karanji oil has been tested as a diesel fuel extender. The problems have been mitigated by developing vegetable oil derivatives that approximate the properties and performance and make them compatible with the hydrocarbon-based diesel fuels through the pyrolysis, micro emulsification, dilution and transesterification. The various fuel blends of karanji oil were tested on different engine loads to evaluate it smoke density.

  7. Diesel Engine Convert to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Problem statement: The regular development of internal combustion engines change direction to answer the two most important problems determining the development trends of engines technology and in particular, their combustion systems. They were environmental protection against emission and noise, shortage of hydrocarbon fuels, ...

  8. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.E.

    1992-04-01

    K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

  9. Fischer-Tropsch-synthesis fuels as diesel engine fuel - Fuel of the future

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Thermo and Fluid Dynamics

    2000-04-01

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent auto ignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with regular diesel fuel if produced in large volumes. The aim of this investigation is to reveal and analyze the effects of F-T fuels on a research diesel engine performance. Previous engine laboratory tests indicate that F-T fuels are promising alternative fuels because they can be used in unmodified diesel engines, and substantial quantitative exhaust emission reductions can be reached. Also substantial qualitative reductions, e.g. reduction of the number of hazardous chemicals and reduction of the concentration of hazardous chemicals in the exhausts may be realised. Since the engine performance is closely related to in-cylinder processes, a detailed thermodynamic analysis has been performed revealing the real thermochemistry history. The experimental results have shown that F-T fuels have a beneficial effect not only on the emission levels, but also on other energetic parameters of the engine. Heat release analysis have shown that ignition delay, cylinder peak pressure, heat release gradient and indicated efficiency are affected as well. Two different mixtures of FT-fuels with variation in carbon chain branching and, to a certain extent, variation in chain length were tested and their results were compared with those obtained from conventional fuel (MK1). The selected optimized F-T fuels mixture were further tested according to the 13 mode ECE R49 test cycle and were found as good competitive alternative diesel fuels.

  10. Reduction of harmful nitrogen oxide emission from low heat rejection diesel engine using carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Thulasi Gopinathan

    2016-01-01

    Full Text Available In this study, lanthanum aluminate is used as thermal barrier coating material for the first time in the internal combustion engine to convert the standard engine into low heat rejection engine. Initially, the biodiesel is prepared from sunflower oil by using trans-esterification process. The piton crown, cylinder head and valves of the engine is coated with lanthanum aluminate for a thickness of around 200 microns. However, the analysis of performance and emission characteristics of a standard diesel is carried out with diesel/biodiesel to compare with the low heat rejection engine. The lanthanum aluminate coated engine fueled with sunflower methyl ester shows better performance and emission. But the emission of NOx founds to be higher in the coated engine. Further, a small quantity of carbon nanotubes is added onto the biodiesel to carry out the experiments. Based on the results, the carbon nanotubes are added with the biodiesel to reduce the emission of NOx.

  11. Experimental Analysis of Performance of Diesel Engine Using Kusum Methyl Ester With Diethyl Ether as Additive

    Directory of Open Access Journals (Sweden)

    Sandip S. Jawre,

    2014-05-01

    Full Text Available The fossile fuels are widely used in diesel engine and continually depleting with increasing consumption and prices day by day. The fatty acid methyl ester has become an effective alternative to diesel. Various types of vegetable oil such as Jatropha, karanja, cottonseed, neem, sunflower, palm, mahuva, coconut etc. can be used as fuel in diesel engine. Kusum oil is one of the fuel used in present work. The viscosity of kusum oil is very high, so it was reduced by Transesterification process. This study presents effect of diethyl ether as additive to biodiesel of kusum (schliechera oleosa methyl ester on the performance and emission of diesel engine at different load and constant speed and two different injection pressure (170 and 190 bar. From literature it was observed that very few studies had been conducted on use of neat biodiesel and diethyl ether blends and use of kusum methyl ester (KME in diesel engine found to be very less as compared to different biodiesel. Hence this topic was taken under study. The fuels and its blends used are 100% diesel, B100 (100% KME, BD-1 (95% KME, 5% DEE, BD-2 (90% KME, 10% DEE, BD-3 (85% KME, 15% DEE respectively. It was observed that the performance of engine increases at high injection pres-sure. The results indicate that lower BSFC was observed with BD-3 as compared to B100, BD-1 and BD-2. Brake thermal efficiency of BD-3 decreased at 170 bar injection pressure but it increase at 190 bar. Drastic re-duction in smoke is observed with all blends at higher engine loads. DEE addition to biodiesel reflects better engine performance compared to neat biodiesel.

  12. Performance and emission study on DICI and HCCI engine using raw pongamia oil and diesel

    Directory of Open Access Journals (Sweden)

    Mani Venkatraman

    2016-01-01

    Full Text Available The present work investigates the performance and emission characteristics of pongamia oil and diesel fuelled direct injection compression ignition (DICI and homogeneous charge compression ignition (HCCI engine. The primary objective of the work is to investigate the feasibility of application of unmodified pongamia oil in Diesel engine and to estimate the maximum fraction of diesel fuel replaced by the neat pongamia oil. This investigation also deals with the HCCI operation using unmodified pongamia oil. In DICI mode the neat pongamia oil is admitted into the engine in the form of pongamia oil and diesel blends. The blend that offers highest diesel replacement is considered as the test blend and it is tested further to find its maximum possible brake thermal efficiency by changing the engine operating parameters. The selected maximum blend is then tested in the new setting of the engine to determine the maximum possible performance and emission characteristics. The conventional emissions of DICI engine such as NO and smoke are disappeared in the homogeneous charge compression ignition mode of operation. The HCCI engine tested in the present work is fuelled by 40% neat pongamia oil and 60% diesel fuel through direct injection and vapour induction, respectively. The ignition or combustion phasing of the HCCI operation is carried out by the exhaust gas recirculation method. The amount of exhaust gas re-circulation governs the timing of combustion. The results of the experiments show that the neat pongamia oil performed well in HCCI mode and offered approximately ten times lower NO and smoke emission. Finally, the results of the DICI mode and HCCI mode are compared with each other to reveal the truths of neat pongamia oil in heterogeneous and homogeneous combustion.

  13. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  14. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels

    Science.gov (United States)

    Rofiqul, Islam M.; Haniu, Hiroyuki; Alam, Beg R.; Takai, Kazunori

    In the first phase of the present study, the pyrolysis oil derived from light automotive tire waste has been characterized including fuel properties, elemental analyses, FT-IR, 1H-NMR, GC-MS and distillation. The studies on the oil show that it can be used as liquid fuel with a gross calorific value (GCV) of 42.00 MJ/kg and empirical formula of CH1.27O0.025N0.006. In the second phase of the investigation, the performance of a diesel engine was studied blending the pyrolysis oil with diesel fuel in different ratios. The experimental results show that the bsfc of pyrolysis oil-diesel blended fuels slightly increases and hence the brake thermal efficiency decreases compared to those of neat diesel. The pyrolysis oil-diesel blends show lower carbon monoxide (CO) emission but higher oxides of nitrogen (NOx) emissions than those of neat diesel. However, NOx emissions with pyrolysis oil-diesel blended fuels reduced when EGR was applied.

  15. An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2015-06-01

    Full Text Available In opposed-piston folded-cranktrain diesel engines, the relative movement rules of opposed-pistons, combustion chamber components and injector position are different from those of conventional diesel engines. The combustion and heat release characteristics of an opposed-piston folded-cranktrain diesel engine under different operating conditions were investigated. Four phases: ignition delay, premixed combustion, diffusion combustion and after combustion are used to describe the heat release process of the engine. Load changing has a small effect on premixed combustion duration while it influences diffusion combustion duration significantly. The heat release process has more significant isochoric and isobaric combustion which differs from the conventional diesel engine situation, except at high exhaust pressure and temperature, due to its two-stroke and uniflow scavenging characteristics. Meanwhile, a relatively high-quality exhaust heat energy is produced in opposed-piston folded-cranktrain diesel engines.

  16. Emissions Characteristics of Small Diesel Engine Fuelled by Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2014-07-01

    Full Text Available Biodiesel is an alternative, decomposable and biological-processed fuel that has similar characteristics with mineral diesel which can be used directly into diesel engines. However, biodiesel has oxygenated, more density and viscosity compared to mineral diesel. Despite years of improvement attempts, the key issue in using waste cooking oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. Thus, the improvement of emission exhausted from diesel engines fueled by biodiesel derived from waste cooking oil (WCO is urgently required to meet the future stringent emission regulations. The purpose of this research is to investigate the influences of WCO blended fuel and combustion reliability in small engine on the combustion characteristics and exhaust emissions. The engine speed was varied from 1500-2500 rpm and WCO blending ratio from 5-15 vol% (W5-W15. Increased blends of WCO ratio is found to influences to the combustion process, resulting in decreased the HC emissions and also other exhaust emission element. The improvement of combustion process is expected to be strongly influenced by oxygenated fuel in biodiesel content.

  17. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  18. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  19. Study of Top Dead Center Measurement and Correction Method in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ruijiao Miao

    2013-06-01

    Full Text Available The thermal loss angle error analysis and maximum pressure determination method analysis were conducted first. Then the polytropic exponent method, the inflection point analysis, the loss function method and the symmetry method were utilized under different rotating speed, load and cooling water temperature, to calculate TDC in D6114 diesel engine and the results were compared with TDC position measured under the same condition with direct method of measurement. The study proved that (1 thermal loss angle of the diesel engine ranges from -1.0 ~ -0.6°CA; (2 Thermal loss angle is mainly affected by rotating speed and is reducing when rotate speed increases;(3 the symmetry method is generally the optimum for calculating the thermal loss angle of automotive diesel engines, with an error within 0.2°CA.

  20. Speed Control System on Marine Diesel Engine Based on a Self-Tuning Fuzzy PID Controller

    Directory of Open Access Journals (Sweden)

    Naeim Farouk

    2012-03-01

    Full Text Available The degree of speed control of ship machinery effects on the economics and optimization of the machinery configuration and operation. All marine vessel ranging need some sort of speed control system to control and govern the speed of the marine diesel engines. This study presents a self-tuning fuzzy PID control system for speed control system of marine diesel engine. The system under consideration is a fourth-order plant with highly dynamic and uncertain environments. The current speed controllers for marine/traction diesel engines based on PID Controller cannot fully handle the uncertainties associated with such dynamic environments. A fuzzy logic control algorithm is used to estimate the PID coefficients in order to handle such uncertainties to produce a better control performance. Simulation tests were established using Simulink of MATLAB. The obtained results have demonstrated the feasibility and effectiveness of the proposed approach. Simulation results are represented in this study.

  1. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  2. Effects of Diary Scum Oil Methyl Ester on a DI Diesel Engine Performance and Emission

    Directory of Open Access Journals (Sweden)

    Benson Varghese Babu

    2012-06-01

    Full Text Available Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant emission from CI engine and minimum cost so there is need for producing biodiesel other than from seed oil. In this study the diary waste scum were used as the raw material to produce biodiesel. Scum oil methyl ester (SOME is produced in laboratory by tranestrification process. The properties of SOME thus obtained are comparable with ASTM biodiesel standards. Experiments has been carried out to estimate the performance, emission and combustion characteristics of a single cylinder; four stroke diesel engine fuelled with scum biodiesel and its blends with standard diesel. Tests has been conducted using the fuel blends of 10%, 20%, 30% and 100% biodiesel with standard diesel, with an engine speed of 1500 rpm, fixed compression ratio 17.5 and at different loading conditions. The performance parameters elucidated includes brake thermal efficiency, brake specific fuel consumption, and exhaust gas temperature.

  3. Diesel Engine performance improvement in a 1-D engine model using Particle Swarm Optimization

    Science.gov (United States)

    Karra, Prashanth

    2015-12-01

    A particle swarm optimization (PSO) technique was implemented to improve the engine development and optimization process to simultaneously reduce emissions and improve the fuel efficiency. The optimization was performed on a 4-stroke 4-cylinder GT-Power based 1-D diesel engine model. To achieve the multi-objective optimization, a merit function was defined which included the parameters to be optimized: Nitrogen Oxides (NOx), Nonmethyl hydro carbons (NMHC), Carbon Monoxide (CO), Brake Specific Fuel Consumption (BSFC). EPA Tier 3 emissions standards for non-road diesel engines between 37 and 75 kW of output were chosen as targets for the optimization. The combustion parameters analyzed in this study include: Start of main Injection, Start of Pilot Injection, Pilot fuel quantity, Swirl, and Tumble. The PSO was found to be very effective in quickly arriving at a solution that met the target criteria as defined in the merit function. The optimization took around 40-50 runs to find the most favourable engine operating condition under the constraints specified in the optimization. In a favourable case with a high merit function values, the NOx+NMHC and CO values were reduced to as low as 2.9 and 0.014 g/kWh, respectively. The operating conditions at this point were: 10 ATDC Main SOI, -25 ATDC Pilot SOI, 0.25 mg of pilot fuel, 0.45 Swirl and 0.85 tumble. These results indicate that late main injections preceded by a close, small pilot injection are most favourable conditions at the operating condition tested.

