WorldWideScience

Sample records for capacitively coupled binary

  1. Capacitively-coupled chopper amplifiers

    CERN Document Server

    Fan, Qinwen; Huijsing, Johan H

    2017-01-01

    This book describes the concept and design of the capacitively-coupled chopper technique, which can be used in precision analog amplifiers. Readers will learn to design power-efficient amplifiers employing this technique, which can be powered by regular low supply voltage such as 2V and possibly having a +\\-100V input common-mode voltage input. The authors provide both basic design concepts and detailed design examples, which cover the area of both operational and instrumentation amplifiers for multiple applications, particularly in power management and biomedical circuit designs. Discusses basic working principles and details of implementation for proven designs; Includes a diverse set of applications, along with measurement results to demonstrate the effectiveness of the technique; Explains advantages and drawbacks of the technique, given particular circumstances.

  2. Electrical characteristics for capacitively coupled radio frequency ...

    Indian Academy of Sciences (India)

    ... helium have been obtained from current and voltage waveforms using different reactor designs. Calculations are done, in detail, according to the homogeneous discharge model of capacitively coupled RF. Electrical properties of bulk plasma and sheath capacitance are also investigated at low pressure using this model.

  3. Capacitive coupling synchronizes autonomous microfluidic oscillators.

    Science.gov (United States)

    Lesher-Perez, Sasha Cai; Zhang, Chao; Takayama, Shuichi

    2018-01-31

    Even identically-designed autonomous microfluidic oscillators have device-to-device oscillation variability that arises due to inconsistencies in fabrication, materials, and operation conditions. This work demonstrates, experimentally and theoretically, that with appropriate capacitive coupling these microfluidic oscillators can be synchronized. The size and characteristics of the capacitive coupling needed and the range of input flow rate differences that can be synchronized are also characterized. In addition to device-to-device variability, there is also within-device oscillation noise that arises. An additional advantage of coupling multiple fluidic oscillators together is that the oscillation noise decreases. The ability to synchronize multiple autonomous oscillators is also a first step towards enhancing their usefulness as tools for biochemical research applications where multiplicate experiments with identical temporal-stimulation conditions are required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Finite-element simulations of coupling capacitances in capacitively coupled pixel detectors

    CERN Document Server

    AUTHOR|(SzGeCERN)755510

    2017-01-01

    Capacitively coupled hybrid silicon pixel-detector assemblies are under study for the vertex detector at the proposed future CLIC linear electron-positron collider. The assemblies consist of active CCPDv3 sensors, with 25 μm pixel pitch implemented in a 180 nm High- Voltage CMOS process, which are glued to the CLICpix readout ASIC, with the same pixel pitch and processed in a commercial 65 nm CMOS technology. The signal created in the silicon bulk of the active sensors passes a two-stage amplifier, in each pixel, and gets transferred as a voltage pulse to metal pads facing the readout chip (ROC). The coupling of the signal to the metal pads on the ROC side proceeds through the capacitors formed between the two chips by a thin layer of epoxy glue. The coupling strength and the amount of unwanted cross coupling to neighbouring pixels depends critically on the uniformity of the glue layer, its thickness and on the alignment precision during the flip-chip assembly process. Finite-element calculations of the coup...

  5. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling......) processes as well as energy-dependent lead couplings, and identify a mesoscopic Coulomb drag mechanism driven by nonlocal multi-electron cotunneling processes. Our theory establishes the conditions for a nonzero drag as well as the direction of the drag current in terms of microscopic system parameters...... on Coulomb drag in CQD systems....

  6. Investigation of capacitively coupled ultrasonic transducer system for nondestructive evaluation.

    Science.gov (United States)

    Zhong, Cheng Huan; Wilcox, Paul D; Croxford, Anthony J

    2013-12-01

    Capacitive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory, feasibility, and optimization of such a capacitively coupled transducer system (CCTS) in the context of nondestructive evaluation (NDE) applications. The noncontact interface relies on an electric field formed between four metal plates-two plates are physically connected to the electrodes of a transducer, the other two are in a separate probing unit connected to the transmit/receive channel of the instrumentation. The complete system is modeled as an electric network with the measured impedance of a bonded piezoelectric ceramic disc representing a transducer attached to an arbitrary solid substrate. A transmission line model is developed which is a function of the physical parameters of the capacitively coupled system, such as the permittivity of the material between the plates, the size of the metal plates, and their relative positions. This model provides immediate prediction of electric input impedance, pulse-echo response, and the effect of plate misalignment. The model has been validated experimentally and has enabled optimization of the various parameters. It is shown that placing a tuning inductor and series resistor on the transmitting side of the circuit can significantly improve the system performance in terms of the signal-to-crosstalk ratio. Practically, bulk-wave CCTSs have been built and demonstrated for underwater and through-composite testing. It has been found that electrical conduction in the media between the plates limits their applications.

  7. Method of recording bioelectrical signals using a capacitive coupling

    Science.gov (United States)

    Simon, V. A.; Gerasimov, V. A.; Kostrin, D. K.; Selivanov, L. M.; Uhov, A. A.

    2017-11-01

    In this article a technique for the bioelectrical signals acquisition by means of the capacitive sensors is described. A feedback loop for the ultra-high impedance biasing of the input instrumentation amplifier, which provides receiving of the electrical cardiac signal (ECS) through a capacitive coupling, is proposed. The mains 50/60 Hz noise is suppressed by a narrow-band stop filter with an independent notch frequency and quality factor tuning. Filter output is attached to a ΣΔ analog-to-digital converter (ADC), which acquires the filtered signal with a 24–bit resolution. Signal processing board is connected through universal serial bus interface to a personal computer, where ECS in a digital form is recorded and processed.

  8. Electromechanical coupling factor of capacitive micromachined ultrasonic transducers

    Science.gov (United States)

    Caronti, Alessandro; Carotenuto, Riccardo; Pappalardo, Massimo

    2003-01-01

    Recently, a linear, analytical distributed model for capacitive micromachined ultrasonic transducers (CMUTs) was presented, and an electromechanical equivalent circuit based on the theory reported was used to describe the behavior of the transducer [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 159-168 (2002)]. The distributed model is applied here to calculate the dynamic coupling factor kw of a lossless CMUT, based on a definition that involves the energies stored in a dynamic vibration cycle, and the results are compared with those obtained with a lumped model. A strong discrepancy is found between the two models as the bias voltage increases. The lumped model predicts an increasing dynamic k factor up to unity, whereas the distributed model predicts a more realistic saturation of this parameter to values substantially lower. It is demonstrated that the maximum value of kw, corresponding to an operating point close to the diaphragm collapse, is 0.4 for a CMUT single cell with a circular membrane diaphragm and no parasitic capacitance (0.36 for a cell with a circular plate diaphragm). This means that the dynamic coupling factor of a CMUT is comparable to that of a piezoceramic plate oscillating in the thickness mode. Parasitic capacitance decreases the value of kw, because it does not contribute to the energy conversion. The effective coupling factor keff is also investigated, showing that this parameter coincides with kw within the lumped model approximation, but a quite different result is obtained if a computation is made with the more accurate distributed model. As a consequence, keff, which can be measured from the transducer electrical impedance, does not give a reliable value of the actual dynamic coupling factor.

  9. Pinhole formation in capacitively coupled external electrode fluorescent lamps

    Science.gov (United States)

    Cho, Guangsup; Lee, Jooyoung; Lee, Deaheung; Koo, Jehuan; Choi, Eunha; Kim, Bongsoo; Lee, Sanghun; Pak, Minsoon; Kang, Junegill; Verboncoeur, John P.

    2004-10-01

    Application of power higher than the optimum operation value to an external electrode fluorescent lamp (EEFL) leads to the formation of pinholes, which subsequently leads to lamp failure. Small holes, called pinholes, are formed through the external electrode and the glass tube when a high voltage with a high power is applied. The phenomenon of pinhole formation has been investigated, including the conditions under which they occur and the characteristics such as size and location on the electrode. Pinhole formation has been analysed and shown to be the insulation layer breakdown of glass in the dielectric barrier discharge of capacitively coupled EEFLs.

  10. Pinhole formation in capacitively coupled external electrode fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Guangsup [Department of Electrophysics, Kwangwoon University, 447-1, Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Lee, Jooyoung [Department of Electrophysics, Kwangwoon University, 447-1, Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Lee, Deaheung [Department of Electrophysics, Kwangwoon University, 447-1, Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Koo, Jehuan [Department of Electrophysics, Kwangwoon University, 447-1, Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Choi, Eunha [Department of Electrophysics, Kwangwoon University, 447-1, Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Kim, Bongsoo [Department of Electrical Engineering, Kwangwoon University, 447-1, Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Lee, Sanghun [Department of Electrical Engineering, Kwangwoon University, 447-1, Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Pak, Minsoon [Department of Electrical Engineering, Kwangwoon University, 447-1, Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Kang, Junegill [Department of Electrical Engineering, Kwangwoon University, 447-1, Wallgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of); Verboncoeur, John P [Department of Nuclear Engineering, University of California, Berkeley, CA 94720-1730 (United States)

    2004-10-21

    Application of power higher than the optimum operation value to an external electrode fluorescent lamp (EEFL) leads to the formation of pinholes, which subsequently leads to lamp failure. Small holes, called pinholes, are formed through the external electrode and the glass tube when a high voltage with a high power is applied. The phenomenon of pinhole formation has been investigated, including the conditions under which they occur and the characteristics such as size and location on the electrode. Pinhole formation has been analysed and shown to be the insulation layer breakdown of glass in the dielectric barrier discharge of capacitively coupled EEFLs.

  11. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  12. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  13. Capacitive Substrate Coupling of Row–Column-Addressed 2-D CMUT Arrays

    DEFF Research Database (Denmark)

    Engholm, Mathias; Bouzari, Hamed; Jensen, Jørgen Arendt

    2016-01-01

    Row–column-addressed CMUT arrays suffer from low receive sensitivity of the bottom elements due to a capacitive coupling to the substrate. The capacitive coupling increases the parasitic capacitance. A simple approach to reduce the parasitic capacitance is presented, which is based on depleting...... the semiconductor substrate. To reduce the parasitic capacitance by 80% the bulk doping concentration should be at most 1012 cm-3. Experimental results show that the parasitic capacitance can be reduced by 87% by applying a substrate potential of 6V relative to the bottom electrodes. The depletion...... of the semiconductor substrate can be sustained for at least 10 minutes making it applicable for row–column-addressed CMUT arrays for ultrasonic imaging. Theoretically the reduced parasitic capacitance indicates that the receive sensitivity of the bottom elements can be increased by a factor of 2:1....

  14. Surgeon-controlled factors that reduce monopolar electrosurgery capacitive coupling during laparoscopy.

    Science.gov (United States)

    Robinson, Thomas N; Pavlovsky, Katherine R; Looney, Heidi; Stiegmann, Greg V; McGreevy, Francis T

    2010-10-01

    To determine the factors that can be modified by the surgeon to reduce monopolar electrosurgery capacitive coupling during laparoscopy. Specific aims were to determine the capacitive coupling energy using different generator power settings, mode settings (cut vs. coagulation), and surgical techniques (desiccation vs. fulguration vs. open air activation). An oscilloscope determined the cumulative energy (Joules) of capacitive coupling occurring using laparoscopic monopolar electrosurgery ex vivo. Higher power settings increased capacitive coupling energy (Joules): 25 Watts (1.1±0.7) versus 50 Watts (2.4±0.5; Pcapacitive coupling energy (2.2±1.0) in comparison with cut mode (1.1±0.5; Pcapacitive coupling energy in comparison with desiccation (0.6±0.2; Pcapacitive coupling energy during laparoscopy by lowering the power setting, using cut mode (instead of coagulation), and using the surgical technique of desiccation (instead of open air activation or fulguration).

  15. Quantitative characterisation of conductive fibers by capacitive coupling.

    Science.gov (United States)

    Ruland, Andres; Jalili, Rouhollah; Mozer, Attila J; Wallace, Gordon G

    2017-11-09

    This work presents a study on a capacitively coupled contactless conductivity detector (C4D) for micron-sized fibers. Following a previous report on the qualitative application of C4D for fibers, the present study provides a thorough analysis of the signal response to fiber conductivity. Using reduced graphene oxide (RGO) fibers, the detector response as a function of fiber length, cross-sectional area and resistance has been investigated. To study the effect of insulating coatings, Parylene-coated RGO fibers were also investigated. In addition, measurements were performed in different coupling environments, such as in a capillary tube or air. The analysis of the measured data allowed the determination of the C4D conductivity of various RGO fibers, and the correlation with contact methods through empirical relationships to be determined. It was found that the detection limit and sensitivity of resistance measurements are mainly dependent on the sensor design, and also on the fiber properties. The detection threshold can be defined as the ratio of the coupling impedance to fiber resistance. In our case, the detection limit was found for impedance ratios equal to 14. This limit sets a functioning mode in C4D for fibers, which may be used as an area or resistance detector for the impedance ratio above or below the detection threshold. A semi-log linear response of the fiber resistance to the voltage output was found for impedance ratios between 2.66 and 0.63. These impedance ratios may serve as a reference for designing C4D, depending on the fibers to be tested and the analytical information needed. In summary, we suggest that C4D has the capacity to emerge as a new characterisation tool for micron-sized fibers, due to its applicability to any conductive material, ease of use, and the contactless nature of the measurement.

  16. Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges

    Science.gov (United States)

    Lu, Yijia; Ji, Linhong; Cheng, Jia

    2016-12-01

    Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)

  17. Capacitive Coupling in Double-Circuit Transmission Lines

    Directory of Open Access Journals (Sweden)

    Zdenka Benesova

    2004-01-01

    Full Text Available The paper describes an algorithm for calculation of capacitances and charges on conductors in systems with earth wires and in double-circuit overhead lines with respect to phase arrangement. A balanced voltage system is considered. A suitable transposition of individual conductors enables to reduce the electric and magnetic fields in vicinity of overhead lines and to limit the inductive and capacitive linkage. The procedure is illustrated on examples the results of which lead to particular recommendations for designers.

  18. Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers.

    Science.gov (United States)

    Yaralioglu, Goksen G; Ergun, Arif Sanli; Bayram, Baris; Haeggström, Edward; Khuri-Yakub, Butrus T

    2003-04-01

    The electromechanical coupling coefficient is an important figure of merit of ultrasonic transducers. The transducer bandwidth is determined by the electromechanical coupling efficiency. The coupling coefficient is, by definition, the ratio of delivered mechanical energy to the stored total energy in the transducer. In this paper, we present the calculation and measurement of coupling coefficient for capacitive micromachined ultrasonic transducers (CMUTs). The finite element method (FEM) is used for our calculations, and the FEM results are compared with the analytical results obtained with parallel plate approximation. The effect of series and parallel capacitances in the CMUT also is investigated. The FEM calculations of the CMUT indicate that the electromechanical coupling coefficient is independent of any series capacitance that may exist in the structure. The series capacitance, however, alters the collapse voltage of the membrane. The parallel parasitic capacitance that may exist in a CMUT or is external to the transducer reduces the coupling coefficient at a given bias voltage. At the collapse, regardless of the parasitics, the coupling coefficient reaches unity. Our experimental measurements confirm a coupling coefficient of 0.85 before collapse, and measurements are in agreement with theory.

  19. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  20. Capacitive coupling reduces instrumentation-related infection in rabbit spines: a pilot study.

    Science.gov (United States)

    Gilotra, Mohit; Griffith, Cullen; Schiavone, Jason; Nimmagadda, Naren; Noveau, Jenna; Ludwig, Steven C

    2012-06-01

    Postoperative spine infections cause considerable morbidity. Patients are subjected to long-term antibiotic regimens and may require further surgery. Delivery of electric current through instrumentation can detach biofilm, allowing better antibiotic penetration and assisting in eradicating infection. We asked (1) whether capacitive coupling treatment in combination with a single dose of antibiotics would reduce infection rates when compared with antibiotics alone in a rabbit spine infection model, (2) whether it would decrease the overall bacterial burden, and (3) whether there was a time-dependent response based on days treated with capacitive coupling. Thirty rabbits were subjected to a well-established spine infection model with a single dose of intravenously administered systemic ceftriaxone (20 mg/kg of body weight) prophylaxis. Two noncontiguous rods were implanted inside dead space defects at L3 and L6 challenged with 10(6) colony-forming units of Staphylococcus aureus. Rabbits were randomly treated with a capacitive coupling or control device. Instrumentation and soft tissue bacterial growth were assessed after 7 days. Sites treated with capacitive coupling showed a decrease in the incidence of positive culture: 36% versus 81% in the control group. We observed no difference in the soft tissue's infectious burden. Overall bacterial load was not decreased with capacitive coupling. Capacitive coupling in conjunction with antibiotics reduced the instrumentation-related infection rate compared with antibiotics alone. Capacitive coupling noninvasively delivers an alternating current that may detach biofilm from instrumentation. Treatment of infection may be successful without removal of instrumentation, allowing for improved stability and overall decreased morbidity.

  1. Layout Capacitive Coupling and Structure Impacts on Integrated High Voltage Power MOSFETs

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer-to-layer......The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer......-to-layer coupling and the comparison of the layout impacts have not been well established. This paper presents modeling of parasitic mutual coupling to analyze the parasitic capacitance directly coupled between two on-chip metal wires. The accurate 3D field solver analysis for the comparable dimensions shows...... extraction tool shows that the side-by-side coupling dominated structure can perform better than the layer-to-layer coupling dominated structure, in terms of on-resistance times input or output capacitance, by 9.2% and 4.9%, respectively....

  2. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    Science.gov (United States)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  3. Cu-Zn binary phase diagram and diffusion couples

    Science.gov (United States)

    Mccoy, Robert A.

    1992-01-01

    The objectives of this paper are to learn: (1) what information a binary phase diagram can yield; (2) how to construct and heat treat a simple diffusion couple; (3) how to prepare a metallographic sample; (4) how to operate a metallograph; (5) how to correlate phases found in the diffusion couple with phases predicted by the phase diagram; (6) how diffusion couples held at various temperatures could be used to construct a phase diagram; (7) the relation between the thickness of an intermetallic phase layer and the diffusion time; and (8) the effect of one species of atoms diffusing faster than another species in a diffusion couple.

  4. Electron kinetics in capacitively coupled plasmas modulated by electron injection

    Science.gov (United States)

    Zhang, Ya; Peng, Yanli; Innocenti, Maria Elena; Jiang, Wei; Wang, Hong-yu; Lapenta, Giovanni

    2017-09-01

    The controlling effect of an electron injection on the electron energy distribution function (EEDF) and on the energetic electron flux, in a capacitive radio-frequency argon plasma, is studied using a one-dimensional particle-in-cell/Monte Carlo collisions model. The input power of the electron beam is as small as several tens of Watts with laboratory achievable emission currents and energies. With the electron injection, the electron temperature decreases but with a significant high energy tail. The electron density, electron temperature in the sheath, and electron heating rate increase with the increasing emission energy. This is attributed to the extra heating of the energetic electrons in the EEDF tail. The non-equilibrium EEDF is obtained for strong non-local distributions of the electric field, electron heating rate, excitation, and ionization rate, indicating the discharge has transited from a volume heating (α-mode dominated) into a sheath heating (γ-mode dominated) type. In addition, the electron injection not only modifies the self-bias voltage, but also enhances the electron flux that can reach the electrodes. Moreover, the relative population of energetic electrons significantly increases with the electron injection compared to that without the electron injection, relevant for modifying the gas and surface chemistry reactions.

  5. Binary phase-shift keying by coupling modulation of microrings.

    Science.gov (United States)

    Sacher, Wesley D; Green, William M J; Gill, Douglas M; Assefa, Solomon; Barwicz, Tymon; Khater, Marwan; Kiewra, Edward; Reinholm, Carol; Shank, Steven M; Vlasov, Yurii A; Poon, Joyce K S

    2014-08-25

    We propose a coupling-modulated microring in an add-drop configuration for binary phase-shift keying (BPSK), where data is encoded as 0 and π radian phase-shifts on the optical carrier. The device uses the π radian phase-flip across the zero coupling point in a 2 × 2 Mach-Zehnder interferometer coupler to produce the modulation. The coupling-modulated microring combines the drive power reduction of resonant modulators with the digital phase response of Mach-Zehnder BPSK modulators. A proof-of-concept device was demonstrated in silicon-on-insulator, showing differential binary phase-shift keying operation at 5 and 10 Gb/s.

  6. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively low...... contact resistances. The model suggests proportionality between the error in the phase measurements and the product of the wire-to-ground capacitance, the contact resistance, the dipole size and the frequency of the measurement. The model behavior is illustrated and confirmed by field data collected...

  7. Measuring the local quantum capacitance of graphene using a strongly coupled graphene nanoribbon

    Science.gov (United States)

    Bischoff, D.; Eich, M.; Varlet, A.; Simonet, P.; Ihn, T.; Ensslin, K.

    2015-03-01

    We present electrical transport measurements of a van-der-Waals heterostructure consisting of a graphene nanoribbon separated by a thin boron nitride layer from a micron-sized graphene sheet. The interplay between the two layers is discussed in terms of screening or, alternatively, quantum capacitance. The ribbon can be tuned into the transport gap by applying gate voltages. Multiple sites of localized charge leading to Coulomb blockade are observed, in agreement with previous experiments. Due to the strong capacitive coupling between the ribbon and the graphene top layer sheet, the evolution of the Coulomb blockade peaks in gate voltages can be used to obtain the local density of states and therefore the quantum capacitance of the graphene top layer. Spatially varying density and doping are found, which are attributed to a spatial variation of the dielectric due to fabrication imperfections.

  8. Capacitive coupling in hybrid graphene/GaAs nanostructures

    Science.gov (United States)

    Simonet, Pauline; Rössler, Clemens; Krähenmann, Tobias; Varlet, Anastasia; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner

    2015-07-01

    Coupled hybrid nanostructures are demonstrated using the combination of lithographically patterned graphene on top of a two-dimensional electron gas (2DEG) buried in a GaAs/AlGaAs heterostructure. The graphene forms Schottky barriers at the surface of the heterostructure and therefore allows tuning the electronic density of the 2DEG. Conversely, the 2DEG potential can tune the graphene Fermi energy. Graphene-defined quantum point contacts in the 2DEG show half-plateaus of quantized conductance in finite bias spectroscopy and display the 0.7 anomaly for a large range of densities in the constriction, testifying to their good electronic properties. Finally, we demonstrate that the GaAs nanostructure can detect charges in the vicinity of the heterostructure's surface. This confirms the strong coupling of the hybrid device: localized states in the graphene ribbon could, in principle, be probed by the underlying confined channel. The present hybrid graphene/GaAs nanostructures are promising for the investigation of strong interactions and coherent coupling between the two fundamentally different materials.

  9. Capacitive coupling in hybrid graphene/GaAs nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, Pauline, E-mail: psimonet@phys.ethz.ch; Rössler, Clemens; Krähenmann, Tobias; Varlet, Anastasia; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2015-07-13

    Coupled hybrid nanostructures are demonstrated using the combination of lithographically patterned graphene on top of a two-dimensional electron gas (2DEG) buried in a GaAs/AlGaAs heterostructure. The graphene forms Schottky barriers at the surface of the heterostructure and therefore allows tuning the electronic density of the 2DEG. Conversely, the 2DEG potential can tune the graphene Fermi energy. Graphene-defined quantum point contacts in the 2DEG show half-plateaus of quantized conductance in finite bias spectroscopy and display the 0.7 anomaly for a large range of densities in the constriction, testifying to their good electronic properties. Finally, we demonstrate that the GaAs nanostructure can detect charges in the vicinity of the heterostructure's surface. This confirms the strong coupling of the hybrid device: localized states in the graphene ribbon could, in principle, be probed by the underlying confined channel. The present hybrid graphene/GaAs nanostructures are promising for the investigation of strong interactions and coherent coupling between the two fundamentally different materials.

  10. Capacitively coupled nano conductors. Ratchet currents and exchange fluctuation relations

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Robert; Kohler, Sigmund [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain)

    2015-10-15

    We investigate electron transport in two quantum circuits with mutual Coulomb interaction. The first circuit is a double quantum dot connected to two electron reservoirs, while the second one is a quantum point contact in the weak tunneling limit. The coupling is such that an electron in the first circuit enhances the barrier of the point contact and, thus, reduces its conductivity. While such setups are frequently used as charge monitors, we focus on two different aspects. First, we derive transport coefficients which have recently been employed for testing generalized equilibrium conditions known as exchange fluctuation relations. These formally exact relations allow us to test the consistency of our master equation approach. Second, a biased point contact entails noise on the DQD and induces non-equilibrium phenomena such as a ratchet current. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Data mechanics and coupling geometry on binary bipartite networks.

    Directory of Open Access Journals (Sweden)

    Hsieh Fushing

    Full Text Available We quantify the notion of pattern and formalize the process of pattern discovery under the framework of binary bipartite networks. Patterns of particular focus are interrelated global interactions between clusters on its row and column axes. A binary bipartite network is built into a thermodynamic system embracing all up-and-down spin configurations defined by product-permutations on rows and columns. This system is equipped with its ferromagnetic energy ground state under Ising model potential. Such a ground state, also called a macrostate, is postulated to congregate all patterns of interest embedded within the network data in a multiscale fashion. A new computing paradigm for indirect searching for such a macrostate, called Data Mechanics, is devised by iteratively building a surrogate geometric system with a pair of nearly optimal marginal ultrametrics on row and column spaces. The coupling measure minimizing the Gromov-Wasserstein distance of these two marginal geometries is also seen to be in the vicinity of the macrostate. This resultant coupling geometry reveals multiscale block pattern information that characterizes multiple layers of interacting relationships between clusters on row and on column axes. It is the nonparametric information content of a binary bipartite network. This coupling geometry is then demonstrated to shed new light and bring resolution to interaction issues in community ecology and in gene-content-based phylogenetics. Its implied global inferences are expected to have high potential in many scientific areas.

  12. Capacitively-coupled differential position detection in the development of a high-sensitivity torsion balance

    Science.gov (United States)

    Rackson, Charles; Watt, Alex; Kim, Woo-Joong; Seattle University Team

    2015-03-01

    We report on the development of a high-sensitivity torsion balance using a capacitively-coupled Wheatstone Bridge. The torsion balance will be employed to measure the Casimir Force, with a particular emphasis on the surface patch effects that are ubiquitous on metallic surfaces. We will show that these effects also play a significant role in another class of experiments involving quantum-point contacts between two metal wires.

  13. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)756402

    2017-01-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128 × 128 square pixels with 25 μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (∼ 20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ∼ 20 ns for a power consumption of 5 μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (∼ 20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using...

  14. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  15. Analysis, design and implementation of a quasi-proportional-resonant controller for multifunctional capacitive-coupling grid-connected inverter

    DEFF Research Database (Denmark)

    Ye, Tao; Dai, Ning-Yi; Lam, Chi-Seng

    2015-01-01

    The capacitive-coupling grid-connected inverter (CGCI) is able to achieve reactive power compensation and active power transfer simultaneously with a low operational voltage. The CGCI is coupled to the point of common coupling (PCC) via a second-order LC circuit, which makes its modeling and curr...

  16. Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium

    Directory of Open Access Journals (Sweden)

    David Dahmen

    2016-08-01

    Full Text Available Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.

  17. Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium

    Science.gov (United States)

    Dahmen, David; Bos, Hannah; Helias, Moritz

    2016-07-01

    Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising) threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.

  18. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.

    Science.gov (United States)

    Roland, Theresa; Baumgartner, Werner; Amsuess, Sebastian; Russold, Michael F

    2017-07-01

    As motion artefacts are a major problem with electromyography sensors, a new algorithm is developed to differentiate artefacts to contraction EMG. The performance of myoelectric prosthesis is increased with this algorithm. The implementation is done for an ultra-low-power microcontroller with limited calculation resources and memory. Short Time Fourier Transformation is used to enable real-time application. The sum of the differences (SOD) of the currently measured EMG to a reference contraction EMG is calculated. The SOD is a new parameter introduced for EMG classification. The satisfactory error rates are determined by measurements done with the capacitively coupling EMG prototype, recently developed by the research group.

  19. Modeling of hybridized infrared arrays for characterization of interpixel capacitive coupling

    Science.gov (United States)

    Donlon, Kevan; Ninkov, Zoran; Baum, Stefi; Cheng, Linpeng

    2017-02-01

    Interpixel capacitance (IPC) is a deterministic electronic coupling resulting in a portion of signal incident on one pixel of a hybridized detector array being measured in adjacent pixels. Data collected by light sensitive HgCdTe arrays that exhibit this coupling typically goes uncorrected or is corrected by treating the coupling as a fixed point spread function. Evidence suggests that this coupling is not uniform across signal and background levels. Subarrays of pixels using design parameters based upon HgCdTe indium hybridized arrays akin to those contained in the James Webb Space Telescope's NIRcam have been modeled from first principles using Lumerical DEVICE Software. This software simultaneously solves Poisson's equation and the drift diffusion equations yielding charge distributions and electric fields. Modeling of this sort generates the local point spread function across a range of detector parameters. This results in predictive characterization of IPC across scene and device parameters that would permit proper photometric correction and signal restoration to the data. Additionally, the ability to visualize potential distributions and couplings as generated by the models yields insight that can be used to minimize IPC coupling in the design of future detectors.

  20. Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Science.gov (United States)

    Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O’Connell, D.; Gans, T.

    2018-01-01

    We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4–Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.

  1. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luís Lemos

    2012-07-06

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). Simulations use a hybrid code that couples a two-dimensional time-dependent fluid module, describing the dynamics of the charged particles (electrons and positive ions N 2 + and N 4 + ), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species. The coupling between these modules adopts the local mean energy approximation to define spacetime-dependent electron parameters for the fluid module and to work out spacetime-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 34. © 2012 IOP Publishing Ltd.

  2. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  3. Limitations of the electromagnetic isolation for multi-antenna systems on small terminals with capacitive coupling elements

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Alrabadi, Osama; Franek, Ondrej

    2012-01-01

    Recently, there has been a growing interest for evaluating the performance potential of multiple antenna systems on small terminals. This work focuses on Capacitive Coupling Elements (CCEs), which are expected to perform differently with respect to self-resonating elements. Several CCEs with diff......Recently, there has been a growing interest for evaluating the performance potential of multiple antenna systems on small terminals. This work focuses on Capacitive Coupling Elements (CCEs), which are expected to perform differently with respect to self-resonating elements. Several CCEs...

  4. Performance of human body communication-based wearable ECG with capacitive coupling electrodes.

    Science.gov (United States)

    Sakuma, Jun; Anzai, Daisuke; Wang, Jianqing

    2016-09-01

    Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors' proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals.

  5. Numerical Study of a System of Long Josephson Junctions with Inductive and Capacitive Couplings

    Directory of Open Access Journals (Sweden)

    Rahmonov I. R.

    2016-01-01

    Full Text Available The phase dynamics of the stacked long Josephson junctions is investigated taking into account the inductive and capacitive couplings between junctions and the diffusion current. The simulation of the current–voltage characteristics is based on the numerical solution of a system of nonlinear partial differential equations by a fourth order Runge–Kutta method and finite-difference approximation. A parallel implementation is based on the MPI technique. The effectiveness of the MPI/C++ code is confirmed by calculations on the multi-processor cluster CICC (LIT JINR, Dubna. We demonstrate the appearance of the charge traveling wave (CTW at the boundary of the zero field step. Based on this fact, we conclude that the CTW and the fluxons coexist.

  6. Analysis, Control and Experimental Verification of a Single-Phase Capacitive-Coupling Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Dai, Ning-Yi; Zhang, Wen-Chen; Wong, Man-Chung

    2015-01-01

    This study proposes a capacitive-coupling grid-connected inverter (CGCI), which consists of a full-bridge single-phase inverter coupled to a power grid via one capacitor in series with an inductor. The fundamental-frequency impedance of the coupling branch is capacitive. In contrast...... with the conventional inductive-coupling grid-connected inverter (IGCI), this structure provides an alternative interface for use between a low-voltage DC microgrid and an AC grid. A comparison between the CGCI and the IGCI is performed. It is concluded that the CGCI is able to transfer active power and provide lagging...... reactive power at an operational voltage much lower than that of the IGCI. This reduces the system's initial cost and operational losses, as well as the energy stored in the DC-link capacitor. The CGCI has been analysed and a DC voltage selection method is proposed. Using this method, the DC-link voltage...

  7. Optical emission diagnostics for plasma parameters in pulse-modulated argon capacitively-coupled discharges

    Science.gov (United States)

    Wang, Shicong; Boffard, John B.; Lin, Chun C.; Wendt, Amy E.

    2014-10-01

    Pulsing of discharge power in low pressure rf plasmas is a means to improve materials processing outcomes. Plasma-surface interactions depend on the relative fluxes of ions, reactive neutrals and photons, which can be controlled by adjusting pulse frequency and duty cycle, due their effect on plasma properties, particularly the electron energy distribution. We report on an optical emission spectroscopy (OES) based plasma diagnostic to characterize the time evolution of plasma properties within the pulse cycle for two systems: a pulsed capacitively-coupled plasma (CCP), and a pulsed CCP in combination with a continuous-wave (cw) inductively coupled plasma (ICP); Typical conditions: 30 mTorr Ar, 13.56 MHz rf power (400 W peak CCP and 500 W ICP) and 1 kHz pulse frequency. We quantify the trade off between time resolution versus uncertainty in measured OES intensities. Because only a small fraction of CCP rf power contributes to electron heating, the method is limited by relatively low absolute OES intensities for the CCP-only case, and small incremental changes in intensity when the pulsed CCP is combined with the cw ICP. Nevertheless, with sufficient signal averaging, even subtle changes in parameters induced by the CCP in the latter case can be quantified. This work was supported in part by NSF Grant PHY-1068670.

  8. Development of wearable muscle fatigue detection system using capacitance coupling electrodes.

    Science.gov (United States)

    Kobayshi, Takahiro; Okada, Shima; Makikawa, Masaaki; Shiozawa, Naruhiro; Kosaka, Manabu

    2017-07-01

    Bio-information is important to confirm the body condition. Especially, the muscle fatigue is related to injury or decrease of concentration. Therefore, it is required to evaluate muscle fatigue to make subject enjoy sports. In previous study, muscle fatigue is evaluated by using electromyogram (EMG). However, the electrode for EMG measurement is generally used for contact manor. The electrodes are disposable and it might cause the irritation of skin. Therefore, it isn't fitted for measurement of muscle fatigue. We developed wearable muscle fatigue detection system using capacitance coupling electrodes. Developed system isn't caused the irritation by electrodes and can reuse it. We compared the conventional system using disposable electrode system and our system to evaluate performance. We evaluated muscle fatigue from electromyogram before and after futsal. An integrated electromyogram and an intermediate frequency were used for the evaluation of muscle fatigue. As a result, half of subjects showed tendency of muscle fatigue. Therefore, we showed the possibility as muscle fatigue detection system using the capacity coupling electrodes.

  9. An Energy Efficient Technique Using Electric Active Shielding for Capacitive Coupling Intra-Body Communication.

    Science.gov (United States)

    Ma, Chao; Huang, Zhonghua; Wang, Zhiqi; Zhou, Linxuan; Li, Yinlin

    2017-09-08

    Capacitive coupling intra-body communication (CC-IBC) has become one of the candidates for healthcare sensor networks due to its positive prevailing features of energy efficiency, transmission rate and security. Under the CC-IBC scheme, some of the electric field emitted from signal (SIG) electrode of the transmitter will couple directly to the ground (GND) electrode, acting equivalently as an internal impedance of the signal source and inducing considerable energy losses. However, none of the previous works have fully studied the problem. In this paper, the underlying theory of such energy loss is investigated and quantitatively evaluated using conventional parameters. Accordingly, a method of electric active shielding is proposed to reduce the displacement current across the SIG-GND electrodes, leading to less power loss. In addition, the variation of such loss in regard to frequency range and positions on human body was also considered. The theory was validated by finite element method simulation and experimental measurement. The prototype result shows that the receiving power has been improved by approximate 5.5 dBm while the total power consumption is maximally 9 mW less using the proposed technique, providing an energy efficient option in physical layer for wearable and implantable healthcare sensor networks.

