WorldWideScience

Sample records for capacitors

  1. Advanced capacitors

    Science.gov (United States)

    Ennis, J. B.; Buritz, R. S.

    1984-10-01

    This report describes an experimental program to develop and test advanced dielectric materials for capacitors for airborne power systems. Five classes of capacitors were considered: high rep rate and low rep rate pulse capacitors for use in pulse-forming networks, high voltage filter capacitors, high frequency AC capacitors for series resonant inverters, and AC filter capacitors. To meet these requirements, existing dielectric materials were modified, and new materials were developed. The initial goal was to develop an improved polysulfone film with fewer imperfections that could operate at significantly higher electrical stresses. It was shown that contaminants enter the film via the resin and solvent, and that they can be partially removed. As far as developed, however, these treatments did not significantly improved the breakdown characteristics. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films -- the first step toward a replacement for Kraft paper. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. This material was selected for further study in model capacitor designs.

  2. Rotary capacitor

    CERN Multimedia

    1971-01-01

    The rotating wheel of the rotary capacitor representing the most critical part of the new radio-frequency system of the synchro-cyclotron. The three rows of teeth on the circumference of the wheel pass between four rows of stator blades with a minimum clearance of 1 mm at a velocity of 1700 rev/min.

  3. Advanced Capacitor Development.

    Science.gov (United States)

    1987-01-01

    Capacitors. ... ..................... 8 Comparison of Ultem and Polysulfone Film ..... 9 III MATERIALS DEVELOPMENT. ... ....... ....... .... 13 Candidate...Continued) Section Page C LIFE TEST DATA FOR METALLIZED POLYSULFONE AND ULTEM FILM CAPACITORS AT 140 VRMS AND ELEVATED TEMPERATURES SAMPLE SIZE 10...Polysulfone and Ultem Film Capacitors at 140 Vrms 400 Hz and 125(C ..... .......... 12 3 Life Time of Metallized Polysulfone and Ultem Film Capacitors at 140

  4. Towards Prognostics of Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications...

  5. Single Capacitor Paradox

    CERN Document Server

    Pankovic, Vladan

    2009-01-01

    In this work single capacitor paradox (a variation of the remarkable two capacitor paradox) is considered. Simply speaking in an ideal (without any electrical resistance and inductivity) electrical circuit with single charged capacitor and switch, by transition from initial, open state (switch in OFF position) in the final, closed state (switch in ON position), there is a total loss of the initial energy of the electrical field in condenser. Given energy loss can be simply explained without any dissipative effects (Joule heating or electromagnetic waves emission) by work of the electrical field by movement of the charge from one in the other plate of the capacitor. (Two capacitors paradox can be, obviously, explained in the analogous way.)

  6. Capacitor discharge engineering

    CERN Document Server

    Früngel, Frank B A

    1976-01-01

    High Speed Pulse Technology, Volume III: Capacitor Discharge Engineering covers the production and practical application of capacitor dischargers for the generation and utilization of high speed pulsed of energy in different forms. This nine-chapter volume discusses the principles of electric current, voltage, X-rays, gamma rays, heat, beams of electrons, neutrons and ions, magnetic fields, sound, and shock waves in gases and liquids. Considerable chapters consider the applications of capacitor discharges, such as impulse hardening of steel, ultrapulse welding of precision parts, X-ray flash t

  7. High Temperature Capacitor Development

    Energy Technology Data Exchange (ETDEWEB)

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  8. Capacitor discharge pulse analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  9. Engineering electrochemical capacitor applications

    Science.gov (United States)

    Miller, John R.

    2016-09-01

    Electrochemical capacitor (EC) applications have broadened tremendously since EC energy storage devices were introduced in 1978. Then typical applications operated below 10 V at power levels below 1 W. Today many EC applications operate at voltages approaching 1000 V at power levels above 100 kW. This paper briefly reviews EC energy storage technology, shows representative applications using EC storage, and describes engineering approaches to design EC storage systems. Comparisons are made among storage systems designed to meet the same application power requirement but using different commercial electrochemical capacitor products.

  10. Promethium-147 capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskiy, A.; Yakubova, G.; Lin, Q.; Chan, D.; Yousaf, S.M. [TRACE Photonics Inc., 1680 West Polk Avenue, Charleston, Illinois 61920 (United States); Bower, K. [TRACE Photonics Inc., 1680 West Polk Avenue, Charleston, Illinois 61920 (United States)], E-mail: kbower@tracephotonics.com; Robertson, J.D.; Garnov, A.; Meier, D. [Department of Chemistry and University of Missouri Research Reactor, 1513 Reactor Park Drive, Columbia, Missouri 65211 (United States)

    2009-06-15

    Beta particle surface fluxes for tritium, Ni-63, Pm-147, and Sr-90 sources were calculated in this work. High current density was experimentally achieved from Pm-147 oxide in silica-titana glass. A 96 GBq (2.6 Ci) Pm-147 4{pi}-source with flux efficiency greater than 50% was used for constructing a direct charge capacitor with a polyimide coated collector and vacuum as electrical insulation. The capacitor connected to high resistance (T{omega}) loads produced up to 35 kV. Overall conversion efficiency was over 10% (on optimal load)

  11. Suspended graphene variable capacitor

    Science.gov (United States)

    AbdelGhany, M.; Mahvash, F.; Mukhopadhyay, M.; Favron, A.; Martel, R.; Siaj, M.; Szkopek, T.

    2016-12-01

    Electromechanical variable capacitors, or varactors, find a wide range of applications including sensing applications and the tuning of electrical circuit resonance. We demonstrate a nano-electromechanical graphene varactor, a variable capacitor wherein the capacitance is tuned by voltage controlled deflection of a dense array of suspended graphene membranes. The low flexural rigidity of graphene monolayers is exploited to achieve low actuation voltage and high tunable capacitance density in an ultra-thin structure. Large arrays comprising thousands of suspensions were fabricated to give a tunable capacitance of over 10 pF mm-2. This capacitance density suggests that graphene offers a potential solution to the challenge of reducing the size of micro-electromechanical systems (MEMS). A capacitance tuning of 55% was achieved with a 10 V actuating voltage, exceeding the 50% tuning limit of Hookean parallel plate pull-in without the use of complex mechanical schemes that occupy substrate area. Capacitor behavior was investigated experimentally, and described by a simple theoretical model. Mechanical properties of the graphene membranes were measured independently using atomic force microscopy. We present a comparison of state-of-the-art MEMS and graphene varactors. The quality factor of graphene varactors is limited by graphene sheet resistance, pull-in voltage can be improved with more aggressive scaling, while the power handling and cycling stability of graphene varactors remains unknown.

  12. The moving plate capacitor paradox

    Science.gov (United States)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2000-03-01

    For the first time we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. A demon restores the plates of the capacitor to their original position, only when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the question is how? We explore the concept of a moving plate capacitor, driven by noise, a step further by examining the case where the restoring force on the capacitor plates is provided by a simple spring, rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  13. A Simple, Successful Capacitor Lab

    Science.gov (United States)

    Ennis, William

    2011-01-01

    Capacitors are a fundamental component of modern electronics. They appear in myriad devices and in an enormous range of sizes. Although our students are taught the function and analysis of capacitors, few have the opportunity to use them in our labs.

  14. Moisture in multilayer ceramic capacitors

    Science.gov (United States)

    Donahoe, Daniel Noel

    When both precious metal electrode and base metal electrode (BME) capacitors were subjected to autoclave (120°C/100% RH) testing, it was found that the precious metal capacitors aged according to a well known aging mechanism (less than 3% from their starting values), but the BME capacitors degraded to below the -30% criterion at 500 hours of exposure. The reasons for this new failure mechanism are complex, and there were two theories that were hypothesized. The first was that there could be oxidation or corrosion of the nickel plates. The other hypothesis was that the loss of capacitance was due to molecular changes in the barium titanate. This thesis presents the evaluation of these hypotheses and the physics of the degradation mechanism. It is concluded by proof by elimination that there are molecular changes in the barium titanate. Furthermore, the continuous reduction in capacitor size makes the newer base metal electrode capacitors more vulnerable to moisture degradation than the older generation precious metal capacitors. In addition, standard humidity life testing, such as JESD-22 THB and HAST, will likely not uncover this problem. Therefore, poor reliability due to degradation of base metal electrode multilayer ceramic capacitors may catch manufacturers and consumers by surprise.

  15. Electrically tuned super-capacitors

    CERN Document Server

    Chowdhury, Tazima S

    2015-01-01

    Fast charging and discharging of large amounts of electrical energy make super-capacitors ideal for short-term energy storage [1-5]. In its simplest form, the super-capacitor is an electrolytic capacitor made of an anode and a cathode immersed in an electrolyte. As for an ordinary capacitor, minimizing the charge separation distance and increasing the electrode area increase capacitance. In super-capacitors, charge separation is of nano-meter scale at each of the electrode interface (the Helmholtz double layer). Making the electrodes porous increases their effective surface area [6-8]. A separating layer between the anode and the cathode electrodes is used to minimize unintentional electrical discharge (Figure 1). Here we show how to increase the capacitance of super-capacitors by more than 45 percent when modifying the otherwise passive separator layer into an active diode-like structure. Active control of super-capacitors may increase their efficiency during charge and discharge cycles. Controlling ion flow...

  16. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  17. Fractal Structures For Mems Variable Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    In accordance with the present disclosure, one embodiment of a fractal variable capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure, wherein the capacitor body has an upper first metal plate with a fractal shape separated by a vertical distance from a lower first metal plate with a complementary fractal shape; and a substrate above which the capacitor body is suspended.

  18. Fractal Structures For Fixed Mems Capacitors

    KAUST Repository

    Elshurafa, Amro M.

    2014-08-28

    An embodiment of a fractal fixed capacitor comprises a capacitor body in a microelectromechanical system (MEMS) structure. The capacitor body has a first plate with a fractal shape separated by a horizontal distance from a second plate with a fractal shape. The first plate and the second plate are within the same plane. Such a fractal fixed capacitor further comprises a substrate above which the capacitor body is positioned.

  19. Improved wet-slug capacitor

    Science.gov (United States)

    Ward, C. M.

    1976-01-01

    Capacitor uses all-tantalum seals and straight, ungelled, 30-percent sulphuric acid electrolyte to reduce leakage from order of milliamperes to low-microampere region. Design offers better reliability in severe environments encountered in military and industrial electronics systems.

  20. High Energy Density Capacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Capacitor size and reliability are often limiting factors in pulse power, high speed switching, and power management and distribution (PMAD) systems. T/J...

  1. Technology of Pulse Power Capacitors

    Science.gov (United States)

    Qin, Shanshan

    Polymer film of pulse discharge capacitors operated at high repetition rate dissipates substantial power. The thermal conductivity of biaxially oriented polypropylene (BOPP) is measured as a function of metallization resistivity. The thermal conductivity in the plane of the film is about twice that of bulk polypropylene. Thermal design is optimized based on the measurement for large capacitors with multiple windings in a container. High discharge speed results in high current density at the wire arc sprayed end connections which tend to deteriorate gradually, resulting in capacitor failure during operation. To assure the end connection quality before assembly, a test procedure and apparatus for end connection integrity was developed based on monitoring the partial discharge pattern from end connection during discharge. The mechanism of clearing is analyzed which shows arc extinguishes due to the increased arc length and reduced energy so that capacitor can function normally after breakdown. In the case of a clearing discharge, the power dissipation appears to increase with time, although this is not a feature of previous models. Submicrosecond discharge requires minimizing inductance which can be achieved by optimizing the winding structure so that submicrosecond discharge becomes practical. An analysis of the inductance of multisection, very high voltage capacitors is carried out, which identifies low inductance structures for this type of capacitor.

  2. Force on an Asymmetric Capacitor

    CERN Document Server

    Bahder, T B; Bahder, Thomas B.; Fazi, Chris

    2002-01-01

    When a high voltage (~30 kV) is applied to a capacitor whose electrodes have different physical dimensions, the capacitor experiences a net force toward the smaller electrode (Biefeld-Brown effect). We have verified this effect by building four capacitors of different shapes. The effect may have applications to vehicle propulsion and dielectric pumps. We review the history of this effect briefly through the history of patents by Thomas Townsend Brown. At present, the physical basis for the Biefeld-Brown effect is not understood. The order of magnitude of the net force on the asymmetric capacitor is estimated assuming two different mechanisms of charge conduction between its electrodes: ballistic ionic wind and ionic drift. The calculations indicate that ionic wind is at least three orders of magnitude too small to explain the magnitude of the observed force on the capacitor. The ionic drift transport assumption leads to the correct order of magnitude for the force, however, it is difficult to see how ionic dr...

  3. Architecture Analysis of High Performance Capacitors (POSTPRINT)

    Science.gov (United States)

    2009-07-01

    includes the measurement of heat dissipated from a recently developed fluorenyl polyester (FPE) capacitor under an AC excitation. II. Capacitor ...AFRL-RZ-WP-TP-2010-2100 ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) Hiroyuki Kosai and Tyler Bixel UES, Inc...2009 4. TITLE AND SUBTITLE ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  4. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  5. Electrically Variable or Programmable Nonvolatile Capacitors

    Science.gov (United States)

    Shangqing, Liu; NaiJuan, Wu; Ignatieu, Alex; Jianren, Li

    2009-01-01

    Electrically variable or programmable capacitors based on the unique properties of thin perovskite films are undergoing development. These capacitors show promise of overcoming two important deficiencies of prior electrically programmable capacitors: Unlike in the case of varactors, it is not necessary to supply power continuously to make these capacitors retain their capacitance values. Hence, these capacitors may prove useful as components of nonvolatile analog and digital electronic memories. Unlike in the case of ferroelectric capacitors, it is possible to measure the capacitance values of these capacitors without changing the values. In other words, whereas readout of ferroelectric capacitors is destructive, readout of these capacitors can be nondestructive. A capacitor of this type is a simple two terminal device. It includes a thin film of a suitable perovskite as the dielectric layer, sandwiched between two metal or metal oxide electrodes (for example, see Figure 1). The utility of this device as a variable capacitor is based on a phenomenon, known as electrical-pulse-induced capacitance (EPIC), that is observed in thin perovskite films and especially in those thin perovskite films that exhibit the colossal magnetoresistive (CMR) effect. In EPIC, the application of one or more electrical pulses that exceed a threshold magnitude (typically somewhat less than 1 V) gives rise to a nonvolatile change in capacitance. The change in capacitance depends on the magnitude duration, polarity, and number of pulses. It is not necessary to apply a magnetic field or to cool the device below (or heat it above) room temperature to obtain EPIC. Examples of suitable CMR perovskites include Pr(1-x)Ca(x)MnO3, La(1-x)S-r(x)MnO3,and Nb(1-x)Ca(x)MnO3. Figure 2 is a block diagram showing an EPIC capacitor connected to a circuit that can vary the capacitance, measure the capacitance, and/or measure the resistance of the capacitor.

  6. YANG-MILLS FIELD CAPACITOR

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-10-01

    Full Text Available The article presents a project of the capacitor in the Yang-Mills theory. Model capacitor represents the equipotential surfaces separated by a space. To describe the mechanism of condensation chromodynamics field used numerical models developed based on an average of the Yang-Mills theory. In the present study, we used eight-scalar component model that in the linear case is divided into two groups containing three or five fields respectively. In contrast to classical electrodynamics, a static model of the Yang-Mills is not divided into independent equations because of the nonlinearity of the model itself. However, in the case of a linear theory separation is possible. It is shown that in this particular case, the Yang-Mills theory is reduced to Poisson theory, which describes the electrostatic and magnetostatic phenomena. In the present work it is shown that in a certain region of the parameters of the capacitor of the Yang-Mills theory on the functional properties of the charge accumulation and retention of the field is similar to the capacitor of the electrostatic field or a magnet in magnetostatics. This means that in nature there are two types of charges, which are sources of macroscopic Yang-Mills field, which are similar to the properties of electric and magnetic charges in the Poisson theory. It is shown that in Yang-Mills only one type of charge may be associated with the distribution density of the substance, while another type of charge depends on the charge distribution of the first type. This allows us to provide an explanation for the lack of symmetry between electric and magnetic charges

  7. Charging/Safety-Interlock Connection For Capacitor Bank

    Science.gov (United States)

    Rippel, Wally E.

    1990-01-01

    Electrically controlled mechanical interlock apparatus prevents connection of bank of capacitors to battery or other dc power supply until capacitors precharged to nearly full supply voltage. Precharge eliminates excessive inrush current, which damages capacitors, wires, or connectors. Circuit in apparatus also discharges capacitors after power turned off or capacitors disconnected from power supply.

  8. Quantum, Photo-Electric Single Capacitor Paradox

    CERN Document Server

    Kapor, Darko

    2009-01-01

    In this work single capacitor paradox (a variation of the remarkable two capacitor paradox) is considered in a new, quantum discrete form. Simply speaking we consider well-known usual, photoelectric effect experimental device, i.e. photo electric cell, where cathode and anode are equivalently charged but non-connected. It, obviously, represents a capacitor that initially, i.e. before action of the photons with individual energy equivalent to work function, holds corresponding energy of the electrical fields between cathode and anode. Further, we direct quantum discretely photons, one by one, toward cathode where according to photo-electrical effect electrons discretely, one by one, will be emitted and directed toward anode. It causes discrete discharge of the cell, i.e. capacitor and discrete decrease of the electrical field. Finally, total discharge of the cell, i.e. capacitor, and total disappearance of the electrical field and its energy will occur. Given, seemingly paradoxical, capacitor total energy loss...

  9. High frequency model of stacked film capacitors

    Science.gov (United States)

    Talbert, T.; Joubert, C.; Daude, N.; Glaize, C.

    2001-11-01

    Polypropylene metallized capacitors are of general use in power electronics because of their reliability, their self-healing capabilities, and their low price. Though the behavior of metallized coiled capacitors has been discussed, no work has been carried out on stacked and flattened metallized capacitors. The purpose of this article is to suggest an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors. We first solve the equation of propagation of the magnetic potential vector (A) in the dielectric of an homogeneous material. Then, we suggest an original method of resolution, like the one used for resonant cavities, in order to present an analytical solution of the problem. Finally, we give some experimental results proving that the physical knowledge of the parameters of the capacitor (dimension of the component, and material constants), enables us to calculate an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors.

  10. Low-Inductance Capacitor For Low Temperatures

    Science.gov (United States)

    Rhodes, David B.; Jones, Stephen B.; Franke, John M.

    1989-01-01

    Planar capacitor made on epoxy/fiberglass printed-circuit board. Planar design and flat copper plates ensure low inductance and low series resistance. Planar construction minimized effects of thermal contraction, and epoxy/fiberglass substrate ensured high breakdown voltage. Design is simple, and this type of capacitor easy for any printed-circuit-board facility to fabricate. Design suitable for any small-capacitance, high-voltage capacitor, whether operating at low or high temperature.

  11. The tantalum-cased tantalum capacitor

    Science.gov (United States)

    Moynihan, J. D.

    1977-01-01

    Tantalum-cased tantalum capacitors were tested with regard to temperature stability, capacitance ratio, surge current capabilities, shock, vibration, and thermal shock. They were found to be superior to the conventional wet slug tantalum capacitor cased in silver, since they are more resistant to sulfuric acid. The tantalum-cased tantalum capacitors are widely accepted for use in critical electronic equipment because of their excellent performance and reliability.

  12. Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w

  13. Capacitors with low equivalent series resistance

    Science.gov (United States)

    Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor); Fuge, Mark (Inventor)

    2011-01-01

    An electric double layer capacitor (EDLC) in a coin or button cell configuration having low equivalent series resistance (ESR). The capacitor comprises mesh or other porous metal that is attached via conducting adhesive to one or both the current collectors. The mesh is embedded into the surface of the adjacent electrode, thereby reducing the interfacial resistance between the electrode and the current collector, thus reducing the ESR of the capacitor.

  14. A Two-terminal Active Capacitor

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai

    2017-01-01

    This letter proposes a concept of two-terminal active capacitor implemented by power semiconductor switches and passive elements. The active capacitor has the same level of convenience as a passive one with two power terminals only. It is application independent and can be specified by rated...... voltage, ripple current, equivalent series resistance, and operational frequency range. The concept, control method, self-power scheme, and impedance characteristics of the active capacitor are presented. A case study of the proposed active capacitor for a capacitive DC-link application is discussed...

  15. Evaluation of Polymer Hermetically Sealed Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Polymer cathode tantalum capacitors have lower ESR (equivalent series resistance) compared to other types of tantalum capacitors and for this reason have gained popularity in the electronics design community. Their use allows improved performance of power supply systems along with substantial reduction of size and weight of the components used. However, these parts have poor thermal stability and can degrade in humid environments. Polymer hermetically sealed (PHS) capacitors avoid problems related to environmental degradation of molded case parts and can potentially replace current wet and solid hermetically sealed capacitors. In this work, PHS capacitors manufactured per DLA LAM DWG#13030 are evaluated for space applications. Several lots of capacitors manufactured over period from 2010 to 2014 were tested for the consistency of performance, electrical and thermal characteristics, highly accelerated life testing, and robustness under reverse bias and random vibration conditions. Special attention was given to analysis of leakage currents and the effect of long-term high temperature storage on capacitors in as is condition and after hermeticity loss. The results show that PHS capacitors might be especially effective for low-temperature applications or for system requiring a cold start-up. Additional screening and qualification testing have been recommended to assure the necessary quality of capacitors for space projects.

  16. Capacitor film surface assessment studies

    Science.gov (United States)

    Galperin, I.; White, W.

    1985-02-01

    In the present investigation of the optical surface of the three widely used, biaxially oriented capacitor films, polypropylene, polyvinylidene fluoride, and polyester, with attention to film surface defects and thickness variation, the defects and their rate of occurrence proved traceable in terms of polymer structure, chemical grouping, and fabrication processing. Film thickness variation was small, yet differed for each film type. Film breakdown voltages have been determined, and alternative causes for the voltage values obtained are proposed. A reciprocal relation is noted between the film breakdown voltage and the dielectric constant.

  17. Rep-rated long-life capacitor development

    Science.gov (United States)

    Galperin, I.

    1983-03-01

    The characterization of polypropylene and polyolefin resins for capacitor film usage was studied. One polypropylene resin was selected for capacitor POP film fabrication. A polyolefin resin was upgraded for POP film fabrication. Two new capacitor films were developed - a post orientation processed, two layer, polypropylene film and a polyolefin resin film. New criteria for judging film quality are developed and instituted. A capacitor film test plan has been formulated. Test capacitor designs and a capacitor test plan have been devised.

  18. Cryogenic Capacitors for Low-Temperature Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop low-temperature multilayer ceramic capacitors (MLCCs) capable of operating at cyrogenic temperatures (<77K). These capacitors...

  19. Pyrrole-Based Conductive Polymers For Capacitors

    Science.gov (United States)

    Nagasubramanian, Ganesan; Di Stefano, Salvador

    1994-01-01

    Polypyrrole films containing various dopant anions exhibit superior capacitance characteristics. Used with nonaqueous electrolytes. Candidate for use in advanced electrochemical double-layer capacitors capable of storing electrical energy at high densities. Capacitors made of these films used in automobiles and pulsed power supplies.

  20. Ultra-thin multilayer capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome; Monson, Todd C.

    2009-06-01

    The fabrication of ultra-thin lanthanum-doped lead zirconium titanate (PLZT) multilayer ceramic capacitors (MLCCs) using a high-power pulsed ion beam was studied. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The goal of this work was to increase the energy density of ceramic capacitors through the formation of a multilayer device with excellent materials properties, dielectric constant, and standoff voltage. For successful device construction, there are a number of challenging requirements including achieving correct stoichiometric and crystallographic composition of the deposited PLZT, as well as the creation of a defect free homogenous film. This report details some success in satisfying these requirements, although 900 C temperatures were necessary for PLZT perovskite phase formation. These temperatures were applied to a previously deposited multi-layer film which was then post-annealed to this temperature. The film exhibited mechanical distress attributable to differences in the coefficient of thermal expansion (CTE) of the various layers. This caused significant defects in the deposited films that led to shorts across devices. A follow-on single layer deposition without post-anneal produced smooth layers with good interface behavior, but without the perovskite phase formation. These issues will need to be addressed in order for ion beam deposited MLCCs to become a viable technology. It is possible that future in-situ heating during deposition may address both the CTE issue, and result in lowered processing temperatures, which in turn could raise the probability of successful MLCC formation.

  1. Switched-capacitor isolated LED driver

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Seth R.; Kline, Mitchell

    2016-03-22

    A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage V.sub.DC. A regulator section, operating on V.sub.DC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.

  2. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  3. 2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander A.

    2014-01-01

    Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.

  4. Alkaline Capacitors Based on Nitride Nanoparticles

    Science.gov (United States)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  5. Physical and Electrical Characterization of Polymer Aluminum Capacitors

    Science.gov (United States)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  6. Physical and Electrical Characterization of Aluminum Polymer Capacitors

    Science.gov (United States)

    Liu, David; Sampson, Michael J.

    2010-01-01

    Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.

  7. Thermal simulation for geometric optimization of metallized polypropylene film capacitors

    OpenAIRE

    El-Husseini, M.,; Venet, Pascal; Rojat, Gérard; Joubert, Charles

    2002-01-01

    In this paper, we use an analytic model to calculate the losses in the metallized polypropylene film capacitors. The model is validated experimentally for capacitors having the same capacitance but different geometry. For each group of capacitors a temperature distribution in the roll is assumed with the aim of optimizing its thermal performance. It appears that the heating of a long capacitor is higher than that of an equivalent flat capacitor subjected to the same electric stresses.

  8. Automated Test Stand for HEV Capacitor Testing

    Energy Technology Data Exchange (ETDEWEB)

    Seiber, Larry Eugene [ORNL; Armstrong, Gary [Maverick Systems

    2007-01-01

    As capacitor manufacturers race to meet the needs of the hybrid-electric vehicle (HEV) of the future, many trade-offs at the system level as well as the component level must be considered. Even though the ultra-capacitor has the spot light for recent research and development (R&D) for HEVs, the electrostatic capacitor is also the subject of R&D (for HEVs as well as wireless communications). The Department of Energy has funded the Oak Ridge National Laboratory's Power Electronic and Electric Machinery Research Center to develop an automated test to aid in the independent testing of prototype electrostatic capacitors. This paper describes the design and development of such a stand.

  9. Ultra fine tantalum powder for advanced capacitors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Ultra fine tantalum and niobium powders are applicable in many areas of engineering. Of particular significance are high purity powders that are usable in production of high capacitance capacitors and superconductors.

  10. Ultra fine tantalum powder for advanced capacitors

    Institute of Scientific and Technical Information of China (English)

    Nebera; A.; Markusbkin; Yu.; Azarov; V.; Ermolaev; N.

    2005-01-01

    Ultra fine tantalum and niobium powders are applicable in many areas of engineering. Of particular significance are high purity powders that are usable in production of high capacitance capacitors and superconductors.……

  11. Electric field mapping inside metallized film capacitors

    DEFF Research Database (Denmark)

    Nielsen, Dennis Achton; Popok, Vladimir; Pedersen, Kjeld

    2015-01-01

    and durability and serves as verification that failure- and degradation mechanisms remain the same at different stress levels during accelerated testing. In this work we have used Kelvin probe force microscopy (KPFM) to analyze metallized film capacitors with the purpose of determining the degradation mechanism......(s) they suffered from accelerated testing. We have prepared film capacitors for analysis by micro-sectioning and verified the quality of the preparation procedure using optical and atomic force microscopy. The potential distribution in the layer structure (alternating 7 µm thick dielectric and 50-100 nm thick...... of the metallization stripes had lost contact to the end-spray. Thus, it is shown that the surface electric potential distributions on micro-sectioned film capacitors can be obtained through KPFM analysis. We have, from KPFM measurements, shown that the degraded capacitors under investigation had suffered from...

  12. Definite Solution of the Two Capacitors Paradox

    CERN Document Server

    Pankovic, Vladan

    2009-01-01

    In this work we suggest very simple solution of the two capacitors paradox in the completely ideal (without any electrical resistance or inductivity) electrical circuit. Namely, it is shown that electrical field energy loss corresponds to works done by electrical fields of both capacitors by movement of the electrical charge. It is all and nothing more (some dissipative processes, e.g. Joule heating and electromagnetic wave emission effects) is necessary.

  13. Transmission Line Resonator Segmented with Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2016-01-01

    Transmission line resonators are often used as coils in high field MRI. Due to distributed nature of such resonators, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the resonator. The equations for optimal...... values of evenly distributed capacitors are presented. The performances of the segmented resonator and a regular transmission line resonator are compared....

  14. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    Science.gov (United States)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  15. Integrated capacitors for conductive lithographic film circuits

    OpenAIRE

    Harrey, PM; Evans, PSA; Harrison, DJ

    2001-01-01

    This paper reports on fabrication of low-value embedded capacitors in conductive lithographic film (CLF) circuit boards. The CLF process is a low-cost and high speed manufacturing technique for flexible circuits and systems. We report on the construction and electrical characteristics of CLF capacitor structures printed onto flexible substrates. These components comprise a single polyester dielectric layer, which separates the printed electrode films. Multilayer circuit boards with printed co...

  16. Protection of MOS capacitors during anodic bonding

    Science.gov (United States)

    Schjølberg-Henriksen, K.; Plaza, J. A.; Rafí, J. M.; Esteve, J.; Campabadal, F.; Santander, J.; Jensen, G. U.; Hanneborg, A.

    2002-07-01

    We have investigated the electrical damage by anodic bonding on CMOS-quality gate oxide and methods to prevent this damage. n-type and p-type MOS capacitors were characterized by quasi-static and high-frequency CV-curves before and after anodic bonding. Capacitors that were bonded to a Pyrex wafer with 10 μm deep cavities enclosing the capacitors exhibited increased leakage current and interface trap density after bonding. Two different methods were successful in protecting the capacitors from such damage. Our first approach was to increase the cavity depth from 10 μm to 50 μm, thus reducing the electric field across the gate oxide during bonding from approximately 2 × 105 V cm-1 to 4 × 104 V cm-1. The second protection method was to coat the inside of a 10 μm deep Pyrex glass cavity with aluminium, forming a Faraday cage that removed the electric field across the cavity during anodic bonding. Both methods resulted in capacitors with decreased interface trap density and unchanged leakage current after bonding. No change in effective oxide charge or mobile ion contamination was observed on any of the capacitors in the study.

  17. High-Temperature Capacitor Polymer Films

    Science.gov (United States)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  18. High-current, high-frequency capacitors

    Science.gov (United States)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  19. Wide Temperature DC Link Capacitors for Aerospace Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop advanced DC link capacitors using flexible ultrathin glass dielectric materials. The glass capacitor will be able to be operated in a broad...

  20. Printed Barium Strontium Titanate capacitors on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sette, Daniele [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg); Kovacova, Veronika [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Defay, Emmanuel, E-mail: emmanuel.defay@list.lu [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Luxembourg Institute of Science and Technology LIST, Materials Research and Technology Department, L-4422 Belvaux (Luxembourg)

    2015-08-31

    In this paper, we show that Barium Strontium Titanate (BST) films can be prepared by inkjet printing of sol–gel precursors on platinized silicon substrate. Moreover, a functional variable capacitor working in the GHz range has been made without any lithography or etching steps. Finally, this technology requires 40 times less precursors than the standard sol–gel spin-coating technique. - Highlights: • Inkjet printing of Barium Strontium Titanate films • Deposition on silicon substrate • Inkjet printed silver top electrode • First ever BST films thinner than 1 μm RF functional variable capacitor that has required no lithography.

  1. The Paradox of Two Charged Capacitors

    CERN Document Server

    Singal, Ashok K

    2013-01-01

    It is shown that the famous paradox of two charged capacitors is successfully resolved if one properly considers all the energy changes in the system when some of the charges are transferred from one capacitor to the other. It happens so even when the connecting wire has an identically zero resistance, giving rise to no Ohmic losses in the wire. It is shown that in such a case the "missing energy" goes into the kinetic energy of conducting charges. It is shown that radiation plays no significant role in resolving the paradox. The problem can also be formulated and successfully resolved in an alternate form, without involving connecting wires in a circuit.

  2. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.;

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  3. Electrodynamic thermal breakdown of a capacitor insulator

    Science.gov (United States)

    Emel'Yanov, O. A.

    2011-11-01

    A mechanism of the electrical breakdown is proposed for modern metal-field capacitors with the well-known property of self-healing of the breakdown strength. Upon an increase in the working voltage, the self-healing time increases to tens of microseconds, and the heating of adjacent insulator layers becomes significant. The propagating thermally activated conduction wave facilitates the enhancement of the electric field up to breakdown values. Analysis of the dynamics of electric field increase is carried out for capacitors based on polyethylene terephthalate (PET) dielectric.

  4. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  5. High Energy Density Capacitors for Pulsed Power Applications

    Science.gov (United States)

    2009-07-01

    high energy density energy storage capacitors. High efficency capacitors are available with energy densities as high as 3 J/cc for 1000 shots or...GENERAL ATOMICS ENERGY PRODUCTS Engineering Bulletin HIGH ENERGY DENSITY CAPACITORS FOR PULSED POWER APPLICATIONS Fred MacDougall, Joel...00-2009 4. TITLE AND SUBTITLE High Energy Density Capacitors for Pulsed Power Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  6. Design and Characterization of Vertical Mesh Capacitors in Standard CMOS

    DEFF Research Database (Denmark)

    Christensen, Kåre Tais

    2001-01-01

    This paper shows how good RF capacitors can be made in a standard digital CMOS process. The capacitors which are also well suited for binary weighted switched capacitor banks show very good RF performance: Q-values of 57 at 4.0 GHz, a density of 0.27 fF/μ2, 2.2 μm wide shielded unit capacitors, 6...

  7. Iodine encapsulation in CNTs and its application for electrochemical capacitor

    Science.gov (United States)

    Taniguchi, Y.; Ishii, Y.; Rashid, M.; Syakirin, A.; Al-zubaidi, A.; Kawasaki, S.

    2016-07-01

    We report the experimental results for new type electrochemical capacitor using iodine redox reaction in single-walled carbon nanotubes (SWCNTs). It was found that the energy density of the present redox capacitor using SWCNTs is almost three times larger than that of the normal electric double layer capacitor.

  8. Single Switched Capacitor Battery Balancing System Enhancements

    Directory of Open Access Journals (Sweden)

    Joeri van Mierlo

    2013-04-01

    Full Text Available Battery management systems (BMS are a key element in electric vehicle energy storage systems. The BMS performs several functions concerning to the battery system, its key task being balancing the battery cells. Battery cell unbalancing hampers electric vehicles’ performance, with differing individual cell voltages decreasing the battery pack capacity and cell lifetime, leading to the eventual failure of the total battery system. Quite a lot of cell balancing topologies have been proposed, such as shunt resistor, shuttling capacitor, inductor/transformer based and DC energy converters. The shuttling capacitor balancing systems in particular have not been subject to much research efforts however, due to their perceived low balancing speed and high cost. This paper tries to fill this gap by briefly discussing the shuttling capacitor cell balancing topologies, focusing on the single switched capacitor (SSC cell balancing and proposing a novel procedure to improve the SSC balancing system performance. This leads to a new control strategy for the SSC system that can decrease the balancing system size, cost, balancing time and that can improve the SSC balancing system efficiency.

  9. Special Section: Electrochemical capacitors: Guest Editor's note

    Science.gov (United States)

    Balducci, Andrea

    2016-09-01

    Electrochemical capacitors (i.e., supercapacitors) are nowadays considered as one of the most important electrochemical storage devices. Thanks to their high power, extraordinary cycle life and high reliability these devices are currently used in a large number of applications, rendering them indispensible for our daily life.

  10. Circular plate capacitor with different disks

    CERN Document Server

    Paffuti, Giampiero; Di Lieto, Alberto; Maccarrone, Francesco

    2016-01-01

    In this paper we write a system of integral equations for a capacitor composed by two disks of different radii, generalizing Love's equation for equal disks. We compute the complete asymptotic form of the capacitance matrix both for large and small distances obtaining a generalization of Kirchhoff's formula for the latter case.

  11. Electrostatic spray deposition based lithium ion capacitor

    Science.gov (United States)

    Agrawal, Richa; Chen, Chunhui; Wang, Chunlei

    2016-05-01

    Conventional Electrochemical double-layer capacitors (EDLCs) are well suited as power devices that can provide large bursts of energy in short time periods. However, their relatively inferior energy densities as compared to their secondary battery counterparts limit their application in devices that require simultaneous supply of both high energy and high power. In the wake of addressing this shortcoming of EDLCs, the concept of hybridization of lithium-ion batteries (LIBs) and EDLCs has attracted significant scientific interest in recent years. Such a device, generally referred to as the "lithium-ion capacitor" typically utilizes a lithium intercalating electrode along with a fast charging capacitor electrode. Herein we have constructed a lithium hybrid electrochemical capacitor comprising a Li4Ti5O12-TiO2 (LTO-TiO2) anode and a reduced graphene oxide and carbon nanotube (rGO-CNT) composite cathode using electrostatic spray deposition (ESD). The electrodes were characterized using scanning electron microscopy and X-ray diffraction studies. Cyclic voltammetry and galvanostatic charge-discharge measurements were carried out to evaluate the electrochemical performance of the individual electrodes and the full hybrid cells.

  12. Rep rated long life capacitor development: Phase 1 and 2

    Science.gov (United States)

    Galperin, I.; White, W.; Haskell, K.; Ennis, J.

    1984-09-01

    Polypropylene and polyolefin resins were characterized and processed into capacitor films. New capacitor films were developed--a post oriented processed, two layer polypropylene film and upgraded polyolefin film. Criteria for judging film quality were developed. Field life data were verified with paper/polypropylene capacitors on the Maxwell rep rate facility. A11 polypropylene film capacitors were developed with lifetimes in excess of 10 to the 7th power discharges at energy densities for the finished capacitor of 18.3 J/lb and projected to more than 20 J/lb.

  13. Humidity Testing of PME and BME Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.; Herzberger, Jaemi

    2014-01-01

    Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.

  14. Entropy characterisation of overstressed capacitors for lifetime prediction

    Science.gov (United States)

    Cuadras, Angel; Romero, Ramon; Ovejas, Victoria J.

    2016-12-01

    We propose a method to monitor the ageing and damage of capacitors based on their irreversible entropy generation rate. We overstressed several electrolytic capacitors in the range of 33 μF-100 μF and monitored their entropy generation rate S˙ (t). We found a strong relationship between capacitor degradation and S˙ (t). Therefore, we proposed a threshold for S˙ (t) as an indicator of capacitor time-to-failure. This magnitude is related to both capacitor parameters and to a damage indicator such as entropy. Our method goes beyond the typical statistical laws for lifetime prediction provided by manufacturers. We validated the model as a function of capacitance, geometry, and rated voltage. Moreover, we identified different failure modes, such as heating, electrolyte dry-up and gasification from the dependence of S˙ (T) with temperature, T. Our method was implemented in cheap electrolytic capacitors but can be easily applied to any type of capacitor, supercapacitor, battery, or fuel cell.

  15. High energy density capacitors using nano-structure multilayer technology

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1992-08-01

    Today, many pulse power and industrial applications are limited by capacitor performance. While incremental improvements are anticipated from existing capacitor technologies, significant advances are needed in energy density to enable these applications for both the military and for American economic competitiveness. We propose a program to research and develop a novel technology for making high voltage, high energy density capacitors. Nano-structure multilayer technologies developed at LLNL may well provide a breakthrough in capacitor performance. Our controlled sputtering techniques are capable of laying down extraordinarily smooth sub-micron layers of dielectric and conductor materials. With this technology, high voltage capacitors with an order of magnitude improvement in energy density may be achievable. Well-understood dielectrics and new materials will be investigated for use with this technology. Capacitors developed by nano-structure multilayer technology are inherently solid state, exhibiting extraordinary mechanical and thermal properties. The conceptual design of a Notepad capacitor is discussed to illustrate capacitor and capacitor bank design and performance with this technology. We propose a two phase R&D program to address DNA`s capacitor needs for electro-thermal propulsion and similar pulse power programs. Phase 1 will prove the concept and further our understanding of dielectric materials and design tradeoffs with multilayers. Nano-structure multilayer capacitors will be developed and characterized. As our materials research and modeling prove successful, technology insertion in our capacitor designs will improve the possibility for dramatic performance improvements. In Phase 2, we will make Notepad capacitors, construct a capacitor bank and demonstrate its performance in a meaningful pulse power application. We will work with industrial partners to design full scale manufacturing and move this technology to industry for volume production.

  16. Matching Properties of Femtofarad and Sub-Femtofarad MOM Capacitors

    KAUST Repository

    Omran, Hesham

    2016-04-21

    Small metal-oxide-metal (MOM) capacitors are essential to energy-efficient mixed-signal integrated circuit design. However, only few reports discuss their matching properties based on large sets of measured data. In this paper, we report matching properties of femtofarad and sub-femtofarad MOM vertical-field parallel-plate capacitors and lateral-field fringing capacitors. We study the effect of both the finger-length and finger-spacing on the mismatch of lateral-field capacitors. In addition, we compare the matching properties and the area efficiency of vertical-field and lateral-field capacitors. We use direct mismatch measurement technique, and we illustrate its feasibility using experimental measurements and Monte Carlo simulations. The test-chips are fabricated in a 0.18 \\\\mutext{m} CMOS process. A large number of test structures is characterized (4800 test structures), which improves the statistical reliability of the extracted mismatch information. Despite conventional wisdom, extensive measurements show that vertical-field and lateral-field MOM capacitors have the same matching properties when the actual capacitor area is considered. Measurements show that the mismatch depends on the capacitor area but not on the spacing; thus, for a given mismatch specification, the lateral-field MOM capacitor can have arbitrarily small capacitance by increasing the spacing between the capacitor fingers, at the expense of increased chip area.

  17. Thermodynamic energy exchange in a moving plate capacitor

    Science.gov (United States)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2001-09-01

    In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small—hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other.

  18. Method of manufacturing a shapeable short-resistant capacitor

    Science.gov (United States)

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2013-04-02

    A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.

  19. Performance of thin-film ferroelectric capacitors for EMC decoupling.

    Science.gov (United States)

    Li, Huadong; Subramanyam, Guru

    2008-12-01

    This paper studied the effects of thin-film ferroelectrics as decoupling capacitors for electromagnetic compatibility applications. The impedance and insertion loss of PZT capacitors were measured and compared with the results from commercial off-the-shelf capacitors. An equivalent circuit model was extracted from the experimental results, and a considerable series resistance was found to exist in ferroelectric capacitors. This resistance gives rise to the observed performance difference around series resonance between ferroelectric PZT capacitors and normal capacitors. Measurements on paraelectric (Ba,Sr)TiO(3)-based integrated varactors do not show this significant resistance. Some analyses were made to investigate the mechanisms, and it was found that it can be due to the hysteresis in the ferroelectric thin films.