  4. Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Jatropha Biodiesel

    Science.gov (United States)

    Sivaganesan, S.; Chandrasekaran, M.; Ruban, M.

    2017-03-01

    The present experimental investigation evaluates the effects of using blends of diesel fuel with 20% concentration of Methyl Ester of Jatropha biodiesel blended with various compression ratio. Both the diesel and biodiesel fuel blend was injected at 23º BTDC to the combustion chamber. The experiment was carried out with three different compression ratio. Biodiesel was extracted from Jatropha oil, 20% (B20) concentration is found to be best blend ratio from the earlier experimental study. The engine was maintained at various compression ratio i.e., 17.5, 16.5 and 15.5 respectively. The main objective is to obtain minimum specific fuel consumption, better efficiency and lesser Emission with different compression ratio. The results concluded that full load show an increase in efficiency when compared with diesel, highest efficiency is obtained with B20MEOJBA with compression ratio 17.5. It is noted that there is an increase in thermal efficiency as the blend ratio increases. Biodiesel blend has performance closer to diesel, but emission is reduced in all blends of B20MEOJBA compared to diesel. Thus this work focuses on the best compression ratio and suitability of biodiesel blends in diesel engine as an alternate fuel.

  5. A Close Analysis of Developments in Diesel Engine Emission Reduction Technologies

    Directory of Open Access Journals (Sweden)

    Raghav Ahuja

    2013-06-01

    Full Text Available Diesel engines have the potential to significantly increase vehicle fuel economy and decrease CO 2 emissions; however, efficient removal of NO x and particulate matter from the engine exhaust is required to meet stringent emission standards. Diesel aftertreatment systems being used consists of a Diesel Oxidation Catalyst (DOC, a urea-based Selective Catalyst Reduction (SCR catalyst and a diesel particulate filter (DPF, and is widely used to meet the most recent NO x (nitrogen oxides comprising NO and NO 2 and particulate matter (PM emission standards for medium and heavy-duty sport utility and truck vehicles. The most efficient way and the best available technology (BAT to radically reduce the critical Diesel emission components particles (PM&NP and nitric oxides (NO x are combined exhaust gas aftertreatment systems (DPF+SCR. SCR (selective catalytic reduction is regarded as the most efficient deNO x -system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles.

  6. PERFORMANCE ANALYSIS OF DIESEL ENGINE FUELED USING JATROPHA BIO DIESEL BLENDED FUELED

    OpenAIRE

    2016-01-01

    Biodiesels have recently been recognized as a potential substitute to Diesel oil. It is produced from oils or fats using a process called transesterification, in which oils are reacted with alcohols in order to form the esters, which are called biodiesels. Feedstock for biodiesel include animal fats, vegetable oils Jatropha, Mahua, Sunflower, Palm, Pongamia Pinnata (Karanja), Cotton seed, Neem, Rubber seed, Corn, Sesame, Cotton seed. Biodiesel is a liquid closely similar in properties to foss...

  7. Validation of some engine combustion and emission parameters of a bioethanol fuelled DI diesel engine using theoretical modelling

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam

    2015-12-01

    Full Text Available Earlier reports indicate that ethanol/bioethanol can replace conventional diesel fuel by 15%, when it is emulsified with diesel and used as an alternative fuel in a compression ignition (CI engine. In this study, initially BMDE15, a bioethanol emulsion containing 15% bioethanol, 84% diesel and 1% surfactant was characterised for its fuel properties and compared with those of diesel fuel properties. The numerical value indicates the percentage of bioethanol in the BMDE15 emulsion. For the investigation, bioethanol was obtained from the Mahua Indica flower which was collected from the Madhuca Indica tree, and it was produced from fermentation process using Saccharomyces cerevisiae. Further, the BMDE15 emulsion was tested in a single cylinder, four stroke, air cooled, DI diesel engine developing a power of 4.4 kW at a rated speed of 1500 rpm. Two important combustion parameters: cylinder pressure and ignition delay, and two important emission parameters: nitric oxide (NO and smoke emissions were determined and compared with those of diesel operation at all loads. The experimental results were validated using mathematical modelling, and the analysis of the results is presented in this paper.

  8. Environmental Assessment of a Diesel Engine Under Variable Stroke Length and Constant Compression Ratio

    Directory of Open Access Journals (Sweden)

    Jehad A.A. Yamin

    2007-01-01

    Full Text Available In the light of the energy crisis and the stringent environmental regulations, diesel engines are offering good hope for automotive vehicles. However, lot of work is needed to reduce the diesel exhaust emissions and give the way for full utilization of the diesel fuel’s excellent characteristics. This paper presents a theoretical study on the effect of variable stroke length technique on the emissions of a four-stroke, water-cooled direct injections diesel engine with the help of experimentally verified computer software designed mainly for diesel engines. The emission levels were studied over the speed range (1000 rpm to 3000 rpm and stroke lengths (120 mm to 200 rpm and were compared with those of the original engine design. The simulation results clearly indicate the advantages and utility of variable stroke technique in the reduction of the exhaust emission levels. A reduction of about 10% to 75% was achieved for specific particulate matter over the entire speed range and bore-to-stroke ratio studied. Further, a reduction of about 10% to 59% was achieved for the same range. As for carbon dioxide, a reduction of 0% to 37% was achieved. On the other hand, a less percent change was achieved for the case of nitrogen dioxide and nitrogen oxides as indicated by the results. This study clearly shows the advantage of VSE over fixed stroke engines. This study showed that the variable stroke technique proved a good way to curb the diesel exhaust emissions and hence helped making these engines more environmentally friendly.

  9. Analysis of thermal stress of the piston during non-stationary heat flow in a turbocharged Diesel engine

    Science.gov (United States)

    Gustof, P.; Hornik, A.

    2016-09-01

    In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.

  10. Investigation of palm methyl-ester bio-diesel with additive on performance and emission characteristics of a diesel engine under 8-mode testing cycle

    Directory of Open Access Journals (Sweden)

    S. Senthilkumar

    2015-09-01

    Full Text Available Biodiesel is receiving increasing attention each passing day because of its same diesel-like fuel properties and compatibility with petroleum-based diesel fueled engines. Therefore, in this paper the prospects and opportunities of using various blends of methyl esters of palm oil as fuel in an engine with and without the effect of multi-functional fuel additive (MFA, Multi DM 32 are studied to arrive at an optimum blend of bio-diesel best suited for low emissions and minimal power drop. Experimental tests were conducted on a four stroke, three cylinder and naturally aspirated D.I. Diesel engine with diesel and various blend percentages of 20%, 40%, 45%, and 50% under the 8 mode testing cycle. The effect of fuel additive was tested out on the optimum blend ratio of the bio-diesel so as to achieve further reduced emissions. Comparison of results shows that, 73% reduction in hydrocarbon emission, 46% reduction in carbon monoxide emission, and around 1% reduction in carbon dioxide emission characteristics. So it is observed that the blend ratio of 40% bio-diesel with MFA fuel additive creates reduced emission and minimal power drop due to effective combustion even when the calorific value is comparatively lower due to its higher cetane number.

  11. Integrated Analysis of the Scavenging Process in Marine Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Andersen, Fredrik Herland

    Large commercial ships such as container vessels and bulk carriers are propelledby low-speed, uniow scavenged two-stroke diesel engines. An integralin-cylinder process in this type of engine is the scavenging process, where the burned gases from the combustion process are evacuated through...... receiver fora two-stroke diesel engine. Time resolved boundary conditions corresponding to measurements obtained from an operating engine as well as realistic initial conditions are used in the simulations. The CFD model provides a detailed description of the in-cylinder ow from exhaust valve opening (EVO...... in the center of the ow, which might lead to a local decit in axial velocity and the formation of central recirculation zones, known as vortex breakdown. Ever more stringent emission legislations over the last 10-15 years have changed the engine lay out diagram in the pursuit of an engine which is both fuel...

  12. Combustion Property Analysis and Control System for the Dynamics of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2013-12-01

    Full Text Available Corresponding to global environment problems in recent year, the technology for reducing fuel consumption and exhaust gas emission of engine was needed. Simulation of transient engine response is needed to predict engine performance that frequently experience rapid changes of speed. The aim of this research is to develop a non-linear dynamic control model for direct injection single cylinder diesel engine which can simulate engine performance under transient conditions. In this paper, the combustion model with multistage injection and conducted experiments in the transient conditions to clarify the combustion characteristics was proposed. In order to perform the analysis of acceleration operation characteristics, it was built a Model Predictive Control (MPC to reproduce the characteristic values of the exhaust gas and fuel consumption from the control parameters in particular. Finally, MPC is an effective method to perform the analysis of characteristic in diesel engine under transient conditions.

  13. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  14. Detection of cylinder pressure in diesel engines using cylinder head vibration and time series methods

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper investigates the vibration characteristics of diesel engine cylinder heads by means of the time series method.With the concept of "Assumed System", the vibration transfer function of real cylinder head structures is established using the autoregressive-moving average models (ARMA models) of cylinder head surface vibration signals.Then this transfer function is successfully used to reconstruct the gas pressure trace inside the cylinder from measured cylinder head vibration signals.This offers an effective means for diesel engine cylinder pressure detection and condition monitoring.

  15. Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    Science.gov (United States)

    Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.

    1984-01-01

    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.

  16. Emissions of PCDD/Fs, PCBs, and PAHs from legacy on-road heavy-duty diesel engines.

    Science.gov (United States)

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph; Smith, Peter L

    2012-11-01

    Exhaust emissions of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners, tetra-octa PCDD/F homologues, 12 WHO 2005 polychlorinated biphenyl (PCB) congeners, mono-nona chlorinated biphenyl homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from three legacy diesel engines were investigated. The three engines tested were a 1985 model year GM 6.2J-series engine, a 1987 model year Detroit Diesel Corporation 6V92 engine, and a 1993 model year Cummins L10 engine. Results were compared to United States' mobile source inventory for on-road diesel engines, as well as historic and modern diesel engine emission values. The test fuel contained chlorine at 9.8 ppm which is 1.5 orders of magnitude above what is found in current diesel fuel and 3900 ppm sulfur to simulate fuels that would have been available when these engines were produced. Results indicate PCDD/F emissions of 13.1, 7.1, and 13.6 pg International Toxic Equivalency (I-TEQ)L(-1) fuel consumed for the three engines respectively, where non-detects are equal to zero. This compares with a United States' mobile source on-road diesel engine inventory value of 946 pg I-TEQL(-1) fuel consumed and 1.28 pg I-TEQL(-1) fuel consumed for modern engines equipped with a catalyzed diesel particle filter and urea selective catalytic reduction. PCB emissions are 2 orders of magnitude greater than modern diesel engines. PAH results are representative of engines from this era based on historical values and are 3-4 orders of magnitude greater than modern diesel engines.

  17. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Directory of Open Access Journals (Sweden)

    Mohamed F. Al-Dawody, S. K. Bhatti

    2013-01-01

    Full Text Available Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ”Quick basic” language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis of biodiesel (derived from soybean oil blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  18. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dawody, Mohamed F.; Bhatti, S.K. [Department of Mechanical Engineering, Andhra University (India)

    2013-07-01

    Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ''Quick basic'' language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis) of biodiesel (derived from soybean oil) blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC) were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  19. Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Vejlgaard-Laursen, Morten

    2015-01-01

    A nonlinear adaptive controller is proposed for the exhaust gas recirculation systemon large two-stroke diesel engines. The control design is based on a control oriented model ofthe nonlinear dynamics at hand that incorporates load and engine speed changes as knowndisturbances to the exhaust gas...... will make the system converge exponentiallyto the best achievable state. Simulation examples confirm convergence and good disturbancerejection over relevant operational ranges of the engine....