  10. Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode

    Science.gov (United States)

    Angelico, E.; Seiss, T.; Adams, B.; Elagin, A.; Frisch, H.; Spieglan, E.

    2017-02-01

    We have designed and tested a robust 20×20 cm2 thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10 nm-thick NiCr film deposited on a 96% pure Al2O3 3 mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50 Ω 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20×20 cm2 array of 2-dimensional square 'pads' with sides of 1.27 cm or 2.54 cm. The rise-time of the fast input pulse is maintained for both pickup patterns. For the pad pattern, we observe 80% of the directly coupled amplitude. For the strip pattern we measure 34% of the directly coupled amplitude on the central strip of a broadened signal. The physical decoupling of the photodetector from the pickup pattern allows easy customization for different applications while maintaining high analog bandwidth.

  11. Influence of finite geometrical asymmetry of the electrodes in capacitively coupled radio frequency plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bora, B., E-mail: bbora@cchen.cl; Soto, L. [Comisión Chilena de Energía Nuclear, Santiago, Chile and Center for Research and Applications in Plasma Physics and Pulsed Power, P4 (Chile)

    2014-08-15

    Capacitively coupled radio frequency (CCRF) plasmas are widely studied in last decades due to the versatile applicability of energetic ions, chemically active species, radicals, and also energetic neutral species in many material processing fields including microelectronics, aerospace, and biology. A dc self-bias is known to generate naturally in geometrically asymmetric CCRF plasma because of the difference in electrode sizes known as geometrical asymmetry of the electrodes in order to compensate electron and ion flux to each electrode within one rf period. The plasma series resonance effect is also come into play due to the geometrical asymmetry and excited several harmonics of the fundamental in low pressure CCRF plasma. In this work, a 13.56 MHz CCRF plasma is studied on the based on the nonlinear global model of asymmetric CCRF discharge to understand the influences of finite geometrical asymmetry of the electrodes in terms of generation of dc self-bias and plasma heating. The nonlinear global model on asymmetric discharge has been modified by considering the sheath at the grounded electrode to taking account the finite geometrical asymmetry of the electrodes. The ion density inside both the sheaths has been taken into account by incorporating the steady-state fluid equations for ions considering that the applied rf frequency is higher than the typical ion plasma frequency. Details results on the influences of geometrical asymmetry on the generation of dc self-bias and plasma heating are discussed.

  12. Heart Rate Variability Monitoring during Sleep Based on Capacitively Coupled Textile Electrodes on a Bed

    Directory of Open Access Journals (Sweden)

    Hong Ji Lee

    2015-05-01

    Full Text Available In this study, we developed and tested a capacitively coupled electrocardiogram (ECG measurement system using conductive textiles on a bed, for long-term healthcare monitoring. The system, which was designed to measure ECG in a bed with no constraints of sleep position and posture, included a foam layer to increase the contact region with the curvature of the body and a cover to ensure durability and easy installation. Nine healthy subjects participated in the experiment during polysomnography (PSG, and the heart rate (HR coverage and heart rate variability (HRV parameters were analyzed to evaluate the system. The experimental results showed that the mean of R-peak coverage was 98.0% (95.5%–99.7%, and the normalized errors of HRV time and spectral measures between the Ag/AgCl system and our system ranged from 0.15% to 4.20%. The root mean square errors for inter-beat (RR intervals and HR were 1.36 ms and 0.09 bpm, respectively. We also showed the potential of our developed system for rapid eye movement (REM sleep and wake detection as well as for recording of abnormal states.

  13. Study of dual radio frequency capacitively coupled plasma: an analytical treatment matched to an experiment

    Science.gov (United States)

    Saikia, P.; Bhuyan, H.; Escalona, M.; Favre, M.; Wyndham, E.; Maze, J.; Schulze, J.

    2018-01-01

    The behavior of a dual frequency capacitively coupled plasma (2f CCP) driven by 2.26 and 13.56 MHz radio frequency (rf) source is investigated using an approach that integrates a theoretical model and experimental data. The basis of the theoretical analysis is a time dependent dual frequency analytical sheath model that casts the relation between the instantaneous sheath potential and plasma parameters. The parameters used in the model are obtained by operating the 2f CCP experiment (2.26 MHz + 13.56 MHz) in argon at a working pressure of 50 mTorr. Experimentally measured plasma parameters such as the electron density, electron temperature, as well as the rf current density ratios are the inputs of the theoretical model. Subsequently, a convenient analytical solution for the output sheath potential and sheath thickness was derived. A comparison of the present numerical results is done with the results obtained in another 2f CCP experiment conducted by Semmler et al (2007 Plasma Sources Sci. Technol. 16 839). A good quantitative correspondence is obtained. The numerical solution shows the variation of sheath potential with the low and high frequency (HF) rf powers. In the low pressure plasma, the sheath potential is a qualitative measure of DC self-bias which in turn determines the ion energy. Thus, using this analytical model, the measured values of the DC self-bias as a function of low and HF rf powers are explained in detail.

  14. On electron heating in a low pressure capacitively coupled oxygen discharge

    Science.gov (United States)

    Gudmundsson, J. T.; Snorrason, D. I.

    2017-11-01

    We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the charged particle densities, the electronegativity, the electron energy probability function, and the electron heating mechanism in a single frequency capacitively coupled oxygen discharge, when the applied voltage amplitude is varied. We explore discharges operated at 10 mTorr, where electron heating within the plasma bulk (the electronegative core) dominates, and at 50 mTorr, where sheath heating dominates. At 10 mTorr, the discharge is operated in a combined drift-ambipolar and α-mode, and at 50 mTorr, it is operated in the pure α-mode. At 10 mTorr, the effective electron temperature is high and increases with increased driving voltage amplitude, while at 50 mTorr, the effective electron temperature is much lower, in particular, within the electronegative core, where it is roughly 0.2-0.3 eV, and varies only a little with the voltage amplitude.

  15. Modeling and Characterization of the Implant Intra-Body Communication Based on Capacitive Coupling Using a Transfer Function Method

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2014-01-01

    Full Text Available Implantable devices have important applications in biomedical sensor networks used for biomedical monitoring, diagnosis and treatment, etc. In this paper, an implant intra-body communication (IBC method based on capacitive coupling has been proposed, and the modeling and characterization of this kind of IBC has been investigated. Firstly, the transfer function of the implant IBC based on capacitive coupling was derived. Secondly, the corresponding parameters of the transfer function are discussed. Finally, both measurements and simulations based on the proposed transfer function were carried out, while some important conclusions have been achieved, which indicate that the achieved transfer function and conclusions are able to help to achieve an implant communication method with the highly desirable characteristics of low power consumption, high data rate, high transmission quality, etc.

  16. Modeling and Characterization of the Implant Intra-Body Communication Based on Capacitive Coupling Using a Transfer Function Method

    Science.gov (United States)

    Zhang, Kai; Hao, Qun; Song, Yong; Wang, Jingwen; Huang, Ruobing; Liu, Yue

    2014-01-01

    Implantable devices have important applications in biomedical sensor networks used for biomedical monitoring, diagnosis and treatment, etc. In this paper, an implant intra-body communication (IBC) method based on capacitive coupling has been proposed, and the modeling and characterization of this kind of IBC has been investigated. Firstly, the transfer function of the implant IBC based on capacitive coupling was derived. Secondly, the corresponding parameters of the transfer function are discussed. Finally, both measurements and simulations based on the proposed transfer function were carried out, while some important conclusions have been achieved, which indicate that the achieved transfer function and conclusions are able to help to achieve an implant communication method with the highly desirable characteristics of low power consumption, high data rate, high transmission quality, etc. PMID:24448168

  17. Analysis, Design and Implementation of a Quasi-Proportional-Resonant Controller for a Multifunctional Capacitive-Coupling Grid-Connected Inverter

    DEFF Research Database (Denmark)

    Ye, Tao; Dai, Ning-Yi; Lam, Chi-Seng

    2016-01-01

    The capacitive-coupling grid-connected inverter (CGCI) is coupled to the point of common coupling via a second-order LC branch. Its operational voltage is much lower than that of a conventional inductive-coupling grid-connected inverter (IGCI) when it serves as a multifunctional inverter to compe...

  18. A parallel-architecture parametric equalizer for air-coupled capacitive ultrasonic transducers.

    Science.gov (United States)

    McSweeney, Sean G; Wright, William M D

    2012-01-01

    Parametric equalization is rarely applied to ultrasonic transducer systems, for which it could be used on either the transmitter or the receiver to achieve a desired response. An optimized equalizer with both bump and cut capabilities would be advantageous for ultrasonic systems in applications in which variations in the transducer performance or the properties of the propagating medium produce a less-than-desirable signal. Compensation for non-ideal transducer response could be achieved using equalization on a device-by-device basis. Additionally, calibration of ultrasonic systems in the field could be obtained by offline optimization of equalization coefficients. In this work, a parametric equalizer for ultrasonic applications has been developed using multiple bi-quadratic filter elements arranged in a novel parallel arrangement to increase the flexibility of the equalization. The equalizer was implemented on a programmable system-on-chip (PSOC) using a small number of parallel 4th-order infinite impulse response switchedcapacitor band-pass filters. Because of the interdependency of the required coefficients for the switched capacitors, particle swarm optimization (PSO) was used to determine the optimum values. The response of a through-transmission system using air-coupled capacitive ultrasonic transducers was then equalized to idealized Hamming function or brick-wall frequencydomain responses. In each case, there was excellent agreement between the equalized signals and the theoretical model, and the fidelity of the time-domain response was maintained. The bandwidth and center frequency response of the system were significantly improved. It was also shown that the equalizer could be used on either the transmitter or the receiver, and the system could compensate for the effects of transmitterreceiver misalignment. © 2012 IEEE

  19. Methylmercury determination in seafood by photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry.

    Science.gov (United States)

    Covaci, Eniko; Senila, Marin; Ponta, Michaela; Darvasi, Eugen; Petreus, Dorin; Frentiu, Maria; Frentiu, Tiberiu

    2017-08-01

    A non-chromatographic method based on double liquid-liquid extraction and measurements by UV photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry was developed and characterized for methylmercury determination in seafood. Samples were prepared following the procedure recommended in JRC Technical Report of European Commission formerly proposed for the determination of methylmercury in seafood by thermal decomposition atomic absorption spectrometry, namely confinement of Hg species in 47% HBr solution, extraction of CH3Hg+ in toluene and back-extraction in 1% l-cysteine aqueous solution. Mercury cold vapor was generated by flow injection UV photo-reduction from CH3Hg+ in 0.6molL-1 HCOOH, while quantification was performed against external Hg2+ aqueous standards and measuring Hg 253.652nm emission using a low power/Ar consumption plasma microtorch (15W, 100mLmin-1) and a low resolution microspectrometer (Ocean Optics). The figures of merit and analytical capability were assessed by analyzing certified reference materials and test samples of fish fillet and discussed in relation with requirements for Hg determination in seafood in European legislation (Decisions 2007/333/EC and 2002/657/EC) as well as compared to performances achieved in thermal decomposition atomic absorption spectrometry. The limit of detection and quantification of 2µgkg-1 and 6µgkg-1 respectively, precision of 2.7-9.4% and accuracy of 99±8% of the proposed method for the determination of CH3Hg+ fulfill the demands of European legislation for Hg quantification. The limit of detection and quantification were better than those in the used reference method or other non-/chromatographic methods taken for comparison. The analysis of certified reference materials and the Bland and Altman test performed on 12 test samples confirmed trueness of the proposed method and its reliability for the determination of traces of CH3Hg+ with 95% confidence level. The

  20. Interface and permittivity simultaneous reconstruction in electrical capacitance tomography based on boundary and finite-elements coupling method.

    Science.gov (United States)

    Ren, Shangjie; Dong, Feng

    2016-06-28

    Electrical capacitance tomography (ECT) is a non-destructive detection technique for imaging the permittivity distributions inside an observed domain from the capacitances measurements on its boundary. Owing to its advantages of non-contact, non-radiation, high speed and low cost, ECT is promising in the measurements of many industrial or biological processes. However, in the practical industrial or biological systems, a deposit is normally seen in the inner wall of its pipe or vessel. As the actual region of interest (ROI) of ECT is surrounded by the deposit layer, the capacitance measurements become weakly sensitive to the permittivity perturbation occurring at the ROI. When there is a major permittivity difference between the deposit and the ROI, this kind of shielding effect is significant, and the permittivity reconstruction becomes challenging. To deal with the issue, an interface and permittivity simultaneous reconstruction approach is proposed. Both the permittivity at the ROI and the geometry of the deposit layer are recovered using the block coordinate descent method. The boundary and finite-elements coupling method is employed to improve the computational efficiency. The performance of the proposed method is evaluated with the simulation tests. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  1. Capacitively coupled resistivity survey of the levee surrounding the Omaha Public Power District Nebraska City Power Plant, June 2011

    Science.gov (United States)

    Burton, Bethany L.; Cannia, James C.

    2011-01-01

    This report is a release of digital data from a capacitively coupled resistivity survey conducted on June 13, 2011, on the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant. The U.S. Geological Survey Crustal Geophysics and Geochemistry Science Center and the Nebraska Water Science Center performed the survey in response to a flood on the Missouri River. A single line of resistivity profiling was completed along the center line of the section of levee 573 that surrounds the power plant.

  2. Transcending binary logic by gating three coupled quantum dots.

    Science.gov (United States)

    Klein, Michael; Rogge, S; Remacle, F; Levine, R D

    2007-09-01

    Physical considerations supported by numerical solution of the quantum dynamics including electron repulsion show that three weakly coupled quantum dots can robustly execute a complete set of logic gates for computing using three valued inputs and outputs. Input is coded as gating (up, unchanged, or down) of the terminal dots. A nanosecond time scale switching of the gate voltage requires careful numerical propagation of the dynamics. Readout is the charge (0, 1, or 2 electrons) on the central dot.

  3. Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

    Science.gov (United States)

    Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG

    2018-02-01

    The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50–300 W and pressure is 25–250 Pa, the average electron temperature is about 1.7–2.1 eV and the average electron density is about 0.5 × 1017–3.6 × 1017 m‑3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.

  4. Measurement of electrocardiograms in a bath through tap water utilizing capacitive coupling electrodes placed outside the bathtub wall.

    Science.gov (United States)

    Motoi, Kosuke; Yamakoshi, Yasuhiro; Yamakoshi, Takehiro; Sakai, Hiroaki; Tanaka, Naoto; Yamakoshi, Ken-Ichi

    2017-01-11

    Taking a bath sometimes poses a risk for subjects with chronic cardiopulmonary disorders, due to the thermal effect and water pressure on his/her body. The ECG measurement would be helpful for the early recognition of abnormal cardiac beats and respiratory conditions. This paper describes a new attempt to improve on previous bathtub ECG measurement techniques that had electrodes placed inside the bathtub that were intrusive to the subjects' bathing experience. This study is concerned with the initial development of a method to measure an electrocardiogram (ECG) through tap water without conscious awareness of the presence of electrodes that are placed outside the bathtub wall. A configuration of capacitive coupling electrodes placed outside the bathtub was designed so that the electrodes could be hidden. The capacitive coupling was made from the electrodes to the water through the bathtub wall. Two electrodes with an active shielding amplifier covered further by an electromagnetic shield were fixed to the outside surface of the bathtub wall, near the bather's right scapula and left foot. The potential difference between these two electrodes, similar to the bipolar lead-II ECG, was amplified to obtain raw signals inclusive of ECG/QRS components. Respiration intervals were also derived from ECG/RR intervals. Comparison experiments between this bathtub method and conventional direct methods with spot-electrodes and a chest-band sensor were made using 10 healthy male volunteers (22.2 ± 0.98 years). The ECG signal was detectable through tap water as well as water with differing conductivity resulting from mixing bathwater additives with the water. ECG signals and respiration curves derived from ECG/RR intervals were successfully obtained in all subjects. The intervals of the ECG/RR and respiration obtained by the bathtub system and by the direct method were respectively agreed well with each other. The ECG signal, in particular ECG/QRS components, were successfully

  5. Contactless vector network analysis using diversity calibration with capacitive and inductive coupled probes

    Directory of Open Access Journals (Sweden)

    T. Zelder

    2007-06-01

    Full Text Available Contactless vector network analysis based on a diversity calibration is investigated for the measurement of embedded devices in planar circuits. Conventional contactless measurement systems based on two probes for each measurement port have the disadvantage that the signal-to-noise system dynamics strongly depends on the distance between the contactless probes.

    In order to avoid a decrease in system dynamics a diversity based measurement system is presented. The measurement setup uses one inductive and two capacitive probes. As an inductive probe a half magnetic loop in combination with a broadband balun is introduced. In order to eliminate systematic errors from the measurement results a diversity calibration algorithm is presented. Simulation and measurement results for a one-port configuration are shown.

  6. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  7. Composite right/left-handed coplanar waveguide band-pass filter using capacitively-coupled zeroth-order resonators

    Science.gov (United States)

    Li, C.; Liu, K.-Y.; Li, F.

    2007-05-01

    Design and performance of a coplanar waveguide (CPW) bandpass filter (BPF) using composite right/left-handed (CRLH) zeroth-order resonators have been studied. The unit cell of the CRLH CPW consists of a series interdigital capacitor and two shunt stub inductors embedded between two sections of CPWs. The Bloch analysis is applied based on the S parameters to derive the characteristics of the eigen modes (Bloch modes), from which the right/left-handed frequency band and the zeroth-order resonant frequency are clearly determined. Then, the susceptance slope parameter of the resonator is extracted and the admittance (J-) inverters are introduced to synthesize a capacitively coupled CPW BPF. The measured performance agrees with the simulated one. They show that the size of the filter is greatly reduced (more than 60%) when compared to a conventional structure.

  8. Development of a versatile readout and test system and characterization of a capacitively coupled active pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Jens; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn, Bonn (Germany); Peric, Ivan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    With the availability of high voltage and high resistivity CMOS processes, active pixel sensors are becoming increasingly interesting for radiation detection in high energy physics experiments. Although the pixel signal-to-noise ratio and the sensor radiation tolerance were improved, active pixel sensors cannot yet compete with state-of-the-art hybrid pixel detector in a high radiation environment. Hence, active pixel sensors are possible candidates for the outer tracking detector in HEP experiments where production cost plays a role. The investigation of numerous prototyping steps and different technologies is still ongoing and requires a versatile test and readout system, which will be presented in this talk. A capacitively coupled active pixel sensor fabricated in AMS 180 nm high voltage CMOS process is investigated. The sensor is designed to be glued to existing front-end pixel readout chips. Results from the characterization are presented in this talk.

  9. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    Ivetić, T.B., E-mail: tamara.ivetic@df.uns.ac.rs [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad (Serbia); Finčur, N.L. [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad (Serbia); Đačanin, Lj. R. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad (Serbia); Abramović, B.F. [Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad (Serbia); Lukić-Petrović, S.R. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad (Serbia)

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  10. An influence of vacancies and elastic deformation coupling onto phase decomposition of binary systems

    Science.gov (United States)

    Kharchenko, Dmitrii O.; Kharchenko, Vasyl O.; Lysenko, Irina O.; Shuda, Irina A.

    2017-11-01

    We present a comprehensive study of phase decomposition of binary alloys by taking into account lattice mismatch, coupling of both solute and vacancy concentrations with elastic deformation and multiplicative noise satisfying fluctuation dissipation relation. We discuss scaling dynamics and universality of domain size growth. We verified numerically delaying dynamics of mean domain size growth caused by field dependent mobilities. It is shown that vacancy-deformation coupling leads to vacancies agglomeration in soft phase, it suppress phase decomposition at early stages and promotes an increase in the domain size at late stages.

  11. Optimized Bit Mappings for Spatially Coupled LDPC Codes over Parallel Binary Erasure Channels

    OpenAIRE

    Häger, Christian; Amat, Alexandre Graell i; Alvarado, Alex; Brännström, Fredrik; Agrell, Erik

    2013-01-01

    In many practical communication systems, one binary encoder/decoder pair is used to communicate over a set of parallel channels. Examples of this setup include multi-carrier transmission, rate-compatible puncturing of turbo-like codes, and bit-interleaved coded modulation (BICM). A bit mapper is commonly employed to determine how the coded bits are allocated to the channels. In this paper, we study spatially coupled low-density parity check codes over parallel channels and optimize the bit ma...

  12. Modeling of discharges in a capacitively coupled dual frequency plasma reactor

    Directory of Open Access Journals (Sweden)

    Bojarov Aleksandar

    2009-01-01

    Full Text Available In this paper we have modeled a dual frequency coupled plasma reactor (DF-CCP by using a 1d3v PIC/MCC code. The obtained results apart from their theoretical relevance have practical applications especially for development of plasma reactors and for nanoelectronics. Dual frequency plasmas are used for etching of dielectric interconnect layers with high aspect ratios (contact holes. In the DF-CCP, the density of the plasma is controlled by the high frequency, while the ion energy depends mainly on the potential drop in the sheath, which is controlled by the low frequency. The results of our simulations show the dependence of the energy of the ions arriving at the inner electrode on the voltage of the low frequency generator and how the voltage of the high frequency generator affects the ion flux on the electrode.

  13. Mercury determination in non- and biodegradable materials by cold vapor capacitively coupled plasma microtorch atomic emission spectrometry.

    Science.gov (United States)

    Frentiu, Tiberiu; Mihaltan, Alin I; Ponta, Michaela; Darvasi, Eugen; Frentiu, Maria; Cordos, Emil

    2011-10-15

    A new analytical system consisting of a low power capacitively coupled plasma microtorch (20 W, 13.56 MHz, 150 ml min(-1) Ar) and a microspectrometer was investigated for the Hg determination in non- and biodegradable materials by cold-vapor generation, using SnCl(2) reductant, and atomic emission spectrometry. The investigated miniaturized system was used for Hg determination in recyclable plastics from electronic equipments and biodegradable materials (shopping bags of 98% biodegradable polyethylene and corn starch) with the advantages of easy operation and low analysis costs. Samples were mineralized in HNO(3)-H(2)SO(4) mixture in a high-pressure microwave system. The detection limits of 0.05 ng ml(-1) or 0.08 μg g(-1) in solid sample were compared with those reported for other analytical systems. The method precision was 1.5-9.4% for Hg levels of 1.37-13.9 mg kg(-1), while recovery in two polyethylene certified reference materials in the range 98.7 ± 4.5% (95% confidence level). Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Equation of State Dependence of Nonlinear Mode-tide Coupling in Coalescing Binary Neutron Stars

    Science.gov (United States)

    Zhou, Yixiao; Zhang, Fan

    2017-11-01

    Recently, an instability due to the nonlinear coupling of p-modes to g-modes in tidally deformed neutron stars in coalescing binaries has been studied in some detail. The result is significant because it could influence the inspiral and leave an imprint on the gravitational wave signal that depends on the neutron star equation of state (EOS). Because of its potential importance, the details of the instability should be further elucidated and its sensitivity to the EOS should be investigated. To this end, we carry out a numerical analysis with six representative EOSs for both static and non-static tides. We confirm that the absence of the p-g instability under static tides, as well as its return under non-static tides, is generic across EOSs, and further reveal a new contribution to it that becomes important for moderately high-order p-g pairs (previous studies concentrated on very high order modes), whose associated coupling strength can vary by factors of ∼10–100 depending on the EOS. We find that, for stars with stiffer EOSs and smaller buoyancy frequencies, the instability onsets earlier in the inspiral and the unstable modes grow faster. These results suggest that the instability’s impact on the gravitational wave signal might be sensitive to the neutron star EOS. To fully assess this prospect, future studies will need to investigate its saturation as a function of the EOS and the binary parameters.

  15. Space and phase resolved ion energy and angular distributions in single- and dual-frequency capacitively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Kushner, Mark J. [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109-2122 (United States); Moore, Nathaniel; Pribyl, Patrick; Gekelman, Walter [Department of Physics, University of California, Los Angeles, California 90095 (United States)

    2013-11-15

    The control of ion energy and angular distributions (IEADs) is critically important for anisotropic etching or deposition in microelectronic fabrication processes. With single frequency capacitively coupled plasmas (CCPs), the narrowing in angle and spread in energy of ions as they cross the sheath are definable functions of frequency, sheath width, and mean free path. With increases in wafer size, single frequency CCPs are finding difficulty in meeting the requirement of simultaneously controlling plasma densities, ion fluxes, and ion energies. Dual-frequency CCPs are being investigated to provide this flexible control. The high frequency (HF) is intended to control the plasma density and ion fluxes, while the ion energies are intended to be controlled by the low frequency (LF). However, recent research has shown that the LF can also influence the magnitude of ion fluxes and that IEADs are determined by both frequencies. Hence, separate control of fluxes and IEADs is complex. In this paper, results from a two-dimensional computational investigation of Ar/O{sub 2} plasma properties in an industrial reactor are discussed. The IEADs are tracked as a function of height above the substrate and phase within the rf cycles from the bulk plasma to the presheath and through the sheath with the goal of providing insights to this complexity. Comparison is made to laser-induced fluorescence experiments. The authors found that the ratios of HF/LF voltage and driving frequency are critical parameters in determining the shape of the IEADs, both during the transit of the ion through the sheath and when ions are incident onto the substrate. To the degree that contributions from the HF can modify plasma density, sheath potential, and sheath thickness, this may provide additional control for the IEADs.

  16. An application of nonlinear supratransmission to the propagation of binary signals in weakly damped, mechanical systems of coupled oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Macias-Diaz, J.E. [Departamento de Matematicas y Fisica, Universidad Autonoma de Aguascalientes, Aguascalientes, Ags. 20100 (Mexico) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: jemacias@correo.uaa.mx; Puri, A. [Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: apuri@uno.edu

    2007-07-02

    In the present Letter, we simulate the propagation of binary signals in semi-infinite, mechanical chains of coupled oscillators harmonically driven at the end, by making use of the recently discovered process of nonlinear supratransmission. Our numerical results-which are based on a brand-new computational technique with energy-invariant properties-show an efficient and reliable transmission of information.

  17. Effect of driving voltages in dual capacitively coupled radio frequency plasma: A study by nonlinear global model

    Energy Technology Data Exchange (ETDEWEB)

    Bora, B., E-mail: bbora@cchen.cl [Comisión Chilena de Energía Nuclear, Santiago, Chile and Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Santiago (Chile)

    2015-10-15

    On the basis of nonlinear global model, a dual frequency capacitively coupled radio frequency plasma driven by 13.56 MHz and 27.12 MHz has been studied to investigate the influences of driving voltages on the generation of dc self-bias and plasma heating. Fluid equations for the ions inside the plasma sheath have been considered to determine the voltage-charge relations of the plasma sheath. Geometrically symmetric as well as asymmetric cases with finite geometrical asymmetry of 1.2 (ratio of electrodes area) have been considered to make the study more reasonable to experiment. The electrical asymmetry effect (EAE) and finite geometrical asymmetry is found to work differently in controlling the dc self-bias. The amount of EAE has been primarily controlled by the phase angle between the two consecutive harmonics waveforms. The incorporation of the finite geometrical asymmetry in the calculations shift the dc self-bias towards negative polarity direction while increasing the amount of EAE is found to increase the dc self-bias in either direction. For phase angle between the two waveforms ϕ = 0 and ϕ = π/2, the amount of EAE increases significantly with increasing the low frequency voltage, whereas no such increase in the amount of EAE is found with increasing high frequency voltage. In contrast to the geometrically symmetric case, where the variation of the dc self-bias with driving voltages for phase angle ϕ = 0 and π/2 are just opposite in polarity, the variation for the geometrically asymmetric case is different for ϕ = 0 and π/2. In asymmetric case, for ϕ = 0, the dc self-bias increases towards the negative direction with increasing both the low and high frequency voltages, but for the ϕ = π/2, the dc-self bias is increased towards positive direction with increasing low frequency voltage while dc self-bias increases towards negative direction with increasing high frequency voltage.

  18. Quaternary sediment architecture in the Orkhon Valley (central Mongolia) inferred from capacitive coupled resistivity and Georadar measurements

    Science.gov (United States)

    Mackens, Sonja; Klitzsch, Norbert; Grützner, Christoph; Klinger, Riccardo

    2017-09-01

    Detailed information on shallow sediment distribution in basins is required to achieve solutions for problems in Quaternary geology, geomorphology, neotectonics, (geo)archaeology, and climatology. Usually, detailed information is obtained by studying outcrops and shallow drillings. Unfortunately, such data are often sparsely distributed and thus cannot characterise entire basins in detail. Therefore, they are frequently combined with remote sensing methods to overcome this limitation. Remote sensing can cover entire basins but provides information of the land surface only. Geophysical methods can close the gap between detailed sequences of the shallow sediment inventory from drillings at a few spots and continuous surface information from remote sensing. However, their interpretation in terms of sediment types is often challenging, especially if permafrost conditions complicate their interpretation. Here we present an approach for the joint interpretation of the geophysical methods ground penetrating radar (GPR) and capacitive coupled resistivity (CCR), drill core, and remote sensing data. The methods GPR and CCR were chosen because they allow relatively fast surveying and provide complementary information. We apply the approach to the middle Orkhon Valley in central Mongolia where fluvial, alluvial, and aeolian processes led to complex sediment architecture. The GPR and CCR data, measured on profiles with a total length of about 60 km, indicate the presence of two distinct layers over the complete surveying area: (i) a thawed layer at the surface, and (ii) a frozen layer below. In a first interpretation step, we establish a geophysical classification by considering the geophysical signatures of both layers. We use sedimentological information from core logs to relate the geophysical classes to sediment types. This analysis reveals internal structures of Orkhon River sediments, such as channels and floodplain sediments. We also distinguish alluvial fan deposits and

  19. Direct determination of oleic acid in soybean oil by capacitively coupled contactless conductivity detection capillary electrophoresis in an oil-miscible KOH/1-propanol/methanol medium

    OpenAIRE

    Böckel, Wolmir José; Silva, Yara Patrícia da; Mendonça, Carla R. B.; Simó-Alfonso, Ernesto F.; Ramis-Ramos, Guillermo; Piatnicki,Clarisse M. S.

    2014-01-01

    The aim of this work was to develop a quick direct analytical technique for the determination of oleic acid content in soybean oil by non-aqueous capillary electrophoresis with capacitively coupled contactless conductivity detection. The oil-miscible background electrolyte was a mixture of methanol/1-propanol (1:6 v/v) containing 4 × 10-2 mol L-1 KOH and 10% (v/v) ethylene glycol. Samples of 50 g L-1 soybean oil were prepared directly in the background electrolyte added with 1.33 × 10-3 g L-1...

  20. Investigation of Interdiffusion Behavior in the Mo-Zr Binary System via Diffusion Couple Studies

    Energy Technology Data Exchange (ETDEWEB)

    A. Paz y Puente; J. Dickson; D.D. Keiser, Jr.; Y.H. Sohn

    2014-03-01

    Zirconium has recently garnered attention for use as a diffusion barrier between U–Mo metallic nuclear fuels and Al alloy cladding. In order to gain a fundamental understanding of the diffusional interactions, the interdiffusion behavior in the binary Mo–Zr system was investigated via solid-to-solid diffusion couples annealed in the temperature range of 750 to 1050 degrees C. A combination of scanning electron microscopy, X-ray energy dispersive spectroscopy, and electron probe microanalysis were used to examine the microstructure and concentration profiles across the interdiffusion zone. A large __-Zr (cI2) solid solution layer and a thin (approximately 1–2 um) layer of Mo2Zr (cF24) developed in all couples. Parabolic growth constants and concentration dependent interdiffusion coefficients were calculated for the Mo2Zr and Zr solid solution phases, respectively. The pre-exponential factor and activation energy for growth of the Mo2Zr phase were determined to be approximately 6.5 × 10- 15 m2/s and 90 kJ/mol, respectively. The interdiffusion coefficient in ___-Zr solid solution decreased with an increase in Mo concentration. Both the pre-exponential factors (2 × 10- 8 m2/s at 2 at.% Mo to near 5 × 10- 8 m2/s at 9 at.% Mo) and activation energies (140 kJ/mol at 2 at.% Mo to approximately 155 kJ/mol at 9 at.% Mo) of interdiffusion coefficients were determined to increase with an increase in Mo concentration.

  1. Kibble-Zurek dynamics in an array of coupled binary Bose condensates

    Science.gov (United States)

    Xu, Jun; Wu, Shuyuan; Qin, Xizhou; Huang, Jiahao; Ke, Yongguan; Zhong, Honghua; Lee, Chaohong

    2016-03-01

    Universal dynamics of spontaneous symmetry breaking is central to understanding the universal behavior of spontaneous defect formation in various systems from the early universe, condensed-matter systems to ultracold atomic systems. We explore the universal real-time dynamics in an array of coupled binary atomic Bose-Einstein condensates in optical lattices, which undergo a spontaneous symmetry breaking from the symmetric Rabi oscillation to the broken-symmetry self-trapping. In addition to Goldstone modes, there exist gapped Higgs modes whose excitation gap vanishes at the critical point. In the slow passage through the critical point, we analytically find that the symmetry-breaking dynamics obeys the Kibble-Zurek mechanism. From the scalings of bifurcation delay and domain formation, we numerically extract two Kibble-Zurek exponents, b1=ν/(1+ν z) and b2=1/(1+ν z) , which give the static correlation-length critical exponent ν and the dynamic critical exponent z. Our approach provides an efficient way for the simultaneous determination of the critical exponents ν and z for a continuous phase transition.

  2. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion

    Science.gov (United States)

    Ramirez, J. C.; Beckermann, C.; Karma, A.; Diepers, H.-J.

    2004-05-01

    A phase-field model is developed for simulating quantitatively microstructural pattern formation in solidification of dilute binary alloys with coupled heat and solute diffusion. The model reduces to the sharp-interface equations in a computationally tractable thin-interface limit where (i) the width of the diffuse interface is about one order of magnitude smaller than the radius of curvature of the interface but much larger than the real microscopic width of a solid-liquid interface, and (ii) kinetic effects are negligible. A recently derived antitrapping current [A. Karma, Phys. Rev. Lett. 87, 115701 (2001)] is used in the solute conservation equation to recover precisely local equilibrium at the interface and to eliminate interface stretching and surface diffusion effects that arise when the solutal diffusivities are unequal in the solid and liquid. Model results are first compared to analytical solutions for one-dimensional steady-state solidification. Two-dimensional thermosolutal dendritic growth simulations with vanishing solutal diffusivity in the solid show that both the microstructural evolution and the solute profile in the solid are accurately modeled by the present approach. Results are then presented that illustrate the utility of the model for simulating dendritic solidification for the large ratios of the liquid thermal to solutal diffusivities (Lewis numbers) typical of alloys.

  3. Combination of redox capacity and double layer capacitance in composite electrodes through immobilization of an organic redox couple on carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, K.W.; Gollas, B.; Winter, M.; Besenhard, J.O. [Graz University of Technology (Austria). Institute for Chemical Technology of Inorganic Materials

    2004-11-15

    Carbon electrodes have been modified with 2-nitro-1-naphthol with the aim of producing composite supercapacitor electrodes, which make use of both the electric double layer (EDL) capacitance of high surface area carbon and the redox capacity (pseudocapacitance) of the organic compound. In situ FTIR and cyclic voltammetric data confirm literature reports of the reduction of 2-nitro-1-naphthol to 2-amino-1-naphthol and the subsequent oxidation of the o-aminonaphthol to the corresponding o-naphthaquinoneimine in aqueous acidic media. The measurements also show that the quinoneimine is not stable and hydrolized in sulphuric acid electrolyte to 1,2-naphthaquinone. The chemically highly reversible o-naphthaquinone/o-naphthahydroquinone couple remains immobilized on the carbon electrodes during redox cycling. The organic redox couple contributes a capacity of 35 mA h g{sup -1} of the bare carbon to the overall charge storage capability of the composite electrode. Surprisingly, it does not affect the capacitance of the electric double layer of the carbon. During 1000 charge/discharge cycles, the pseudocapacitance decreases by less than 20% in a normal large-volume electrochemical cell. Electrochemical impedance measurements show that the full capacity of the electrode is accessible at frequencies below 0.1 Hz. (author)

  4. Detection of charge dynamics of a tetraphenylporphyrin particle using GaAs-based nanowire enhanced by particle-metal tip capacitive coupling

    Science.gov (United States)

    Okamoto, Shoma; Sato, Masaki; Sasaki, Kentaro; Kasai, Seiya

    2017-06-01

    We investigate a detection technique of charge dynamics of a molecular particle using a GaAs-based nanowire where the charge sensitivity is locally enhanced by particle-metal tip capacitive coupling. By equivalent circuit analysis, it was clarified that the nanowire channel potential becomes sensitive to the molecular particle on the nanowire when the particle is capacitively coupled with a metal tip. The concept was demonstrated using a GaAs-based nanowire with tetraphenylporphyrin (TPP) particles on its surface and a measurement system integrating an atomic force microscope (AFM) and a dynamic current measurement monitor/spectrum analyzer. When the metal tip was in contact with a TPP particle on the nanowire under an appropriate tip bias condition, random telegraph signal (RTS) noise was imposed on the nanowire current, suggesting the increase in sensitivity to the charge state of the particle by the metal tip contact. We discussed the origin of the RTS noise through analysis of the time constant of RTS noise, RTS amplitude, and noise spectrum.