  20. Thermodynamic energy exchange in a moving plate capacitor.

    Science.gov (United States)

    Davis, B. R.; Abbott, D.; Parrondo, J. M. R.

    2001-09-01

    In this paper we describe an apparent paradox concerning a moving plate capacitor driven by thermal noise from a resistor. The plates are attracted together, but a demon restores the plates of the capacitor to their original position when the voltage across the capacitor is small-hence only small forces are present for the demon to work against. The demon has to work harder than this to avoid the situation of perpetual motion, but the open question is how? This is unsolved, however we explore the concept of a moving plate capacitor by examining the case where it is still excited by thermal noise, but where the restoring force on the capacitor plates is provided by a simple spring rather than some unknown demon. We display simulation results with interesting behavior, particularly where the capacitor plates collide with each other. (c) 2001 American Institute of Physics.

  1. High energy density capacitor testing for the AFWL SHIVA

    Science.gov (United States)

    Smith, D. L.; Reinovsky, R. E.

    Lifetime testing and analysis of small samples of high energy density (HED) discharge capacitors at the AFWL were conducted to find a component suitable for upgrading the SHIVA capacitor bank to a 6 MJ facility. Evaluation was performed with discharge conditions of approximately 250 kA per capacitor at 60 to 70% reversal and 2 microsec quarter period. Dielectric systems including Kraft paper with caster oil impregnant and Kraft paper, polypropylene with DiOctyl Phthalate (DOP) impregnant were tested.

  2. Capacitor performance limitations in high power converter applications

    DEFF Research Database (Denmark)

    El-Khatib, Walid Ziad; Holbøll, Joachim; Rasmussen, Tonny Wederberg

    2013-01-01

    High voltage low inductance capacitors are used in converters as HVDC-links, snubber circuits and sub model (MMC) capacitances. They facilitate the possibility of large peak currents under high frequent or transient voltage applications. On the other hand, using capacitors with larger equivalent...... series inductances include the risk of transient overvoltages, with a negative effect on life time and reliability of the capacitors. These allowable limits of such current and voltage peaks are decided by the ability of the converter components, including the capacitors, to withstand them over...

  3. Aging Methodologies and Prognostic Health Management for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the ageing mechanisms of electronic components critical avionics systems such as the GPS and INAV are of critical importance. Electrolytic capacitors...

  4. Improved Design Techniques for Switched-Capacitor Ladder Filters.

    Science.gov (United States)

    Hsu, Teng-Hsien

    Using the new developments of MOS technology, switched-capacitor filters which consist of operational amplifiers, capacitors and switches in monolithic form, were widely investigated and put into practical forms. The switched-capacitor ladder filters have derived from doubly-terminated reactance two-ports. The main part of this dissertation is aimed at improving the efficiency and eliminating some shortcomings of the bilinear design technique. Two novel input stages which incorporate the necessary sample-and-hold function into the bilinear ladder filters are presented. The circuits are insensitive to parasitic capacitances. Some techniques to reduce the number of operational amplifier for bilinear switched-capacitor ladder filters are given. The number of top-plate parasitic-sensitive capacitors is less than in any of the existing design techniques. The clock feedthrough effects of pseudo-N-path switched-capacitor filter using lowpass filters as path filters are eliminated by the improved technique with doubling the number of operational amplifiers. Two-phase pseudo -N-path switched-capacitor filters can be obtained by tripling the number of operational amplifiers. The design technique for extending bilinear lowpass switched-capacitor ladder filters from odd orders to even orders is presented. One of the factors limiting the speed of bilinear switched-capacitor ladder filters is the delay-free loops. The techniques for breaking delay-free loops of low-order switched -capacitor filters are introduced. Digital ladder filters can be obtained through those switched-capacitor filters without delay-free loops. Numerical examples are given to compare the following digital filters: general cascade realization, wave digital filter, the digital filters derived from switched-capacitor filters - cascade and ladder. An improved high speed switched-capacitor linear interpolator, and nonlinear interpolators are described. The circuits are completely parasitic-insensitive. Two

  5. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions....

  6. Reliability of capacitors for DC-link applications - An overview

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede

    2013-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of DC-link in power electronic converters...... from two aspects: 1) reliability-oriented DC-link design solutions; 2) conditioning monitoring of DC-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics-of-failure...

  7. Soft capacitor fibers for electronic textiles

    Science.gov (United States)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-09-01

    A highly flexible, conductive polymer-based fiber with high electric capacitance is reported. The fiber is fabricated using fiber drawing method, where a multimaterial macroscopic preform is drawn into a submillimeter capacitor microstructured fiber. A typical measured capacitance per unit length of our fibers is 60-100 nF/m which is about 3 orders magnitude higher than that of a coaxial cable of a comparable diameter. The fiber has a transverse resistivity of 5 kΩ m. Softness, lightweight, absence of liquid electrolyte, and ease of scalability to large production volumes make the fibers interesting for various smart textile applications.

  8. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  9. Prognostics Health Management and Physics based failure Models for Electrolytic Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors and MOSFETs are the two major...

  10. Semi-conducting carbon nanotube as variable capacitor

    Science.gov (United States)

    Ozmaian, M.; Naghdabadi, R.

    2013-12-01

    This paper proposes a novel, one-part, variable capacitor, using semi-conducting carbon nanotube (CNT). This variable capacitor works based on the change in the electronic structure of CNTs under applied voltage and deformations. Positive and negative charges are stored at both ends of a non-zero band gap nanotube which works as metallic electrodes in parallel plate capacitors. Also the neutral strip in the middle acts as the dielectric part of a conventional capacitor under the influence of an external electric field. Mechanical strains on carbon nanotube change its band gap energy and thus the length of neutral strip and charged regions. The lengths of these parts are primarily dependent on the nanotube chirality, deformation mode and applied voltage. This way, different parts of a conventional cantilever, parallel plate or bridge capacitor are reduced to a one part semi-conducting CNT capacitor. Analytical calculations based on classical electrostatics and density of states (DOS) relations are employed to investigate the effect of CNTs geometry, applied voltage and deformations on capacitive features. The proposed CNT-variable-capacitor can be useful for nano-electromechanical systems (NEMS), including displacement measurement sensors and tunable capacitor in integrated circuits.

  11. Trench capacitor and method for producing the same

    NARCIS (Netherlands)

    Liu, J.; Roest, A.L.; Roozeboom, F.; Shabro, V.

    2013-01-01

    A method of fabricating a trench capacitor, and a trench capacitor fabricated thereby, are disclosed. The method involves the use of a vacuum impregnation process for a sol-gel film, to facilitate effective deposition of high-permittivity materials within a trench in a semiconductor substrate, to pr

  12. A Switched Capacitor Harmonic Compensation Part for Switching Supplies

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    A new approach based on switched capacitor network to harmonic compensation for switching supplies is presented in the paper,The basic principle is discussed.SPICE simulation is applied to analyze the behaviour of the switched capacitor harmonic compensation part.

  13. Direct Mismatch Characterization of femto-Farad Capacitors

    KAUST Repository

    Omran, Hesham

    2015-08-17

    Reducing the capacitance of programmable capacitor arrays, commonly used in analog integrated circuits, is necessary for low-energy applications. However, limited mismatch data is available for small capacitors. We report mismatch measurement for a 2fF poly-insulator-poly (PIP) capacitor, which is the smallest reported PIP capacitor to the best of the authors’ knowledge. Instead of using complicated custom onchip circuitry, direct mismatch measurement is demonstrated and verified using Monte Carlo Simulations and experimental measurements. Capacitive test structures composed of 9 bit programmable capacitor arrays (PCAs) are implemented in a low-cost 0:35m CMOS process. Measured data is compared to mismatch of large PIP capacitors, theoretical models, and recently published data. Measurement results indicate an estimated average relative standard deviation of 0.43% for the 2fF unit capacitor, which is better than the reported mismatch of metal-oxide-metal (MOM) fringing capacitors implemented in an advanced 32nm CMOS process.

  14. Metallized Film Capacitor Lifetime Evaluation and Failure Mode Analysis

    CERN Document Server

    Gallay, R

    2015-01-01

    One of the main concerns for power electronic engineers regarding capacitors is to predict their remaining lifetime in order to anticipate costly failures or system unavailability. This may be achieved using a Weibull statistical law combined with acceleration factors for the temperature, the voltage, and the humidity. This paper discusses the different capacitor failure modes and their effects and consequences.

  15. Charging damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMC) is reported. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage potentia

  16. A Magnesium-Activated Carbon Hybrid Capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, HD; Shterenberg, I; Gofer, Y; Doe, RE; Fischer, CC; Ceder, G; Aurbach, D

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionic complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.

  17. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    S Sampath; N A Choudhury; A K Shukla

    2009-09-01

    Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous phase of the polymer. Gel polymer electrolytes (GPE) that are formed using plastizicers and polymers along with ionic salts are known to exhibit liquid-like ionic conductivity while maintaining the dimensional stability of a solid matrix. In the present study, the preparation and characterization of poly(vinyl alcohol)-based hydrogel membranes (PHMEs) as electrolytes for electrochemical capacitors have been reported. Varying HClO4 dopant concentration leads to different characteristics of the capacitors. The EC comprising PHME doped with 2 M HClO4 and black pearl carbon (BPC) electrodes has been found to exhibit a maximum specific capacitance value of 97 F g-1, a phase angle value of 78°, and a maximum charge-discharge coulombic efficiency of 88%.

  18. Techniques for Reduction of the Parasitic Inductance of Decoupling Capacitors

    Science.gov (United States)

    Bernal, J.; Freire, M. J.

    2016-05-01

    The ability for providing effective decoupling of decoupling capacitors is mainly limited by its parasitic inductance. In this work we propose some new techniques for placing surface mount decoupling capacitors on a printed circuit board that make use of mutual inductance effects between currents on adjacent capacitors to provide significant reduction of the impedance seen at high frequencies at the input of the set of decoupling capacitors. This allows to keep the impedance of the power distribution network below the target impedance with a reduced number of decoupling capacitors, thus reducing cost and, more importantly in aerospace applications, saving space on the board. This technique does not require complex previous calculations or experimental adjustments to be implemented and consequently it has no negative impact in the time of design of practical circuits.

  19. Investigation of performance degradation in metallized film capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Godec, M. [Institute of Metals and Technology, Lepi Pot 11, 1000 Ljubljana (Slovenia); Mandrino, Dj., E-mail: djordje.mandrino@imt.si [Institute of Metals and Technology, Lepi Pot 11, 1000 Ljubljana (Slovenia); Gaberšček, M. [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia)

    2013-05-15

    Zn–Al metallized film capacitors in two different production stages were investigated to explain the decrease of capacitors performance with time. Unsealed and sealed capacitors with different aluminium content in metallization layer were investigated. Scanning electron microscopy (SEM) was used to image the surface of the metallization layers, energy dispersive X-ray spectroscopy (EDS) was used to determine the chemical composition and Auger electron spectroscopy (AES) was used to determine the chemical composition of the top of the metallization layers as well as to estimate the degree of oxidation. It was found that air humidity degraded the metallization layer of unsealed capacitors, especially at lower Al contents. Sealed capacitors were exposed to high electric fields, typical for standard usage. It was found – rather unexpectedly – that the performance was decreased by increasing Al content. A crystallographic explanation was proposed.

  20. Investigation of performance degradation in metallized film capacitors

    Science.gov (United States)

    Godec, M.; Mandrino, Dj.; Gaberšček, M.

    2013-05-01

    Zn-Al metallized film capacitors in two different production stages were investigated to explain the decrease of capacitors performance with time. Unsealed and sealed capacitors with different aluminium content in metallization layer were investigated. Scanning electron microscopy (SEM) was used to image the surface of the metallization layers, energy dispersive X-ray spectroscopy (EDS) was used to determine the chemical composition and Auger electron spectroscopy (AES) was used to determine the chemical composition of the top of the metallization layers as well as to estimate the degree of oxidation. It was found that air humidity degraded the metallization layer of unsealed capacitors, especially at lower Al contents. Sealed capacitors were exposed to high electric fields, typical for standard usage. It was found - rather unexpectedly - that the performance was decreased by increasing Al content. A crystallographic explanation was proposed.

  1. Advanced Wet Tantalum Capacitors: Design, Specifications and Performance

    Science.gov (United States)

    Teverovsky, Alexander

    2017-01-01

    Insertion of new types of commercial, high volumetric efficiency wet tantalum capacitors in space systems requires reassessment of the existing quality assurance approaches that have been developed for capacitors manufactured to MIL-PRF-39006 requirements. The specifics of wet electrolytic capacitors is that leakage currents flowing through electrolyte can cause gas generation resulting in building up of internal gas pressure and rupture of the case. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. This presentation gives a review of specifics of the design, performance, and potential reliability risks associated with advanced wet tantalum capacitors. Problems related to setting adequate requirements for DPA, leakage currents, hermeticity, stability at low and high temperatures, ripple currents for parts operating in vacuum, and random vibration testing are discussed. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  2. Flake tantalum powder for manufacturing electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    HE Jilin; YANG Guoqi; PAN Luntao; LIU Hongdong; BAO Xifang

    2008-01-01

    The FTP200 flake tantalum powder was introduced.The microstructures of the powder with leaf-like primary particles having an average flakiness of 2 to 20 and porous agglomerated particles were observed.The chemical composition,physical properties,and electrical properties of the FTP200 powder were compared with those of the FTW300 nodular powder.The FTP200 powder is more sinter-resistant,and the surface area of the flake tantalum powder under sintering at high temperature has less loss than that of the nodular tantalum powder.The specific capacitance of the flake tantalum powder is higher than that of the nodular tantalum powder with the same surface area when anodized at high voltage,Thus,the flake tantalum powder is suitable for manufacturing tantalum solid electrolytic capacitors in the range of median and high (20-63 V) voltages.

  3. Charge fluctuations in nano-scale capacitors

    CERN Document Server

    Limmer, David T; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-01-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers an efficient and accurate route to the differential capacitance and is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes, and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  4. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  5. Capacitor with a composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  6. Chemical sensitivity of Mo gate Mos capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, R.M.; Aragon, R. [Laboratorio de Peliculas delgadas, Facultad de Ingenieria, Paseo Colon 850, 1063, Buenos Aires (Argentina)

    2006-07-01

    Mo gate Mos capacitors exhibit a negative shift of their C-V characteristic by up to 240 mV, at 125 C, in response to 1000 ppm hydrogen, in controlled nitrogen atmospheres. The experimental methods for obtaining capacitance and conductance, as a function of polarisation voltage, as well as the relevant equivalent circuits are reviewed. The single-state interface state density, at the semiconductor-dielectric interface, decreases from 2.66 x 10{sup 11} cm{sup -2} e-v{sup -1}, in pure nitrogen, to 2.5 x 10{sup 11} cm{sup -2} e-v{sup -1} in 1000 ppm hydrogen in nitrogen mixtures, at this temperature. (Author)

  7. Development of High Temperature Capacitor Technology and Manufacturing Capability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  8. Investigation of Tantalum Wet Slug Capacitor Failures in the Apollo Telescope Mount Charger Battery Regulator Modules

    Science.gov (United States)

    Williams, J. F.; Wiedeman, D. H.

    1973-01-01

    This investigation describes the capacitor failures and to identify the cause of the failure mechanism. Early failures were thought to have happened because of age and/or abuse since the failed capacitors were dated 1967. It is shown that all 1967 capacitors were replaced with 1972 capacitors.

  9. Floating body cell a novel capacitor-less DRAM cell

    CERN Document Server

    Ohsawa, Takashi

    2011-01-01

    DRAM together with NAND Flash is driving semiconductor technologies with wide spectrum of usage ranging from PC, mobile phone and digital home appliances to solid-state disk (SSD). However, the DRAM cell which consists of a data storage capacitor (1C) and a switching transistor (1T) is facing serious difficulty in shrinking the size of the capacitor whose capacitance needs to be kept almost constant (20~30fF) throughout generations. The availability of a new DRAM cell which does not rely on an explicit capacitor for storing its data is more than ever awaited for further increasing the bit dens

  10. New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution

    Science.gov (United States)

    Stepniak, Izabela; Ciszewski, Aleksander

    Activated carbon (AC) fiber cloths and a hydrophobic microporous polypropylene (PP) membrane, both modified with lithiated acetone oligomers, were used as electrodes and a separator in electric double layer capacitors (EDLCs) with aqueous lithium hydroxide (LiOH) as the electrolyte. Electrochemical characteristics of EDLCs were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge cycle tests and impedance spectroscopy (EIS), compared with a case of the capacitor with aqueous potassium hydroxide (KOH) as an electrolyte. As a result, the capacitor with LiOH aqueous solution and a modified separator and electrodes was found to exhibit higher specific capacitance, maximum energy stored and maximum power than that with KOH aqueous solution.

  11. A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link

    OpenAIRE

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-01-01

    A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of ...

  12. Electrochemical Capacitor Development for Pulsed Power Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA Phase II SBIR Project, we will continue the development of graphitic nanosheets (GNS) for electrochemical capacitor (EC) electrode materials. In the...

  13. Compact 20-kiloampere pulse-forming-network capacitor bank

    Science.gov (United States)

    Posta, S. J.; Michels, C. J.

    1973-01-01

    Bank uses commercially available high-energy-density capacitors for energy storage and silicon-controlled rectifiers for switching. Low voltage design employing solid-state switching is utilized in lieu of conventional gas discharge switching.

  14. Prognostic Techniques for Capacitor Degradation and Health Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses our initial efforts in constructing physics of failure models for electrolytic capacitors subjected to electrical stressors in DC-DC power...

  15. Electric Double-layer Capacitor Based on Activated Carbon Material

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this study electric double-layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant-current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate ofI=0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω.cm2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.

  16. Fringe Capacitance of a Parallel-Plate Capacitor.

    Science.gov (United States)

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  17. Generalised Impedance Converters with only Transconductance Elements and Grounded Capacitors

    Directory of Open Access Journals (Sweden)

    Iqbal A. Khan

    2002-01-01

    capacitors in the realisation of continuous time filters lend to electronic tunability and compatibility to integration in contemporary IC technologies. The generalised impedance converters are also verified using PSPICE-based simulation.

  18. Improvement program for polycarbonate capacitors. [hermetically sealed, and ac wound

    Science.gov (United States)

    Bailey, R. R.; Waterman, K. D.

    1973-01-01

    Hermetically sealed, wound, AC, polycarbonate capacitors incorporating design improvements recommended in a previous study were designed and built. A 5000 hour, 400 Hz ac life test was conducted using 384 of these capacitors to verify the adequacy of the design improvements. The improvements incorporated in the capacitors designed for this program eliminated the major cause of failure found in the preceding work, termination failure. A failure cause not present in the previous test became significant in this test with capacitors built from one lot of polycarbonate film. The samples from this lot accounted for 25 percent of the total test complement. Analyses of failed samples showed that the film had an excessive solvent content. This solvent problem was found in 37 of the total 46 failures which occurred in this test. The other nine were random failures resulting from causes such as seal leaks, foreign particles, and possibly wrinkles.

  19. Nanocurrent oscillator indefinitely powered by a capacitor battery

    CERN Document Server

    Ragni, Luigi

    2012-01-01

    Some electrolytic capacitors show dielectric behaviour that can not be entirely explained by the well known long lasting relaxation. Extra charges able to generate a useful conduction current can be detected for an indefinite time. A squarewave oscillator based on MOSFET CMOS technology and requiring less than 2 nW was powered for 80 days at 25 {\\deg}C by a 58.2 mF capacitor battery, without voltage decrease during the last 53 days of observation. The battery consisted of three series of 16 parallel, 15 years aged, capacitors with DC capacitance of 10.9 mF. Capacitors so old, stored without voltage application, were affected by degradation and thinning of the alumina layer that could promote tunnelling of the charge. The main purpose of the present study is to stimulate further investigations aimed at confirming or disputing the observed phenomenon and, if necessary, at shedding light on its physical mechanisms.

  20. A Composite Capacitor/Inductor Assembly for Resonant Circuits

    Science.gov (United States)

    Hull, J. P.; Scholfield, D. W.

    2001-06-01

    Resonant structures are of interest due to their ability to produce oscillatory voltages in circuits. Past resonant structures have typically been designed using a lumped element capacitor for energy storage and a separate inductor. A composite capacitor/inductor assembly has been developed which merges the capacitance utilized for energy storage into the inductor, creating a consolidated electrical component. Composite capacitor/inductor assemblies are of interest due to the ability of these devices to produce resonant responses with one half the number of parts required by more traditional resonant structures. This composite capacitor/inductor could be utilized in applications of frequency band suppression or frequency band pass for frequencies in excess of 100 MHz, or where a resonant circuit is required to reside in an area of minimum space - such as a printed circuit board or an integrated circuit. The device and the mathematical treatment to predict the device's performance are described.

  1. Calorimetric measurement and modelling of the equivalent series of capacitors

    Science.gov (United States)

    Seguin, B.; Gosse, J. P.; Ferrieux, J. P.

    1999-12-01

    The equivalent series resistance of polypropylene capacitors has been determined under rated voltage, in the range 1 kHz 1 MHz, between 220 K and 370 K by a calorimetric technique. The original feature of this determination of capacitor losses lies in the use of the isothermal calorimetry and in the measurement of an electrical power and not of a temperature increase. The frequency dependence of the equivalent series resistance, at various temperatures, enables to separate the losses in the conducting material from those in the dielectric and to get their respective variations as a function of frequency and temperature. These variations of the equivalent series resistance with frequency at a given temperature have been reproduced by using an equivalent circuit composed of resistors, inductors and capacitors. This model has been verified for non-sinusoidal waveforms such as those met with in a filtering circuit and is used to evaluate by simulation the losses of the capacitor.

  2. Development of a recycling process for tantalum from capacitor scraps

    Science.gov (United States)

    Mineta, Kunio; Okabe, Toru H.

    2005-02-01

    A process based on oxidation treatment at elevated temperature, followed by mechanical separation and chemical treatment, was investigated to develop an effective process for recycling tantalum from capacitor scraps. By this process, tantalum oxide powder, free of SiO2 or other impurities, was recovered from capacitor scrap. Tantalum powder with 99 mass% purity was recovered by magnesiothermic reduction of the obtained tantalum oxide powder.

  3. Solid State Capacitor Discharge Pulsed Power Supply Design for Railguns

    Science.gov (United States)

    2007-03-01

    CAPACITOR DISCHARGE PULSED POWER SUPPLY DESIGN FOR RAILGUNS by Jesse H. Black March 2007 Thesis Advisor: Alexander L. Julian Co-Advisor...switched power supply capable of providing 50 kJ from a high voltage capacitor to a railgun . The efficiency with which energy is transferred from a...also produce a smaller electromagnetic pulse. Voltage limitations on the thyristors require two in series acting as a single switch. Railgun

  4. Physics Based Modeling and Prognostics of Electrolytic Capacitors

    Science.gov (United States)

    Kulkarni, Chetan; Ceyla, Jose R.; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors have become critical components in electronics systems in aeronautics and other domains. Degradations and faults in DC-DC converter unit propagates to the GPS and navigation subsystems and affects the overall solution. Capacitors and MOSFETs are the two major components, which cause degradations and failures in DC-DC converters. This type of capacitors are known for its low reliability and frequent breakdown on critical systems like power supplies of avionics equipment and electrical drivers of electromechanical actuators of control surfaces. Some of the more prevalent fault effects, such as a ripple voltage surge at the power supply output can cause glitches in the GPS position and velocity output, and this, in turn, if not corrected will propagate and distort the navigation solution. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  5. Using a Fixed and Switched-Capacitor Bank to Investigate Harmonic Resonance and Capacitor Bank Switching in a Distribution Network

    Directory of Open Access Journals (Sweden)

    J.C. Attachie

    2014-03-01

    Full Text Available Harmonic resonance often manifests as high harmonic voltages in a power system. This produces losses and affects other consumers in the grid negatively. Capacitance switching applications also involve not only interrupting capacitive currents, but also the energizing of capacitor banks, cables and overhead lines. The applications of capacitors are extensively used in power systems for voltage support and power factor correction. However, the main concern arising from the use of capacitors is the possibility of system resonance. This study investigates the frequent capacitor bank tripping and damages in one of the distribution substations of the Electricity Company of Ghana (ECG. The study was conducted using the Electromagnetic Transient Program (EMTP software for the simulation. The results showed that, the failures were related to harmonic resonance. Selected series connected inductors were recommended to shift the resonant frequencies of the network below characteristics harmonic frequencies.

  6. Installation of capacitors in plants which have synchronous machines; Instalacao de capacitores em plantas que possuem maquinas sincronas

    Energy Technology Data Exchange (ETDEWEB)

    Gennari, Jorge L.; Vasconcellos, Alexandre S. de [Figener Engenheiros Associados (Brazil)

    1996-07-01

    Generators and synchronous motors may supply the necessary power factor correction, which tends to turn unnecessary the installation of capacitors. However, it is necessary to calculate how much more the company will pay in electric power bill when the stop of such machinery be necessary, either in a programed or emergency situation. Therefore, the decision of installing capacitors depends on this calculation. This work shows some criteria and results of a study case. 3 figs., 6 tabs.

  7. Optimal design of capacitor-driven coilgun

    Science.gov (United States)

    Kim, Seog-Whan; Jung, Hyun-Kyo; Hahn, Song-Yop

    1994-03-01

    This paper presents an analysis and optimal design of a capacitor-driven inductive coilgun. An equivalent circuit is used for a launch simulation of the coilgun. The circuit equations are solved together with the equation of motion of the projectile by using the Runge-Kutta method. The numerical results are compared with the experimental values to verify the usefulness of the developed simulation program. It is shown that the numerical and the experimental results are in a good agreement. In the design of the system the optimization is achieved by employing the genetic algorithm. The resultant specifications of the coilgun optimally designed by the proposed algorithm are tested by experiment. Finally the obtained results are compared with those designed by approximate equations and by linear search methods as well. It is found that the proposed algorithm gives a better result in the energy efficiency of the system, namely it enables one to obtain a higher muzzle velocity of the projectile with the same amount of energy.

  8. Carbide Derived Carbon Super Capacitor Application

    Science.gov (United States)

    Appelgate, James; Bauer, Dave; Quirin, James; Lofland, S. E.; Hettinger, J. D.; Heon, M.; Gogotsi, Y.

    2010-02-01

    Supercapacitors can be applied into many different fields from nano-robots to high density energy storage. Growing TiC films from a know recipe and removing the transition metal element, Titanium, by chlorination leaves a carbon film that can then be applied as an electrode in a super capacitor. The problem is when the Titanium is removed from the film the stress induced by this process causes the films to fracture into isolated islands. The islands allow electrons to travel across them every easily, but there is no transfer of electrons from island to island. We present results of an investigation of a technique control the location of the fractures and use them to our benefit. Ideally, we want to create them to fracture in parallel lines. To force these fractures into straight lines we will purchase substrates with thermal SiO2 created on the surface of Si. Using an etching process we will removed a channel of SiO2 the same as the thickness of the TiC film we plan on growing. These channels will allow the fractures to form in a correlated way creating a straight line. )

  9. Study of electric capacitors using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Alina Neamț

    2012-12-01

    Full Text Available A capacitor is made of two armatures and a dielectric between the two armatures. In this paper, we are going to study the plane capacitor , which is made of two equal metal armatures, plane and parallel, having the S surface, situated at a distance d much shorter than the armatures dimensions, between which there is a liniar, homogenous and isotropic dielectric having a constant electrical permittivity.The purpose of studying the plane capacitor, through MEF, presented in this paper,is to establish the stress to which the dielectrics may be subject to, in daily practice, and the influence that their superposition in an electric field has, on each of them. The study of the plane capacitor , finalised with observations on the raise of the dependence of the electric field intensity in air on the size of the air layer and having as parameter the type of dielectric material introduced between the armatures, is an example of confirmation or invalidation of the possibility and utility of using layers of dielectrics between the armatures of the capacitors.

  10. The ISR Asymmetrical Capacitor Thruster: Experimental Results and Improved Designs

    Science.gov (United States)

    Canning, Francis X.; Cole, John; Campbell, Jonathan; Winet, Edwin

    2004-01-01

    A variety of Asymmetrical Capacitor Thrusters has been built and tested at the Institute for Scientific Research (ISR). The thrust produced for various voltages has been measured, along with the current flowing, both between the plates and to ground through the air (or other gas). VHF radiation due to Trichel pulses has been measured and correlated over short time scales to the current flowing through the capacitor. A series of designs were tested, which were increasingly efficient. Sharp features on the leading capacitor surface (e.g., a disk) were found to increase the thrust. Surprisingly, combining that with sharp wires on the trailing edge of the device produced the largest thrust. Tests were performed for both polarizations of the applied voltage, and for grounding one or the other capacitor plate. In general (but not always) it was found that the direction of the thrust depended on the asymmetry of the capacitor rather than on the polarization of the voltage. While no force was measured in a vacuum, some suggested design changes are given for operation in reduced pressures.

  11. Advanced Capacitor with SiC for High Temperature Applications

    Science.gov (United States)

    Tsao, B. H.; Ramalingam, M. L.; Bhattacharya, R. S.; Carr, Sandra Fries

    1994-07-01

    An advanced capacitor using SiC as the dielectric material has been developed for high temperature, high power, and high density electronic components for aircraft and aerospace application. The conventional capacitor consists of a large number of metallized polysulfone films that are arranged in parallel and enclosed in a sealed metal case. However, problems with electrical failure, thermal failure, and dielectric flow were experienced by Air Force suppliers for the component and subsystem for lack of suitable properties of the dielectric material. The high breakdown electrical field, high thermal conductivity, and high temperature operational resistance of SiC compared to similar properties of the conventional ceramic and polymer capacitor would make it a better choice for a high temperature, and high power capacitor. The quality of the SiC film was evaluated. The electrical parameters, such as the capacitance, dissipation factor, equivalent series resistance, and dielectric withstand voltage, were evaluated. The prototypical capacitors are currently being fabricated using SiC film.

  12. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  13. Ultra high energy density and fast discharge nanocomposite capacitors

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  14. High energy density nanocomposite capacitors using non-ferroelectric nanowires

    Science.gov (United States)

    Tang, Haixiong; Sodano, Henry A.

    2013-02-01

    A high energy density nanocomposite capacitor is fabricated by incorporating high aspect ratio functionalized TiO2 nanowires (NWs) into a polyvinylidene-fluoride matrix. These nanocomposites exhibited energy density as high as 12.4 J/cc at 450 MV/m, which is nine times larger than commercial biaxially oriented polypropylene polypropylene capacitors (1.2 J/cc at 640 MV/m). Also, the power density can reach 1.77 MW/cc with a discharge speed of 2.89 μs. The results presented here demonstrate that nanowires can be used to develop nanocomposite capacitors with high energy density and fast discharge speed for future pulsed-power applications.

  15. Partial Discharge in Capacitor Model at Low Temperature

    Directory of Open Access Journals (Sweden)

    P. Rain

    2009-01-01

    Full Text Available The partial discharge plays an important role in the ageing and the rupture process of solid or mixed insulation systems. Ithas been recognized that the failure of this insulation can be joined to the presence of partial discharge often in inclusionssparkling. Liquid filled cavities can be considered as the most likely defects that can exist in capacitors. In this paper wedescribe the partial discharge evolution at low temperatures in all-PP film capacitors according to the time and the appliedvoltage. We distinguish two regimes of discharges for all the range of temperature and the low temperatures encourage thebreakdown of capacitors at weak voltage, we assign this phenomenon to the increase of the viscosity of filling liquid.

  16. Infant-mortality testing of high-energy-density capacitors used on Nova

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, B.T.; Whitham, K.

    1983-01-01

    Nova is a solid-state large laser for inertial-confinement fusion research. Its flashlamps are driven by a 60-MJ capacitor bank. Part of this bank is being built with high-energy-density capacitors, 52-..mu..F, 22 kV, 12.5 kJ. A total of 2645 of these capacitors have been purchased from two manufacturers. Each capacitor was infant-mortality tested. The first test consisted of a high-potential test, bushing-to-case, since these capacitors have dual bushings. Then the capacitors were discharged 500 times with circuit conditions approximating the capacitors normal flashlamp load. Failure of either of these tests or if the capacitor was leaking was cause for rejection.

  17. Reliability Modeling Development and Its Applications for Ceramic Capacitors with Base-Metal Electrodes (BMEs)

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    This presentation includes a summary of NEPP-funded deliverables for the Base-Metal Electrodes (BMEs) capacitor task, development of a general reliability model for BME capacitors, and a summary and future work.

  18. 76 FR 23837 - Certain Ceramic Capacitors and Products Containing Same; Notice of the Commission's Final...

    Science.gov (United States)

    2011-04-28

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Ceramic Capacitors and Products Containing Same; Notice of the Commission's Final... importation of certain ceramic capacitors and products containing the same by reason of infringement...

  19. Degradation testing and failure analysis of DC film capacitors under high humidity conditions

    DEFF Research Database (Denmark)

    Wang, Huai; Nielsen, Dennis Achton; Blaabjerg, Frede

    2015-01-01

    Metallized polypropylene film capacitors are widely used for high-voltage DC-link applications in power electronic converters. They generally have better reliability performance compared to aluminum electrolytic capacitors under electro-thermal stresses within specifications. However, the degrada...

  20. Integrated Diagnostic/Prognostic Experimental Setup for Capacitor Degradation and Health Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes the experiments and setups for studying diagnosis and prognosis of electrolytic capacitors in DC-DC power converters. Electrolytic capacitors and...

  1. Reliability Evaluation of Base-Metal-Electrode Multilayer Ceramic Capacitors for Potential Space Applications

    Science.gov (United States)

    Liu, David (Donhang); Sampson, Michael J.

    2011-01-01

    Base-metal-electrode (BME) ceramic capacitors are being investigated for possible use in high-reliability spacelevel applications. This paper focuses on how BME capacitors construction and microstructure affects their lifetime and reliability. Examination of the construction and microstructure of commercial off-the-shelf (COTS) BME capacitors reveals great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and 0.5 m, which is much less than that of most PME capacitors. BME capacitors can be fabricated with more internal electrode layers and thinner dielectric layers than PME capacitors because they have a fine-grained microstructure and do not shrink much during ceramic sintering. This makes it possible for BME capacitors to achieve a very high capacitance volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT). Most BME capacitors were found to fail with an early avalanche breakdown, followed by a regular dielectric wearout failure during the HALT test. When most of the early failures, characterized with avalanche breakdown, were removed, BME capacitors exhibited a minimum mean time-to-failure (MTTF) of more than 105 years at room temperature and rated voltage. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically around 12 for a number of BME capacitors with a rated voltage of 25V. This may suggest that the number of grains per dielectric layer is more critical than the

  2. Maintenance-free super-capacitor-based WSN power supply

    Science.gov (United States)

    Vidrascu, Mihai G.; Svasta, Paul; Vladescu, Marian

    2016-12-01

    Super-capacitors are highly reliable devices, outlasting any existing battery in operating conditions, cycle number and ruggedness. They are perfect candidates for energy storage in remote wireless sensor network nodes. Other applications [1] use a combination of rechargeable battery as the main storage device and a low capacity EDLC as energy buffer. This paper describes the design and the results from a module consisting of a single large capacitor, a MPPC charger and a boost converter. Unlike other devices, this prototype uses one storage device (a single EDLC), it does not involve software components [2] and it can operate from a single solar cell.

  3. Candidate organic electrolytes for electric double-layer capacitor application

    Institute of Scientific and Technical Information of China (English)

    B.Fang; Y.Wei; K.Suzuki; M.Kumagai

    2004-01-01

    Electrolytic conductivity,viscosity and electrochemical behavior were investigated for organic electrolytes based on PC(Propylene carbonate),MAN(Methoxy acetonitrile) and GBL(γ-Butyrolactone) solvents.It was found that 1 mol/L Et4NBF4-MAN had the highest conductivity,lowest viscosity and acceptable potential window.The specific capacitance and energy density obtained from the capacitor using 1 mol/L Et4NBF4-MAN as electrolyte were the highest among all the tested electrolytes.1 mol/L Et4NBF4-GBL also seemed promising to be used in electric double-layer capacitor (EDLCs).

  4. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.

  5. Breakdown voltage of discrete capacitors under single-pulse conditions

    Science.gov (United States)

    Domingos, H.; Scaturro, J.; Hayes, L.

    1981-01-01

    For electrostatic capacitors the breakdown voltage is inherently related to the properties of the dielectric, with the important parameters being the dielectric field strength which is related to the dielectric constant and the dielectric thickness. These are not necessarily related to the capacitance value and the rated voltage, but generally the larger values of capacitance have lower breakdown voltages. Foil and wet slug electrolytics can withstand conduction currents pulses without apparent damage (in either direction for foil types). For solid tantalums, damage occurs whenever the capacitor charges to the forming voltage.

  6. Differential RF MEMS interwoven capacitor immune to residual stress warping

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-27

    A RF MEMS capacitor with an interwoven structure is designed, fabricated in the PolyMUMPS process and tested in an effort to address fabrication challenges usually faced in MEMS processes. The interwoven structure was found to offer several advantages over the typical MEMS parallel-plate design including eliminating the warping caused by residual stress, eliminating the need for etching holes, suppressing stiction, reducing parasitics and providing differential capability. The quality factor of the proposed capacitor was higher than five throughout a 2–10 GHz range and the resonant frequency was in excess of 20 GHz.

  7. Advanced capacitor technology based on two-dimensional nanosheets

    Science.gov (United States)

    Kim, Hyung-Jun; Osada, Minoru; Sasaki, Takayoshi

    2016-11-01

    As electronics continue to decrease in size, new classes of materials are necessary to continue this downsizing trend. Of particular importance is the development of high-performance capacitors based on dielectric films. Ultrathin high-k dielectrics are expected to be key to future applications. Recently, we have developed new high-k nanodielectrics based on molecularly thin oxide nanosheets [Ti0.87O2, Ti2NbO7, (Ca,Sr)2Nb3O10]. Newly developed nanosheets exhibited the highest permittivity (εr > 100) ever realized in all known dielectrics in the ultrathin region (capacitor applications.

  8. A fully woven touchpad sensor based on soft capacitor fibers

    CERN Document Server

    Gu, Jian Feng; Skorobogatiy, Maksim

    2011-01-01

    A novel, highly flexible capacitor fiber (with 100 nF m-1 typical capacitance per length) having a multilayer periodic structure of dielectric and conductive polymer composite films is fabricated by drawing technique. The fiber is used to build a woven touchpad sensor. Then, we study the influence of the fiber length, capacitance and volume resistivity on the touch sensing performance. A theoretical ladder network model of a fiber network is developed. A fully woven textile sample incorporating one-dimension array of the capacitor fibers is fabricated. Finally we show that such an array functions as a two-dimensional touch sensor.

  9. A Silicon-Based Ferroelectric Capacitor for Memory Devices

    Institute of Scientific and Technical Information of China (English)

    任天令; 张林涛; 刘理天; 李志坚

    2002-01-01

    We study a silicon-based Pb TiO3/Pb(Zro.53 Tio.47)O3/Pb TiO3 capacitor, prepared by an improved sol-gel method.The ferroelectric capacitor has a high remanent polarization of 15 pC/crm2 at a coercive field of about 30 k V/cm,an ultra-low leakage current density of 0.1 hA/crm2, and almost fatigue free properties. It can be used as a promising candidate for ferroelectric memory devices.

  10. Differential evolutionary algorithm for distribution capacitor allocation considering varying load conditions

    OpenAIRE

    Karimi, Mohammad

    2011-01-01

    Many loads in power systems are inductive loads then consume reactive power, this fact lead to drop voltage and in worst case blackout and collapse voltage. Best option in distribution networks for avoid of this problem is installation of capacitor bank. In capacitor installation, finding optimal location and size of capacitor have special importance. In this paper, Differential Evolutionary (DE) algorithm is proposed for optimal placement and sizing of capacitor. Our objective funct...

  11. SOGI-based capacitor voltage feedback active damping in LCL-filtered grid converters

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang;

    2015-01-01

    The capacitor voltage feedback active damping control is an attractive way to suppress LCL-filter resonance especially for the systems where the capacitor voltage is used for grid synchronization, since no extra sensors are added. The derivative is the core of the capacitor voltage feedback active...... derivative is more suited for capacitor voltage feedback active damping control. Experimental results validate the effectiveness of the proposed method....

  12. PLL jitter reduction by utilizing a ferroelectric capacitor as a VCO timing element.

    Science.gov (United States)

    Pauls, Greg; Kalkur, Thottam S

    2007-06-01

    Ferroelectric capacitors have steadily been integrated into semiconductor processes due to their potential as storage elements within memory devices. Polarization reversal within ferroelectric capacitors creates a high nonlinear dielectric constant along with a hysteresis profile. Due to these attributes, a phase-locked loop (PLL), when based on a ferroelectric capacitor, has the advantage of reduced cycle-to-cycle jitter. PLLs based on ferroelectric capacitors represent a new research area for reduction of oscillator jitter.

  13. How to get mechanical work from a capacitor and two batteries

    CERN Document Server

    Miranda, E N

    2012-01-01

    The work done by a parallel plate capacitor is evaluated when the plate separation is changed. Two cases are considered: 1) the capacitor has a constant charge; 2) the capacitor is at constant voltage. The net work is calculated when the device follows a closed cycle in the charge-voltage space. For certain conditions a net mechanical work can be obtained from the cycling capacitor. The analysis is simple enough to be explained in a general physics course.

  14. The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach

    Science.gov (United States)

    Lee, Keeyung

    2009-01-01

    The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…

  15. Accelerated lifetime testing of energy storage capacitors used in particle accelerators power converters

    CERN Document Server

    AUTHOR|(SzGeCERN)679542; Genton, Charles-Mathieu

    2015-01-01

    Energy storage capacitors are used in large quantities in high power converters for particle accelerators. In this application capacitors see neither a DC nor an AC voltage but a combination of the two. The paper presents a new power converter explicitly designed to perform accelerated testing on these capacitors and the results of the tests.

  16. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai

    2012-01-01

    This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.

  17. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    Science.gov (United States)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; Kim, K.