  20. Performance of HCCI Diesel Engine under the Influence of Various Working and Geometrical Parameters

    OpenAIRE

    Karthikeya Sharma, T.; G. Amba Prasada Rao; K.Madhu Murthy

    2012-01-01

    Homogenous-charge-compression-ignition (HCCI) engines have the benefit of high efficiency with low emissions of NO and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. Homogenous Compression ignition (HCCI) is a combustion concept, which is a hybrid between Otto engine and Diesel engine. The other emissions like HC and CO are high but can be after treated by a catalyst. This paper reviews the Characteristics of HCCI com...

  1. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  2. A Mixing Based Model for DME Combustion in Diesel Engines

    DEFF Research Database (Denmark)

    Bek, Bjarne H.; Sorenson, Spencer C.

    1998-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combus-tion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel...

  3. A mixing based model for DME combustion in diesel engines

    DEFF Research Database (Denmark)

    Bek, Bjarne Hjort; Sorenson, Spencer C

    2001-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combustion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel...

  4. Taguchi Method for Investigating the Performance Parameters and Exergy of a Diesel Engine Using Four Types of Diesel Fuels

    Directory of Open Access Journals (Sweden)

    Dara K. Khidir

    2016-05-01

    Full Text Available The effects of changes in engine operating parameters, i.e., engine speed, throttle and water temperature, for four types of diesel fuel (A, B, C and D of different specific gravities, as supplied from local market and refineries, were studied and simultaneously optimized. The experiment design was based on Taguchi’s “L' 16” orthogonal table, and the engine was put to test at different engine speeds, throttling opening percentages and water temperatures, using different fuels. The data were analyzed using S/N (signal to noise ratio for each factor. The obtained results show that the optimum operating conditions for minimum BSFC (brake specific fuel consumption are achieved when the engine speed is 2500 rpm, the throttle is placed at 75% of full throttling, the water temperature is 80 oC and the engine is using fuel type D. Also, results of S/N ratio reveal that the throttle has significant influence on brake thermal and exergic efficiencies. Water temperature is the second most effective factor and then comes the influence of engine speed. The least effective factor among the studied parameters for the types of fuel considered in this experiment is the fuel type.

  5. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol.

    Science.gov (United States)

    Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen

    2010-01-15

    Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced.

  6. Wear mechanism and wear prevention in coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  7. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    Energy Technology Data Exchange (ETDEWEB)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  8. The influence of the biofuel blends on the energetic and ecological performances of the Diesel engine

    Science.gov (United States)

    Benea, B. C.

    2016-08-01

    This study presents the influence of the diesel fuel blended with biodiesel fuel obtained from sunflower oil, corn oil and peanut oil on the energetic performances, combustion process and pollutant emissions. This research was done virtually and experimentally. In this study pure diesel fuel and two concentrations (6% and 10%) of blends with biofuels were used for experimentally tests on a Renault K9K diesel engine. Five parameters were observed during experimental tests: engine power, fuel consumption, cylinder pressure, and the amount of CO and NOx emissions. The same five parameters were simulated using AVL Boost program. The variations of effective power and maximal cylinder pressure are caused due to the lower calorific value of the tested fuels. Better oxidation of the biofuels induces a better combustion in cylinder and less CO and NOx emissions. The CO emissions are either influence by the lower carbon content of biofuels. The results of this study sustain that using 6% and 10% of blended biofuels with diesel fuel decrease the pollutant emissions of the diesel engine. Deviations between experimental and the simulation results confirm the validity of the mathematical model adopted for the simulation.

  9. The determination of optimum injection pressure in an engine fuelled with soybean biodiesel/diesel blend

    Directory of Open Access Journals (Sweden)

    Çelik Bahattin M.

    2014-01-01

    Full Text Available In this study, the optimum blend rate and injection pressure in a four-stroke, single cylinder, direct injection diesel engine using soybean methyl ester were investigated experimentally. The tests were conducted at two stages. Firstly, the engine was tested with diesel fuel, B25 (25% biodiesel+75% diesel fuel, B50, B75 and B100 fuels at full load and at a constant speed. According to the test results, it was determined that the most suitable fuel was B25 in terms of performance and emission. Secondly, the engine was tested at different loads with diesel fuel at original injection pressure and with B25 at different injection pressures (160, 180, 200, 220, 240 bar for comparison. It was determined from tests performed with B25 that the most suitable injection pressure in terms of performance and emissions was 220 bar. The specific fuel consumption and power values of the B25 were found to be nearly the same as those of diesel fuel at 220 bar injection pressure. In addition, HC, CO, and smoke emissions were reduced by about 33%, 9% and 20%, respectively. On the other hand, NOx emission increased by about 12%.

  10. Synthesis and utilization of catalytically cracked cashew nut shell liquid in a diesel engine

    KAUST Repository

    Vedharaj, S.

    2015-09-30

    In this study, CNSL (Cashew nut shell liquid), an economically viable feedstock among the other contemporary resources, has been considered as an appropriate source of alternate fuel. Herein, CNSL was extracted from cashew nut outer shell, a waste product, through a unique approach of steam treatment process followed by mechanical crushing technique. In contrast to the past studies that have attempted to use unprocessed CNSL directly as substitute for diesel, this study has resorted to use processed CNSL by cracking it using zeolite catalyst. Thus, both the extraction of CNSL from cashew nut outer shell and processing of it through catalytic cracking process to help synthesize CC-CNSL (catalytically cracked CNSL) are different, which underscores the significance of the current work. In wake of adopting such distinct methodologies with fuel characterization, the properties of CC-CNSL such as viscosity and calorific value were figured out to be improved. Subsequently, CC-CNSL20 (20% CC-CNSL and 80% diesel) was tested at different fuel injection pressure such as 200 bar, 235 bar, 270 bar and 300 bar so as to optimize its use in a single cylinder diesel engine. From the engine experimental study, CC-CNSL20 was found to evince better engine performance than diesel and the composite emissions of CO (carbon monoxide), HC (hydrocarbon), NOX (oxides of nitrogen) and smoke, computed based on ISO 8178 D2 standard test cycle, were found to be better than diesel and incompliance with the legislative norms for genset.

  11. Experimental evaluation of C.I. engine performance using diesel blended with Jatropha biodiesel

    Directory of Open Access Journals (Sweden)

    Sunil Kumar, Alok Chaube, Shashi Kumar Jain

    2012-01-01

    Full Text Available Costlier and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as promising alternative to petro-diesel. The higher viscosity of vegetable oils leads to problem in pumping, atomization and spray characteristics. The improper mixing of vegetable oils with air leads to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible and animal fat. The main feedstock for biodiesel production can be non-edible oil obtained from Jatropha curcas plant. Jatropha curcas plant can be cultivated on different terrains in India under extreme climatic conditions. Biodiesel can be used in its pure form or as a blend with petro-diesel in different proportions. It is being used in CI engines because it has properties similar to petro-diesel. The aim of this paper is to analyze suitability of petro-diesel blended with biodiesel in varying proportions in CI engines. For this purpose, a stationary single-cylinder four-stroke CI engine was tested with diesel blended with Jatropha biodiesel in 0%, 5%, 20%, 50%, 80% and 100%. Comparative measures of specific fuel consumption (SFC, brake thermal efficiency, smoke opacity, HC, CO2, CO, O2, NOX have been presented and discussed. Engine performance in terms of comparable brake thermal efficiency and SFC with lower emissions (HC, CO2, CO was observed with B20 fuel compared to petro-diesel. Volumetric efficiency showed almost no variation for all the blends. Important observations related to noise and vibrations during testing have also been discussed.

  12. Carcinogenic potential of noxious emissions of diesel engines; Potencial cancerigeno de emisiones nocivas en motores a diesel

    Energy Technology Data Exchange (ETDEWEB)

    Romero Lopez, Alejandro F. [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    1992-12-31

    The carcinogenic effects of the solid particles of carbonaceous nature, generated during the combustion process in the diesel engines, has been a concern of public and private entities in the developed countries, specially during the two last decades. This paper includes a short revision of the recent and preceding publications, found in the technical bibliography. The engine manufacturing enterprises have carried out spectacular changes in the internal design of the diesel engines, to diminish as much as possible, the solid particle generation inside the engine itself. The effort can not come from one part only, also the fuel producing enterprises in developed countries have carried out substantial efforts to improve the fuels as well as the lubricants. The goal of this measures is to practically eliminate the sulfur content, specially in the fuel, since the formation of solid particles linearly depends, among other factors, of this noxious element content in the diesel fuel. Finally, a short discussion is included of some exhaust gases post-treatment systems, that seems to be unavoidable in order to attain the strict standards that for year 1994 and the following years have been established by the Environmental Protection Agency (EPA) of the USA. The Mexican legislation is also analyzed through the Normas Tecnicas Ecologicas (NTE) (Ecological Technical Standards), emitted by the Secretaria de Desarrollo Urbano y Ecologia (SEDUE), now Secretaria de Desarrolo Economico y Social (SEDESOL), simply to have a comparison reference with the international legislation. [Espanol] Los efectos cancerigenos de las particulas solidas de caracter carbonaceo, generadas durante el proceso de combustion de los motores diesel, ha sido preocupacion de organismos publicos y privados en los paises desarrollados, en especial durante las ultimas dos decadas. El trabajo incluye una revision breve de publicaciones recientes y anteriores, que se encuentran en la literatura tecnica. Las

  13. The Effects of Thermal Barrier Coatings on Diesel Engine Performance and Emission

    Science.gov (United States)

    Das, D.; Majumdar, G.; Sen, R. S.; Ghosh, B. B.

    2014-01-01

    The purpose of this paper is to determine the effect of coating thickness on performance and emission of a diesel engine including comparisons with results from an uncoated piston diesel engine. Primarily three piston crowns were coated with Al2O3 (bond coat) of 100 μm thickness each by using Plasma spray coating technique. Then these piston crowns were coated with partially stabilized zirconia with a thickness of 250, 350, 450 μm respectively by using the same technique over the bond coat. These pistons inserted into the cylinder of a diesel engine one by one to collect the combustion and emission data. Then these data were compared with standard diesel engine. It was observed that the thermal efficiency increased with increasing load levels, whereas specific fuel consumption reduced with increasing load. However, it was observed that harmful gases and particulates like CO, smoke and HC were reduced in case of all types of coated piston engine with the increase of load. Increased amount of NOX emission was reported during the experimentation.

  14. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    Science.gov (United States)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  15. Adiabatic diesel engine component development: Reference engine for on-highway applications

    Science.gov (United States)

    Hakim, Nabil S.

    1986-01-01

    The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.

  16. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    OpenAIRE

    Gharehghani, A.; S. M. Mirsalim; S. A. Jazayeri

    2012-01-01

    Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as p...

  17. Wear mechanism and wear prevention in coal-fueled diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-20

    The overall objective of this program is to develop the diesel engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: Definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; Definition of the specific effect of each coal-related lube oil contaminant; Determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; Evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and Presentation of the engine/lubricant system design determined to have the most potential.

  18. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  19. Removal of Nitrogen Oxides in Diesel Engine Exhaust by Plasma Assisted Molecular Sieves

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper reports the studies conducted on removal of oxides of nitrogen (NOx) from diesel engine exhaust using electrical discharge plasma combined with adsorbing materials such as molecular sieves. This study is being reported for the first time. The exhaust is taken from a diesel engine of 6 kW under no load conditions. The characteristic behavior of a pulse energized dielectric barrier discharge reactor in the diesel exhaust treatment is reported. The NOx removal was not significant (36%) when the reactor without any packing was used. However, when the reactor was packed with molecular sieves (MS -3A, -4A & -13X), the NOx removal efficiency was increased to 78% particularly at a temperature of 200 o C. The studies were conducted at different temperatures and the results were discussed.

  20. Fuel Injection Pressure Effect on Performance of Direct Injection Diesel Engines Based on Experiment

    Directory of Open Access Journals (Sweden)

    Rosli A. Bakar

    2008-01-01

    Full Text Available Fuel injection pressures in diesel engine plays an important role for engine performance obtaining treatment of combustion. The present diesel engines such as fuel direct injection, the pressures can be increased about 100 – 200 Mpa bar in fuel pump injection system. The experimental investigated effects of fuel injection pressure on engine performance. Experiments have been performed on a diesel engine with four-cylinder, two-stroke, direct injection. Engine performance values such as indicated pressure, indicated horse power, shaft horse power, brake horse power, break mean effective pressure and fuel consumption have been investigated both of variation engine speeds - fixed load and fixed engine speed – variation loads by changing the fuel injection pressure from 180 to 220 bar. According to the results, the best performance of the pressure injection has been obtained at 220 bar, specific fuel consumption has been obtained at 200 bar for fixed load – variation speeds and at 180 bar for variation loads – fixed speed. The results of the experiment have given as graphics in this paper.