  5. Magnetic dipolar coupling and collective effects for binary information codification in cost-effective logic devices

    Energy Technology Data Exchange (ETDEWEB)

    Chiolerio, Alessandro, E-mail: alessandro.chiolerio@iit.it [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino (Italy); Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, IT-10129 Torino (Italy); Allia, Paolo [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino (Italy); Graziano, Mariagrazia [Electronic and Telecommunication Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino (Italy)

    2012-09-15

    Physical limitations foreshadow the eventual end to traditional Complementary Metal Oxide Semiconductor (CMOS) scaling. Therefore, interest has turned to various materials and technologies aimed to succeed to traditional CMOS. Magnetic Quantum dot Cellular Automata (MQCA) are one of these technologies. Working MQCA arrays require very complex techniques and an excellent control on the geometry of the nanomagnets and on the quality of the magnetic thin film, thus limiting the possibility for MQCA of representing a definite solution to cost-effective, high density and low power consumption device demand. Counter-intuitively, moving towards bigger sizes and lighter technologies it is still possible to develop multi-state logic devices, as we demonstrated, whose main advantage is cost-effectiveness. Applications may be seen in low cost logic devices where integration and computational power are not the main issue, eventually using flexible substrates and taking advantage of the intrinsic mechanical toughness of systems where long range interactions do not need wirings. We realized cobalt micrometric MQCA arrays by means of Electron Beam Lithography, exploiting cost-effective processes such as lift-off and RF sputtering that usually are avoided due to their low control on array geometry and film roughness. Information relative to the magnetic configuration of MQCA elements including their eventual magnetic interactions was obtained from Magnetic Force Microscope (MFM) images, enhanced by means of a numerical procedure and presented in differential maps. We report the existence of bi-stable magnetic patterns, as detected by MFM while sampling the z-component of magnetic induction field, arising from dipolar inter-element magnetostatic coupling, able to store and propagate binary information. This is achieved despite the array quality and element magnetic state, which are low and multi-domain, respectively. We discuss in detail shape, inter-element spacing and dot profile

  6. A scanning microscopy technique based on capacitive coupling with a field-effect transistor integrated with the tip.

    Science.gov (United States)

    Shin, Kumjae; Kang, Dae sil; Lee, Sang hoon; Moon, Wonkyu

    2015-12-01

    We propose a method for measuring the capacitance of a thin layer using a Tip-on-Gate of Field-Effect Transistor (ToGoFET) probe. A ToGoFET probe with a metal-oxide-semiconductor field-effect transistor (MOSFET) with an ion-implant channel was embedded at the end of a cantilever and a Pt tip was fabricated using micro-machining. The ToGoFET probe was used to detect an alternating electric field at the dielectric surface. A dielectric buried metal sample was prepared; a sinusoidal input signal was applied to the buried metal lines; and the ToGoFET probe detected the electric field at the tip via the dielectric. The AC signal detected by the ToGoFET probe was demodulated by a simple AC-to-DC converter. Experimentally, it was shown that an electric field could be measured at the surface of the dielectric layer above a buried metal line. This promising result shows that it is possible to measure the surface local capacitance. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Ultra-fast determination of caffeine, dipyrone, and acetylsalicylic acid by capillary electrophoresis with capacitively coupled contactless conductivity detection and identification of degradation products.

    Science.gov (United States)

    Marra, Mariana Cardoso; Cunha, Rafael Rodrigues; Vidal, Denis Tadeu Rajh; Munoz, Rodrigo Alejandro Abarza; do Lago, Claudimir Lucio; Richter, Eduardo Mathias

    2014-01-31

    Capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D) was used for fast, simultaneous determination of dipyrone (DIP), caffeine (CAF), and acetylsalicylic acid (ASA). In the same run and in less than 1min, the degradation products from DIP and ASA were also detected. In addition, the usage of the CE-C(4)D system allowed, for the first time, the detection of methylamine as a degradation product of DIP. Capillary electrophoresis with electrospray mass spectrometry experiments were carried out in order to confirm the formation of methylamine. The limits of detection by CE-C(4)D were 5, 5, and 6μmolL(-1) for CAF, DIP, and ASA, respectively. The proposed method was applied to the analysis of these compounds in pharmaceutical formulations with similar results to those achieved by HPLC (p<0.05). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Trace determination of Hg together with As, Sb, Se by miniaturized optical emission spectrometry integrated with chemical vapor generation and capacitively coupled argon microwave miniplasma discharge

    Science.gov (United States)

    Matusiewicz, Henryk; Ślachciński, Mariusz

    2017-07-01

    A miniaturized optical emission spectrometer (OES) with capacitively coupled argon microwave microplasma (μCMP) as and excitation source and chemical vapor generation (CVG) for sample introduction was constructed for the determination of trace Hg, As, Sb and Se. The applied method enabled simultaneous determination of hydride-forming elements (As, Sb, Se) and volatile Hg. Mercury cold vapor and the hydride volatile species of As, Sb and Se were generated when standard or sample solutions were separated from the liquid phase for transport to the capacitively coupled microwave microplasma and detection of their atomic emission. A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. The experimental concentration detection limits (LODs) for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 3.0, 1.4, 1.5 and 3.8 ng mL- 1 for Hg, As, Sb and Se, respectively. The method was validated by the analysis of three Certified Reference Materials (NIST 2711, NRCC DOLT-2, NIST 1643e) of different matrix composition and by the standard addition technique. The method offers relatively good precision (RSD ranged from 5% to 8%) for microsampling (200 μL) analysis. The measured of contents of elements in certified reference materials were in good agreement with the certified values (Hg 1.99-6.25 μg g- 1, As 16.6-105 μg g- 1, Sb 19.4-56.88 μg g- 1, Se 1.52-11.68 μg g- 1), according to the Student t-test, for a confidence level of 95%.

  9. The usefulness of mobile insulator sheets for the optimisation of deep heating area for regional hyperthermia using a capacitively coupled heating method: phantom, simulation and clinical prospective studies.

    Science.gov (United States)

    Tomura, Kyosuke; Ohguri, Takayuki; Mulder, Hendrik Thijmen; Murakami, Motohiro; Nakahara, Sota; Yahara, Katsuya; Korogi, Yukunori

    2017-11-20

    To evaluate the feasibility and efficacy of deep regional hyperthermia with the use of mobile insulator sheets in a capacitively coupled heating device. The heat was applied using an 8-MHz radiofrequency-capacitive device. The insulator sheet was inserted between the regular bolus and cooled overlay bolus in each of upper and lower side of the electrode. Several settings using the insulator sheets were investigated in an experimental study using an agar phantom to evaluate the temperature distributions. The specific absorption rate (SAR) distributions in several organs were also computed for the three-dimensional patient model. In a clinical prospective study, a total of five heating sessions were scheduled for the pelvic tumours, to assess the thermal parameters. The conventional setting was used during the first, third and fifth treatment sessions, and insulator sheets were used during the second and fourth treatment sessions. In the phantom study, the higher heating area improved towards the centre when the mobile insulator sheets were used. The subcutaneous fat/target ratios for the averaged SARs in the setting with the mobile insulator (median, 2.5) were significantly improved compared with those in the conventional setting (median, 3.4). In the clinical study, the thermal dose parameters of CEM43°CT90 in the sessions with the mobile insulator sheets (median, 1.9 min) were significantly better than those in the sessions using a conventional setting (median, 1.0 min). Our novel heating method using mobile insulator sheets was thus found to improve the thermal dose parameters. Further investigations are expected.

  10. Capacitive Extensometer

    Science.gov (United States)

    Perusek, Gail P. (Inventor)

    2003-01-01

    The present invention provides for measurements of the principal strain magnitudes and directions, and maximum shear strain that occurs in a porous specimen, such as plastic, ceramic or porous metal, when it is loaded (or subjected to a load). In one embodiment the invention includes a capacitive delta extensometer arranged with six sensors in a three piece configuration, with each sensor of each pair spaced apart from each other by a predetermined angle, such as 120 degrees.

  11. Analysis of intermediate pressure SiH4/He capacitively coupled plasma for deposition of an amorphous hydrogenated silicon film in consideration of thermal diffusion effects

    Science.gov (United States)

    Kim, Ho Jun; Lee, Hae June

    2017-08-01

    To achieve rapid, uniform deposition of an amorphous hydrogenated silicon (a-Si:H) film, a capacitively coupled plasma (CCP) is often used at an intermediate pressure (>100 Pa), with a silane (SiH4)-based mixture. At these pressures, heavy particle interactions (such as ion-ion, ion-neutral, and neutral-neutral reactions) contribute significantly to the formation of precursor radicals. By adding a consideration of the thermal diffusion effects to the neutral transport equation, the chemical processes have been numerically analyzed with variation in the number fraction of SiH4 and electrode spacing using a two-dimensional fluid model of radio frequency discharges in a cylindrically symmetric CCP reactor. The non-uniformity of the deposition rate profiles increases consistently as electrode spacing increases, although the non-uniformity of the plasma parameters decreases with the increase of electrode spacing. The simulated deposition rate profiles match well with the experimental data for the change of electrode spacing. Based on the validation of our model, we propose predictive designs to potentially improve the reactor and process by modifying the thermal and electrical surface conditions.

  12. Test beam measurement of ams H35 HV-CMOS capacitively coupled pixel sensor prototypes with high-resistivity substrate arXiv

    CERN Document Server

    Benoit, M.; Casanova, R.; Cavallaro, E.; Chen, H.; Chen, K.; Di Bello, F.A.; Ferrere, D.; Frizzell, D.; Golling, T.; Gonzalez-Sevilla, S.; Grinstein, S.; Iacobucci, G.; Kiehn, M.; Lanni, F.; Liu, H.; Metcalfe, J.; Meng, L.; Merlassino, C.; Miucci, A.; Muenstermann, D.; Nessi, M.; Okawa, H.; Perić, I.; Rimoldi, M.; Ristić, B.; Sultan, D M S; Terzo, S.; Vicente Barrero Pinto, M.; Vilella Figueras, E.; Weber, M.; Weston, T.; Wu, W.; Xie, J.; Xu, L.; Zaffaroni, E.; Zhang, M.

    In the context of the studies of the ATLAS High Luminosity LHC programme, radiation tolerant pixel detectors in CMOS technologies are investigated. To evaluate the effects of substrate resistivity on CMOS sensor performance, the H35DEMO demonstrator, containing different diode and amplifier designs, was produced in ams H35 HV-CMOS technology using four different substrate resistivities spanning from $\\mathrm{80}$ to $\\mathrm{1000~\\Omega \\cdot cm}$. A glueing process using a high-precision flip-chip machine was developed in order to capacitively couple the sensors to FE-I4 Readout ASIC using a thin layer of epoxy glue with good uniformity over a large surface. The resulting assemblies were measured in beam test at the Fermilab Test Beam Facilities with 120 GeV protons and CERN SPS H8 beamline using 80 GeV pions. The in-time efficiency and tracking properties measured for the different sensor types are shown to be compatible with the ATLAS ITk requirements for its pixel sensors.

  13. A H2 very high frequency capacitively coupled plasma inactivates glyceraldehyde 3-phosphate dehydrogenase(GapDH) more efficiently than UV photons and heat combined

    Science.gov (United States)

    Stapelmann, Katharina; Lackmann, Jan-Wilm; Buerger, Ines; Bandow, Julia Elisabeth; Awakowicz, Peter

    2014-02-01

    Plasma sterilization is a promising alternative to commonly used sterilization techniques, because the conventional methods suffer from certain limitations, e.g. incompatibility with heat-sensitive materials, or use of toxic agents. However, plasma-based sterilization mechanisms are not fully understood yet. A low-pressure very high frequency capacitively coupled plasma is used to investigate the impact of a hydrogen discharge on the protein glyceraldehyde 3-phosphate dehydrogenase (GapDH). GapDH is an enzyme of glycolysis. As a part of the central metabolism, it occurs in nearly all organisms from bacteria to humans. The plasma is investigated with absolutely calibrated optical emission spectroscopy in order to identify and to quantify plasma components that can contribute to enzyme inactivation. The contribution of UV photons and heat to GapDH inactivation is investigated separately, and neither seems to be a major factor. In order to investigate the mechanisms of GapDH inactivation by the hydrogen discharge, samples are investigated for etching, induction of amino acid backbone breaks, and chemical modifications. While neither etching nor strand breaks are observed, chemical modifications occur at different amino acid residues of GapDH. Deamidations of asparagines as well as methionine and cysteine oxidations are detected after VHF-CCP treatment. In particular, oxidation of the cysteine in the active centre is known to lead to GapDH inactivation.

  14. Rapid transport of nano-particles having a fractional elementary charge on average in capacitively-coupled rf discharges by amplitude-modulating discharge voltage.

    Science.gov (United States)

    Shiratani, Masaharu; Koga, Kazunori; Iwashita, Shinya; Nunomura, Syota

    2008-01-01

    We have observed transport of nano-particles having, on average, a fractional elementary charge in single pulse and double pulse capacitively-coupled rf discharges both without and with an Amplitude Modulation (AM) of the discharge voltage, using a two-dimensional laser-light scattering method. Rapid transport of nano-particles towards the grounded electrode is realized using rf discharges with AM. Two important parameters for the rapid transport of nano-particles are the discharge voltage and the period of AM. An important key of the rapid transport is fast redistribution of ion current over the whole discharge region; that is, fast change of spatial distribution of forces exerted on nano-particles. The longer period of the modulation is needed for rapid transport for the larger nano-particles. The higher discharge voltage of the modulation is needed for rapid transport of nano-particles having a smaller mean charge. Local perturbation of electric potential using a probe does not bring about global rapid transport of nano-particles, whereas it leads to their local transport near the probe.

  15. Evaluation of Solid-Solution Hardening in Several Binary Alloy Systems Using Diffusion Couples Combined with Nanoindentation

    Science.gov (United States)

    Kadambi, Sourabh B.; Divya, V. D.; Ramamurty, U.

    2017-10-01

    Analysis of solid-solution hardening (SSH) in alloys requires the synthesis of large composition libraries and the measurement of strength or hardness from these compositions. Conventional methods of synthesis and testing, however, are not efficient and high-throughput approaches have been developed in the past. In the present study, we use a high-throughput combinatorial approach to examine SSH at large concentrations in binary alloys of Fe-Ni, Fe-Co, Pt-Ni, Pt-Co, Ni-Co, Ni-Mo, and Co-Mo. The diffusion couple (DC) method is used to generate concentration ( c) gradients and the nanoindentation (NI) technique to measure the hardness ( H) along these gradients. The obtained H -c profiles are analyzed within the framework of the Labusch model of SSH, and the c^{2/3} dependence of H predicted by the model is found to be generally applicable. The SSH behavior obtained using the combinatorial method is found to be largely consistent with that observed in the literature using conventional and DC-NI methods. This study evaluates SSH in Fe-, Ni-, Co-, and Pt-based binary alloys and confirms the applicability of the DC-NI approach for rapidly screening various solute elements for their SSH ability.

  16. Tuning the ITO work function by capacitively coupled plasma and its application in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ming [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); Zhang, Chunmei, E-mail: zhangchunmei@bigc.edu.cn [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); Chen, Qiang [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an (China)

    2016-11-01

    Highlights: • The work function of ITO was reduced by plasma treatment. • The reduction of the work function was attributed to the variation in chemical component of ITO surface. • The inverted solar cell without electron transport layer was fabricated using plasma-treated ITO. • Optimal power conversion efficiency of 3.22% was achieved. - Abstract: In this paper, we investigated the performance of inverted organic solar cells (OSCs) with plasma-treated indium tin oxide (ITO) as the cathode for omitting an electron transport layer. The Ar plasma was produced by capcitively coupled plasma setup under 20 Pa chamber pressure. For the device with the structure of plasma-treated ITO/P3HT:PCBM/MoO{sub 3}/Ag, a power conversion efficiency (PCE) of 3.22% was achieved, whereas PCE of 1.13% was recorded from the device fabricated with the pristine ITO. The photovoltaic performance was found to be dependent on the applied power of plasma. After analyzing by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), we concluded that the chemical component variation of ITOs surface resulted in the decrease of ITO work function, which meant that the ITO Fermi level became shallow relative to the vacuum level. The low work function of ITO should be responsible for the improvement of inverted OSCs because of the better energy level alignment between ITO and the photoactive layer.

  17. Inductively and capacitively coupled plasmas at interface: A comparative study towards highly efficient amorphous-crystalline Si solar cells

    Science.gov (United States)

    Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan

    2018-01-01

    A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.

  18. Photon control by multi-periodic binary grating waveguides: A coupled-mode theory approach

    DEFF Research Database (Denmark)

    Adam, Jost; Lüder, Hannes; Gerken, Martina

    - taneous control over multiple spectral resonance positions and relative intensities. The experimental findings were theoretically backed up by a rigorous coupled-wave analysis (RCWA) approach, yielding the leaky modes’ complex propagation constants and diffraction efficiencies. This approach, however, can...... only lead to quantitative results outside the device’s band gaps, since only radiative propagation loss is calculated.n order to provide more physical and quantitative insight to grating-induced waveguide losses, we implemented a coupled-mode theory (CMT) approach for the semi-analytical treatment...

  19. Strongly capacitively coupled double quantum dots in GaAs-AlGaAs heterostructures. Preparation and electrical transport; Kapazitativ stark gekoppelte Doppelquantenpunkte in GaAs-AlGaAs-Heterostrukturen. Herstellung und elektrischer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, A.

    2007-11-22

    In this work, a double quantum dot system is studied whose two dots are electrically insulated from one another and contacted independently with two leads. The geometry is optimized to maximize the capacitive interaction between the dots. The samples are characterized by electrical transport measurements in a dilution refrigerator. It is then studied at different tunnel couplings how the capacitive interaction influences the electrical transport in equilibrium. Under certain conditions correlated tunnel processes can be observed. A simple model is derived that serves to understand these processes. The double quantum dot system is defined in lateral arrangement by reactive ion etching of a two-dimensional electron system located only 50 nm below the surface of a GaAs-AlGaAs heterostructure. The samples are characterized in a dilution refrigerator at 25 mK near the common pinch-off point of all four tunnel barriers. A measurement of the differential equilibrium conductances of both quantum dots as a function of two gate voltages yields a honeycomb-like charge stability diagram. The most important sample characteristic is the ratio between the interaction capacitance and the total capacitance of a single quantum dot. For the optimized sample, this ratio turns out to be larger than one third near the common pinch-off point, with a single-dot charging energy of up to 800 {mu}eV. At more positive gate voltages, the capacitances between the quantum dots and their leads increase more and more, thereby diminishing the charging energy. It is shown for the optimized sample that all capacitance coefficients except the dot-lead capacitances are constant to within considerable accuracy over several Coulomb blockade oscillations. In order to measure correlated electrical transport in equilibrium, special parameter regions are examined in which the charges of both quantum dots cannot fluctuate independently of each other. An analytical formula is derived that describes the

  20. Capacitive label reader

    Science.gov (United States)

    Arlowe, H. Duane

    1985-01-01

    A capacitive label reader includes an outer ring transmitting portion, an inner ring transmitting portion, and a plurality of insulated receiving portions. A label is the mirror-image of the reader except that identifying portions corresponding to the receiving portions are insulated from only one of two coupling elements. Positive and negative pulses applied, respectively, to the two transmitting rings biased a CMOS shift register positively to either a 1 or 0 condition. The output of the CMOS may be read as an indication of the label.

  1. Estimation of Leakage Potential of Selected Sites in Interstate and Tri-State Canals Using Geostatistical Analysis of Selected Capacitively Coupled Resistivity Profiles, Western Nebraska, 2004

    Science.gov (United States)

    Vrabel, Joseph; Teeple, Andrew; Kress, Wade H.

    2009-01-01

    With increasing demands for reliable water supplies and availability estimates, groundwater flow models often are developed to enhance understanding of surface-water and groundwater systems. Specific hydraulic variables must be known or calibrated for the groundwater-flow model to accurately simulate current or future conditions. Surface geophysical surveys, along with selected test-hole information, can provide an integrated framework for quantifying hydrogeologic conditions within a defined area. In 2004, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, performed a surface geophysical survey using a capacitively coupled resistivity technique to map the lithology within the top 8 meters of the near-surface for 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Assuming that leakage between the surface-water and groundwater systems is affected primarily by the sediment directly underlying the canal bed, leakage potential was estimated from the simple vertical mean of inverse-model resistivity values for depth levels with geometrically increasing layer thickness with depth which resulted in mean-resistivity values biased towards the surface. This method generally produced reliable results, but an improved analysis method was needed to account for situations where confining units, composed of less permeable material, underlie units with greater permeability. In this report, prepared by the U.S. Geological Survey in cooperation with the North Platte Natural Resources District, the authors use geostatistical analysis to develop the minimum-unadjusted method to compute a relative leakage potential based on the minimum resistivity value in a vertical column of the resistivity model. The minimum-unadjusted method considers the effects of homogeneous confining units. The minimum-adjusted method also is developed to incorporate the effect of local lithologic heterogeneity on water

  2. Heat Source Characterization In A TREAT Fuel Particle Using Coupled Neutronics Binary Collision Monte-Carlo Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram; Baker, Benjamin; Zabriskie, Adam; Ortensi, Javier; Wang, Yaqi; Gleicher, Frederick; DeHart, Mark; Martineau, Richard

    2017-04-01

    This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. The macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.

  3. In-situ observation of the dynamic of peritectic coupled growth using the binary organic system TRIS-NPG

    Science.gov (United States)

    Mogeritsch, J. P.; Ludwig, A.

    2015-06-01

    This paper shows the evolution from banded structure to peritectic coupled growth and describes the mechanism which leads to such microstructure formation. Experimental investigations on binary organic TRIS-NPG (Trishydroxymethyl-aminomethane, Neopen- tylglycol) alloys at concentrations in the peritectic region were carried out in order to study the formation of peritectic microstructures. The experiments were done vertically with relatively large rectangle glass tubes so that slow natural convection occurred. Each time a sample was hold unmoved in the vertical micro Bridgman-furnace for 2 hour to establish a constant temperature gradient. Afterwards, the samples were moved at several pulling rates through the furnace and a camera recorded the dynamic of the solid/liquid interface. The in-situ observations show layered structures for concentrations within the hyper-peritectic region. Carefully evaluations of the results exhibit, that (i) the solid/liquid interface is curved in observation direction toward the glass walls, (ii) the initial existing peritectic phase grows at micrometer-sized liquid channels inside the primary phase toward to the solid/liquid/glass wall junction, (iii) afterwards the peritectic phase spreads along the liquid-primary phase boundary and forms a so-called band, then (iv) the primary phase gets largely overgrown and unstable peritectic coupled growth (PCG) forms; (v) this PCG is inherent unstable and disappears and occurs in several cycles; until (vi) finally stable growth of the primary phase prevails.

  4. Quenching of the OH and nitrogen molecular emission by methane addition in an Ar capacitively coupled plasma to remove spectral interference in lead determination by atomic fluorescence spectrometry

    Science.gov (United States)

    Frentiu, T.; Ponta, M.; Mihaltan, A. I.; Darvasi, E.; Frentiu, M.; Cordos, E.

    2010-07-01

    A new method is proposed to remove the spectral interference on elements in atomic fluorescence spectrometry by quenching of the molecular emission of the OH radical (A 2Σ + → X 2Π) and N 2 second positive system (C 3Π u → B 3Σ g) in the background spectrum of medium power Ar plasmas. The experiments were carried out in a radiofrequency capacitively coupled plasma (275 W, 27.12 MHz) by CH 4 addition. The quenching is the result of the high affinity of OH radical for a hydrogen atom from the CH 4 molecule and the collisions of the second kind between nitrogen excited molecules and CH 4, respectively. The decrease of the emission of N 2 second positive system in the presence of CH 4 is also the result of the deactivation of the metastable argon atoms that could excite the nitrogen molecules. For flow rates of 0.7 l min - 1 Ar with addition of 7.5 ml min - 1 CH 4, the molecular emission of OH and N 2 was completely removed from the plasma jet spectrum at viewing heights above 60 mm. The molecular emission associated to CH and CH 2 species was not observed in the emission spectrum of Ar/CH 4 plasma in the ultraviolet range. The method was experimented for the determination of Pb at 283.31 nm by atomic fluorescence spectrometry with electrodeless discharge lamp and a multichannel microspectrometer. The detection limit was 35 ng ml - 1 , 2-3 times better than in atomic emission spectrometry using the same plasma source, and similar to that in hollow cathode lamp microwave plasma torch atomic fluorescence spectrometry.

  5. The effect of realistic heavy particle induced secondary electron emission coefficients on the electron power absorption dynamics in single- and dual-frequency capacitively coupled plasmas

    Science.gov (United States)

    Daksha, M.; Derzsi, A.; Wilczek, S.; Trieschmann, J.; Mussenbrock, T.; Awakowicz, P.; Donkó, Z.; Schulze, J.

    2017-08-01

    In particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations of capacitively coupled plasmas (CCPs), the plasma-surface interaction is generally described by a simple model in which a constant secondary electron emission coefficient (SEEC) is assumed for ions bombarding the electrodes. In most PIC/MCC studies of CCPs, this coefficient is set to γ = 0.1, independent of the energy of the incident particle, the electrode material, and the surface conditions. Here, the effects of implementing energy-dependent secondary electron yields for ions, fast neutrals, and taking surface conditions into account in PIC/MCC simulations is investigated. Simulations are performed using self-consistently calculated effective SEECs, {γ }* , for ‘clean’ (e.g., heavily sputtered) and ‘dirty’ (e.g., oxidized) metal surfaces in single- and dual-frequency discharges in argon and the results are compared to those obtained by assuming a constant secondary electron yield of γ =0.1 for ions. In single-frequency (13.56 MHz) discharges operated under conditions of low heavy particle energies at the electrodes, the pressure and voltage at which the transition between the α- and γ-mode electron power absorption occurs are found to strongly depend on the surface conditions. For ‘dirty’ surfaces, the discharge operates in α-mode for all conditions investigated due to a low effective SEEC. In classical dual-frequency (1.937 MHz + 27.12 MHz) discharges {γ }* significantly increases with increasing low-frequency voltage amplitude, {V}{LF}, for dirty surfaces. This is due to the effect of {V}{LF} on the heavy particle energies at the electrodes, which negatively influences the quality of the separate control of ion properties at the electrodes. The new results on the separate control of ion properties in such discharges indicate significant differences compared to previous results obtained with different constant values of γ.

  6. A comparative study of capacitively coupled HBr/He, HBr/Ar plasmas for etching applications: Numerical investigation by fluid model

    Science.gov (United States)

    Gul, Banat; Aman-ur-Rehman

    2015-10-01

    Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr+, Br+, which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBr by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.

  7. A comparative study of capacitively coupled HBr/He, HBr/Ar plasmas for etching applications: Numerical investigation by fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Banat, E-mail: banatgul@gmail.com [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Aman-ur-Rehman, E-mail: amansadiq@gmail.com [Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2015-10-15

    Fluid model has been applied to perform a comparative study of hydrogen bromide (HBr)/He and HBr/Ar capacitively coupled plasma discharges that are being used for anisotropic etching process. This model has been used to identify the most dominant species in HBr based plasmas. Our simulation results show that the neutral species like H and Br, which are the key player in chemical etching, have bell shape distribution, while ions like HBr{sup +}, Br{sup +}, which play a dominant rule in the physical etching, have double humped distribution and show peaks near electrodes. It was found that the dilution of HBr by Ar and/or He results in an increase in electron density and electron temperature, which results in more ionization and dissociation and hence higher densities of neutral and charged species can be achieved. The ratio of positive ion flux to the neutral flux increases with an increase in additive gas fraction. Compare to HBr/He plasma, the HBr/Ar plasma shows a maximum change in the ion density and flux and hence the etching rate can be considered in the ion-assisted and in the ion-flux etch regime in HBr/Ar discharge. The densities of electron and other dominant species in HBr/Ar plasma are higher than those of HBr/He plasma. The densities and fluxes of the active neutrals and positive ions for etching and subsequently chemical etching versus physical sputtering in HBr/Ar and HBr/He plasmas discharge can be controlled by tuning gas mixture ratio and the desire etching can be achieved.

  8. Enhancement of Differentiation and Mineralisation of Osteoblast-like Cells by Degenerate Electrical Waveform in an In Vitro Electrical Stimulation Model Compared to Capacitive Coupling

    Science.gov (United States)

    Griffin, Michelle; Sebastian, Anil; Colthurst, James; Bayat, Ardeshir

    2013-01-01

    Electrical stimulation (ES) is effective in enhancing bone healing, however the best electrical waveform, mode of application and mechanisms remains unclear. We recently reported the in vitro differential healing response of a novel electrical waveform called degenerate sine wave (DW) compared to other forms of ES. This study further explores this original observation on osteoblast cells. Here, we electrically stimulated SaOS-2 osteoblast-like cells with DW in an in vitro ES chamber (referred to as ‘DW stimulation’) and compared the intracellular effects to capacitive coupling (CC) stimulation. ES lasted for 4 h, followed by an incubation period of 20 h and subsequent ES for 4 additional hours. Cytotoxicity, proliferation, differentiation and mineralisation of the osteoblast-like cells were evaluated to determine the cell maturation process. DW significantly enhanced the differentiation of cells when compared to CC stimulation with increased alkaline phosphatase and collagen I gene expression by quantitative real time- polymerase chain reaction analysis (p<0.01). Moreover, DW significantly increased the mineralisation of cells compared to CC stimulation. Furthermore the transcription of osteocalcin, osteonectin, osteopontin and bone sialoprotein (p<0.05) was also up regulated by DW. However, ES did not augment the proliferation of cells. Translational analysis by immunocytochemistry and Western blotting showed increased collagen I, osteocalcin and osteonectin expression after DW than CC stimulation. In summary, we have demonstrated for the first time that DW stimulation in an in vitro ES chamber has a significant effect on maturation of osteoblast-like cells compared to CC stimulation of the same magnitude. PMID:24039834

  9. Role of the blocking capacitor in control of ion energy distributions in pulsed capacitively coupled plasmas sustained in Ar/CF{sub 4}/O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Heon, E-mail: ssongs@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2104 (United States); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

    2014-03-15

    In plasma etching for microelectronics fabrication, the quality of the process is in large part determined by the ability to control the ion energy distribution (IED) onto the wafer. To achieve this control, dual frequency capacitively coupled plasmas (DF-CCPs) have been developed with the goal of separately controlling the magnitude of the fluxes of ions and radicals with the high frequency (HF) and the shape of the IED with the low frequency (LF). In steady state operation, plasma properties are determined by a real time balance between electron sources and losses. As such, for a given geometry, pressure, and frequency of operation, the latitude for controlling the IED may be limited. Pulsed power is one technique being investigated to provide additional degrees of freedom to control the IED. In one configuration of a DF-CCP, the HF power is applied to the upper electrode and LF power is applied to the lower electrode which is serially connected to a blocking capacitor (BC) which generates a self dc-bias. In the steady state, the value of the dc-bias is, in fact, constant. During pulsed operation, however, there may be time modulation of the dc-bias which provides an additional means to control the IED. In this paper, IEDs to the wafer in pulsed DF-CCPs sustained in Ar/CF{sub 4}/O{sub 2} are discussed with results from a two-dimensional plasma hydrodynamics model. The IED can be manipulated depending on whether the LF or HF power is pulsed. The dynamic range of the control can be tuned by the dc-bias generated on the substrate, whose time variation depends on the size of the BC during pulsed operation. It was found that high energy ions can be preferentially produced when pulsing the HF power and low energy ions are preferentially produced when pulsing the LF power. A smaller BC value which allows the bias to follow the change in charged particle fluxes produces a larger dynamic range with which to control IEDs.

  10. The role of electron induced secondary electron emission from SiO2 surfaces in capacitively coupled radio frequency plasmas operated at low pressures

    Science.gov (United States)

    Horváth, B.; Daksha, M.; Korolov, I.; Derzsi, A.; Schulze, J.

    2017-12-01

    The effects of electron induced secondary electron (SE) emission from SiO2 electrodes in single-frequency capacitively coupled plasmas (CCPs) are studied by particle-in-cell/Monte Carlo collisions (PIC/MCC) simulations in argon gas at 0.5 Pa for different voltage amplitudes. Unlike conventional simulations, we use a realistic model for the description of electron-surface interactions, which takes into account the elastic reflection and the inelastic backscattering of electrons, as well as the emission of electron induced SEs (δ-electrons). The emission coefficients corresponding to these elementary processes are determined as a function of the electron energy and angle of incidence, taking the properties of the surface into account. Compared to the results obtained by using a simplified model for the electron-surface interaction, widely used in PIC/MCC simulations of CCPs, which includes only elastic electron reflection at a constant probability of 0.2, strongly different electron power absorption and ionization dynamics are observed. We find that ion induced SEs (γ-electrons) emitted at one electrode and accelerated to high energies by the local sheath electric field propagate through the plasma almost collisionlessly and impinge on the opposing sheath within a few nanoseconds. Depending on the instantaneous local sheath voltage these energetic electrons are either reflected by the sheath electric field or they hit the electrode surface, where each γ-electron can generate multiple δ-electrons upon impact. These electron induced SEs are accelerated back into the plasma by the momentary sheath electric field and can again generate δ-electrons at the opposite electrode after propagating through the plasma bulk. Overall, a complex dynamics of γ- and δ-electrons is observed including multiple reflections between the boundary sheaths. At high voltages, the electron induced SE emission is found to strongly affect the plasma density and the ionization dynamics and

  11. Comparison of vacuum ultra-violet emission of Ar/CF4 and Ar/CF3I capacitively coupled plasmas

    Science.gov (United States)

    Zotovich, A.; Proshina, O.; el Otell, Z.; Lopaev, D.; Rakhimova, T.; Rakhimov, A.; de Marneffe, J.-F.; Baklanov, M. R.

    2016-10-01

    Spectra in the vacuum-ultra violet range (VUV, 30 nm-200 nm) as well as in the ultra-violet(UV) and visible ranges (UV+vis, 200 nm-800 nm) were measured from Ar/CF3I and Ar/CF4 discharges. The discharges were generated in an industrial 300 mm capacitively coupled plasma source with 27 MHz radio-frequency power. It was seen that the measured spectra were strongly modified. This is mainly due to absorption, especially by CF3I, and Ar self-trapping along the line of sight, towards the detector and in the plasma itself. The estimated unabsorbed VUV spectra were revealed from the spectra of mixtures with low fluorocarbon gas content by means of normalization with unabsorbed I* emission, at 206 nm, and CF2\\ast band (1B1(0,v‧,0){{\\to}1} A1(0,{{\\text{v}}\\prime \\prime} ,0)) emission between 230 nm and 430 nm. Absolute fluences of UV CF2\\ast emission were derived using hybrid 1-dimensional (1D) particle-in-cell (PIC) Monte-Carlo (MC) model calculations. Absolute calibration of the VUV emission was performed using these calculated values from the model, which has never been done previously for real etch conditions in an industrial chamber. It was seen that the argon resonant lines play a significant role in the VUV spectra. These lines are dominant in the case of etching recipes close to the standard ones. The restored unabsorbed spectra confirm that replacement of conventional CF4 etchant gas with CF3I in low-k etching recipes leads to an increase in the overall VUV emission intensity. However, emission from Ar exhibited the most intense peaks. Damage to low-k SiCOH glasses by the estimated VUV was calculated for blanket samples with pristine k-value of 2.2. The calculations were then compared with Fourier transform infrared (FTIR) data for samples exposed to the similar experimental conditions in the same reactor. It was shown that Ar emission plays the most significant role in VUV-induced damage.