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  18. Programmable SC biquad using one single capacitor bank

    OpenAIRE

    Torralba Silgado, Antonio Jesús; Pérez Vega-Leal, Alfredo; García Franquelo, Leopoldo

    2001-01-01

    This paper presents a new technique for programming SC circuits using a single time-multiplexed capacitor bank, achieving a significant reduction in capacitance area. Simulation results of a programmable biquad low pass filter show the validity of the proposed method.

  19. Mismatch-shaping switching for two-capacitor DAC

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, U.; Temes, G.C.

    1998-01-01

    A mismatch-shaping scheme is proposed for a two-capacitor digital-to-analogue converter (DAC). It uses a delta-sigma loop for finding the optimal switching sequence for each input word. Simulations indicate that the scheme can be used for the realisation of DACs with 16 bit linearity and SNR perf...

  20. Mismatch-Shaped Pseudo-Passive Two-Capacitor DAC

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, Un-Ku; Temes, Gabor C.

    1999-01-01

    A simple mismatch-shaping scheme is proposed for a two-capacitor DAC. Unlike in other mismatch-shaping systems, the shaped error is generated by direct filtering of a well-defined bounded signal, which can be generated as white noise. The operation is closely related to a specific digital interpo...

  1. Carbons, ionic liquids and quinones for electrochemical capacitors

    Directory of Open Access Journals (Sweden)

    Raul eDiaz

    2016-04-01

    Full Text Available Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL capacitance and energy density.The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  2. DYNAMIC REGIMES OF ASYNCHRONOUS MOTORS WITH CONCATENATED CAPACITORS

    Directory of Open Access Journals (Sweden)

    V. S. Malyar

    2015-04-01

    Full Text Available Purpose. Development of mathematical model for calculation of starting modes of asynchronous motor connected in series with capacitors. Method. Mathematical modeling of dynamic modes of asynchronous motors with lateral capacitor compensation of reactive power. Results. The calculation algorithm and results of mathematic modeling of processes during starting modes of asynchronous motor feeding from the network through capacitors connected in series are presented. It is shown that for some values of capacitance the self-excitation processes and subharmonic oscillations can appear. Scientific novelty. Mathematic modeling and research of processes in asynchronous motor under its feeding through capacitors is carried out for the first time. The calculation algorithm is based on the mathematical model of asynchronous motor with high level of adequacy, which takes into account the magnetic core saturation and the current displacement in limbs of the rotor. Practical implication. Developed mathematical model makes it possible to investigate the possibility of self-excitation modes appearing in condition of their feeding from line with lateral compensation of reactance in order to avoid the negative effects typical for them.

  3. Current Control of Grid Converters Connected with Series AC Capacitor

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang;

    2015-01-01

    The series ac capacitor has recently been used with the transformerless grid-connected converters in the distribution power grids. The capacitive characteristic of the resulting series LC filter restricts the use of conventional synchronous integral or stationary resonant current controllers. Thus...

  4. Linear variable voltage diode capacitor and adaptive matching networks

    NARCIS (Netherlands)

    Larson, L.E.; De Vreede, L.C.N.

    2006-01-01

    An integrated variable voltage diode capacitor topology applied to a circuit providing a variable voltage load for controlling variable capacitance. The topology includes a first pair of anti-series varactor diodes, wherein the diode power-law exponent n for the first pair of anti-series varactor di

  5. Carbons, ionic liquids and quinones for electrochemical capacitors

    Science.gov (United States)

    Diaz, Raul; Doherty, Andrew

    2016-04-01

    Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL) capacitance and energy density. The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  6. Comb Capacitor Structures for On-Chip Physical Uncloneable Function

    NARCIS (Netherlands)

    Roy, D.; Klootwijk, J.H.; Verhaegh, N.A.M.; Roosen, H.H.A.J.; Wolters, R.A.M.

    2009-01-01

    Planar inter-digitated comb capacitor structures are an excellent tool for on-chip capacitance measurement and evaluation of properties of coating layers with varying composition. These comb structures are easily fabricated in a single step in the last metallization layer of a standard IC process. C

  7. Static and dynamic aspects of an air gap capacitor

    NARCIS (Netherlands)

    IJntema, Dominicus J.; Tilmans, Harrie A.C.

    1992-01-01

    This paper deals with the theory of an air-gap capacitor used as a micromechanical resonator. Both static and dynamic aspects are discussed. A single-element approach for the electrostatic excitation and capacitive detection of the vibrational motion of the resonators is described. The non-linear ch

  8. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  9. Investigation of Some Characteristics Related to PCM Thermal Capacitors

    Science.gov (United States)

    Griggs, E. I.

    1972-01-01

    In order to provide greater flexibility, shorter computer time, and a parametric study, attention was devoted to an implicit numerical scheme. The experimental work involved outlining and monitoring approximately fourteen tests of an invertable capacitor. Surface and PCM temperatures were measured at several locations and photographs were made of the PCM during melting and solidification. Some typical experimental results are presented and discussed.

  10. A simple capacitor model for radio emission associated with earthquakes

    Institute of Scientific and Technical Information of China (English)

    Ares de Parga Gonzalo; Ram(I)rez-Rojas Alejandro

    2004-01-01

    In this brief report we propose a simple model based on the properties of an electric capacitor under short-circuit conditions as a possible mechanism of radio emissions associated with earthquakes. This model can be considered as complementary to other models concerning the same problem.

  11. Thermodynamic model for bouncing charged particles inside a capacitor

    Science.gov (United States)

    Rezaeizadeh, Amin; Mameghani, Pooya

    2013-08-01

    We introduce an equation of state for a conducting particle inside a charged parallel-plate capacitor and show that it is similar to the equation of state for an ideal gas undergoing an adiabatic process. We describe a simple experiment that shows reasonable agreement with the theoretical model.

  12. Plasma-Charging Damage of Floating MIM Capacitors

    NARCIS (Netherlands)

    Wang, Zhichun; Ackaert, Jan; Salm, Cora; Kuper, Fred G.; Tack, Marnix; De Backer, Eddy; Coppens, Peter; De Schepper, Luc; Vlachakis, Basil

    2004-01-01

    In this paper, the mechanism of plasma-charging damage (PCD) of metal-insulator-metal (MIM) capacitors as well as possible protection schemes are discussed. A range of test structures with different antennas simulating interconnect layout variations have been used to investigate the mechanism of PCD

  13. Novel dielectric reduces corona breakdown in ac capacitors

    Science.gov (United States)

    Loehner, J. L.

    1972-01-01

    Dielectric system was developed which consists of two layers of 25-gage paper separated by one layer of 50-gage polypropylene to reduce corona breakdown in ac capacitors. System can be used in any alternating current application where constant voltage does not exceed 400 V rms. With a little research it could probably be increased to 700 to 800 V rms.

  14. Capacitor charging FET switcher with controller to adjust pulse width

    Science.gov (United States)

    Mihalka, A. M.

    1986-04-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20 to 50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the dc input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  15. Highly Accurate Derivatives for LCL-Filtered Grid Converter with Capacitor Voltage Active Damping

    DEFF Research Database (Denmark)

    Xin, Zhen; Loh, Poh Chiang; Wang, Xiongfei;

    2016-01-01

    The middle capacitor voltage of an LCL-filter, if fed back for synchronization, can be used for active damping. An extra sensor for measuring the capacitor current is then avoided. Relating the capacitor voltage to existing popular damping techniques designed with capacitor current feedback would...... are then proposed, based on either second-order or non-ideal generalized integrator. Performances of these derivatives have been found to match the ideal “s” function closely. Active damping based on capacitor voltage feedback can therefore be realized accurately. Experimental results presented have verified...

  16. Lifetime Estimation of Electrolytic Capacitors in Fuel Cell Power Converter at Various Confidence Levels

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of the power density and the reliability. In this paper, according to the degradation data of tested capacitors, the lifetime model of the component is analyzed at various confidence levels. Then, the mission profile...... based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in a fuel cell backup power converter operating in both standby mode and operation mode. The lifetime prediction of the capacitor banks at different confidence levels is also obtained....

  17. Lifetime Estimation of Electrolytic Capacitors in Fuel Cell Power Converter at Various Confidence Levels

    DEFF Research Database (Denmark)

    Zhou, Dao; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    DC capacitors in power electronic converters are a major constraint on improvement of the power density and the reliability. In this paper, according to the degradation data of tested capacitors, the lifetime model of the component is analyzed at various confidence levels. Then, the mission profi...... based lifetime expectancy of the individual capacitor and the capacitor bank is estimated in a fuel cell backup power converter operating in both standby mode and operation mode. The lifetime prediction of the capacitor banks at different confidence levels is also obtained....

  18. Pattern recognition of typical defects in high-voltage storage capacitors based on DC partial discharge

    Institute of Scientific and Technical Information of China (English)

    WU GuangNing; BIAN ShanShan; ZHOU LiRen; ZHANG XueQin; RAN HanZheng; YU ChengLong

    2009-01-01

    High-voltage storage capacitors(hereinafter call capacitors for short)have been widely used in pulsed power technology.In accordance with the actual work conditions of capacitors,direct current partial discharge(DCPD)detection was put forward.The whole test system was based on the impedance balance circuit characterized by good configuration and anti-interference ability.Through DCPD detection on capacitors which contained four typical defects respectively,test results revealed that DCPD signals could well reflect the state of capacitor insulation.DCPD distribution spectra of capacitors containing four typical defects were obviously different.Defects in capacitors could be exactly judged by computer-aided pattern recognition based on support vector machine(SVM).

  19. Pattern recognition of typical defects in high-voltage storage capacitors based on DC partial discharge

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    High-voltage storage capacitors(hereinafter call capacitors for short)have been widely used in pulsed power technology.In accordance with the actual work conditions of capacitors,direct current partial discharge(DCPD)detection was put forward.The whole test system was based on the impedance balance circuit characterized by good configuration and anti-interference ability.Through DCPD detection on capacitors which contained four typical defects respectively,test results revealed that DCPD signals could well reflect the state of capacitor insulation.DCPD distribution spectra of capacitors containing four typical defects were obviously different.Defects in capacitors could be exactly judged by computer–aided pattern recognition based on support vector machine(SVM).

  20. Simulation Research of Transient Over-voltage on High-voltage Shunt Capacitor Banks

    Institute of Scientific and Technical Information of China (English)

    HU Quan-wei; ZHOU Xing-xing; SI Wen-rong; ZHANG Yang; LI Jur-hao; LI Yan-ming

    2011-01-01

    With the development of power systems,a large number of shunt capacitors are used to improve power quality in the distribution network.The shunt capacitor banks are operated much frequently,as a result,the capacitor banks will bear large numbers of over-voltage inevitably.If the over-voltage exceeds certain amplitude,the capacitor will be damaged.This paper aims at the capacitor banks in the 35 kV side of Shanghai Xu-xing 500 kV substation,and applies ATP-EMTP to simulate the over-voltages generated by operating the switches under different angles of the source.Finally,according to the results of simulation and theoretical analysis,a best choice (i.e.angles of the source) to switch on capacitor banks is proposed.In this case the over-voltage on the capacitor will be limited to lowest.

  1. A resonant biaxial Helmholtz coil employing a fractal capacitor bank

    Science.gov (United States)

    Martin, James E.

    2013-09-01

    The design and construction of a series resonant biaxial Helmholtz coil for the production of magnetic fields as large as 500 G in the range of 100-2500 Hz is described. Important aspects of ac coil design are discussed, including: minimizing power losses due to the expected Joule heating, self-induced eddy currents, and skin resistance; controlling the stray capacitance; maximizing field homogeneity; and keeping peak voltages at acceptable levels. The design and construction of a computer-controlled, optically isolated fractal capacitor bank is then treated, and various aspects of capacitor selection and characterization were discussed. The system performance is demonstrated, including stability and the possibility of field component dephasing with typical magnetic samples.

  2. High voltage magnetic pulse generation using capacitor discharge technique

    Directory of Open Access Journals (Sweden)

    M. Rezal

    2014-12-01

    Full Text Available A high voltage magnetic pulse is designed by applying an electrical pulse to the coil. Capacitor banks are developed to generate the pulse current. Switching circuit consisting of Double Pole Double Throw (DPDT switches, thyristor, and triggering circuit is developed and tested. The coil current is measured using a Hall-effect current sensor. The magnetic pulse generated is measured and tabulated in a graph. Simulation using Finite Element Method Magnetics (FEMM is done to compare the results obtained between experiment and simulation. Results show that increasing the capacitance of the capacitor bank will increase the output voltage. This technology can be applied to areas such as medical equipment, measurement instrument, and military equipment.

  3. Development of Capacitors for Power Electronics in Hybrid Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-16

    The purpose of this CRADA is to develop a fabrication process to reduce the manufacturing cost for a very compact, high temperature, film-on-foil high energy-density PLZT (Pb-La-Zr- Ti-O) capacitor. Motivation for this CRADA is derived from the DOE’s Office of Vehicle Technologies (OVT) program, which seeks to advance technologies to improve vehicle fuel efficiency in the mid-term and facilitate the transition to electric drive vehicles over the longterm. The objective of Argonne’s work is to develop and characterize high-performance capacitors on base-metal foils. The PLZT film-on-foil prepared using a spin-coating technique

  4. A resonant biaxial Helmholtz coil employing a fractal capacitor bank.

    Science.gov (United States)

    Martin, James E

    2013-09-01

    The design and construction of a series resonant biaxial Helmholtz coil for the production of magnetic fields as large as 500 G in the range of 100-2500 Hz is described. Important aspects of ac coil design are discussed, including: minimizing power losses due to the expected Joule heating, self-induced eddy currents, and skin resistance; controlling the stray capacitance; maximizing field homogeneity; and keeping peak voltages at acceptable levels. The design and construction of a computer-controlled, optically isolated fractal capacitor bank is then treated, and various aspects of capacitor selection and characterization were discussed. The system performance is demonstrated, including stability and the possibility of field component dephasing with typical magnetic samples.

  5. On the Anomalous Weight Losses of High Voltage Symmetrical Capacitors

    CERN Document Server

    Porcelli, Elio B

    2015-01-01

    In this work, we analyzed an anomalous effect verified from symmetrical capacitor devices, working in very high electric potentials. The mastery of that effect could mean in the future the possible substitution of propulsion technology based on fuels by single electrical propulsion systems. From experimental measurements, we detected small variations of the device inertia that cannot be associated with known interactions, so that the raised force apparently has not been completely elucidated by current theories. We measured such variations within an accurate range and we proposed that the experimental results can be explained by relations like Clausius-Mossotti one, in order to quantify the dipole forces that appear in the devices. The values of the weight losses in the capacitors were calculated by means of the theoretical proposal and indicated good agreement with our experimental measurements for 7kV and with many other experimental works.

  6. Analysis of displacement damage effects on MOS capacitors

    Science.gov (United States)

    Fernández-Martínez, P.; Palomo, F. R.; Hidalgo, S.; Fleta, C.; Campabadal, F.; Flores, D.

    2013-12-01

    Displacement damage effect on MOS capacitors is analyzed in this work with the aid of TCAD simulations. A noticeable capacitance reduction in the accumulation mode is observed in the High Frequency C-V characteristic curve after a 24 GeV proton irradiation. This effect is clearly distinguishable from ionizing damage effects, otherwise negligible under the specific conditions of the experiment. The capacitance reduction is identified with the increase of the substrate resistivity, due to the modification of its effective doping concentration. Supported on a well-established traps model, the expected displacement damage defects are simulated as a function of the fluence, allowing the identification of donor trap levels as the responsible of the phenomenon for p-type substrate MOS capacitors.

  7. Carbon-Based Fibrous EDLC Capacitors and Supercapacitors

    Directory of Open Access Journals (Sweden)

    C. Lekakou

    2011-01-01

    Full Text Available This paper investigates electrochemical double-layer capacitors (EDLCs including two alternative types of carbon-based fibrous electrodes, a carbon fibre woven fabric (CWF and a multiwall carbon nanotube (CNT electrode, as well as hybrid CWF-CNT electrodes. Two types of separator membranes were also considered. An organic gel electrolyte PEO-LiCIO4-EC-THF was used to maintain a high working voltage. The capacitor cells were tested in cyclic voltammetry, charge-discharge, and impedance tests. The best separator was a glass fibre-fine pore filter. The carbon woven fabric electrode and the corresponding supercapacitor exhibited superior performance per unit area, whereas the multiwall carbon nanotube electrode and corresponding supercapacitor demonstrated excellent specific properties. The hybrid CWF-CNT electrodes did not show a combined improved performance due to the lack of carbon nanotube penetration into the carbon fibre fabric.

  8. High energy storage capacitor by embedding tunneling nano-structures

    Energy Technology Data Exchange (ETDEWEB)

    Holme, Timothy P; Prinz, Friedrich B; Van Stockum, Philip B

    2014-11-04

    In an All-Electron Battery (AEB), inclusions embedded in an active region between two electrodes of a capacitor provide enhanced energy storage. Electrons can tunnel to/from and/or between the inclusions, thereby increasing the charge storage density relative to a conventional capacitor. One or more barrier layers is present in an AEB to block DC current flow through the device. The AEB effect can be enhanced by using multi-layer active regions having inclusion layers with the inclusions separated by spacer layers that don't have the inclusions. The use of cylindrical geometry or wrap around electrodes and/or barrier layers in a planar geometry can enhance the basic AEB effect. Other physical effects that can be employed in connection with the AEB effect are excited state energy storage, and formation of a Bose-Einstein condensate (BEC).

  9. A Novel Interdigital Capacitor Pressure Sensor Based on LTCC Technology

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-01-01

    Full Text Available A novel passive wireless pressure sensor is proposed based on LTCC (low temperature cofired ceramic technology. The sensor employs a passive LC circuit, which is composed of a variable interdigital capacitor and a constant inductor. The inductor and capacitor were fabricated by screen-printing. Pressure measurement is tested using a wireless mutual inductance coupling method. The experimental sensitivity of the sensor is about 273.95 kHz/bar below 2 bar. Experimental results show that the sensor can be read out wirelessly by external antenna at 600°C. The max readout distance is 3 cm at room temperature. The sensors described can be applied for monitoring of gas pressure in harsh environments, such as environment with high temperature and chemical corrosion.

  10. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  11. Clad fiber capacitor and method of making same

    Science.gov (United States)

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  12. Numerical and analytical results for the two disks capacitor problem

    CERN Document Server

    Paffuti, Giampiero

    2016-01-01

    In this paper we study the two disks capacitor, for equal and different radii. The new results obtained allow a complete characterization of capacity coefficients and forces at short distances. An extensive numerical calculation confirms the theoretical results. The study shows the existence of a hierarchy in the divergent behavior of the capacitance coefficients and this implies some unusual behavior of the forces, strictly related to the dimensionality of the near-contact zone between electrodes.

  13. Solid state capacitor discharge pulsed power supply for railguns

    OpenAIRE

    2007-01-01

    This thesis presents a solid state thyristor switched power supply capable of providing 50 kJ from a high voltage capacitor to a railgun. The efficiency with which energy is transferred from a power supply to a projectile depends strongly on power supply characteristics. This design will provide a better impedance match to the railgun than power supplies utilizing spark gap switches. This supply will cost less and take up less volume than a similar supply using spark gap switches; it wil...

  14. Energy storage capacitors: Aging and diagnostic approaches for life validation

    Energy Technology Data Exchange (ETDEWEB)

    Sarjeant, W.J. [State Univ. of New York, Buffalo, NY (United States); Larson, D.W. [Lawrence Livermore National Lab., CA (United States); MacDougall, F.W. [Aerovox, Inc., New Bedford, MA (United States); Kohlberg, I. [I. Kohlberg Associates, Inc., Alexandria, VA (United States)

    1997-01-01

    Over the last decade, significant increases in capacitor reliability have been achieved through a combination of advanced manufacturing techniques, new materials, and diagnostic methodologies to provide requisite life-cycle reliability for high energy pulse applications. Recent innovations in analysis of aging, including dimensional analysis, are introduced for predicting component performance and fault tolerance. In addition, voltage scaling issues that may drive bank fault-tolerance performance are described.

  15. MEMS high-Q tunable capacitor for reconfigurable microwave circuits

    Science.gov (United States)

    Nordquist, Christopher D.; Muyshondt, Arnoldo; Pack, Michael V.; Finnegan, Patrick S.; Dyck, Christopher W.; Reines, Isak C.; Kraus, Garth M.; Sloan, George R.; Sullivan, Charles T.

    2003-01-01

    Future microwave networks require miniature high-performance tunable elements such as switches, inductors, and capacitors. We report a micro-machined high-performance tunable capacitor suitable for reconfigurable monolithic microwave integrated circuits (MMICs). The capacitor is fabricated on a GaAs substrate using low-temperature processing, making it suitable for post-process integration with MMICs, radio frequency integrated circuits (RFICs) and other miniaturized circuits. Additionally, the insulating substrate and high-conductivity metal provide low-loss operation at frequencies over 20 GHz. The device demonstrates a capacitance of 150 fF at 0 V bias, pull-in at about 15 V to 18 V, and further linear tuning from 290 fF to 350 fF over a voltage range of 7 V to 30 V. Also, the device demonstrates self-resonance frequencies over 50 GHz, and Q"s over 100 at 10 GHz. To enable integration into circuits, a simple equivalent circuit model of the device has been developed, demonstrating a good match to the measured data through 25 GHz. Initial testing to 1 billion cycles indicates that metal fatigue is the primary limitation to reliability and reproducibility, and that dielectric charging does not have a significant impact on the device. This device is promising for high-performance tunable filters, phase shifters, and other reconfigurable networks at frequencies through K-band.

  16. Surface potential determination in metal-oxide-semiconductor capacitors

    Science.gov (United States)

    Moragues, J. M.; Ciantar, E.; Jerisian, R.; Sagnes, B.; Oualid, J.

    1994-11-01

    Different methods using the relationship between surface potential Psi(sub S) and gate bias V(sub G) in metal-oxide-semiconductor (MOS) capacitors have been compared. These methods can be applied even if the doping profile is very abrupt and the interface state density very high. The shifts of midgap, flatband, and threshold voltages, observed after Fowler-Nordheim electron injection, and deduced from the various Psi(sub S(V (sub G)) relationships obtained by these different methods, are in good agreement. These shifts give the number of effective oxide trapped charges (N(sub ox)) per unit area and acceptor-like and donor-like interface states (N(sub SS)A and N(sub SS)D) which are created during the electron injection. We reveal that the number of positive charges created in the gate oxide, unlike the number of generated interface states, strongly depends on the position of the post-metallization annealing step in the process. After relaxation of the stressed MOS capacitors, most of the generated positive charges can be attributed, in the MOS capacitors studied, to hydrogen-related species. It seems that the interface states are essentially created by the recombination of holes generated by electron impact.

  17. PEO nanocomposite polymer electrolyte for solid state symmetric capacitors

    Indian Academy of Sciences (India)

    Nirbhay K Singh; Mohan L Verma; Manickam Minakshi

    2015-10-01

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites. The composites have been synthesized by the completely dry (solution-free) hot-press method. The addition of filler in fractional amount to the solid polymer matrix at room temperature further enhances the ionic conductivity. Nature of the NPEs were studied using X-ray diffraction and energy-dispersive spectra analyses. Thermal stability of the resulting electrolyte was analysed by thermogravimetric analysis and differential scanning calorimetric studies. Morphology changes occurred during the addition of fillers was evidenced by scanning electronic microscope images. Solid polymer electrolytes exhibiting these parameters was found to be suitable for solid state capacitors. The results obtained from the electrolytes with an optimum compositions (PEO70AgI30)93 (Al2O3)7 and (PEO70AgI30)95 (SiO2)5 used in the (PEO70AgI30)70 (AC)30 electrodes for symmetric capacitor applications and their performances were analysed by impedance spectroscopic, Bode plot, cyclic voltammetry, discharge characteristics and leakage current profile.

  18. Research of on-line detection system for power capacitor

    Science.gov (United States)

    Yao, Junda; Qian, Zheng; Yu, Hao; Xia, Jiuyun

    2016-01-01

    The hidden danger exists in the power capacitor of power system due to long-time operation under the environment of high voltage. Thus, it is possible to induce serious fault, and the on-line detection system is urgently required. In this paper, two methods of the on-line detection system are compared in order to realize the better real-time condition detection. The first method is based on the STM microprocessor with an internal 12 bit A/D converter, which converts analog signals which is arrived from the sample circuit into digital signals, and then the FFT algorithm is used to accomplish the measurement of the voltage and current values of the capacitor. The second method is based on the special electric energy metering IC, which can obtain RMS (Root Mean Square) of voltage and current by processing the sampled data of the voltage and current, and store RMS of voltage and current in its certain registers. The operating condition of the capacitor can be obtained after getting the values of voltage and current. By comparing the measuring results of two methods, the second method could achieve a higher measurement accuracy and more simple construction.

  19. Random Vibration Testing of Advanced Wet Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  20. Redox-capacitor to connect electrochemistry to redox-biology.

    Science.gov (United States)

    Kim, Eunkyoung; Leverage, W Taylor; Liu, Yi; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-01-07

    It is well-established that redox-reactions are integral to biology for energy harvesting (oxidative phosphorylation), immune defense (oxidative burst) and drug metabolism (phase I reactions), yet there is emerging evidence that redox may play broader roles in biology (e.g., redox signaling). A critical challenge is the need for tools that can probe biologically-relevant redox interactions simply, rapidly and without the need for a comprehensive suite of analytical methods. We propose that electrochemistry may provide such a tool. In this tutorial review, we describe recent studies with a redox-capacitor film that can serve as a bio-electrode interface that can accept, store and donate electrons from mediators commonly used in electrochemistry and also in biology. Specifically, we (i) describe the fabrication of this redox-capacitor from catechols and the polysaccharide chitosan, (ii) discuss the mechanistic basis for electron exchange, (iii) illustrate the properties of this redox-capacitor and its capabilities for promoting redox-communication between biology and electrodes, and (iv) suggest the potential for enlisting signal processing strategies to "extract" redox information. We believe these initial studies indicate broad possibilities for enlisting electrochemistry and signal processing to acquire "systems level" redox information from biology.

  1. 50V All-PMOS Charge Pumps Using Low-Voltage Capacitors

    KAUST Repository

    Emira, Ahmed

    2012-10-06

    In this work, two high-voltage charge pumps are introduced. In order to minimize the area of the pumping capacitors, which dominates the overall area of the charge pump, high density capacitors have been utilized. Nonetheless, these high density capacitors suffer from low breakdown voltage which is not compatible with the targeted high voltage application. To circumvent the breakdown limitation, a special clocking scheme is used to limit the maximum voltage across any pumping capacitor. The two charge pump circuits were fabricated in a 0:6m CMOS technology with poly0-poly1 capacitors. The output voltage of the two charge pumps reached 42:8V and 51V while the voltage across any capacitor did not exceed the value of the input voltage. Compared to other designs reported in the literature, the proposed charge pump provides the highest output voltage which makes it more suitable for tuning MEMS devices.

  2. Leakage Currents in Low-Voltage PME and BME Ceramic Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2015-01-01

    Introduction of BME capacitors to high-reliability electronics as a replacement for PME capacitors requires better understanding of changes in performance and reliability of MLCCs to set justified screening and qualification requirements. In this work, absorption and leakage currents in various lots of commercial and military grade X7R MLCCs rated to 100V and less have been measured to reveal difference in behavior of PME and BME capacitors in a wide range of voltages and temperatures. Degradation of leakage currents and failures in virgin capacitors and capacitors with introduced cracks has been studied at different voltages and temperatures during step stress highly accelerated life testing. Mechanisms of charge absorption, conduction and degradation have been discussed and a failure model in capacitors with defects suggested.

  3. Electrically and thermally activated ageing mechanisms in metallised polymer film capacitors

    CERN Document Server

    Lee, Y P

    2001-01-01

    This dissertation describes a combined computational and experimental study to understand the fundamental electrostatic, thermal, electromagnetic, and discharge related processes during the ageing of metallised polymer film capacitors. In the event of internal breakdowns, these capacitors are capable of 'self-healing' through a controlled isolation of defects on the electrode surfaces by mosaic patterning the electrode. The objective of this project is to develop viable computer models to unravel electrothermally activated ageing processes in capacitors. To provide the necessary validation to any capacitor models developed, our work is supported by comprehensive experiments including industrial standard accelerated life tests and associated breakdown damage analyses of tested capacitors. These have enabled an empirical identification of main factors affecting the reliability and lifetime of capacitors. Relevant raw data and the qualitative picture enabled by these data are crucial to the development and refin...

  4. A Humidity-Dependent Lifetime Derating Factor for DC Film Capacitors

    DEFF Research Database (Denmark)

    Wang, Huai; Reigosa, Paula Diaz; Blaabjerg, Frede

    2015-01-01

    Film capacitors are widely assumed to have superior reliability performance than Aluminum electrolytic capacitors in DC-link design of power electronic converters. However, the assumption needs to be critically judged especially for applications under high humidity environments. This paper proposes...... a humidity-dependent lifetime derating factor for a type of plastic-boxed metallized DC film capacitors. It overcomes the limitation that the humidity impact is not considered in the state-of-the-art DC film capacitor lifetime models. The lifetime derating factor is obtained based on a total of 8,700 hours...... accelerated testing of film capacitors under different humidity conditions, enabling a more justified lifetime prediction of film capacitors for DC-link applications under specific climatic environments. The analysis of the testing results and the detailed discussion on the derating factor with different...

  5. Manufacturing technology effect on current pulse handling performance of metallized polypropylene film capacitors

    Science.gov (United States)

    El-Husseini, M. H.; Venet, P.; Al-Majid, A.; Fathallah, M.; Rojat, G.; Ferreira, J. A.

    2003-09-01

    In this paper, the testing of the pulse-withstanding capability of metallized polypropylene film (MPPF) capacitors is reported. Four groups of capacitors having the same electrical characteristics but different geometry were considered for the test. Capacitors with long geometry seem to have poorer pulse handling performance for similar electrical stress conditions. However, the premature failure of one of the capacitor groups tested suggests that the quality of the end-edge contact is strongly dependent on the physical features of the manufacturing process. The end-edge contact plays a vital role in the current pulse handling capability of MPPF capacitors, which varies from a few hundred to several thousand discharging cycles depending on the geometry of the capacitor and the end-edge contact manufacturing process.

  6. Electrical properties of thick film capacitors based on barium titanate glass formulations

    Energy Technology Data Exchange (ETDEWEB)

    Leppaevuori, S.; Uusimaeki, A.; Hannula, T.

    1981-12-18

    We carried out an investigation of the effects of the glass content of the dielectric layer of thick film capacitors with a barium titanate glass formulation on the capacitance density, loss factor and breakdown voltage of the capacitors. These effects were studied by varying the firing temperature and glass content of the dielectric paste and by using different types of electrode paste. The characteristics of a test capacitor were also measured.

  7. Fabrication and Characterization of Multilayer Capacitors Buried in a Low Temperature Co-Fired Ceramic Substrate

    OpenAIRE

    Chan, Y. C.; G. Y. Li

    1998-01-01

    Multilayer ceramic capacitors designed to be embedded in a low temperature co-fired ceramic substrate have been successfully fabricated. Low and high value capacitors were respectively embedded in the low K multilayer substrate and high K dielectric layer. The buried capacitor has a capacitance density range (1 kHz) from about 220 pF/cm2 to 30 nF/cm2. The design took material compatibility and shrinkage characteristics specifically into account. The effects of heating rat...

  8. Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber.

    Science.gov (United States)

    Ren, Jing; Bai, Wenyu; Guan, Guozhen; Zhang, Ye; Peng, Huisheng

    2013-11-06

    A flexible and weaveable electric double-layer capacitor wire is developed by twisting two aligned carbon nanotube/ordered mesoporous carbon composite fibers with remarkable mechanical and electronic properties as electrodes. This capacitor wire exhibits high specific capacitance and long life stability. Compared with the conventional planar structure, the capacitor wire is also lightweight and can be integrated into various textile structures that are particularly promising for portable and wearable electronic devices.

  9. Investigation of New Isotactic Polypropylene and Syndiotactic Polystyrene Materials for High Pulsed Power Capacitors

    Science.gov (United States)

    2008-08-08

    polypropylene (LCBPP) and PVDF copolymers, toward the Navy capacitor goal with energy density >30 J/cc and low energy loss. The approach in LCBPPs is to...SUBJECT TERMS high energy density capacitor , high pulsed power capacitor , polypropylene , LCBPP, PVDF. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18...08/08/2008 Final Report 01/01/2005 - 02/28/2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Investigation of new Isotactic Polypropylene and Syndiotactic

  10. A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link.

    Science.gov (United States)

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-10-01

    A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35-μm 4-metal 2-poly standard CMOS process in 2.1 mm(2) of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μF capacitors up to ±2 V in 420 μs, achieving a high measured charging efficiency of 82%.

  11. Digital Realization of Capacitor-Voltage Feedback Active Damping for LCL-Filtered Grid Converters

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang;

    2015-01-01

    The capacitor voltage of an LCL-filter can also be used for active damping, if it is fed back for synchronization. By this way, an extra current sensor can be avoided. Compared with the existing active damping techniques designed with capacitor current feedback, the capacitor voltage feedback....... To overcome their drawbacks, a new derivative method is then proposed, based on the non-ideal generalized integrator. The performance of the proposed derivative has been found to match the ideal “s” function closely. Active damping based on capacitor voltage feedback can therefore be realized accurately...

  12. Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2012-01-01

    Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.

  13. Modelling and analysis of fringing and metal thickness effects in MEMS parallel plate capacitors

    Science.gov (United States)

    Shah, Kriyang; Singh, Jugdutt; Zayegh, Aladin

    2005-12-01

    This paper presents a detailed design and analysis of fringing and metal thickness effects in a Micro Electro Mechanical System (MEMS) parallel plate capacitor. MEMS capacitor is one of the widely deployed components into various applications such are pressure sensor, accelerometers, Voltage Controlled Oscillator's (VCO's) and other tuning circuits. The advantages of MEMS capacitor are miniaturisation, integration with optics, low power consumption and high quality factor for RF circuits. Parallel plate capacitor models found in literature are discussed and the best suitable model for MEMS capacitors is presented. From the equations presented it is found that fringing filed and metal thickness have logarithmic effects on capacitance and depend on width of parallel plates, distance between them and thickness of metal plates. From this analysis a precise model of a MEMS parallel plate capacitor is developed which incorporates the effects of fringing fields and metal thickness. A parallel plate MEMS capacitor has been implemented using Coventor design suite. Finite Element Method (FEM) analysis in Coventorware design suite has been performed to verify the accuracy of the proposed model for suitable range of dimensions for MEMS capacitor Simulations and analysis show that the error between the designed and the simulated values of MEMS capacitor is significantly reduced. Application of the modified model for computing capacitance of a combed device shows that the designed values greatly differ from simulated results noticeably from 1.0339pF to 1.3171pF in case of fringed devices.

  14. Guidelines for the selection and application of tantalum electrolytic capacitors in highly reliable equipment

    Science.gov (United States)

    Holladay, A. M.

    1978-01-01

    Guidelines are given for the selection and application of three types of tantalum electrolytic capacitors in current use in the design of electrical and electronic circuits for space flight missions. In addition, the guidelines supplement requirements of existing military specifications used in the procurement of capacitors. A need exists for these guidelines to assist designers in preventing some of the recurring, serious problems experienced with tantalum electrolytic capacitors in the recent past. The three types of capacitors covered by these guidelines are; solid, wet foil, and tantalum cased wet slug.

  15. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor.

  16. Reliability of Capacitors for DC-Link Applications in Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Blaabjerg, Frede

    2014-01-01

    DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of dc link in power electronic converters...... from two aspects: 1) reliability-oriented dc-link design solutions; 2) conditioning monitoring of dc-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics-of-failure...

  17. Thermal instability of electrolytic capacitor bank used for gas puff valve

    Science.gov (United States)

    Bellan, P. M.

    2002-08-01

    It is shown that self-heating of electrolytic capacitors causes the output current of a capacitor bank to increase with successive shots even though the charge voltage is held constant. Self heating of only 10 °C can cause a near tripling in the gas output of the gas puffing valves commonly used in spheromak research. By using metallized polypropylene film capacitors instead of electrolytic capacitors the reproducibility is substantially improved (the shot-to-shot variation in gas output is reduced to be <0.5%).

  18. Thermal instability of electrolytic capacitor bank used for gas puff valve

    OpenAIRE

    Bellan, P. M.

    2002-01-01

    It is shown that self-heating of electrolytic capacitors causes the output current of a capacitor bank to increase with successive shots even though the charge voltage is held constant. Self heating of only 10 °C can cause a near tripling in the gas output of the gas puffing valves commonly used in spheromak research. By using metallized polypropylene film capacitors instead of electrolytic capacitors the reproducibility is substantially improved (the shot-to-shot variation in gas output is r...

  19. Vibration and Audible Noise of Filter Capacitors in HVDC Converter Stations%Vibration and Audible Noise of Filter Capacitors in HVDC Converter Stations

    Institute of Scientific and Technical Information of China (English)

    ZHU Ling-yu; JI Sheng-chang

    2011-01-01

    The filter capacitor stack is one of the main acoustic noise sources in high-voltage DC (HVDC) converter stations. As HVDC systems are built more and more recently, it is significant to research the audible noise of filter capacitors. In this paper, the current situation of research on vibration and audible noise of filter capacitors in HVDC converter stations, which is departed into three parts--generation mechanism, prediction methods, and reduction measures, is presented and the research achievements are discussed. Scholars have built the model that the alternating electric force caused by the voltage conduces to the vibration, which propagates to the enclosure and radiates audible noise. As a result, the parts contributing most to the generation of audible noise are the top and the bottom of capacitors. In the noise level prediction respect, several methods have been prospected including impact hammer, sweep frequency, impact current, monopole and Kirchhoff formula method, which are suitable for single capacitors or capacitors stacks individually. However, the sweep frequency method is restricted by experiment condition, and the impact current method needs further research and verified. On the other hand, CIGRE WG14.26 provides three sound reduction measures, but all of them are not so practicable, while MPP absorber and compressible space absorber prospected by Dr. Wu Peng are proved to be effective. The sound barriers are also considered by scholars, and the acoustic directivity performance of capacitors is also researched. Besides, the developing direction of each research field is prospected in corresponding part.

  20. Anti-Ferroelectric Ceramics for High Energy Density Capacitors

    Directory of Open Access Journals (Sweden)

    Aditya Chauhan

    2015-11-01

    Full Text Available With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  1. High energy density capacitors for low cost applications

    Science.gov (United States)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  2. Switched capacitor arrays analog memory for sparse data sampling

    CERN Document Server

    Panebianco, S; Russo, G V; Caponetto, C; Petta, C; Randazzo, N; Reito, S; Russo, M

    1999-01-01

    We present the design and the test performed on ADeLinel, a Full-Custom Analog Memory for sparse data sampling. It has been designed as an array of switched capacitors. It is only one channel of 8 cells. The control part of the ADeLine chip is custom designed for the size reduction, high speed performance and low power dissipation. The memory has been integrated in double poly, double metal AMS 0.8 mu m CMOS. It has 3.5 V input and output swings, a linearity within +- 6 mV in a 2 V range and 11 bits of resolution. (author)

  3. Electric drive systems including smoothing capacitor cooling devices and systems

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan Mehmet; Zhou, Feng

    2017-02-28

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  4. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    Science.gov (United States)

    Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.

    1998-03-17

    A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.

  5. C- V characterization of MOS capacitors in SOI structures

    Science.gov (United States)

    Rustagi, S. C.; Mohsen, Z. O.; Chandra, S.; Chand, A.

    1996-06-01

    The capacitance-voltage characterization of a MOS structure in the SOI film has been carried out and the results have been interpreted with the help of a numerical solution to the one-dimensional Laplace-Poisson's equation. Various parameters characterizing the SOI MOS structures have been extracted. It has been shown that the C- V data on a simple three-terminal SOI MOS capacitor structure can yield all the information such as the thickness of the gate oxide, buried-oxide as well as the SOI film, along with the doping density in the film and the substrate.

  6. Switched-capacitor multiply-by-two amplifier with reduced capacitor mismatches sensitivity and full swing sample signal common-mode voltage

    Institute of Scientific and Technical Information of China (English)

    Xu Xinnan; Yao Suying; Xu Jiangtao; Nie Kaiming

    2012-01-01

    A switched-capacitor amplifier with an accurate gain of two that is insensitive to component mismatch is proposed.This structure is based on associating two sets of two capacitors in cross series during the amplification phase.This circuit permits the common-mode voltage of the sample signal to reach full swing.Using the chargecomplement technique,the proposed amplifier can reduce the impact of parasitic capacitors on the gain accuracy effectively.Simulation results show that as sample signal common-mode voltage changes,the difference between the minimum and maximum gain error is less than 0.03%.When the capacitor mismatch is increased from 0 to 0.2%,the gain error is deteriorated by 0.00015 %.In all simulations,the gain of amplifier is 69 dB.

  7. 76 FR 11275 - In the Matter of Certain Ceramic Capacitors and Products Containing Same; Notice of Commission...

    Science.gov (United States)

    2011-03-01

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Ceramic Capacitors and Products Containing Same; Notice of Commission... the sale within the United States after importation of certain ceramic capacitors and...

  8. Two-layer radio frequency MEMS fractal capacitors in PolyMUMPS for S-band applications

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    In this Letter, the authors fabricate for the first time MEMS fractal capacitors possessing two layers and compare their performance characteristics with the conventional parallel-plate capacitor and previously reported state-of-the-art single-layer MEMS fractal capacitors. Explicitly, a capacitor with a woven structure and another with an interleaved configuration were fabricated in the standard PolyMUMPS surface micromachining process and tested at S-band frequencies. The self-resonant frequencies of the fabricated capacitors were close to 10GHz, which is better than that of the parallel-plate capacitor, which measured only 5.5GHz. Further, the presented capacitors provided a higher capacitance when compared with the state-of-the-art-reported MEMS fractal capacitors created using a single layer at the expense of a lower quality factor. © 2012 The Institution of Engineering and Technology.