  1. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  2. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  3. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    Science.gov (United States)

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  4. Effect of Fuel Cetane Number on Multi-Cylinders Direct Injection Diesel Engine Performance and Exhaust Emissions

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2012-01-01

    Full Text Available Due to the energy crisis and the stringent environmental regulations, diesel engines are offering good hope for automotive vehicles. However, a lot of work is needed to reduce the diesel exhaust emissions and give the way for full utilization of the diesel fuel’s excellent characteristics.A kind of cetane number improver has been proposed and tested to be used with diesel fuel as ameans of reducing exhaust emissions. The addition of (2-ethylhexyl nitrate was designed to raise fuel cetane number to three stages, 50, 52 and 55 compared to the used conventional diesel fuel whose CN was 48.5. The addition of CN improver results in the decrease brake specific fuel consumption by about 12.55%, and raise brake thermal efficiency to about 9%. Simultaneously, the emission characteristics of four fuels are determined in a diesel engine. At high loads, a little penalty on CO and HC emissions compared to baseline diesel fuel. NOx emissions of the higher CN fuels are decreased 6%, and CO of these fuels is reduced to about 30.7%. Engine noise reduced with increasing CN to about 10.95%. The results indicate the potential of diesel reformation for clean combustion in diesel engines.

  5. Analysis and improvement of the reliability and longevity of diesel engines of commercial vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, F.J.; Zalud, F.H.

    1985-09-01

    The high demands on quality, reliability and longevity of new engines require concrete data on technical-functional characteristics, reliability measures and life expectance, which also have to be included in the performance specifications. As an example some reliability measures of Diesel engines are given, which were installed in commercial vehicles. Conditions are quoted for which the reliability measures are valid and some problems of the longevity of engines and their components are discussed. The manufacturer can reach a satisfactory reliability of engines if he applies a reliability assurance program in which methods of reliability engineering play an important role.

  6. On the prediction of impact noise, part VIII: Diesel engine noise

    Science.gov (United States)

    Cuschieri, J. M.; Richards, E. J.

    1985-09-01

    The noise energy radiated from a diesel engine due to combustion and piston slap excitation is investigated by considering single impacts. From the results obtained, possible methods of noise control are studied, and the expected results due to changes in the liner mounting to the engine frame, and the bearings of the camshaft for an injected engine, are compared to the measured noise levels. This proves to be very successful and radical modifications in the engine for noise control can be investigated in this way prior to full development of the prototype engine.

  7. Effect of Hydrogen Addition on Diesel Engine Operation and NOx Emission: A Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Sompop Jarungthammachote

    2012-01-01

    Full Text Available Problem statement: The worldwide increasing energy demand and the environmental problem due to greenhouse gas emission, especially produced from fossil fuel combustion, have promoted research work to solve these crises. Diesel engine has proven to be one of the most effective energy conversion systems. It is widely used for power generation, land vehicles and marine power plant. To reduce diesel fuel consumption, an alternative energy sources, such as Hydrogen (H2, is promoted to use as dual-fuel system. H2 is considered as a fuel for future because it is more environmental friendly compared to carbon-based fuel. However, the most exiting diesel engines were designed for using diesel fuel. Feeding H2-diesel dual fuel to the engine, it is required to study its effect on engine operation parameters. Moreover, it is also an interesting point to observe the engine emission when H2-diesel dual fuel is used. Approach: The thermodynamic modeling was used to simulate the operating parameters, i.e., cylinder pressure and gas temperature. Finite different method was employed to find the solution. The H2 supply and EGR were varied. The pressure and temperature were observed. For NOx emission, which is a major problem for use of diesel engine, the thermodynamic equilibrium calculation was conducted to find the mole fraction of gas species in the exhaust gas. The mole fraction of NO and NO2 were combined to present as the mole fraction of NOx. Results: The simulation showed that at 5% EGR, increase of H2 caused increasing of cylinder pressure and temperature. It also increased NOx in exhaust gas. However, when H2 was fixed at 10%, increasing EGR led reducing of cylinder pressure and temperature. The mole fraction of NOx decreased with increasing EGR. Conclusion: The H2 supplied to the engine provided positive effect on the engine power indicated by increasing pressure and temperature. However, it showed the negative effect on NOx emission. Use of EGR was

  8. Optimizing the efficiency of a diesel engine for a hybrid wind-diesel experimental validation; Optimisation de l'efficacite du moteur diesel pour un systeme hybride eolien-diesel-validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, H.; Dimitrova, M. [TechnoCentre Eolien, Murdochville, PQ (Canada); Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada); Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada)

    2010-07-01

    This study examined the feasibility of using a wind-diesel compressed air storage system in large-scale gas turbines at remote sites where a good wind resource is available. Studies have shown that the system can increase the wind energy penetration rate, particularly when combined with a turbo diesel engine. The system increases the power and performance of the diesel engine and reduces fuel consumption and emissions of greenhouse gases greenhouse gases (GHG). This study included a comparison of different technical solutions for the compressed air energy storage system, and described the one that optimized the performance and cost of the overall system. The optimal solution allowed the turbocharger to operate independently of the engine due to the energy provided by the compressed air in the air turbine. Optimization required maximizing the compressor power as an objective function. The energy balance of the engine itself had to be taken into account, along with the turbo charging system. 12 refs., 2 tabs., 16 figs.

  9. An investigation of effect of biodiesel and aviation fuel jeta-1 mixtures performance and emissions on diesel engine

    Directory of Open Access Journals (Sweden)

    Yamik Hasan

    2014-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engines which doesn’t contain pollutants and sulfur; on the contrary it contains oxygen. In addition, both physical and chemical properties of sunflower oil methyl ester (SME are identical to diesel fuel. Conversely, diesel and biodiesel fuels are widely used with some additives to reduce viscosity, increase the amount of cetane, and improve combustion efficiency. This study uses diesel fuel, SME and its mixture with aviation fuel JetA-1 which are widely used in the aviation industry. . Fuel mixtures were used in 1-cylinder, 4-stroke diesel engine under full load and variable engine speeds. In this experiment, engine performance and emission level are investigated. As a conclusion, as the JetA-1 ratio increases in the mixture, lower nitrogen oxide (NOx emission is measured. Also, specific fuel consumption is lowered.

  10. Fabrication of small-orifice fuel injectors for diesel engines.

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  11. Experimental Investigation of Performanec of Single Cylinder 4s Diesel Engine Using Dual Vegetable Oil Blended

    Directory of Open Access Journals (Sweden)

    Prof. C. S. Koli

    2014-03-01

    Full Text Available Over the last two decades there has been a tremendous increase in the number of automobiles and a corresponding increase in the fuel price. In this regard, alternative fuels like vegetable oils play a major role. Use of pure vegetable oil in diesel engines causes some problems due to their high viscosity compared with diesel fuel. To solve the problems due to high viscosity various techniques are used. One such technique is fuel blending. This paper investigated the performance parameters of dual vegetable oil blends (mixture of Mustard oil and Palm oil with diesel on a stationary single cylinder, four stroke direct injection compression ignition engine. The blends of BB 10 (combination of Diesel 90% by volume, Mustard oil 5% by volume and Palm oil 5% by volume and blends of BB 20 (combination of Diesel 80% by volume, Mustard oil 10% by volume and Palm oil 10% by volume gave better brake thermal efficiency, lower total fuel consumption and lower brake specific fuel consumption than other blends (BB 30, BB 40 and BB 50.

  12. Development and operational experience with topless wood gasifier running a 3. 75 kW diesel engine pumpset

    Energy Technology Data Exchange (ETDEWEB)

    Rajvanshi, A.K.; Joshi, M.S. (Nimbkar Agricultural Research Inst., Maharashtra (IN))

    1989-01-01

    Operational experience with a topless hybrid wood gasifier powering a 3.75 kW diesel engine pumpset is detailed. The gasifier-engine pumpset has logged 250 h of operation. The fuel was Leucaena leucocephala wood from trees 1-2 years old. Average diesel substitution varied between 50-78% depending on load. With increased load the diesel substitution decreases. On average the gasifier consumes 1.33 kg of wood and 125 ml of diesel to produce 1 kWh of mechanical energy for water pumping. Economic analysis reveals that at 60% diesel substitution and wood cost of Rs 0.5/kg (1 US$=Rs 13.0), the gasifier system is economically comparable to stand alone diesel water pumping systems. Reasons for slow propagation of this technology in rural areas are outlined. (author).

  13. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  14. Influence of piston position on the scavenging and swirling flow in two-stoke diesel engines

    DEFF Research Database (Denmark)

    Obeidat, Anas; Haider, Sajjad; Meyer, Knud Erik

    2011-01-01

    We study the eect of piston position on the in-cylinder swirling flow in a low speed large two-stroke marine diesel engine model. We are using Large Eddy Simulations in OpenFOAM, with three different models for the turbulent flow: a one equation model (OEM), a dynamic one equation model (DOEM...

  15. Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review

    KAUST Repository

    Vallinayagam, R.

    2015-11-01

    This review work focuses on biofuels with lower viscosity and cetane number and their mode of operation in a diesel engine. Though there were a number of review works describing the production, characterization and utilization of biodiesel, synthesized from vegetable oils, a comprehensive summary on other category of biofuels endowed with lower viscosity and cetane number has not come to light so far. In this backdrop, this review work would bring forth the existence of biofuels having lower viscosity and cetane number, classify them under one category and elucidate their operational feasibility in a diesel engine. Considerably, alcohol based fuels such as methanol, ethanol and butanol, and plant based light biofuels such as eucalyptus oil and pine oil have been chosen and classified as LVLC (less viscous and lower cetane) fuels in the current work. Besides describing the operation feasibility of these fuels, an extensive exploration of their physical, thermal and critical properties as well as their compositional attributes has been made. Despite their distinct properties, these fuels have found use in diesel engine by various strategies and apparently, they could be used in blends with diesel/biodiesel, dual fuel mode and as sole fuel. In this regard, herein, a detailed summary on operation of these fuels in the reported three different modes is clearly explained and their engine characteristics such as performance, combustion and emission are briefed. © 2015 Elsevier Ltd.

  16. Under actuated air path control of diesel engines for low emissions and high efficiency

    NARCIS (Netherlands)

    Criens, C.; Willems, F.P.T.; Steinbuch, M.

    2013-01-01

    This paper presents a new method for feedback control using the Exhaust Gas Recirculation (EGR) valve and Variable Geometry Turbine (VGT) of a diesel engine. The controller effectively counteracts disturbances in NOx and PM emissions while maintaining the fuel efficiency. It is shown that by using a

  17. Cyclic oxygenates: a new class of second-generation biofuels for diesel engines?

    NARCIS (Netherlands)

    Boot, M.; Frijters, P.; Luijten, C.; Somers, B.; Baert, R.S.G.; Donkerbroek, A.; Klein-Douwel, R.J.H.; Dam, N.

    2009-01-01

    Combustion behavior of various oxygenated fuels has been studied in a DAF heavy-duty (HD) directinjection (DI) diesel engine. From these fuels, it is well-known that they lead to lower particle (PM) emissions; however, for a given fuel oxygen mass fraction, there are significant differences in PM re

  18. Simulation of quasi-dimensional model for diesel engine working process

    Institute of Scientific and Technical Information of China (English)

    QI Kun-peng; FENG Li-yan; LENG Xian-yin; TIAN Jiang-ping; LONG Wu-qiang

    2010-01-01

    In order to satisfy the demand of validity and real time operating performance of diesel engine model used in hardware-in-the-loop simulation system,a simplified quasi-dimensional model for diesel engine working process was proposed,which was based on the phase-divided spray mixing model.The software MATLAB/Simulink was utilized to simulate diesel engine performance parameters.The comparisons between calculated results and experimental data show that the relative error of power and brake specific fuel consumption is less than 2.8%,and the relative error of nitric oxide and soot emissions is less than 9.1%.At the same time,the average computational time for simulation of one working process with the new model is 36 s,which presents good real time operating performance of the model.The simulation results also indicate that the nozzle flow coefficient has great influence on the prediction precision of performance parameters in diesel engine simulation model.

  19. Disturbance rejection in diesel engines for low emissions and high fuel efficiency

    NARCIS (Netherlands)

    Criens, C.H.A.; Willems, F.P.T.; Keulen, T.A.C. van; Steinbuch, M.