  12. A portable lab-on-a-chip instrument based on MCE with dual top-bottom capacitive coupled contactless conductivity detector in replaceable cell cartridge.

    Science.gov (United States)

    Ansari, Kambiz; Ying, Jasmine Yuen Shu; Hauser, Peter C; de Rooij, Nico F; Rodriguez, Isabel

    2013-05-01

    A new design for a compact portable lab-on-a-chip instrument based on MCE and dual capacitively coupled contactless conductivity detection (dC(4) D) is described. The instrument is battery powered with total dimension of 14 × 25 × 8 cm(3) (w × l × h), and weighs 1.2 kg. The device consists of a front electrophoresis compartment which has the chip holder and the chip, the associated high-voltage electrodes for electrophoresis injection and separation and the detector. The detection cell is integrated into the device housing with an exchangeable plug-and-play cartridge format. The design of the dC(4) D cell has been optimized for maximum performance. The cartridge includes the top-bottom excitation and pick up electrodes incorporated into the cell and connected to push-pull self-latching pins that are insulated with plastic. The metal frame of the cartridge is grounded completely to eliminate electronic interferences. The cartridge is designed to clamp a thin fluidic chip at the detection point. The cartridges are replaceable whereby different cartridges have different detection electrode configurations to employ according to the sensitivity or resolution needed in the specific analytical application. The second compartment consists of all the electronics, data acquisition card, high-voltage modules of up to ±5 kV both polarity, and batteries for 10 h of operation. The improved detector performance is illustrated by the electrophoresis analysis of six cations (NH4 (+) , K(+) , Ca(2+) , Na(+) , Mg(2+) , Li(+) ) with a detection limit of approximately 5 μM and the analysis of the anions (Br(-) , Cl(-) , NO2 (-) , NO3 (-) , SO4 (2-) , F(-) ) with a detection limit of about 3 μM. Analytical capabilities of the instrument for food and medical applications were evaluated by simultaneous detection of organic and inorganic acids in fruit juice and inorganic cations and anions in rabbit blood samples and human urine samples are also demonstrated. © 2013 WILEY

  13. Capacitively coupled and direct-current resistivity surveys of selected reaches of Cozad, Thirty-Mile, Orchard-Alfalfa, Kearney, and Outlet Canals in Nebraska, 2012-13

    Science.gov (United States)

    Hobza, Christopher M.; Burton, Bethany L.; Lucius, Jeffrey E.; Tompkins, Ryan E.

    2014-01-01

    Understanding the spatial characteristics of leakage from canals is critical to effectively managing and utilizing water resources for irrigation and hydroelectric purposes. Canal leakage in some parts of Nebraska is the primary source of water for groundwater recharge and helps maintain the base flow of streams. Because surface-water supplies depend on the streamflow of the Platte River and the available water stored in upstream reservoirs, water managers seek to minimize conveyance losses, which can include canal leakage. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District and Nebraska Public Power District, used capacitively coupled (CC) and direct-current (DC) resistivity techniques for continuous resistivity profiling to map near-surface lithologies near and underlying the Cozad, Thirty-Mile, Orchard-Alfalfa, Kearney, and Outlet Canals. Approximately 84 kilometers (km) of CC-resistivity data were collected along the five canals. The CC-resistivity data were compared with results from continuous sediment cores and electrical conductivity logs. Generally, the highest resistivities were recorded at the upstream reaches of the Cozad, Thirty-Mile, and Orchard-Alfalfa canals where flood-plain deposits of silt and clay mantle coarser channel deposits of sand and gravel. The finer grained deposits gradually thicken with increasing distance away from the Platte River. Consequently, for many surveyed reaches the thickness of fine-grained deposits exceeded the 8-meter depth of investigation. A detailed geophysical investigation along a 5-km reach of the Outlet Canal southwest of North Platte, Nebraska, used CC and DC resistivity to examine the condition of a compacted-core bank structure and characterized other potential controls on areas of focused seepage. CC-resistivity data, collected along the 5-km study reach, were compared with continuous sediment cores and DC-resistivity data collected near a selected seep near Outlet

  14. Shielded capacitive electrode

    Science.gov (United States)

    Kireeff Covo, Michel

    2013-07-09

    A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.

  15. Magnetic field tunable capacitive dielectric:ionic-liquid sandwich composites

    Science.gov (United States)

    Wu, Ye; Bhalla, Amar; Guo, Ruyan

    2016-03-01

    We examined the tunability of the capacitance for GaFeO3-ionic liquid-GaFeO3 composite material by external magnetic and electric field. Up to 1.6 folds of capacitance tunability could be achieved at 957 kHz with voltage 4 V and magnetic field 0.02 T applied. We show that the capacitance enhancement is due to the polarization coupling between dielectric layer and ionic liquid layer.

  16. Electrical properties improvement of high-k HfO{sub 2} films by combination of C{sub 4}F{sub 8} dual-frequency capacitively coupled plasmas treatment with thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y. [Department of Physics, Soochow University, Suzhou 215006 (China); Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); School of Tongda, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Ye, C.; Jin, C.G.; Wu, M.Z.; Wang, Y.Y.; Zhang, Z.; Huang, T.Y.; Yang, Y.; He, H.J. [Department of Physics, Soochow University, Suzhou 215006 (China); Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); Zhuge, L.J. [Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); Analysis and Testing Center, Soochow University, Suzhou 215123 (China); Wu, X.M., E-mail: xmwu@suda.edu.cn [Department of Physics, Soochow University, Suzhou 215006 (China); Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006 (China); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2014-08-30

    Highlights: • Fluorine atoms were incorporated into the HfO{sub 2} films by octafluorocyclobutane (C{sub 4}F{sub 8}) dual-frequency capacitively coupled plasmas (DF-CCP). • Appropriate fluorine incorporation could be obtained by optimizing the LF power. • Great improvement on electrical properties can be obtained by C{sub 4}F{sub 8} plasma treatment. • Both plasma parameter and the surface chemical states are measured to analysis the mechanism of the plasma surface treatment. - Abstract: The effect of fluorine incorporation on the electrical properties of HfO{sub 2} gate oxide were investigated, especially on the frequency dispersion, hysteresis and the density of interface states. By treating HfO{sub 2} films using octafluorocyclobutane (C{sub 4}F{sub 8}) 60 MHz/2 MHz dual-frequency capacitively coupled plasmas, fluorine atoms were incorporated into the HfO{sub 2} films, but thinner C:F films also deposited on the surface of the HfO{sub 2} films. After a following thermal annealing, the C:F films were removed, accompanied the formation of the C-C group and Hf-F bonds. By optimizing the low frequency (LF) power, the appropriate fluorine incorporation significantly improved the quality of the gate oxide, resulting in excellent electrical properties. At the LF power of 30 W, the smallest ΔV{sub fb}, hysteresis and the lowest interface state density were obtained. These improvements were attributed to the passivation of oxygen vacancies and the reduction of defects states density in the gap by forming Hf-F bonds.

  17. Investigating the role of capacitive coupling between the operating table and the return electrode of an electrosurgery unit in the modification of the current density distribution within the patients' body.

    Science.gov (United States)

    Bifulco, Paolo; Massa, Rita; Cesarelli, Mario; Romano, Maria; Fratini, Antonio; Gargiulo, Gaetano D; McEwan, Alistair L

    2013-08-12

    Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient's body is unknown. Numerical electromagnetic analysis can help in understanding the issue. To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient's body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient's anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from the electrodes. This outcome is concordant

  18. Investigating the role of capacitive coupling between the operating table and the return electrode of an electrosurgery unit in the modification of the current density distribution within the patients’ body

    Science.gov (United States)

    2013-01-01

    Background Electrosurgery units are widely employed in modern surgery. Advances in technology have enhanced the safety of these devices, nevertheless, accidental burns are still regularly reported. This study focuses on possible causes of sacral burns as complication of the use of electrosurgery. Burns are caused by local densifications of the current, but the actual pathway of current within patient’s body is unknown. Numerical electromagnetic analysis can help in understanding the issue. Methods To this aim, an accurate heterogeneous model of human body (including seventy-seven different tissues), electrosurgery electrodes, operating table and mattress was build to resemble a typical surgery condition. The patient lays supine on the mattress with the active electrode placed onto the thorax and the return electrode on his back. Common operating frequencies of electrosurgery units were considered. Finite Difference Time Domain electromagnetic analysis was carried out to compute the spatial distribution of current density within the patient’s body. A differential analysis by changing the electrical properties of the operating table from a conductor to an insulator was also performed. Results Results revealed that distributed capacitive coupling between patient body and the conductive operating table offers an alternative path to the electrosurgery current. The patient’s anatomy, the positioning and the different electromagnetic properties of tissues promote a densification of the current at the head and sacral region. In particular, high values of current density were located behind the sacral bone and beneath the skin. This did not occur in the case of non-conductive operating table. Conclusion Results of the simulation highlight the role played from capacitive couplings between the return electrode and the conductive operating table. The concentration of current density may result in an undesired rise in temperature, originating burns in body region far from

  19. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  20. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.

    Science.gov (United States)

    Liang, Peng; Yuan, Lulu; Yang, Xufei; Zhou, Shaoji; Huang, Xia

    2013-05-01

    A capacitive deionization (CDI) cell was built with electrodes made of an inexpensive commercial activated carbon fiber (ACF), and then modified by incorporating ion-exchangers into the cell compartment. Three modified CDI designs were tested: MCDI - a CDI with electrodes covered by ion-exchange membranes (IEMs) of the same polarity, FCDI - a CDI with electrodes covered by ion-exchange felts (IEFs), and R-MCDI - an MCDI with cell chamber packed with ion-exchange resin (IER) granules. The cell was operated in the batch reactor mode with an initial salt concentration of 1000 mg/L NaCl, a typical level of domestic wastewater. The desalination tests involved investigations of two consecutive operation stages of CDIs: electrical adsorption (at an applied voltage of 1.2 V) and desorption [including short circuit (SC) desorption and discharge (DC) desorption]. The R-MCDI showed the highest electric adsorption as measured in the present study by desalination rate [670 ± 20 mg/(L h)] and salt removal efficiency (90 ± 1%) at 60 min, followed by the MCDI [440 ± 15 mg/(L h) and 60 ± 2%, respectively]. The superior desalination performance of the R-MCDI over other designs was also affirmed by its highest charge efficiency (110 ± 7%) and fastest desorption rates at both the SC [1960 ± 15 mg/(L·h)] and DC [3000 ± 20 mg/(L·h)] modes. The desalination rate and salt removal efficiency of the R-MCDI increased from ∼270 mg/(L h) and 83% to ∼650 mg/(L h) and 98% respectively when the applied voltage increased from 0.6 V to 1.4 V, while decreased slightly when lowering the salt water flow rate that fed into the cell. The packing of IER granules in the R-MCDI provided additional surface area for ions transfer; meanwhile, according to the results of electrochemical impedance spectroscopy (EIS) analysis, it substantially lower down the R-MCDI's ohmic resistance, resulting in improved desalination performance. Copyright © 2013 Elsevier Ltd. All

  1. A portable lab-on-a-chip instrument based on MCE with dual topbottom capacitive coupled contactless conductivity detector in replaceable cell cartridge

    OpenAIRE

    Ansari Kambiz; Ying Jasmine Yuen Shu; Hauser Peter C.; de Rooij Nico F.; Rodriguez Isabel

    2013-01-01

    A new design for a compact portable lab on a chip instrument based on MCE and dual ca pacitively coupled contactless conductivity detection (dC4D) is described. The instrument is battery powered with total dimension of 14 × 25 × 8 cm3 (w × l × h) and weighs 1.2 kg. The device consists of a front electrophoresis compartment which has the chip holder and the chip the associated high voltage electrodes for electrophoresis injection and separation and the detector. The detection cell is integrat...

  2. Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and in Situ Ligand Exchange at a Liquid–Air Interface

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yaoting; Li, Siming; Gogotsi, Natalie; Zhao, Tianshuo; Fleury, Blaise; Kagan, Cherie R.; Murray, Christopher B.; Baxter, Jason B.

    2017-02-16

    Two species of monodisperse nanocrystals (NCs) can self-assemble into a variety of complex 2D and 3D periodic structures, or binary NC superlattice (BNSL) films, based on the relative number and size of the NCs. BNSL films offer great promise for both fundamental scientific studies and optoelectronic applications; however, the utility of as-assembled structures has been limited by the insulating ligands that originate from the synthesis of NCs. Here we report the application of an in situ ligand exchange strategy at a liquid–air interface to replace the long synthesis ligands with short ligands while preserving the long-range order of BNSL films. This approach is demonstrated for BNSL structures consisting of PbSe NCs of different size combinations and ligands of interest for photovoltaic devices, infrared detectors, and light-emitting diodes. To confirm enhanced coupling introduced by ligand exchange, we show ultrafast (~1 ps) directional carrier transfer across the type-I heterojunction formed by NCs of different sizes within ligand-exchanged BNSL films. In conclusion, this approach shows the potential promise of functional BNSL films, where the local and long-range energy landscape and electronic coupling can be adjusted by tuning NC composition, size, and interparticle spacing.

  3. Capacitive Feedthroughs for Medical Implants.

    Science.gov (United States)

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  4. Online capacitive densitometer

    Science.gov (United States)

    Porges, Karl G.

    1990-01-01

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.

  5. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions

  6. Measurement of F-, O- and CF_{3}^{-} densities in 60 and 100 MHz asymmetric capacitively coupled plasma discharge produced in an Ar/O2/C4F8 gas mixture

    Science.gov (United States)

    Sirse, N.; Tsutsumi, T.; Sekine, M.; Hori, M.; Ellingboe, A. R.

    2017-08-01

    The behaviour of absolute electron density and density of F-, O- and CF3- is studied in asymmetric capacitively coupled plasma discharge produced in an Ar/O2/C4F8 (80:10:10) gas mixture excited at 60 and 100 MHz. The measurements are performed using a hairpin probe and laser photo-detachment at 532 nm and 355 nm laser wavelengths. For both 60 and 100 MHz driving frequencies, the results show that the electrons and F- density increases almost linearly with the increase in rf power. On the other hand, the O- density increases in 60 MHz and decreases in 100 MHz with a rise in rf power. For a fixed rf power in the 60 MHz discharge, the O- density increases and electron density decreases with gas pressure. The corresponding F- density first increases, reaching a maximum value, and then decreases with a further increase in gas pressure. A similar trend in electron, F- and O- density versus gas pressure is observed in 100 MHz suggesting that the initial increase in densities is dominated by the ionization and dissociative attachment, whereas, at a higher gas pressure, electron-ion recombination, ion-neutral recombination and ion-ion neutralization play a significant role in the losses of charged particles. The ratio of F- density to O- density is ~80:20 and ~95:5 in 60 MHz and 100 MHz respectively. The density of both electrons and F- is higher in 100 MHz when compared to 60 MHz discharge. The observed trend is explained on the basis of productions and loss mechanisms for electrons and negative ions. It is concluded that the higher F- density in 100 MHz in comparison to 60 MHz is mainly due to higher electron density and dissociation degree.

  7. Induced Charge Capacitive Deionization

    CERN Document Server

    Rubin, S; Biesheuvel, P M; Bercovici, M

    2016-01-01

    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, which leads to rapid and significant deionization of ionic species from a volume which is on the scale of the particle. We show by theory and experiment that the transient response around a cylindrical particle results in spatially non-uniform charging and non-steady growth of depletion regions which emerge around the particle's poles. Potentially, ICCDI can be useful in applications where fast concentration changes of ionic species are required over large volumes.

  8. Capacitive skin characterization

    Science.gov (United States)

    Mcconnell, Robert; Manzo, Michael

    1992-01-01

    NASA is currently involved in research that utilizes a capacitive sensor that is used for proximity detection of objects. This sensor is sensitive to conductive and dielectric materials including metal objects and humans. The range of the sensor has been found to be about twelve inches. It is the goal of this research project to further characterize the sensor so that it can be tailored to specific requirements. The characterization of the sensor should be with respect to shield size, sensor size, object size, and object distance. The method of finite elements to calculate the capacitance of the sensor while varying different parameters was used. Each of the parameters was varied in turn, often by selecting data points from different runs. The plotted results are shown and an apparent functionality developed for each.

  9. Molecular Aspects of Capacitation

    Directory of Open Access Journals (Sweden)

    Gulfidan Zulfikaroglu

    2010-02-01

    Full Text Available Male and female gamets are derived from the primordial germ cells, which migrate from the wall of the yolk sac toward the developing gonads. Following a series of mitotic divisions these cells increase in number at the gonads. The primordial germ cells differentiate into spermatogonia and take the form of mature spermatozoa after spermotogensis and spermotogenesis at puberty. Capacitation is the reaction, which includes all of the molecular and physiological events of mature sperm to gain the ability of fertilizing oocytes at metaphase 2 in the female genital tract. Some molecular events significant in the initiation of capacitation have been identified as cholesterol efflux from the sperm plasma membrane, increased membrane fluidity, modulation of intracellular ion concentration, hyperpolarization of the sperm plasma membrane and increased protein tyrosine phosphorylation. During capacitation, the spermatozoa acquires the ability to penetrate the corona radiata and to bind to the zona pellucida. This binding triggers acrosome reaction which occurs by the development of multiple fenestrations between the outer acrosomal membrane and the plasma membrane of the spermatozoon. After the fusion of oocyte and sperm plasma membranes, sperm and oocyt pronuclei are joined together to compose the zygote. [Archives Medical Review Journal 2010; 19(1.000: 12-24

  10. Electrical characteristics for capacitively coupled radio frequency ...

    Indian Academy of Sciences (India)

    MURAT TANISLI

    2017-08-16

    Aug 16, 2017 ... plasma forms an environment which is free of charged particles moving in random directions [1,2]. ... RF-Generator Navio Matching Network used for sta- ble current and voltage values. This device has been .... the gas gain energy from the RF electric field. When He gas and Ne gas at 0.05 l/min flow rate ...

  11. Interacting binaries

    CERN Document Server

    Shore, S N; van den Heuvel, EPJ

    1994-01-01

    This volume contains lecture notes presented at the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. The contributors deal with symbiotic stars, cataclysmic variables, massive binaries and X-ray binaries, in an attempt to provide a better understanding of stellar evolution.

  12. Multi-Channel Capacitive Sensor Arrays.

    Science.gov (United States)

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-25

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  13. Improved Capacitive Liquid Sensor

    Science.gov (United States)

    Waldman, Francis A.

    1992-01-01

    Improved capacitive sensor used to detect presence and/or measure thickness of layer of liquid. Electrical impedance or admittance of sensor measured at prescribed frequency, and thickness of liquid inferred from predetermined theoretical or experimental relationship between impedance and thickness. Sensor is basically a three-terminal device. Features interdigitated driving and sensing electrodes and peripheral coplanar ground electrode that reduces parasitic effects. Patent-pending because first to utilize ground plane as "shunting" electrode. System less expensive than infrared, microwave, or refractive-index systems. Sensor successfully evaluated in commercial production plants to characterize emulsions, slurries, and solutions.

  14. Quantum Capacitance of a Topological Insulator-Ferromagnet Interface.

    Science.gov (United States)

    Siu, Zhuo Bin; Chowdhury, Debashree; Jalil, Mansoor B A; Basu, Banasri

    2017-03-24

    We study the quantum capacitance in a topological insulator thin film system magnetized in the in-plane direction in the presence of an out-of-plane magnetic field and hexagonal warping. To first order, the modification in quantum capacitance due to hexagonal warping compared to the clean case, where both the in-plane magnetization and hexagonal warping are absent, is always negative, and increases in magnitude monotonically with the energy difference from the charge neutrality point. In contrast, the change in the quantum capacitance due to in-plane magnetization oscillates with the energy in general, except when a certain relation between the inter-surface coupling, out of plane Zeeman energy splitting and magnetic field strength is satisfied. In this special case, the quantum capacitance remains unchanged by the in-plane magnetization for all energies.

  15. Authentication of Nigella sativa Seed Oil in Binary and Ternary Mixtures with Corn Oil and Soybean Oil Using FTIR Spectroscopy Coupled with Partial Least Square

    Directory of Open Access Journals (Sweden)

    Abdul Rohman

    2013-01-01

    Full Text Available Fourier transform infrared spectroscopy (FTIR combined with multivariate calibration of partial least square (PLS was developed and optimized for the analysis of Nigella seed oil (NSO in binary and ternary mixtures with corn oil (CO and soybean oil (SO. Based on PLS modeling performed, quantitative analysis of NSO in binary mixtures with CO carried out using the second derivative FTIR spectra at combined frequencies of 2977–3028, 1666–1739, and 740–1446 cm−1 revealed the highest value of coefficient of determination (, 0.9984 and the lowest value of root mean square error of calibration (RMSEC, 1.34% v/v. NSO in binary mixtures with SO is successfully determined at the combined frequencies of 2985–3024 and 752–1755 cm−1 using the first derivative FTIR spectra with and RMSEC values of 0.9970 and 0.47% v/v, respectively. Meanwhile, the second derivative FTIR spectra at the combined frequencies of 2977–3028 cm−1, 1666–1739 cm−1, and 740–1446 cm−1 were selected for quantitative analysis of NSO in ternary mixture with CO and SO with and RMSEC values of 0.9993 and 0.86% v/v, respectively. The results showed that FTIR spectrophotometry is an accurate technique for the quantitative analysis of NSO in binary and ternary mixtures with CO and SO.

  16. A robust parasitic-insensitive successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham

    2014-09-01

    In this paper, we present a capacitive sensor digital interface circuit using true capacitance-domain successive approximation that is independent of supply voltage. Robust operation is achieved by using a charge amplifier stage and multiple comparison technique. The interface circuit is insensitive to parasitic capacitances, offset voltages, and charge injection, and is not prone to noise coupling. The proposed design achieves very low temperature sensitivity of 25ppm/oC. A coarse-fine programmable capacitance array allows digitizing a wide capacitance range of 16pF with 12.5-bit quantization limited resolution in a compact area of 0.07mm2. The fabricated prototype is experimentally verified using on-chip sensor and off-chip MEMS capacitive pressure sensor. © 2014 IEEE.

  17. Atmospheric Icing Sensors - Capacitive Techniques

    National Research Council Canada - National Science Library

    Umair N Mughal; Muhammad S Virk

    2013-01-01

      The application of capacitive sensing technique is widely distributed in different physical domains primarily because of the diversity in dielectric permittivity and due to its minimum loading error...

  18. Efficiency of Capacitively Loaded Converters

    DEFF Research Database (Denmark)

    Andersen, Thomas; Huang, Lina; Andersen, Michael A. E.

    2012-01-01

    This paper explores the characteristic of capacitance versus voltage for dielectric electro active polymer (DEAP) actuator, 2kV polypropylene film capacitor as well as 3kV X7R multi layer ceramic capacitor (MLCC) at the beginning. An energy efficiency for capacitively loaded converters...... is introduced as a definition of efficiency. The calculated and measured efficiency curves for charging DEAP actuator, polypropylene film capacitor and X7R MLCC are provided and compared. The attention has to be paid for the voltage dependent capacitive load, like X7R MLCC, when evaluating the charging...... efficiency of converter. Based on the capacitancevoltage curve, the correct capacitance should be chosen when calculating the stored energy; otherwise misleading optimistic efficiency can always be obtained. Actually, when DEAP actuator is not available at the early developing stage, the voltage independent...

  19. Capacitive Position Sensor For Accelerometer

    Science.gov (United States)

    Vanzandt, Thomas R.; Kaiser, William J.; Kenny, Thomas W.

    1995-01-01

    Capacitive position sensor measures displacement of proof mass in prototype accelerometer described in "Single-Crystal Springs for Accelerometers" (NPO-18795). Sensor is ultrasensitive, miniature device operating at ultra-high frequency and described in more detail in "Ultra-High-Frequency Capacitive Displacement Sensor," (NPO-18675). Advances in design and fabrication of prototype accelerometer also applicable to magnetometers and other sensors in which sensed quantities measured in terms of deflections of small springs.

  20. Progress in performance enhancement methods for capacitive silicon resonators

    Science.gov (United States)

    Van Toan, Nguyen; Ono, Takahito

    2017-11-01

    In this paper, we review the progress in recent studies on the performance enhancement methods for capacitive silicon resonators. We provide information on various fabrication technologies and design considerations that can be employed to improve the performance of capacitive silicon resonators, including low motional resistance, small insertion loss, and high quality factor (Q). This paper contains an overview of device structures and working principles, fabrication technologies consisting of hermetic packaging, deep reactive-ion etching and neutral beam etching, and design considerations including mechanically coupled, movable electrode structures and piezoresistive heat engines.

  1. Binary effectivity rules

    DEFF Research Database (Denmark)

    Keiding, Hans; Peleg, Bezalel

    2006-01-01

    is binary if it is rationalized by an acyclic binary relation. The foregoing result motivates our definition of a binary effectivity rule as the effectivity rule of some binary SCR. A binary SCR is regular if it satisfies unanimity, monotonicity, and independence of infeasible alternatives. A binary...

  2. Measurement of subcell depletion layer capacitances in multijunction solar cells

    Science.gov (United States)

    Rutzinger, M.; Salzberger, M.; Gerhard, A.; Nesswetter, H.; Lugli, P.; Zimmermann, C. G.

    2017-10-01

    A method for measuring subcell capacitance voltage (C-V) in a multijunction solar cell is introduced. The subcell of interest is illuminated by a monochromatic light pulse with a ns rise time. The subcell capacitance is calculated from the measured rise time of the solar cell voltage. The effect of optical coupling is eliminated by introducing a high intensity bias illumination to all subcells below the one measured. The method is verified by comparing the subcell capacitance obtained from four junction solar cells with the results from corresponding component cells, which can be measured using well-established methods. From the C-V curves, the built-in voltage and the base layer doping density for each subcell are calculated.

  3. Coherence properties of a capacitively-shunt flux qubit

    Science.gov (United States)

    Birenbaum, Jeffrey; Sears, Adam; Nugroho, Christopher; Gudmundsen, Ted; Welander, Paul; Yoder, Jonilyn; Kamal, Archana; Gustavsson, Simon; Kerman, Jamie; Oliver, William; Clarke, John

    2014-03-01

    Coherence times for typical flux qubits have plateaued at 5 - 10 μ s for T1 and 1 - 3 μ s for TRamsey. To achieve longer coherence times we study capacitively-shunted flux qubits using high-Q capacitors to individually shunt all four Josephson junctions (JJs). The additional shunt capacitance moves 90 + % of the qubit energy from the lossy capacitance of the JJs into the high-Q shunts while preserving an anharmonicity greater than 100 % and maintaining f01 structure is also flattened providing moderately decreased sensitivity to flux noise. Using high-quality MBE aluminum we fabricate a capacitively-shunted flux qubit inductively coupled to a lumped-element readout resonator. The qubit junctions are deposited via aluminum e-beam evaporation using a bridgeless mask. We characterize the influence of qubit design parameters such as capacitance and geometry on the coherence time of the device. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office.

  4. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    Science.gov (United States)

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  5. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2015-10-01

    Full Text Available Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  6. Improving capacitance/damping ratio in a capacitive MEMS transducer

    Science.gov (United States)

    Dias, Rosana A.; Rocha, Luis A.

    2014-01-01

    Damping forces play an important role in capacitive MEMS (microelectromechanical systems) behavior, and typical damper design (parallel-plates) cannot address the design conflict between increase in electrical capacitance and damping reduction. Squeeze-film damping in in-plane parallel-plate MEMS is discussed here and a novel damper geometry for gap-varying parallel-plates is introduced and used to increase the capacitance/damping ratio. The new geometry is compared with a typical parallel-plate design for an silicon-on-insulator process (25 µm thick) and experimental data shows an approximate 25% to 50% reduction for the damping coefficient in structures with 500 µm long dampers (for a gap variation between 0.75 and 3.75 µm), in agreement with computational fluid dynamics simulations, without significantly affecting the capacitance value (∼4% reduction). Preliminary simulations to study the role of the different geometric parameters involved in the improved geometry are also performed and reveal that the channel width is the most critical value for effective damping reduction.

  7. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  8. Capacitive Proximity Sensor Has Longer Range

    Science.gov (United States)

    Vranish, John M.

    1992-01-01

    Capacitive proximity sensor on robot arm detects nearby object via capacitive effect of object on frequency of oscillator. Sensing element part of oscillator circuit operating at about 20 kHz. Total capacitance between sensing element and ground constitutes tuning capacitance of oscillator. Sensor circuit includes shield driven by replica of alternating voltage applied to sensing element. Driven shield concentrates sensing electrostatic field in exterior region to enhance sensitivity to object. Sensitivity and dynamic range has corresponding 12-to-1 improvement.

  9. Reduction of parasitic capacitance in 10 kV SiC MOSFET power modules using 3D FEM

    DEFF Research Database (Denmark)

    Jørgensen, Asger Bjørn; Christensen, Nicklas; Dalal, Dipen Narendrabhai

    2017-01-01

    the output node and the grounded heat sink for a custom silicon carbide power module. A circuit model of the capacitive coupling path is presented, using parasitic capacitances extracted from ANSYS Q3D. Simulated values are compared with experimental results. A new iteration of the silicon carbide power...

  10. Differential capacitive sensing circuit for a multi-electrode capacitive force sensor

    NARCIS (Netherlands)

    Brookhuis, Robert Anton; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2015-01-01

    A multi-electrode differential capacitive sensing circuit is designed and realized for the read-out of a multi-axis capacitive force–torque sensor. The sensing circuit is based on a differential relaxation oscillator, to which multiple capacitances can be connected. For selecting the capacitances,

  11. Analysis Of Micromachined Capacitive Incremental Position Sensor

    NARCIS (Netherlands)

    Kuijpers, A.A.; Krijnen, Gijsbertus J.M.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    2005-01-01

    This article presents an analysis for two related concepts of a capacitive incremental position sensor. In Incremental Capacitance Measurement Mode the periodic change in capacitance is measured to determine the relative displacement between two periodic geometries S1 and S2 with gap-distance of ~ 1

  12. Analysis of new actuation methods for capacitive shunt micro switchs

    OpenAIRE

    Ben Sassi S; Khater M E; Abdel-Rahman E M; Najar F

    2016-01-01

    This work investigates the use of new actuation methods in capacitive shunt micro switches. We formulate the coupled electromechanical problem by taking into account the fringing effects and nonlinearities due to mid-plane stretching. Static analysis is undertaken using the Differential Quadrature Method (DQM) to obtain the pull in voltage which is verified by means of the Finite Element Method (FEM). Based on Galerkin approximation, a single degree of freedom dynamic model is developed and l...

  13. On the small-signal capacitance of RF MEMS switches at very low frequencies

    OpenAIRE

    Wang, J.; Bielen, Jeroen; Salm, Cora; Krijnen, Gijsbertus J.M.; Schmitz, Jurriaan

    2016-01-01

    This paper presents on-wafer capacitance measurements of silicon-based RF MEMS capacitive switches down to frequencies below 1 Hz. The capacitance-voltage (C-V) curve measured at very-low frequency (0.01-10 Hz) deviates from the commonly measured and well-understood high-frequency C-V curve, especially near the pull-in and pull-out voltages. This behavior is explained from the mechanical action of the top electrode. An electrostatic transducer model is used to express the coupling between mec...

  14. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    Science.gov (United States)

    Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin

    2010-09-21

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-

  15. A Micro Dynamically Tuned Gyroscope with Adjustable Static Capacitance

    Directory of Open Access Journals (Sweden)

    Lun Kong

    2013-02-01

    Full Text Available This paper presents a novel micro dynamically tuned gyroscope (MDTG with adjustable static capacitance. First, the principle of MDTG is theoretically analyzed. Next, some simulations under the optimized structure parameters are given as a reference for the mask design of the rotor wafer and electrode plates. As two key components, the process flows of the rotor wafer and electrode plates are described in detail. All the scanning electron microscopy (SEM photos show that the fabrication process is effective and optimized. Then, an assembly model is designed for the static capacitance adjustable MDTG, whose static capacitance can be changed by rotating the lower electrode plate support and substituting gasket rings of different thicknesses. Thus, the scale factor is easily changeable. Afterwards, the digitalized closed-loop measurement circuit is simulated. The discrete correction and decoupling modules are designed to make the closed-loop stable and cross-coupling effect small. The dual axis closed-loop system bandwidths can reach more than 60 Hz and the dual axis scale factors are completely symmetrical. All the simulation results demonstrate the proposed fabrication of the MDTG can meet the application requirements. Finally, the paper presents the test results of static and dynamic capacitance values which are consistent with the simulation values.

  16. Quantum capacitance in topological insulators.

    Science.gov (United States)

    Xiu, Faxian; Meyer, Nicholas; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Yong; Yu, Xinxin; Fedorov, Alexei V; Zou, Jin; Wang, Kang L

    2012-01-01

    Topological insulators show unique properties resulting from massless, Dirac-like surface states that are protected by time-reversal symmetry. Theory predicts that the surface states exhibit a quantum spin Hall effect with counter-propagating electrons carrying opposite spins in the absence of an external magnetic field. However, to date, the revelation of these states through conventional transport measurements remains a significant challenge owing to the predominance of bulk carriers. Here, we report on an experimental observation of Shubnikov-de Haas oscillations in quantum capacitance measurements, which originate from topological helical states. Unlike the traditional transport approach, the quantum capacitance measurements are remarkably alleviated from bulk interference at high excitation frequencies, thus enabling a distinction between the surface and bulk. We also demonstrate easy access to the surface states at relatively high temperatures up to 60 K. Our approach may eventually facilitate an exciting exploration of exotic topological properties at room temperature.

  17. Capacitive de-ionization electrode

    Science.gov (United States)

    Daily, III, William D.

    2013-03-19

    An electrode "cell" for use in a capacitive deionization (CDI) reactor consists of the electrode support structure, a non-reactive conductive material, the electrode accompaniment or substrate and a flow through screen/separator. These "layers" are repeated and the electrodes are sealed together with gaskets between two end plates to create stacked sets of alternating anode and cathode electrodes in the CDI reactor.

  18. Dual Cryogenic Capacitive Density Sensor

    Science.gov (United States)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  19. Flexible PVDF ferroelectric capacitive temperature sensor

    KAUST Repository

    Khan, Naveed

    2015-08-02

    In this paper, a capacitive temperature sensor based on polyvinylidene fluoride (PVDF) capacitor is explored. The PVDF capacitor is characterized below its Curie temperature. The capacitance of the PVDF capacitor changes vs temperature with a sensitivity of 16pF/°C. The linearity measurement of the capacitance-temperature relation shows less than 0.7°C error from a best fit straight line. An LC oscillator based temperature sensor is demonstrated based on this capacitor.

  20. Design of a Capacitive SOI Micromachined Accelerometer

    OpenAIRE

    Zhao, Wenjing; Xu, Limei

    2009-01-01

    A capacitive micromachined accelerometer based on the technique of silicon on insulator, is designed in this paper. The proposed microaccelerometer is designed to obtain good electrical performance and radioresistance in order to make the accelerometer integrate with the CMOS chip. The performance of the capacitive SOI microaccelerometer is calculated to determine its linear capacitance change and achieves a very linear response with input acceleration after theoretical analysis. The relation...

  1. Capacitive level meter for liquid hydrogen

    OpenAIRE

    Matsumoto, Koichi; Sobue, Masamitsu; Asamoto, Kai; Nishimura, Yuta; Abe, Satoshi; Numazawa, Takenori

    2011-01-01

    A capacitive level meter working at low temperatures was made to use in magnetic refrigerator for hydrogen liquefaction. The liquid level was measured from the capacitance between parallel electrodes immersed in the liquid. The meter was tested for liquid nitrogen, hydrogen, and helium. The operation was successful using an AC capacitance bridge. The estimated sensitivity of the meter is better than 0.2 mm for liquid hydrogen. The meter also worked with pressurized hydrogen. © 2010.