  9. Node Voltage Improvement by Capacitor Placement in Distribution Network : A Soft Computing Approach

    Directory of Open Access Journals (Sweden)

    SHWETA SARKAR,

    2010-10-01

    Full Text Available This paper deals with a genetic algorithm based approach for determining the optimum placement location of capacitor in radial distribution system which is obtained after optimum reconfiguration. Reduction of total losses in distribution system is very essential to improve the overall efficiency of power delivery. This can be achieved by placing the optimal value of capacitors at proper ocations in radial distribution systems. The proposed methodologyis a genetic approach based algorithm. The best location of the capacitor and the sizing of the capacitor is determined based on genetic algorithm. The objective function is to place the optimal value of capacitors at best locations, which maximizes net savings in the distribution system. The proposed method directly gives the bestlocations and identifies the optimal size. Here we have tried the requirement by the use of genetic algorithm and further we have tried to improve the node voltages by placing the capacitor bank at susceptible load points. We have run load flow program developed in MATLAB environment on the optimum feeder layout obtained [10] and further we have tried to improve the node voltages of the network by trying the various combinations of capacitor bank. The fitness function of the chromosomes turns out to be the maximum of the minimum node voltages. Using GA the paper gives the optimum combination for replacement of capacitor for the best node voltages.The result is tested on single feeder network and the work has been carried out in MATLAB environment.

  10. Optimization of Thick Negative Photoresist for Fabrication of Interdigitated Capacitor Structures

    Science.gov (United States)

    2015-04-01

    ARL-TR-7258 ● APR 2015 US Army Research Laboratory Optimization of Thick Negative Photoresist for Fabrication of Interdigitated ...TR-7258 ● APR 2015 US Army Research Laboratory Optimization of Thick Negative Photoresist for Fabrication of Interdigitated Capacitor...of Thick Negative Photoresist for Fabrication of Interdigitated Capacitor Structures 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  11. Capacitor Mismatch Error Cancellation Technique for a Successive Approximation A/D Converter

    DEFF Research Database (Denmark)

    Zheng, Zhiliang; Moon, Un-Ku; Steensgaard-Madsen, Jesper;

    1999-01-01

    An error cancellation technique is described for suppressing capacitor mismatch in a successive approximation A/D converter. At the cost of a 50% increase in conversion time, the first-order capacitor mismatch error is cancelled. Methods for achieving top-plate parasitic insensitive operation are...

  12. A Novel Flying Capacitor Transformerless Inverter for Single-Phase Grid Connected Solar Photovoltaic System

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede

    2016-01-01

    This paper proposes a new single-phase flying capacitor transformerless PV inverter for grid-connected photovoltaic (PV) systems. The neutral of the grid can be directly connected to the negative terminal of the source (PV). It consists of four power switches, one diode, one capacitor and a small...

  13. Instantaneous thermal modeling of the DC-link capacitor in PhotoVoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Ma, Ke; Wang, Huai

    2015-01-01

    Capacitors have been witnessed as one of the weak points in grid-connected PhotoVoltaic (PV) applications, and thus efforts have been devoted to the design of reliable DC-link capacitors in PV applications. Since the hot-spot temperature of the capacitor is one of the failure inducers, instantane......Capacitors have been witnessed as one of the weak points in grid-connected PhotoVoltaic (PV) applications, and thus efforts have been devoted to the design of reliable DC-link capacitors in PV applications. Since the hot-spot temperature of the capacitor is one of the failure inducers......, instantaneous thermal modeling approaches considering mission profiles for the DC-link capacitor in single-phase PV systems are explored in this paper. These thermal modelling approaches are based on: a) fast Fourier transform, b) look-up tables, and c) ripple current reconstruction. Moreover, the thermal...... thermal loading from the operating conditions. As a consequence, it offers new insights into the temperature monitoring and reliability-oriented design of the DC-link capacitors, and thus a more reliable operation of single-phase grid-connected PV systems can be enhanced. Study results on a 3-kW single...

  14. Design and modeling of inductors, capacitors and coplanar waveguides at tens of GHz frequencies

    CERN Document Server

    Aryan, Naser Pour

    2015-01-01

    This book describes the basic principles of designing and modelling inductors, MIM capacitors and coplanar waveguides at frequencies of several tens of GHz. The author explains the design and modelling of key, passive elements, such as capacitors, inductors and transmission lines that enable high frequency MEMS operating at frequencies in the orders of tens of GHz.

  15. The polarizability and the capacitance change of a bounded object in a parallel plate capacitor

    Science.gov (United States)

    Kristensson, Gerhard

    2012-09-01

    A method for solving the change in capacitance (or charge) if an object is introduced in a parallel plate capacitor is developed. The integral representation of the potential is exploited in a systematic way to solve the potential everywhere inside the capacitor. In particular, the change in capacitance is extracted. The method shows similarities with the null field approach for solving dynamic problems.

  16. An adjustable parallel-plate capacitor instrument—Test of the theoretical capacitance formula

    Science.gov (United States)

    Wells, Beau; Baker, Emily; Farwell, Austin; Foster, Harrison; Gao, Xiaohan; Gruber, Benjamin; Jones, Erica; Vu, Dennis; Xu, Sonya; Ye, Jingbo

    2016-09-01

    We describe an adjustable parallel-plate capacitor apparatus designed for use in an undergraduate laboratory that permits precise variation of plate separation distances and overlap area. Two experiments are performed with the device to test the ideal capacitor formula derived from Gauss's Law. After correcting for edge effects and minor plate tilt, the device yields capacitance values within 3% of theoretical values.

  17. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L J; Hammel, C J

    1997-04-01

    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  18. Thin film barium strontium titanate capacitors for tunable RF front-end applications

    NARCIS (Netherlands)

    Tiggelman, Markus Petrus Josephus

    2009-01-01

    In this thesis, the results of intensive electrical characterization, modeling and the design of hardware with thin film tunable capacitors, i.e., dielectric varactors, has been presented and discussed. Especially the quality factor Q and the tuning ratio of the tunable capacitors have been studied

  19. 3D inkjet printed radio frequency inductors and capacitors

    KAUST Repository

    Vaseem, Mohammad

    2016-12-08

    Inkjet printing has emerged as an ideal method for the fabrication of low cost and efficient electronic systems. However, most of the printed designs at present utilize 2D inkjet printing of metallic inks on conventional substrates. In order to have fully printed RF components, the substrate must also be printed. 3D printing of polymers can be an ideal mechanism for printing substrates, however typically such materials cannot handle high sintering temperatures (>150 0C) required for nanoparticles based metallic inks. In this work, an all-inkjet printed process is demonstrated that utilizes 3D inkjet printing of a UV-cured dielectric material in combination with the printing of a particle free conductive silver organo-complex (SOC) ink for realization of inductors and capacitors. The processing temperature does not exceed 80 0C and still state of the art conductivity of 1×107 S/m is achieved. Both the conductive ink and dielectric have roughness values under 500 nm. The inductor and capacitor exhibit quality factors of 8 and 20 respectively in the high MHz and GHz regime.

  20. Hybrid aqueous capacitors with improved energy/power performance

    Directory of Open Access Journals (Sweden)

    Jakub Menzel

    2015-12-01

    Full Text Available This work reports on a high-voltage, hybrid capacitor involving two separate redox reactions. Aqueous solutions of Mg(NO32 and KI have been used for negative and positive electrode, respectively. Adjusting pH=2 for electrode (+ with KI solution and modifying Mg(NO32 solution to pH=9 for negative side play a crucial role for a stable long-term operation of capacitor at enhanced voltage. A benefit from such a construction is a pseudocapacitive contribution from hydrogen sorption reaction on the negative electrode and high iodine/iodide activity on the positive electrode, enhancing the energy with no remarkable impact on the power profile. Proposed solution allows a high voltage (1.8 V to be reached and thereby high power and energy performance (~20 W h/kg at 1 kW/kg to be obtained. High long-term stability has been confirmed by floating and galvanostatic tests.

  1. Soft capacitor fibers using conductive polymers for electronic textiles

    CERN Document Server

    Gu, Jian Feng; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its crossection the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometres of fibers can be obtained from a single preform with fiber diameters ranging between 500um -1000um. A typical measured capacitance of our fibers is 60-100 nF/m and it is independent of the fiber diameter. For comparison, a coaxial cable of the comparable dimensions would have only ~0.06nF/m capacitance. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kOhm/L, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials...

  2. New zero voltage switching DC converter with flying capacitors

    Science.gov (United States)

    Lin, Bor-Ren; Shiau, Tung-Yuan

    2016-04-01

    A new soft switching converter is presented for medium power applications. Two full-bridge converters are connected in series at high voltage side in order to limit the voltage stress of power switches at Vin/2. Therefore, power metal-oxide-semiconductor field-effect transistors (MOSFETs) with 600 V voltage rating can be adopted for 1200 V input voltage applications. In order to balance two input split capacitor voltages in every switching cycle, two flying capacitors are connected on the AC side of two full-bridge converters. Phase-shift pulse-width modulation (PS-PWM) is adopted to regulate the output voltage. Based on the resonant behaviour by the output capacitance of MOSFETs and the resonant inductance, active MOSFETs can be turned on under zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. Two full-bridge converters are used in the proposed circuit to share load current and reduce the current stress of passive and active components. The circuit analysis and design example of the prototype circuit are provided in detail and the performance of the proposed converter is verified by the experiments.

  3. Soft capacitor fibers using conductive polymers for electronic textiles

    Science.gov (United States)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-11-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60-100 nF m-1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L-1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage.

  4. The strain capacitor: A novel energy storage device

    Energy Technology Data Exchange (ETDEWEB)

    Deb Shuvra, Pranoy; McNamara, Shamus, E-mail: shamus.mcnamara@louisville.edu [Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292 (United States)

    2014-12-15

    A novel electromechanical energy storage device is reported that has the potential to have high energy densities. It can efficiently store both mechanical strain energy and electrical energy in the form of an electric field between the electrodes of a strain-mismatched bilayer capacitor. When the charged device is discharged, both the electrical and mechanical energy are extracted in an electrical form. The charge-voltage profile of the device is suitable for energy storage applications since a larger portion of the stored energy can be extracted at higher voltage levels compared to a normal capacitor. Its unique features include the potential for long lifetime, safety, portability, wide operating temperature range, and environment friendliness. The device can be designed to operate over varied operating voltage ranges by selecting appropriate materials and by changing the dimensions of the device. In this paper a finite element model of the device is developed to verify and demonstrate the potential of the device as an energy storage element. This device has the potential to replace conventional energy storage devices.

  5. Influence of Electrolyte on ESR of Medium Voltage Wet Tantalum Capacitors

    Institute of Scientific and Technical Information of China (English)

    刘仲娥; 宋金荣; 陈晓静; 李忆莲; 桂娟

    2004-01-01

    In this paper, the influence of working electrolyte on high-frequency electrical performance of wet tantalum capacitors is studied. Emphasis is especially put on the study of the contribution of depolariser in reducing Equivalent Series Resistance(ESR). According to the theory of depolarization in electrochemistry and the theory of cathode capacitance of electrolytic capacitor, different kinds of depolarisers are added separately into the foregone electrolyte. Then capacitors are assembled with tantalum cores dipped with the compounded electrolytes. The best depolariser and its concentration in the whole electrolyte could be selected according to the test results of the capacitance and ESR of the capacitors. The results of our experiment show that depolariser Fe2(SO4)3 used in working electrolyte of 100 V/100 μF wet tantalum capacitors can help to obtain lower ESR and higher capacitance at frequency from 0.1 kHz to 100 kHz.

  6. Reconfigurable Switched-Capacitor Power Converters Principles and Designs for Self-Powered Microsystems

    CERN Document Server

    Ma, Dongsheng

    2013-01-01

    This book provides readers specializing in ultra-low power supply design for self-powered applications, an invaluable reference on reconfigurable switched capacitor power converters. Readers will benefit from a comprehensive introduction to the design of robust power supplies for energy harvesting and self-power applications, focusing on the use of reconfigurable switched capacitor based DC-DC converters, which is ideal for such applications.  Coverage includes all aspects of switched capacitor power supply designs, from fundamentals, to reconfigurable power stages, and sophisticated controller designs.    Provides a comprehensive introduction to the fundamentals of switched capacitor power supply design for novices, as well as advanced design and implementation  techniques for advanced readers; Includes discussion of all aspects of switched capacitor power supply designs, from fundamentals, to reconfigurable power stages, and sophisticated controller designs; Covers most state-of-art power supply design...

  7. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  8. Shunt capacitors for a.c. power systems having a rated voltage above 1000 V - Part 1: General

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2005-01-01

    This part of IEC 60871 is applicable to both capacitor units and capacitor banks intended to be used, particularly, for power-factor correction of a.c. power systems having a rated voltage above 1 000 V and frequencies of 15 Hz to 60 Hz. This part of IEC 60871 also applies to capacitors intended for use in power filter circuits.

  9. Series multilayer internal electrodes for high energy density glass-ceramic capacitors

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; DU Jun; TANG Qun; MAO ChangHui

    2009-01-01

    The glass-ceramic dielectrics and internal electrode structures are investigated for improving the general energy storage density of capacitors.Calculation indicates that glass-ceramics acquired from glass matrix annealing at 850℃ for 3 hours can be approximately up to 17 J/cm3 in energy storage density.They are appropriately chosen as the dielectrics for preparing high energy storage density capacitors (HESDCs).A series multilayer structure of internal electrode is developed for the HESDCs,in which each layer is a combination of gold film and silver paste.This electrode structure promises the capacitor immune from the residual porosity defects inevitably brought by electrode paste sintering process,and specifically improves the electrical breakdown strength of the capacitor.Based on this new electrode structure,the energy storage densities of capacitors are increased by more than one order of magnitude compared with those traditional ones with only single layer of internal electrode.Thus,HESDCs based on the optimized glass-ceramic dielectrics can potentially achieve 7.5 J/cm3 in energy storage density,even taking into consideration the enlargement of total capacitor volumes while encapsulating practicable capacitors from dielectrics media.

  10. Invalidation manner and mechanism of new type NbO electrolytic capacitor anode

    Institute of Scientific and Technical Information of China (English)

    LI Jian; YI Dan-qing; WEN Jun-jie; LIU Hui-qun; ZHONG Hui

    2005-01-01

    Niobium suboxide powder was pressed and sintered in vacuum into NbO electrolytic capacitor sintered anode..High voltage and constant current formation experiment was performed on NbO electrolytic capacitor anode,during which electrolyte was 0.01 % Ha PO4 solution, temperature was 90 C and current was 50 mA per gram sample. Through the relationship between anode voltage and time and scanning electron microscopy(SEM) images of invalidated anode and normal forming anode, invalidation manner and mechanism of NbO electrolytic capacitor anode were discussed. The results show that, the main invalidation manner of NbO electrolytic capacitor anode is not short circuit but open circuit, which is different to that of traditional Ta electrolytic capacitor anode. The reason of invalidation is that anode oxide film whose thickness increases gradually penetrates the "connection neck" among anode powder particles, which leads to the open circuit invalidation of anode. Compared with Ta electrolytic capacitor,NbO electrolytic capacitor has better security.

  11. Deformation of Cases in High Capacitance Value Wet Tantalum Capacitors under Environmental Stresses

    Science.gov (United States)

    Teverovsky, Alexander

    2016-01-01

    Internal gas pressure in hermetic wet tantalum capacitors is created by air, electrolyte vapor, and gas generated by electrochemical reactions at the electrodes. This pressure increases substantially with temperature and time of operation due to excessive leakage currents. Deformation of the case occurs when the internal pressure exceeds pressure of the environments and can raise significantly when a part operates in space. Contrary to the cylinder case wet tantalum capacitors that have external sealing by welding and internal sealing provided by the Teflon bushing and crimping of the case, no reliable internal sealing exists in the button case capacitors. Single seal design capacitors are used for high capacitance value wet tantalum capacitors manufactured per DLA L&M drawings #04003, 04005, and 10011, and require additional analysis to assure their reliable application in space systems. In this work, leakage currents and case deformation of button case capacitors were measured during different environmental test conditions. Recommendations for derating, screening and qualification testing are given. This work is a continuation of a series of NEPP reports related to quality and reliability of wet tantalum capacitors.

  12. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time.

  13. Evolution of recrystallization textures in high voltage aluminum capacitor foils

    Institute of Scientific and Technical Information of China (English)

    刘楚明; 张新明; 周鸿章; 陈志永; 邓运来; 周卓平

    2001-01-01

    The evolution of recrystallization textures in high voltage aluminum capacitor foils which are produced with a high level of cold reduction was tracked by analysis of microstructure and crystallographic texture. The results show that the deformation textures are mainly composed of S-orientation, Cu-orientation and a little Bs-orientation. During the low temperature stages of final annealing, the iron precipitates first along the sub-grain boundaries, and the Fe concentration in the matrix becomes low. Then, the cube grains nucleate preferably into the sub-grains. At high temperature stages, the cube nuclei can grow preferably because of their 40°〈111〉 orientation relationship to the S orientation, the main component of the rolling texture. Finally, the cube texture is sharply strong and the R orientation is very weak in the foils.

  14. Aspirated capacitor measurements of air conductivity and ion mobility spectra

    CERN Document Server

    Aplin, K L

    2005-01-01

    Measurements of ions in atmospheric air are used to investigate atmospheric electricity and particulate pollution. Commonly studied ion parameters are (1) air conductivity, related to the total ion number concentration, and (2) the ion mobility spectrum, which varies with atmospheric composition. The physical principles of air ion instrumentation are long-established. A recent development is the computerised aspirated capacitor, which measures ions from (a) the current of charged particles at a sensing electrode, and (b) the rate of charge exchange with an electrode at a known initial potential, relaxing to a lower potential. As the voltage decays, only ions of higher and higher mobility are collected by the central electrode and contribute to the further decay of the voltage. This enables extension of the classical theory to calculate ion mobility spectra by inverting voltage decay time series. In indoor air, ion mobility spectra determined from both the novel voltage decay inversion, and an established volt...

  15. Capacitor Discharge and Vacuum Resistance in Massless QED_2

    CERN Document Server

    Chu, Yi-Zen

    2010-01-01

    A charged parallel plate capacitor will create particle-antiparticle pairs by the Schwinger process and discharge over time. We consider the full quantum discharge process in 1+1 dimensions including backreaction, when the electric field interacts with massless charged fermions. We recover oscillatory features in the electric field observed in a semiclassical analysis and find that the amplitude of the oscillations falls off as t^{-1/2} and that stronger coupling implies slower decay. Remarkably, Ohm's law applies to the vacuum and we evaluate the quantum electrical conductivity of the vacuum to be 2e/\\pi^{1/2}, where e is the fermionic charge. Similarities and differences with black hole evaporation are mentioned.

  16. Ultrasonic modification of carbon materials for electrochemical capacitors

    Science.gov (United States)

    Rachiy, Bogdan I.; Nykoliuk, Marian O.; Budzulyak, Ivan M.; Kachmar, Andrii I.

    2017-01-01

    The paper is devoted to study the ultrasonic impact on the biomass of natural raw materials, which were used for the creation a nanoporous carbon material (NCM), which was used as electrode material for electrochemical capacitors (EC). The dry shells of apricot seeds were a feedstock, which were modified by the chemical treatment in the phosphoric acid and part of them were impacted by ultrasonic waves for 25 minutes. The NCM, which were obtained by carbonization at 550 °C, were modified by chemical treatment in the nitric acid. Thus, the different of modification NCM was obtained to compare their capacitance characteristics for EC. From experimental data we can do a conclusion, that ultrasonic modification and chemical treatment in nitric acidare improvecapacitance characteristics of NCM for EC.

  17. Hybrid carbon nanostructure assemblage for high performance pseudo-capacitors

    Directory of Open Access Journals (Sweden)

    A. K. Mishra

    2012-06-01

    Full Text Available Investigation of novel nanocomposites for pseudo-capacitors with high capacitance and energy density is the spotlight of current energy research. In the present work, hybrid carbon nanostructure assemblage of graphene and multiwalled carbon nanotubes has been used as carbon support to nanostructured RuO2 and polyaniline for high energy supercapacitors. Maximum specific capacitances of 110, 235 and 440 F g−1 at the voltage sweep rate of 10 mV s−1 and maximum energy densities of 7, 12.5 and 20.5 Wh kg−1 were observed for carbon assemblage and its RuO2 and polyanilne decorated nanocomposites, respectively, with 1M H2SO4 as electrolyte.

  18. Nanostructure multilayer dielectric materials for capacitors and insulators

    Science.gov (United States)

    Barbee, Jr., Troy W.; Johnson, Gary W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  19. Coupling capacitor voltage transformer: A model for electromagnetic transient studies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.; Neves, W.L.A. [Department of Electrical Engineering, Federal University of Campina Grande, Av. Aprigio Veloso, 882 Bodocongo, 58.109-970 Campina Grande, PB (Brazil); Vasconcelos, J.C.A. [Companhia Hidro Eletrica do Sao Francisco, Rua Delmiro Gouveia, 333 Bongi, 50.761-901 Recife, PE (Brazil)

    2007-02-15

    In this work, an accurate coupling capacitor voltage transformer (CCVT) model for electromagnetic transient studies is presented. The model takes into account linear and nonlinear elements. A support routine was developed to compute the linear 230kV CCVT parameters (resistances, inductances and capacitances) from frequency response data. The magnetic core and surge arrester nonlinear characteristics were estimated from laboratory measurements as well. The model is used in connection with the electromagnetic transients program (EMTP) to predict the CCVT performance when it is submitted to transient overvoltages, as are the cases of voltages due to the ferroresonance phenomenon and circuit breaker switching. The difference between simulated and measured results is fairly small. Simulations had shown that transient overvoltages produced inside the CCVT, when a short circuit is cleared at the CCVT secondary side, are effectively damped out by the ferroresonance suppression circuit and the protection circuit. (author)

  20. Experimental Study on Plasma Surface Treatment of Capacitors Film

    Science.gov (United States)

    Ling, Dai; Ting, Yin; Fuchang, Lin; Fei, Yan

    Plasma surface treatment is an optional way to change the electrical performance of the film capacitors used widely in pulse power application. This paper presents the experimental study of glow discharge plasma treatment to polyphenylene sulfide (PPS) film. By using infrared spectra and scanning electron microscope (SEM), the chemical component and microstructure of material surface has detected to be changed with different treatment strength and various discharge gas. After treatment, the film surface tends to be rougher and some sorts of polar radicals or groups found to be introduced. But there is no obvious change of the electrical strength of the film. At last, theoretical analysis has been carried out with polypropylene film experimental treatment results in author's former work.

  1. Changes in PCB serum concentrations among capacitor manufacturing workers

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, M.S.; Fischbein, A.; Selikoff, I.J. (Mount Sinai School of Medicine, New York, NY (United States))

    1992-10-01

    To assess the elimination of PCBs in humans, PCB concentrations in serum from 165 capacitor manufacturing workers were measured twice within a 46-month interval (March 1976-December 1979). Use of PCBs at the facility was entirely eliminated in 1977. PCB congeners with lower chlorination (LPCBs--mainly tri- and tetrachlorobiphenyls) had decreased in concentration, with six of the LPCB 7 peaks observed by packed column GC showing average reductions of 25-90%. Higher chlorinated PCBs did not decrease significantly as a whole, although three of the six constituent congener peaks showed some decline (15-25%). As expected, decreases in PCB congener concentrations were associated with chlorine substitution configurations known to be amenable to metabolism.

  2. 64-Channel, 5 GSPS ADC Module with Switched Capacitor Arrays

    Science.gov (United States)

    Bogdan, M.; Huan, H.; Wakely, S.

    2013-08-01

    We present a 5 GSPS ADC/Data processing module with up to 64 channels and 2048 cells per channel, designed for fast-sampling, front-end applications. This is a 6U VME board that incorporates 16 pieces DRS4 (http://drs.web.psi.ch, [1]) Switched Capacitor Array chips developed at Paul Scherrer Institut, Switzerland. The 16 DRS4 chips are grouped in four independent input blocks. A block, with a geometric size of 43×120 mm, has four pieces DRS4 chips, four pieces AD9222 converters, and one Altera Stratix III FPGA. Each DRS4 chip has eight channels and each channel has 1024 sampling cells, which can be daisy-chained for larger sampling depth. This feature allows for a great level of flexibility in choosing the number of channels relative to capacitor array size, for a particular application. The first prototype Printed Circuit Board (PCB) was designed for a sampling depth of 2048 cells and 16 channels in a 42 mm wide block, i.e. 64 channels for the 6U VME board. This compact form factor allows for these input blocks to be used as front-end electronics for the Cherenkov Telescope Array (CTA) cameras. In this VME board, the four blocks are fully independent and can run each in different modes without any conflict. A global FPGA, also a Stratix III device, provides control and interfacing. The module can run with a local oscillator or with input system clocks in the range of 20-550 MHz. The front panel is fitted with a 2.5 Gbps serial link transceiver.

  3. DC-Voltage Fluctuation Elimination Through a DC-Capacitor Current Control for DFIG Converters Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Changjin; Xu, Dehong; Zhu, Nan;

    2013-01-01

    Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...

  4. Digital Control of a power conditioner for fuel cell/super-capacitor hybrid system

    DEFF Research Database (Denmark)

    Caballero, Juan C Trujillo; Gomis-Bellmunt, Oriol; Montesinos-Miracle, Daniel;

    2014-01-01

    This article proposes a digital control scheme to operate a proton exchange membrane fuel cell module of 1.2 kW and a super-capacitor through a DC/DC hybrid converter. A fuel cell has been proposed as a primary source of energy, and a super-capacitor has been proposed as an auxiliary source...... of energy. Experimental validation of the system implemented in the laboratory is provided. Several tests have been performed to verify that the system achieves excellent output voltage (V0) regulation and super-capacitor voltage (V SC) control under disturbances from fuel cell power (PFC) and output power...

  5. Voltage ripple compensation for grid connected electrolyser power supply using small DC link capacitor

    DEFF Research Database (Denmark)

    Török, Lajos; Mathe, Laszlo; Munk-Nielsen, Stig

    2014-01-01

    The purpose of this work was to investigate a three-phase-grid connected power supply using small DC link capacitor for electrolyser application. The hydrogen generation system requires low voltage and high current power supply. Thus the structure of the 3-phase power supply is defined as follows......: a three phase rectification, a small DC-link capacitor and a phase-shifted full-bridge converter with current doubler rectification. Design constraints and control problems are investigated. The advantages and problems caused by the use of small DC link capacitor are presented. The control of the system...

  6. Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 2

    Science.gov (United States)

    Ward, C. M.

    1975-01-01

    The application of tantalum capacitors in the Viking Lander includes dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function of extended periods of ripple current, and the existence of any memory characteristics are presented.

  7. Evaluation of wet tantalum capacitors after exposure to extended periods of ripple current, volume 1

    Science.gov (United States)

    Watson, G. W.; Lasharr, J. C.; Shumaker, M. J.

    1974-01-01

    The application of tantalum capacitors in the Viking Lander includes both dc voltage and ripple current electrical stress, high temperature during nonoperating times (sterilization), and high vibration and shock loads. The capacitors must survive these severe environments without any degradation if reliable performance is to be achieved. A test program was established to evaluate both wet-slug tantalum and wet-foil capacitors under conditions accurately duplicating actual Viking applications. Test results of the electrical performance characteristics during extended periods of ripple current, the characteristics of the internal silver migration as a function for extended periods of ripple current, and the existence of any memory characteristics are presented.

  8. Iron–carbon hybrid capacitor: A proof-of-concept study

    Indian Academy of Sciences (India)

    V R Chari; S R Aravamuthan; A K Shukla

    2014-10-01

    In the present study, cost-intensive Ni electrode is replaced by high surface-area activated carbon (AC) cathode and the possibility of the Fe anode, used in Ni–Fe battery, to function as Fe–C hybrid capacitor has been examined. The electrochemical properties of Fe–C hybrid capacitor assembly are studied using cyclic voltammetry (CV) and galvanostatic charge–discharge cycles. Over 100 galvanostatic charge–discharge cycles for Fe–C hybrid capacitor are carried out and a maximum capacitance of 24 F g-1 is observed.

  9. Experimental verification of on-chip CMOS fractional-order capacitor emulators

    KAUST Repository

    Tsirimokou, G.

    2016-06-13

    The experimental results from a fabricated integrated circuit of fractional-order capacitor emulators are reported. The chip contains emulators of capacitors of orders 0.3, 0.4, 0.5, 0.6 and 0.7 with nano-Farad pseudo-capacitances that can be adjusted through a bias current. Two off-chip capacitors are used to set the bandwidth of each emulator independently. The chip was designed in Austria microsystems (AMS) 0.35μ CMOS. © 2016 The Institution of Engineering and Technology.

  10. Ultra-capacitors in power conversion systems analysis, modeling and design in theory and practice

    CERN Document Server

    Grbovic, Petar J

    2014-01-01

    Divided into five parts, this book is focused on ultra-capacitors and their applications in power conversion systems. It discusses ultra-capacitor analysis, modelling and module design from a macroscopic (application) perspective. It also describes power conversion applications, interface dc-dc converter design and entire conversion system design. Part One covers the background of energy storage technologies, with particular attention on state-of-the-art ultra-capacitor energy storage technologies. In Chapter four of this part, power conversion systems with integrated energy storage is discus

  11. Development and qualification of PCM thermal capacitors. Part I. Development of a 30 Wh PCM thermal capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, P.; Hauser, G.; Strittmatter, R.

    1976-12-01

    The development of PCM thermal capacitor having a latent heat capacity of 30 Wh is concerned with three different configurations, the design parameters of which were determined. Three engineering models were submitted to a series of thermal and mechanical tests. The tests were performed with different power profiles, the operational temperature being at 28/sup 0/C. The thermal test results were compared with calculated values. The possibility of stabilizing the operational temperature within the given range or of dampening occurring temperature peaks was demonstrated by functional tests performed in the power range between 15 and 60 W and at an angular position of 0 and 90/sup 0/C. Within an operational temperature range of 50/sup 0/C storage periods between 0.5 and 3 h were obtained.

  12. Empirical evaluation of the improvement of battery output when coupled with a capacitor bank

    Science.gov (United States)

    Cain, Stephen R.; Anderson, Allen; Tasillo, Edward; Infantolino, William; Wolfgramm, Paul

    2014-12-01

    It has been demonstrated experimentally that a capacitor bank when connected in parallel with a battery increases the energy output by mitigating the effects of high current spikes in the load. High current draws are taken from the capacitor bank which can furnish a small amount of energy quickly. The battery which can furnish substantial energy over a period of time then recharges the capacitor bank during times of decreased load. With a current square wave (P-P of 1.5 to 2× the average), capacitors afforded an increase in the retrievable energy of approximately 8% for a lead acid battery, 40% for a rechargeable lithium ion battery, and 46% for a non-rechargeable lithium ion battery.

  13. Reliability of High-Voltage Tantalum Capacitors. Parts 3 and 4)

    Science.gov (United States)

    Teverovsky, Alexander

    2010-01-01

    Weibull grading test is a powerful technique that allows selection and reliability rating of solid tantalum capacitors for military and space applications. However, inaccuracies in the existing method and non-adequate acceleration factors can result in significant, up to three orders of magnitude, errors in the calculated failure rate of capacitors. This paper analyzes deficiencies of the existing technique and recommends more accurate method of calculations. A physical model presenting failures of tantalum capacitors as time-dependent-dielectric-breakdown is used to determine voltage and temperature acceleration factors and select adequate Weibull grading test conditions. This model is verified by highly accelerated life testing (HALT) at different temperature and voltage conditions for three types of solid chip tantalum capacitors. It is shown that parameters of the model and acceleration factors can be calculated using a general log-linear relationship for the characteristic life with two stress levels.

  14. Physics Based Electrolytic Capacitor Degradation Models for Prognostic Studies under Thermal Overstress

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrolytic capacitors are used in several applications rang- ing from power supplies on safety critical avionics equipment to power drivers for electro-mechanical...

  15. Modeling and fabrication of an RF MEMS variable capacitor with a fractal geometry

    KAUST Repository

    Elshurafa, Amro M.

    2013-08-16

    In this paper, we model, fabricate, and measure an electrostatically actuated MEMS variable capacitor that utilizes a fractal geometry and serpentine-like suspension arms. Explicitly, a variable capacitor that possesses a top suspended plate with a specific fractal geometry and also possesses a bottom fixed plate complementary in shape to the top plate has been fabricated in the PolyMUMPS process. An important benefit that was achieved from using the fractal geometry in designing the MEMS variable capacitor is increasing the tuning range of the variable capacitor beyond the typical ratio of 1.5. The modeling was carried out using the commercially available finite element software COMSOL to predict both the tuning range and pull-in voltage. Measurement results show that the tuning range is 2.5 at a maximum actuation voltage of 10V.

  16. A Model-based Prognostics Methodology for Electrolytic Capacitors Based on Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for elec- trolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical...

  17. Capability to provide reactive power in PV farms. Implementation of LV capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Gal, Isabelle; NGuyen, Minh Quang [Schneider Electric (France)

    2011-07-01

    The latest French grid code assigns a new role to generators connected to the distribution system: they have to contribute to the grid operation by ancillary services, even though they may use renewable energies. Among others, the likely incapacity of such a generator to provide the requested reactive power during steady state operation or during a fault may impose the use of capacitors. For economical reasons, it could be worth installing LV- instead of HV-capacitors. This paper analyses an example photovoltaic fram to evaluate the risks encountered. Results obtained show that the installation of LV capacitors may be possible if very carefully. Indeed, steady state harmonics generated by the inverter can be amplified, and there may be high overvoltages in the installation after upstream switching off. Further analysis should be done to extend the validity of conclusions, but at this stage, installing HV capacitors should be preferred. (orig.)

  18. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    Capacitors are one type of reliability-critical components in power electronic systems. In the last two decades, many efforts in academic research have been devoted to the condition monitoring of capacitors to estimate their health status. Industry applications are demanding more reliable power...... electronics products with preventive maintenance. Nevertheless, most of the developed capacitor condition monitoring technologies are rarely adopted by industry due to the complexity, increased cost, and other relevant issues. An overview of the prior-art research in this area is therefore needed to justify......, this paper first classifies the capacitor condition monitoring methods into three categories, then the respective technology evolution in the last two decades is summarized. Finally, the state-of-the-art research and the future opportunities targeting for industry applications are given....

  19. Condition Monitoring for DC-link Capacitors Based on Artificial Neural Network Algorithm

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Gadalla, Brwene Salah Abdelkarim

    2015-01-01

    In power electronic systems, capacitor is one of the reliability critical components . Recently, the condition monitoring of capacitors to estimate their health status have been attracted by the academic research. Industry applications require more reliable power electronics products...... with preventive maintenance. However, the existing capacitor condition monitoring methods suffer from either increased hardware cost or low estimation accuracy, being the challenges to be adopted in industry applications. New development in condition monitoring technology with software solutions without extra...... hardware will reduce the cost, and therefore could be more promising for industry applications. A condition monitoring method based on Artificial Neural Network (ANN) algorithm is therefore proposed in this paper. The implementation of the ANN to the DC-link capacitor condition monitoring in a back...

  20. A Review of the Condition Monitoring of Capacitors in Power Electronic Converters

    DEFF Research Database (Denmark)

    Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede

    2015-01-01

    Capacitor is one of the reliability critical components in power electronic systems. In the last two decades, many efforts in the academic research have been devoted to the condition monitoring of capacitors to estimate their health status. Industry applications demand more reliable power...... electronics products with preventive maintenance. Nevertheless, most of the developed capacitor condition monitoring technologies are rarely adopted by industry due to the complexity, increased cost and other relevant issues. An overview of the prior-art research in this area is therefore needed to justify....... Therefore, this paper firstly classifies the capacitor condition monitoring methods into three categories, then the respective technology evolution from 1993 to 2015 is summarized. Remarks on the state-of-the-art research and the future opportunities targeting for practical industry applications are given....

  1. Physics of Failure Models for Capacitor Degradation in DC-DC Converters

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a combined energy-based model with an empirical physics of failure model for degradation analysis and prognosis of electrolytic capacitors in...

  2. A Model-Based Prognostics Methodology For Electrolytic Capacitors Based On Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical...

  3. Bayesian Framework Approach for Prognostic Studies in Electrolytic Capacitor under Thermal Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrolytic capacitors are used in several applications rang- ing from power supplies for safety critical avionics equipment to power drivers for electro-mechanical...

  4. Carbon-Nanotube-Based Electrochemical Double-Layer Capacitor Technologies for Spaceflight Applications

    Science.gov (United States)

    Arepalli, S.; Fireman, H.; Huffman, C.; Maloney, P.; Nikolaev, P.; Yowell, L.; Kim, K.; Kohl, P. A.; Higgins, C. D.; Turano, S. P.

    2005-01-01

    Electrochemical double-layer capacitors, or supercapacitors, have tremendous potential as high-power energy sources for use in low-weight hybrid systems for space exploration. Electrodes based on single-wall carbon nanotubes (SWCNTs) offer exceptional power and energy performance due to the high surface area, high conductivity, and the ability to functionalize the SWCNTs to optimize capacitor properties. This paper will report on the preparation of electrochemical capacitors incorporating SWCNT electrodes and their performance compared with existing commercial technology. Preliminary results indicate that substantial increases in power and energy density are possible. The effects of nanotube growth and processing methods on electrochemical capacitor performance is also presented. The compatibility of different SWCNTs and electrolytes was studied by varying the type of electrolyte ions that accumulate on the high-surface-area electrodes.

  5. Capacitor voltage ripple reduction and arm energy balancing in MMC-HVDC

    DEFF Research Database (Denmark)

    Martin-Loeches, Ruben Sánches; Parikh, Harsh; Tsolaridis, Georgios

    2016-01-01

    Modular Multilevel Converters are emerging and widely used in HVDC applications. However, the submodule capacitors are still large and the energy balancing under unbalanced conditions is a challenge. In this paper, an analytical model focusing on the energy stored in the capacitors and voltage...... variations is utilized in order to achieve better performance. By injecting a second order harmonic component into the circulating current, the energy variation and consequently the capacitor voltage ripple is reduced allowing for a capacitor size reduction. At the same time, an arm energy balancing...... controller has been proposed which uses the first harmonic of the circulating current in order to keep the energy balance of the leg under internal unbalanced conditions....

  6. Effect of Asymmetrical Edge Disconnection on Equivalent Series Resistance of Metalized Polypropylene Capacitors

    Directory of Open Access Journals (Sweden)

    J. Sivakumar

    2014-01-01

    Full Text Available In order to investigate the effect of asymmetrical partial edge disconnection on the Equivalent Series Resistance (ESR of Metalized polypropylene capacitors an experimental study has been made. Theoretical analysis made using PSPICE simulation package reveals that electrode resistance of individual turn rises from 10 to 30% depending on the location of the turn. This rise is not measureable at all the frequencies as ESR is frequency dependent and it includes resistance due to electrodes and dielectric losses. Metalized polypropylene capacitors were made with partial edge disconnection at one end (asymmetrical with different magnitudes of edge disconnection by masking during the process of zinc spraying. Measurements of ESR have been made in a wide range of frequencies from 20 Hz to 50 MHz and the theoretical results are validated through the experimental data. A short time step stress test was conducted on the capacitors, which can be further developed as a type test to identify the capacitors with partial edge disconnection.

  7. Physics Based Electrolytic Capacitor Degradation Models for Prognostic Studies under Thermal Overstress

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  8. Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors.

    Science.gov (United States)

    Dall'Agnese, Yohan; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2015-06-18

    Ion capacitors store energy through intercalation of cations into an electrode at a faster rate than in batteries and within a larger potential window. These devices reach a higher energy density compared to electrochemical double layer capacitor. Li-ion capacitors are already produced commercially, but the development of Na-ion capacitors is hindered by lack of materials that would allow fast intercalation of Na-ions. Here we investigated the electrochemical behavior of 2D vanadium carbide, V2C, from the MXene family. We investigated the mechanism of Na intercalation by XRD and achieved capacitance of ∼100 F/g at 0.2 mV/s. We assembled a full cell with hard carbon as negative electrode, a known anode material for Na ion batteries, and achieved capacity of 50 mAh/g with a maximum cell voltage of 3.5 V.

  9. Location and determination of steps of capacitors in shunt for distribution power lines; Localizacion y determinacion de pasos de capacitores en derivacion para lineas de distribucion

    Energy Technology Data Exchange (ETDEWEB)

    Pampin Vergara, Gabriela; Sarmiento Uruchurtu, Hector [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2001-07-01

    A methodology is presented to determine the optimal location of the capacitor banks in shunt for distribution networks. The proposed tool allows knowing the bank type to install (fixed, disconnect able or of pass), as well as the electrical parameters of the feeder and the economic benefit that the banks of capacitors represent, with a minimum of input data. Its development in a spreadsheet allows the analysis of numerous alternatives in an easy way. The method is based on that the structure of the feeders of distribution is, generally, of radial type, with which, and by means of an iterative process, the optimal location of the capacitor banks in shunt is looked for. The type of bank is determined based of the demand, as well as the number of steps. The results of the analysis in feeders of the network of the central area are shown. [Spanish] Se presenta una metodologia para determinar la localizacion optima de los bancos de capacitores en derivacion en redes de distribucion. La herramienta propuesta permite conocer el tipo de banco a instalar (fijo, desconcectable o de paso), asi como los parametros electricos del alimentador y el beneficio economico que representan los bancos de capacitores, con un minimo de datos de entrada. Su desarrollo en una hoja de calculo permite el analisis de numerosas alternativas de manera facil. El metodo se basa en que la estructura de los alimentadores de distribucion es, por lo general, de tipo radial, con lo cual, y por medio de un proceso iterativo, se busca la localizacion optima de los bancos de capacitores en derivacion. Se determina el tipo de banco en funcion de la demanda, asi como el numero de pasos. Se muestran resultados del analisis en alimentadores de la red del area central.

  10. Fabrication and Electrochemical Properties of Carbon Nanotube-based Composite Electrodes for Electrochemical Capacitor Applications

    Institute of Scientific and Technical Information of China (English)

    Kwang; Bum; Kim

    2007-01-01

    1 Results Electrochemical capacitors (ECs) are expected to be used in hybrid electric vehicles in combination with batteries or fuel cells because of their higher power density than batteries. ECs using electrical double layer capacitance of carbon based materials and pseudocapacitance of transition metal oxides are called electrochemical double layer capacitors (EDLC) and supercapacitors (or pseudocapacitor), respectively. Transition metal oxides are considered the best candidates for high energy dens...

  11. Transients due to multiple prestrike phenomenon when energizing capacitor banks with a vacuum circuit breaker

    OpenAIRE

    Barbieri, María Beatriz; Bianchi Lastra, Raúl E.; Arnera, Patricia L.; Agüero, Jorge Luis

    2006-01-01

    The phenomenon of multiple prestrikes of the arc was observed in field measurements of the energization of a single 4.8 MVAR, 13.2 kV capacitor bank. This paper presents field measurements records and the results of the computer simulation of the transients when energizing the capacitor bank, made with the objective to calculate the overvoltages generated in remote points. A method to avoid the phenomenon is proposed.