    2015-01-01

    This brief presents a novel and time-efficient control design for modern heavy-duty diesel engines using a variable geometry turbine and an exhaust gas recirculation valve. The goal is to simultaneously and robustly achieve low fuel consumption and low emissions of nitrogen oxides (NOx) and particul

  20. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel en

  1. An Enhanced Data Visualization Method for Diesel Engine Malfunction Classification Using Multi-Sensor Signals

    Directory of Open Access Journals (Sweden)

    Yiqing Li

    2015-10-01

    Full Text Available The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE, provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine.

  2. Novel Tribotester for Cylinder Liner/Piston Ring Contacts of Two Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Pedersen, Michael Torben; Imran, Tajammal; Klit, Peder;

    2009-01-01

    A good tribological description for the cylinder liner and piston ring materials is always desired in order to achieve an improved combination of the materials. The piston ring package in a two-stroke-diesel engine operates in three lubrication regimes and the materials must be characterized in r...

  3. Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas

    NARCIS (Netherlands)

    Doosje, E.; Willems, F.P.T.; Baert, R.S.G.

    2014-01-01

    Premixed combustion concepts like PCCI and RCCI have attracted much attention, since these concepts offer possibilities to reduce engine out emissions to a low level, while still achieving good efficiency. Most RCCI studies use a combination of a high-cetane fuel like diesel, and gasoline as low-cet

  4. Experimental validation of extended NO and soot model for advanced HD diesel engine combustion

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Somers, L.M.T.; Willems, F.P.T.

    2009-01-01

    A computationally efficient engine model is developed based on an extended NO emission model and state-of-the-art soot model. The model predicts exhaust NO and soot emission for both conventional and advanced, high-EGR (up to 50%), heavy-duty DI diesel combustion. Modeling activities have aimed at l

  5. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue consumpt

  6. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; Jager, B. de; Willems, F.P.T.

    2016-01-01

    This paper presents an integrated energy and emission management strategy, called Integrated Power- train Control(IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO – NOx 2 trade-off by minimizing the operational costs associated with fu

  7. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    Science.gov (United States)

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  8. Occupational exposure to diesel engine exhaust and alterations in lymphocyte subsets

    NARCIS (Netherlands)

    Lan, Qing; Vermeulen, Roel; Dai, Yufei; Ren, Dianzhi; Hu, Wei; Duan, Huawei; Niu, Yong; Xu, Jun; Fu, Wei; Meliefste, Kees; Zhou, Baosen; Yang, Jufang; Ye, Meng; Jia, Xiaowei; Meng, Tao; Bin, Ping; Kim, Christopher; Bassig, Bryan A; Hosgood, H Dean; Silverman, Debra; Zheng, Yuxin; Rothman, Nathaniel

    2015-01-01

    BACKGROUND: The International Agency for Research on Cancer recently classified diesel engine exhaust (DEE) as a Group I carcinogen based largely on its association with lung cancer. However, the exposure-response relationship is still a subject of debate and the underlying mechanism by which DEE ca

  9. Toxicological characterization of diesel engine emissions using biodiesel and a closed soot filter

    NARCIS (Netherlands)

    Kooter, I.M.; Vugt, M.A.T.M. van; Jedynska, A.D.; Tromp, P.C.; Houtzager, M.M.G.; Verbeek, R.P.; Kadijk, G.; Mulderij, M.; Krul, C.A.M.

    2011-01-01

    This study was designed to determine the toxicity (oxidative stress, cytotoxicity, genotoxicity) in extracts of combustion aerosols. A typical Euro III heavy truck engine was tested over the European Transient Cycle with three different fuels: conventional diesel EN590, biodiesel EN14214 as B100 and

  10. Toxicological characterization of diesel engine emissions using biodiesel and a closed soot filter

    NARCIS (Netherlands)

    Kooter, Ingeborg M.; van Vugt, Marcel A. T. M.; Jedynska, Aleksandra D.; Tromp, Peter C.; Houtzager, Marc M. G.; Verbeek, Ruud P.; Kadijk, Gerrit; Mulderij, Mariska; Krul, Cyrille A. M.

    2011-01-01

    This study was designed to determine the toxicity (oxidative stress, cytotoxicity, genotoxicity) in extracts of combustion aerosols. A typical Euro Ill heavy truck engine was tested over the European Transient Cycle with three different fuels: conventional diesel EN590, biodiesel EN14214 as 8100 and

  11. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  12. Noise and vibration reduction of diesel engine vehicle making use of the active control engine mount (ACM) system; Active control engine mount (ACM) wo mochiitaa diesel engine tosaisha no seishukusei kojo

    Energy Technology Data Exchange (ETDEWEB)

    MShikata, T.; Aihara, T.; Hyodo, Y.; Aoki, K.; Hirade, T.; Kawazoe, H.; Sato, S.; Kimuraa, T.; Yonekura, K. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-02-01

    The active control engine mount (ACM), adopted on `Presage` matched the newly developed direct-injection diesel engine called `NEO-Di YD25DDTi`, can reduce transmitted force to a body structure to almost zero in a wide variety of driving conditions by making use of an adaptive control method with synchronizes the filtered-X algorithm. The ACM system made great improvements in noise and vibration performance, so that fuel consumption, and quietness thanks to the ACM system. (author)

  13. Estimation of the combustion-related noise transfer matrix of a multi-cylinder diesel engine

    Science.gov (United States)

    Lee, Moohyung; Bolton, J. Stuart; Suh, Sanghoon

    2009-01-01

    In the present paper, a procedure for estimating an engine-platform-dependent transfer matrix that relates in-cylinder pressures to radiated noise resulting from processes associated with the combustion process is described. A knowledge of that transfer matrix allows the combustion-related component of the noise radiated by a diesel engine to be estimated from a knowledge of cylinder pressure signals. The procedure makes use of multi-input/multi-output (MIMO) system modeling concepts in conjunction with cross-spectral measurements. To date, the empirical prediction of diesel engine combustion noise has usually been achieved by combining a cylinder pressure with a single, smooth structural attenuation function (e.g., the Lucas combustion noise meter) regardless of the specifications of the engine. In comparison, the procedure described in the present work provides the structural attenuation characteristics of a particular engine in the form of a transfer matrix, thus allowing accurate prediction by accounting fully for inter-cylinder correlation, cylinder-to-cylinder variation and the detailed characteristics of an engine structure. The procedure was applied to a six-cylinder diesel engine, and the various aspects of the new procedure are described.

  14. Improvement of D.I. diesel engine combustion using numerical simulation; Chokufun diesel kikan no nensho kaizen shuho. Suchi kaiseki ni yoru torikumi

    Energy Technology Data Exchange (ETDEWEB)

    Minami, T.; Adachi, T.; Isyii, Y. [Isuzu Motors Ltd., Tokyo (Japan)

    1999-04-01

    For the purpose of improving DI diesel engine combustion, it is important to predict air flow of intake and exhaust manifold, intake port flow, combustion chamber swirl and fuel spray combustion. This paper describes the application of numerical simulation to the engines, the analysis of phenomena and a problem of simulation model modification. (author)

  15. Methods of Reducing Emissions from Two-stroke low-speed Diesel Engines

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Mitu

    2010-10-01

    Full Text Available The worldwide focus on fuels is generally increasing because of the focus on exhaust gas emissions. General awareness of environmental issues is increasing rapidly. Diesel engine makers were first involved in questions regarding exhaust gas emissions in the field of stationary applications. A study of the exhaust gas emissions from a diesel engine represents a challenge to both the engine designer and to makers of exhaust gas treatment equipment. It is also a valuable tool for reaching a deeper understanding of the engine combustion process. These emissions control technologies, like Selective Catalytic Reduction (SCR, will help to reduce pollutants that impact our health and the health of our communities as well as reduce smog creation and other factors that contribute to climate change and global warming.

  16. Mathematical Modelling of a Hybrid Micro-Cogeneration Group Based on a Four Stroke Diesel Engine

    Directory of Open Access Journals (Sweden)

    Apostol Valentin

    2014-06-01

    Full Text Available The paper presents a part of the work conducted in the first stage of a Research Grant called ”Hybrid micro-cogeneration group of high efficiency equipped with an electronically assisted ORC” acronym GRUCOHYB. The hybrid micro-cogeneration group is equipped with a four stroke Diesel engine having a maximum power of 40 kW. A mathematical model of the internal combustion engine is presented. The mathematical model is developed based on the Laws of Thermodynamics and takes into account the real, irreversible processes. Based on the mathematical model a computation program was developed. The results obtained were compared with those provided by the Diesel engine manufacturer. Results show a very high correlation between the manufacturer’s data and the simulation results for an engine running at 100% load. Future developments could involve using an exergetic analysis to show the ability of the ORC to generate electricity from recovered heat

  17. Performance, Emission, Energy, and Exergy Analysis of a C.I. Engine Using Mahua Biodiesel Blends with Diesel

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2014-01-01

    This paper presents an experimental investigation on a four-stroke single cylinder diesel engine fuelled with the blends of Mahua oil methyl ester (MOME) and diesel. The performance emission, energy, and exergy analysis has been carried out in B20 (mixture of 80% diesel by volume with 20% MOME). From energy analysis, it was observed that the fuel energy input as well as energy carried away by exhaust gases was 6.25% and 11.86% more in case of diesel than that of B20. The unaccounted losses were 10.21% more in case of diesel than B20. The energy efficiency was 28%, while the total losses were 72% for diesel. In case of B20, the efficiency was 65.74 % higher than that of diesel. The exergy analysis shows that the input availability of diesel fuel is 1.46% more than that of B20. For availability in brake power as well as exhaust gases of diesel were 5.66 and 32% more than that of B20. Destructed availability of B20 was 0.97% more than diesel. Thus, as per as performance, emission, energy, and exergy part were concerned; B20 is found to be very close with that of diesel. PMID:27350999

  18. Diesel fuel component contribution to engine emissions and performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)

    1994-11-01

    Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

  19. Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel.

    Science.gov (United States)

    Bünger, Jürgen; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Emmert, Birgit; Westphal, Götz; Müller, Michael; Hallier, Ernst; Brüning, Thomas

    2007-08-01

    Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort was made to reduce DEE and their content of carcinogenic and mutagenic polycyclic aromatic compounds. Since 1995 we observed an appreciable reduction of mutagenicity of DEE driven by reformulated or newly designed fuels in several studies. Recently, the use of rapeseed oil as fuel for diesel engines is rapidly growing among German transportation businesses and agriculture due to economic reasons. We compared the mutagenic effects of DEE from two different batches of rapeseed oil (RSO) with rapeseed methyl ester (RME, biodiesel), natural gas derived synthetic fuel (gas-to-liquid, GTL), and a reference diesel fuel (DF). The test engine was a heavy-duty truck diesel running the European Stationary Cycle. Particulate matter from the exhaust was sampled onto PTFE-coated glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The gas phase constituents were sampled as condensates. The mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Compared to DF the two RSO qualities significantly increased the mutagenic effects of the particle extracts by factors of 9.7 up to 59 in tester strain TA98 and of 5.4 up to 22.3 in tester strain TA100, respectively. The condensates of the RSO fuels caused an up to factor 13.5 stronger mutagenicity than the reference fuel. RME extracts had a moderate but significant higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. In conclusion, the strong increase of mutagenicity using RSO as diesel fuel compared to the reference DF and other fuels causes deep concern on future usage of this biologic resource as a replacement of established diesel fuels.

  20. Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, Juergen; Bruening, Thomas [Institute of the Ruhr University Bochum, Research Institute for Occupational Medicine of the Institutions for Statutory Accident Insurance and Prevention (BGFA), Bochum (Germany); Krahl, Juergen [University of Applied Sciences Coburg, Coburg (Germany); Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Institute for Technology and Biosystems Engineering, Federal Agricultural Research Centre (FAL), Braunschweig (Germany); Emmert, Birgit; Westphal, Goetz; Mueller, Michael; Hallier, Ernst [University of Goettingen, Department of Occupational and Social Medicine, Goettingen (Germany)

    2007-08-15

    Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort was made to reduce DEE and their content of carcinogenic and mutagenic polycyclic aromatic compounds. Since 1995 we observed an appreciable reduction of mutagenicity of DEE driven by reformulated or newly designed fuels in several studies. Recently, the use of rapeseed oil as fuel for diesel engines is rapidly growing among German transportation businesses and agriculture due to economic reasons. We compared the mutagenic effects of DEE from two different batches of rapeseed oil (RSO) with rapeseed methyl ester (RME, biodiesel), natural gas derived synthetic fuel (gas-to-liquid, GTL), and a reference diesel fuel (DF). The test engine was a heavy-duty truck diesel running the European Stationary Cycle. Particulate matter from the exhaust was sampled onto PTFE-coated glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The gas phase constituents were sampled as condensates. The mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Compared to DF the two RSO qualities significantly increased the mutagenic effects of the particle extracts by factors of 9.7 up to 59 in tester strain TA98 and of 5.4 up to 22.3 in tester strain TA100, respectively. The condensates of the RSO fuels caused an up to factor 13.5 stronger mutagenicity than the reference fuel. RME extracts had a moderate but significant higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. In conclusion, the strong increase of mutagenicity using RSO as diesel fuel compared to the reference DF and other fuels causes deep concern on future usage of this biologic resource as a replacement of established diesel fuels. (orig.)