  2. Aspheric Surface Measurement Using Capacitive Sensors

    Science.gov (United States)

    Yuan, Daocheng; Zhao, Huiying; Tao, Xin; Li, Shaobo; Zhu, Xueliang; Zhang, Chupeng

    2017-01-01

    This paper proposes a new method for the measurement of spherical coordinates by using capacitive sensors as a non-contact probe solution of measurement of aspheric surfaces. The measurement of the average effect of the capacitive probe and the influence of capacitive probe tilting were studied with respect to an eccentric spherical surface. Based on the tested characteristic curve of the average effect of the sphere and probe, it was found that nonlinear and linear compensation resulted in high measurement accuracy. The capacitance probe was found to be trying to fulfill a need for performing nm-level precision measurement of aspheric electromagnetic surfaces. PMID:28604613

  3. Aspheric Surface Measurement Using Capacitive Sensors

    Directory of Open Access Journals (Sweden)

    Daocheng Yuan

    2017-06-01

    Full Text Available This paper proposes a new method for the measurement of spherical coordinates by using capacitive sensors as a non-contact probe solution of measurement of aspheric surfaces. The measurement of the average effect of the capacitive probe and the influence of capacitive probe tilting were studied with respect to an eccentric spherical surface. Based on the tested characteristic curve of the average effect of the sphere and probe, it was found that nonlinear and linear compensation resulted in high measurement accuracy. The capacitance probe was found to be trying to fulfill a need for performing nm-level precision measurement of aspheric electromagnetic surfaces.

  4. Aspheric Surface Measurement Using Capacitive Sensors.

    Science.gov (United States)

    Yuan, Daocheng; Zhao, Huiying; Tao, Xin; Li, Shaobo; Zhu, Xueliang; Zhang, Chupeng

    2017-06-11

    This paper proposes a new method for the measurement of spherical coordinates by using capacitive sensors as a non-contact probe solution of measurement of aspheric surfaces. The measurement of the average effect of the capacitive probe and the influence of capacitive probe tilting were studied with respect to an eccentric spherical surface. Based on the tested characteristic curve of the average effect of the sphere and probe, it was found that nonlinear and linear compensation resulted in high measurement accuracy. The capacitance probe was found to be trying to fulfill a need for performing nm-level precision measurement of aspheric electromagnetic surfaces.

  5. Dynamical mass transfer in cataclysmic binaries

    Science.gov (United States)

    Melia, Fulvio; Lamb, D. Q.

    1987-01-01

    When a binary comes into contact and mass transfer begins, orbital angular momentum is stored in the accretion disk until the disk couples tidally to the binary system. Taam and McDermott (1987) have suggested that this leads to unstable dynamical mass transfer in many cataclysmic variables in which mass transfer would otherwise be stable, and that it explains the gap between 2 and 3 h in the orbital period distribution of these systems. Here the consequences of this hypothesis for the evolution of cataclysmic binaries are explored. It is found that systems coming into contact longward of the period gap undergo one or more episodes of dynamical mass transfer.

  6. Selective virtual capacitive impedance loop for harmonics voltage compensation in islanded microgrids

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril

    2013-01-01

    Parallel inverters having LCL output filters cause voltage distortions at the point of common coupling (PCC) in islanded microgrids when non-linear loads are present. A capacitive virtual impedance loop could be used to provide selective harmonic compensation in islanded microgrids, instead....... With the capacitive virtual impedance, there is effectively a compromise between the additional stability provided by the virtual resistance and the harmonic compensation due to the virtual capacitance. This paper focuses on overcoming this limitation of the capacitive virtual impedance with additional virtual...... resistance for selective harmonic compensation in islanded microgrids. Simulation results were given to show the suitability of the proposed algorithms in reducing the voltage harmonics at the PCC....

  7. A new interface weak-capacitance detection ASIC of capacitive liquid level sensor in the rocket

    Science.gov (United States)

    Yin, Liang; Qin, Yao; Liu, Xiao-Wei

    2017-11-01

    A new capacitive liquid level sensing interface weak-capacitance detection ASIC has been designed. This ASIC realized the detection of the output capacitance of the capacitive liquid level sensor, which converts the output capacitance of the capacitive liquid level sensor to voltage. The chip is fabricated in a standard 0.5μm CMOS process. The test results show that the linearity of capacitance detection of the ASIC is 0.05%, output noise is 3.7aF/Hz (when the capacitance which will be detected is 40 pF), the stability of capacitance detection is 7.4 × 10‑5pF (1σ, 1h), the output zero position temperature coefficient is 4.5 uV/∘C. The test results prove that this interface ASIC can meet the requirement of high accuracy capacitance detection. Therefore, this interface ASIC can be applied in capacitive liquid level sensing and capacitive humidity sensing field.

  8. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    Science.gov (United States)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  9. Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Fragiacomo, Giulio; Hansen, Ole

    2009-01-01

    This paper describes the design and fabrication of a capacitive pressure sensor that has a large capacitance signal and a high sensitivity of 76 pF/bar in touch mode operation. Due to the large signal, problems with parasitic capacitances are avoided and hence it is possible to integrate the sensor...

  10. Ultrahigh Temperature Capacitive Pressure Sensor

    Science.gov (United States)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  11. Tides in Close Binary Systems

    Science.gov (United States)

    Burkart, Joshua

    2014-09-01

    We consider three aspects of tidal interactions in close binary systems. 1) We first develop a framework for predicting and interpreting photometric observations of eccentric binaries, which we term tidal asteroseismology. In such systems, the Fourier transform of the observed lightcurve is expected to consist of pulsations at harmonics of the orbital frequency. We use linear stellar perturbation theory to predict the expected pulsation amplitude spectra. Our numerical model does not assume adiabaticity, and accounts for stellar rotation in the traditional approximation. We apply our model to the recently discovered Kepler system KOI-54, a 42-day face-on stellar binary with e=0.83. Our modeling yields pulsation spectra that are semi-quantitatively consistent with observations of KOI-54. KOI-54's spectrum also contains several nonharmonic pulsations, which can be explained by nonlinear three-mode coupling. 2) We next consider the situation of a white dwarf (WD) binary inspiraling due to the emission of gravitational waves. We show that resonance locks, previously considered in binaries with an early-type star, occur universally in WD binaries. In a resonance lock, the orbital and spin frequencies evolve in lockstep, so that the tidal forcing frequency is approximately constant and a particular normal mode remains resonant, producing efficient tidal dissipation and nearly synchronous rotation. We derive analytic formulas for the tidal quality factor and tidal heating rate during a g-mode resonance lock, and verify our results numerically. We apply our analysis to the 13-minute double-WD binary J0651, and show that our predictions are roughly consistent with observations. 3) Lastly, we examine the general dynamics of resonance locking in more detail. Previous analyses of resonance locking, including my own earlier work, invoke the adiabatic (a.k.a. Lorentzian) approximation for the mode amplitude, valid only in the limit of relatively strong mode damping. We relax

  12. Binary Masking & Speech Intelligibility

    DEFF Research Database (Denmark)

    Boldt, Jesper

    experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined ideal binary mask is evaluated using hearing impaired listeners, and a novel binary mask -- the target...... binary mask -- is introduced. The target binary mask shows the same substantial increase in intelligibility as the ideal binary mask and is proposed as a new reference for binary masking. In the category of real-life applications, two new methods are proposed: a method for estimation of the ideal binary...... mask using a directional system and a method for correcting errors in the target binary mask. The last part of the thesis, proposes a new method for objective evaluation of speech intelligibility....

  13. Characterization of Textile-Insulated Capacitive Biosensors

    Science.gov (United States)

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  14. Energy-Efficient Capacitive-Sensor Interfaces

    NARCIS (Netherlands)

    Tan, Z.

    2013-01-01

    This thesis describes the theory, design and realization of energy-efficient capacitive-sensor interfaces that are dedicated to energy-constrained applications. The goal of this work is to explore energy-efficient capacitive-sensor interface design techniques both at the system and the circuit

  15. Capacitive Measurement Of Gaps Between Accelerator Grids

    Science.gov (United States)

    Brophy, John R.; Garner, Charles E.

    1994-01-01

    Tedious mechanical and optical measurement techniques no longer needed. Two techniques involing simple measurements of capacitance provides straightforward indications of distance between two closely spaced perforated electrodes in ion-accelerator apparatus. Capacitive measurement techniques implemented easily at both ambient and operating temperatures, and involve less handling of grids.

  16. Characterization of Textile-Insulated Capacitive Biosensors.

    Science.gov (United States)

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-03-12

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test.

  17. Novel RF-MEMS capacitive switching structures

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, Henricus V.; Fiorini, P.; De Raedt, W.; Tilmans, H.A.C.

    2002-01-01

    This paper reports on novel RF-MEMS capacitive switching devices implementing an electrically floating metal layer covering the dielectric to ensure intimate contact with the bridge in the down state. This results in an optimal switch down capacitance and allows optimisation of the down/up

  18. Applications of electrostatic capacitance and charging

    Science.gov (United States)

    Sandu, Titus; Boldeiu, George; Moagar-Poladian, Victor

    2013-12-01

    The capacitance of an arbitrarily shaped object is calculated with the same second-kind integral equation method used for computing static and dynamic polarizabilities. The capacitance is simply the dielectric permittivity multiplied by the area of the object and divided by the squared norm of the Neumann-Poincaré operator eigenfunction corresponding to the largest eigenvalue. The norm of this eigenfunction varies slowly with shape thus enabling the definition of two scale-invariant shape factors and perturbative calculations of capacitance. The result is extended to a special class of capacitors in which the electrodes are the equipotential surfaces generated by the equilibrium charge on the object. This extension allows analytical expressions of capacitance for confocal spheroidal capacitors and finite cylinders. Moreover, a second order formula for thin constant-thickness capacitors is given with direct applications for capacitance of membranes in living cells and of supercapacitors. For axisymmetric geometries, a fast and accurate numerical method is provided.

  19. Design of a Capacitive SOI Micromachined Accelerometer

    Directory of Open Access Journals (Sweden)

    Wenjing ZHAO

    2009-04-01

    Full Text Available A capacitive micromachined accelerometer based on the technique of silicon on insulator, is designed in this paper. The proposed microaccelerometer is designed to obtain good electrical performance and radioresistance in order to make the accelerometer integrate with the CMOS chip. The performance of the capacitive SOI microaccelerometer is calculated to determine its linear capacitance change and achieves a very linear response with input acceleration after theoretical analysis. The relationship between acceleration and output voltage is discussed. The mechanical performance of the capacitive microaccelerometer was simulated to obtain optimum design parameters and structural characteristics by the finite element method. The results show that capacitance sensitivity, range, resolution characteristic indexes and so on respectively through the simulation and theoretical analysis. Finally the fabrication process for the SOI technique suitable for batch fabrication is proposed.

  20. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    Science.gov (United States)

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  1. Solving a Binary Puzzle

    NARCIS (Netherlands)

    P.H. Utomo (Putranto); R.H. Makarim (Rusydi)

    2017-01-01

    textabstractA Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set (Formula presented.). Let (Formula presented.) be an even integer, a solved binary puzzle is an (Formula presented.) binary array that satisfies the following conditions: (1) no three consecutive ones and

  2. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  3. Characterization of Capacitive Comb-finger MEMS Accelerometers

    OpenAIRE

    Joshi, Aaditi; Redkar, Sangram; Sugar, Thomas

    2015-01-01

    This paper discusses various methods for testing the performance of MEMS capacitive comb-finger accelerometers manufactured by Sandia National Laboratories. The use of Capacitive MEMS devices requires complex circuits for measurement of capacitance. Sandia MEMS accelerometer's capacitance changes in a very small femto-farad (fF) range. The performance of accelerometer is tested using Analog Devices AD7747 sigma-delta capacitance to digital converter. The response of a MEMS capacitive accelero...

  4. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    Directory of Open Access Journals (Sweden)

    Aiping Zeng

    2017-01-01

    Full Text Available The plasma treatment on commercial active carbon (AC was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI.

  5. Physical Origin of Transient Negative Capacitance in a Ferroelectric Capacitor

    Science.gov (United States)

    Chang, Sou-Chi; Avci, Uygar E.; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2018-01-01

    Transient negative differential capacitance, the dynamic reversal of transient capacitance in an electrical circuit, is of highly technological and scientific interest since it probes the foundation of ferroelectricity. We study a resistor-ferroelectric capacitor (R -FEC) network through a series of coupled equations based on Kirchhoff's law, electrostatics, and Landau theory. We show that transient negative capacitance (NC) in a R -FEC circuit originates from the mismatch in switching rate between the free charge on the metal plate and the bound charge in a ferroelectric (FE) capacitor during the polarization switching. This transient free charge-polarization mismatch is driven by the negative curvature of the FE free-energy landscape, and it is also analytically shown that a free-energy profile with a negative curvature is the only physical system that can describe transient NC in a R -FEC circuit. Furthermore, transient NC induced by the free charge-polarization mismatch is justified by its dependence on both external resistance and the intrinsic FE viscosity coefficient. The depolarization effect on FE capacitors emphasizes the importance of negative curvature to transient NC and also implies that transient and steady-state NC cannot be observed in a FE capacitor simultaneously. Finally, using the transient NC measurements, a procedure to experimentally determine the viscosity coefficient is presented to provide more insight into the relation between transient NC and the FE free-energy profile.

  6. Electrical characterization of a capacitive rf plasma sheath.

    Science.gov (United States)

    Gahan, D; Hopkins, M B

    2007-01-01

    The authors report on an experimental system designed to investigate and characterize capacitive radio frequency (rf) sheaths. An electrode mounted in an inductive plasma reactor and driven with separate rf and direct current (dc) power sources is used. The advantage of this design is that the electrode sheath is decoupled from the plasma parameters. This allows detailed investigation of the sheath with different bias conditions without perturbing the bulk plasma parameters. Power coupled to ions and electrons through the sheath, at low pressure, is investigated and a method to determine the electron conduction current to the electrode, using the external dc bias, is presented.

  7. Capacitive acoustic wave detector and method of using same

    Science.gov (United States)

    Yost, William T. (Inventor)

    1994-01-01

    A capacitor having two substantially parallel conductive faces is acoustically coupled to a conductive sample end such that the sample face is one end of the capacitor. A non-contacting dielectric may serve as a spacer between the two conductive plates. The formed capacitor is connected to an LC oscillator circuit such as a Hartley oscillator circuit producing an output frequency which is a function of the capacitor spacing. This capacitance oscillates as the sample end coating is oscillated by an acoustic wave generated in the sample by a transmitting transducer. The electrical output can serve as an absolute indicator of acoustic wave displacement.

  8. Anatomical distribution of voltage-dependent membrane capacitance in frog skeletal muscle fibers.

    Science.gov (United States)

    Huang, C L; Peachey, L D

    1989-03-01

    Components of nonlinear capacitance, or charge movement, were localized in the membranes of frog skeletal muscle fibers by studying the effect of 'detubulation' resulting from sudden withdrawal of glycerol from a glycerol-hypertonic solution in which the muscles had been immersed. Linear capacitance was evaluated from the integral of the transient current elicited by imposed voltage clamp steps near the holding potential using bathing solutions that minimized tubular voltage attenuation. The dependence of linear membrane capacitance on fiber diameter in intact fibers was consistent with surface and tubular capacitances and a term attributable to the capacitance of the fiber end. A reduction in this dependence in detubulated fibers suggested that sudden glycerol withdrawal isolated between 75 and 100% of the transverse tubules from the fiber surface. Glycerol withdrawal in two stages did not cause appreciable detubulation. Such glycerol-treated but not detubulated fibers were used as controls. Detubulation reduced delayed (q gamma) charging currents to an extent not explicable simply in terms of tubular conduction delays. Nonlinear membrane capacitance measured at different voltages was expressed normalized to accessible linear fiber membrane capacitance. In control fibers it was strongly voltage dependent. Both the magnitude and steepness of the function were markedly reduced by adding tetracaine, which removed a component in agreement with earlier reports for q gamma charge. In contrast, detubulated fibers had nonlinear capacitances resembling those of q beta charge, and were not affected by adding tetracaine. These findings are discussed in terms of a preferential localization of tetracaine-sensitive (q gamma) charge in transverse tubule membrane, in contrast to a more even distribution of the tetracaine-resistant (q beta) charge in both transverse tubule and surface membranes. These results suggest that q beta and q gamma are due to different molecules and that

  9. PHOEBE: PHysics Of Eclipsing BinariEs

    Science.gov (United States)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  10. A 45.8fJ/Step, energy-efficient, differential SAR capacitance-to-digital converter for capacitive pressure sensing

    KAUST Repository

    Alhoshany, Abdulaziz

    2016-05-03

    An energy-efficient readout circuit for a capacitive sensor is presented. The capacitive sensor is digitized by a 12-bit energy efficient capacitance-to-digital converter (CDC) that is based on a differential successive-approximation architecture. This CDC meets extremely low power requirements by using an operational transconductance amplifier (OTA) that is based on a current-starved inverter. It uses a charge-redistribution DAC that involves coarse-fine architecture. We split the DAC into a coarse-DAC and a fine-DAC to allow a wide capacitance range in a compact area. It covers a wide range of capacitance of 16.14 pF with a 4.5 fF absolute resolution. An analog comparator is implemented by cross-coupling two 3-input NAND gates to enable power and area efficient operation. The prototype CDC was fabricated using a standard 180 nm CMOS technology. The 12-bit CDC has a measurement time of 42.5 μs, and consumes 3.54 μW and 0.29 μW from analog and digital supplies, respectively. This corresponds to a state-of-the-art figure-of-merit (FoM) of 45.8 fJ/conversion-step. © 2016 Elsevier B.V. All rights reserved.

  11. Reducing the capacitance of piezoelectric film sensors

    Energy Technology Data Exchange (ETDEWEB)

    González, Martín G., E-mail: mggonza@fi.uba.ar [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQB Buenos Aires (Argentina); Sorichetti, Patricio A.; Santiago, Guillermo D. [Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2016-04-15

    We present a novel design for large area, wideband, polymer piezoelectric sensor with low capacitance. The large area allows better spatial resolution in applications such as photoacoustic tomography and the reduced capacitance eases the design of fast transimpedance amplifiers. The metalized piezoelectric polymer thin film is segmented into N sections, electrically connected in series. In this way, the total capacitance is reduced by a factor 1/N{sup 2}, whereas the mechanical response and the active area of the sensor are not modified. We show the construction details for a two-section sensor, together with the impedance spectroscopy and impulse response experimental results that validate the design.

  12. A capacitive soil moisture sensor

    Science.gov (United States)

    Eller, H.; Denoth, A.

    1996-11-01

    A new sensor for field measurements of the water content of natural soils has been developed. The measurement quantity is the complex permittivity at a frequency of 32 MHz; it is derived by an impedance measurement with a capacitive sensor of a fork-like geometry, which was found to the best geometry for field use. The impedance is measured with a twin T-bridge which has been optimized to cover the extremely large range of permittivities of natural soils. An analysis of measured soil permittivities showed a dominant influence of liquid water content on dielectric permittivity, whereas soil-specific parameters such as grain-size distribution, chemical composition and bulk density have only a negligible influence at this comparable high measurement frequency. The loss factor, however, depends strongly on both the type of soil and the water content. In addition, comparative studies with commonly used measurement methods such as the thermogravimetric method and time domain reflectometry showed satisfactory agreement. As an application of practical interest, a field measurement of a vertical water content distribution at a snow-soil interface is presented.

  13. Resistive and Capacitive Based Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Winncy Y. Du

    2008-04-01

    Full Text Available Resistive and capacitive (RC sensors are the most commonly used sensors. Their applications span homeland security, industry, environment, space, traffic control, home automation, aviation, and medicine. More than 30% of modern sensors are direct or indirect applications of the RC sensing principles. This paper reviews resistive and capacitive sensing technologies. The physical principles of resistive sensors are governed by several important laws and phenomena such as Ohm’s Law, Wiedemann-Franz Law; Photoconductive-, Piezoresistive-, and Thermoresistive Effects. The applications of these principles are presented through a variety of examples including accelerometers, flame detectors, pressure/flow rate sensors, RTDs, hygristors, chemiresistors, and bio-impedance sensors. The capacitive sensors are described through their three configurations: parallel (flat, cylindrical (coaxial, and spherical (concentric. Each configuration is discussed with respect to its geometric structure, function, and application in various sensor designs. Capacitance sensor arrays are also presented in the paper.

  14. Quantum capacitance of double-layer graphene

    Science.gov (United States)

    Parhizgar, Fariborz; Qaiumzadeh, Alireza; Asgari, Reza

    2017-08-01

    We study the ground-state properties of a double-layer graphene system with the Coulomb interlayer electron-electron interaction modeled within the random-phase approximation. We first obtain an expression of the quantum capacitance of a two-layer system. In addition, we calculate the many-body exchange-correlation energy and quantum capacitance of the hybrid double-layer graphene system at zero temperature. We show an enhancement of the majority density layer thermodynamic density of states owing to an increasing interlayer interaction between two layers near the Dirac point. The quantum capacitance near the neutrality point behaves like a square root of the total density α √{n } where the coefficient α decreases by increasing the charge-density imbalance between two layers. Furthermore, we show that the quantum capacitance changes linearly by the gate voltage. Our results can be verified by current experiments.

  15. Capacitive measurement of ECG for ubiquitous healthcare.

    Science.gov (United States)

    Lim, Yong Gyu; Lee, Jeong Su; Lee, Seung Min; Lee, Hong Ji; Park, Kwang Suk

    2014-11-01

    The technology for measuring ECG using capacitive electrodes and its applications are reviewed. Capacitive electrodes are built with a high-input-impedance preamplifier and a shield on their rear side. Guarding and driving ground are used to reduce noise. An analysis of the intrinsic noise shows that the thermal noise caused by the resistance in the preamplifier is the dominant factor of the intrinsic noise. A fully non-contact capacitive measurement has been developed using capacitive grounding and applied to a non-intrusive ECG measurement in daily life. Many ongoing studies are examining how to enhance the quality and ease of applying electrodes, thus extending their applications in ubiquitous healthcare from attached-on-object measurements to wearable or EEG measurements.

  16. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  17. Soil moisture determinations using capacitance probe methodology

    National Research Council Canada - National Science Library

    Atkins, Ronald T

    1998-01-01

    ...) systems is a relatively new approach to soil moisture measurements. A unique probe assembly and a readout device that measures voltage drop and phase shift were developed and used for direct capacitance measurements...

  18. Complementary surface charge for enhanced capacitive deionization

    NARCIS (Netherlands)

    Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J.

    2016-01-01

    Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI

  19. Interacting binary stars

    CERN Document Server

    Sahade, Jorge; Ter Haar, D

    1978-01-01

    Interacting Binary Stars deals with the development, ideas, and problems in the study of interacting binary stars. The book consolidates the information that is scattered over many publications and papers and gives an account of important discoveries with relevant historical background. Chapters are devoted to the presentation and discussion of the different facets of the field, such as historical account of the development in the field of study of binary stars; the Roche equipotential surfaces; methods and techniques in space astronomy; and enumeration of binary star systems that are studied

  20. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation

    NARCIS (Netherlands)

    Porada, S.; Hamelers, H.V.M.; Bryjak, M.; Presser, V.; Biesheuvel, P.M.; Weingarth, D.

    2014-01-01

    Capacitive technologies, such as capacitive deionization and energy harvesting based on mixing energy (“capmix” and “CO2 energy”), are characterized by intermittent operation: phases of ion electrosorption from the water are followed by system regeneration. From a system application point of view,

  1. Massive binary evolution

    Science.gov (United States)

    Podsiadlowski, Philipp

    2010-03-01

    Understanding the evolution of massive binaries is essential for understanding many observed classes of stellar systems, ranging from Algols to X-ray binaries, recycled pulsars, double-neutron-star systems and quite possibly gamma-ray burst sources. Here recent progress and some of the main remaining uncertainties are being reviewed, particularly emphasizing stellar mergers and their possible implications for supernovae like SN 1987A, Thorne-Żytkow objects and η Car-like eruptions. It is shown how binary evolution can affect both the envelope and the core structure of a massive star, explaining - at least in part - the observed diversity of core-collapse supernovae and potentially producing different kick distributions for systems in binaries. Various ideas linking gamma-ray bursts to massive binaries are also being discussed.

  2. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  3. Capacitive facial movement detection for human-computer interaction to click by frowning and lifting eyebrows: assistive technology.

    Science.gov (United States)

    Rantanen, Ville; Niemenlehto, Pekka-Henrik; Verho, Jarmo; Lekkala, Jukka

    2010-01-01

    A capacitive facial movement detection method designed for human-computer interaction is presented. Some point-and-click interfaces use facial electromyography for clicking. The presented method provides a contactless alternative. Electrodes with no galvanic coupling to the face are used to form electric fields. Changes in the electric fields due to facial movements are detected by measuring capacitances between the electrodes. A prototype device for measuring a capacitance signal affected by frowning and lifting eyebrows was constructed. A commercial integrated circuit for capacitive touch sensors is used in the measurement. The applied movement detection algorithm uses an adaptive approach to provide operation capability in noisy and dynamic environments. Experimentation with 10 test subjects proved that, under controlled circumstances, the movements are detected with good efficiency, but characterizing the movements into frowns and eyebrow lifts is more problematic. Integration with a two-dimensional (2D) pointing solution and further experiments are still required.

  4. Electrical Capacitance Volume Tomography with High-Contrast Dielectrics

    Science.gov (United States)

    Nurge, Mark

    2010-01-01

    The Electrical Capacitance Volume Tomography (ECVT) system has been designed to complement the tools created to sense the presence of water in nonconductive spacecraft materials, by helping to not only find the approximate location of moisture but also its quantity and depth. The ECVT system has been created for use with a new image reconstruction algorithm capable of imaging high-contrast dielectric distributions. Rather than relying solely on mutual capacitance readings as is done in traditional electrical capacitance tomography applications, this method reconstructs high-resolution images using only the self-capacitance measurements. The image reconstruction method assumes that the material under inspection consists of a binary dielectric distribution, with either a high relative dielectric value representing the water or a low dielectric value for the background material. By constraining the unknown dielectric material to one of two values, the inverse math problem that must be solved to generate the image is no longer ill-determined. The image resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. The cuboid geometry of the system has two parallel planes of 16 conductors arranged in a 4 4 pattern. The electrode geometry consists of parallel planes of copper conductors, connected through custom-built switch electronics, to a commercially available capacitance to digital converter. The figure shows two 4 4 arrays of electrodes milled from square sections of copper-clad circuit-board material and mounted on two pieces of glass-filled plastic backing, which were cut to approximately square shapes, 10 cm on a side. Each electrode is placed on 2.0-cm centers. The parallel arrays were mounted with the electrode arrays approximately 3 cm apart. The open ends

  5. A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers

    KAUST Repository

    Omran, Hesham

    2016-11-16

    A 12 - bit energy-efficient capacitive sensor interface circuit that fully relies on capacitance-domain successive approximation (SAR) technique is presented. Analysis shows that for SAR capacitance-to-digital converter (CDC) comparator offset voltage will result in parasitic-dependent conversion errors, which necessitates using an offset cancellation technique. Based on the presented analysis, a SAR CDC that uses a chain of cascode inverter-based amplifiers with near-threshold biasing is proposed to provide robust, energy-efficient, and fast operation. A hybrid coarse-fine capacitive digital-to-analog converter (CapDAC) achieves 11.7 - bit effective resolution, and provides 83% area saving compared to a conventional binary weighted implementation. The prototype fabricated in a 0.18μm CMOS technology is experimentally verified using MEMS capacitive pressure sensor. Experimental results show an energy efficiency figure-of-merit (FoM) of 33 f J/Step which outperforms the state-of-the-art. The CDC output is insensitive to analog references; thus, a very low temperature sensitivity of 2.3 ppm/°C is achieved without the need for calibration.

  6. Carbon nanofiber supercapacitors with large areal capacitances

    KAUST Repository

    McDonough, James R.

    2009-01-01

    We develop supercapacitor (SC) devices with large per-area capacitances by utilizing three-dimensional (3D) porous substrates. Carbon nanofibers (CNFs) functioning as active SC electrodes are grown on 3D nickel foam. The 3D porous substrates facilitate a mass loading of active electrodes and per-area capacitance as large as 60 mg/ cm2 and 1.2 F/ cm2, respectively. We optimize SC performance by developing an annealing-free CNF growth process that minimizes undesirable nickel carbide formation. Superior per-area capacitances described here suggest that 3D porous substrates are useful in various energy storage devices in which per-area performance is critical. © 2009 American Institute of Physics.

  7. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  8. The Pyramidal Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal...... route is defined as a route on which the vehicle first visits customers in increasing order of customer index, and on the remaining part of the route visits customers in decreasing order of customer index. Provided that customers are indexed in nondecreasing order of distance from the depot, the shape...

  9. The pyramidal capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2010-01-01

    This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal...... route is defined as a route on which the vehicle first visits customers in increasing order of customer index, and on the remaining part of the route visits customers in decreasing order of customer index. Moreover, this paper develops an exact branch-and-cut-and-price (BCP) algorithm for the PCVRP...

  10. Design and simulation of MEMS capacitive magnetometer

    Science.gov (United States)

    Jyoti, Aditi, Tripathi, C. C.; Gopal, Ram

    2016-04-01

    This paper presents the design and simulation of a MEMS Capacitive Magnetometer using FEM (Finite Element Method) tool COMSOL Multiphysics 4.3b and results from this simulation are closely matched with analytically calculated results. A comb drive structure is used for actuation purpose which operates at resonant frequency of device is 11.791 kHz to achieve maximum displacement. A magnetic field in z-axis can be detected by this comb drive structure. Quality factor of MEMS capacitive magnetometer obtained is 18 and it has good linear response in the magnetic field range of 100 µT.

  11. Understanding the Capacitance of PEDOT:PSS

    DEFF Research Database (Denmark)

    Volkov, Anton V.; Wijeratne, Kosala; Mitraka, Evangelia

    2017-01-01

    -converters. In spite of its long-term use as a material for storage and transport of charges, the fundamentals of its bulk capacitance remain poorly understood. Generally, charge storage in supercapacitors is due to formation of electrical double layers or redox reactions, and it is widely accepted that PEDOT......:PSS belongs to the latter category. Herein, experimental evidence and theoretical modeling results are reported that significantly depart from this commonly accepted picture. By applying a two-phase, 2D modeling approach it is demonstrated that the major contribution to the capacitance of the two-phase PEDOT...

  12. Capacitive Behavior of Single Gallium Oxide Nanobelt.

    Science.gov (United States)

    Cai, Haitao; Liu, Hang; Zhu, Huichao; Shao, Pai; Hou, Changmin

    2015-08-17

    In this research, monocrystalline gallium oxide (Ga₂O₃) nanobelts were synthesized through oxidation of metal gallium at high temperature. An electronic device, based on an individual Ga₂O₃ nanobelt on Pt interdigital electrodes (IDEs), was fabricated to investigate the electrical characteristics of the Ga2O3 nanobelt in a dry atmosphere at room temperature. The current-voltage (I-V) and I/V-t characteristics show the capacitive behavior of the Ga₂O₃ nanobelt, indicating the existence of capacitive elements in the Pt/Ga₂O₃/Pt structure.

  13. BINARY MINOR PLANETS

    Data.gov (United States)

    National Aeronautics and Space Administration — The data set lists orbital and physical properties for well-observed or suspected binary/multiple minor planets including the Pluto system, compiled from the...

  14. Binary and Millisecond Pulsars

    OpenAIRE

    Lorimer, D. R.

    2005-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic b...

  15. Astrophysics of white dwarf binaries

    NARCIS (Netherlands)

    Nelemans, G.A.

    2006-01-01

    White dwarf binaries are the most common compact binaries in the Universe and are especially important for low-frequency gravitational wave detectors such as LISA. There are a number of open questions about binary evolution and the Galactic population of white dwarf binaries that can be solved using

  16. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2010-01-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a

  17. Performance relations in Capacitive Deionization systems

    NARCIS (Netherlands)

    Limpt, van B.

    2010-01-01

    Capacitive Deionization (CDI) is a relatively new deionization technology based on the temporary storage of ions on an electrically charged surface. By directing a flow between two oppositely charged surfaces, negatively charged ions will adsorb onto the positively charged surface, and positively

  18. Inside-out electrical capacitance tomography

    DEFF Research Database (Denmark)

    Kjærsgaard-Rasmussen, Jimmy; Meyer, Knud Erik

    2011-01-01

    ; allowing the inside-out sensor to move inside the outer tube. A test sensor was constructed and capacitances were measured using the charge transfer technique. Sensitivity matrices for the inside-out sensor were calculated with a finite element approach and some special issues with the sensitivity matrices...

  19. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2011-01-01

    We study a location-routing problem in the context of capacitated vehicle routing. The input to k-LocVRP is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so t...

  20. Knowledge management and intellectual capacitation through ...

    African Journals Online (AJOL)

    Knowledge management and intellectual capacitation through patent and technology transfer. ... The article commences with many attempts made by writers to give precise definition for an 'invention', which is a key requirement for patentability, but no single definition has been accepted by all and sundry, as a result, each ...

  1. Comparison of gate capacitance extraction methodologies

    NARCIS (Netherlands)

    Kazmi, S.N.R.; Schmitz, Jurriaan

    2008-01-01

    In recent years, many new capacitance-voltage measurement approaches have been presented in literature. New approaches became necessary with the rapidly increasing gate current density in newer CMOS generations. Here we present a simulation platform using Silvaco software, to describe the full chain

  2. Thermodynamic cycle analysis for capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.

    2009-01-01

    Capacitive deionization (CDI) is an ion removal technology based on temporarily storing ions in the polarization layers of two oppositely positioned electrodes. Here we present a thermodynamic model for the minimum work required for ion separation in the fully reversible case by describing the ionic

  3. Analysis of new actuation methods for capacitive shunt micro switchs

    Directory of Open Access Journals (Sweden)

    Ben Sassi S

    2016-01-01

    Full Text Available This work investigates the use of new actuation methods in capacitive shunt micro switches. We formulate the coupled electromechanical problem by taking into account the fringing effects and nonlinearities due to mid-plane stretching. Static analysis is undertaken using the Differential Quadrature Method (DQM to obtain the pull in voltage which is verified by means of the Finite Element Method (FEM. Based on Galerkin approximation, a single degree of freedom dynamic model is developed and limit-cycle solutions are calculated using the Finite Difference Method (FDM. In addition to the harmonic waveform signal, we apply novel actuation waveform signals to simulate the frequency-response. We show that, biased signals, using a square wave signal reduces significantly the pull-in voltage compared to the triangular and harmonic signal . Finally, these results are validated experimentally.

  4. Electron heating in low pressure capacitive discharges revisited

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  5. Quantum capacitance of the armchair-edge graphene nanoribbon

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Quantum capacitance of the ... Abstract. The quantum capacitance, an important parameter in the design of nanoscale devices, is derived for armchair-edge single-layer graphene nanoribbon with semiconducting property. The quantum capacitance ...

  6. Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells

    NARCIS (Netherlands)

    Deeke, A.; Sleutels, T.H.J.A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    We developed an integrated system for storage of renewable electricity in a microbial fuel cell (MFC). The system contained a capacitive electrode that was inserted into the anodic compartment of an MFC to form a capacitive bioanode. This capacitive bioanode was compared with a noncapacitive

  7. Electrolyte gated TFT biosensors based on the Donnan's capacitance of anchored biomolecules

    Science.gov (United States)

    Manoli, Kyriaki; Palazzo, Gerardo; Macchia, Eleonora; Tiwari, Amber; Di Franco, Cinzia; Scamarcio, Gaetano; Favia, Pietro; Mallardi, Antonia; Torsi, Luisa

    2017-08-01

    Biodetection using electrolyte gated field effect transistors has been mainly correlated to charge modulated transduction. Therefore, such platforms are designed and studied for limited applications involving relatively small charged species and much care is taken in the operating conditions particularly pH and salt concentration (ionic strength). However, there are several reports suggesting that the device conductance can also be very sensitive towards variations in the capacitance coupling. Understanding the sensing mechanism is important for further exploitation of these promising sensors in broader range of applications. In this paper, we present a thorough and in depth study of a multilayer protein system coupled to an electrolyte gated transistor. It is demonstrated that detection associated to a binding event taking place at a distance of 30 nm far from the organic semiconductor-electrolyte interface is possible and the device conductance is dominated by Donnan's capacitance of anchored biomolecules.