  12. Effect of cerium addition on microstructure and texture of aluminum foil for electrolytic capacitors

    Institute of Scientific and Technical Information of China (English)

    王海燕; 李文学; 任慧平; 黄丽颖; 王向阳

    2010-01-01

    Anode foil of aluminum electrolytic capacitor,which requires large surface area for high capacitance,were prepared by rolling,annealing and electrochemical etching.Effects of cerium addition on the capacitance of aluminum electrolytic capacitors were investigated.Microstructure of the aluminum foil surface was observed by optical microscopy(OM) and scanning electron microscopy(SEM).Electron back scattered diffraction(EBSD) was also employed to reveal texture evolvement of cold-rolled aluminum foil after ann...

  13. Comparison of OpAmp based and comparator based switched capacitor filter

    OpenAIRE

    Sahoo, Manodipan; Amrutur, Bharadwaj

    2012-01-01

    Comparator based switched capacitor circuits provide an excellent opportunity to design sampled data systems where the virtual ground condition is detected rather than being continuously forced with negative feedback in Opamp based circuits. This work is an application of this concept to design a 1 st order 330 KHz cutoff frequency Lowpass filter operating at 10 MHz sampling frequency in 0.13μm technology and 1.2 V supply voltage. The Comparator Based Switched Capacitor (CBSC) filter is compa...

  14. Spread-spectrum clock generation with ferroelectric capacitor-tuned VCOs.

    Science.gov (United States)

    Kabir, Abu; Kalkur, T S

    2013-08-01

    Spread-spectrum clock generation (SSCG) with barium strontium titanate (BST) ferroelectric capacitor-tuned voltage-controlled oscillator (VCO) is described. The performance of this VCO is compared with conventional diode-tuned VCOs. For a simple sinusoidal modulation waveform, a BST capacitor VCO shows uniform spread of energy over a frequency band width compared with a diode-tuned VCO with significant reduction in peak power, reducing the electromagnetic interference (EMI).

  15. Heat Generation During the Firing of a Capacitor Based Railgun System

    Science.gov (United States)

    2006-01-01

    Heat Generation during the Firing of a Capacitor Based Railgun System Andrew N. Smith Mechanical Engineering Department U.S. Naval Academy... electromagnetic railgun has been proposed as a weapon that could enable the US Navy to conduct long-range surface fire support missions [1]. Several Report...REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Heat Generation During the Firing of a Capacitor Based Railgun System

  16. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  17. Radiation response and electrical properties of polymer energy storage capacitors: PVF2, Polysulfone, and Mylar

    Science.gov (United States)

    Edwards, L. R.

    1981-01-01

    Efforts were made to develop a polymer film capacitor that is tolerant to radiation. The capacitors are to be utilized in a high voltage pulse discharge application. Radiation response data at high dose/dose rate levels are presented for polyvinylidene fluoride (PVF2), polysulfone, and Mylar. The results show that PVF2 is the most radiation tolerant while Mylar is the least tolerant. The data also show that the radiation response is quite dependent on operating electric stress.

  18. Bilinear generalized predictive control using the thyristor-controlled series-capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, V.; Mohler, R.R. (Oregon State Univ., Corvallis, OR (United States). Dept. of Electrical and Computer Engineering)

    1994-11-01

    Bilinear time-series generalized predictive control using a thyristor-controlled series-capacitor is proposed for power systems subjected to large faults. Simulation results indicate that bilinear self-tuning control using a thyristor-controlled series-capacitor is capable of increasing the region of stability, and providing good damping to a single machine infinite bus power system. The authors evaluate two signals, generator armature current and generator speed, for feedback implementation of the self-tuning controller.

  19. Influence of the fringe field on moving of the charged particles in flat and cylindrical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Doskeyev, G.A.; Edenova, O.A. [Aktobe State University named after K. Zhubanov, Br. Zhubanov Street 263, 030000 Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: spivakif@rambler.ru [Aktobe State University named after K. Zhubanov, Br. Zhubanov Street 263, 030000 Aktobe (Kazakhstan)

    2011-07-21

    This paper describes different analytic approaches to describe the fringe fields of flat and cylindrical capacitor structures. A method for the calculation of deflection of charged particles from the optical axis is developed. The behavior of a charged particle beam in a flat capacitor is approximated by using a sharp cut-off boundary for the field, which has the provision of taking fringe fields into account.

  20. Characterization of multifunctional structural capacitors for embedded energy storage

    Science.gov (United States)

    Lin, Yirong; Sodano, Henry A.

    2009-12-01

    Multifunctional composites are a class of materials that combine structural and other functionalities such as sensing, actuation, energy harvesting, and vibration control in order to maximize structural performance while minimizing weight and complexity. Among all the multifunctional composites developed so far, piezoelectric composites have been widely studied due to the high coupling of energy between the electrical and mechanical domains and the inherently high dielectric constant. Several piezoelectric fiber composites have been developed for sensing and actuation applications; however, none of the previously studied composites fully embed all components of an energy storage device as load bearing members of the structure. A multifunctional fiber that can be embedded in a composite material to perform sensing and actuation has been recently developed [Y. Lin and H. A. Sodano, Adv. Funct. Mater. 18, 592 (2008)], in addition to providing load bearing functionality. The design was achieved by coating a common structural fiber, silicon carbide, with a barium titanate piezoelectric shell, and poling the active material radically by employing the structural fiber as one of the electrodes. The silicon carbide core fiber also carries external mechanical loading to protect the brittle barium titanate shell from fracture. The excellent piezoelectric and dielectric properties of the barium titanate material make the active structural fiber an outstanding candidate for converting and storing ambient mechanical energy into electrical energy to power other electric devices in the system. This paper focuses on the characterization of energy storage capability of the multifunctional fiber provided by the dielectric properties of the barium titanate shell. The capacitances of the multifunctional fibers with four different aspect ratios are tested and compared with the theoretical expressions for the cylindrical capacitor, while the breakdown voltages of the multifunctional

  1. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  2. OPTIMAL CAPACITORS PLACEMENT IN DISTRIBUTION NETWORKS USING GENETIC ALGORITHM: A DIMENSION REDUCING APPROACH

    Directory of Open Access Journals (Sweden)

    S.NEELIMA

    2011-08-01

    Full Text Available A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with appropriate size is always a challenge. Thus the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 69 bus system and compared with other methods in the literature.

  3. Sputter deposition of thin film MIM capacitors on LTCC substrates for RF bypass and filtering applications

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Jack [Missouri University of Science and Technology; O' Keefe, Matthew J. [Missouri University of Science and Technology; Wilder, Kristina [Missouri University of Science and Technology; Eatinger, Ryan [Kansas State University; Kuhn, William [Kansas State University; Krueger, Daniel S. [Honeywell Federal Manufacturing & Technologies; Wolf, J. Ambrose [Honeywell Federal Manufacturing & Technologies

    2011-08-31

    Thin film capacitors for RF bypass and filtering applications were sputter deposited onto low temperature co-fired ceramic (LTCC) substrates. The capacitors were configured in a metal-insulator-metal (MIM) design featuring 200 nm thick Al electrodes and a 300 nm thick Al{sub 2}O{sub 3} dielectric layer, with dimensions varied between ~150x150 μm and ~750x750 μm. DC current-voltage measurements (E ≤ 5 MV/cm) coupled with impedance analysis (≤15 MHz) was used to characterize the resulting devices. More than 90% of the devices functioned as capacitors with high DC resistance (>20 MΩ) and low loss (tan δ <0.1). A second set of capacitors were made under the same experimental conditions with device geometries optimized for high frequency (≥200 MHz) applications. These capacitors featured temperature coefficient of capacitance (TCC) values between 500 and 1000 ppm/°C as well as low loss and high self-resonant frequency performance (ESR <0.6 Ohms at self-resonance of 5.7 GHz for 82 pF). Capacitance and loss values were comparable between the capacitor structures of similar areas at the different frequency regimes.

  4. Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell

    KAUST Repository

    Hatzell, Marta C.

    2013-05-01

    A microbial electrolysis cell (MEC) was powered by a capacitor based energy storage circuit using energy from a microbial fuel cell (MFC) to increase MEC hydrogen production rates compared to that possible by the MFC alone. To prevent voltage reversal, MFCs charged the capacitors in a parallel configuration, and then the capacitors were discharged in series to boost the voltage that was used to power the MECs. The optimal capacitance for charging was found to be ∼0.01 F for each MFC. The use of the capacitor charging system increased energy recoveries from 9 to 13%, and hydrogen production rates increased from 0.31 to 0.72 m3 m-3-day-1, compared to coupled systems without capacitors. The circuit efficiency (the ratio of the energy that was discharged to the MEC to the energy provided to the capacitor from the MFCs) was ∼90%. These results provide an improved method for linking MFCs to MECs for renewable hydrogen gas production. © 2012 Elsevier B.V. All rights reserved.

  5. Geometric optimization of self-healing power capacitor with consideration of multiple factors

    Science.gov (United States)

    Wang, Zijian; Yan, Fei; Hua, Zheng; Qi, Lingna; Hou, Zhijian; Xu, Zhiniu

    2016-08-01

    To decrease temperature rise in self-healing power capacitor and lay foundation for improvement of applied voltage and lifetime, the influence of elements orientation on the temperature distribution of self-healing capacitor is investigated using Fluent15.0 and validated by thermal stability test. Based on the above investigations, the influences of parameters of film, electrode and element on power loss and temperature rise of capacitor are systematically investigated. The results reveal that if geometry and volume of capacitor remain constant, orientation of spray coating has little influence on temperature rise. In view of manufacturing processes, the mode of spray coating close to the large surface should be selected. The power loss will decrease with increasing/decreasing in film thickness/width. Therefore, thicker film should be selected and its width should be less than 75 mm. Temperature rise decreases slowly with element diameter. However, the element diameter should be a moderate value because of the influence of it on the number of self-healing point. A capacitor group with rated voltage of 11/ √{ 3} kV and capacity of 334 kvar is designed and the scheme with the lowest temperature rise is selected. This study provides a reference to self-healing capacitor geometric optimization and lifetime improvement.

  6. Development and experimental study of oil-free capacitor module for plasma focus device

    Science.gov (United States)

    Sharma, Ravindra Kumar; Sharma, Archana

    2017-03-01

    This development is concerned with the compact capacitor module for a plasma focus device. Oil-free, non-standard geometry capacitors are designed and developed for high current delivery in sub-microseconds time. Metalized dielectric film based pulse capacitor becomes progressively less viable at currents above 10 kA. It is due to reliability and energy scaling difficulties, based on effects such as vaporization, high resistivity, and end connection. Bipolar electrolytic capacitors are also not preferred due to their limited life and comparatively low peak current delivery. Bi-axially oriented polypropylene (BOPP) film with extended aluminum foil is a combination to deliver moderately high power. But, electrically weak points, relative permittivity, and the edge gap margins have made its adoption difficult. A concept has been developed in lab for implementing the above combination in a less complex and costly manner. This paper concerns the development and testing process techniques for quite different hollow cylindrical, oil-free capacitors (4 μ F , 10 kV, 20 nH). Shot life of 1000 has been experimentally performed on the test bed at its rated energy density level. The technological methods and engineering techniques are now available and utilized for manufacturing and testing of BOPP film based oil-free capacitors.

  7. The production of niobium powder and electric properties of niobium capacitors

    Science.gov (United States)

    Yoon, Jae Sik; Cho, Sung Wook; Kim, Yang Soo; Kim, Byung Il

    2009-06-01

    In order to evaluate the electrical and frequency properties of niobium powder manufactured by the metallothermic reduction method for use as a capacitor, the present study measured capacitor performance evaluation factors such as leakage current, permittivity loss (tanδ) and capacitance, etc. The niobium powder used in this experiment was processed using the external continuous supply method and had large coarse globular particles of 0.5 μm to 1.0 μm, but the granularity distribution was very irregular. Capacitance decreased significantly from 150 μF in electrolyte (wet cap) to 130 μF after carbon (C)/silver (Ag) solution coating, and to around 115 μF after aging, falling within the capacity tolerance of tantalum capacitors. Converted to CV/g, capacitance was around 81,000 CV/g. Permittivity loss (tanδ) decreased significantly from 13.0 % after C/Ag coating to 7.5 % after aging, satisfying the general standard level of 10 % or less. Leakage current was 2.5 μA after C/Ag coating and 3.0 μA after aging, both less than the standard level of 6.3 μA. On the whole, the niobium capacitor showed somewhat more unstable characteristics than commercial tantalum capacitors but is nonetheless considered applicable as a future substitute for tantalum capacitors.

  8. Design and implementation of a switched capacitor-based embedded hybrid DC-DC converter

    Science.gov (United States)

    Bhattacharyya, Kaushik; Mandal, Pradip

    2012-06-01

    Here, we propose an integrated hybrid DC-DC converter suitable for high drop-out energy conscious applications. In the hybrid converter topology, along with a linear regulator two switched capacitors are used to store and recycle charge for better power efficiency. Without significant power loss the switched capacitors step down the supply voltage for the linear regulator working in low drop-out mode. The linear regulator, on the other hand, attenuates the voltage ripple that originates from the switched capacitors converter on its power supply rejection ratio. It also helps for line and load regulation. Additionally, a synthesised counter ripple is injected through the linear regulator to further reduce the output ripple. With these two techniques, for a moderate load current and an acceptable output ripple, the switching and load capacitors are reduced to a value which can be implemented within the chip. The proposed integrated converter circuit has been designed, implemented and tested in a 0.18 mm CMOS process for 3.3-1.3V conversion. With two switching capacitors of 210 pF each and 100 pF load capacitor, more than 13 mA of load current, measured peak-to-peak output voltage ripple is 146 mV. The achieved measured power efficiency is 64.97%. Exhaustive silicon characterisation of the converter is done to observe the power efficiency and ripple variation at different frequency of operations.

  9. Fabrication of anodized tantalum oxide integrated capacitors on singulated chips with active devices

    Science.gov (United States)

    Wasef, Mohammed Aziz

    The purpose of this project was to determine the feasibility and processability of fabricating anodized tantalum oxide integrated capacitors on singulated chips. Using high-resolution transparencies to pattern the metals during the photolithographic process, capacitors as large as 0.25 cm2 were fabricated successfully with the yield being higher for capacitors smaller than 0.1 cm2. Several capacitor designed were attempted and final designed was selected on the basis of ease of alignment and prevention of shorts. The next step in the project involved utilizing this design to fabricate capacitors on 2.2 mm by 2.2 mm silicon dummy chips. In order to accomplish this task, a support wafer technique was used. A silicon wafer with holes etched all the way through was attached to a non-etched silicon wafer to provide a base for the dummy chips that were placed in the holes of the support wafer, thus making the top of the chips co-planar with a wafer that could be put through standard wafer processing equipment. The chips were glued to the wafer using a thermoplastic as an adhesive. The design specified for this project called for five 100 pF capacitors and a single 50 pF capacitor. Since the chips had to be individually placed in the holes, all the masks used in the project had to be individually designed for reach run. The capacitors had a bottom plate thickness of 2500 A of tantalum which was anodized at 120 V and 0.5 mA/cm2 to an oxide thickness of 1920 A. The top plate was 2 mum of aluminum and the insulating ring around the bottom plate was made of 5 mum of benzocyclobutene. After fabrication, testing of the capacitors provided a yield of 97% for the 100 pF capacitors with average capacitance of 98.3 pF +/- 3.6 pF and 75% for the 50 pF capacitors with an average capacitance of 50 pF +/- 1.65 pF. The inductance of the capacitors was less than 20 pH and resistance was about 110 O. The resistance was brought down to 1 O when a 2 mum sublayer of aluminum was deposited

  10. The plasma membrane as a capacitor for energy and metabolism.

    Science.gov (United States)

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.

  11. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  12. Power Factor Improvement for Pumping Stations using Capacitor Banks

    Science.gov (United States)

    Mohamad, M. M.; Abd El-gawad, Amal F.; Ramadan, H. S.

    2016-10-01

    One of the fundamental problems affects the performance of pumping stations is its relative high operational cost. As three-phase induction motors are the main prime mover of pumping stations and considered the most widely used electrical motors due to their reliability, ease of maintenance. However, its major problem is the low power factor which results in high electric energy consumption. Energy will be saved when power factor is improved. The main objective of this paper is studying the power factor improvement in El sadaa Pumping Station because of its low operating efficiency which goes from 20 % to 25 %and calculating penalty, ponus and savings in each cases. The correction is achieved by the addition of capacitor banks in parallel with the connected motor circuits and can be applied to the starter, applied at the switchboard or the distribution panel. A model of this station is created using MatlabTM Simulink. Then the determination of induction motor parameters is performed. The station model is discussed. From the simulation results, the power factor enhancement of the pumping station is highlighted.

  13. SIMULATIONS OF THE AGS MMPS STORING ENERGY IN CAPACITOR BANKS

    Energy Technology Data Exchange (ETDEWEB)

    MARNERIS,I.; BADEA, V.S.; BONATI, R.; ROSER, T.; SANDBERG, J.

    2007-06-25

    The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, +/-9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. The generator is 3 phase 7500 Volts rated at 50 MVA. The peak power requirements come from the stored energy in the rotor of the motor/generator. The motor generator is about 45 years old, made by Siemens and it is not clear if companies will be manufacturing similar machines in the future. We are therefore investigating different ways of storing energy for future AGS MMPS operations. This paper will present simulations of a power supply where energy is stored in capacitor banks. Two dc to dc converters will be presented along with the control system of the power section. The switching elements will be IGCT's made by ABB. The simulation program used is called PSIM version 6.1. The average power from the local power authority into the power supply will be kept constant during the pulsing of the magnets at +/-50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.

  14. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  15. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  16. An overview of carbon materials for flexible electrochemical capacitors.

    Science.gov (United States)

    He, Yongmin; Chen, Wanjun; Gao, Caitian; Zhou, Jinyuan; Li, Xiaodong; Xie, Erqing

    2013-10-07

    Under the background of the quick development of lightweight, flexible, and wearable electronic devices in our society, a flexible and highly efficient energy management strategy is needed for their counterpart energy-storage systems. Among them, flexible electrochemical capacitors (ECs) have been considered as one of the most promising candidates because of their significant advantages in power and energy densities, and unique properties of being flexible, lightweight, low-cost, and environmentally friendly compared with current energy storage devices. In a common EC, carbon materials play an irreplaceable and principal role in its energy-storage performance. Up till now, most progress towards flexible ECs technologies has mostly benefited from the continuous development of carbon materials. As a result, in view of the dual remarkable highlights of ECs and carbon materials, a summary of recent research progress on carbon-based flexible EC electrode materials is presented in this review, including carbon fiber (CF, consisting of carbon microfiber-CMF and carbon nanofiber-CNF) networks, carbon nanotube (CNT) and graphene coatings, CNT and/or graphene papers (or films), and freestanding three-dimensional (3D) flexible carbon-based macroscopic architectures. Furthermore, some promising carbon materials for great potential applications in flexible ECs are introduced. Finally, the trends and challenges in the development of carbon-based electrode materials for flexible ECs and their smart applications are analyzed.

  17. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  18. Carbon aerogels for electric double-layer capacitors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; LIU Hongbo; WANG Ming; LIU Wei

    2006-01-01

    In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional supercritical drying. By varying the R/C ratio (molar ratio of resorcinol to catalyst), mesoporous carbon aerogels with high specific surface area were prepared successfully and further investigated as electrode materials for electric double-layer capacitors (EDLCs). The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM. The electrochemical performances of carbon aerogels were investigated by impedance spectroscopy, galvanostatic charge/discharge and cyclic voltammetry methods. The results show that BET surface area and specific capacitance increase with R/C ratio, the maximum values of 727 m2·g-1 and 132 F·g-1 are achieved at R/C ratio will of 300. Increasing R/C ratio increase the average pore size of carbon aerogel electrode, which has improved the rate capability. Furthermore, EDLC with carbon aerogel electrodes has an excellent stability at large discharge current and long cycle life.

  19. EMBEDDED CAPACITOR SENSOR FOR MONITORING CORROSION OF REINFORCEMENT IN CONCRETE

    Directory of Open Access Journals (Sweden)

    SITI FATIMAH ABDUL RAHMAN

    2012-04-01

    Full Text Available Corrosion of reinforcement can affect durability and integrity of reinforced concrete structures. Repair cost for a badly corroded structure can be very costly and time consuming. In this paper, several capacitor sensors were developed to monitor corrosion potential of reinforcement in concrete. The impedance capacitive of sensors was tested in various acid and alkali solutions using Agilent 4284A Precision LCR meter. The other sensors were tied to reinforcements and embedded in concrete specimen contaminated with 5% chloride to measure corrosion potential. The specimens were exposed to the corrosion chamber and indoor environments. From the research, it was found that the sensor can measure the impedance capacitive at different frequencies in the aggressive solutions. Besides, it was observed that the patterns of corrosion potential shown by the embedded sensors were similar to the SRI sensor. The output values from embedded sensor are in a range of recommendation by the ASTM-C876. Eventually, the bars were found corroded from the broken specimens that confirmed the detection of corrosion activities as recorded by the sensors.

  20. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Pech, David; Brunet, Magali; Fabre, Norbert; Mesnilgrente, Fabien; Conedera, Veronique; Durou, Hugo [LAAS-CNRS, Universite de Toulouse, 7 av. du Colonel Roche, F-31077 Toulouse (France); Taberna, Pierre-Louis; Simon, Patrice [CIRIMAT-CNRS, Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse (France)

    2010-02-15

    Carbon-based micro-supercapacitors dedicated to energy storage in self-powered modules were fabricated with inkjet printing technology on silicon substrate. An ink was first prepared by mixing an activated carbon powder with a PTFE polymer binder in ethylene glycol stabilized with a surfactant then deposited by inkjet on patterned gold current collectors with the substrate heated at 140 C in order to assure a good homogeneity. Electrochemical micro-capacitors with electrodes in an interdigital configuration were fabricated, and characterized using electrochemical techniques in 1 M Et{sub 4}NBF{sub 4} propylene carbonate electrolyte. These micro-devices show an excellent capacitive behavior over a wide potential range of 2.5 V for a cell capacitance of 2.1 mF cm{sup -2}. The newly developed technology will allow the integration of the storage device as close as possible to the MEMS-based energy harvesting device, minimizing power losses through connections. (author)

  1. Note: Compact high voltage pulse transformer made using a capacitor bank assembled in the shape of primary.

    Science.gov (United States)

    Shukla, Rohit; Banerjee, Partha; Sharma, Surender K; Das, Rashmita; Deb, Pankaj; Prabaharan, T; Das, Basanta; Adhikary, Biswajit; Verma, Rishi; Shyam, Anurag

    2011-10-01

    The experimental results of an air-core pulse transformer are presented, which is very compact (capacitor bank that is fabricated in such a way that the capacitor bank with its switch takes the shape of single-turn rectangular shaped primary of the transformer. A high voltage capacitor assembly (pulse-forming-line capacitor, PFL) of 5.1 nF is connected with the secondary of transformer. The transformer output voltage is 160 kV in its second peak appearing in less than 2 μS from the beginning of the capacitor discharge. The primary capacitor bank can be charged up to a maximum of 18 kV, with the voltage delivery of 360 kV in similar capacitive loads.

  2. Determination of threshold and maximum operating electric stresses for selected high voltage insulation. Task 3: Investigation of high voltage capacitor insulation

    Science.gov (United States)

    Sosnowski, M.; Eager, G. S., Jr.

    1984-03-01

    The threshold voltage of capacitor insulation was investigated. The experimental work was performed on samples prepared from commercial polypropylene insulated, liquid-filled capacitors. The samples were vacuum-impregnated with the original capacitor insulating liquid obtained from the manufacturer. A limited number of full-size capacitor elements also were tested. Impulse voltage breakdown tests with dc voltage prestressing were performed at room temperature and 75 C. From the results of these tests, the threshold voltage of the samples of the capacitor insulation was determined at both temperatures and that of the whole capacitor elements at room temperature. The threshold voltage of the capacitor insulation was found to be approximately equal to the impulse breakdown voltage. No difference was found between the threshold voltage at room temperature and at 75 C. The threshold voltage of the whole capacitor elements at room temperature was found to be equal to approximately 80% of the threshold voltage of the capacitor insulation samples.

  3. Simulation of manoeuvres in capacitor banks for a typical medium voltage network; Simulacion de maniobras en bancos de capacitores en una red de media tension tipica

    Energy Technology Data Exchange (ETDEWEB)

    Viollaz, F.; Corasaniti, F. [Universidad Nacional de La Plata (UNLP), Buenos Aires (Argentina). Facultad de Ingenieria. Inst. de Investigaciones Tecnologicas para Redes y Equipos Electricos (IITREE-LAT)]. E-mail: fviollaz@iitree.ing.unlp.edu.ar

    2001-07-01

    This paper presents the simulation results of electromagnetic transients reproducing manoeuvres performed on capacitor banks. Energization and bank disconnection manoeuvres were analysed for the evaluation design the installed equipment. However, posterior evaluations demonstrated the existence of particularly critical conditions for the manoeuvre carrying out where elevated over currents can appears which exceed the maximum normalized values.

  4. Optimal Placement and Sizing of Distributed Generation And Capacitor Bank For Loss Reduction And Reliability Improvement In Distribution Systems

    OpenAIRE

    Reza Baghipourr; Seyyed Mehdi Hosseini

    2014-01-01

    In this paper optimum size and location of the capacitors and distributed generators (DGs) are determined for reliability improvement and power loss reduction using genetic algorithm (GA). The main innovation of this paper is using both DG and Capacitor for the reliability improvement and power loss reduction. For this purpose an objective function consisting of reliability cost, power loss cost and also DG's and capacitor's investment cost are considered. The effectiveness of the proposed me...

  5. Lifetime Estimation of DC-link Capacitors in a Single-phase Converter with an Integrated Active Power Decoupling Module

    DEFF Research Database (Denmark)

    Ma, Siyuan; Wang, Haoran; Tang, Junchaojie;

    2016-01-01

    -link capacitor capacitance can be decreased. However, few research is about the effect of DC side and AC side decoupling on the DC-link capacitor reliability considering its electro-thermal stresses. This paper presents a quantitative analysis on the lifetime of capacitors with power decoupling circuits......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC...

  6. A 1.5 bit/s Pipelined Analog-to-Digital Converter Design with Independency of Capacitor Mismatch

    Institute of Scientific and Technical Information of China (English)

    LI Dan; RONG Men-tian; MAO Jun-fa

    2007-01-01

    A new technique which is named charge temporary storage technique (CTST) was presented to improve the linearity of a 1.5 bit/s pipelined analog-to-digital converter (ADC).The residual voltage was obtained from the sampling capacitor, and the other capacitor was just a temporary storage of charge.Then, the linearity produced by the mismatch of these capacitors was eliminated without adding extra capacitor error-averaging amplifiers.The simulation results confirmed the high linearity and low dissipation of pipelined ADCs implemented in CTST, so CTST was a new method to implement high resolution, small size ADCs.

  7. An RF power amplifier with inter-metal-shuffled capacitor for inter-stage matching in a digital CMOS process

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaoxing; Zhang Xing; Ge Binjie; Wang Xin'an

    2009-01-01

    One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available, especially no high density capacitor. To address this problem, a twostage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process. This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal (MIM) capacitor regarding their capacitor density. Detailed simulations are carried out for the leakage, the voltage dependency, the temperature dependency, and the quality factor between an inter-metal shuffled (IMS) capacitor and an MIM capacitor. Finally, an IMS capacitor is chosen to perform the inter-stage matching.The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application. The PA occupies 370 X 200 μm2 without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.

  8. Development of high energy density electrical double layer capacitors

    Science.gov (United States)

    Devarajan, Thamarai selvi

    Electrochemical Double Layer capacitors (EDLCs) have shown themselves as a viable energy storage alternative. EDLCs have high power density, faster charge/discharge, wide operating temperature and long cycle life compared to batteries since it stores charge by physical separation. Despites all their advantages, their low energy density stand as a bottleneck for capacitors. This research aims to increase the energy density of EDLC without compromising the power density. Energy is proportional to the square of cell voltage. Cell voltage is mainly dependent on electrolyte breakdown. Electrolytes also provide ions for charge separation and conduction. Therefore various electrolytes (Solutes and Solvents) which can give high concentration, solubility and decomposition potential were characterized in the first part of the research. In that study, a novel ionic liquid OPBF4 had higher capacitance and comparable voltage window compared to commercial TEABF4 in Acetonitrile. However, the increased polarity of the fixed ring O-atom and the ion-ion interaction in OPBF4 was responsible for lowering its conductivity. Oxygenated ionic compounds with alkyl groups had lower stability due to beta elimination between two electron withdrawing atoms. Volume based thermodynamics and quantum chemical calculations were used to calculate ion size, HOMO/LUMO energies, and free energy changes and establish relationship with capacitance, redox potential and melting points respectively. In addition free energy of fusion was used to predict the melting point. Ion size had correlation with capacitance due to compact double layer formation. Free energy changes did not explain the differences in melting point and predicted dielectric constant was inconsistent with the polarity. This is presumably due to using Van der Waals volume instead of crystal structure volume and insufficient incorporation of polarization term. The HOMO/LUMO energies gave direct relation between oxidation and reduction

  9. Sputtered Modified Barium Titanate for Thin-Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Robert Mamazza

    2012-04-01

    Full Text Available New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111 underlayer enhanced the (001 orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111 textured film at 700 °C and directly onto (100 Si wafers showed relatively larger (011 and diminished intensity (00ℓ diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (er and resistivity (r of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.

  10. A Reliability Model for Ni-BaTiO3-Based (BME) Ceramic Capacitors

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    The evaluation of multilayer ceramic capacitors (MLCCs) with base-metal electrodes (BMEs) for potential NASA space project applications requires an in-depth understanding of their reliability. The reliability of an MLCC is defined as the ability of the dielectric material to retain its insulating properties under stated environmental and operational conditions for a specified period of time t. In this presentation, a general mathematic expression of a reliability model for a BME MLCC is developed and discussed. The reliability model consists of three parts: (1) a statistical distribution that describes the individual variation of properties in a test group of samples (Weibull, log normal, normal, etc.), (2) an acceleration function that describes how a capacitors reliability responds to external stresses such as applied voltage and temperature (All units in the test group should follow the same acceleration function if they share the same failure mode, independent of individual units), and (3) the effect and contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size S. In general, a two-parameter Weibull statistical distribution model is used in the description of a BME capacitors reliability as a function of time. The acceleration function that relates a capacitors reliability to external stresses is dependent on the failure mode. Two failure modes have been identified in BME MLCCs: catastrophic and slow degradation. A catastrophic failure is characterized by a time-accelerating increase in leakage current that is mainly due to existing processing defects (voids, cracks, delamination, etc.), or the extrinsic defects. A slow degradation failure is characterized by a near-linear increase in leakage current against the stress time; this is caused by the electromigration of oxygen vacancies (intrinsic defects). The

  11. A global harmony search algorithm for finding optimal capacitor location and size in distribution networks

    Institute of Scientific and Technical Information of China (English)

    Reza Sirjani; Melkamu Gamene Bade

    2015-01-01

    Shunt capacitors are broadly applied in distribution systems to scale down power losses, improve voltage profile and boost system capacity. The amount of capacitors added and location of deployment in the system highly determine the advantage of compensation. A novel global harmony search (GHS) algorithm in parallel with the backward/ forward sweep power flow technique and radial harmonic power flow was used to investigate the optimal placement and sizing of capacitors in radial distribution networks for minimizing power loss and total cost by taking account load unbalancing, mutual coupling and harmonics. The optimal capacitor placement outcomes show that the GHS algorithm can reduce total power losses up to 60 kW and leads to more than 18% of cost saving. The results also demonstrate that the GHS algorithm is more effective in minimization of power loss and total costs compared with genetic algorithm (GA), particle swarm optimization (PSO) and harmony search (HS) algorithm. Moreover, the proposed algorithm converges within 800 iterations and is faster in terms of computational time and gives better performance in finding optimal capacitor location and size compared with other optimization techniques.

  12. Evaluation of gamma and neutron irradiation effects on the properties of mica film capacitors

    Indian Academy of Sciences (India)

    Rajesh Roy; Arun Pandya

    2005-12-01

    We present an investigation of gamma and neutron radiation effects on mica film capacitors from an electrical point of view. We have studied quantitatively the effects of gamma and neutron irradiation on mica film capacitors of thickness, 20 and 40 m (0.7874 and 1.5748 mil) with two different areas, 01 and 04 cm2. The capacitance has been measured at room temperature in the frequency range 100 Hz–10 MHz. Negligible change in the capacitance due to high gamma dose of 60Co, 15 kGy at dose rate 0.25 kGy/h, has been observed. However, appreciable change in the capacitance has been observed due to low doses of fast neutrons (cumulative dose, 115 cGy) with flux ∼ 9.925 × 107 neutrons/cm2 h from 252Cf neutron source of fluence, 2.5 × 107 neutrons/s. We have also observed that the impact of gamma and neutron irradiation is more at frequencies higher than 10 kHz. These results show that the mica capacitors do not show any radiation response below 10 kHz. The study shows the radiation response of mica film capacitors to gamma and fast neutron radiations. Mica capacitors show low gamma radiation response in comparison to fast neutron radiation, because a total dose of kGy order has been given by gamma source and only few cGy dose has been given by fast neutron source.

  13. High current 66 kV tests on high stability PFN discharge capacitors for CERN LHC

    CERN Document Server

    Barnes, M J

    1999-01-01

    The European Laboratory for Particle Physics (CERN) is constructing a Large Hadron Collider (LHC) to be installed in an existing 27 km circumference tunnel. The LHC will be equipped with fast pulsed magnet systems for injecting two counter-rotating hadron beams. Two pulsed systems, of 4 magnets and 4 pulse forming networks (PFNs) each, are required for this purpose. TRIUMF will build and test 5 resonant charging power supplies (RCPS) and nine PFNs and the associated thyratron switch units as part of the Canadian contribution to CERN LHC. Failures in the PFN capacitors may lead to incorrect beam deflections that may in turn damage LHC components. For this reason the reliability of the capacitors must be exceptionally high. Hence sample PFN capacitors were purchased and tested. The test procedure included discharging the PFN capacitors from 66 kV, into a 10.1 Ohm resistance, for 500,000 cycles, at a frequency of approximately 1 Hz. Subsequently the PFN capacitors were discharged from 66 kV into a 2.7 Ohm resist...

  14. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE)

    Energy Technology Data Exchange (ETDEWEB)

    Savi, Daniel, E-mail: d.savi@umweltchemie.ch [Dipl. Environmental Sci. ETH, büro für umweltchemie, Zurich (Switzerland); Kasser, Ueli [Lic. Phil. Nat. (Chemist), büro für umweltchemie, Zurich (Switzerland); Ott, Thomas [Dipl. Phys. ETH, Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil (Switzerland)

    2013-12-15

    Highlights: • We’ve analysed data on the dismantling of electronic and electrical appliances. • Ten years of mass balance data of more than recycling companies have been considered. • Percentages of dismantled batteries, capacitors and PWB have been studied. • Threshold values and benchmarks for batteries and capacitors have been identified. • No benchmark for the dismantling of printed wiring boards should be set. - Abstract: The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given.

  15. Influence of a Circuit Breaker's Grading Capacitor on Controlled Transformer Switching

    Science.gov (United States)

    Corrodi, Yves; Kamei, Kenji; Kohyama, Haruhiko; Ito, Hiroki

    Controlled switching, taking into account the residual flux level within a transformer core, can effectively eliminate inrush currents. Many switching sequences assume the residual flux as a constant value, which can be obtained by a measurement after a transformer de-energization. However, in case of a transformer system that is switched by a circuit breaker equipped with a grading capacitor, the residual flux characteristic cannot be considered as constant. A source voltage will feed the deenergized transformer system through the grading capacitor, which will change the residual flux level and let oscillations appear. It follows that the optimal re-energization targets change and inrush currents might not be optimally minimized. Further, transient voltages based on line failures can influence the residual flux through a grading capacitor as well. At first, this paper evaluates the influence of a grading capacitor on the residual flux characteristic analytically. Further, measurements of two transformer systems at a varied de-energization instant and for different grading capacitors provide actual information for the development of future controller systems.

  16. Hydrogen gas detection using MOS capacitor sensor based on palladium nanoparticles-gate

    Science.gov (United States)

    Aval, Leila Fekri; Elahi, Seyed Mohammad

    2016-11-01

    In this study a palladium nanoparticles-gate MOS capacitor hydrogen sensor with Pd/SiO2/Si structure has been fabricated. The palladium nanoparticles by chemical method are synthesized and then characterized by transmission electron microscope (TEM), X-ray diffraction (XRD) and UV-VIS spectrum. Also, the preferred orientation and grain size of the palladium nanoparticles have been studied. Hydrogen absorption and desorption of the palladium nanoparticles at the low and high pressure and as function of time have been investigated. The sensing mechanism of the hydrogen detection by MOS capacitor sensor has been explained and theoretical and experimental results have been compared. At 287 K, compared to another Pd MOS capacitor hydrogen sensor and ultrathin Pd MOS capacitor, the palladium nanoparticles gate MOS capacitor showed much faster response and recovery speed. The time interval for reaching to 95% of the steady state signal magnitude (t95%) for 1% and 2% hydrogen in nitrogen were 2 s and 1.5 s respectively. The time interval for recovery transients from 95% to 10% of steady state signal magnitude (t10%) for 1% and 2% hydrogen in nitrogen were 10 s and 11 s respectively. The presented sensor illustrates a designing of hydrogen detectors with very fast response and recovery speed.

  17. Physics Based Degradation Models for Capacitor Prognostics under Thermal Overstress Conditions

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Electronics subsystems for monitoring, control, and enhanced functionality play an increasingly important role in safety critical systems. Electrolytic capacitors are an important component in several key subsystems that range from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. These capacitors are known to have comparatively low reliability, and given their criticality in electronics subsystems they are a good candidate for component level monitoring and prognostics. Prognostics provides a way to assess remaining useful life of components and systems based on their current state of health and their anticipated future use and operating conditions. Past experiences have shown that capacitor degradation and failures are quite prevalent under high electrical and thermal stress conditions that they are often subjected to during operations. Our focus in this work is on deriving a physics-based degradation model for electrolytic capacitors under thermal stress conditions. As part of our methodology, we study the effects of accelerated aging due to thermal stress on a batch of identically manufactured capacitors operating at different temperatures. This provides a framework for supplementing theoretical modeling with data collected from simultaneous experiments, which is then used to validate the derived models.

  18. Electrochemical performance of nickel oxide/KOH/active carbon super-capacitor

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The fabrication and characterization of new type Nickel oxide/KOH/Active carbon super-capacitor have been described. Porous nickeloxide was prepared by hydrolysis of nickel acetate and heated in air at 300℃. The resulting nickel oxide behaved as an electrochemical capacitor electrode with a specific capacitance (50-70F/g) superior to most active carbon electrodes. This kind of nickel oxide maintained highutilization at high rate of discharge (i.e., high power density) and had excellent cycle life more than 1000 times, while the capacitance of the cell composed of two identical nickel oxide electrodes was poor at high discharge current density and the maximum operational voltage of this type capacitor was limited to 0.5V. A new type super-capacitorwas designed in which the nickel oxide and the active carbon were applied to the positive and negative electrodes respectively. The breakdown voltage of this type super-capacitor was improved effectively to 0.8V and excellent characteristic of high power discharge was attained in this way. The Nickel oxide/KOH/Active carbon super-capacitor has promising potentials in portable telecommunications, uninterruptable power supplies and battery load leveling applications.

  19. Lithium-ion capacitors with 2D Nb2CTx (MXene) - carbon nanotube electrodes

    Science.gov (United States)

    Byeon, Ayeong; Glushenkov, Alexey M.; Anasori, Babak; Urbankowski, Patrick; Li, Jingwen; Byles, Bryan W.; Blake, Brian; Van Aken, Katherine L.; Kota, Sankalp; Pomerantseva, Ekaterina; Lee, Jae W.; Chen, Ying; Gogotsi, Yury

    2016-09-01

    There is a growing interest to hybrid energy storage devices, such as lithium-ion capacitors, in which battery-type electrodes are combined with capacitor-type ones. It is anticipated that the energy density (either gravimetric or volumetric) of lithium-ion capacitors is improved if pseudocapacitive or fast insertion materials are used instead of conventional activated carbon (AC) in the capacitor-type electrode. MXenes, a new family of two-dimensional transition metal carbides, demonstrate metallic conductivity and fast charge-discharge behavior that make them suitable for this application. In this study, we move beyond single electrodes, half-cell studies and demonstrate three types of hybrid cells using Nb2CTx-carbon nanotube (CNT) films. It is shown that lithiated graphite/Nb2CTx-CNT, Nb2CTx-CNT/LiFePO4 and lithiated Nb2CTx-CNT/Nb2CTx-CNT cells are all able to operate within 3 V voltage windows and deliver capacities of 43, 24 and 36 mAh/g (per total weight of two electrodes), respectively. Moreover, the polarity of the electrodes can be reversed in the symmetric Nb2CTx-CNT cells from providing a positive potential between 0 and 3 V to a negative one from -3 to 0 V. It is shown that the volumetric energy density (50-70 Wh/L) of our first-generation devices with MXene electrodes exceeds that of a lithium titanate/AC capacitor.

  20. Performance of a combined capacitor based on ultrafine nickel oxide/carbon nanotubes composite electrodes

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Wang; Yanqiu Cao; Yiqiang Lu; Qiqian Sha; Ji Liang

    2004-01-01

    A new sol-gel process for the preparation of ultrafine nickel hydroxide electrode materials was developed. The composite electrodes consisting of carbon nanotubes and Ni(OH)2 were developed by mixing the hydroxide and carbon nanotubes together in different mass ratios. In order to enhance energy density, a combined type pseudocapacitor/electric double layer capacitor was considered and its electrochemical properties were characterized by cyclic voltammetry and dc charge/discharge test. The combined capacitor shows excellent capacitor behavior with an operating voltage up to 1.6 V in KOH aqueous electrolyte. Stable charge/discharge behaviors were observed with much higher specific capacitance values of 24 F/g compared with that of EDLC (12F/g) by introducing 60% Ni(OH)2 in the anode material. By using the modified anode of a Ni(OH)2/carbon nanotubes composite electrode, the specific capacitance of the cell was less sensitive to discharge current density compared with that of the capacitor employing pure nickel hydroxide as anode. The combined capacitor in this study exhibits high energy density and stable power characteristics.