  1. Reduction in NO{sub x} emission of diesel engines by in-cylinder catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, M.G.; Draper, P.H.; Chattha, J.A. [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology (Pakistan); Vasilev, I.P.; Gavrilenko, P.N. [East Ukrainian National University (Ukraine)

    2003-07-01

    In-cylinder catalysis as a method for reducing the nitrogen oxides emission of diesel engines has been investigated experimentally. Desirable effects could be achieved only when intensive interaction of combustion products with the catalyst-coated surface was provided. It was found that a design based on a combustion chamber of variable geometry could give useful results, particularly for non-turbocharged engines. (author)

  2. Assessment of Governor Control Parameter Settings of a Submarine Diesel Engine

    Science.gov (United States)

    2013-03-01

    University of Technology 15. Ogata , K. (1997) Modern control engineering. Upper Saddle River, NJ, Prentice-Hall 16. DiStephano, J., Stubberud, A. and...UNCLASSIFIED Assessment of Governor Control Parameter Settings of a Submarine Diesel Engine Peter Hield and Michael Newman...generators to provide power for propulsion and the hotel load. The governor, often a proportional-integral controller , attempts to maintain a constant

  3. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Man-Ting; Chen, Hsun-Jung [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40254, Taiwan (China); Young, Li-Hao, E-mail: lhy@mail.cmu.edu.tw [Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Yang, Hsi-Hsien [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Road, Wufeng District, Taichung 41349, Taiwan (China); Tsai, Ying I. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, 60, Sec. 1, Erren Rd., Rende District, Tainan 71710, Taiwan (China); Wang, Lin-Chi [Department of Civil Engineering and Geomatics, Cheng Shiu University, 840, Chengcing Road, Niaosong District, Kaohsiung 83347, Taiwan (China); Lu, Jau-Huai [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40254, Taiwan (China); Chen, Chung-Bang [Fuel Quality and Engine Performance Research, Refining and Manufacturing Research Institute, Chinese Petroleum Corporation, 217, Minsheng S. Road, West District, Chiayi 60051, Taiwan (China)

    2015-10-30

    Highlights: • We study particulate OC and EC under 3 fuels, 2 aftertreatments and 4 engine loads. • Negligible to minor OC and EC changes with low, ultralow sulfur and 10% biodiesels. • Moderate reductions of EC and particularly OC from diesel oxidation catalyst (DOC). • Large reductions of OC and particularly EC from DOC plus diesel particulate filter. • Highest at idle, whereas OC decreases but EC increases from low to high load. - Abstract: Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study.

  4. Dynamic simulation of a high-performance sequentially turbocharged marine diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, G. [Genova Univ., Dip. di Ingegneria Navale e Tecnologie Marine (DINAV), Genova (Italy); Campora, U. [Genova Univ., Dip. di Macchine, Sistemi Energetici e Trasporti (DIMSET), Genova (Italy)

    2002-09-01

    The sequential turbocharging technique is used to improve the performance of highly rated diesel engines in particular at part loads. However, the transient behaviour of the sequential turbocharging connection/disconnection phases may be difficult to calibrate and requires an accurate study and development. This may be accomplished, in addition to the necessary experimentation, by means of dynamic simulation techniques. In this paper a model for the dynamic simulation of a sequentially turbocharged diesel engine is presented. A two-zone, non-adiabatic, actual cycle approach is used for the chemical and thermodynamic phenomena simulation in the cylinder. Fluid mass and energy accumulation in the engine volumes are evaluated by means of a filling and emptying method. The simulation of the turbocharger dynamics combines the use of the compressor and turbine maps with a model of the sequential turbocharging connection/disconnection valves and of their governor system. The procedure is applied to the simulation of the Wartsila18V 26X engine, a highly rated, recently developed, sequentially turbocharged marine diesel engine, whose experimental results are used for the steady state and transient validation of the simulation code with particular reference to the sequential turbocharging connection/disconnection phases. The presented results show the time histories of some important variables during typical engine load variations. (Author)

  5. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization

    Science.gov (United States)

    Ogren, Ryan M.

    For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.

  6. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.

    Science.gov (United States)

    Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai

    2016-12-01

    In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO2 emission decreases. Meanwhile, the ratio of NO2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel.

  7. An Experimental Study of Emission and Combustion Characteristics of Marine Diesel Engine with Fuel Injector Malfunctions

    OpenAIRE

    Kowalski Jerzy

    2016-01-01

    The presented paper shows the results of the laboratory study on the relation between chosen malfunctions of a fuel injector and composition of exhaust gas from the marine engine. The object of research is a marine 3-cylinder, four-stroke, direct injection diesel engine with an intercooler system. The engine was loaded with a generator and supercharged. The generator was electrically connected to the water resistance. The engine operated with a load between 50 kW and 250 kW at a constant spee...

  8. Evaluation of Performance and Emission characteristics of Turbocharged Diesel Engine with Mullite as Thermal Barrier Coating

    OpenAIRE

    P. N. Shrirao; A. N. Pawar

    2011-01-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3 .2SiO2 (mullite) (Al2O3= 60%, SiO2= 40%) over a 150 μm thickness of NiCrAlY bond coat. Tests were carried out on standard engine (uncoated) and low heatrejection (LHR) engine with and without turbocharger. This paper is intended to emphasis on energy balance and emission characteristic for standard engine (uncoated) ...

  9. Filter clogging and power loss issues while running a diesel engine with waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Bari, S.; Yu, C.W.; Lim, T.H. [Universiti Sains Malaysia, School of Mechanical Engineering, Penang (Malaysia)

    2003-07-01

    As with other vegetable oils, the high viscosity of waste cooking oil (WCO) poses some challenges to engine operation. One of them is filter clogging. In this research, it was found that heating to above 55 deg C was effective in preventing clogging. However, the head loss across the filter was about 6 times higher than that of diesel. Generally, the lower calorific values of vegetable oils are held responsible for the reduction in maximum power of the engine. While running with WCO, the maximum power of the engine was reduced by 10.9 per cent from that with diesel. Raising the fuel tank level and dividing the flow through two filters to compensate for the higher head loss across the filter reduced the maximum power loss to 5.0 and 8.8 per cent respectively. Therefore, higher head loss in the filter is also responsible for the loss of maximum power. In terms of combustion, WCO had a shorter ignition delay compared with diesel, resulting in a less intense premixed combustion phase. The CO and NO emissions were on the average 8.4 and 16.2 per cent higher than those for diesel. (Author)

  10. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  11. An experimental study of energy balance in low heat rejection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Taymaz, I. [University of Sakarya, Adapazari (Turkey). Faculty of Engineering

    2006-03-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition, another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. In this study, the effect of insulated heat transfer surfaces on diesel engine energy balance system was investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and inter-cooled diesel engine. This engine was tested at different speeds and load conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces were coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic-coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic-coated engine. (author)

  12. Jet propagation and evaporation in diesel-engine injection. Strahlausbreitung und Verdampfung bei der dieselmotorischen Einspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Stojanoff, C.G.; Schaller, J.K.; Ante, A.

    1992-01-01

    The first two years of the research project were dedicated to the development of a holographic method and its application in the study on diesel fuel jets. Recording and reconstruction geometries were optimized to allow individual droplets to be resolved even at maximal droplet densities. Pretrials were used to test the holographic method. Resolution of droplet densities of 10[sup 11] droplets per cbm has been achieved to date. Maximum speed measured was 200 m/s. First images of diesel injection jet prove that it is possible to perform holographic measurements. The third year of the project will involve measurements to be performed and interpreted in the chamber under diesel-engine conditions. (orig./HW).

  13. EFFECTS OF COOLED EXTERNAL EXHAUST GAS RECIRCULATION ON DIESEL HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; CUI Yi; DENG Kangyao

    2007-01-01

    The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.

  14. MECHANISM ON DISTRIBUTION OF PILOT FUEL SPRAY AND COMPRESSING IGNITION IN PREMIXED NATURAL GAS ENGINE IGNITED BY PILOT DIESEL

    Institute of Scientific and Technical Information of China (English)

    Yao Chunde; Yao Guangtao; Song Jinou; Wang Yinshan

    2005-01-01

    Numerical simulations of pilot fuel spray and compressing ignition for pre-mixed natural gas ignited by pilot diesel are described. By means of these modeling, the dual fuel and diesel fuel ignition mechanism of some phenomena investigated on an optional engine by technology of high-speed CCD is analyzed. It is demonstrated that the longer delay of ignition in dual fuel engine is not mainly caused by change of the mixture thermodynamics parameters. The analysis results illustrate that the ignition of pre-mixed natural gas ignited by pilot diesel taking place in dual fuel engine is a process of homogenous charge compression ignition.

  15. The effect of supercharging on performance and emission characteristics of C.I. Engine with diesel-ethanol-ester blends

    Directory of Open Access Journals (Sweden)

    Donepudi Jagadish

    2011-01-01

    Full Text Available Biofuels like ethanol, biodiesel, have attracted attention of people worldwide and proved to be the successful fuel alternates to petroleum products. In the present investigation, the effect of supercharging is studied on the performance of a direct injection diesel engine using ethanol diesel blends with palm stearin methyl ester as additive. The performance of the engine is evaluated in terms of brake specific fuel consumption, thermal efficiency, exhaust gas temperature, un-burnt hydrocarbons, carbon monoxide, nitrogen oxide emissions, and smoke opacity. The investigation results showed that the output and torque performance of the engine with supercharging was improved in comparison with naturally aspirated engine. It is observed that the brake thermal efficiency of ethanol diesel blends was higher than that of diesel. With supercharging brake thermal efficiency is further improved. Brake specific fuel consumption of ethanol, ester and diesel blends are lower compared with diesel at full load. Further reduction in brake specific fuel consumption is observed with supercharging. Nitrous oxide formation seems to decrease with ethanol, ester and diesel blends. Hydrocarbons and carbon monoxide emissions are more with ethanol, ester and diesel blends with supercharging slight reduction in those values are observed.

  16. Experimental study on the effect of gaseous and particulate emission from an ethanol fumigated diesel engine

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with 10% and 20% of the engine load taken up by fumigation ethanol injected into the air intake of each cylinder, to investigate the gaseous, particulate mass (PM) emissions, and number concentration and size distribution of the engine under five engine loads at the maximum torque engine speed of 1800 r/min. The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation ethanol; but at high engine loads, the BTE is not significantly changed by fumigation ethanol. Fumigation ethanol can effectively decrease in brake specific nitrogen oxides (BSNOx), particulate mass and number emissions but significantly increase in brake specific hydrocarbon (BSHC), brake specific carbon monoxide (BSCO) and proportion of BSNO/BSNO2. Also, the geometrical mean diameter of the particles (GMD) increases with increase in engine load but the diameter is not changed by fumigation ethanol in all cases.

  17. SENSITIZATION AND EXACERBATION OF ALLERGIC DISEASES BY DIESEL ENGINE PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Sanchez, David

    2000-08-20

    Most studies of the health effects of diesel exhaust have focused on the controversial issue of its role in cancer. However, recently the role of combustion products such as diesel exhaust particles (DEP) in modulating the immune response has garnered much attention. In particular the effect of DEP on allergic and asthmatic diseases has been the focus of many studies. A link between industrialization and allergic disease has long been presumed. Indeed, only 50 years after the first recorded reported case of allergy in 1819, Charles Blackely wrote that the ''hay-fever epidemic'' was associated with the movement of people from the country into the cities. Ishizaki et al. (1987) found that people in Japan living on busy roads lined with cedar trees have more allergies to cedar than residents living on similar streets with much less traffic. Since that time other epidemiological studies have reported similar findings. Kramer, et al., showed that hay fever is greater in residential areas with heavy truck traffic, while Weiland, et al., reported that allergic symptoms correlate with the distance of residences to roads with heavy traffic.