  8. Numerical simulation and experiment investigating the performance of a capacitance sensor measuring the humidity of wet steam

    Science.gov (United States)

    Lipeng, Du; Ruifeng, Tian; Pengfei, Zhang; Zhongning, Sun

    2011-12-01

    The humidity of steam is an important parameter, but its exact measurement is difficult. The use of capacitance is a novel measurement method. On the basis of the theory of dielectric polarization and hydrodynamics and applying FLUENT UDF language, the coupling of the steam flow field and electric field within the capacitance sensor are investigated through numerical simulation. The standard k-e model, scalable wall function and SIMPLE (Semi-Implicit Method for Pressure Linked Equations) are used in the research. Additionally, steam humidity is measured according to capacitance in an experiment. The results show that the water molecule is polarized; polarized charge appears near the wall of the flow field; the radial velocity depends on whether there is an electric field within the capacitance sensor, with the dependence being greatest near the outermost board; and the electric field intensity near the electrode board is less when there is no flow field. The numerical simulation agrees with the results of the experiment. The capacitance does not depend on a change in steam flow, and the capacitance of the sensor increases linearly with humidity.

  9. A Novel Single-Excitation Capacitive Angular Position Sensor Design

    Science.gov (United States)

    Hou, Bo; Zhou, Bin; Song, Mingliang; Lin, Zhihui; Zhang, Rong

    2016-01-01

    This paper presents a high-precision capacitive angular position sensor (CAPS). The CAPS is designed to be excited by a single voltage to eliminate the matching errors of multi-excitations, and it is mainly composed of excitation electrodes, coupling electrodes, petal-form sensitive electrodes and a set of collection electrodes. A sinusoidal voltage is applied on the excitation electrodes, then the voltage couples to the coupling electrodes and sensitive electrodes without contact. The sensitive electrodes together with the set of collection electrodes encode the angular position to amplitude-modulated signals, and in order to increase the scale factor, the sensitive electrodes are patterned in the shape of petal-form sinusoidal circles. By utilizing a resolver demodulation method, the amplitude-modulated signals are digitally decoded to get the angular position. A prototype of the CAPS is fabricated and tested. The measurement results show that the accuracy of the sensor is 0.0036°, the resolution is 0.0009° and the nonlinearity over the full range is 0.008° (after compensation), indicating that the CAPS has great potential to be applied in high-precision applications with a low cost. PMID:27483278

  10. Skewed Binary Search Trees

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Moruz, Gabriel

    2006-01-01

    It is well-known that to minimize the number of comparisons a binary search tree should be perfectly balanced. Previous work has shown that a dominating factor over the running time for a search is the number of cache faults performed, and that an appropriate memory layout of a binary search tree...... can reduce the number of cache faults by several hundred percent. Motivated by the fact that during a search branching to the left or right at a node does not necessarily have the same cost, e.g. because of branch prediction schemes, we in this paper study the class of skewed binary search trees....... For all nodes in a skewed binary search tree the ratio between the size of the left subtree and the size of the tree is a fixed constant (a ratio of 1/2 gives perfect balanced trees). In this paper we present an experimental study of various memory layouts of static skewed binary search trees, where each...

  11. Binary Neutron Star Mergers.

    Science.gov (United States)

    Faber, Joshua A; Rasio, Frederic A

    2012-01-01

    We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-)hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  12. Binary Neutron Star Mergers

    Directory of Open Access Journals (Sweden)

    Joshua A. Faber

    2012-07-01

    Full Text Available We review the current status of studies of the coalescence of binary neutron star systems. We begin with a discussion of the formation channels of merging binaries and we discuss the most recent theoretical predictions for merger rates. Next, we turn to the quasi-equilibrium formalisms that are used to study binaries prior to the merger phase and to generate initial data for fully dynamical simulations. The quasi-equilibrium approximation has played a key role in developing our understanding of the physics of binary coalescence and, in particular, of the orbital instability processes that can drive binaries to merger at the end of their lifetimes. We then turn to the numerical techniques used in dynamical simulations, including relativistic formalisms, (magneto-hydrodynamics, gravitational-wave extraction techniques, and nuclear microphysics treatments. This is followed by a summary of the simulations performed across the field to date, including the most recent results from both fully relativistic and microphysically detailed simulations. Finally, we discuss the likely directions for the field as we transition from the first to the second generation of gravitational-wave interferometers and while supercomputers reach the petascale frontier.

  13. Binary and Millisecond Pulsars.

    Science.gov (United States)

    Lorimer, Duncan R

    2008-01-01

    We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5 M⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44) orbit around an unevolved companion. Supplementary material is available for this article at 10.12942/lrr-2008-8.

  14. Modelling binary data

    CERN Document Server

    Collett, David

    2002-01-01

    INTRODUCTION Some Examples The Scope of this Book Use of Statistical Software STATISTICAL INFERENCE FOR BINARY DATA The Binomial Distribution Inference about the Success Probability Comparison of Two Proportions Comparison of Two or More Proportions MODELS FOR BINARY AND BINOMIAL DATA Statistical Modelling Linear Models Methods of Estimation Fitting Linear Models to Binomial Data Models for Binomial Response Data The Linear Logistic Model Fitting the Linear Logistic Model to Binomial Data Goodness of Fit of a Linear Logistic Model Comparing Linear Logistic Models Linear Trend in Proportions Comparing Stimulus-Response Relationships Non-Convergence and Overfitting Some other Goodness of Fit Statistics Strategy for Model Selection Predicting a Binary Response Probability BIOASSAY AND SOME OTHER APPLICATIONS The Tolerance Distribution Estimating an Effective Dose Relative Potency Natural Response Non-Linear Logistic Regression Models Applications of the Complementary Log-Log Model MODEL CHECKING Definition of Re...

  15. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2008-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1800. There are now 83 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 140 pulsars in 26 of the Galactic globular clusters. Recent highlights include the discovery of the young relativistic binary system PSR J1906+0746, a rejuvination in globular cluster pulsar research including growing numbers of pulsars with masses in excess of 1.5M_⊙, a precise measurement of relativistic spin precession in the double pulsar system and a Galactic millisecond pulsar in an eccentric (e = 0.44 orbit around an unevolved companion.

  16. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Duncan R. Lorimer

    1998-09-01

    Full Text Available Our knowledge of binary and millisecond pulsars has greatly increased in recent years. This is largely due to the success of large-area surveys which have brought the known population of such systems in the Galactic disk to around 50. As well as being interesting as a population of astronomical sources, many pulsars turn out to be superb celestial clocks. In this review we summarise the main properties of binary and millisecond pulsars and highlight some of their applications to relativistic astrophysics.

  17. Binary and Millisecond Pulsars

    Directory of Open Access Journals (Sweden)

    Lorimer Duncan R.

    2005-11-01

    Full Text Available We review the main properties, demographics and applications of binary and millisecond radio pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1700. There are now 80 binary and millisecond pulsars associated with the disk of our Galaxy, and a further 103 pulsars in 24 of the Galactic globular clusters. Recent highlights have been the discovery of the first ever double pulsar system and a recent flurry of discoveries in globular clusters, in particular Terzan 5.

  18. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...... depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for k-LocVRP. In obtaining this result, we introduce a common generalization of the k-median and minimum...... spanning tree problems (called k median forest), which might be of independent interest. We give a local-search based (3+ε)-approximation algorithm for k median forest, which leads to a (12+ε)-approximation algorithm for k-LocVRP, for any constant ε>0....

  19. Capacitance Control on the Wire Production Line

    Directory of Open Access Journals (Sweden)

    Goldshtein Alexander

    2016-01-01

    Full Text Available The paper presents technical implementation of the electricalcapacitive method to perform in-process measurement of the capacitance per unit length of a single-core electric wire. The design of the electrocapacitive measuring transducer is proposed. The block diagram of the device CAP-10 developed to implement the proposed method is presented. The appearance of the device CAP-10 is showed, and its operating principle is described. It is shown that the change in water conductivity has a significant impact of the measurement result of the wire capacitance per unit length. The techniques to offset from the impact of water conductivity variation on measurement results are proposed. The technique of the device CAP-10 initial adjustment is proposed. It provides the desired function of the output signal transformation. The technique of the ‘operating’ adjustment to correct measurement results through systematic measurement error elimination is offered.

  20. Pseudocapacitive Coating for Effective Capacitive Deionization.

    Science.gov (United States)

    Li, Meng; Park, Hyung Gyu

    2018-01-24

    Capacitive deionization (CDI) features a low-cost and energy-efficient desalination approach based on electrosorption of saline ions. To enhance the salt electrosorption capacity of CDI electrodes, we coat ion-selective pseudocapacitive layers (MnO2 and Ag) onto porous carbon electrodes (activated carbon cloth) with only minimal use of a conductive additive and a polymer binder (capacitance (>300 F/g) and great cell stability (70% retention after 500 cycles). A CDI cell out of these pseudocapacitive electrodes yields as high charge efficiency as 83% and a remarkable salt adsorption capacity up to 17.8 mg/g. Our finding of outstanding CDI performance of the pseudocapacitive electrodes with no use of costly ion-exchange membranes highlights the significant role of a pseudocapacitive layer in the electrosorption process.

  1. A Versatile Prototyping System for Capacitive Sensing

    Directory of Open Access Journals (Sweden)

    Daniel HRACH

    2008-04-01

    Full Text Available This paper presents a multi-purpose and easy to handle rapid prototyping platform that has been designed for capacitive measurement systems. The core of the prototype platform is a Digital Signal Processor board that allows for the entire data acquisition, data (pre- processing and storage, and communication with any host computer. The platform is running on uCLinux operating system and features the possibility of a fast design and evaluation of capacitive sensor developments. To show the practical benefit of the prototyping platform, three exemplary applications are presented. For all applications, the platform is just plugged to the electrode structure of the sensor front-end without the need for analogue signal pre-conditioning.

  2. Compressed magnetic flux amplifier with capacitive load

    Energy Technology Data Exchange (ETDEWEB)

    Stuetzer, O.M.

    1980-03-01

    A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime.

  3. THERMAL DRIFT CHARACTERISTICS OF CAPACITIVE PRESSURE SENSORS

    OpenAIRE

    ABDELAZIZ BEDDIAF; FOUAD KERROUR; SALAH KEMOUCHE

    2016-01-01

    The capacitive pressure sensors based on silicon are characterized by their very high sensitivities and their low power consumption. Nevertheless, their thermal behavior remains more or less unpredictable because they can indicate very high thermal coefficients. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics drift. In this study, we modeled the thermal behavior of this sensors, using Finite Element Analysis (FE...

  4. Capacitive Sensors And Targets Would Measure Alignments

    Science.gov (United States)

    Jenstrom, Del T.

    1994-01-01

    Multiple capacitive sensors and active targets used to measure distance between, and relative orientation of, two objects. Sensed target signals processed and used by control systems to align objects to be joined. Shapes, sizes, and layouts of sensors and targets optimized for specific application. Particular layout of targets and sensors enables determination of relative position and orientation of two objects in all six degrees of freedom.

  5. Development of a capacitive bioimpedance measurement system

    OpenAIRE

    Gómez Abad, Daniel

    2009-01-01

    Bioelectrical impedance spectroscopy (BIS) is a well-established and non-invasive method to determine and monitor body composition. Commercially available bioelectrical impedance systems use coated hydrogel-aluminium electrodes, where the hydrogel acts as an adhesive and as an electrolytic medium. The gel/adhesive is physiologically inert over short periods. However, when used over longer periods, hydrogel-aluminium electrodes present limitations, which capacitive electrodes ma...

  6. Capacitive level meter for liquid rare gases

    Science.gov (United States)

    Sawada, R.; Kikuchi, J.; Shibamura, E.; Yamashita, M.; Yoshimura, T.

    2003-08-01

    An international project to search μ→eγ decay includes the use of a liquid xenon gamma ray detector. So, a liquid level meter working at a low temperature with low outgassing is needed and the prototype is constructed. The meter shows the liquid level by measuring the capacitance between electrodes with small intervals immersed in the liquid. The operation was successful with the estimated precision of 1 mm in RMS or better.

  7. Capacitive Structures for Gas and Biological Sensing

    KAUST Repository

    Sapsanis, Christos

    2015-04-01

    The semiconductor industry was benefited by the advances in technology in the last decades. This fact has an impact on the sensors field, where the simple transducer was evolved into smart miniaturized multi-functional microsystems. However, commercially available gas and biological sensors are mostly bulky, expensive, and power-hungry, which act as obstacles to mass use. The aim of this work is gas and biological sensing using capacitive structures. Capacitive sensors were selected due to its design simplicity, low fabrication cost, and no DC power consumption. In the first part, the dominant structure among interdigitated electrodes (IDEs), fractal curves (Peano and Hilbert) and Archimedean spiral was investigated from capacitance density perspective. The investigation consists of geometrical formula calculations, COMSOL Multiphysics simulations and cleanroom fabrication of the capacitors on a silicon substrate. Moreover, low-cost fabrication on flexible plastic PET substrate was conducted outside cleanroom with rapid prototyping using a maskless laser etching. The second part contains the humidity, Volatile Organic compounds (VOCs) and Ammonia sensing of polymers, Polyimide and Nafion, and metal-organic framework (MOF), Cu(bdc)2.xH2O using IDEs and tested in an automated gas setup for experiment control and data extraction. The last part includes the biological sensing of C - reactive protein (CRP) quantification, which is considered as a biomarker of being prone to cardiac diseases and Bovine serum albumin (BSA) protein quantification, which is used as a reference for quantifying unknown proteins.

  8. Carbon materials for chemical capacitive energy storage.

    Science.gov (United States)

    Zhai, Yunpu; Dou, Yuqian; Zhao, Dongyuan; Fulvio, Pasquale F; Mayes, Richard T; Dai, Sheng

    2011-11-09

    Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A capacitive accelerometer suitable for telemetry

    Science.gov (United States)

    Coon, G. W.

    1972-01-01

    The design and development of a miniature 0.635 cm (0.25 in.) diameter capacitive accelerometer for use in free flight wind tunnel telemetry are presented. Instruments with full scale ranges from + or - 1 to + or - 200 g were constructed, calibrated, and used in several wind tunnel telemetry projects. Flat, high frequency response from 0 to 1000 Hz or more was obtained by employing the inherent damping and stiffness in the air film surrounding the diaphragm-type spring that supports the inertial mass of the accelerometer. Design features to achieve minimum off-axis sensitivity and temperature stability are discussed, and the design requirements for use of the transducer with telemetry systems are derived. A transducer capacitance change of 0.16 pF full scale gave excellent resolution and provided a frequency deviation of 0.75 MHz for a 100 MHz FM oscillator. Although the present design of the capacitive accelerometer was optimized by using units of 0.635 cm diameter, construction of experimental accelerometers as small as 0.36 cm (0.14 in.) diameter has demonstrated the feasibility of further miniaturization.

  10. Effect of Astaxanthin on Human Sperm Capacitation

    Directory of Open Access Journals (Sweden)

    Luciana Bordin

    2013-06-01

    Full Text Available In order to be able to fertilize oocytes, human sperm must undergo a series of morphological and structural alterations, known as capacitation. It has been shown that the production of endogenous sperm reactive oxygen species (ROS plays a key role in causing cells to undergo a massive acrosome reaction (AR. Astaxanthin (Asta, a photo-protective red pigment belonging to the carotenoid family, is recognized as having anti-oxidant, anti-cancer, anti-diabetic and anti-inflammatory properties and is present in many dietary supplements. This study evaluates the effect of Asta in a capacitating buffer which induces low ROS production and low percentages of acrosome-reacted cells (ARC. Sperm cells were incubated in the presence or absence of increasing concentrations of Asta or diamide (Diam and analyzed for their ROS production, Tyr-phosphorylation (Tyr-P pattern and percentages of ARC and non-viable cells (NVC. Results show that Asta ameliorated both sperm head Tyr-P and ARC values without affecting the ROS generation curve, whereas Diam succeeded in enhancing the Tyr-P level but only of the flagellum without increasing ARC values. It is suggested that Asta can be inserted in the membrane and therefore create capacitation-like membrane alteration which allow Tyr-P of the head. Once this has occurred, AR can take place and involves a higher numbers of cells.

  11. Effect of astaxanthin on human sperm capacitation.

    Science.gov (United States)

    Donà, Gabriella; Kožuh, Ivana; Brunati, Anna Maria; Andrisani, Alessandra; Ambrosini, Guido; Bonanni, Guglielmo; Ragazzi, Eugenio; Armanini, Decio; Clari, Giulio; Bordin, Luciana

    2013-06-03

    In order to be able to fertilize oocytes, human sperm must undergo a series of morphological and structural alterations, known as capacitation. It has been shown that the production of endogenous sperm reactive oxygen species (ROS) plays a key role in causing cells to undergo a massive acrosome reaction (AR). Astaxanthin (Asta), a photo-protective red pigment belonging to the carotenoid family, is recognized as having anti-oxidant, anti-cancer, anti-diabetic and anti-inflammatory properties and is present in many dietary supplements. This study evaluates the effect of Asta in a capacitating buffer which induces low ROS production and low percentages of acrosome-reacted cells (ARC). Sperm cells were incubated in the presence or absence of increasing concentrations of Asta or diamide (Diam) and analyzed for their ROS production, Tyr-phosphorylation (Tyr-P) pattern and percentages of ARC and non-viable cells (NVC). Results show that Asta ameliorated both sperm head Tyr-P and ARC values without affecting the ROS generation curve, whereas Diam succeeded in enhancing the Tyr-P level but only of the flagellum without increasing ARC values. It is suggested that Asta can be inserted in the membrane and therefore create capacitation-like membrane alteration which allow Tyr-P of the head. Once this has occurred, AR can take place and involves a higher numbers of cells.

  12. Design of a Novel Capacitive Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Ebrahim Abbaspour-Sani

    2007-08-01

    Full Text Available A novel capacitive pressure sensor based on surface micromachining technology is proposed and simulated. The sense element is considered as a parallel plate capacitor with one electrode fixed to the substrate, and the other suspended on a polysilicon diaphragm. In the presence of an oil pressure, the silicon diaphragm is deflected downward, which also displaces the suspended electrode downward. The sensor structure is in such away that due to the suspended electrode displacement, the effective area between two plates is changed, and therefore the capacitance is changed. It must be mentioned that the effective area as well as the gap between the capacitor plates vary with the applied pressure. However, the nonlinearity due to gap variation is about 9.46%. The dimensions of the sense element are 1.5mm×1.5mm, which consists of 25 cells: in a 5 columns and 5 rows manner. The capacitance varies between the 11.455-24.72pF, when the pressure varies in the range of 4-60psi. The minimum sensitivity of this sensor is about 0.135pF/psi.

  13. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  14. Binary tense and modality

    NARCIS (Netherlands)

    Broekhuis, H.; Verkuyl, H.J

    2014-01-01

    The present paper adopts as its point of departure the claim by Te Winkel (1866) and Verkuyl (2008) that mental temporal representations are built on the basis of three binary oppositions: Present/Past, Synchronous/Posterior and Imperfect/Perfect. Te Winkel took the second opposition in terms of the

  15. Distributed Capacitive Sensor for Sample Mass Measurement

    Science.gov (United States)

    Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Manohara, Harish; Trebi-Ollennu, Ashitey

    2011-01-01

    Previous robotic sample return missions lacked in situ sample verification/ quantity measurement instruments. Therefore, the outcome of the mission remained unclear until spacecraft return. In situ sample verification systems such as this Distributed Capacitive (DisC) sensor would enable an unmanned spacecraft system to re-attempt the sample acquisition procedures until the capture of desired sample quantity is positively confirmed, thereby maximizing the prospect for scientific reward. The DisC device contains a 10-cm-diameter pressure-sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in close proximity to an opposing rigid substrate with a narrow gap. The deformation of the membrane makes the gap narrower, resulting in increased capacitance between the two parallel plates (elastic membrane and rigid substrate). C-V conversion circuits on a nearby PCB (printed circuit board) provide capacitance readout via LVDS (low-voltage differential signaling) interface. The capacitance method was chosen over other potential approaches such as the piezoelectric method because of its inherent temperature stability advantage. A reference capacitor and temperature sensor are embedded in the system to compensate for temperature effects. The pressure-sensitive membranes are aluminum 6061, stainless steel (SUS) 403, and metal-coated polyimide plates. The thicknesses of these membranes range from 250 to 500 m. The rigid substrate is made with a 1- to 2-mm-thick wafer of one of the following materials depending on the application requirements glass, silicon, polyimide, PCB substrate. The glass substrate is fabricated by a microelectromechanical systems (MEMS) fabrication approach. Several concentric electrode patterns are printed on the substrate. The initial gap between the two plates, 100 m, is defined by a silicon spacer ring that is anodically bonded to the glass

  16. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    Science.gov (United States)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2017-02-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  17. Astrometric Binaries: White Dwarfs?

    Science.gov (United States)

    Oliversen, Nancy A.

    We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.

  18. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  19. Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.

    Science.gov (United States)

    Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel

    2017-04-01

    Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.

  20. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation.

    Science.gov (United States)

    Chi, Yu M; Cauwenberghs, Gert

    2009-01-01

    A non-contact EEG electrode with input capacitance neutralization and common-mode noise suppression circuits is presented. The coin sized sensor capacitively couples to the scalp without direct contact to the skin. To minimize the effect of signal attenuation and channel gain mismatch, the input capacitance of each sensor is actively neutralized using positive feedback and bootstrapping. Common-mode suppression is achieved through a single conductive sheet to establish a common mode reference. Each sensor electrode provides a differential gain of 60 dB. Signals are transmitted in a digital serial daisy-chain directly from a local 16-bit ADC, minimizing the number of wires required to establish a high density EEG sensor network. The micropower electrode consumes only 600 microW from a single 3.3 V supply.

  1. Electrostrictive Effect in Cancer Cell Reflected in Capacitance Relaxation Phenomena

    Directory of Open Access Journals (Sweden)

    Tapas Kumar Basak

    2008-12-01

    Full Text Available The present paper has focus on the composite dielectric property of the cancer cell on concomitant with the capacitance relaxation phenomena. In this respect it has been found from MAT lab simulation the electrostrictive process in cancer cell is a complex one for which the electrostatic surfaces surrounding the cell changes with the incremental changes in the capacitance present in the capacitance relaxation curve. From these incremental changes in capacitance it is also possible to find out the electrostrictive energy of the cancer cell. It is interesting to note that the electrostrictive energy corresponding to the cell incremental changes in the capacitance is more in the first order system than that present in the second order system representing the equivalent configuration of the composite dielectric associated with the cell membrane. This is due the fact that during the process DNA synthesis and cell division the change in capacitance of the membrane for the first order system is relatively slow.

  2. Study on effective MOSFET channel length extracted from gate capacitance

    Science.gov (United States)

    Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato

    2018-01-01

    The effective channel length (L GCM) of metal–oxide–semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.

  3. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg's and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula.

    Science.gov (United States)

    Castro-Chavez, Fernando

    2012-01-01

    BACKGROUND: Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. METHODS: Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. RESULTS: One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. CONCLUSIONS: We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as

  4. Defragged Binary I Ching Genetic Code Chromosomes Compared to Nirenberg’s and Transformed into Rotating 2D Circles and Squares and into a 3D 100% Symmetrical Tetrahedron Coupled to a Functional One to Discern Start From Non-Start Methionines through a Stella Octangula

    Science.gov (United States)

    Castro-Chavez, Fernando

    2012-01-01

    Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen

  5. A realistic quantum capacitance model for quantum Hall edge state based Fabry-Pérot interferometers.

    Science.gov (United States)

    Kilicoglu, O; Eksi, D; Siddiki, A

    2017-01-25

    In this work, the classical and the quantum capacitances are calculated for a Fabry-Pérot interferometer operating in the integer quantized Hall regime. We first consider a rotationally symmetric electrostatic confinement potential and obtain the widths and the spatial distribution of the insulating (incompressible) circular strips using a charge density profile stemming from self-consistent calculations. Modelling the electrical circuit of capacitors composed of metallic gates and incompressible/compressible strips, we investigate the conditions to observe Aharonov-Bohm (quantum mechanical phase dependent) and Coulomb blockade (capacitive coupling dependent) effects reflected in conductance oscillations. In a last step, we solve the Schrödinger and the Poisson equations self-consistently in a numerical manner taking into account realistic experimental geometries. We find that, describing the conductance oscillations either by Aharanov-Bohm or Coulomb blockade strongly depends on sample properties also other than size, therefore, determining the origin of these oscillations requires further experimental and theoretical investigation.

  6. Detection of trace concentrations of S-nitrosothiols by means of a capacitive sensor.

    Directory of Open Access Journals (Sweden)

    James M Seckler

    Full Text Available Small molecule S-nitrosothiols are a class of endogenous chemicals in the body, which have been implicated in a variety of biological functions. However, the labile nature of NO and the limits of current detection assays have made studying these molecules difficult. Here we present a method for detecting trace concentrations of S-nitrosothiols in biological fluids. Capacitive sensors when coupled to a semiconducting material represent a method for detecting trace quantities of a chemical in complex solutions. We have taken advantage of the semiconducting and chemical properties of polydopamine to construct a capacitive sensor and associated method of use, which specifically senses S-nitrosothiols in complex biological solutions.

  7. Detection of trace concentrations of S-nitrosothiols by means of a capacitive sensor

    Science.gov (United States)

    Seckler, James M.; Meyer, Nikki M.; Burton, Spencer T.; Bates, James N.; Gaston, Benjamin

    2017-01-01

    Small molecule S-nitrosothiols are a class of endogenous chemicals in the body, which have been implicated in a variety of biological functions. However, the labile nature of NO and the limits of current detection assays have made studying these molecules difficult. Here we present a method for detecting trace concentrations of S-nitrosothiols in biological fluids. Capacitive sensors when coupled to a semiconducting material represent a method for detecting trace quantities of a chemical in complex solutions. We have taken advantage of the semiconducting and chemical properties of polydopamine to construct a capacitive sensor and associated method of use, which specifically senses S-nitrosothiols in complex biological solutions. PMID:29073241

  8. Simultaneous Membrane Capacitance Measurements and TIRF Microscopy to Study Granule Trafficking at Immune Synapses.

    Science.gov (United States)

    Sleiman, Marwa; Stevens, David R; Rettig, Jens

    2017-01-01

    Whole-cell capacitance measurements allow the direct measurement of exocytosis with high temporal resolution. An added benefit of the whole-cell configuration is the possibility to control the cytosolic free calcium concentration allowing examination of the role of intracellular calcium in a variety of processes. We have coupled this method with imaging of cytotoxic granule release using total internal reflection fluorescence microscopy (TIRFM) to identify the capacitance steps associated with cytotoxic granule release identified by TIRFM. This requires the use of fluorescent granule markers to identify cytotoxic granules and allows characterization of cytotoxic granule fusion and of the behavior of cytotoxic granules at the immune synapse prior to fusion. Combination of these methods enables the study of a number of processes relevant to the function of the immune synapse.

  9. Study the Z-Plane Strip Capacitance

    Energy Technology Data Exchange (ETDEWEB)

    Parikh, H.; /Illinois U., Urbana; Swain, S.; /SLAC

    2005-12-15

    The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.

  10. High capacitance in BiFeO3 nanorod structure

    Science.gov (United States)

    Rana, Subhasis; Dutta, Nabanita; Bandyopadhyay, S. K.; Sen, Pintu; Himanshu, A. K.

    2014-04-01

    A remarkably high value of specific capacitance of 450 F/g is observed through electrochemical measurements in the electrode made of multiferroic Bismuth Ferrite (BFO) in the form of nanorods protruding out. These were developed on porous Anodised Alumina (AAO) templates using wet chemical technique. Diameters of nanorods are in the range of 20-100 nm. The high capacitance is attributed to the nanostructure. The specific capacitances are constant after several cycles of charge-discharge.

  11. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  12. Programmable differential capacitance-to-voltage converter for MEMS accelerometers

    Science.gov (United States)

    Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.

    2017-05-01

    Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.

  13. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances....

  14. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter

    2008-01-01

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances...

  15. Binary Masking & Speech Intelligibility

    OpenAIRE

    Boldt, Jesper

    2010-01-01

    The purpose of this thesis is to examine how binary masking can be used to increase intelligibility in situations where hearing impaired listeners have difficulties understanding what is being said. The major part of the experiments carried out in this thesis can be categorized as either experiments under ideal conditions or as experiments under more realistic conditions useful for real-life applications such as hearing aids. In the experiments under ideal conditions, the previously defined i...

  16. BROWN DWARF BINARIES FROM DISINTEGRATING TRIPLE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Reipurth, Bo [Institute for Astronomy and NASA Astrobiology Institute University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Mikkola, Seppo, E-mail: reipurth@ifa.hawaii.edu, E-mail: Seppo.Mikkola@utu.fi [Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö (Finland)

    2015-04-15

    Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi–Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to

  17. Capacitance of semiconductor-electrolyte junction and its frequency dependence

    Science.gov (United States)

    Wang, Y.-B.; Yuan, R.-K.; Willander, M.

    1996-11-01

    The frequency dependent capacitance of semiconductor-electrolyte junction and its relationship to the surface roughness of the semiconductor and the ions in the electrolyte are discussed. Due to very low mobility of the ions, the observed capacitance can be dominated by the Helmholtz double-layer of the electrolyte rather than the space charge layer of the semiconductor. The capacitance will also depend on the frequency. This, often observed power-law frequency dependence of capacitance is ascribed to the contribution of constant phase angle impedance. The power-law exponent can easily be related to the fractal dimension if the semiconductor surface can be described by fractal geometry.

  18. Analyzing Influenza Virus Sequences using Binary Encoding Approach

    Directory of Open Access Journals (Sweden)

    Ham Ching Lam

    2012-01-01

    Full Text Available Capturing mutation patterns of each individual influenza virus sequence is often challenging; in this paper, we demonstrated that using a binary encoding scheme coupled with dimension reduction technique, we were able to capture the intrinsic mutation pattern of the virus. Our approach looks at the variance between sequences instead of the commonly used p-distance or Hamming distance. We first convert the influenza genetic sequences to a binary strings and form a binary sequence alignment matrix and then apply Principal Component Analysis (PCA to this matrix. PCA also provides identification power to identify reassortant virus by using data projection technique. Due to the sparsity of the binary string, we were able to analyze large volume of influenza sequence data in a very short time. For protein sequences, our scheme also allows the incorporation of biophysical properties of each amino acid. Here, we present various encouraging results from analyzing influenza nucleotide, protein and genome sequences using the proposed approach.

  19. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.

    Science.gov (United States)

    Baek, Hyun Jae; Kim, Hyun Seok; Heo, Jeong; Lim, Yong Gyu; Park, Kwang Suk

    2013-04-01

    Brain-computer interface (BCI) technologies have been intensely studied to provide alternative communication tools entirely independent of neuromuscular activities. Current BCI technologies use electroencephalogram (EEG) acquisition methods that require unpleasant gel injections, impractical preparations and clean-up procedures. The next generation of BCI technologies requires practical, user-friendly, nonintrusive EEG platforms in order to facilitate the application of laboratory work in real-world settings. A capacitive electrode that does not require an electrolytic gel or direct electrode-scalp contact is a potential alternative to the conventional wet electrode in future BCI systems. We have proposed a new capacitive EEG electrode that contains a conductive polymer-sensing surface, which enhances electrode performance. This paper presents results from five subjects who exhibited visual or auditory steady-state responses according to BCI using these new capacitive electrodes. The steady-state visual evoked potential (SSVEP) spelling system and the auditory steady-state response (ASSR) binary decision system were employed. Offline tests demonstrated BCI performance high enough to be used in a BCI system (accuracy: 95.2%, ITR: 19.91 bpm for SSVEP BCI (6 s), accuracy: 82.6%, ITR: 1.48 bpm for ASSR BCI (14 s)) with the analysis time being slightly longer than that when wet electrodes were employed with the same BCI system (accuracy: 91.2%, ITR: 25.79 bpm for SSVEP BCI (4 s), accuracy: 81.3%, ITR: 1.57 bpm for ASSR BCI (12 s)). Subjects performed online BCI under the SSVEP paradigm in copy spelling mode and under the ASSR paradigm in selective attention mode with a mean information transfer rate (ITR) of 17.78 ± 2.08 and 0.7 ± 0.24 bpm, respectively. The results of these experiments demonstrate the feasibility of using our capacitive EEG electrode in BCI systems. This capacitive electrode may become a flexible and non-intrusive tool fit for various applications in

  20. Excimer Lasers With Capacitively Excited Tubular Discharges

    Science.gov (United States)

    Eichler, Hans J.; Herweg, Helmut; de la Rosa, Jose

    1989-04-01

    The excitation of excimer lasers in tubular discharges results in simple and compact devices needing no preionization. Optical output energies are in the millijoule range. We investigated XeF, KrF and ArF lasers for various operating conditions. The lasers consist of capillary glass tubes with two internal electrodes at the ends and an aluminium-foil wrapped around the tube as capacitive electrode. A maximum output energy of 0.3 mJ has been achieved for the XeF laser. The good quality of the discharge is indicated by the observation of spontaneous mode locking. The detailed study of the discharge for different polarities of the electrodes has shown that efficient operation with a high gas lifetime can be obtained by a purely capacitively excited discharge. A gas lifetime of about 10,000 pulses for 3 litres gas mixture has been observed. Using a two stage Marx generator to generate 100 kV excitation voltage a maximum output energy of 0.7 mJ was obtained for a gas mixture of Kr, F2 and He with an efficiency of 0.17%. The KrF laser operates also without the buffer gas. Laser action in ArF has been achieved with 15 μJ pulse energy and 10 ns duration.

  1. THERMAL DRIFT CHARACTERISTICS OF CAPACITIVE PRESSURE SENSORS

    Directory of Open Access Journals (Sweden)

    ABDELAZIZ BEDDIAF

    2016-03-01

    Full Text Available The capacitive pressure sensors based on silicon are characterized by their very high sensitivities and their low power consumption. Nevertheless, their thermal behavior remains more or less unpredictable because they can indicate very high thermal coefficients. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics drift. In this study, we modeled the thermal behavior of this sensors, using Finite Element Analysis (FEA made in COMSOL. The model solved by COMSOL environment takes into account the entire sensor and thermal effects due to the temperature considering the materials’ properties, the geometric shape and also the heat transfer mechanisms. By COMSOL we determine how the temperature affects the sensor during the manufacturing process. For that end, we calculated the thermal drift of capacitance at rest, the thermal coefficients and we compared them with experimental results to validate our model. Further, we studied the thermal drift of sensor characteristics both at rest and under constant and uniform pressure. Further, our study put emphasis on the geometric influence parameters on these characteristics to optimize the sensor performance. Finally, this study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the geometrical parameters.

  2. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  3. Particle acceleration in binaries

    Directory of Open Access Journals (Sweden)

    Sinitsyna V.G.

    2017-01-01

    Full Text Available Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV–85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  4. Particle acceleration in binaries

    Science.gov (United States)

    Sinitsyna, V. G.; Sinitsyna, V. Y.

    2017-06-01

    Cygnus X-3 massive binary system is one of the powerful sources of radio and X-ray emission consisting of an accreting compact object, probably a black hole, with a Wolf-Rayet star companion. Based on the detections of ultra high energy gamma-rays by Kiel and Havera Park, Cygnus X-3 has been proposed to be one of the most powerful sources of charged cosmic ray particles in the Galaxy. The results of long-term observations of the Cyg X-3 binary at energies 800 GeV-85 TeV detected by SHALON in 1995 are presented with images, integral spectra and spectral energy distribution. The identification of source with Cygnus X-3 detected by SHALON was secured by the detection of its 4.8 hour orbital period in TeV gamma-rays. During the whole observation period of Cyg X-3 with SHALON significant flux increases were detected at energies above 0.8 TeV. These TeV flux increases are correlated with flaring activity at a lower energy range of X-ray and/or at observations of Fermi LAT as well as with radio emission from the relativistic jets of Cygnus X-3. The variability of very high-energy gamma-radiation and correlation of radiation activity in the wide energy range can provide essential information on particle mechanism production up to very high energies. Whereas, modulation of very high energy emission connected to the orbital motion of the binary system, provides an understanding of the emission processes, nature and location of particle acceleration.