  1. Analysis on Tuning Capacitor%调谐电容器剖析

    Institute of Scientific and Technical Information of China (English)

    林惠仁; 叶德堃; 翁路明

    2015-01-01

    通过对0.23/0.4 kV 电源系统的调谐电容器补偿电路的分析计算,导出变压器回路、电容器回路的谐波电流比值AT、 AC的计算式;以已知频谱谐波源的数据,用电脑进行各种组态的计算;以计算结果为基础分析调谐电容器的作用,电抗率、电容器Y或△接法对滤波和谐振频率的影响。为电抗率、电容器Y或△接线选择提供参考依据。%Through analysis and calculation of the tuning capacitor compensating circuit of 0. 23/0. 4 kV power system, the formula for harmonic current ratio of transformer and capacitor circuit AT, AC is derived. According to the known data of frequency spectrum of harmonic source, calculations on various configurations are carried out on computer. Based on the calculation results, the functions of tuning capacitor and impacts of reactance ratio and star / delta connection of capacitor on filtering and resonance frequency are analyzed, so as to provide reference basis for the selection of reactance ratio and star/delta connection of capacitor.

  2. A capacitor-clamped inverter based torsional oscillation damping method for electromechanical drivetrains

    Directory of Open Access Journals (Sweden)

    Shagar Viknash

    2016-01-01

    Full Text Available A typical electromechanical drivetrain consists of an electric motor, connecting shafts and gears. Premature failures of these shafts and gears have been reported which are mainly due to fatigue caused by extreme loads and torsional oscillations. Overdesign and passive damping are the common approaches taken to increase the fatigue life. Nevertheless, they increase the system cost, weight and volume. Alternatively, active damping through advanced inverter control of the motor drive has been identified as a promising solution that does not require overdesign or alterations to the existing system. Even with the active damping control, oscillations propagate into the dc side of the power converter and subsequently to the upstream power bus. Generally, a large capacitor or an additional energy storage system is placed to suppress these oscillations. This paper proposes to use the clamping capacitors of the capacitor-clamped inverter as energy storage elements and thereby eliminate the need for a large dc side capacitor or an additional energy storage system. The efficacy of the proposed method has been verified with computer simulations. Simulation results show that the clamping capacitors are capable of containing torsional oscillations within the inverter without passing them to the upstream power bus.

  3. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Directory of Open Access Journals (Sweden)

    Lingyu Zhu

    Full Text Available The capacitors in high-voltage direct-current (HVDC converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  4. High energy, low inductance, high current fiberglass energy storage capacitor for the Atlas Machine Marx modules

    CERN Document Server

    Cooper, R A; Ennis, J B; Cochrane, J C; Reass, W A; Parsons, W M

    1999-01-01

    The Los Alamos National Laboratory's Atlas Marx design team envisioned a double ended plastic case 60 kV, 15 nH, 650 kA, energy storage capacitor. A design specification was established and submitted to various vendors. Maxwell Energy Products drew from its development of large fiberglass case, high voltage, low inductance "FASTCAP" capacitors manufactured for Maxwell Technologies' ACE II, ACE III and ACE IV machines. This paper discusses the LANL specification and Maxwell Energy Products' successful design, Model No. 39232, 34.1 mu F, 60 kV, 13*29*27", the only capacitor qualified by LANL for the 23 Mega Joule Atlas application. Maxwell's past experience in this type of capacitor is covered. The performance data is reviewed and the life test data compared to the original calculated design life. Challenges included Maxwell's "keep it simple " design goal which was maintained to minimize the effort required to create and manufacture a nearly 600 pound capacitor. (1 refs).

  5. Magntohydrodynamic behavior of capacitor-coil target toward alternative inertial confinement fusion

    Science.gov (United States)

    Sasaki, T.; Oyama, S.; Sugimoto, Y.; Takahashi, K.; Kikuchi, T.; Harada, N.; Nagatomo, H.; Fujioka, S.; Sunahara, A.

    2016-05-01

    To understand its magnetohydrodynamic behaviors and the electrical properties, we proposed to evaluate both experimental observations and numerical simulations. Electrical conductivity for nickel in warm dense matter (WDM) state has been measured with an exploding wire in a quasi-isochoric vessel. The result shows that the electrical conductivity for nickel in WDM is relatively high from the comparison of the electrical conductivities for several materials in WDM state. However, the skin effect in the capacitor-coil target will be neglected from the estimation. A two-dimensional magnetohydrodynamic simulation for the capacitor-coil target has been demonstrated. The results shows that the distribution of B-field in the capacitor-coil target depends on the electrical conductivity model.

  6. Improving the Transient States Caused by Switching of Capacitor Banks in Power Dispatching Stations

    Directory of Open Access Journals (Sweden)

    Seyed Sajjad Salehi Ghaleh SEFID

    2014-09-01

    Full Text Available The high reactive power demand on the electrical power grid reduces the power factor and increases voltage drop. One of the compensation methods of required reactive power is the application of capacitor banks. Among the major problems with this equipment is shock, created at the moment of connection to the grid, which can cause accidents in power stations. While studying the statistical analysis of the incidents due to use of capacitor banks, this paper analyzes the shock caused by their connection, and realistically simulates a sample power station in the EMTP / WORKS software. Finally, this paper suggests useful and efficient methods to reduce the transient conditions caused by transient capacitor banks switching to the grid.

  7. Evaluation of Ferrite Chip Beads as Surge Current Limiters in Circuits with Tantalum Capacitors

    Science.gov (United States)

    Teverovsky, Alexander

    2014-01-01

    Limiting resistors are currently required to be connected in series with tantalum capacitors to reduce the risk of surge current failures. However, application of limiting resistors decreases substantially the efficiency of the power supply systems. An ideal surge current limiting device should have a negligible resistance for DC currents and high resistance at frequencies corresponding to transients in tantalum capacitors. This work evaluates the possibility of using chip ferrite beads (FB) as such devices. Twelve types of small size FBs from three manufacturers were used to evaluate their robustness under soldering stresses and at high surge current spikes associated with transients in tantalum capacitors. Results show that FBs are capable to withstand current pulses that are substantially greater than the specified current limits. However, due to a sharp decrease of impedance with current, FBs do not reduce surge currents to the required level that can be achieved with regular resistors.

  8. The analysis of linear parametric circuits with switched capacitors by compact modified method of curve fitting

    Directory of Open Access Journals (Sweden)

    M. E. Artemenko

    2011-10-01

    Full Text Available The analytical connections  between the topological resistive element’s connection matrix of ARC-prototype and the topological switched capacitor’s connection matrices of resistor’s switch-capacitor  equivalents   for both phases of SC-circuits were established  that permits to  analyze a switched-capacitor networks on the base of  element’s connection matrix of ARC-prototype. The formal mathematical apparatus of forming the SC-circuits’ difference equations based on element’s connection matrix of ARC-prototype was developed which allows to reduce the dimension of the analyzed model of SC-circuits to the number of prototype’s capacitors.

  9. Superior decoupling capacitor for three-dimensional LSI with ultrawide communication bus

    Science.gov (United States)

    Araga, Yuuki; Nagata, Makoto; Miura, Noriyuki; Ikeda, Hiroaki; Kikuchi, Katsuya

    2017-04-01

    The superior noise reduction performance of an in-stack decoupling capacitor (DECAP) is demonstrated. A three-tier stacked demonstrator is manufactured with an ultrawide data bus that connects a top memory chip and a bottom logic chip. An in-stack evaluation circuitry on a middle tier (Si interposer) captures voltage variation waveforms during chip-to-chip data communication. In-stack DECAPs in arrays on a Si interposer and discrete ceramic capacitors on an organic interposer of a ball-grid array package are compared. Silicon measurements with an in-stack noise monitoring technique show that the DECAPs on the Si interposer more locally shunt out the AC components of power supply current over a wider frequency range than the capacitors on the package interposer.

  10. A sensorless control method for capacitor voltage balance and circulating current suppression of modular multilevel converter

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Loh, Poh Chiang

    2015-01-01

    There are several problems in the Modular Multilevel Converter (MMC), such as the appearance of circulating current, capacitor voltage unbalance and the requirement for a high number of sensors. All these problems will decrease the reliability and raise the cost/uncertainty of using MMC solutions....... As a result, a sensorless control method is proposed in this paper, which targets to improve the performances of MMC in respect to the above mentioned disadvantages: To decrease the cost and simplify the physical implementation, a state observer is proposed and designed to estimate both the capacitor voltages...... and the circulating currents in order to replace the high numbers of sensors. Furthermore, a control method combining the circulating current suppression and the capacitor voltage balancing is conducted based on the proposed state observer. It is concluded that the proposed state observer and control method can...

  11. Bayesian Framework Approach for Prognostic Studies in Electrolytic Capacitor under Thermal Overstress Conditions

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies for safety critical avionics equipment to power drivers for electro-mechanical actuator. Past experiences show that capacitors tend to degrade and fail faster when subjected to high electrical or thermal stress conditions during operations. This makes them good candidates for prognostics and health management. Model-based prognostics captures system knowledge in the form of physics-based models of components in order to obtain accurate predictions of end of life based on their current state of heal th and their anticipated future use and operational conditions. The focus of this paper is on deriving first principles degradation models for thermal stress conditions and implementing Bayesian framework for making remaining useful life predictions. Data collected from simultaneous experiments are used to validate the models. Our overall goal is to derive accurate models of capacitor degradation, and use them to remaining useful life in DC-DC converters.

  12. ZONES OF STEADY CAPACITOR EXCITATION IN A MODE OF GENERATION OF TYPICAL ASYNCHRONOUS MACHINES

    Directory of Open Access Journals (Sweden)

    Postoronca Sv.

    2009-12-01

    Full Text Available In work some features of a mode of capacitor excitation of industrial asynchronous electric motors, and also generators made on their base which can be used in wind installations of low power are considered. Borders of zones of steady capacitor excitation of asynchronous electric motors in rated power of 0,25-22,0 kW and generators made on their base, and also character of influence of own losses and active capacity of loading of the equivalent circuit of the asynchronous machine resulted in parameters have been determined. Some recommendations after maintenance of stability of capacitor excitation of asynchronous machines for work in a mode of generation of electric energy are given.

  13. R dump converter without DC link capacitor for an 8/6 SRM: experimental investigation.

    Science.gov (United States)

    Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran

    2015-01-01

    The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation.

  14. Mesoscopic capacitor and zero-point energy: Poisson's distribution for virtual charges, pressure, and decoherence control

    Science.gov (United States)

    Flores, J. C.

    2014-08-01

    Mesoscopic capacitor theory, which includes intrinsic inductive effects from quantum tunneling, is applied to conducting spherical shells. The zero-point pressure and the number of virtual charged pairs are determined assuming a Poisson distribution. They are completely defined by a dimensionless mesoscopic parameter (χc) measuring the average number of virtual pairs per solid angle and carrying mesoscopic information. Fluctuations remain finite and well defined. Connections with usual quantum-field-theory limit enables us to evaluate χc 1.007110. Equivalently, for a mesoscopic parallel-plate capacitor, the shot noise distribution becomes operative with χc 0.94705 as well being related to the density of virtual pairs. Temperature decoherence and capacitor control are discussed by considering typical values of quantum dot devices and Coulomb blockade theory.

  15. Theoretical and experimental analysis of inverter fed induction motor system under DC link capacitor failure

    Directory of Open Access Journals (Sweden)

    Hadeed A. Sher

    2017-04-01

    Full Text Available In this paper theoretical and experimental analysis of an AC–DC–AC inverter under DC link capacitor failure is presented. The failure study conducted for this paper is the open circuit of the DC link capacitor. The presented analysis incorporates the results for both single and three phase AC input. It has been observed that the higher ripple frequency provides better ride through capability for this fault. Furthermore, the effects of this fault on electrical characteristics of AC–DC–AC inverter and mechanical properties of the induction motor are also presented. Moreover, the effect of pulsating torque as a result of an open circuited DC link capacitor is also taken into consideration. Theoretical analysis is supported by computer aided simulation as well as with a real time experimental prototype.

  16. Enhanced DC-Link Capacitor Voltage Balancing Control of DC–AC Multilevel Multileg Converters

    DEFF Research Database (Denmark)

    Busquets-Monge, Sergio; Maheshwari, Ram Krishan; Nicolas-Apruzzese, Joan

    2015-01-01

    This paper presents a capacitor voltage balancing control applicable to any multilevel dc–ac converter formed by a single set of series-connected capacitors implementing the dc link and semiconductor devices, such as the diode-clamped topology. The control is defined for any number of dc......-link voltage levels and converter legs (for single-phase and multiphase systems), guaranteeing the capacitor voltage control for any modulation index value and load (from idle mode to full power). The associated control loop small-signal transfer function is presented, from which optimum compensator design...... guidelines are derived. The improvement in control performance is verified through simulation and experiments comparing with a previous balancing control strategy in a four-level three-phase dc–ac conversion system. The satisfactory control performance is also verified through simulation in a four-level five...

  17. Investigations on Capacitor Compensation Topologies Effects of Different Inductive Coupling Links Configurations

    Directory of Open Access Journals (Sweden)

    Norezmi Jamal

    2015-06-01

    Full Text Available This paper presents investigations on capacitor compensation topologies with different inductive coupling links for loosely coupled inductive power transfer (IPT system. In general, the main constraint of the loosely coupled IPT system is power losses due to the large leakage inductances. Therefore, to overcome the aforementioned problem, in this work, capacitor compensation is proposed to be used by adding an external capacitor to the system. By using this approach, the resonant inductive coupling can be achieved efficiently and hence the efficiency of the system is also increased significantly. This paper analyzes the performance of two different compensation topologies, which are primary series-secondary series (SS and primary series- secondary parallel (SP topology. The performance of such topologies is evaluated through the experimental results at 1MHz operating frequency for different types of inductive coupling. From the results, SS topology produces a high power transfer but SP topology gives better efficiency.

  18. Electrochemical Double Layered Capacitor Development and Implementation System

    Science.gov (United States)

    Strunk, Gavin P.

    Electrochemical Double Layered Capacitors (EDLC's) are becoming a more popular topic of research for hybrid power systems, especially vehicles. They are known for their high power density, high cycle life, low internal resistance, and wider operating temperature compared to batteries. They are rarely used as a standalone power source; however, because of their lack of energy density compared to batteries and fuel cells. Researchers are now discovering the benefits of using them in hybrid systems. The increased complexity of a hybrid power source presents many challenges. A major drawback of this complexity is the lack of design tools to assist a designer in translating a simulation all the way to a full scale implementation. A full spectrum of tools was designed to assist designers at all stages of implementation including: single cell testing, a multi-cell management system, and a full scale vehicle data acquisition system to monitor performance. First, the full scale vehicle data acquisition is described. The system is isolated from the electric shuttle bus it was tested on to allow the system to be ported to other vehicles and applications. This was done to modularize the system to characterize a wide variety of full scale applications. Next, a single cell test system was designed that allows the designer to characterize cell specifications, as well as, test control and safety systems in a controlled environment. The goal is to ensure safety systems can be thoroughly tested to ensure robustness as the bank is scaled up. This system also includes simulation models that provide examples of using the simulation to predict the behavior of a cell and the test system to validate the results of the simulation. This information is then used by the designer to more effectively design sensor ranges for the bank. Finally, a multi-cell EDLC management system was designed to implement a bank. It incorporates 12 series EDLC cells per control module, and the modular design

  19. Structure-property relationships in polymers for dielectric capacitors

    Science.gov (United States)

    Gupta, Sahil

    Effective energy storage is a key challenge of the 21st century that has fueled research in the area of energy storage devices. In this dissertation, structure-property relationships have been evaluated for polymers that might be suitable for storing energy in high-energy density, high-temperature capacitors. Firstly, hydroxyl-modified polypropylenes (PPOH) were synthesized by copolymerization of the propylene and undecenyloxytrimethylsilane monomers. The presence of H-bonding in PPOH copolymers increased their glass-transition temperature. Steric hindrance by the comonomer reduced the PP crystal growth rate and crystal size, resulting in a melting point depression. The comonomer was restricted outside the crystalline domains leaving the alpha-monoclinic crystal structure of PP unaffected, but increasing the fold-surface free energy. Crystallization was slower for PPOH copolymers than PP, but exhibited a skewed bell curve as a function of hydroxyl concentration. H-bonding persisted even at melt temperatures up to 250°C resulting in a higher elasticity and viscosity for PPOH copolymers. Secondly, sulfonated poly(ether ether ketone) (HSPEEK) was synthesized by sulfonating PEEK with sulfuric acid, and further neutralized with Zn to obtain ZnSPEEK. The thermal and dielectric properties of SPEEK were compared with PEEK. The glass-transition increased and melting point were high enough to enable the use of polymer at 180°C. The incorporation of sulfonic groups in PEEK increased the dielectric constant. HSPEEK had a higher dielectric constant than ZnSPEEK due to higher dipolar mobility, but the dielectric loss was also higher for HSPEEK due to electrode polarization and DC conduction. These results were consistent with our observations from sulfonated polystyrene (HSPS), which was used as a >model&lang' polymer. Lastly, commercial poly(4-methyl-1-pentene) (P4MP) was characterized to check its viability as a high-temperature polymer dielectric. Thermal stability up to

  20. Research on the Application of the Super Capacitor in the Solar LED Pest Control Light

    Directory of Open Access Journals (Sweden)

    Li Tianhua

    2014-02-01

    Full Text Available Based on the energy storage characteristics of the super-capacitor and solar panels, this study selects the super-capacitor as the storage device to design the solar LED pest control light, which is energy saving, environmentally friendly, safe and reliable. The solar LED pest control light is easy to use and there is no need erecting and maintaining wires. However, the current storage battery is weak in charge control due to the instability of the sun light and this unstable charge state may lead to its premature failure or capacity loss, thus causing the service life of pest control light to be below the designed specification.

  1. Enhanced Stability of Capacitor-Current Feedback Active Damping for LCL-Filtered Grid Converters

    DEFF Research Database (Denmark)

    Xin, Zhen; Wang, Xiongfei; Loh, Poh Chiang;

    2015-01-01

    The proportional capacitor-current feedback active damping method has been widely used to suppress the LCL-filter resonance. However, the time delay in the damping control loop may lead to non-minimum phase or even unstable responses when the resonance frequency varies in a wide range. To improve...... the robustness of damping, this paper proposes an improved damping controller with the capacitor current feedback loop, which is based on the second-order generalized integrator, instead of a proportional gain, which can effectively mitigate the detrimental effect of the time delay. Robustness of the proposed...

  2. Super capacitors for embarked systems as a storage energy device solution

    Energy Technology Data Exchange (ETDEWEB)

    Ayad, M.Y.; Rael, S.; Pierfederici, S.; Davat, B. [Institut National Polytechnique, GREEN-INPL-CNRS (UMR 7037), 54 - Vandoeuvre les Nancy (France)

    2004-07-01

    The management of embarked electrical energy needs a storage system with high dynamic performances, in order to shave transient power peaks and to compensate for the intrinsic limitations of the main source. The use of super-capacitors for this storage system is quite suitable, because of appropriate electrical characteristics (huge capacitance, weak serial resistance, high specific energy, high specific power), of direct storage (energy ready for use), and of easy control by power electronic conversion. This paper deals with the conception and the achievement of two hybrid power sources using super-capacitors as auxiliary storage device. We present the structures, the control principles, and some experimental results. (authors)

  3. Design and simulation of charge sensitive preamplifier with CMOS FET implemented as feedback capacitor Cfp

    Institute of Scientific and Technical Information of China (English)

    WEMBE TAFO Evariste; SU Hong; GAO Yanni; WU Ming

    2008-01-01

    In this paper,to design a new preamplifier for optimum performances with charged-particle or heavy-ion detectors,the CMOS FET is implemented as a feedback capacitor Cfp.so that the entire system should be built only with MOSFET.This work is a revolution design because to realize an ASIC for a preamplifier circuit,the capacitor will also be included.We succeed after a simulation to maintain a rise time less than 3 ns,the output resistance less than 94 Ω and the linearity almost good.

  4. Mission Profile Translation to Capacitor Stresses in Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Ma, Ke; Wang, Huai

    2014-01-01

    capacitors are varying along with the intermittent solar PV energy (i.e. of weather-dependency) and also the grid conditions (e.g. voltage fault transients). This paper serves to translate real-field mission profiles (i.e. solar irradiance and ambient temperature) into voltage, current, and temperature......DC capacitors are widely adopted in grid-connected PhotoVoltaic(PV) systems for power stabilization and control decoupling. They have become one of the critical components in grid-connected PV inverters in terms of cost, reliability and volume. The electrical and thermal stresses of the DC...

  5. Electronic detection of surface plasmon polaritons by metal-oxide-silicon capacitor

    Directory of Open Access Journals (Sweden)

    Robert E. Peale

    2016-09-01

    Full Text Available An electronic detector of surface plasmon polaritons (SPPs is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-silicon (MOS capacitor. Incidence-angle dependence is explained by Fresnel transmittance calculations, which also are used to investigate the dependence of photo-response on structure dimensions. Electrodynamic simulations agree with theory and experiment and additionally provide spatial intensity distributions on and off the SPP excitation resonance. Experimental dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing is qualitatively explained by simple theory of MOS capacitors.

  6. Electronic detection of surface plasmon polaritons by metal-oxide-silicon capacitor

    Science.gov (United States)

    Peale, Robert E.; Smith, Evan; Smith, Christian W.; Khalilzadeh-Rezaie, Farnood; Ishigami, Masa; Nader, Nima; Vangala, Shiva; Cleary, Justin W.

    2016-09-01

    An electronic detector of surface plasmon polaritons (SPPs) is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-silicon (MOS) capacitor. Incidence-angle dependence is explained by Fresnel transmittance calculations, which also are used to investigate the dependence of photo-response on structure dimensions. Electrodynamic simulations agree with theory and experiment and additionally provide spatial intensity distributions on and off the SPP excitation resonance. Experimental dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing is qualitatively explained by simple theory of MOS capacitors.

  7. Dynamical model of series-resonant converter with peak capacitor voltage predictor and switching frequency control

    Science.gov (United States)

    Pietkiewicz, A.; Tollik, D.; Klaassens, J. B.

    1989-08-01

    A simple small-signal low-frequency model of an idealized series resonant converter employing peak capacitor voltage prediction and switching frequency control is proposed. Two different versions of the model describe all possible conversion modes. It is found that step down modes offer better dynamic characteristics over most important network functions than do the step-up modes. The dynamical model of the series resonant converter with peak capacitor voltage prediction and switching frequency programming is much simpler than such popular control stategies as frequency VCO (voltage controlled oscillators) based control, or diode conduction angle control.

  8. Super-capacitors as an energy storage for fuel cell automotive hybrid electrical system

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, P.; Rael, St.; Davat, B. [Institut National Polytechnique, GREEN-INPL-CNRS (UMR 7037), 54 - Vandoeuvre les Nancy (France)

    2004-07-01

    The design, implementation and testing of a purely super-capacitors energy storage system for automotive system having a fuel cell as main source are presented. The system employs a super-capacitive storage device, composed of six components (3500 F, 2.5 V, 400 A) associated in series. This device is connected to automotive 42 V DC bus by a 2-quadrant DC-DC converter. The control structure of the system is realised by means of analogical and digital control. The experimental results show that super-capacitors are suitable as energy storage device for fuel cell automotive electrical system. (authors)

  9. High frequency capacitor-diode voltage multiplier dc-dc converter development

    Science.gov (United States)

    Kisch, J. J.; Martinelli, R. M.

    1977-01-01

    A power conditioner was developed which used a capacitor diode voltage multiplier to provide a high voltage without the use of a step-up transformer. The power conditioner delivered 1200 Vdc at 100 watts and was operated from a 120 Vdc line. The efficiency was in excess of 90 percent. The component weight was 197 grams. A modified boost-add circuit was used for the regulation. A short circuit protection circuit was used which turns off the drive circuit upon a fault condition, and recovers within 5 ms after removal of the short. High energy density polysulfone capacitors and high speed diodes were used in the multiplier circuit.

  10. Harmonic Resonance in Power Transmission Systems due to the Addition of Shunt Capacitors

    Science.gov (United States)

    Patil, Hardik U.

    Shunt capacitors are often added in transmission networks at suitable locations to improve the voltage profile. In this thesis, the transmission system in Arizona is considered as a test bed. Many shunt capacitors already exist in the Arizona transmission system and more are planned to be added. Addition of these shunt capacitors may create resonance conditions in response to harmonic voltages and currents. Such resonance, if it occurs, may create problematic issues in the system. It is main objective of this thesis to identify potential problematic effects that could occur after placing new shunt capacitors at selected buses in the Arizona network. Part of the objective is to create a systematic plan for avoidance of resonance issues. For this study, a method of capacitance scan is proposed. The bus admittance matrix is used as a model of the networked transmission system. The calculations on the admittance matrix were done using Matlab. The test bed is the actual transmission system in Arizona; however, for proprietary reasons, bus names are masked in the thesis copy intended for the public domain. The admittance matrix was obtained from data using the PowerWorld Simulator after equivalencing the 2016 summer peak load (planning case). The full Western Electricity Coordinating Council (WECC) system data were used. The equivalencing procedure retains only the Arizona portion of the WECC. The capacitor scan results for single capacitor placement and multiple capacitor placement cases are presented. Problematic cases are identified in the form of 'forbidden response. The harmonic voltage impact of known sources of harmonics, mainly large scale HVDC sources, is also presented. Specific key results for the study indicated include: (1) The forbidden zones obtained as per the IEEE 519 standard indicates the bus 10 to be the most problematic bus. (2) The forbidden zones also indicate that switching values for the switched shunt capacitor (if used) at bus 3 should be

  11. A novel single phase buck PFC converter in discontinuous capacitor voltage mode operation

    Institute of Scientific and Technical Information of China (English)

    邓超平; 凌志斌; 叶芃生

    2003-01-01

    A novel single-phase Buck converter for power factor correction is proposed. It features simple control due to the constant duty ratio PWM used. It can obtain unity power factor by selecting a suitable LC filter at its input to force the voltage of capacitor to operate in discontinuous capacitor voltage mode. And by using another resonant LC filter at its output, it can not only eliminate the input current distortion at the vicinity of the zero crossing of the supply but also drastically reduce the 100 Hz output voltage ripple. The validity of analysis is confirmed by simulation results and experimental results.

  12. Micro- and Nanoscale Capacitors that Incorporate an Array of Conductive Elements Having Elongated Bodies

    Science.gov (United States)

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement micro- and nanoscale capacitors that incorporate a conductive element that conforms to the shape of an array elongated bodies. In one embodiment, a capacitor that incorporates a conductive element that conforms to the shape of an array of elongated bodies includes: a first conductive element that conforms to the shape of an array of elongated bodies; a second conductive element that conforms to the shape of an array of elongated bodies; and a dielectric material disposed in between the first conductive element and the second conductive element, and thereby physically separates them.

  13. CONSTANT WORK-POINT CONTROL FOR PARALLEL HYBRID SYSTEM WITH CAPACITOR ACCUMULATOR IN HYDRAULIC EXCAVATOR

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanting; WANG Qingfeng; XIAO Qing; FU Qiang

    2006-01-01

    Limitations of various accumulators in hybrid hydraulic excavator are analyzed. A program using capacitor as the accumulator based on constant work-point control is put forward. A simulating experimental system of hybrid construction machinery is established, and experimental study on constant work-point control for parallel hybrid system with capacitor accumulator is carried out using the pressure and flow rate derived from boom cylinder of hydraulic excavator in actual work as the simulating loads. A program of double work-point control is proposed and proved by further experiments.

  14. Circuit with a Switch for Charging a Battery in a Battery Capacitor Circuit

    Science.gov (United States)

    Stuart, Thomas A. (Inventor); Ashtiani, Cyrus N. (Inventor)

    2008-01-01

    A circuit for charging a battery combined with a capacitor includes a power supply adapted to be connected to the capacitor, and the battery. The circuit includes an electronic switch connected to the power supply. The electronic switch is responsive to switch between a conducting state to allow current and a non-conducting state to prevent current flow. The circuit includes a control device connected to the switch and is operable to generate a control signal to continuously switch the electronic switch between the conducting and non-conducting states to charge the battery.

  15. MWCNTs synthesized from waste polypropylene plastics and its application in super-capacitors

    Science.gov (United States)

    Mishra, Neeraj; Shinde, Sachin; Vishwakarma, Ritesh; Kadam, Siddhi; Sharon, Madhuri; Sharon, Maheshwar

    2013-06-01

    The Multiwall Carbon Nanotubes (MWCNTs) were synthesized at 800 °C by single stage chemical vapor deposition (CVD) from the carbonaceous source of waste polypropylene plastic (WPP) in the presence of a Ni catalyst. The fabrication of capacitor cell is very simple and does not require any binders. The electrochemical performances of the carbon nanotubes electrode were investigated by use of the cyclic voltammetry and galvanostatic charge/discharge for its application in super capacitors. The specific capacitance of 59 F/g of the electrode was achieved with scan rate of 5 mV/s in the solution of 1N KOH.

  16. An all-inkjet printed flexible capacitor on a textile using a new poly(4-vinylphenol) dielectric ink for wearable applications

    OpenAIRE

    Li,Yi; Torah, Russel; Beeby, Steve; Tudor, John

    2012-01-01

    This paper reports a flexible capacitor for wearable applications which has been all-inkjet printed on a standard 65/35 polyester cotton textile using a new poly(4 vinylphenol)(PVP) dielectric material. Capacitors form the basis of a variety of sensors, such as for proximity and touch, as well as electronic circuits. This paper reports a general fabrication printing process to realize capacitors on textiles. The parallel plate capacitor design uses a combination of heat curable silver ink and...

  17. Evaluation of DC-link decoupling using electrolytic or polypropylene film capacitors in three-phase grid-connected photovoltaic inverters

    OpenAIRE

    Karanayil, Baburaj; Agelidis, Vassilios; Pou Félix, Josep

    2013-01-01

    The life expectancy and long term reliability of grid-connected three-phase photovoltaic (PV) inverters can be increased by replacing the conventional electrolytic film capacitors by metallized polypropylene film capacitors. This paper presents a detailed evaluation of a three-phase grid-connected PV inverter performance when replacing the electrolytic capacitor with a minimum value of metallized polypropylene film capacitor-one. The minimum dc bus capacitance leads to larger voltage ripples....

  18. Computer Analysis of Termal Stability of Power Capacitors(Special Edition for the 10th Anniversary of Department of Information Processing Engineering)

    OpenAIRE

    吉田, 恭信; 田村, 庸平; ヨシダ, ヤスノブ; タムラ, ヨウヘイ; Yasunobu, Yoshida; Youhei, TAMURA

    1996-01-01

    Capacitor elements are composed of completely refined insulating paper and/or polypropylene film impregnated with aromatic hydrocarbon oil and hermetically sealed so as to avoid the influences of atomospheric air and humidity. Therefore, power capacitors have very high reliability. On the other hand, if excessive voltages are imposed upon the capacitors, the capacitors lose the thermal balance and may come to thermal breakdown. This paper clarified the mechanism of thermal balance of the powe...

  19. A frequency output ferroelectric phase PNZT capacitor-based temperature sensor

    KAUST Repository

    Khan, Naveed

    2016-09-05

    In this paper, a frequency output temperature sensor based on a 4% Niobium doped 20/80 Zr/Ti Lead Zirconate Titanate (PNZT) capacitor is proposed. The sensor capacitance vs temperature and capacitance vs voltage characteristics are experimentally measured below the Curie temperature of the ferroelectric capacitor. The capacitance of the 20/80 (Zr/Ti) composition PNZT capacitor changes by 29% for a temperature change from 10°C to 100°C, which translates to 0.32%/°C temperature sensitivity. The measured sensor characteristics show less than ∼0.7°C deviation from the ideal linear response. A Wien bridge oscillator based temperature sensor is demonstrated based on the PNZT capacitors. Mathematical analysis for the effect of the op-amp finite unity-gain frequency on the sensor circuit oscillation frequency is provided. The experimentally realized frequency output temperature sensor shows -17.6% relative frequency change for a temperature change from 10°C to 100°C. The proposed capacitive temperature sensor can be used in low-power smart sensor nodes without the need for extensive calibration. © 2015 IEEE.

  20. Design and test of a flat-top magnetic field system driven by capacitor banks

    Science.gov (United States)

    Jiang, Fan; Peng, Tao; Xiao, Houxiu; Zhao, Jianlong; Pan, Yuan; Herlach, Fritz; Li, Liang

    2014-04-01

    An innovative method for generating a flat-top pulsed magnetic field by means of capacitor banks is developed at the Wuhan National High Magnetic Field Center (WHMFC). The system consists of two capacitor banks as they are normally used to generate a pulsed field. The two discharge circuits (the magnet circuit and the auxiliary circuit) are coupled by a pulse transformer such that the electromotive force (EMF) induced via the transformer in the magnet circuit containing the magnet coil is opposed to the EMF of the capacitor bank. At a certain point before the current pulse in the coil reaches its peak, the auxiliary circuit is triggered. With optimized parameters for charging voltage and trigger delay, the current in the magnet circuit can be approximately kept constant to obtain a flat-top. A prototype was developed at the WHMFC; the magnet circuit was energized by seven 1 MJ (3.2 mF/25 kV) capacitor modules and the auxiliary circuit by four 1 MJ modules. Fields up to 41 T with 6 ms flat-top have been obtained with a conventional user magnet used at the WHMFC.

  1. A High Power Test Method for Pattern Magnet Power Supplies with Capacitor Banks

    Science.gov (United States)

    Kurimoto, Yoshinori; Morita, Yuichi; Sagawa, Ryu; Shimogawa, Tetsushi; Miura, Kazuki

    In the J-PARC Main Ring (MR), we plan to increase the beam intensity from 230 to 750 kW. To achieve this, the synchrotron repetition period must be shortened from 2.48 s to approximately 1 s using new power supplies for the main magnets. We are currently researching and developing new power supplies with large capacitor banks. Such banks are needed to reduce the power variation at the main grid in the J-PARC site for future operations with shorter repetition periods. However, it is very difficult to test the new power supplies at their rated power before installation. This is because the power handled by the power supplies used for the J-PARC MR main magnets is too high to be tested in factories or laboratories. To overcome this problem, we suggest a test method involving the use of two capacitor banks. In this method, two power supplies and a small inductive load are connected between two capacitor banks. By controlling the energy flow between the two capacitor banks in this setup, the received power and inductive load can be kept very small. This article describes the details of the control method and the results of the test experiment using a mini-model power supply.

  2. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    2011-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measureme

  3. Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage.

    Science.gov (United States)

    Han, Fangming; Meng, Guowen; Zhou, Fei; Song, Li; Li, Xinhua; Hu, Xiaoye; Zhu, Xiaoguang; Wu, Bing; Wei, Bingqing

    2015-10-01

    Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications.

  4. A Capacitor-Free, Fast Transient Response Linear Voltage Regulator In a 180nm CMOS

    DEFF Research Database (Denmark)

    Deleuran, Alexander N.; Lindbjerg, Nicklas; Pedersen, Martin K.;

    2015-01-01

    A 1.8 V capacitor-free linear regulator with fast transient response based on a new topology with a fast and slow regulation loop is presented. The design has been laid out and simulated in a 0.18 µm CMOS process. The design has a low component count and is tailored for system-on-chip integration...

  5. Closed Loop Control of Active Damped Small DC-link Capacitor Based Drive

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig

    2010-01-01

    A new method of active damping for small DC-link capacitor based drive system is implemented in stator flux oriented control for an induction machine. The active damping technique is based on a detailed model of the drive system which leads to a very simple implementation. The active damping can...

  6. An Active Damping Technique for Small DC-Link Capacitor Based Drive System

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Lu, Kaiyuan

    2013-01-01

    A small dc-link capacitor based drive system shows instability when it is operated with large input line inductance at operating points with high power. This paper presents a simple, new active damping technique that can stabilize effectively the drive system at unstable operating points, offering...

  7. Interharmonic mitigation of adjustable speed drives using an active DC-link capacitor

    DEFF Research Database (Denmark)

    Soltani, Hamid; Loh, Poh Chiang; Blaabjerg, Frede;

    2015-01-01

    operating frequency. As there is a growing discussion about the interharmonic effects on the grid and its limitation, the reduction and mitigation of these components is worthwhile especially when more drives are tied to the grid. This paper proposes a new dc-link active capacitor in order to reduce...

  8. Generalized Multi-Cell Switched-Inductor and Switched-Capacitor Z-source Inverters

    DEFF Research Database (Denmark)

    Li, Ding; Chiang Loh, Poh; Zhu, Miao;

    2013-01-01

    . Their boosting gains are, therefore, limited in practice. To overcome these shortcomings, the generalized switched-inductor and switched-capacitor Z-source inverters are proposed, whose extra boosting abilities and other advantages have already been verified in simulation and experiment....

  9. Analytical and Practical Analysis of Switched-Capacitor DC-DC Converters

    Science.gov (United States)

    2006-09-01

    switches between these two frequency levels to keep the voltage on the output capacitor between two hysteresis levels vhi and vlo. These voltages are...defined to be slightly higher and slightly lower than the desired output voltage. When the output voltage exceeds vhi , the switching frequency is set

  10. High resolution millimeter wave digitally controlled oscillator with reconfigurable distributed metal capacitor passive resonators

    NARCIS (Netherlands)

    Wu, W.; Long, J.R.; Staszewski, B.

    2014-01-01

    A novel and useful millimeter-wave digitally controlled oscillator (DCO) that achieve a tuning range greater than 10% and fine frequency resolution less than 1 MHz. Switched metal capacitors are distributed across a passive resonator for tuning the oscillation frequency. To obtain sub-MHz frequency

  11. Simple DCM or CRM analog peak current controller for HV capacitor charge-discharge applications

    DEFF Research Database (Denmark)

    Trintis, Ionut; Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    This paper presents a simple analog current controller suitable for buck and boost converter topologies. The controller operates in DCM or CRM, depending on the setup. The experimental results are presented to validate the proposed controller functionality for a high voltage capacitor charge...

  12. Studying DAC capacitor-array degradation in charge-redistribution SAR ADCs

    NARCIS (Netherlands)

    Khan, Muhammad Aamir; Kerkhoff, Hans G.

    2014-01-01

    In this paper, system-level behavioural models are used to simulate the aging-related degradation effects in the DAC capacitor array of a charge-redistribution successive approximation register (SAR) ADC because of the large calculation time of transistor-level aging simulators. A performance-analys

  13. Experimental determination of harmonic conditions amplification in a distribution network by capacitor bank switching

    DEFF Research Database (Denmark)

    Baloi, Alexandru; Kocewiak, Lukasz Hubert; Bak, Claus Leth

    2012-01-01

    harmonic distortion (THD) of the capacitor current computed using the amplification factor, are originally presented. Nonlinear loads as six pulse rectifier and National Instruments measurement sensors together with LabView software were used on the laboratory set-up. The main instrument of the method...

  14. The Performance of 600F Power Super Capacitor Using Carbon Nanotubes Electrodes and Nonaqueous Electrolyte

    Institute of Scientific and Technical Information of China (English)

    WANGXiaofeng

    2005-01-01

    Many applications for supercapacitors have been proposed in recent years. The popularity of these devices is derived from their high energy density compared with conventional capacitors and their long cycle life and high power density relative to batteries. Supercapacitors based on charge storage at the interface between a high surface area carbon nanotubes electrode and LiClO4/PC electrolyte is assembled in this paper. The carbon nanotubes prepared catalytically exhibited double layer capacitance of 12F.g-1 in LiClO4/PC electrolyte. The performance of the capacitor depends not only on the materials used in the cells but also on the construction of the cells. Evaluation of capacitor performance by different techniques is also discussed. The performance of carbon nanotubes based capacitors for high power sources used in electronic equipment or hybrid vehicle application are described. From a constant charge-discharge test, the capacitance of 600 F and impedance of 2.5mΩ are obtained for this device. Values for the specific energy and specific power of 0.SWh-kg-1 and lkW-kg-1, respectively, are demonstrated for a cell with 2.5V maximum operating voltage.

  15. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes.

    Science.gov (United States)

    Zhang, Guozhen; Wu, Hao; Wang, Xiao; Wang, Ti; Liu, Chang

    2016-03-11

    Transparent conducting films with a composite structure of AlZnO-Ag nanowires (AgNWs) have been prepared by atomic layer deposition. The sheet resistance was reduced from 120 to 9 Ω when the AgNW networks were involved. Transparent capacitors with Al2O3-TiO2-Al2O3 dielectrics were fabricated on the composite electrodes and demonstrated a capacitance density of 10.1 fF μm(-2), which was significantly higher than that of capacitors with AlZnO electrodes (8.8 fF μm(-1)). The capacitance density remained almost unchanged in a broad frequency range from 3 kHz to 1 MHz. Moreover, a low leakage current density of 2.4 × 10(-7) A cm(-2) at 1 V was achieved. Transparent and flexible capacitors were also fabricated using the composite electrodes, and demonstrated an improved bendability. The transparent capacitors showed an average optical transmittance over 70% in the visible range, and thus open the door to practical applications in transparent integrated circuits.

  16. Converter Power Density Increase using Low Inductive Integrated DC-link Capacitor/Bus

    DEFF Research Database (Denmark)

    Trintis, Ionut; Franke, Toke; Rannested, Bjørn;

    2015-01-01

    The power losses in switching devices have a direct effect on the maximum converter power. For a voltage source converter, the DC-link bus has a major influence on the power loss and safe operating area of the power devices. The Power Ring Film CapacitorTM integrated with an optimized bus structu...

  17. Fabrication of a Liquid Crystal Capacitor Cell using Spin-Coating

    Science.gov (United States)

    Tate, Logan; Ducharme, Tabatha; Prayaga, Chandra; Wade, Aaron; Huggins, Michael; Chandler, Rebecca; Renaud, Amy

    2013-03-01

    This paper presents our work to fabricate and characterize a liquid crystal capacitor cell using novel liquid crystals. These LCs are not in their isotropic phase at room temperature and require the capacitor cells to be fabricated around them. This was done using spin coating where the samples were dissolved in Toluene, Anisole, or C4CL. Next, the liquid crystals were spin-coated on either an ITO coated glass slide or a separate silicon wafer. This spin coating process was done in two stages where the first stage started at a slow speed to begin spreading the sample, and then during the second stage the spin coater ramped to a higher rpm to thin the sample while removing excess material. M-Line spectroscopy was used to determine the films thickness of the silicon substrate sample. To make the capacitor cell, a second ITO coated slide was placed on top of the first and the edges sealed with epoxy. Wires were soldered to the bus bars and the samples were mounted in a temperature controlled environment constructed in the lab and an RC circuit was assembled using the LC capacitor. Initial dielectric measurements were taken at room temperature to ensure the integrity of the cell.