  18. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol

    Science.gov (United States)

    Cheung, C. S.; Di, Yage; Huang, Zuohua

    Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

  19. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    Science.gov (United States)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  20. Control-Oriented Model of Molar Scavenge Oxygen Fraction for Exhaust Recirculation in Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2016-01-01

    therefore focus on deriving and validating a mean-value model of a large two-stroke crosshead diesel engines with EGR. The model introduces a number of amendments and extensions to previous, complex models and shows in theory and practice that a simplified nonlinear model captures all essential dynamics...... the behavior of the scavenge oxygen fraction well over the entire envelope of load and blower speed range that are relevant for EGR. The simplicity of the new model makes it suitable for observer and control design, which are essential steps to meet the emission requirements for marine diesel engines that take......Exhaust gas recirculation (EGR) systems have been introduced to large marine engines in order to reduce NOx formation. Adequate modelling for control design is one of the bottlenecks to design EGR control that also meets emission requirements during transient loading conditions. This paper...

  1. Compact high-speed, heavy-duty diesel engines; Der kleine schnelllaufende Hochleistungs-Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Tafel, S.; Hanula, B.; Mueck, A.; Schlueter, C. [Dr. Schrick GmbH, Remscheid (Germany)

    2004-07-01

    Dr. Schrick GmbH at Remscheid are working on a compact high-speed, heavy-duty diesel engine. The new engine, TKDI 600, has proved already that it meets the rigid specifications in terms of performance, consumption, weight, and size for a diesel engine for unmanned aircraft. The sophisticated concept could be put into practice during a very short development time. (orig.) [German] Die Firma Dr. Schrick GmbH in Remscheid ist mit der Entwicklung eines kleinen, hochdrehenden Hochleistungsdieselmotors beauftragt. Sie hat mit der Entwicklung dieses kleinen TKDI 600 gezeigt, dass die anspruchsvollen Zielvorgaben fuer Leistung, Verbrauch, Gewicht und Bauraum mit einem Dieselmotor fuer den Antrieb von unbemannten Luftfahrzeugen moeglich ist. Weiterhin konnte mit diesem Motor ein anspruchvolles Konzept eines Hochleistungsdieselmotors in kurzer Zeit realisiert werden. (orig.)

  2. INFLUENCE OF SWIRL ON SPRAY CHARACTERISTICS AND COMBUSTION, A NUMERICAL INVESTIGATION OF A CATERPILLER DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    M. SREENIVASULU

    2012-10-01

    Full Text Available The purpose of this study is to find the appropriate swirl ratio at which a DI diesel engine should be operated. In the process of identifying an appropriate swirl, the combustion behaviour was analysed by considering Pressure variations and Heat Release Rate variations against crank angle. The spray characteristics were also analysed by considering Penetration lengths, Sauter mean diameters, Spray cone angles against crank angle. Final conclusions were derived by considering NOx emission levels. A turbo charged DI diesel engine geometry was considered for the analysis. Proper care was taken inidentifying the range of Swirl Ratios. A 3-dimensional CFD code (RECARDO VECTIS, which is capable of solving 3-dimensional unsteady, turbulent flows, sprays and combustion of IC engines was used. In the first step CFD code was validated by comparing the obtained results with the experimental results. In the next step an attempt was made to study the influence of swirl on the spray characteristics and combustion.

  3. Multidimensional modeling of Dimethyl Ether(DME) spray combustion in DI diesel engine

    Institute of Scientific and Technical Information of China (English)

    WEN Hua; LIU Yong-chang; WEI Ming-rui; ZHANG Yu-sheng

    2005-01-01

    In the present study a modified CFD code KIVA3V was used to simulate the spray combustion in a small DI diesel engine fueled with DME. The improved spray models consider more spray phenomena such as cavitation flow in nozzle hole, jet atomization, droplet second breakup and spray wall interaction. Otherwise, a reduced DME reaction mechanism is implemented in the combustion model, and a new turbulent combustion model-Partial Stirred Reactor (PaSR) model is selected to simulate the spray combustion process, the effects of turbulent mixing on the reaction rate are considered. The results of engine modeling based on those models agreed well with the experimental measurements. Study of temperature fields variation and particle traces in the combustion chamber revealed that the engine combustion system originally used for diesel fuel must be optimized for DME.

  4. Influence of high injection pressure on fuel injection perfomances and diesel engine worcking process

    Directory of Open Access Journals (Sweden)

    Shatrov Mikhail G.

    2015-01-01

    Full Text Available In MADI, investigations are carried out in the field of diesel engine working process perfection for complying with prospective ecological standards such as Euro-6 and Tier-4. The article describes the results of the first stage of experimental research of the influence of injection pressure up to 3000 bar on working processes of diesel engine and its fuel system. Justification of the design of a Common Rail injector for fuel injection under 3000 bar pressure is presented. The influence of raising injection pressure (up to 3000 bar on the fuel spray propagation dynamics is demonstrated. The combined influence of injection pressure (up to 3000 bar and air boost pressure on fuel spray propagation dynamics is shown, including on engine emission and noise.

  5. Development of a Calibration and Monitoring System for GD-1 High Pressure Common Rail Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    王俊席; 杨林; 冯静; 冒晓建; 卓斌

    2004-01-01

    Based on CAN calibration protocol, a new calibration and monitoring system was developed for the GD1 high pressure common rail diesel engine. CAN driver block, monitoring program and calibration program for this system were designed respectively. The inquiry mode was used in the monitoring program and the interrupt mode was used in calibration program. The calibration program was designed in structural programming model. This system provides a reliable, accurate and quick CAN bus between ECU and PC, with baud rate up to 500Kbit/s.The implementation of the compatible and universal CAN calibration protocol makes it easy to displace the system and its function modules. It also provides friendly, compatible and flexible calibration interface, and the functions of online calibration and real-time monitoring. This system was successfully used in a GD-1 high pressure common rail diesel engine and the engine performance and exhaust emissions were significantly improved.

  6. Increasing the volumetric efficiency of Diesel engines by intake pipes

    Science.gov (United States)

    List, Hans

    1933-01-01

    Development of a method for calculating the volumetric efficiency of piston engines with intake pipes. Application of this method to the scavenging pumps of two-stroke-cycle engines with crankcase scavenging and to four-stroke-cycle engines. The utility of the method is demonstrated by volumetric-efficiency tests of the two-stroke-cycle engines with crankcase scavenging. Its practical application to the calculation of intake pipes is illustrated by example.

  7. Factorial analysis of diesel engine performance using different types of biofuels.

    Science.gov (United States)

    Tashtoush, Ghassan M; Al-Widyan, Mohamad I; Albatayneh, Aiman M

    2007-09-01

    In this study, several bio-source-fuels like fresh and waste vegetable oil and waste animal fat were tested at different injector pressures (120, 140, 190, 210 bar) in a direct-injection, naturally aspirated, single-cylinder diesel engine with a design injection pressure of 190 bar. Using 2k factorial analysis, the effect of injection pressure (Pi) and fuel type on three engine parameters, namely, combustion efficiency (etac), mass fuel consumption (mf), and engine speed (N) was examined. It was found that Pi and fuel type significantly affected both etac and mf while they had a slight effect on engine speed. Moreover, with diesel and biodiesels, the etac increased to a maximum at 190 bar but declined at the higher Pi value. In contrast, higher Pi had a favorable effect on etac over the whole Pi range with all the other more viscous fuels tested. In addition, the mass fuel consumption consistently decreased with an increase in Pi for all the fuels including the baseline diesel fuel, with which the engine consistently attained higher etac and higher rpm compared to all the other fuels tested.

  8. Study of fuel inlet temperature variations on palm biodiesel operating with a diesel engine

    Directory of Open Access Journals (Sweden)

    Mat Yasin Mohd Hafizil

    2017-01-01

    Full Text Available Biofuel includes biodiesel is introduced to overcome the air pollution problems. Biodiesel is the sustainable and alternative fuel that derived from edible and non-edible oil produced from bio-originated species, plants, and animals. This paper presents the simulation analysis on the effect of fuel temperature variations on diesel engine performance and emission using palm-biodiesel. A one-dimensional numerical analysis, Diesel RK software is used to simulate a single cylinder, four-stroke diesel engine on the performance and emission when operated at a full load condition using fuel temperature variations ranging 300 K to 333 K. Results showed that simulated results for brake power and brake torque were 0.7% each when compared to the highest and lowest fuel temperature ranging from 333 K to 300 K. Moreover, higher fuel temperature for palm biodiesel tends to produce lower exhaust gas temperature and brake specific fuel consumption at a constant engine speed of 2400 rpm. It can be concluded that from the study, fuel temperature variations of biodiesel could produce a significant effect regarding engine performance and emission that influence the driving economy of the engine.

  9. Nanoparticle emissions from a heavy-duty engine running on alternative diesel fuels.

    Science.gov (United States)

    Heikkilä, Juha; Virtanen, Annele; Rönkkö, Topi; Keskinen, Jorma; Aakko-Saksa, Päivi; Murtonen, Timo

    2009-12-15

    We have studied the effect of three different fuels (fossil diesel fuel (EN590); rapeseed methyl ester (RME); and synthetic gas-to-liquid (GTL)) on heavy-duty diesel engine emissions. Our main focus was on nanoparticle emissions of the engine. Our results show that the particle emissions from a modern diesel engine run with EN590, GTL, or RME consisted of two partly nonvolatile modes that were clearly separated in particle size. The concentration and geometric mean diameter of nonvolatile nucleation mode cores measured with RME were substantially greater than with the other fuels. The soot particle concentration and soot particle size were lowest with RME. With EN590 and GTL, a similar engine load dependence of the nonvolatile nucleation mode particle size and concentration imply a similar formation mechanism of the particles. For RME, the nonvolatile core particle size was larger and the concentration dependence on engine load was clearly different from that of EN590 and GTL. This indicates that the formation mechanism of the core particles is different for RME. This can be explained by differences in the fuel characteristics.

  10. Emission characteristics of a heavy-duty diesel engine at simulated high altitudes.

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Liu, Zhihua; Wang, Chu; Yu, Linxiao; Ding, Yan

    2011-08-01

    In order to evaluate the effects of altitude on the pollutant emissions of a diesel engine, an experimental research was carried out using an engine test bench with an altitude simulation system. The emissions of HC, CO, NOx, smoke, and particle number of a heavy-duty diesel engine were measured under steady state operating conditions at sea level and simulated altitudes of 1000 and 2000 m. The experimental results indicate that the high altitude increases the emissions of HC, CO and smoke of the diesel engine, the average increasing rates of which are 30%, 35% and 34% with addition of altitude of 1000 m, respectively. The effect of high altitudes on the NOx emission varies with the engine types and working conditions. At 1000 m the particles number emissions are 1.6 to 4.2 times the levels at the low altitude. The pattern of the particle size distributions at 1000 m is similar with that at sea-level, which is the mono-modal lognormal distribution with geometric mean diameter around 0.1 μm. However, the peak number concentrations of particles are bigger and the exhausted particles are smaller at the high altitude.

  11. Reductions in particulate and NO(x) emissions by diesel engine parameter adjustments with HVO fuel.

    Science.gov (United States)

    Happonen, Matti; Heikkilä, Juha; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele

    2012-06-01

    Hydrotreated vegetable oil (HVO) diesel fuel is a promising biofuel candidate that can complement or substitute traditional diesel fuel in engines. It has been already reported that by changing the fuel from conventional EN590 diesel to HVO decreases exhaust emissions. However, as the fuels have certain chemical and physical differences, it is clear that the full advantage of HVO cannot be realized unless the engine is optimized for the new fuel. In this article, we studied how much exhaust emissions can be reduced by adjusting engine parameters for HVO. The results indicate that, with all the studied loads (50%, 75%, and 100%), particulate mass and NO(x) can both be reduced over 25% by engine parameter adjustments. Further, the emission reduction was even higher when the target for adjusting engine parameters was to exclusively reduce either particulates or NO(x). In addition to particulate mass, different indicators of particulate emissions were also compared. These indicators included filter smoke number (FSN), total particle number, total particle surface area, and geometric mean diameter of the emitted particle size distribution. As a result of this comparison, a linear correlation between FSN and total particulate surface area at low FSN region was found.