  5. Touch mode micromachined capacitive pressure sensor with signal conditioning electronics

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio; Eriksen, Gert F.; Christensen, Carsten

    2010-01-01

    technology to design and fabricate these sensors has been implemented. Capacitive pressure sensing, on the other hand, is still an open and really promising field. Results Capacitive microsensors were designed and fabricated (Fig. 1) and an analytical model for touch mode regime, which fitted accurately...

  6. Electric field theory and the fallacy of void capacitance

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The concept of the capacitance of a gaseous void is discussed as applied to electrical insulation science. The most pertinent aspect of the capacitance definition is that of reference to a single-valued potential difference between surfaces. This implies that these surfaces must be surfaces...

  7. Measurement Error Estimation for Capacitive Voltage Transformer by Insulation Parameters

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2017-03-01

    Full Text Available Measurement errors of a capacitive voltage transformer (CVT are relevant to its equivalent parameters for which its capacitive divider contributes the most. In daily operation, dielectric aging, moisture, dielectric breakdown, etc., it will exert mixing effects on a capacitive divider’s insulation characteristics, leading to fluctuation in equivalent parameters which result in the measurement error. This paper proposes an equivalent circuit model to represent a CVT which incorporates insulation characteristics of a capacitive divider. After software simulation and laboratory experiments, the relationship between measurement errors and insulation parameters is obtained. It indicates that variation of insulation parameters in a CVT will cause a reasonable measurement error. From field tests and calculation, equivalent capacitance mainly affects magnitude error, while dielectric loss mainly affects phase error. As capacitance changes 0.2%, magnitude error can reach −0.2%. As dielectric loss factor changes 0.2%, phase error can reach 5′. An increase of equivalent capacitance and dielectric loss factor in the high-voltage capacitor will cause a positive real power measurement error. An increase of equivalent capacitance and dielectric loss factor in the low-voltage capacitor will cause a negative real power measurement error.

  8. Estimation of yield of veld with an electronic capacitance instrument ...

    African Journals Online (AJOL)

    Estimation of yield of veld with an electronic capacitance instrument. Sander CJ. Abstract. Readings with an electronic capacitance instrument were compared with yields from the same areas in natural veld of different heights, and from a grass-clover pasture. The regression of meter reading against oven-dry weight was ...

  9. A sensitive differential capacitance to voltage converter for sensor applications

    NARCIS (Netherlands)

    Lotters, Joost Conrad; Lötters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1999-01-01

    There is a need for capacitance to voltage converters (CVC's) for differential capacitive sensors like pressure sensors and accelerometers which can measure both statically and dynamically. A suitable CVC is described in this paper. The CVC proposed is based on a symmetrical structure containing two

  10. Capacitated Vehicle Routing with Non-Uniform Speeds

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Molinaro, Marco; Nagarajan, Viswanath

    2011-01-01

    The capacitated vehicle routing problem (CVRP) [21] involves distributing (identical) items from a depot to a set of demand locations in the shortest possible time, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform...

  11. Capacitance tuning of nanoscale split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mortensen, Asger; Kristensen, Anders

    2009-01-01

    We investigate the capacitance tuning of nanoscale split-ring resonators. Based on a simple inductor-capacitor circuit model, we derive an expression, where the inductance is proportional to the area while the capacitance reflects the aspect ratio of the slit. The resonance frequency may thus...

  12. A Review of High Voltage Drive Amplifiers for Capacitive Actuators

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail...

  13. Clean energy generation using capacitive electrodes in reverse electrodialysis

    NARCIS (Netherlands)

    Vermaas, David; Bajracharya, S.; Bastos Sales, B.; Saakes, Michel; Hamelers, B.; Nijmeijer, Dorothea C.

    2013-01-01

    Capacitive reverse electrodialysis (CRED) is a newly proposed technology to generate electricity from mixing of salt water and fresh water (salinity gradient energy) by using a membrane pile as in reverse electrodialysis (RED) and capacitive electrodes. The salinity difference between salt water and

  14. Capacitance tuning of nanoscale split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Xiao, Sanshui; Mortensen, Niels Asger

    2010-01-01

    In this paper, we investigate the capacitance tuning of nanoscale split-ring resonators. Based on a simple LC circuit model (LC-model), we derive an expression where the inductance is proportional to the area while the capacitance reflects the aspect ratio of the slit. The resonance frequency may...

  15. Capacitive bioanodes enable renewable energy storage in microbial fuel cells.

    Science.gov (United States)

    Deeke, Alexandra; Sleutels, Tom H J A; Hamelers, Hubertus V M; Buisman, Cees J N

    2012-03-20

    We developed an integrated system for storage of renewable electricity in a microbial fuel cell (MFC). The system contained a capacitive electrode that was inserted into the anodic compartment of an MFC to form a capacitive bioanode. This capacitive bioanode was compared with a noncapacitive bioanode on the basis of performance and storage capacity. The performance and storage capacity were investigated during polarization curves and charge-discharge experiments. During polarization curves the capacitive electrode reached a maximum current density of 1.02 ± 0.04 A/m(2), whereas the noncapacitive electrode reached a current density output of only 0.79 ± 0.03 A/m(2). During the charge-discharge experiment with 5 min of charging and 20 min of discharging, the capacitive electrode was able to store a total of 22,831 C/m(2), whereas the noncapacitive electrode was only able to store 12,195 C/m(2). Regarding the charge recovery of each electrode, the capacitive electrode was able to recover 52.9% more charge during each charge-discharge experiment compared with the noncapacitive electrode. The capacitive electrode outperformed the noncapacitive electrode throughout each charge-discharge experiment. With a capacitive electrode it is possible to use the MFC simultaneously for production and storage of renewable electricity.

  16. Characterizing Inductive and Capacitive Nonlinear RLC Circuits : A Passivity Test

    NARCIS (Netherlands)

    García-Canseco, Eloísa; Jeltsema, Dimitri; Ortega, Romeo; Scherpen, Jacquelien M.A.

    2004-01-01

    Linear time-invariant RLC circuits are said to be inductive (capacitive) if the current waveform in sinusoidal steady-state has a negative (resp., positive) phase shift with respect to the voltage. Furthermore, it is known that the circuit is inductive (capacitive) if and only if the magnetic energy

  17. Enhanced detection performance in electrosense through capacitive sensing.

    Science.gov (United States)

    Bai, Yang; Neveln, Izaak D; Peshkin, Michael; MacIver, Malcolm A

    2016-08-08

    Weakly electric fish emit an AC electric field into the water and use thousands of sensors on the skin to detect field perturbations due to surrounding objects. The fish's active electrosensory system allows them to navigate and hunt, using separate neural pathways and receptors for resistive and capacitive perturbations. We have previously developed a sensing method inspired by the weakly electric fish to detect resistive perturbations and now report on an extension of this system to detect capacitive perturbations as well. In our method, an external object is probed by an AC field over multiple frequencies. We present a quantitative framework that relates the response of a capacitive object at multiple frequencies to the object's composition and internal structure, and we validate this framework with an electrosense robot that implements our capacitive sensing method. We define a metric for comparing the electrosensory range of different underwater electrosense systems. For detecting non-conductive objects, we show that capacitive sensing performs better than resistive sensing by almost an order of magnitude using this measure, while for conductive objects there is a four-fold increase in performance. Capacitive sensing could therefore provide electric fish with extended sensing range for capacitive objects such as prey, and gives artificial electrolocation systems enhanced range for targets that are capacitive.

  18. Frequency dependence of junction capacitance of BPW34 and ...

    Indian Academy of Sciences (India)

    This article investigates the frequency dependence of small-signal capacitance of silicon BPW34 and BPW41 (Vishay) p-i-n photodiodes. We show that the capacitance-frequency characteristics of these photodiodes are well-described by the Schibli and Milnes model. The activation energy and the concentration of the ...

  19. Capacitive micromachined ultrasonic Lamb wave transducers using rectangular membranes.

    Science.gov (United States)

    Badi, Mohammed H; Yaralioglu, Goksen G; Ergun, A Sanli; Hansen, Sean T; Wong, Eehern J; Khuri-Yakub, Butrus T

    2003-09-01

    This paper details the theory, fabrication, and characterization of a new Lamb wave device. Built using capacitive micromachined ultrasonic transducers (CMUTs), the structure described uses rectangular membranes to excite and receive Lamb waves on a silicon substrate. An equivalent circuit model for the transducer is proposed that produces results, which match well with those observed by experiment. During the derivation of this model, emphasis is placed on the resistance presented to the transducer membranes by the Lamb wave modes. Finite element analysis performed in this effort shows that the dominant propagating mode in the device is the lowest order antisymmetric flexural wave (A0). Furthermore, most of the power that couples into the Lamb wave is due to energy in the vibrating membrane that is transferred to the substrate through the supporting posts of the device. The manufacturing process of the structure, which relies solely on fundamental IC-fabrication techniques, is also discussed. The resulting device has an 18-microm-thick substrate that is almost entirely made up of crystalline silicon and operates at a frequency of 2.1 MHz. The characterization of this device includes S-parameter and laser vibrometer measurements as well as delay-line transmission data. The insertion loss, as determined by both S-parameter and delay-line transmission measurements, is 20 dB at 2.1 MHz. When configured as a delay-line oscillator, the device functions well as a sensor with sensitivity to changes in the mass loading of its substrate.

  20. Interdigitated electrodes as impedance and capacitance biosensors: A review

    Science.gov (United States)

    Mazlan, N. S.; Ramli, M. M.; Abdullah, M. M. A. B.; Halin, D. S. C.; Isa, S. S. M.; Talip, L. F. A.; Danial, N. S.; Murad, S. A. Z.

    2017-09-01

    Interdigitated electrodes (IDEs) are made of two individually addressable interdigitated comb-like electrode structures. IDEs are one of the most favored transducers, widely utilized in technological applications especially in the field of biological and chemical sensors due to their inexpensive, ease of fabrication process and high sensitivity. In order to detect and analyze a biochemical molecule or analyte, the impedance and capacitance signal need to be obtained. This paper investigates the working principle and influencer of the impedance and capacitance biosensors. The impedance biosensor depends on the resistance and capacitance while the capacitance biosensor influenced by the dielectric permittivity. However, the geometry and structures of the interdigitated electrodes affect both impedance and capacitance biosensor. The details have been discussed in this paper.

  1. Static Capacitive Pressure Sensing Using a Single Graphene Drum.

    Science.gov (United States)

    Davidovikj, Dejan; Scheepers, Paul H; van der Zant, Herre S J; Steeneken, Peter G

    2017-12-13

    To realize nanomechanical graphene-based pressure sensors, it is beneficial to have a method to electrically readout the static displacement of a suspended graphene membrane. Capacitive readout, typical in micro-electromechanical systems, gets increasingly challenging as one starts shrinking the dimensions of these devices because the expected responsivity of such devices is below 0.1 aF/Pa. To overcome the challenges of detecting small capacitance changes, we design an electrical readout device fabricated on top of an insulating quartz substrate, maximizing the contribution of the suspended membrane to the total capacitance of the device. The capacitance of the drum is further increased by reducing the gap size to 110 nm. Using an external pressure load, we demonstrate the successful detection of capacitance changes of a single graphene drum down to 50 aF, and pressure differences down to 25 mbar.

  2. Evolution of Close Binary Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  3. Fund allocation using capacitated vehicle routing problem

    Science.gov (United States)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita; Darus, Maslina

    2014-09-01

    In investment fund allocation, it is unwise for an investor to distribute his fund into several assets simultaneously due to economic reasons. One solution is to allocate the fund into a particular asset at a time in a sequence that will either maximize returns or minimize risks depending on the investor's objective. The vehicle routing problem (VRP) provides an avenue to this issue. VRP answers the question on how to efficiently use the available fleet of vehicles to meet a given service demand, subjected to a set of operational requirements. This paper proposes an idea of using capacitated vehicle routing problem (CVRP) to optimize investment fund allocation by employing data of selected stocks in the FTSE Bursa Malaysia. Results suggest that CRVP can be applied to solve the issue of investment fund allocation and increase the investor's profit.

  4. Creatinine Diffusion Modeling in Capacitive Sensors

    Science.gov (United States)

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr

    2016-12-01

    In this paper, creatinine diffusion in capacitive sensors is discussed. The factors influencing the response time of creatinine biosensors are mathematically formulated and then three novel approaches for decreasing the response time are presented. At first, a piezoelectric actuator is used to vibrate the microtube that contains the blood sample, in order to reduce the viscosity of blood, and thus to increase the coefficient of diffusion. Then, the blood sample is assumed to be pushed through a porous medium, and the relevant conditions are investigated. Finally, the effect of the dentate shape of dielectric on response time is studied. The algorithms and the mathematical models are presented and discussed, and the results of simulations are illustrated. The response times for the first, second and third method are 60, 0.036 and about 31 s, respectively. It is also found that pumping results in very fast responses.

  5. Capacitated Dynamic Lot Sizing with Capacity Acquisition

    DEFF Research Database (Denmark)

    Li, Hongyan; Meissner, Joern

    with inventory carrying costs. The production per period limited by a capacity restriction. The underlying capacity must be purchased up front for the upcoming season and remains constant over the entire season. We assume that the capacity acquisition cost is smooth and convex. For this situation, we develop...... directly. In this paper, we address the joint capacitated lot sizing and capacity acquisition problem. The firm can produce goods in each of the finite periods into which the production season is partitioned. Fixed as well as variable production costs are incurred for each production batch, along...... a model which combines the complexity of time-varying demand and cost functions and that of scale economies arising from dynamic lot-sizing costs with the purchase cost of capacity. We propose a heuristic algorithm that runs in polynomial time to determine a good capacity level and corresponding lot...

  6. Capacitated dynamic lot sizing with capacity acquisition

    DEFF Research Database (Denmark)

    Li, Hongyan; Meissner, Joern

    2011-01-01

    batch, along with inventory carrying costs. The production per period is limited by a capacity restriction. The underlying capacity must be purchased up front for the upcoming season and remains constant over the entire season. We assume that the capacity acquisition cost is smooth and convex...... planning decisions directly. In this article, we address the joint capacitated lot-sizing and capacity-acquisition problems. The firm can produce goods in each of the finite periods into which the production season is partitioned. Fixed as well as variable production costs are incurred for each production....... For this situation, we develop a model which combines the complexity of time-varying demand and cost functions and of scale economies arising from dynamic lot-sizing costs with the purchase cost of capacity. We propose a heuristic algorithm that runs in polynomial time to determine a good capacity level...

  7. Magnetic binary nanofillers

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mendoza, N. [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Goyanes, S. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Chiliotte, C.; Bekeris, V. [LBT, Dep. De Fisica, FCEN-UBA. Ciudad Universitaria, Pab1, C1428EGA CABA (Argentina); Rubiolo, G. [LPyMC, Dep. De Fisica, FCEN-UBA and IFIBA -CONICET, Ciudad Universitaria, Cap. Fed. (Argentina); Unidad de Actividad Materiales, CNEA, Av Gral. Paz 1499, San Martin (1650), Prov. de Bs As (Argentina); Candal, R., E-mail: candal@qi.fcen.uba.ar [INQUIMAE, CONICET-UBA, Ciudad Universitaria, Pab2, (C1428EHA) Bs As (Argentina); Escuela de Ciencia y Tecnologia, 3iA, Universidad de Gral. San Martin, San Martin, Prov. Bs As (Argentina)

    2012-08-15

    Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol-gel method. The catalyst precursor was fired at 450 Degree-Sign C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50-75 {mu}m) and sample B (smaller than 50 {mu}m). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of {alpha}-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing {alpha}-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50-75 {mu}m showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 {mu}m. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.

  8. Novel Capacitive Sensing System Design of a Microelectromechanical Systems Accelerometer for Gravity Measurement Applications

    Directory of Open Access Journals (Sweden)

    Zhu Li

    2016-09-01

    Full Text Available This paper presents an in-plane sandwich nano-g microelectromechanical systems (MEMS accelerometer. The proof-mass fabrication is based on silicon etching through technology using inductive coupled plasma (ICP etching. The capacitive detection system, which employs the area-changing sensing method, combines elementary capacitive pickup electrodes with periodic-sensing-array transducers. In order to achieve a large dynamic range with an ultrahigh resolution, the capacitive detection system employs two periodic-sensing-array transducers. Each of them can provide numbers for the signal period in the entire operating range. The suspended proof-mass is encapsulated between two glass caps, which results in a three dimensional structure. The measured resonant frequency and quality factor (Q are 13.2 Hz and 47, respectively. The calibration response of a ±0.7 g input acceleration is presented, and the accelerometer system presents a sensitivity of 122 V/g and a noise floor of 30 ng/√Hz (at 1 Hz, and 1 atm. The bias stability for a period of 10 h is 30 μg. The device has endured a shock up to ±2.6 g, and the full scale output appears to be approximately ±1.4 g presently. This work presents a new opportunity for highly sensitive MEMS fabrication to enable future high-precision measurement applications, such as for gravity measurements.

  9. Experimental Analysis of Bisbenzocyclobutene Bonded Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Manwar, Rayyan; Chowdhury, Sazzadur

    2016-06-24

    Experimental measurement results of a 1.75 mm × 1.75 mm footprint area Capacitive Micromachined Ultrasonic Transducer (CMUT) planar array fabricated using a bisbenzocyclobutene (BCB)-based adhesive wafer bonding technique has been presented. The array consists of 40 × 40 square diaphragm CMUT cells with a cavity thickness of 900 nm and supported by 10 µm wide dielectric spacers patterned on a thin layer of BCB. A 150 µm wide one µm thick gold strip has been used as the contact pad for gold wire bonding. The measured resonant frequency of 19.3 MHz using a Polytec™ laser Doppler vibrometer (Polytec™ MSA-500) is in excellent agreement with the 3-D FEA simulation result using IntelliSuite™. An Agilent ENA5061B vector network analyzer (VNA) has been used for impedance measurement and the resonance and anti-resonance values from the imaginary impedance curve were used to determine the electromechanical coupling co-efficient. The measured coupling coefficient of 0.294 at 20 V DC bias exhibits 40% higher transduction efficiency as compared to a measured value published elsewhere for a silicon nitride based CMUT. A white light interferometry method was used to measure the diaphragm deflection profiles at different DC bias. The diaphragm center velocity was measured for different sub-resonant frequencies using a Polytec™ laser Doppler vibrometer that confirms vibration of the diaphragm at different excitation frequencies and bias voltages. Transmit and receive operations of CMUT cells were characterized using a pitch-catch method and a -6 dB fractional bandwidth of 23% was extracted from the received signal in frequency domain. From the measurement, it appears that BCB-based CMUTs offer superior transduction efficiency as compared to silicon nitride or silicon dioxide insulator-based CMUTs, and provide a very uniform deflection profile thus making them a suitable candidate to fabricate highly energy efficient CMUTs.

  10. Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers

    Directory of Open Access Journals (Sweden)

    Ben Minnaert

    2017-09-01

    Full Text Available Wireless power transfer from one transmitter to multiple receivers through inductive coupling is slowly entering the market. However, for certain applications, capacitive wireless power transfer (CWPT using electric coupling might be preferable. In this work, we determine closed-form expressions for a CWPT system with one transmitter and two receivers. We determine the optimal solution for two design requirements: (i maximum power transfer, and (ii maximum system efficiency. We derive the optimal loads and provide the analytical expressions for the efficiency and power. We show that the optimal load conductances for the maximum power configuration are always larger than for the maximum efficiency configuration. Furthermore, it is demonstrated that if the receivers are coupled, this can be compensated for by introducing susceptances that have the same value for both configurations. Finally, we numerically verify our results. We illustrate the similarities to the inductive wireless power transfer (IWPT solution and find that the same, but dual, expressions apply.

  11. Peroxiredoxins prevent oxidative stress during human sperm capacitation.

    Science.gov (United States)

    Lee, Donghyun; Moawad, Adel R; Morielli, Tania; Fernandez, Maria C; O'Flaherty, Cristian

    2017-02-10

    Do peroxiredoxins (PRDXs) control reactive oxygen species (ROS) levels during human sperm capacitation? PRDXs are necessary to control the levels of ROS generated during capacitation allowing spermatozoa to achieve fertilizing ability. Sperm capacitation is an oxidative event that requires low and controlled amounts of ROS to trigger phosphorylation events. PRDXs are antioxidant enzymes that not only act as scavengers but also control ROS action in somatic cells. Spermatozoa from infertile men have lower levels of PRDXs (particularly of PRDX6), which are thiol-oxidized and therefore inactive. Semen samples were obtained from a cohort of 20 healthy nonsmoker volunteers aged 22-30 years old over a period of 1 year. Sperm from healthy donors was capacitated with fetal cord serum ultrafiltrate (FCSu) in the absence or presence of thiostrepton (TSP), inhibitor of 2-Cys PRDXs or 1-Hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol lithium (MJ33), inhibitor of calcium independent-phospholipase A2 (Ca2+-iPLA2) activity of PRDX6, added at different times of incubation. Capacitation was also induced by the dibutyryl cAMP+3-isobuty1-1-methylxanthine system. Sperm viability and motility were determined by the hypo-osmotic swelling test and computer-assisted semen analysis system, respectively. Capacitation was determined by the ability of spermatozoa to undergo the acrosome reaction triggered by lysophosphatidylcholine. Percentages of acrosome reaction were obtained using the FITC-conjugated Pisum sativum agglutinin assay. Phosphorylation of tyrosine residues and of protein kinase A (PKA) substrates were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblotting with specific antibodies. Actin polymerization was determined by phalloidin labeling. TSP and MJ33 prevented sperm capacitation and its associated actin polymerization in spermatozoa incubated with 10% FCSu (capacitation inducer) compared to non-capacitated controls (P sperm viability

  12. An ultra flexible capacitive electrode for an ecg recording system - biomed 2013.

    Science.gov (United States)

    Masui, Takayoshi; Maki, Hiromichi; Ogawa, Hidekuni; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Hahn, Allen W; Caldwell, W Morton

    2013-01-01

    We have developed an ultra-flexible skin electrode to monitor a patient’s electrocardiogram (ECG) during daily activity. This electrode consists of a 1.5 micrometer thick polyester film printed with electro-conductive paint. The electrode is attached to the outside of a polyethylene bag filled with a high viscoelastic fluid. When the electrode is placed securely on the skin, it correspondingly changes its shape, and electrode movement artifact is thereby decreased. The electrode improves long-term recording of the ECG by maintaining capacitance-coupled impedance between the electrode and the skin.

  13. Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness.

    Science.gov (United States)

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław

    2017-12-20

    The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the

  14. Optimally cloned binary coherent states

    DEFF Research Database (Denmark)

    Mueller, C. R.; Leuchs, G.; Marquardt, Ch

    2017-01-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive...

  15. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew J.

    2006-02-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  16. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew

    2002-01-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  17. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  18. A new physical interpretation of plant root capacitance.

    Science.gov (United States)

    Dietrich, Ralf C; Bengough, Anthony G; Jones, Hamlyn G; White, Philip J

    2012-10-01

    Capacitance has been used as a non-destructive measure of root system size for 30 years. The equipment required is cheap and simple to apply in both field and laboratory. Good linear correlations have been reported between capacitance and root mass. A model by F. N. Dalton, predicting a linear relationship between these two variables, has become accepted widely. This model was tested for barley (Hordeum vulgare) grown hydroponically using treatments that included: raising roots out of solution, cutting roots at positions below the solution surface, and varying the distance between plant electrode and the solution surface. Although good linear correlations were found between capacitance and mass for whole root systems, when roots were raised out of solution capacitances were not linearly related to submerged root mass. Excision of roots in the solution had negligible effect on the measured capacitance. These latter observations conflict with Dalton's model. Capacitance correlated linearly with the sum of root cross-sectional areas at the solution surface and inversely with distance between plant electrode and solution surface. A new model for capacitance is proposed that is consistent with these observations.

  19. Signature Visualization of Software Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  20. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  1. Slot-mode-coupled Optomechanical Crystals

    Science.gov (United States)

    2012-10-22

    F.-V. K. M. C. Dong, C. and W.-H. Tian, L., “A microchip optomechanical accelerometer ,” arXiv:1205.2360 (2012). 14. V. R. Almeida, Q. Xu, C. A...M. Winger, T. D. Blasius, Q. Lin, and O. Painter, “A microchip optomechanical accelerometer ,” arXiv:1203.5730 (2012). 28. P. E. Barclay, K. Srinivasan...by causing a variation in the circuit capacitance . Coupling between the mechanical displacement and cavity capacitance is stronger for smaller gaps

  2. Capacitive effects in IGBTs limiting their reliability under short circuit

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2017-01-01

    , revealing that the gate capacitance changes according with the shape of the electric field due to the charge distribution in the n-base. It has been identified that the time-varying capacitance leads to parametric oscillations together with the stray gate inductance, which limit the reliability of the IGBT........ The work presented here through both circuit and device analysis, confirms that the oscillations can be understood with focus on the device capacitive effects coming from the interaction between carrier concentration and the electric field. The paper also shows the 2-D effects during one oscillation cycle...

  3. Capacitive effects in IGBTs limiting their reliability under short circuit

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Iannuzzo, Francesco; Rahimo, Munaf

    2017-01-01

    . The work presented here through both circuit and device analysis, confirms that the oscillations can be understood with focus on the device capacitive effects coming from the interaction between carrier concentration and the electric field. The paper also shows the 2-D effects during one oscillation cycle......, revealing that the gate capacitance changes according with the shape of the electric field due to the charge distribution in the n-base. It has been identified that the time-varying capacitance leads to parametric oscillations together with the stray gate inductance, which limit the reliability of the IGBT....

  4. Flexible transparent iontronic film for interfacial capacitive pressure sensing.

    Science.gov (United States)

    Nie, Baoqing; Li, Ruya; Cao, Jennifer; Brandt, James D; Pan, Tingrui

    2015-10-21

    A flexible, transparent iontronic film is introduced as a thin-film capacitive sensing material for emerging wearable and health-monitoring applications. Utilizing the capacitive interface at the ionic-electronic contact, the iontronic film sensor offers a large unit-area capacitance (of 5.4 μF cm(-2) ) and an ultrahigh sensitivity (of 3.1 nF kPa(-1) ), which is a thousand times greater than that of traditional solid-state counterparts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Estimating Mass Parameters of Doubly Synchronous Binary Asteroids

    Science.gov (United States)

    Davis, Alex; Scheeres, Daniel J.

    2017-10-01

    The non-spherical mass distributions of binary asteroid systems lead to coupled mutual gravitational forces and torques. Observations of the coupled attitude and orbital dynamics can be leveraged to provide information about the mass parameters of the binary system. The full 3-dimensional motion has 9 degrees of freedom, and coupled dynamics require the use of numerical investigation only. In the current study we simplify the system to a planar ellipsoid-ellipsoid binary system in a doubly synchronous orbit. Three modes are identified for the system, which has 4 degrees of freedom, with one degree of freedom corresponding to an ignorable coordinate. The three modes correspond to the three major librational modes of the system when it is in a doubly synchronous orbit. The linearized periods of each mode are a function of the mass parameters of the two asteroids, enabling measurement of these parameters based on observations of the librational motion. Here we implement estimation techniques to evaluate the capabilities of this mass measurement method. We apply this methodology to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), the final flyby target of the recently announced LUCY Discovery mission. This system is of interest because a stellar occultation campaign of the Patroclus and Menoetius system has suggested that the asteroids are similarly sized oblate ellipsoids moving in a doubly-synchronous orbit, making the system an ideal test for this investigation. A number of missed observations during the campaign also suggested the possibility of a crater on the southern limb of Menoetius, the presence of which could be evaluated by our mass estimation method. This presentation will review the methodology and potential accuracy of our approach in addition to evaluating how the dynamical coupling can be used to help understand light curve and stellar occultation observations for librating binary systems.

  6. Transient absorption and lasing without inversion in an artificial molecule via Josephson coupling energy

    Science.gov (United States)

    Hamedi, Hamid Reza

    2015-03-01

    This letter investigates the dynamical behavior of the absorption in a superconducting quantum circuit with a tunable V-type artificial molecule constructed by two superconducting Josephson charge qubits coupled with each other through a superconducting quantum interference device. It is found that the ratio of the Josephson coupling energy to the capacitive coupling strength provides an extra controlling parameter for manipulating transient absorption behaviors. It is also realized that in the presence of an incoherent pumping field, lasing without inversion can be obtained just through the joint effect of the Josephson coupling energy and the capacitive coupling strength. Results may provide some new possibilities for solid-state quantum information science.

  7. A multi-channel capacitive probe for electrostatic fluctuation measurement in the Madison Symmetric Torus reversed field pinch.

    Science.gov (United States)

    Tan, Mingsheng; Stone, Douglas R; Triana, Joseph C; Almagri, Abdulgader F; Fiksel, Gennady; Ding, Weixing; Sarff, John S; McCollam, Karsten J; Li, Hong; Liu, Wandong

    2017-02-01

    A 40-channel capacitive probe has been developed to measure the electrostatic fluctuations associated with the tearing modes deep into Madison Symmetric Torus (MST) reversed field pinch plasma. The capacitive probe measures the ac component of the plasma potential via the voltage induced on stainless steel electrodes capacitively coupled with the plasma through a thin annular layer of boron nitride (BN) dielectric (also serves as the particle shield). When bombarded by the plasma electrons, BN provides a sufficiently large secondary electron emission for the induced voltage to be very close to the plasma potential. The probe consists of four stalks each with ten cylindrical capacitors that are radially separated by 1.5 cm. The four stalks are arranged on a 1.3 cm square grid so that at each radial position, there are four electrodes forming a square grid. Every two adjacent radial sets of four electrodes form a cube. The fluctuating electric field can be calculated by the gradient of the plasma potential fluctuations at the eight corners of the cube. The probe can be inserted up to 15 cm (r/a = 0.7) into the plasma. The capacitive probe has a frequency bandwidth from 13 Hz to 100 kHz, amplifier-circuit limit, sufficient for studying the tearing modes (5-30 kHz) in the MST reversed-field pinch.

  8. Acoustic lens for capacitive micromachined ultrasonic transducers

    Science.gov (United States)

    Chang, Chienliu; Firouzi, Kamyar; Park, Kwan Kyu; Sarioglu, Ali Fatih; Nikoozadeh, Amin; Yoon, Hyo-Seon; Vaithilingam, Srikant; Carver, Thomas; Khuri-Yakub, Butrus T.

    2014-08-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with traditional piezoelectric transducers in therapeutic ultrasound applications. In this paper we have designed, fabricated and developed an acoustic lens formed on the CMUT to mechanically focus ultrasound. The acoustic lens was designed based on the paraxial theory and made of silicone rubber for acoustic impedance matching and encapsulation. The CMUT was fabricated based on the local oxidation of silicon (LOCOS) and fusion-bonding. The fabricated CMUT was verified to behave like an electromechanical resonator in air and exhibited wideband response with a center frequency of 2.2 MHz in immersion. The fabrication for the acoustic lens contained two consecutive mold castings and directly formed on the surface of the CMUT. Applied with ac burst input voltages at the center frequency, the CMUT with the acoustic lens generated an output pressure of 1.89 MPa (peak-to-peak) at the focal point with an effective focal gain of 3.43 in immersion. Compared to the same CMUT without a lens, the CMUT with the acoustic lens demonstrated the ability to successfully focus ultrasound and provided a viable solution to the miniaturization of the multi-modality forward-looking endoscopes without electrical focusing.

  9. High Voltage Bi-directional Flyback Converter for Capacitive Actuator

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    This paper presents a high voltage DC-DC converter topology for bi-directional energy transfer between a low voltage DC source and a high voltage capacitive load. The topology is a bi-directional flyback converter with variable switching frequency control during the charge mode, and constant...... switching frequency control during the discharge mode. The converter is capable of charging the capacitive load from 24 V DC source to 2.5 kV, and discharges it to 0 V. The flyback converter has been analyzed in detail during both charge and discharge modes, by considering all the parasitic elements...... in the converter, including the most dominating parameters of the high voltage transformer viz., self-capacitance and leakage inductance. The specific capacitive load for this converter is a dielectric electro active polymer (DEAP) actuator, which can be used as an effective replacement for conventional actuators...

  10. Micromachined low frequency rocking accelerometer with capacitive pickoff

    Science.gov (United States)

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  11. Segmented Capacitance Sensor with Partially Released Inactive Segments

    Directory of Open Access Journals (Sweden)

    Lev Jakub

    2015-09-01

    Full Text Available Material throughput measurement is important for many applications, for example yield maps creation or control of mass flow in stationary lines. Quite perspective can be the capacitive throughput method. Segmented capacitance sensor (SCS is discussed in this paper. SCS is a compromise between simple capacitive throughput sensors and electrical capacitance tomography sensors. The SCS variant with partially released inactive segments is presented. The mathematical model of SCS was created and verified by measurements. A good correspondence between measured and computed values was found and it can be stated that the proposed mathematical model was verified. During measurement the voltage values on the inactive segments were monitored as well. On the basis of the measurement there was found that these values are significantly influenced by material distribution.

  12. Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance

    National Research Council Canada - National Science Library

    Xu, Xingtao; Sun, Zhuo; Chua, Daniel H C; Pan, Likun

    2015-01-01

    As water shortage has become a serious global problem, capacitive deionization (CDI) with high energy efficiency and low cost, is considered as a promising desalination technique to solve this problem...

  13. A capacitive biosensor based on an interdigitated electrode with nanoislands.

    Science.gov (United States)

    Jung, Ha-Wook; Chang, Young Wook; Lee, Ga-yeon; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2014-09-24

    A capacitive biosensor based on an interdigitated electrode (IDE) with nanoislands was developed for label-free detection of antigen-antibody interactions. To enable sensitive capacitive detection of protein adsorption, the nanoislands were fabricated between finger electrodes of the IDE. The effect of the nanoislands on the sensitive capacitive measurement was estimated using horseradish peroxidase (HRP) as a model protein. Additionally, a parylene-A film was coated on the IDE with nanoislands to improve the efficiency of protein immobilization. By using HRP and hepatitis B virus surface antigen (HBsAg) as model analytes, the effect of the parylene-A film on the capacitive detection of protein adsorption was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  15. Topology Optimization of Stressed Capacitive RF MEMS Switches

    DEFF Research Database (Denmark)

    Philippine, Mandy A.; Sigmund, Ole; Rebeiz, Gabriel M.

    2013-01-01

    Geometry design can improve a capacitive radio-frequency microelectromechanical system switch's reliability by reducing the impacts of intrinsic biaxial stresses and stress gradients on the switch's membrane. Intrinsic biaxial stresses cause stress stiffening, whereas stress gradients cause out...

  16. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  17. Binary Population and Spectral Synthesis

    Science.gov (United States)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Bray, J. C.; Taylor, G.; Ng, M.

    2017-11-01

    We have recently released version 2.0 of the Binary Population and Spectral Synthesis (BPASS) population synthesis code. This is designed to construct the spectra and related properties of stellar populations built from ~200,000 detailed, individual stellar models of known age and metallicity. The output products enable a broad range of theoretical predictions for individual stars, binaries, resolved and unresolved stellar populations, supernovae and their progenitors, and compact remnant mergers. Here we summarise key applications that demonstrate that binary populations typically reproduce observations better than single star models.