  18. Design, Development, manufacture and qualification of wet-slug all-tantalum capacitors

    Science.gov (United States)

    Maher, R. H.

    1977-01-01

    Specifications and qualification tests data are presented for over eleven hundred T3 case all-tantalum capacitors encompassing four ratings. The finalized product has all the advantages of the silver cased wet and is capable of withstanding some reverse potential ac ripple current.

  19. Area-Efficiency Trade-Offs in Integrated Switched-Capacitor DC-DC Converters

    DEFF Research Database (Denmark)

    Spliid, Frederik Monrad; Larsen, Dennis Øland; Knott, Arnold

    2016-01-01

    This paper analyzes the relationship between efficiency and chip area in a fully integrated switched capacitor voltage divider dc-dc converter implemented in 180nm-technology and a 1/2 topology. A numerical algorithm for choosing the optimal sizes of individual components, in terms of power loss,...

  20. Optimal Value of Series Capacitors for Uniform Field Distribution in Transmission Line MRI Coils

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2016-01-01

    Transmission lines are often used as coils in high field magnetic resonance imaging (MRI). Due to the distributed nature of transmission lines, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the coil...

  1. Information processing through a bio-based redox capacitor: signatures for redox-cycling.

    Science.gov (United States)

    Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F

    2014-08-01

    Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling).

  2. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp2-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  3. Investigation about decoupling capacitors of PMT voltage divider effects on neutron-gamma discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Divani, Nazila, E-mail: n-divani@birjand.ac.ir; Firoozabadi, Mohammad M. [Dep. Of Physics, Faculty of Science, University of Birjand, Birjand (Iran, Islamic Republic of); Bayat, Esmail [Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran (Iran, Islamic Republic of)

    2014-11-24

    Scintillators are almost used in any nuclear laboratory. These detectors combine of scintillation materials, PMT and a voltage divider. Voltage dividers are different in resistive ladder design. But the effect of decoupling capacitors and damping resistors haven’t discussed yet. In this paper at first a good equilibrium circuit designed for PMT, and it was used for investigating about capacitors and resistors in much manner. Results show that decoupling capacitors have great effect on PMT output pulses. In this research, it was tried to investigate the effect of Capacitor’s value and places on PMT voltage divider in Neutron-Gamma discrimination capability. Therefore, the voltage divider circuit for R329-02 Hamamatsu PMT was made and Zero Cross method used for neutron-gamma discrimination. The neutron source was a 20Ci Am-Be. Anode and Dynode pulses and discrimination spectrum were saved. The results showed that the pulse height and discrimination quality change with the value and setting of capacitors.

  4. A New Control Method of a Large-Capacity Capacitor Simulator with an Inner Series Resistor

    Science.gov (United States)

    Tanaka, Atsushi; Hiraki, Eiji; Tanaka, Toshihiko

    This paper proposes a new control method for the previously proposed large-capacity capacitor simulator, which can perform an inner series resistor of the EDLCs. In the proposed large-capacity capacitor simulator, one of three legs performs a bi-directional dc-dc converter. The others are used for a single-phase PWM rectifier. In the charging operation of the proposed large-capacity simulator, one-leg is used as a boost converter. Most power, which is stored in the proposed simulator, is injected to the utility through the PWM rectifier. In the discharging operation, the one-leg performs a buck converter. Most power, which is supplied to the load, is from the utility through the PWM rectifier. Thus the proposed simulator performs a large-capacity capacitor with an inner resistor in both charging and discharging operations. The basic principle of the proposed simulator is discussed in detail. The validity and excellent practicability of the proposed control method for the large-capacity capacitor simulator are confirmed using PSIM software.

  5. Electrostatic micro-actuator with a pre-charged series capacitor: modeling, design, and demonstration

    Science.gov (United States)

    Yang, Hyun-Ho; Han, Chang-Hoon; Oen Lee, Jeong; Yoon, Jun-Bo

    2014-06-01

    As a powerful method to reduce actuation voltage in an electrostatic micro-actuator, we propose and investigate an electrostatic micro-actuator with a pre-charged series capacitor. In contrast to a conventional electrostatic actuator, the injected pre-charges into the series capacitor can freely modulate the pull-in voltage of the proposed actuator even after the completion of fabrication. The static characteristics of the proposed actuator were investigated by first developing analytical models based on a parallel-plate capacitor model. We then successfully designed and demonstrated a micro-switch with a pre-charged series capacitor. The pull-in voltage of the fabricated micro-switch was reduced from 65.4 to 0.6 V when pre-charged with 46.3 V. The on-resistance of the fabricated micro-switch was almost the same as the initial one, even when the device was pre-charged, which was demonstrated for the first time. All results from the analytical models, finite element method simulations, and measurements were in good agreement with deviations of less than 10%. This work can be favorably adapted to electrostatic micro-switches which need a low actuation voltage without noticeable degradation of performance.

  6. The restoring force on a dielectric in a parallel plate capacitor

    Science.gov (United States)

    Staunton, L. P.

    2014-09-01

    We investigate the restoring force on a dielectric slab being pulled from within the volume of a parallel plate capacitor connected to a battery. Using a conformal mapping to treat the fringing electric field exactly, we numerically obtain an expected Hooke's Law restoring force for small displacements, and a diminishing force for a displacement up to half the length of the dielectric.

  7. Parallel-plate and spherical capacitors in Born-Infeld electrostatics: An analytical study

    Science.gov (United States)

    Moayedi, S. K.; Shafabakhsh, M.

    2016-03-01

    In 1934, Max Born and Leopold Infeld suggested and developed a nonlinear modification of Maxwell electrodynamics, in which the electrostatic self-energy of an electron was a finite value. In this paper, after a brief introduction to Lagrangian formulation of Born-Infeld electrodynamics with an external source, the explicit forms of Gauss's law and the electrostatic energy density in Born-Infeld theory are obtained. The capacitance and the stored electrostatic energy for a parallel-plate and spherical capacitors are computed in the framework of Born-Infeld electrostatics. We show that the usual relations U=1/2C_{Maxwell}(triangle φ)2 and U=q2/2C_{Maxwell} are not valid for a capacitor in Born-Infeld electrostatics. Numerical estimations in this research show that the nonlinear corrections to the capacitance and the stored electrostatic energy for a capacitor in Born-Infeld electrostatics are considerable when the potential difference between the plates of a capacitor is very large.

  8. On the leakage problem of MIM capacitors due to improper etching of titanium nitride

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, R.A.M.; Kovalgin, A.Y.; Schmitz, J.

    2010-01-01

    In this work, Metal-insulator-metal (MIM) capacitor structures are fabricated in a technology using TiN as electrode material. The electrical characterization revealed devices with small and large leakage currents. Scanning Electron Microscopy (SEM) inspection showed a correlation between high leaka

  9. Accurate phasor measurement for transmission line protection in the presence of shunt capacitor banks

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Soon-Ryul; Kang, Sang-Hee [Department of Electrical Engineering and Next-Generation Power Technology Center, Myongji University (Korea); Park, Jong-Keun [School of Electrical Engineering, Seoul National University (Korea)

    2007-10-15

    This paper proposes a phasor measurement algorithm for transmission systems compensated with shunt capacitor banks. Since the shunt capacitor banks tend to lower the resonant frequencies, the dominant component, which has the lowest resonant frequency, is insufficiently attenuated by a low-pass filter and has an adverse influence on the phasor measurement of the fundamental component in a fault current signal. This paper theoretically investigates the dominant frequency in the presence of shunt capacitor banks and presents a phasor measurement algorithm immune to the dominant component and DC-offset. The performance of the algorithm is evaluated for a-phase to ground (a-g) faults on a 154-kV transmission system compensated with shunt capacitor banks. The evaluation results indicate that the algorithm can measure the phasor reliably and satisfactorily, although the fault current signal is distorted with the dominant component and DC-offset. The paper concludes by describing the hardware implementation of the algorithm on a prototype unit based on a digital signal processor. (author)

  10. Research of on-line monitoring equipment for power capacitor based on wireless sensor network

    Science.gov (United States)

    Yu, Hao; Qian, Zheng; Yao, Junda; Xia, Jiuyun

    2016-01-01

    As the main electrical component for the reactive power compensation, the power capacitors are widely applied in many fields. And since the insulation condition of power capacitor could be identified accurately by using the on-line monitoring system, it attracts more and more attentions in recent years. In this paper, a novel on-line monitoring equipment for power capacitor based on wireless sensor network is presented. The operation data which includes the current and voltage of every capacitor is collected at first, and then the FFT is utilized to calculate the amplitude and phase of every signal, thus the insulation condition and the fault symptom could all be diagnosed accurately by analyzing the FFT results. In order to realize the effective isolation and the reliable communication between the sensing part and the merging unit, the wireless sensor network is adopted. The high reliability and transmission rate could be realized by using 2.4GHz UHF and 5GHz ISM radio bands. Thus the on-line monitoring system could be manufactured, and the lab test is carried at last. The testing results illustrate that this system could satisfy the requirement of on-site real-time measurement.

  11. Debye length dependence of the anomalous dynamics of ionic double layers in a parallel plate capacitor

    NARCIS (Netherlands)

    Kortschot, R. J.; Philipse, A. P.; Erné, B. H.

    2014-01-01

    The electrical impedance spectrum of simple ionic solutions is measured in a parallel plate capacitor at small applied ac voltage. The influence of the ionic strength is investigated using several electrolytes at different concentrations in solvents of different dielectric constants. The electric do

  12. Characterization and modeling of atomic layer deposited high-density trench capacitors in silicon

    NARCIS (Netherlands)

    Matters-Kammerer, M.K.; Jinesh, K.B.; Rijks, T.G.S.M.; Roozeboom, F.; Klootwijk, J.H.

    2012-01-01

    A detailed electrical analysis of multiple layer trench capacitors fabricated in silicon with atomic-layer-deposited Al 2O 3 and TiN is presented. It is shown that in situ ozone annealing of the Al 2O 3 layers prior to the TiN electrode deposition significantly improves the electric properties of th

  13. Regulation of a lightweight high efficiency capacitor diode voltage multiplier dc-dc converter

    Science.gov (United States)

    Harrigill, W. T., Jr.; Myers, I. T.

    1976-01-01

    A method for the regulation of a capacitor diode voltage multiplier dc-dc converter has been developed which has only minor penalties in weight and efficiency. An auxiliary inductor is used, which only handles a fraction of the total power, to control the output voltage through a pulse width modulation method in a buck boost circuit.

  14. Use of Super-Capacitor to Enhance Charging Performance of Stand-Alone Solar PV System

    KAUST Repository

    Huang, B. J.

    2011-01-01

    Introduction: The battery charging performance in a stand-alone solar PV system affects the PV system efficiency and the load operating time. The New Energy Center of National Taiwan University has been devoted to the development of a PWM charging technique to continue charging the lead-acid battery after the overcharge point to increase the battery storage capacity by more than 10%. The present study intends to use the super-capacitor to further increase the charge capacity before the overcharge point of the battery. The super-capacitor is connected in parallel to the lead-acid battery. This will reduce the overall charging impedance during the charge and increase the charging current, especially in sunny weather. A system dynamics model of the lead-acid battery and super-capacitor was derived and the control system simulation was carried out to predict the charging performance for various weathers. It shows that the overall battery impedance decreases and charging power increases with increasing solar radiation. An outdoor comparative test for two identical PV systems with and without supercapacitor was carried out. The use of super-capacitor is shown to be able to increase the lead-acid charging capacity by more than 25% at sunny weather and 10% in cloudy weather. © Springer-Verlag Berlin Heidelberg 2011.

  15. The use of battery-capacitor combinations in photovoltaic powered products

    NARCIS (Netherlands)

    Kan, S.Y; Verwaal, M. en Broekhuizen, H.

    2006-01-01

    This paper analyzes smart combinations of rechargeable batteries and capacitors in energy storage media of photovoltaic (PV) powered products. Important in a mature design of such products is an efficient energy transfer from PV converter into the storage media and from storage towards the energy co

  16. Improved performance of Li-ion cells under pulsed load using double-layer capacitors in a hybrid circuit mode

    Energy Technology Data Exchange (ETDEWEB)

    ROTH,EMANUEL P.; NAGASUBRAMANIAN,GANESAN

    2000-02-07

    Electrical characteristics of hybrid power sources consisting of Li-ion cells and double-layer capacitors were studied at 25 C and {minus}20 C. The cells were initially evaluated for pulse performance and then measured in hybrid modes of operation where they were coupled with the high-power capacitors. Cells manufactured by Panasonic measured at 25 C delivered full capacities of 0.76 Ah for pulses up to 3A and cells from A and T delivered full capacities of 0.73 Ah for pulses up to 4A. Measured cell resistances were 0.15 ohms and 0.12 ohms, respectively. These measurements were repeated at {minus}20 C. Direct coupling of the cells and capacitors (coupled hybrid) using 10F Panasonic capacitors in a 8F series/parallel combination extended the full capacity pulse limits (3.0V threshold) to 5.6A for the Panasonic cells and to 9A for the A and T cells. A similar arrangement using 100F capacitors from Elna in a 60F combination increased the Panasonic cell limit to 10 A. Operation in an uncoupled hybrid mode using uncoupled cell/capacitor discharge allowed fill cell capacity usage at 25 C up to the capacitor discharge limit and showed a factor of 5 improvement in delivered capacity at {minus}20 C.

  17. Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications

    Science.gov (United States)

    Liu, Donhang; Fetter, Lula; Meinhold, Bruce

    2015-01-01

    A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.

  18. Electrochemical double-layer capacitors based on functionalized graphene

    Science.gov (United States)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective

  19. Mechanical Engineering Safety Note: Analysis and Control of Hazards Associated with NIF Capacitor Module Events

    Energy Technology Data Exchange (ETDEWEB)

    Brereton, S

    2001-08-01

    The NIF capacitor module was reviewed with respect to pressure venting and shrapnel containment during failures. A modified module concept was proposed that would adequately vent the pressure, yet be effective at containing shrapnel. Two large vents are provided on each side of the module. These have fixed vent areas, and are immediately accessible for pressure venting at the beginning of a pressure transient. A shrapnel shield is located on the outside of each vent opening forming a chute. The chute contains a collimator. This increases the number of bounces that shrapnel must take on the way out, and directs the shrapnel to the trap beneath. The trap contains a depth of clear pine, sufficient to completely absorb the energy of even the most energetic fragment considered. Based on a review of the evidence from past capacitor failures at the FANTM facility at Sandia National Laboratory, Albuquerque, and additional theoretical estimates, the peak pressure generated in the module during explosive events was estimated to be less than 40 psig. This internal pressure in the FANTM module appears to be tolerable, as only minor damage to the module and to internal components was observed after events. The new module concept proposed here provides increased venting area, fully available at the initiation of an event. It is expected that even less damage would be observed if an event occurred in a module with this design. The module joints and connections were formally reviewed with respect to their tolerance to a brief internal pressure as high as 40 psig. With minor modifications that have been incorporated into the design, the module was shown to maintain its integrity during such events. Some of the calculations performed estimated the quantity of dielectric oil that could be involved in a capacitor failure. It was determined that a very small amount of the available oil would contribute to the explosive event, on the order of 500 g or less. This is a small fraction of

  20. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    Science.gov (United States)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent

  1. Conducted EMI Mitigation Schemes in Isolated Switching Mode Power Supply without the Need of a Y-capacitor

    DEFF Research Database (Denmark)

    Bai, Yongjiang; Yang, Xu; Zhang, Dan;

    2017-01-01

    In order to construct a low impedance loop for common mode electromagnetic interference (EMI) signals, traditional method is to use Y-capacitors as filtering components. However, in the commonly used isolated AC-DC switching mode power supplies (SMPS), the Y-capacitors branch also behaves...... as a terrible leakage current loop. For the safety of human beings, this leakage current is not allowed in commercial used equipment such as chargers, medical instruments and so on. Therefore, certain works should be done to both acquire good EMI performance and satisfy the strict leakage current limitation....... The goal of this paper is try to meet these two demands at the same time. In this paper, a novel non-Y-capacitor EMI design concept for SMPS is proposed for the first time. By getting rid of traditional EMI filtering component---the Y-capacitors, the leakage current can be eliminated entirely. Meanwhile...

  2. Placement of DG and Capacitor for Loss Reduction, Reliability and Voltage Improvement in Distribution Networks Using BPSO

    Directory of Open Access Journals (Sweden)

    Reza Baghipour

    2012-11-01

    Full Text Available This paper presents multi-objective function for optimally determining the size and location of distributed generation (DG and capacitor in distribution systems for power loss minimization, reliability and voltage improvement. The objective function proposed in this paper includes reliability index, active power loss index, DG's and capacitor's investment cost index and voltage profile index which is minimized using binary particle swarm optimization algorithm (BPSO. The effectiveness of the proposed method is examined in the 10 and 33 bus test systems and comparative studies are conducted before and after DG and capacitor installation in the test systems. Results illustrate significant losses reduction and voltage profile and reliability improvement with presence of DG unit and capacitor.

  3. Optimal Placement and Sizing of Distributed Generation And Capacitor Bank For Loss Reduction And Reliability Improvement In Distribution Systems

    Directory of Open Access Journals (Sweden)

    Reza Baghipourr

    2014-12-01

    Full Text Available In this paper optimum size and location of the capacitors and distributed generators (DGs are determined for reliability improvement and power loss reduction using genetic algorithm (GA. The main innovation of this paper is using both DG and Capacitor for the reliability improvement and power loss reduction. For this purpose an objective function consisting of reliability cost, power loss cost and also DG's and capacitor's investment cost are considered. The effectiveness of the proposed method is examined in the 10 and 33 bus test systems and comparative studies are conducted before and after DG and Capacitor installation in the test systems. The results obtained show the effectiveness of the proposed method.

  4. Towards A Model-Based Prognostics Methodology For Electrolytic Capacitors: A Case Study Based On Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a model-driven methodology for predict- ing the remaining useful life of electrolytic capacitors. This methodology adopts a Kalman filter...

  5. Nano-structure multilayer technology fabrication of high energy density capacitors for the power electronic building book

    Energy Technology Data Exchange (ETDEWEB)

    Barbee, T.W.; Johnson, G.W.; Wagner, A.V.

    1997-10-21

    Commercially available capacitors do not meet the specifications of the Power Electronic Building Block (PEBB) concept. We have applied our propriety nanostructure multilayer materials technology to the fabrication of high density capacitors designed to remove this impediment to PEBB progress. Our nanostructure multilayer capacitors will also be enabling technology in many industrial and military applications. Examples include transient suppression (snubber capacitors), resonant circuits, and DC filtering in PEBB modules. Additionally, weapon applications require compact energy storage for detonators and pulsed-power systems. Commercial applications run the gamut from computers to lighting to communications. Steady progress over the last five years has brought us to the threshold of commercial manufacturability. We have demonstrated a working dielectric energy density of > 11 J/cm3 in 20 nF devices designed for 1 kV operation.

  6. Towards A Model-based Prognostics Methodology for Electrolytic Capacitors: A Case Study Based on Electrical Overstress Accelerated Aging

    Data.gov (United States)

    National Aeronautics and Space Administration — A remaining useful life prediction methodology for elec- trolytic capacitors is presented. This methodology adopts a Kalman filter approach in conjunction with an...

  7. SUPER-CAPACITOR APPLICATION IN ELECTRICAL POWER CABLE TESTING FACILITIES IN THERMAL ENDURANCE AND MECHANICAL BRACING TESTS

    Directory of Open Access Journals (Sweden)

    I. V. Oleksyuk

    2015-01-01

    Full Text Available The current-carrying cores of the electrical power cables should be resistant to effects of short-circuit currents whose values depend on the material of the core, its cross-sectional area, cable insulation properties, environment temperature, and the duration of the short-circuit current flow (1 and 3–4 sec. when tested for thermal endurance and mechanical bracing. The facilities for testing the 10 kV aluminum core cables with short-circuit current shall provide mechanical-bracing current 56,82 kA and thermal endurance current 11,16 kA. Although capacitors provide such values of the testing currents to the best advantage, utilizing conventional capacitor-units will involve large expenditures for erecting and  running a separate building. It is expedient to apply super-capacitors qua the electric power supply for testing facilities, as they are capacitors with double-electrical layer and involve the current values of tens of kilo-amperes.The insulation voltage during short-circuit current testing being not-standardized, it is not banned to apply voltages less than 10 kV when performing short-circuit thermal endurance and mechanical bracing tests for electrical power cables of 10 kV. The super-capacitor voltage variation-in-time graph consists of two regions: capacitive and resistive. The capacitive part corresponds to the voltage change consequent on the energy change in the super-capacitors. The resistive part shows the voltage variation due to the active resistance presence in the super-capacitor.The author offers the algorithm determining the number of super capacitors requisite for testing 10 kV-electrical power cables with short-circuit currents for thermal endurance and mechanical bracing. The paper shows that installation of super-capacitors in the facilities testing the cables with short-circuit currents reduces the area needed for the super-capacitors in comparison with conventional capacitors more than by one order of magnitude.

  8. GUARANTEEING THE TROUBLE-FREE OPERATION OF CAPACITOR BANKS IN POWER-SUPPLY SYSTEMS OF INDUSTRIAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    D.A. Gapon

    2016-03-01

    Full Text Available Purpose. The problem of resonance phenomena in power systems of industrial enterprises using capacitor banks for reactive power compensation was detected. Circuit of the capacitor banks tier to downshift main substation tires is present. But there is no common algorithm to calculate and avoid such trouble. The main goal of this article is to introduce some basics for power supply systems with possible resonant circuits engineering. Methodology. At the first step the data on the change of the current in the chemical company network when changing capacitor banks value are received. For these purposes the oscilloscope function of digital protection relay was used. Current data samples were analyzed by spectrum detection software. Most significant levels of the 3rd and 5th harmonics were achieved. Comparison of harmonic distortion levels with and without capacitor bank is given. Results. Achieved data allow making conclusion about overloading reasons of capacitor banks while higher harmonics currents presence. A voltage and current harmonious composition measuring in the absence of power quality analyzers using digital protection relay terminals or emergencies registers are proposed. The necessity of power quality monitoring near capacitor banks connections to avoid resonance phenomena (current and voltage resonance in industrial power supply systems is proven. The control algorithm of capacitor banks to provide electromagnetic compatibility, while various modes of nonlinear load operation is given. Originality. Using of digital protection relay oscilloscoping for current resonant detection can allow to significally reduce time and cost of solution. Replacement parallel circuit comprising a branch and one active-inductive load to another branch network in the presence of higher harmonics source are proposed. Practical value. A sequence for measuring the levels of harmonic components at the connections of capacitor banks in the absence of specialized

  9. Analysis and Mitigation of Shunt Capacitor Bank Switching Transients on 132 kV Grid Station, Qasimabad Hyderabad

    Directory of Open Access Journals (Sweden)

    Sunny Katyara

    2015-10-01

    Full Text Available In this paper analysis and mitigation methods of capacitor bank switching transients on 132KV Grid station, Qasimabad Hyderabad are simulated through the MATLAB software (Matrix Laboratory. Analysis of transients with and without capacitor bank is made. Mathematical measurements of quantities such as transient voltages and inrush currents for each case are discussed. Reasons for these transients, their impact on utility and customer systems and their mitigation are provided.

  10. Analysis and Mitigation of Shunt Capacitor Bank Switching Transients on 132 kV Grid Station, Qasimabad Hyderabad

    OpenAIRE

    Sunny Katyara; Ashfaque Ahmed Hashmani; Bhawani Shankar Chowdhry

    2015-01-01

    In this paper analysis and mitigation methods of capacitor bank switching transients on 132KV Grid station, Qasimabad Hyderabad are simulated through the MATLAB software (Matrix Laboratory). Analysis of transients with and without capacitor bank is made. Mathematical measurements of quantities such as transient voltages and inrush currents for each case are discussed. Reasons for these transients, their impact on utility and customer systems and their mitigation are provided.

  11. BiCMOS operational amplifier with precise and stable dc gain for high-frequency switched capacitor circuits

    Science.gov (United States)

    Baschirotto, A.; Alini, R.; Castello, R.

    1991-07-01

    A novel approach in the design of high-frequency switched capacitor (SC) circuits is presented. It is based on the use of simple and fast amplifiers with low but precisely controlled gain value. The effect of the precisely known and stable opamp gain is compensated for by changing the capacitor values during the synthesis of the SC cell. An example of an opamp with these features and the synthesis of a biquadratic filter based on this approach are given.

  12. Evaluation and modelling of integral capacitors produced by interdigitated comb electrodes

    Directory of Open Access Journals (Sweden)

    Leandro Alfredo Ramajo

    2008-12-01

    Full Text Available Integral capacitors (IC of one or two-layer printed wiring board (PWB circuits were produced using comb electrodes fixtures and dielectric composites as the inter-electrode material. ICs were fabricated at laboratory scale, using copper comb electrodes and BaTiO3-epoxy composite materials deposited on a glass-Epoxy FR4 board. They were experimentally tested in order to obtain their electrical response. Furthermore, ICs behaviour was modelled through 2-dimensional models applying finite element method (FEM. Results showed that by this laboratory technique it was possible to obtained integral capacitors with low dielectric losses. Moreover, acceptable agreement was found between numerical and experimental capacitance results for all the different analysed ICs. In conclusion, 2D FEM models are a suitable tool to predict electric response of IC devices.

  13. Studies on forming gas annealing treated BiFeO3 thin films and capacitors

    Science.gov (United States)

    Lee, Chia-Ching; Wu, Lin-Jung; Wu, Jenn-Ming

    2007-11-01

    The structure and electric properties of BiFeO3(BFO )/BaPbO3(BPO) and Pt/BFO/BPO capacitors with forming gas annealing (FGA) treatment were investigated. X-ray diffraction patterns indicated that the annealing did not affect the structure and phase of BFO films. A degraded electric property was obtained in FGA-treated Pt/BFO/BPO films. It can be attributed to the formation of reduction and incomplete reduction of Bi+3 of BFO. Retention and fatigue properties were obtained in FGA-treated BPO/BFO/BPO capacitors. The normalized Pr loss was 22.8% after applying a voltage above 2Vc (coercive voltage) with 1011cycles. The retention behavior within 30000s is governed by the logarithmic time dependence.

  14. Efficient heuristic algorithm used for optimal capacitor placement in distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Segura, Silvio; Rider, Marcos J. [Department of Electric Energy Systems, University of Campinas, Campinas, Sao Paulo (Brazil); Romero, Ruben [Faculty of Engineering of Ilha Solteira, Paulista State University, Ilha Solteira, Sao Paulo (Brazil)

    2010-01-15

    An efficient heuristic algorithm is presented in this work in order to solve the optimal capacitor placement problem in radial distribution systems. The proposal uses the solution from the mathematical model after relaxing the integrality of the discrete variables as a strategy to identify the most attractive bus to add capacitors to each step of the heuristic algorithm. The relaxed mathematical model is a non-linear programming problem and is solved using a specialized interior point method. The algorithm still incorporates an additional strategy of local search that enables the finding of a group of quality solutions after small alterations in the optimization strategy. Proposed solution methodology has been implemented and tested in known electric systems getting a satisfactory outcome compared with metaheuristic methods. The tests carried out in electric systems known in specialized literature reveal the satisfactory outcome of the proposed algorithm compared with metaheuristic methods. (author)

  15. Switchable diode-effect mechanism in ferroelectric BiFeO{sub 3} thin film capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Hiroki [Department of Advanced Interdisciplinary Studies, School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Kitanaka, Yuuki; Inoue, Ryotaro; Noguchi, Yuji, E-mail: ynoguchi@fmat.t.u-tokyo.ac.jp; Miyayama, Masaru [Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan)

    2015-09-21

    We investigate the mechanism of a switchable diode behavior observed in ferroelectric SrRuO{sub 3}/BiFeO{sub 3} (BFO)/SrRuO{sub 3} capacitors. We experimentally demonstrate that the switchable diode effect observed in the capacitors is induced by the polarization reversal in the BFO film. The conductivity in an Ohmic region in different oxidation states provides direct evidence that electron hole acts as the majority carrier, delivering p-type conduction. Density functional theory (DFT) calculations show that the p-type conduction arises from an unoccupied gap state of Fe{sup 4+} in an FeO{sub 5} pyramid which is derived from Bi vacancy. Our experimental and DFT study leads to the conclusion that the switchable diode effect originates from an asymmetric band bending in the top and bottom depletion layers modulated by ferroelectric polarization and oxygen vacancies.

  16. A Simple Strategy of Controlling a Balanced Voltage Capacitor in Single Phase Five-Level Inverter

    Directory of Open Access Journals (Sweden)

    Leonardus Heru Pratomo

    2015-03-01

    Full Text Available The five-level inverter has been used for many applications in renewable energy systems. Even though its harmonic distortion was lower than the conventional two-level inverter. The five-level converter has some disadvantages such as increasing power semiconductor, complex pulse width modulation control methods, and problem with the voltage balancing of the capacitor. This paper aims to propose a modified five-level inverter based on sinusoidal pulse width modulation using phase shifted carrier to enhancing the capacitor voltage balancing. This modified five-level inverter reduces the overall cost and the complexity of the pulse width modulator. Thus making the proposed control system highly simple. The performance and its controller were validated by means of standard laboratory equipments. The analysis, simulation and implementation result showed better performance of five-level inverter.

  17. Super-capacitor based energy storage system for improved load frequency control

    Energy Technology Data Exchange (ETDEWEB)

    Mufti, Mairaj ud din; Lone, Shameem Ahmad; Iqbal, Shiekh Javed; Ahmad, Muzzafar; Ismail, Mudasir [Electrical Engineering Department, National Institute of Technology, Hazratbal, Srinagar 190006, Jammu and Kashmir (India)

    2009-01-15

    A fuzzy-logic controlled super-capacitor bank (SCB) for improved load frequency control (LFC) of an interconnected power system is proposed, in this paper. The super-capacitor bank in each control area is interfaced with the area control bus through a power conversion system (PCS) comprising of a voltage source converter (VSC) and a buck-boost chopper. The fuzzy controller for SCB is designed in such a way that the effects of load disturbances are rejected on a continuous basis. Necessary models are developed and control and implementation aspects are presented in a detailed manner. Time domain simulations are carried out to demonstrate the effectiveness of the proposed scheme. The performance of the resulting power system under realistic situation is investigated by including the effects of generation rate constraint (GRC) and governor dead band (DB) in the simulation studies. (author)

  18. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    Science.gov (United States)

    Teverovsky, Alexander A.

    2016-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  19. Radiative effects and the missing energy paradox in the ideal two capacitors problem

    Science.gov (United States)

    Urzúa, Gilberto A.; Jiménez, Omar; Maass, Fernando; Restuccia, Álvaro

    2016-05-01

    Starting from the Poynting theorem, which arises from the exact Maxwell equations, we establish the balance of energy for the radiating ideal two capacitors problem. This balance of energy results in a nonlinear differential equation governing the time evolution of the voltage V. Boykin, Hite and Singh, following an approach not based on first principles, were the first to obtain this nonlinear differential equation and proposed an exponentially decaying voltage as a unique solution for it. We claim that the space of solutions for this differential equation is much richer. In fact, besides the exponentially decaying solution just mentioned there exist solutions with a sudden death behavior. The radiative effect introduced by Boykin, Hite and Singh, complemented with our analysis based on the exact Maxwell equations and the characterization of the more general space of solution of the nonlinear differential equation, explain the missing energy paradox in the ideal two capacitors problem.

  20. A digitally controlled power amplifier with neutralization capacitors for Zigbee™ applications

    Science.gov (United States)

    Fei, Jia; Shengxi, Diao; Xuejuan, Zhang; Zhongqian, Fu; Fujiang, Lin

    2012-12-01

    This paper presents a single chip CMOS power amplifier with neutralization capacitors for Zigbee™ system according to IEEE 802.15.4. A novel structure with digital interface is adopted, which allows the output power of a PA to be controlled by baseband signal directly, so there is no need for DAC. The neutralization capacitors will increase reverse isolation. The chip is implemented in SMIC 0.18 μm CMOS technology. Measurement shows that the proposed power amplifier has a 13.5 dB power gain, 3.48 dBm output power and 35.1% PAE at P1dB point. The core area is 0.73 × 0.55 mm2.

  1. Low voltage RF MEMS variable capacitor with linear C-V response

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    An RF MEMS variable capacitor, fabricated in the PolyMUMPS process and tuned electrostatically, possessing a linear capacitance-voltage response is reported. The measured quality factor of the device was 17 at 1GHz, while the tuning range was 1.2:1 and was achieved at an actuation DC voltage of 8V only. Further, the linear regression coefficient was 0.98. The variable capacitor was created such that it has both vertical and horizontal capacitances present. As the top suspended plate moves towards the bottom fixed plate, the vertical capacitance increases whereas the horizontal capacitance decreases simultaneously such that the sum of the two capacitances yields a linear capacitance-voltage relation. © 2012 The Institution of Engineering and Technology.

  2. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  3. Simulating Capacitances to Silicon Quantum Dots: Breakdown of the Parallel Plate Capacitor Model

    Science.gov (United States)

    Thorbeck, Ted; Fujiwara, Akira; Zimmerman, Neil M.

    2012-09-01

    Many electrical applications of quantum dots rely on capacitively coupled gates; therefore, to make reliable devices we need those gate capacitances to be predictable and reproducible. We demonstrate in silicon nanowire quantum dots that gate capacitances are reproducible to within 10% for nominally identical devices. We demonstrate the experimentally that gate capacitances scale with device dimensions. We also demonstrate that a capacitance simulator can be used to predict measured gate capacitances to within 20%. A simple parallel plate capacitor model can be used to predict how the capacitances change with device dimensions; however, the parallel plate capacitor model fails for the smallest devices because the capacitances are dominated by fringing fields. We show how the capacitances due to fringing fields can be quickly estimated.

  4. Dielectric response of capacitor structures based on PZT annealed at different temperatures

    Science.gov (United States)

    Kamenshchikov, Mikhail V.; Solnyshkin, Alexander V.; Pronin, Igor P.

    2016-12-01

    Dielectric response of thin-film capacitor structures of Pt/PZT/Pt deposited by the RF magnetron sputtering method and annealed at temperatures of 540-570 °C was investigated. It was found that dielectric properties of these structures depend on the synthesis temperature. Stability of a polarized state is considered on the basis of the analysis of hysteresis loops and capacitance-voltage (C-V) characteristics. The contribution of the domain mechanism in the dielectric response of the capacitor structure comprising a ferroelectric is discussed. Extreme dependences of electrophysical characteristics of PZT films on their synthesis temperature were observed. Correlation of dielectric properties with microstructure of these films is found out.

  5. Body burden of polychlorinated biphenyls among persons employed in capacitor manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, M.S.; Fischbein, A.; Thornton, J.; Rice, C.; Lilis, R.; Selikoff, I.J.

    1982-02-01

    In an effort to assess exposure among workers engaged in capacitors manufacture, PCB concentration was determined in plasma (290) and adipose tissue (61). In general, males had higher concentrations of PCBs than females. The correlation of plasma concentration (1-546 ppb) of the more highly chlorinated PCBs, which had been used in past, with total duration of employment suggested accumulation over time. The gc-ec pattern of these PCB peaks was, in most cases, characteristic of exposure to a PCB mixture with 54% chlorine. The less highly chlorinated PCBs, di-, tri-, and tetrachlorobiphenyls, were the source of current exposure, and were observed in concentrations of 6-2530 ppb in plasma. Higher exposure occurred among persons with direct contact with PCBs in jobs such as capacitor filling. Adipose tissue concentrations, for both the more highly chlorinated PCBs (1-165 ppm) and lower chlorinated PCBs (0.6-414 ppm), were proportional to those in plasma.

  6. Body burden of polychlorinated biphenyls among persons employed in capacitor manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, M.S.; Fischbein, A.; Thornton, J.; Rice, C.; Lilis, R.; Selikoff, I.J.

    1982-02-01

    In an effort to assess exposure among workers engaged in capacitor manufacture, PCB concentration was determined in plasma and adipose tissue. In general, males had higher concentrations of PCBs than females. The correlation of plasma concentration (1-546 ppb) of the more highly chlorinated PCBs, which had been used in the past, with total duration of employment suggested accumulation over time. The gc-ec pattern of these PCB peaks was, in most cases, characteristic of exposure to a PCB mixture with 54% chlorine. The less highly chlorinated PCBs, di-, tri-, and tetrachlorobiphenyls, were the source of current exposure, and were observed in concentrations of 6 to 2530 ppb in plasma. Higher exposure occurred among persons with direct contact with PCBs, in jobs such as capacitor filling. Adipose tissue concentrations, for both the more highly chlorinated PCBs (1-165 ppm) and lower chlorinated PCBs (0.6-414 ppm), were proportional to those in plasma.

  7. Development and fabrication of a 1.5 F - 5 V solid state super capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Staiti, P.; Lufrano, F. [CNR-ITAE, Istituto di Tecnologie Avanzate Per l' Energia Inicola Giordanoi, Messina (Italy)

    2004-07-01

    A five cells super-capacitor prototype with special electrolyte is designed and fabricated at the Institute CNR-ITAE of Messina. It has a nominal capacitance of 1.5 F and a maximum voltage of 5 V. The electrodes of prototype are formed of high surface area carbon material and Nafion ionomer. Nafion is used as an electrolyte membrane separator between the electrodes of each single cell and as a binder/ion conductor in the electrodes. The fabricated prototype achieves specific capacitance of 114 F/g (referred to the weight of active carbon materials for single electrode), that is comparable to the specific capacitance previously obtained from a smaller scale single cell of same type of super-capacitor. A power density of 1.4 kW/l and a RC-time constant of 0.3 s have been calculated for the device. (authors)

  8. Fabrication and characteristics of ZnO MOS capacitors with high-K HfO2 gate dielectrics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    ZnO thin films are first deposited on n-type silicon by radio frequency (rf) magnetron sputtering at room temperature.And high-K HfO2 gate dielectrics thin films are deposited on ZnO films to form metal-oxide semiconductor (MOS) capacitors.The temperature to fabricate ZnO MOS capacitors is 400°C,and the low temperature process is applicable for thin film transistors,flat-panel display (FPD),flexible display,etc.The electronic availability of ZnO thin films,which serve as a semiconductor material for MOS capacitors with HfO2 gate dielectric is investigated.High frequency (1 MHz) capacitance-voltage (C-V) and current-voltage (I-V) characteristics of ZnO-based MOS capacitors are measured.The thermal stability and electronic stability of the ZnO capacitors are investigated,respectively.Experimental results indicate that good electrical characteristics can be obtained on ZnO substrates with high-K HfO2 gate dielectrics.Besides,the ZnO capacitors can exhibit high thermal and electronic stabilities.

  9. Technological file for high energy storage power capacitors; Filiere technologique pour condensateurs de puissance a haute energie stockee

    Energy Technology Data Exchange (ETDEWEB)

    Michalczyk, P.

    1996-03-28

    The `Megajoule` project driven by the Commissariat a l`Energie atomique, needs the storage of an 450 MJ energy in a capacitor bank. Each unitary 78 kJ capacitor must be build in a safe technology. The life time of such a capacitor is materialized by a loss of capacitance for a given number of discharge and not by a short circuit which can damage a part of the installation. The answer to the specifications use the combination of two existing technologies. Impregnated film foil capacitors; dry metallized polymer film capacitors. The energy induced by internal dielectric failures is limited by self-healing; the right arrangement of influential parameters, which are the resistivity of the metallization and the drawing of the segmentation is necessary to achieve this phenomenon. Appropriate manufacturing process, space factor, impregnation and thermal treatments are required to optimise the dielectric strength of the capacitors. The first test results valid this developed technology and our conclusions suggest some ways to improve the volume energy. (author) 13 refs.

  10. A 100 MS/s 9 bit 0.43 mW SAR ADC with custom capacitor array

    Science.gov (United States)

    Jingjing, Wang; Zemin, Feng; Rongjin, Xu; Chixiao, Chen; Fan, Ye; Jun, Xu; Junyan, Ren

    2016-05-01

    A low power 9 bit 100 MS/s successive approximation register analog-to-digital converter (SAR ADC) with custom capacitor array is presented. A brand-new 3-D MOM unit capacitor is used as the basic capacitor cell of this capacitor array. The unit capacitor has a capacitance of 1 fF. Besides, the advanced capacitor array structure and switch mode decrease the power consumption a lot. To verify the effectiveness of this low power design, the 9 bit 100 MS/s SAR ADC is implemented in TSMC IP9M 65 nm LP CMOS technology. The measurement results demonstrate that this design achieves an effective number of bits (ENOB) of 7.4 bit, a signal-to-noise plus distortion ratio (SNDR) of 46.40 dB and a spurious-free dynamic range (SFDR) of 62.31 dB at 100 MS/s with 1 MHz input. The SAR ADC core occupies an area of 0.030 mm2 and consumes 0.43 mW under a supply voltage of 1.2 V. The figure of merit (FOM) of the SAR ADC achieves 23.75 fJ/conv. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  11. Electrochemical characterization of MnO2 as the cathode material for a high voltage hybrid capacitor

    Institute of Scientific and Technical Information of China (English)

    Jian-ling Li; Fei Gao; Yan Jing; Rui-ying Miao; Ke-zhong Wu; Xin-dong Wang

    2009-01-01

    Manganese dioxide (MnO_2) was prepared using the ultrasonic method. Its electrochemical performance was evaluated as the cathode material for a high voltage hybrid capacitor. And the specific capacitance of the MnO_2 electrode reached 240 F-g-1. The new hybrid capacitor was constructed, combining Al/Al_2O_3 as the anode and MnO_2 as the cathode with electrolyte for the aluminum electrolytic capacitor to solve the problem of low working voltage of a supercapacitor unit. The results showed that the hybrid ca-pacitor had a high energy density and the ability of quick charging and discharging according to the electrochemical performance test. The capacitance was 84.4 μF, and the volume and mass energy densities were greatly improved compared to those of the traditional aluminum electrolytic capacitor of 47 μF. The analysis of electrochemical impedance spectroscopy (EIS) showed that the hybrid ca-pacitor had good impedance characteristics.