  12. The influence of the engine load on value and temperature distribution in the piston of the turbocharged Diesel engine

    Directory of Open Access Journals (Sweden)

    P. Gustof

    2009-08-01

    Full Text Available Purpose: The determination of the temperature distribution in the piston in initial phase of the work of the turbocharged Diesel engine.Design/methodology/approach: The results of calculations of the temperature distribution in the piston of the turbocharged Diesel engine in dependence from the engine loads were received by means of the two – zone combustion model and the finite element method.Findings: The computations presented the possibility of use of the mathematical models of the combustion processes and the heat transfer on individual surfaces of the piston used by the variable values of the boundary conditions and temperature of the working medium in initial time of the work engine.Research limitations/implications: The modeling of the heat loads was executed for analysis of the values and temperature distribution in the piston in initial phase of the work of the turbocharged Diesel engine until the moment of achievement quasi stabilized temperature values.Originality/value: The results of numeric calculations of the heat loads of the piston displayed the possibility of the use of the original two-zone combustion model and finite elements method to analysis of values and temporary temperature distribution on individual surfaces of the piston.

  13. Diesel Engine Convert to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review

    Directory of Open Access Journals (Sweden)

    Semin

    2009-01-01

    Full Text Available The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Problem statement: The regular development of internal combustion engines change direction to answer the two most important problems determining the development trends of engines technology and in particular, their combustion systems. They were environmental protection against emission and noise, shortage of hydrocarbon fuels, specific fuel consumption and other technical and economic parameters. Approach: Several alternative fuels has been recognized as having a significant potential for producing lower overall pollutant emissions compared to diesel fuel. Natural gas, which composed predominately by identified as a leading candidate for transportation applications among these fuels for availability, environmental compatibility and natural gas is that it can be used in conventional diesel engines. Results: Some advantages of CNG as a fuel are octane number is very good for SI engine fuel, engines can be operate with a high compression ratio, less engine emissions and less aldehydes. In the diesel engines converted or designed to run on natural gas with the port injection (sequential or trans-intake valve-injection system, a high-speed gas jet was pulsed from the intake port through the open intake valve into the combustion chamber, where it caused effects of turbulence and charge stratification particularly at engine parts load operations. The system was able to diminish the cyclic variations and to expand the limit of lean operation of the engine. The flexibility of gas pulse timing offers the potential advantage of lower emissions and fuel consumption. There are several advantages of port injection. The better possibility CNG engine is to equalize the air-fuel ratio of the cylinders, optimization of the gas injection timing and of the gas pressure for different operating

  14. Production of additives from Jatropha Curcas L. methyl esther as a way to improve diesel engine performance

    Energy Technology Data Exchange (ETDEWEB)

    Silitonga, A.S. [Department of Mechanical Engineering, Medan State Polytechnic (Indonesia)], email: ardinsu@yahoo.co.id, email: a_atabani2@msn.com; Mahlia, T.M.I. [Department of Mechanical Engineering, Syiah Kuala University, (Indonesia); Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya (Malaysia); Ghofur, A. [Department of Mechanical Engineering, Lambung Mangkurat University (Indonesia); Abdullahe [Department of Chemical Engineering, Lambung Mangkurat University (Indonesia)

    2011-07-01

    Nowadays we are searching for ideal alternative fuels in order to reduce harmful gas emissions and improve air quality. And many kinds of bio-diesel have been proposed. This paper introduces a bio-diesel converted from the oil of Jatropha curcas L. through a series of physical and chemical processes. This bio-diesel, which has a high cetane number, is better adapted than diesel or other, edible, vegetable oils to be an ideal alternative fuel. Moreover, the additive promotes the physico-chemical characteristics of Jatropha curcas methyl ester, further enhancing its desirability as a substitute for diesel oil. This paper analyzes and reports the results of a laboratory-scale investigation of the feasibility of blending diesel with an additive produced from Jatropha curcas methyl ester. It finds that this additive can improve engine performance and reduce exhaust emissions.

  15. Study of Micro Grid Hybrid System of Photovoltaic and Diesel Engine

    Directory of Open Access Journals (Sweden)

    Novitasari Dwi

    2016-01-01

    Full Text Available Indonesia has abundant potentials of new and renewable energy that can be used for electricity generation, especially in rural areas which have no access for grid electricity yet. The energy resources can be from solar, water, biomass or biofuel. Many villagers still use diesel generators to produce electricity in their villages. It is considered expensive because fuel price in rural areas increases 2-3 times than the normal price due to transportation cost. Hybrid system using renewable energy resources is one of the solutions to produce electricity in affordable cost for rural area. The idea is to combine diesel generators and photovoltaic toproduce electricity. Moreover, the diesel engine fuel can be replaced with biofuel. This study will analyze the hybrid system in a small scale which consists of 1kWp photovoltaic and 3 kW diesel engine. Electric load power will vary. The system is controlled by a single bidirectional inverter whichconverts power from DC to AC and vice versa

  16. Motor gerador ciclo diesel sob cinco proporções de biodiesel com óleo diesel Engine-generator diesel cycle under five proportions of biodiesel and diesel

    Directory of Open Access Journals (Sweden)

    Marcelo J. da Silva

    2012-01-01

    Full Text Available O estudo de fontes alternativas de energia ao óleo diesel mineral, como o biodiesel, com origem renovável, é importante para o meio-ambiente e diversificação da matriz energética. Neste estudo foram levantados o consumo específico de combustível, o valor calórico do combustível e a eficiência do conjunto motor gerador da marca BRANCO em função de cargas resistivas, sob as seguintes proporções volumétricas entre o óleo diesel mineral com biodiesel: 0% (B0, 20% (B20, 40% (B40, 60% (B60 e 100% de biodiesel (B100. Para o ensaio utilizou-se motor de 7,36 kW, com gerador elétrico acoplado de 5,5 kW. As cargas utilizadas, 0,5 kW; 1,0 kW; 1,5 kW e 2,0 kW foram elevadas até 5,0 kW, oriundas de um dinamômetro de cargas resistentes. Assim, o desempenho do conjunto para cargas abaixo de 1,5 kW mostrou-se menor, pelo maior consumo específico de combustível (CEC, e redução na eficiência do conjunto motor gerador para a faixa de potência. Para as proporções de biodiesel B40, B60 e B100 os resultados descreveram redução no valor calórico e aumento do CEC. Portanto, realizando comparação das proporções de biodiesel com o óleo diesel, a proporção B20 substitui parcialmente o óleo diesel, sem perdas significativas do desempenho do motor gerador.The study of mineral diesel alternatives, such as biodiesel, a renewable fuel, is important for the environment and to diversify energy sources. This study evaluated an engine-generator BRANCO brand. Specific fuel consumption, calorific value and the overall efficiency as a function of the system load was measured, using diesel oil and biodiesel blends. The biodiesel proportions in the composition were 0% (B0, 20% (B20, 40% (B40, 60% (B60, and 100% (B100. The engine that was used during the test has a power of 7.36 kW, and the electric generator was 5.5 kW. The group was submitted to resistive loading, in the range: 0.5 kW, 1.0 kW, 1.5 kW; growing up to 5.0 kW. The results have shown

  17. Performance Characteristics and Analysis of 4-Stroke Single Cylinder Diesel Engine Blend With 50% of Honne Oil at Various Fuel Injection Pressures

    Directory of Open Access Journals (Sweden)

    R. Bhaskar Reddy

    2014-08-01

    Full Text Available In future demand for fossil fuels and environmental effects, a number of renewable sources of energy have been studied in worldwide. An attempt is made to apt of vegetable oil for diesel engine operation, without any change in its old construction. One of the important factors which influence the performance and emission characteristics of D.I diesel engine is fuel injection pressure. In this project honne oil has to be investigated in a constant speed, on D.I diesel engine with different fuel injection pressures. The scope of the project is to investigate the effect of injection pressures on a blend of 50% honne oil with 50% diesel and compare with pure diesel on performance and emission characteristics of the diesel engine. Two tested fuels were used during experiments like 100 % diesel and a blend of 50% honne oil mixing in the diesel. The performance tests were conducted at constant speed with variable loads. From experiment results it was found that with honne oil- diesel blend the performance of the engine is better compared with diesel. The break thermal efficiency and mechanical efficiencies were found to be maximum at 200 bar injection pressure with both honne oil- diesel blend, compared with 180 bar and 220 bar. The brake specific fuel consumption was to be minimum at 220bar compared with 180 bar and 200 bar. Hydro carbon emissions of honne oil-diesel operation were less than the diesel fuel mode at all fuel injection pressures.

  18. EXPERIMENTAL DETERMINATION OF DOUBLE VIBE FUNCTION PARAMETERS IN DIESEL ENGINES WITH BIODIESEL

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available A zero-dimensional, one zone model of engine cycle for steady-state regimes of engines and a simplified procedure for indicator diagrams analysis have been developed at the Laboratory for internal combustion engines, fuels and lubricants of the Faculty of Mechanical Engineering in Kragujevac. In addition to experimental research, thermodynamic modeling of working process of diesel engine with direct injection has been presented in this paper. The simplified procedure for indicator diagrams analysis has been applied, also. The basic problem, a selection of shape parameters of double Vibe function used for modeling the engine operation process, has been solved. The influence of biodiesel fuel and engine working regimes on the start of combustion, combustion duration and shape parameter of double Vibe was determined by a least square fit of experimental heat release curve.

  19. Mitigation of PAH and nitro-PAH emissions from nonroad diesel engines.

    Science.gov (United States)

    Liu, Z Gerald; Wall, John C; Ottinger, Nathan A; McGuffin, Dana

    2015-03-17

    More stringent emission requirements for nonroad diesel engines introduced with U.S. Tier 4 Final and Euro Stage IV and V regulations have spurred the development of exhaust aftertreatment technologies. In this study, several aftertreatment configurations consisting of diesel oxidation catalysts (DOC), diesel particulate filters (DPF), Cu zeolite-, and vanadium-based selective catalytic reduction (SCR) catalysts, and ammonia oxidation (AMOX) catalysts are evaluated using both Nonroad Transient (NRTC) and Steady (8-mode NRSC) Cycles in order to understand both component and system-level effects of diesel aftertreatment on emissions of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nitro-PAH). Emissions are reported for four configurations including engine-out, DOC+CuZ-SCR+AMOX, V-SCR+AMOX, and DOC+DPF+CuZ-SCR+AMOX. Mechanisms responsible for the reduction, and, in some cases, the formation of PAH and nitro-PAH compounds are discussed in detail, and suggestions are provided to minimize the formation of nitro-PAH compounds through aftertreatment design optimizations. Potency equivalency factors (PEFs) developed by the California Environmental Protection Agency are then applied to determine the impact of aftertreatment on PAH-derived exhaust toxicity. Finally, a comprehensive set of exhaust emissions including criteria pollutants, NO2, total hydrocarbons (THC), n-alkanes, branched alkanes, saturated cycloalkanes, aromatics, aldehydes, hopanes and steranes, and metals is provided, and the overall efficacy of the aftertreatment configurations is described. This detailed summary of emissions from a current nonroad diesel engine equipped with advanced aftertreatment can be used to more accurately model the impact of anthropogenic emissions on the atmosphere.

  20. Biphase turbine bottoming cycle for a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.; Hays, L.

    1977-02-15

    Application of a two-phase turbine system to waste heat recovery was examined. Bottoming cycle efficiencies ranging from 15 to 30% were calculated for a 720/sup 0/F diesel exhaust temperature. A single stage demonstration unit, designed for non-toxic fluids (water and DowTherm A) and for atmospheric seals and bearings, had a cycle efficiency of 23%. The net output power was 276 hp at 8,100 rpm, increasing the total shaft power from 1,800 hp for the diesel alone, to 2,076 hp for the combined system. A four stage organic turbine, for the same application, had a rotational speed of 14,700 rpm while a four stage steam turbine had 26,000 rpm. Fabrication drawings were prepared for the turbine and nozzle. The major improvement leading to higher cycle efficiency and lower turbine rpm was found to be the use of a liquid component with lower sensible heat. A reduction in capital cost was found to result from the use of a contact heat exchanger instead of tube-fin construction. The cost for a contact heat exchanger was only $35-52/kWe compared to $98/kWe for a tube-fin heat exchanger. Design drawings and materials list were prepared. A program resulting in the demonstration of a two-phase bottoming system was planned and the required cost estimated. The program would result in a feasibility test of the nozzle and turbine at the end of the first year, a laboratory performance test of the bottoming system by the end of the second year and a field demonstration test and laboratory endurance test of the bottoming system during the third year. The blowdown test rig for the first year's program and test turbine were designed.