  12. Field Experiments on 10 kV Switching Shunt Capacitor Banks Using Ordinary and Phase-Controlled Vacuum Circuit Breakers

    Directory of Open Access Journals (Sweden)

    Wenxia Sima

    2016-01-01

    Full Text Available During the switching on/off of shunt capacitor banks in substations, vacuum circuit breakers (VCBs are required to switch off or to switch on the capacitive current. Therefore, the VCBs have to be operated under a harsh condition to ensure the reliability of the equipment. This study presents a complete comparison study of ordinary and phase-controlled VCBs on switching 10 kV shunt capacitor banks. An analytical analysis for switching 10 kV shunt capacitor banks is presented on the basis of a reduced circuit with an ungrounded neutral. A phase selection strategy for VCBs to switch 10 kV shunt capacitor banks is proposed. Switching on current waveforms and switching off overvoltage waveforms with, and without, phase selection were measured and discussed by field experiments in a 110 kV substation in Chongqing, China. Results show that the operation of phase-controlled VCBs for 10 kV switching shunt capacitor banks is stable, and phase-controlled VCBs can be used to implement the 10 kV switching on/off shunt capacitor banks to limit the transient overvoltage and overcurrent. The values of overvoltage and inrush current using phase-controlled VCBs are all below those with ordinary VCBs.

  13. Historical reconstruction of polychlorinated biphenyl (PCB) exposures for workers in a capacitor manufacturing plant.

    Science.gov (United States)

    Hopf, Nancy B; Ruder, Avima M; Waters, Martha A

    2014-05-01

    We developed a semiquantitative job exposure matrix (JEM) for workers exposed to polychlorinated biphenyls (PCBs) at a capacitor manufacturing plant from 1946 to 1977. In a recently updated mortality study, mortality of prostate and stomach cancer increased with increasing levels of cumulative exposure estimated with this JEM (trend p values = 0.003 and 0.04, respectively). Capacitor manufacturing began with winding bales of foil and paper film, which were placed in a metal capacitor box (pre-assembly), and placed in a vacuum chamber for flood-filling (impregnation) with dielectric fluid (PCBs). Capacitors dripping with PCB residues were then transported to sealing stations where ports were soldered shut before degreasing, leak testing, and painting. Using a systematic approach, all 509 unique jobs identified in the work histories were rated by predetermined process- and plant-specific exposure determinants; then categorized based on the jobs' similarities (combination of exposure determinants) into 35 job exposure categories. The job exposure categories were ranked followed by a qualitative PCB exposure rating (baseline, low, medium, and high) for inhalation and dermal intensity. Category differences in other chemical exposures (solvents, etc.) prevented further combining of categories. The mean of all available PCB concentrations (1975 and 1977) for jobs within each intensity rating was regarded as a representative value for that intensity level. Inhalation (in microgram per cubic milligram) and dermal (unitless) exposures were regarded as equally important. Intensity was frequency adjusted for jobs with continuous or intermittent PCB exposures. Era-modifying factors were applied to the earlier time periods (1946-1974) because exposures were considered to have been greater than in later eras (1975-1977). Such interpolations, extrapolations, and modifying factors may introduce non-differential misclassification; however, we do believe our rigorous method

  14. The Sensitivity of a Method to Predict a Capacitor’s Frequency Characteristic

    Science.gov (United States)

    2000-04-01

    2009 at 11:40 from IEEE Xplore . Restrictions apply. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...2009 at 11:40 from IEEE Xplore . Restrictions apply. 400 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 49, NO. 2, APRIL 2000 (a) (b) Fig... IEEE Xplore . Restrictions apply. AVRAMOV-ZAMUROVIC et al.: SENSITIVITY OF METHOD TO PREDICT CAPACITOR’S FREQUENCY CHARACTERISTIC 401 (a) (b) Fig. 4

  15. Implementation of a Two-Channel Maximally Decimated Filter Bank using Switched Capacitor Circuits

    OpenAIRE

    Nahlik, J.; Hospodka, J.; P. Sovka; B. Psenicka

    2013-01-01

    The aim of this paper is to describe the implementation of a two-channel filter bank (FB) using the switched capacitor (SC) technique considering real properties of operational amplifiers (OpAmps). The design procedure is presented and key recommendations for the implementation are given. The implementation procedure describes the design of two-channel filter bank using an IIR Cauer filter, conversion of IIR into the SC filters and the final implementation of the SC filters. The whole design ...

  16. Performance of static var compensator control type thyristor controlled reactor and thyristor switched capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Josias M. de; Yung, Chou Shaw; Rose, Eber H.; Pantoja, Antonio L.A. [ELETRONORTE, Belem, PA (Brazil); Fouesnant, Thomas; Boissier, Luc

    1994-12-31

    This paper has the objective of presenting the philosophy of Static Var Compensator (SVC) Control as well the necessary adjustments in the project of control system to guarantee suitable performance under different operating conditions. The verification on the performance of the SVC control has been done by Transient Network Analyzer (TNA/CEPEL) studies, commissioning tests and a factory tests. The SVC is the type of Thyristor Controlled Reactor (TCR) and Thyristor Switched Capacitor (TSC). (author) 3 refs., 12 figs.

  17. Improved Field Homogeneity for Transmission Line MRI Coils Using Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Dong, Yunfeng

    2015-01-01

    High field magnetic resonance imaging (MRI) systems often use short sections of transmission lines for generating and sensing alternating magnetic fields. Due to distributed nature of transmission lines, the generated field is inhomogeneous. This work investigates the application of series...... capacitors to improve the field homogeneity. The resulting magnetic field distribution is estimated analytically and evaluated numerically. The results are compared to a case of a conventional transmission line coil realization....

  18. Descarga Interna e Tensão de Retorno em Capacitores

    OpenAIRE

    Robert Renê

    2001-01-01

    Os fenômenos de descarga interna e tensão de retorno em capacitores são calculados no caso onde a resposta do dielétrico é da forma exponencial no tempo. Com esta hipótese a matemática envolvida é simples e as características gerais dos fenômenos de hereditariedade podem ser seguidas.

  19. Descarga Interna e Tensão de Retorno em Capacitores

    Directory of Open Access Journals (Sweden)

    Robert Renê

    2001-01-01

    Full Text Available Os fenômenos de descarga interna e tensão de retorno em capacitores são calculados no caso onde a resposta do dielétrico é da forma exponencial no tempo. Com esta hipótese a matemática envolvida é simples e as características gerais dos fenômenos de hereditariedade podem ser seguidas.

  20. Synthesis of MgO templated mesoporous carbons and its use for capacitor electrode

    Directory of Open Access Journals (Sweden)

    Yasushi Soneda

    2013-01-01

    Full Text Available Mesoporous carbons (MPCs with large specificsurface area are synthesized by the heat-treatmentand subsequent acid treatment of magnesium citrate.The MPCs obtained are examined as electrodematerials for electric double layer capacitor and showthe huge gravimetric capacitance with superior rateperformance in sulphuric acid electrolyte. The MPCsalso realize the larger capacitance than conventionalactivated carbon in organic electrolyte andextraordinary high retention of capacitance at verylow temperature, such as 80% of room temperaturevalue at -60 °C.

  1. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-06-09

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect to breakdown voltage and leakage current of the devices. We also report the effect of continuous mechanical stress on the breakdown voltage over extended periods of times.

  2. An Integrated Implantable Stimulator That is Fail-Safe Without Off-Chip Blocking-Capacitors.

    Science.gov (United States)

    Xiao Liu; Demosthenous, A; Donaldson, N

    2008-09-01

    We present a neural stimulator chip with an output stage (electrode driving circuit) that is fail-safe under single-fault conditions without the need for off-chip blocking-capacitors. To miniaturize the stimulator output stage two novel techniques are introduced. The first technique is a new current generator circuit reducing to a single step the translation of the digital input bits into the stimulus current, thus minimizing silicon area and power consumption compared to previous works. The current generator uses voltage-controlled resistors implemented by MOS transistors in the deep triode region. The second technique is a new stimulator output stage circuit with blocking-capacitor safety protection using a high-frequency current-switching (HFCS) technique. Unlike conventional stimulator output stage circuits for implantable functional electrical stimulation (FES) systems which require blocking-capacitors in the microfarad range, our proposed approach allows capacitance reduction to the picofarad range, thus the blocking-capacitors can be integrated on-chip. The prototype four-channel neural stimulator chip was fabricated in XFAB's 1-mum silicon-on-insulator CMOS technology and can operate from a power supply between 5-18 V. The stimulus current is generated by active charging and passive discharging. We obtained recordings of action potentials and a strength-duration curve from the sciatic nerve of a frog with the stimulator chip which demonstrate the HFCS technique. The average power consumption for a typical 1-mA 20-Hz single-channel stimulation using a book electrode, is 200 muW from a 6 V power supply. The silicon area occupation is 0.38 mm(2) per channel.

  3. MODEL ANALYSIS AND PARAMETER EXTRACTION FOR MOS CAPACITOR INCLUDING QUANTUM MECHANICAL EFFECTS

    Institute of Scientific and Technical Information of China (English)

    Hai-yan Jiang; Ping-wen Zhang

    2006-01-01

    The high frequency CV curves of MOS capacitor have been studied. It is shown that semiclassical model is a good approximation to quantum model and approaches to classical model when the oxide layer is thick. This conclusion provides us an efficient (semiclassical) model including quantum mechanical effects to do parameter extraction for ultrathi noxide device. Here the effective extracting strategy is designed and numerical experiments demonstrate the validity of the strategy.

  4. Novel electric double-layer capacitor with a coaxial fiber structure.

    Science.gov (United States)

    Chen, Xuli; Qiu, Longbin; Ren, Jing; Guan, Guozhen; Lin, Huijuan; Zhang, Zhitao; Chen, Peining; Wang, Yonggang; Peng, Huisheng

    2013-11-26

    A coaxial electric double-layer capacitor fiber is developed from the aligned carbon nanotube fiber and sheet, which functions as two electrodes with a polymer gel sandwiched between them. The unique coaxial structure enables a rapid transportation of ions between the two electrodes with a high electrochemical performance. These energy storage fibers are also flexible and stretchable, and can be woven into and widely used for electronic textiles.

  5. Oxidation behavior of CNTs and the electric double layer capacitor made of the CNT electrodes

    Institute of Scientific and Technical Information of China (English)

    李辰砂; 王大志; 梁彤祥; 李贵涛; 王晓峰; 曹茂盛; 梁吉

    2003-01-01

    The effect of CO2 oxidized carbon nanotubes (CNTs) on the performance of electric double layer capacitors (EDLCs) was studied. CO2 oxidation increased the specific area and improved the dispersity of CNTs. Specific capacitance of the polarizable electrodes in EDLCs based on the oxidized CNTs were obviously improved and the maximum specific capacitance of 47 F/g was obtained. CO2 oxidizing CNTs is hence an effective way to improve the performances of EDLCs based on the CNT electrodes.

  6. Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites

    KAUST Repository

    Elshurafa, Amro M.

    2013-06-14

    We show that graphene-percolated polymer composites exhibit fractional capacitance response in the frequency range of 50 kHz–2 MHz. In addition, it is shown that by varying the loading of graphene within the matrix from 2.5% to 12%, the phase can be controllably tuned from −67° to −31°, respectively. The electrostatic fractional capacitors proposed herein are easy to fabricate and offer integration capability on electronic printed circuit boards.

  7. Design of a 500-kJ Capacitor Bank Module for EML Materials Testing

    Science.gov (United States)

    2005-06-01

    of a 200 MJ Pulsed Power System for a Naval Railgun Proof of Concept Facility”, 12th Symposium on Electromagnetic Launch Technology, May 25-28, 2004...DESIGN OF A 500-KJ CAPACITOR BANK MODULE FOR EML MATERIALS TESTING∗ J.M. Neriξ, T. Holt† Plasma Physics Division, Naval Research Laboratory... electromagnetic launcher (EML) for surface-fire support and other missions[1]. The EML system will need to have fire rates of 6-12 rounds per minute and

  8. Operation of a 5-MJ Capacitor Bank for EML Materials Testing

    Science.gov (United States)

    2007-06-01

    electromagnetic railgun for long-range fire support [1]. The deployed system has requirements for sustained rep-rated fire at 6-12 rounds per minute...OPERATION OF A 5-MJ CAPACITOR BANK FOR EML MATERIALS TESTING*∗ Jesse M. Neriξ, Brett M. Human Plasma Physics Division, Naval Research Laboratory...Naval Research ξ email: Jesse.Neri@nrl.navy.mil Abstract The U.S. Navy is considering the development of an electromagnetic launcher (EML) for

  9. Effects of binders on the performance of electric double-layer capacitors of carbon nanotube electrodes

    Institute of Scientific and Technical Information of China (English)

    LI Chensha; WANG Dazhi; ZHANG Baoyou; WANG Xiaofeng; CAO Maosheng; LIANG Ji

    2005-01-01

    Polarizable electrodes of electric double layer capacitor (EDLCs) were made from carhon nanotubes. Effects of different binders, which are phenolic resin (PF) and polytetrafluoroethylene (PTFE), on the properties of polarizable electrodes are studied. Results indicate that the microstructure, pore size distribution and specific capacitance of the electrodes with PTFE binder are superior to those electrodes with PF binder after carbonization. The suitable binder (PTFE) for carbon nanotubes electrodes is proposed.

  10. High performance dc-dc conversion with voltage multipliers. [using transformerless capacitor diode circuit

    Science.gov (United States)

    Harrigill, W. T., Jr.; Myers, I. T.

    1974-01-01

    An experimental 100W 1000V dc-dc converter using a capacitor diode voltage multipler (CDVM) with a nominal frequency of 100 kHz is studied. A component weight of about 1 kg/kW was obtained. Design equations for current, output -ripple and -power, efficiency and output voltage are derived. Agreement between experimental results and calculations is fairly good except for ripple.

  11. Use of switched capacitor filters to implement the discrete wavelet transform

    Science.gov (United States)

    Kaiser, Kraig E.; Peterson, James N.

    1993-01-01

    This paper analyzes the use of IIR switched capacitor filters to implement the discrete wavelet transform and the inverse transform, using quadrature mirror filters (QMF) which have the necessary symmetry for reconstruction of the data. This is done by examining the sensitivity of the QMF transforms to the manufacturing variance in the desired capacitances. The performance is evaluated at the outputs of the separate filter stages and the error in the reconstruction of the inverse transform is compared with the desired results.

  12. Characterization of Si-SiO2 interface states in MOS capacitors by using DLTS technique

    Science.gov (United States)

    Lu, Liwu; G, Groesendken; C, Hasenack

    1989-12-01

    The Dit (interface states density) in p-type MOS capacitors subjected to a preoxidation heat treatment was investigated by using DLTS (Deep Level Transient Spectroscopy) technique. It is found that the strong dependence of the Dit on POHT (Preoxidation Heat Treatment) and starting oxygen content of substrates is expected. The DLTS technique can detects the presence of bulk defect (Et - Ev = 0.29eV) at the interface presumably due to chlorine species.

  13. Effect of Asymmetrical Edge Disconnection on Equivalent Series Resistance of Metalized Polypropylene Capacitors

    OpenAIRE

    J Sivakumar; S. Usa; M.A. Panneerselvam

    2014-01-01

    In order to investigate the effect of asymmetrical partial edge disconnection on the Equivalent Series Resistance (ESR) of Metalized polypropylene capacitors an experimental study has been made. Theoretical analysis made using PSPICE simulation package reveals that electrode resistance of individual turn rises from 10 to 30% depending on the location of the turn. This rise is not measureable at all the frequencies as ESR is frequency dependent and it includes resistance due to electrodes and ...

  14. Powder metallurgical processing and metal purity: A case for capacitor grade sintered tantalum

    Indian Academy of Sciences (India)

    G S Upadhyaya

    2005-07-01

    The paper reviews the role of sintered tantalum as volumetric efficient electrical capacitor. Powder characteristics and sintering aspects are discussed. The role of impurities in influencing the electrical properties has been described. Today’s driving force behind the Ta market is the use of surface mounted versions known as chip types, for applications requiring a wide range of operational temperature, such as automotive electronics.

  15. In situ determination of the static inductance and resistance of a plasma focus capacitor bank.

    Science.gov (United States)

    Saw, S H; Lee, S; Roy, F; Chong, P L; Vengadeswaran, V; Sidik, A S M; Leong, Y W; Singh, A

    2010-05-01

    The static (unloaded) electrical parameters of a capacitor bank are of utmost importance for the purpose of modeling the system as a whole when the capacitor bank is discharged into its dynamic electromagnetic load. Using a physical short circuit across the electromagnetic load is usually technically difficult and is unnecessary. The discharge can be operated at the highest pressure permissible in order to minimize current sheet motion, thus simulating zero dynamic load, to enable bank parameters, static inductance L(0), and resistance r(0) to be obtained using lightly damped sinusoid equations given the bank capacitance C(0). However, for a plasma focus, even at the highest permissible pressure it is found that there is significant residual motion, so that the assumption of a zero dynamic load introduces unacceptable errors into the determination of the circuit parameters. To overcome this problem, the Lee model code is used to fit the computed current trace to the measured current waveform. Hence the dynamics is incorporated into the solution and the capacitor bank parameters are computed using the Lee model code, and more accurate static bank parameters are obtained.

  16. Metal-nitride-semiconductor capacitors on 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Berberich, S.; Godignon, P.; Millan, J. [Centro Nacional de Microelectronica, Bellaterra (Spain); Planson, D. [Cegely - Insa de Lyon, Villeurbanne (France); Hartnagel, H.L. [Inst. fuer Hochfrequenztechnik, Tech. Univ. Darmstadt (Germany); Senes, A. [Schneider Electric S.A., Centre Telemecanique, Nanterre (France)

    1998-08-01

    MNS capacitors have been fabricated on p-type 6H-SiC and p-type Si substrates. High frequency CV and GV measurements and IV measurements were used to examine the charge properties at the SiC/Si{sub 3}N{sub 4} interface and to study carrier conduction in SiC MNS capacitors. Unlike to SiC MOS capacitors, the charge distribution in Al-Si{sub 3}N{sub 4}-SiC and Al-Si{sub 3}N{sub 4}-Si structures was found to be unstable under large voltage bias at room temperature. This charge instability appears to be due to tunneling and trapping processes of carriers in the insulator and is essentially independent of the semiconductor. Evidence of hole conduction in the SiC MNS structure under positive gate bias, due to extremely low minority carrier generation in p-6H-SiC and due to the low mobility of electrons in the nitride, was observed. (orig.) 8 refs.

  17. Synthesis of boron/nitrogen substituted carbons for aqueous asymmetric capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, Timothy [Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Rajagopalan, Ramakrishnan, E-mail: rur12@psu.edu [Materials Research Institute, Pennsylvania State University, 270 MRL Bldg., University Park, PA 16802 (United States); Aksoy, Parvana [Energy Institute, Pennsylvania State University, University Park, PA 16802 (United States); Foley, Henry C. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-01

    Highlights: > Synthesis of highly substituted boron and nitrogen containing carbons (BCN) for ultracapacitor applications. > Evidence for strong electroadsorption of protons on BCN. > Increased specific capacitance per unit area and improved cell voltage in aqueous asymmetric capacitors. - Abstract: Boron/nitrogen substituted carbons were synthesized by co-pyrolysis of polyborazylene/coal tar pitch blends to yield a carbon with a boron and nitrogen content of 14 at% and 10 at%, respectively. The presence of heteroatoms in these carbons shifted the hydrogen evolution overpotential to -1.4 V vs Ag/AgCl in aqueous electrolytes, providing a large electrochemical potential window ({approx}2.4 V) as well as a specific capacitance of 0.6 F/m{sup 2}. An asymmetric capacitor was fabricated using the as-prepared low surface area carbon as the negative electrode along with a redox active manganese dioxide as the positive electrode. The energy density of the capacitor exceeded 10 Wh/kg at a power density of 1 kW/kg and had a cycle life greater than 1000 cycles.

  18. Depollution benchmarks for capacitors, batteries and printed wiring boards from waste electrical and electronic equipment (WEEE).

    Science.gov (United States)

    Savi, Daniel; Kasser, Ueli; Ott, Thomas

    2013-12-01

    The article compiles and analyses sample data for toxic components removed from waste electronic and electrical equipment (WEEE) from more than 30 recycling companies in Switzerland over the past ten years. According to European and Swiss legislation, toxic components like batteries, capacitors and printed wiring boards have to be removed from WEEE. The control bodies of the Swiss take back schemes have been monitoring the activities of WEEE recyclers in Switzerland for about 15 years. All recyclers have to provide annual mass balance data for every year of operation. From this data, percentage shares of removed batteries and capacitors are calculated in relation to the amount of each respective WEEE category treated. A rationale is developed, why such an indicator should not be calculated for printed wiring boards. The distributions of these de-pollution indicators are analysed and their suitability for defining lower threshold values and benchmarks for the depollution of WEEE is discussed. Recommendations for benchmarks and threshold values for the removal of capacitors and batteries are given.

  19. Electrical modeling of semiconductor bridge (SCB) BNCP detonators with electrochemical capacitor firing sets

    Energy Technology Data Exchange (ETDEWEB)

    Marx, K.D. [Sandia National Labs., Livermore, CA (United States); Ingersoll, D.; Bickes, R.W. Jr. [Sandia National Labs., Albuquerque, NM (United States)

    1998-11-01

    In this paper the authors describe computer models that simulate the electrical characteristics and hence, the firing characteristics and performance of a semiconductor bridge (SCB) detonator for the initiation of BNCP [tetraammine-cis-bis (5-nitro-2H-tetrazolato-N{sup 2}) cobalt(III) perchlorate]. The electrical data and resultant models provide new insights into the fundamental behavior of SCB detonators, particularly with respect to the initiation mechanism and the interaction of the explosive powder with the SCB. One model developed, the Thermal Feedback Model, considers the total energy budget for the system, including the time evolution of the energy delivered to the powder by the electrical circuit, as well as that released by the ignition and subsequent chemical reaction of the powder. The authors also present data obtained using a new low-voltage firing set which employed an advanced electrochemical capacitor having a nominal capacitance of 350,000 {micro}F at 9 V, the maximum voltage rating for this particular device. A model for this firing set and detonator was developed by making measurements of the intrinsic capacitance and equivalent series resistance (ESR < 10 m{Omega}) of a single device. This model was then used to predict the behavior of BNCP SCB detonators fired alone, as well as in a multishot, parallel-string configuration using a firing set composed of either a single 9 V electrochemical capacitor or two of the capacitors wired in series and charged to 18 V.

  20. Preparation and Application of Nano-composite Poly(vinyl alcohol) Gel Electrolyte in Electrochemical Capacitor

    Institute of Scientific and Technical Information of China (English)

    陈赟; 谭强强; 徐宇兴

    2012-01-01

    A nano-composite polymer gel electrolyte was prepared using titanium oxide nanowire,poly(vinyl alcohol) (PVA),lithium salt and organic solvent N-methyl-2-pyrrolidone (NMP).The obtained electrolyte has the potential for application in electrochemical capacitor,the PVA in it is in an amorphous state.The ionic conductivities of electrolytes increased after addition of the nanowire,and the electrolyte with 3%(ω) of nanowire exhibited the highest ionic conductivity of 3.2 mS/cm at 20 ℃,as measured by electrochemical impedance spectroscopy.The temperature dependence of the conductivity was found to be in agreement with the Arrhenius equation.Functioning as separator and electrolyte,this nano-composite PVA gel electrolyte was used to assemble the electrochemical capacitor with active carbon film as electrodes.The compositing of nanowire may extend the life of electrochemical capacitors as they keep more than 90% of their capacitance after 5 000 cycles of charging and discharging.

  1. Fault Diagnosis for Compensating Capacitors of Jointless Track Circuit Based on Dynamic Time Warping

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2014-01-01

    Full Text Available Aiming at the problem of online fault diagnosis for compensating capacitors of jointless track circuit, a dynamic time warping (DTW based diagnosis method is proposed in this paper. Different from the existing related works, this method only uses the ground indoor monitoring signals of track circuit to locate the faulty compensating capacitor, not depending on the shunt current of inspection train, which is an indispensable condition for existing methods. So, it can be used for online diagnosis of compensating capacitor, which has not yet been realized by existing methods. To overcome the key problem that track circuit cannot obtain the precise position of the train, the DTW method is used for the first time in this situation to recover the function relationship between receiver’s peak voltage and shunt position. The necessity, thinking, and procedure of the method are described in detail. Besides the classical DTW based method, two improved methods for improving classification quality and reducing computation complexity are proposed. Finally, the diagnosis experiments based on the simulation model of track circuit show the effectiveness of the proposed methods.

  2. An Aqueous Metal-ion Capacitor with Oxidised Carbon Nanotubes and Metallic Zinc Electrodes

    Directory of Open Access Journals (Sweden)

    Yuheng Tian

    2016-10-01

    Full Text Available An aqueous metal ion capacitor comprising of a zinc anode, an oxidized carbon nanotubes (oCNTs cathode and a zinc sulfate electrolyte is reported. Since the shuttling cation is Zn2+, this typical metal ion capacitor is named as zinc-ion capacitor (ZIC. The ZIC integrates the divalent zinc stripping/plating chemistry with the surface-enabled pseudocapacitive cation adsorption/desorption on oCNTs. The surface chemistry and crystallographic structure of oCNTs were extensively characterized by combining X-ray photoelectron spectroscopy, Fourier-transformed infrared spectroscopy, Raman spectroscopy and X-ray powder diffraction. The function of the surface oxygen groups in surface cation storage was elucidated by a series of electrochemical measurement and the surface-enabled ZIC showed better performance than the ZIC with an un-oxidized CNT cathode. The reaction mechanism at the oCNT cathode involves the additional reversible Faradaic process, while the CNTs merely show electric double layer capacitive behavior involving a non-Faradaic process. The aqueous hybrid ZIC comprising the oCNT cathode exhibited a specific capacitance of 20 mF cm-2 (corresponding to 53 F g-1 in the range of 0-1.8 V at 10 mV s-1 and a stable cycling performance up to 5000 cycles.

  3. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae [Chungbuk National Univ., Chungju (Korea, Republic of)

    2013-06-15

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m{sup 2}/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn{sub 2}O{sub 4}, LiCoO{sub 2} as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF{sub 6}, TEABF{sub 4}) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn{sub 2}O{sub 4}/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

  4. Electrochemical capacitor improvement fabricated by carbon microfiber composite with admicellar-modified carbon nanotube

    Science.gov (United States)

    Pongprayoon, Thirawudh; Ayutthaya, Montira Seneewong-Na; Poochai, Chatwarin

    2017-02-01

    Conventional electrochemical capacitors are usually made from activated carbon microfiber electrode, which has relatively low electrochemical capacitance. To improve performance of electrochemical capacitor, carbon nanotube (CNT) was used to incorporate in carbon microfiber. Firstly, CNT was coated with ultra-thin polyacrylonitrile (PAN) film coating using the admicellar polymerization technique to improve its dispersion in PAN matrix. Secondly, the mix solution of admicellar-modified CNT (Ad-CNT) and PAN in N,N-dimethylformamide (DMF) was prepared to produce microfiber by electrospinning. Lastly, microfiber was collected as a sheet, which was then stabilized and carbonized to be used as an electrode. The fabricated electrode using Ad-CNT/PAN was analyzed by SEM and TEM. SEM images show that the microfiber was uniform with approximately 2 μm average diameter. TEM images display well alignment and good dispersion of Ad-CNT in the matrix. The electrode made from Ad-CNT/PAN exhibited a high specific capacitance of 125 F g-1 at a scan rate of 3 mV s-1 (based on cyclic voltammetry) and 82 F g-1 at a specific current of 1 A g-1 (based on galvanostatic charge/discharge). The percentage of relative specific capacitance retention of the prepared electrode was 70% after 1000 cycles. The results clearly show that the Ad-CNT played an effective role in improving dispersion in electrode leading to increase in electrical conductivity as well as electrical capacitance of the capacitor.

  5. Fast Power Loss Computation and Shunt Capacitor Insertion Using Fuzzy Logic Technique

    Directory of Open Access Journals (Sweden)

    Wagah F. Mohammad

    2007-01-01

    Full Text Available Fast power loss computation was implemented using supervisory control and data acquisition system (SCADA with personal computer. Logic Control Array (LCA and EPROM circuits were used to implement SCADA system to facilitate the required measurements to obtain the daily load profile for residential and commercial customers. LCA, EPROM and PC were used to simplify the electronic circuits, reduce the cost and speed up the computation time. An illustrative example had been considered to measure, store and show the active power, reactive power, load voltage, load current, power factor and the shunt capacitors current. It as observed that when 2.7 MVAR bank capacitor inserted in the network the load current decreased from 740.8A to 688.4A and the power factor was improved from 0.80 to 0.93, which reduced the apparent power, hence allowing to add more loads to the network and release the feeder capacitor. A rule-based fuzzy decision maker had been designed and tested with the real data collected from Jordan electricity board using SCADA system. The calculated output was almost similar to that obtained from the first approach presented in this study. The advantage of using fuzzy decision maker was its simplicity that can be implemented on a programmable logic device.

  6. Linear energy transfer dependence of single event gate rupture in SiC MOS capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Deki, Manato, E-mail: deki@ee.tokushima-u.ac.jp [The University of Tokushima, 2-1 Minami-Johsanjima-cho, Tokushima 770-8506 (Japan); Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Makino, Takahiro, E-mail: makino.takahiro@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Iwamoto, Naoya, E-mail: iwamoto.naoya@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Onoda, Shinobu, E-mail: onoda.shinobu@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kojima, Kazutoshi, E-mail: kazu-kojima@aist.go.jp [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Tomita, Takuro, E-mail: tomita@tokushima-u.ac.jp [The University of Tokushima, 2-1 Minami-Johsanjima-cho, Tokushima 770-8506 (Japan); Ohshima, Takeshi, E-mail: ohshima.takeshi20@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-01-15

    Metal-oxide-semiconductor (MOS) capacitors were fabricated on n-type 4H silicon carbide (SiC) epitaxial layers grown on n-type 4H-SiC substrates, and the currents through the gate oxide of the MOS capacitors were measured under accumulation bias conditions during heavy-ion irradiation. Evaluation of the linear energy transfer (LET) dependence of the critical electric field (E{sub cr}) at which dielectric breakdown occurred in these capacitors revealed that the reciprocal of E{sub cr} (1/E{sub cr}) increased linearly with increasing LET. The slope of LET dependence of 1/E{sub cr} for SiC is lower than that for Si, suggesting that SiC MOS devices are less susceptible to single-event gate rupture (SEGR) than Si MOS devices. The limitation of previously proposed SEGR models based on SiO{sub 2} on Si is discussed, as is the importance of the physical parameters of the oxide and semiconductor materials (bandgap, carrier lifetime and mobility, etc.)

  7. Poly(aryl-ether-ether-ketone) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation

    Science.gov (United States)

    2014-12-01

    Poly(aryl-ether-ether-ketone) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio...Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation Janet Ho and Marco Olguin Sensors...a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation 5a. CONTRACT NUMBER 5b. GRANT

  8. Adjustable movable capacitors bank at 20 or 30 MVAr in 115 kV; Banco movil de capacitores ajustable a 20 o 30 MVAr en 115 kV

    Energy Technology Data Exchange (ETDEWEB)

    Ponce Velez, Marco A; Lopez Velazquez, Juan Jose [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Lopez Tagle, Alfredo; Aragon Garcia, Hector [Comision Federal de Electricidad (Mexico)

    1999-07-01

    The use of fixed capacitors banks in distribution and transmission systems is a useful tool to compensate the demand of reactive power and the drop of voltage of the power lines. Nevertheless, unforeseen happenings can be originated that could cause decompensation in the system reliability. Due to the previous fact, the Transmission and Transformation Coordinator (CTT) of the Comision Federal de Electricidad (CFE) asked for the design and the construction of a movable bank of capacitors for an emergent compensation of reactive power. In this article it is presented the most relevant of the design, the construction and the operation of the movable bank of capacitors developed in the Instituto de Investigaciones Electricas (IIE). [Spanish] El empleo de bancos capacitadores fijos en los sistemas de distribucion y transmision es una herramienta util para compensar la demanda de reactivos y la caida de tension de las lineas. Sin embargo, se pueden originar imprevistos que descompensan la confiabilidad del sistema. Debido a lo anterior, la Coordinadora de Transmision y Transformacion (CTT) de la Comision Federal de Electricidad (CFE) solicito el diseno y la construccion de un banco movil de capacitores para una compensacion emergente de potencia reactiva. En este articulo se presenta lo mas relevante del diseno, la construccion y la operacion del banco movil de capacitores desarrollado en el Instituto de Investigaciones Electricas (IIE).

  9. Transient analysis of a PV power generator charging a capacitor for measurement of the I-V characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Marwan M. [Energy Research Centre, An Najah National University, P.O. Box 721 Nablus (PS)

    2006-10-15

    Measuring the I-V characteristics is of high importance since it can be considered as a quality and performance certificate for each PV generator. The most precise and inexpensive measuring method is represented in capacitor charging by the PV generator. Using the equivalent circuit of the PV generator with a capacitor as load and applying transient analysis on the circuit, we obtain the capacitor charging voltage and current as a function of time, as well as their differentials as a function of short circuit current and capacitor size. The derived equations facilitate the calculation of proper capacitance size for measuring the I-V characteristics, and considers the acquisition speed of the measuring system as demonstrated through two measurement samples in this paper. The capacitor size is directly and indirectly proportional to the short circuit current and open circuit voltage of the PV generator, respectively. Accordingly, the paper presents a capacitance calculation chart, which enables selecting the correct capacitance for measuring the I-V characteristics by a computerized data acquisition system. (author)

  10. Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias

    KAUST Repository

    Mckerricher, Garret

    2015-03-01

    In this paper, fully inkjet printed multilayer capacitors and inductors are fabricated and characterized using poly 4-vinylphenol (PVP) ink as the dielectric layer and silver nanoparticle ink as the conductor. Inkjet printed through vias, created with a novel dissolving method are used to make RF structures in a multilayer inkjet printing process. The vias have been realized in a 350-nm PVP film and exhibit resistance better than 0.1 Ω. Spiral inductors from 10 to 75 nH have been realized with maximum quality factors around five. The 10-nH inductor exhibits a self-resonant frequency slightly below 1 GHz. Metal-insulator-metal capacitors are realized with densities of 50 pF/mm-2. These capacitors demonstrate values ranging from 16 to 50 pF. The 16-pF capacitor shows a self-resonant frequency over 1.5 GHz. The successful implementation of inductors and capacitors in an all inkjet printed multilayer process with vias is an important step toward fully inkjet-printed large area and flexible RF systems.

  11. Performance of Electric Double Layer Capacitors using Active Carbons Prepared from Petroleum Coke by KOH and Vapor Re-Etching

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrochemical storage of energy in a special kind of active carbon materials used as capacitor electrodes isconsidered. Pet roleum coke was used for preparation of carbons with different porosities by KOH and vapor etchingwith catalysis of FeCl3 in turn. Carbon electrodes were fabricated and used as electrodes of double layer capacitors.Nitrogen adsorption was used to characterize the porous structure of the carbons. The electrochemical performanceof the capacitors in 6 mol/L KOH was investigated with constant current charge and discharge experiments. Aspecific capacitance larger than 160 F/g was achieved with an electrode composed of 75% active carbon with aspecific surface area of 1180 m2/g and 20% graphite as conductive agent. Evaluation of capacitor performance wasconducted by different techniques, e.g. voltammetry and impedance spectroscopy. Characteristics of the capacitorwere also discussed. A hybrid power source consisting of nickel- hydrogen and double layer capacitor was demonstratedby powering successfully a simulated power load encountered in communication equipment.

  12. Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cm−3

    Directory of Open Access Journals (Sweden)

    Francisco Javier Quintero Cortes

    2015-09-01

    Full Text Available The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC, with energy density greater than 200 J·cm−3, which rival the best reported energy density of electric double layer capacitors (EDLC, also known as supercapacitors, are reported. The first generation super dielectric materials (SDM are multi-material mixtures with dielectric constants greater than 1.0 × 105, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM, introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO2 based TSDM were found to have dielectric constants at ~0 Hz greater than 107 in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.

  13. Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.

    Science.gov (United States)

    Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L

    2017-04-28

    High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2/floating gate of single layer of Ge QDs in HfO 2/tunnel HfO 2/p-Si wafers. Both Ge and HfO2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10(15) m(-2) is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO2 NCs boundaries, while another part of the Ge atoms is present inside the HfO2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO2, distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

  14. Capacitor Bank Module for a Multi-mega-joule Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchuk, B.M. [Pulsed Power Department, Institute of High Current Electronics, Russian Academy of Sciences, Tomsk (Russian Federation); Kim, A.A.; Kharlov, A.V.; Kumpyak, E.V.; Tsoy, N.V.; Visir, V.A.; Smorudov, G.V.; Kiselev, V.N.; Chupin, V.V. [Institute of High Current Electronics, Russian Academy of Sciences, Tomsk (Russian Federation); Bayol, F.; Frescaline, L.; Cubaynes, V.; Drouilly, C. [International Technologies for High Pulsed Power, Thegra (France); Eyl, P.; Cassany, B.; Courtois, L.; Patelli, P. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Mexmain, J.M.; De Cervens, D.R. [CEA Bruyeres-le-Chatel, Direction des Applications, 91 (France)

    2008-10-15

    Laser Megajoule (LMJ) is a laser facility being built by the French nuclear science directorate, Commissariat A l'Energie Atomique. This facility is a large flashlamp pumped laser (1.8-MJ optical output). The Pulsed Power Conditioning System of LMJ is based on a modular design of 480 modules (400-MJ energy capacitor bank). A new capacitor bank module (CBM) for the LMJ Power Conditioning System has been developed by the Institute of High Current Electronics (IHCE, Tomsk) in collaboration with International Technologies for High Pulsed Power (France). Two such modules were produced and tested in IHCE. The main parts of the CBM are the following: high-voltage power supplies, command control system, air conditioning system, capacitor block, and cables delivering the energy to a load. The parameters of the module are the following: total rated capacitance of 2900 (+4%) {mu}F, charging voltage up to 24 kV, peak current amplitude of 240 kA, peak stored energy up to 864 kJ, pulse width at 10% of peak power of 360 {mu}s, dimensions of 2.3 x 1.5 x 2.5 m{sup 3}, and weight of similar to 2500 kg. In nominal regime (24-kV charging voltage, 40-m length cables), the energy delivered to flash lamps in each channel is 74 kJ (86% efficiency). No failures were observed in more than 1000 test shots, and all parameters of the CBM are well within the requirements. Detailed description of the module design, performance, and test results are stated in this paper. (authors)

  15. Memory effects in metal-oxide-semiconductor capacitors incorporating dispensed highly monodisperse 1 nm silicon nanoparticles

    Science.gov (United States)

    Nayfeh, Osama M.; Antoniadis, Dimitri A.; Mantey, Kevin; Nayfeh, Munir H.

    2007-04-01

    Metal-oxide-semiconductor capacitors containing various densities of ex situ produced, colloidal, highly monodisperse, spherical, 1nm silicon nanoparticles were fabricated and evaluated for potential use as charge storage elements in future nonvolatile memory devices. The capacitance-voltage characteristics are well behaved and agree with similarly fabricated zero-nanoparticle control samples and with an ideal simulation. Unlike larger particle systems, the demonstrated memory effect exhibits effectively pure hole storage. The nature of charging, hole type versus electron type may be understood in terms of the characteristics of ultrasmall silicon nanoparticles: large energy gap, large charging energy, and consequently a small electron affinity.

  16. Plasma Processes : Operation of a capacitor bank for plasma metal forming

    Indian Academy of Sciences (India)

    P Sarkar; S Chaturvedi; Raj Kumar; Rajesh Kumar; D Lathi; A Shyam; J Sonara

    2000-11-01

    Previously metal forming has been done using electromagnet in pulsed power mode, better known as magneform [1]. Here we will be presenting a different technique for metal forming. We are using water as a medium for this process. By discharging the stored electrical energy of the capacitor bank in water, we are getting the desired result i.e. to form (expand or compress) a wide range of workpiece to the desired shapes. The advantage of this method over conventional method is that it uses low power (negligible running cost). It does not require any post assembly cleaning degreasing and is hence environmentally ‘friendly’.

  17. The analysis of an operating mode of the asynchronous generator with capacitor excitation

    Directory of Open Access Journals (Sweden)

    Postoronca S.

    2008-08-01

    Full Text Available On the basis of a symbolical method of calculation of electric circuits the analysis of features of work of the three-phase asynchronous generator with two windings on статоре and capacitor excitation is executed. Results of the analysis of influence on a phase corner of a current and voltage of a windings of excitation of the generator are submitted at change of its loading from a mode of idling up to a mode of short circuit. Recommendations on stabilization of a target voltage of the generator are formulated at change of its loading.

  18. A cause of the non-solderability of ceramic capacitor terminations

    Science.gov (United States)

    Cozzolino, M. J.; Kumar, A.; Ewell, G. J.

    1981-01-01

    The results of an analysis into the cause of the non-solderability of multiple defective part lots from two capacitor manufacturers are described. This analysis consisted of visual, scanning electron microscopic, surface, and metalographic examinations and analyses. The results indicated that non-solderability results from areas of excess porosity in the termination which are caused by segregation of ink constituents during manufacturing. This segregation can be minimized by proper monitoring and control of process variables; where excess porosity does occur, solderability can be improved by proper precleaning of parts.

  19. Redox Deposition of Nanoscale Metal Oxides on Carbon for Next-Generation Electrochemical Capacitors

    Science.gov (United States)

    2013-01-01

    for 2 V manganese oxide/ activated carbon hybrid capacitor. Electrochem. Solid State Lett. 2002, 5, A227–A230. 62 Khomenko, V.; Raymundo-Pi~ nero , E.; B...Acta 2006, 51, 6510–6520. 65 Khomenko, V.; Raymundo-Pi~ nero , E.; Frackowiak, E.; Beguin, F. High-voltage asymmetric supercapacitors operating in...Pi~ nero , E.; Beguin, F. Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. J. Power Sources 2011, 196, 580–586.

  20. High aspect ratio MEMS capacitor for high frequency impedance matching applications

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Jensen, Søren; Hansen, Ole

    2003-01-01

    We present a microelectromechanical tunable capacitor with a low control voltage, a wide tuning range and adequate electrical quality factor. The device is fabricated in a single-crystalline silicon layer using deep reactive ion etching (DRIE) for obtaining high-aspect ratio (> 20) parallel comb-...... response and it was found that the device is a suitable passive component to be used in impedance matching applications, band-pass filtering or voltage controlled oscillators in the Very High Frequency (VHF) and Ultra High Frequency (UHF) bands....