  18. The capacitive sensing of NS1 Flavivirus biomarker.

    Science.gov (United States)

    Cecchetto, Juliana; Fernandes, Flávio C B; Lopes, Rute; Bueno, Paulo R

    2017-01-15

    NS1 is a biomarker for different Flavivirus diseases such as dengue (DENV), zika (ZIKV) and chikungunya (CHIKV) and was herein selectively quantified by electrochemical capacitive sensing (an impedance-derived capacitance methodology wherein the redox probe is contained in the receptive layer) mainly aiming dengue diagnosis in phosphate buffer saline and blood serum environments (up to the neat level). The capacitive sensing was compared to traditional concurrent impedimetric approach (in which the redox probe is added in the biological solution) and other transient methods stated in the literature regarding figures of merit such as limit of detection, linear range, relative standard deviation and affinity constant. Capacitive and impedimetric assays showed equivalent results for linear range, repeatability, sensitivity and constant of affinity. Nonetheless capacitive assays presented better reproducibility with a relative standard deviation (RSD) of 3±1 and 7±4 (all in percentage) in PBS and serum, respectively, meanwhile for impedimetric assays the RSD values were 9±5 in PBS and 12±6 in serum. Thus, by using capacitive assays, an improvement on the analytical performance was observed with the limit of detection about sixty-fold lower in neat serum (∼0.5ngmL-1 for capacitive over ∼30ngmL-1 for impedimetric assays) compared to traditional electrochemistry methods in general hence demonstrating the superior detection sensitivity for NS1 protein. Accordingly, redox tagged capacitive assays are suitable for the development of multiplex point-of-care neglected diseases sensing applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. New lower bound for the Capacitated Arc Routing Problem

    DEFF Research Database (Denmark)

    Wøhlk, Sanne

    2006-01-01

    We present a new lower bound, the Multiple Cuts Node Duplication Lower Bound, for the undirected Capacitated Arc Routing Problem.We prove that this new bound dominates the existing bounds for the problem. Computational results are also provided.......We present a new lower bound, the Multiple Cuts Node Duplication Lower Bound, for the undirected Capacitated Arc Routing Problem.We prove that this new bound dominates the existing bounds for the problem. Computational results are also provided....

  20. Capacitive Sensors for Measuring Masses of Cryogenic Fluids

    Science.gov (United States)

    Nurge, Mark; Youngquist, Robert

    2003-01-01

    An effort is under way to develop capacitive sensors for measuring the masses of cryogenic fluids in tanks. These sensors are intended to function in both microgravitational and normal gravitational settings, and should not be confused with level sensors, including capacitive ones. A sensor of this type is conceptually simple in the sense that (1) it includes only one capacitor and (2) if properly designed, its single capacitance reading should be readily convertible to a close approximation of the mass of the cryogenic fluid in the tank. Consider a pair of electrically insulated electrodes used as a simple capacitive sensor. In general, the capacitance is proportional to the permittivity of the dielectric medium (in this case, a cryogenic fluid) between the electrodes. The success of design and operation of a sensor of the present type depends on the accuracy of the assumption that to a close approximation, the permittivity of the cryogenic fluid varies linearly with the density of the fluid. Data on liquid nitrogen, liquid oxygen, and liquid hydrogen, reported by the National Institute of Standards and Technology, indicate that the permittivities and densities of these fluids are, indeed, linearly related to within a few tenths of a percent over the pressure and temperature regions of interest. Hence, ignoring geometric effects for the moment, the capacitance between two electrodes immersed in the fluid should vary linearly with the density, and, hence, with the mass of the fluid. Of course, it is necessary to take account of the tank geometry. Because most cryogenic tanks do not have uniform cross sections, the readings of level sensors, including capacitive ones, are not linearly correlated with the masses of fluids in the tanks. In a sensor of the present type, the capacitor electrodes are shaped so that at a given height, the capacitance per unit height is approximately proportional to the cross-sectional area of the tank in the horizontal plane at that

  1. Multiphase flow metering using capacitance transducer and multivariate calibration

    Directory of Open Access Journals (Sweden)

    Øyvind Midttveit

    1992-04-01

    Full Text Available The method of multivariate calibration is experimentally investigated to establish estimators of the required pertinent flow parameters in multiphase pipe flow. The unfiltered primary signals, provided by a capacitance sensor, are analysed as discrete time series and the signal characteristics are extracted. The multivariate model that is generated estimates the flow composition based on the extracted information existing in the broad-band capacitance signal. The data analysis and test results are presented.

  2. Capacitive Ultrasonic Transducer Development for Acoustic Anemometry on Mars

    Science.gov (United States)

    Leonard-Pugh, Eurion; Wilson, C.; Calcutt, S.; Davis, L.

    2012-10-01

    Previous Mars missions have used either mechanical or thermal anemometry techniques. The moving parts of mechanical anemometers are prone to damage during launch and landing and their inertia makes them unsuited for turbulence studies. Thermal anemometers have been used successfully on Mars but are difficult to calibrate and susceptible to varying ambient temperatures. In ultrasonic anemometry, wind speed and sound speed are calculated from two-way time-of-flight measurements between pairs of transducers; three pairs of transducers are used to return a 3-D wind vector. These high-frequency measurements are highly reliable and immune from drift. Piezo-electric ultrasonic anemometers are widely used on Earth due to their full-range accuracy and high measurement frequency. However these transducers have high acoustic impedances and would not work on Mars. We are developing low-mass capacitive ultrasonic transducers for Mars missions which have significantly lower acoustic impedances and would therefore have a much stronger coupling to the Martian atmosphere. These transducers consist of a metallised polymer film pulled taught against a machined metal backplane. The film is drawn towards the backplane by a DC bias voltage. A varying signal is used on top of the DC bias to oscillate the film; generating acoustic waves. This poster will look at the operation of such sensors and the developments necessary to operate the devices under Martian conditions. Transducer performance is determined primarily by two elements; the front film and the backplane. The sensitivity of the transducer is affected by the thickness of the front film; as well as the diameter, curvature and roughness of the metal backplane. We present data on the performance of the sensors and instrument design considerations including signal shapes and transducer arrangements.

  3. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown dwarfs.

  4. Primordial main equence binary stars in the globular cluster M71

    Science.gov (United States)

    Yan, Lin; Mateo, Mario

    1994-01-01

    We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the

  5. A high voltage method for measuring low capacitance for tomography.

    Science.gov (United States)

    Lu, Decai; Shao, Fuqun; Guo, Zhiheng

    2009-05-01

    Low capacitance measurement is involved in many industrial applications, especially in the applications of electrical capacitance tomography (ECT). Most of the low capacitance measurement circuits employ an ac-based method or a charge/discharge method because of high sensitivity, high resolution, and immunity to stray capacitance; and its excitation or charge voltage are not more than 20 V. When ECT techniques for large industrial equipment such as blast furnaces or grain barns are explored, the existing methods for measuring low capacitance have some limitations. This paper proposes a high excitation voltage ac-based method for measuring low capacitance to improve the resolution of measurement. The method uses a high excitation voltage of several hundred volts and a transformer ratio arms as the C/V transducer. Experimental results indicate that the new method has a resolution of 0.005 fF, a good stability (about 0.003 fF over 4 h) and linearity (0.9992).

  6. Switchless charge-discharge circuit for electrical capacitance tomography

    Science.gov (United States)

    Kryszyn, J.; Smolik, W. T.; Radzik, B.; Olszewski, T.; Szabatin, R.

    2014-11-01

    The main factor limiting the performance of electrical capacitance tomography (ECT) is an extremely low value of inter-electrode capacitances. The charge-discharge circuit is a well suited circuit for a small capacitance measurement due to its immunity to noise and stray capacitance, although it has a problem associated with a charge injected by the analogue switches, which results in a dc offset. This paper presents a new diode-based circuit for capacitance measurement in which a charge transfer method is realized without switches. The circuit was built and tested in one channel configuration with 16 multiplexed electrodes. The performance of the elaborated circuit and a comparison with a classic charge-discharge circuit are presented. The elaborated circuit can be used for sensors with inter-electrode capacitances not lower than 10 fF. The presented approach allows us to obtain a similar performance to the classic charge-discharge circuit, but has a simplified design. A lack of the need to synchronize the analogue switches in the transmitter and the receiver part of this circuit could be a desirable feature in the design of measurement systems integrated with electrodes.

  7. New Orbits for 18 Binaries

    Science.gov (United States)

    Cvetković, Z.; Pavlović, R.

    2017-12-01

    Orbital elements of 18 visual binaries are computed using the measurements collected in the Fourth Catalog of Interferometric Measurements of Binary Stars; 15 orbits are determined for the first time and three orbits are revised. Eleven of the binaries, denoted as HDS, were discovered during the Hipparcos mission. The remaining binaries were discovered a few years earlier or later than 1991. All studied pairs are close, and all measured separations are less than 0\\buildrel{\\prime\\prime}\\over{.} 46. The shortest orbital period is 10 years and the longest orbital period is 127 years. Dynamical parallaxes and total masses of systems are derived from the orbital elements. We also give absolute magnitudes, spectral types, and (O-C) residuals in θ and ρ.

  8. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  9. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 Institutional support: RVO:67985998 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics Impact factor: 1.633, year: 2016

  10. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.

    Science.gov (United States)

    Hassanvand, Armineh; Chen, George Q; Webley, Paul A; Kentish, Sandra E

    2017-12-22

    In this study, the desalination performance of Capacitive Deionization (CDI) and Membrane Capacitive Deionization (MCDI) was studied for a wide range of salt compositions. The comprehensive data collection for monovalent and divalent ions used in this work enabled us to understand better the competitive electrosorption of these ions both with and without ion-exchange membranes (IEMs). As expected, MCDI showed an enhanced salt adsorption and charge efficiency in comparison with CDI. However, the different electrosorption behavior of the former reveals that ion transport through the IEMs is a significant rate-controlling step in the desalination process. A sharper desorption peak is observed for divalent ions in MCDI, which can be attributed to a portion of these ions being temporarily stored within the IEMs, thus they are the first to leave the cell upon discharge. In addition to salt concentration, we monitored the pH of the effluent stream in CDI and MCDI and discuss the potential causes of these fluctuations. The dramatic pH change over one adsorption and desorption cycle in CDI (pH range of 3.5-10.5) can be problematic in a feed water containing components prone to scaling. The pH change, however, was much more limited in the case of MCDI for all salts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Constraining Binary Asteroid Mass Distributions Based On Mutual Motion

    Science.gov (United States)

    Davis, Alex B.; Scheeres, Daniel J.

    2017-06-01

    The mutual gravitational potential and torques of binary asteroid systems results in a complex coupling of attitude and orbital motion based on the mass distribution of each body. For a doubly-synchronous binary system observations of the mutual motion can be leveraged to identify and measure the unique mass distributions of each body. By implementing arbitrary shape and order computation of the full two-body problem (F2BP) equilibria we study the influence of asteroid asymmetries on separation and orientation of a doubly-synchronous system. Additionally, simulations of binary systems perturbed from doubly-synchronous behavior are studied to understand the effects of mass distribution perturbations on precession and nutation rates such that unique behaviors can be isolated and used to measure asteroid mass distributions. We apply our investigation to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), which will be the final flyby target of the recently announced LUCY Discovery mission in March 2033. This binary asteroid system is of particular interest due to the results of a recent stellar occultation study (DPS 46, id.506.09) that suggests the system to be doubly-synchronous and consisting of two-similarly sized oblate ellipsoids, in addition to suggesting the presence mass asymmetries resulting from an impact crater on the southern limb of Menoetius.

  12. Galaxy rotation and supermassive black hole binary evolution

    Science.gov (United States)

    Mirza, M. A.; Tahir, A.; Khan, F. M.; Holley-Bockelmann, H.; Baig, A. M.; Berczik, P.; Chishtie, F.

    2017-09-01

    Supermassive black hole (SMBH) binaries residing at the core of merging galaxies are recently found to be strongly affected by the rotation of their host galaxies. The highly eccentric orbits that form when the host is counterrotating emit strong bursts of gravitational waves that propel rapid SMBH binary coalescence. Most prior work, however, focused on planar orbits and a uniform rotation profile, an unlikely interaction configuration. However, the coupling between rotation and SMBH binary evolution appears to be such a strong dynamical process that it warrants further investigation. This study uses direct N-body simulations to isolate the effect of galaxy rotation in more realistic interactions. In particular, we systematically vary the SMBH orbital plane with respect to the galaxy rotation axis, the radial extent of the rotating component, and the initial eccentricity of the SMBH binary orbit. We find that the initial orbital plane orientation and eccentricity alone can change the inspiral time by an order of magnitude. Because SMBH binary inspiral and merger is such a loud gravitational wave source, these studies are critical for the future gravitational wave detector, Laser Interferometer Space Antenna, an ESA/NASA mission currently set to launch by 2034.

  13. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  14. Wireless Capacitive Pressure Sensor Operating up to 400 Celcius from 0 to 100 psi Utilizing Power Scavenging

    Science.gov (United States)

    Scardelletti, Maximilian C.; Ponchak, George E.; Harsh, Kevin; Mackey, Jonathan A.; Meredith, Roger D.; Zorman, Christian A.; Beheim, Glenn M.; Dynys, Frederick W.; Hunter, Gary W.

    2014-01-01

    In this paper, a wireless capacitive pressure sensor developed for the health monitoring of aircraft engines has been demonstrated. The sensing system is composed of a Clapp-type oscillator that operates at 131 MHz. The Clapp oscillator is fabricated on a alumina substrate and consists of a Cree SiC (silicon carbide) MESFET (Metal Semiconductor Field Effect Transistors), this film inductor, Compex chip capacitors and Sporian Microsystem capacitive pressure sensor. The resonant tank circuit within the oscillator is made up of the pressure sensor and a spiral thin film inductor, which is used to magnetically couple the wireless pressure sensor signal to a coil antenna placed over 1 meter away. 75% of the power used to bias the sensing system is generated from thermoelectric power modules. The wireless pressure sensor is operational at room temperature through 400 C from 0 to 100 psi and exhibits a frequency shift of over 600 kHz.

  15. Recent advances in understanding the capacitive storage in microporous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Daffos, B.; Taberna, P.L. [Universite de Toulouse, CIRIMAT, UMR-CNRS 5085, Toulouse (France); Gogotsi, Y. [Department of Materials Science and Engineering, A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA (United States); Simon, P.

    2010-10-15

    This paper presents a review of our recent work on capacitance of carbide-derived carbons (CDCs). Specific capacitance as high as 14 {mu}F cm{sup -2} or 160 F g{sup -1} was achieved using CDCs with tailored subnanometer pore size, which is significantly higher than 6 {mu}F cm{sup -2} or 100 F g{sup -1} for conventional activated carbons. Such high capacitance was obtained in several types of organic electrolytes with or without solvent. A maximum is obtained for the carbons with the mean pore size close to the bare ion size, ruling out the traditional point of view that mesoporosity is highly required for maximum capacitance. Surprisingly, carbons with subnanometer porosity exhibit high capacitance retention, since only a 10% loss is measured when 6 A g{sup -1} discharge is drawn. These findings show the importance of fitting the ion size with the mean pore size. The double layer theory falls short to explain such charge storage mechanisms at the nanometer scale; thus atomistic modelling is required to find out an alternative charge storage model. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. cLite – A Capacitive Signal Conditioning IC

    Directory of Open Access Journals (Sweden)

    Krauss Gudrun

    2009-12-01

    Full Text Available The ZMD31210 cLite™ – a new member of the ZMDI’s Lite™ family of low-cost sensor signal conditioner (SSC integrated circuits – is described in this paper. The cLite™ is the first conditioner for capacitive sensors. Supporting sensor capacitances from 2 pF up to 260 pF, the new sensor signal conditioner covers a wide range of applications. An important aspect of conditioning a capacitance sensor input signal is the adaptation of the capacitive-to-digital converter (CDC input range to the sensor signal span and offset values in order to maximize accuracy. All typical features of the Lite™ family including the digital calibration math based on EEPROM-stored coefficients and a variety of outputs (I2C™, SPI, PDM, and programmable alarms are integrated in the cLite™ as well. Additional features including a sleep mode and low supply voltage range (down to 2.3 V support the low power concept. The paper focuses in particular on the capacitance sensor adaptation and high precision sensor conditioning.

  17. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  18. Logarithmic derivative method and system for capacitance measurement.

    Science.gov (United States)

    Wu, Yichun; Wang, Lingzhi; Cai, Yuanfeng; Wu, Cunqiao

    2015-08-01

    A novel method based on logarithmic derivative is introduced to analyze multi-lifetime decay. As the discharge voltage signal of a RC circuit is a special kind of multi-lifetime exponential decay, the logarithmic derivative method can be used to measure single capacitance and multiple capacitances. With the logarithmic derivative method, a log(t) curve strongly peaked at precisely log(τ) is obtained, where the lifetime τ equals to RC. In a measurement system, if the resistance R is known, then the capacitance under test can be calculated. A logarithmic derivative curve fitting method is also presented, which has better anti-noise capability than the method that simply finds the maximum data on the peak. The curve fitting method can also be used for multiple capacitors measurement. To measure small capacitances, a large enough time window of the measuring instrument is required. Based on a field programmable gate array and a high speed analog-to-digital converter, a measurement system is developed. This system can provide the 16-bit resolution with sampling rate up to 250 MHz, which has a large enough time window for measuring lifetime shorter than 10(-8) s. To reduce the amount of data needed to be stored and the noise due to the derivative treatment of transient data, the interpolation and noise-filter algorithms are employed. Experiments indicate that the logarithmic derivative method and system are suitable for the measurement of capacitances discharge and other exponential decay processes.

  19. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes.

    Science.gov (United States)

    Tang, Wangwang; He, Di; Zhang, Changyong; Kovalsky, Peter; Waite, T David

    2017-09-01

    Capacitive deionization (CDI) and membrane capacitive deionization (MCDI) are the most common cell architectures in the use of CDI for water treatment. In this work, the Faradaic reactions occurring in batch-mode CDI and MCDI processes were compared by investigating the variation of H2O2 and dissolved oxygen (DO) concentrations, pH, conductivity and current during charging and discharging under different charging voltages. During charging, the H2O2 concentration in CDI increased rapidly and then decreased while almost no H2O2 was generated in MCDI due to the inability of oxygen to penetrate the ion exchange membrane. Chemical kinetic models were developed to quantitatively describe the variation of H2O2 concentration and found to present satisfactory descriptions of the experimental data. The pH drop during charging could be partially explained by Faradaic reactions with proton generation associated with oxidation of the carbon electrodes considered to be the major contributor. The electrode potentials required for the induction of Faradaic reactions were analyzed with this analysis providing robust thermodynamic explanations for the occurrence of carbon oxidation at the anode and H2O2 generation at the cathode during the ion adsorption process. Finally, electrochemically-induced ageing of the carbon electrodes and the resulting performance stability were investigated. The findings in this study contribute to a better understanding of Faradaic reactions in CDI and MCDI and should be of value in optimizing CDI-based technologies for particular practical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. New Results on Contact Binary Stars

    Science.gov (United States)

    He, J.; Qian, S.; Zhu, L.; Liu, L.; Liao, W.

    2014-08-01

    Contact binary star is a kind of close binary with the strongest interaction binary system. Their formations and evolutions are unsolved problems in astrophysics. Since 2000, our groups have observed and studied more than half a hundred of contact binaries. In this report, I will summarize our new results of some contact binary stars (e.g. UZ CMi, GSC 03526-01995, FU Dra, GSC 0763-0572, V524 Mon, MR Com, etc.). They are as follow: (1) We discovered that V524 Mon and MR Com are shallow-contact binaries with their period decreasing; (2) GSC 03526-01995 is middle-contact binary without a period increasing or decreasing continuously; (3) UZ CMi, GSC 0763-0572 and FU Dra are middle-contact binaries with the period increasing continuously; (4) UZ CMi, GSC 03526-01995, FU Dra and V524 Mon show period oscillation which may imply the presence of additional components in these contact binaries.

  1. Asymmetric distances for binary embeddings.

    Science.gov (United States)

    Gordo, Albert; Perronnin, Florent; Gong, Yunchao; Lazebnik, Svetlana

    2014-01-01

    In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes that binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances that are applicable to a wide variety of embedding techniques including locality sensitive hashing (LSH), locality sensitive binary codes (LSBC), spectral hashing (SH), PCA embedding (PCAE), PCAE with random rotations (PCAE-RR), and PCAE with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.

  2. The Young Visual Binary Survey

    Science.gov (United States)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  3. CMOS capacitive biosensors for highly sensitive biosensing applications.

    Science.gov (United States)

    Chang, An-Yu; Lu, Michael S-C

    2013-01-01

    Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.

  4. Quantum Capacitance Modifies Interionic Interactions in Semiconducting Nanopores

    CERN Document Server

    Lee, Alpha A; Goriely, Alain

    2016-01-01

    Nanopores made with low dimensional semiconducting materials, such as carbon nanotubes and graphene slit pores, are used in supercapacitors. In theories and simulations of their operation, it is often assumed that such pores screen ion-ion interactions like metallic pores, i.e. that screening leads to an exponential decay of the interaction potential with ion separation. By introducing a quantum capacitance that accounts for the density of states in the material, we show that ion-ion interactions in carbon nanotubes and graphene slit pores actually decay algebraically with ion separation. This result suggests a new avenue of capacitance optimization based on tuning the electronic structure of a pore: a marked enhancement in capacitance might be achieved by developing nanopores made with metallic materials or bulk semimetallic materials.

  5. Human body capacitance: static or dynamic concept? [ESD

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1998-01-01

    was determined by an AC-bridge measurement, but 200-400 pF when the traditional static charge-sharing method was used. Further experiments indicate that the two methods give the same result when the electric flux is well located in a dielectric other than air, but that the static method leads to higher values......A standing human body insulated from ground by footwear and/or floor covering is in principle an insulated conductor and has, as such, a capacitance, i.e. the ability to store a charge and possibly discharge the stored energy in a spark discharge. In the human body, the human body capacitance (HBC...... when a substantial part of the flux extends itself through badly defined stray fields. Since the concept of human body capacitance is normally used in a static (electric) context, it is suggested that the HBC be determined by a static method. No theoretical explanation of the observed differences...

  6. Static negative capacitance of a ferroelectric nano-domain nucleus

    Science.gov (United States)

    Sluka, Tomas; Mokry, Pavel; Setter, Nava

    2017-10-01

    Miniaturization of conventional field effect transistors (FETs) approaches the fundamental limits beyond which opening and closing the transistor channel require higher gate voltage swing and cause higher power dissipation and heating. This problem could be eliminated by placing a ferroelectric layer between the FET gate electrode and the channel, which effectively amplifies the gate voltage. The original idea of using a bulk ferroelectric negative capacitor suffers however from irreversible multi-domain ferroelectric switching, which does not allow us to stabilize static negative capacitance, while a recent reversible solution with super-lattices may be difficult to integrate onto FET. Here, we introduce a solution which provides static negative capacitance from a nano-domain nucleus. Phase-field simulations confirm the robustness of this concept, the conveniently achievable small effective negative capacitance and the potentially high compatibility of such a negative nano-capacitor with FET technology.

  7. Capacitive Micromachined Ultrasonic Transducers (CMUTs for Underwater Imaging Applications

    Directory of Open Access Journals (Sweden)

    Jinlong Song

    2015-09-01

    Full Text Available A capacitive micromachined ultrasonic transducer structure for use in underwater imaging is designed, fabricated and tested in this paper. In this structure, a silicon dioxide insulation layer is inserted between the top electrodes and the vibration membrane to prevent ohmic contact. The capacitance-voltage (C-V characteristic curve shows that the transducer offers suitable levels of hysteresis and repeatability performance. The −6 dB center frequency is 540 kHz and the transducer has a bandwidth of 840 kHz for a relative bandwidth of 155%. Underwater pressure of 143.43 Pa is achieved 1 m away from the capacitive micromachined ultrasonic transducer under 20  excitation. Two-dimensional underwater ultrasonic imaging, which is able to prove that a rectangular object is present underwater, is achieved. The results presented here indicate that our work will be highly beneficial for the establishment of an underwater ultrasonic imaging system.

  8. Three phase pipe flow imaging using a capacitance tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Isaksen, Oe.

    1996-04-01

    Several tomography systems for pipe flow imaging have been developed in the past decade. Many of them are based on capacitance sensors measuring the permittivity of the flowing components. So far the systems have mostly been tested on two-phase flow, and mainly for oil/gas pipe flow. Several reconstruction techniques for reconstructing the measured capacitances have been developed. The most commonly used reconstruction algorithm is the linear back projection algorithm (LBP), which is fast and fairly crude. This paper shows that in using the LBP algorithm one must be very careful in interpreting the results. Methods for using a capacitance tomography system based on the LBP algorithm for three-phase oil/water/gas pipe flow imaging are outlined and preliminary results are presented. 4 refs., 7 figs.

  9. Penicillamine prevents ram sperm agglutination in media that support capacitation.

    Science.gov (United States)

    Leahy, T; Rickard, J P; Aitken, R J; de Graaf, S P

    2016-02-01

    Ram spermatozoa are difficult to capacitate in vitro. Here we describe a further complication, the unreported phenomenon of head-to-head agglutination of ram spermatozoa following dilution in the capacitation medium Tyrodes plus albumin, lactate and pyruvate (TALP). Sperm agglutination is immediate, specific and persistent and is not associated with a loss of motility. Agglutination impedes in vitro sperm handling and analysis. So the objectives of this study were to investigate the cause of sperm agglutination and potential agents which may reduce agglutination. The percentage of non-agglutinated, motile spermatozoa increased when bicarbonate was omitted from complete TALP suggesting that bicarbonate ions stimulate the agglutination process. d-penicillamine (PEN), a nucleophilic thiol, was highly effective at reducing agglutination. The inclusion of 250 μM PEN in TALP reduced the incidence of motile, agglutinated spermatozoa from 76.7 ± 2.7% to 2.8 ± 1.4%. It was then assessed if PEN (1 mM) could be included in existing ram sperm capacitation protocols (TALP +1 mM dibutyryl cAMP, caffeine and theophylline) to produce spermatozoa that were simultaneously capacitated and non-agglutinated. This protocol resulted in a sperm population which displayed high levels of tyrosine phosphorylated proteins and lipid disordered membranes (merocyanine-540) while remaining motile, viable, acrosome-intact and non-agglutinated. In summary, PEN (1 mM) can be included in ram sperm capacitation protocols to reduce sperm agglutination and allow for the in vitro assessment of ram sperm capacitation. © 2016 Society for Reproduction and Fertility.

  10. Using Binary Code Instrumentation in Computer Security

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2013-01-01

    Full Text Available The paper approaches the low-level details of the code generated by compilers whose format permits outside actions. Binary code modifications are manually done when the internal format is known and understood, or automatically by certain tools developed to process the binary code. The binary code instrumentation goals may be various from security increasing and bug fixing to development of malicious software. The paper highlights the binary code instrumentation techniques by code injection to increase the security and reliability of a software application. Also, the paper offers examples for binary code formats understanding and how the binary code injection may be applied.

  11. Statistical study of visual binaries

    Science.gov (United States)

    Abdel-Rahman, H. I.; Nouh, M. I.; Elsanhoury, W. H.

    2017-04-01

    In this paper, some statistical distributions of wide pairs included in Double Star Catalogue are investigated. Frequency distributions and testing hypothesis are derived for some basic parameters of visual binaries. The results reached indicate that, it was found that the magnitude difference is distributed exponentially, which means that the majority of the component of the selected systems is of the same spectral type. The distribution of the mass ratios is concentrated about 0.7 which agree with Salpeter mass function. The distribution of the linear separation appears to be exponentially, which contradict with previous studies for close binaries.

  12. Chromospheric Activity in Algol Binaries

    Science.gov (United States)

    1992-08-10

    Binaries J ’ st ..icaton...... Project Period: 10-01-91 to 09-30-94 BYDist! ibution I Current Date: August 10, 1992 Availability Codes Avail and I or...brightness of the secondary, )3 Persei is the only Algol binary for which there was strong evidence of starspot activity. In this case, the evidence...mospheric Ha emission on what was formerly assumed to be emission from circunistellar gas. In the study of 3 Persei , the P.I. (Richards 1992b: 1992c) assumed

  13. Resistive or capacitive charge-division readout for position-sensitive detectors

    Science.gov (United States)

    Pullia, A.; Muller, W. F. J.; Boiano, C.; Bassini, R.

    2002-12-01

    Two-point charge division is a typical technique for position measurements in linear multi electrode detectors (microstrips, multiwire proportional counters, silicon drift-detector arrays, and scintillators coupled to photodetectors). Only two preamplifiers, located at the right and the left ends of the detection array, are used, each of which receives a fraction of the charge produced by the ionizing event. Position is reconstructed comparing these charge fractions. In principle, either a resistive or a capacitive divider may be used to split the charge. The choice between such two different setups is not obvious. In fact, each of them shows advantages and disadvantages in terms of noise, signal propagation, and linearity. In this paper, we present a unified treatment for the capacitive and the resistive mechanisms of charge division that addresses the issues of this choice. As an example, the realistic setup of the multiwire position-sensitive proportional counter to be used in the TP-MUSIC III chamber of the ALADiN experiment at GSI is considered.

  14. Screening of self-assembled monolayer for aflatoxin B1 detection using immune-capacitive sensor.

    Science.gov (United States)

    Gutierrez R, Alvaro V; Hedström, Martin; Mattiasson, Bo

    2015-12-01

    A capacitive biosensor was used for detection of aflatoxin B1. Two different methods for cleaning gold electrodes were evaluated using cyclic voltammetry in the presence of ferricyanide as redox couple. The methods involve use of a sequence of cleaning steps avoiding the use of Piranha solution and plasma cleaner. Anti-aflatoxin B1 was immobilized on self-assembled monolayers (SAM). The immune-capacitive biosensor is able to detect aflatoxin B1 concentrations in a linear range of 3.2 × 10-12 M to 3.2 × 10-9 M when thiourea was used to form the SAM; 3.2 × 10-9 M to 3.2 × 10-7 M when thioctic acid was used. When the gold surface was isolated with tyramine-electropolymerization linear ranges of 3.2 × 10-13 M to 3.2 × 10-7 M and 3.2 × 10-9 M to 3.2 × 10-7 M where obtained, respectively. The results obtained show the difference in linear range, limit of detection, and limit of quantification when different self-assembled monolayers are used for aflatoxin B1 detection.

  15. Scanning Capacitance Microscopy Imaging of State-of-the-Art MOSFETs

    Science.gov (United States)

    Kleiman, R. N.; Garno, J. P.; Hergenrother, J. M.; O'Malley, M. L.; Timp, G. L.

    2000-03-01

    We have used a scanning capacitance microscope (SCM) to study cross-sectioned n- and p-MOSFETs with gate lengths as short as 50 nm. The SCM is a contact AFM, coupled to a sensitive capacitance detector. The metallized AFM tip, native oxide and semiconductor form an MOS junction, upon which we perform c-v measurements. We have studied aggressively scaled CMOS transistors as part of an effort to understand and push the limits to CMOS. We have also studied the newly invented Vertical Replacement-Gate MOSFET, in which the gate dimension is defined by a non-lithographic process. In both cases SCM microscopy is beneficial in advancing and optimizing the design of novel device structures. The transistors provide the opportunity to study well-characterized dopant structures with very small dimensions. We describe some recent improvements we have made in SCM microscopy, in the area of modeling1 probe tips2 sample preparation, and instrumentation. 1 M. L. O'Malley, et al, Appl. Phys. Lett., 74, 272 (1999). 2 M. L. O'Malley, et al, Appl. Phys. Lett., 74, 3672 (1999).

  16. Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor

    Energy Technology Data Exchange (ETDEWEB)

    Limbut, Warakorn, E-mail: warakorn.l@psu.ac.t [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thavarungkul, Panote [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Kanatharana, Proespichaya [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wongkittisuksa, Booncharoen [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Asawatreratanakul, Punnee [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Limsakul, Chusak [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2010-03-30

    Cost-effective disposable electrodes were fabricated from copper clad laminate, usually used for printed circuit board (PCB) in electronic industries, by using dry film photoresist. Electro-oxidation (anodisation) was employed to obtain a good formation of thiourea film on the electrode surface. The affinity binding pair of carcinoembryonic antigen (CEA) and anti-carcinoembryonic antigen (anti-CEA) was used as a model system. Anti-CEA was immobilized on thiourea film via covalent coupling. This modified electrode was incorporated with a capacitive system for CEA analysis. This capacitive immunosensor provided a linear range between 0.01 and 10 ng ml{sup -1} with a detection limit of 10 pg ml{sup -1}. When applied to analyze CEA in serum samples, the results agreed well with the enzyme linked fluorescent assay (ELFA) technique (P > 0.05). The proposed strategy for the preparation of disposable modified copper electrode is very cost effective and simple. Moreover, it provides good reproducibility. This technique can easily be applied to immobilize other biological sensing elements for biosensors development.

  17. Intrinsic Low Hysteresis Touch Mode Capacitive Pressure Sensor

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio; Pedersen, Thomas; Hansen, Ole

    2011-01-01

    Hysteresis has always been one of the main concerns when fabricating touch mode capacitive pressure sensors (TMCPS). This phenomenon can be fought at two different levels: during fabrication or after fabrication with the aid of a dedicated signal conditioning circuit. We will describe a microfabr......Hysteresis has always been one of the main concerns when fabricating touch mode capacitive pressure sensors (TMCPS). This phenomenon can be fought at two different levels: during fabrication or after fabrication with the aid of a dedicated signal conditioning circuit. We will describe...... in the touch mode region....

  18. CONCEPTS FOR CAPACITIVELY RF-SHIELDED BELLOWS IN CRYOGENIC STRUCTURES.

    Energy Technology Data Exchange (ETDEWEB)

    ZHAO,Y.HAHN,H.

    2004-03-24

    Bellows are frequently required in accelerators and colliders. Usually RF-shields with spring fingers are employed to screen the bellows. The lack of accessibility in cryogenic systems can be a problem and asks for alternate solutions to eliminate possible overheating, sparking, etc that occurred in intensive beams. This note addresses an alternate kind of RF shield, which uses capacitive contact instead of mechanical contact. The analysis, as well as numerical example of a superconducting cavity structure, shows that the capacitive RF shield satisfies the impedance requirements of both beam and HOMs. The capability of thermal isolation is also analyzed.

  19. [Impact of sperm capacitation on various populations of human spermatozoa].

    Science.gov (United States)

    Villanueva Díaz, C; Suárez Juárez, M; Díaz, M A; Ayala Ruiz, A

    1989-02-01

    With the purpose of evaluating the impact of spermatic capacitation on different spermatozooa populations, 49 samples of semen, before and after in vitro spermatic capacitation with Ham F-10 medium, were studied; motility of cells was evaluated according to WHO criteria. There was diminution of percentage of immobile cells, 27.8 to 20.0, as well as increase in population of cells with more mobility, 28.6% to 39.1%. Both difference were statistically significant (p = less than 0.05 and p = less than 0.005, respectively). These data suggest that spermatic capacitacion activates "in cascade" all groups of gametes.

  20. Current Kink and Capacitance Frequency Dispersion in Silicon PIN Photodiodes

    Science.gov (United States)

    Guo, Xia; Feng, Yajie; Liu, Qiaoli; Wang, Huaqiang; Li, Chong; Hu, Zonghai; He, Xiaoying

    2017-09-01

    Silicon PIN photodiodes in the visible wavelength range have been widely applied in aerospace, defense, security, medical, and scientific instruments because of their high sensitivity and low cost. In this paper, the phenomena of the current kink and the capacitance frequency dispersion are observed. Contamination at the p-type Ohmic contact interface is proposed to explain the current kink effect and capacitance frequency dispersion, according to the temperature-dependent I-V measurement results in which trap-assisted tunneling process demonstrated.

  1. Micromachined capacitive pressure sensor with signal conditioning electronics

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio

    Micromachined capacitive pressure sensors for harsh environment together with interfacing electronic circuits have been studied in this project. Micro-electromechanical systems (MEMS) have been proposed as substitutes for macro scale sensor’s systems in many different fields and are the only...... a great deal of sensors are used. Pressure sensors are among the most successful MEMS and are used in a huge variety of applications. In this project an absolute capacitive pressure sensor has been developed with the aim to integrate it in pump control systems to improve the efficiency of the pump...

  2. Stray capacitances in the watt balance operation: electrostatic forces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Mana, G.

    2014-01-01

    In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results of a fin......In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results...

  3. A Multifunction Low-Power Preamplifier for MEMS Capacitive Microphones

    DEFF Research Database (Denmark)

    Jawed, Syed Arsalan; Nielsen, Jannik Hammel; Gottardi, Massimo

    2009-01-01

    A multi-function two-stage chopper-stabilized preamplifier (PAMP) for MEMS capacitive microphones (MCM) is presented. The PAMP integrates digitally controllable gain, high-pass filtering and offset control, adding flexibility to the front-end readout of MCMs. The first stage of the PAMP consists...... of a source-follower (SF) while the second-stage is a capacitive gain stage. The second-stage employs chopper-stabilization (CHS), while SF buffer shields the MCM sensor from the switching spurs. The PAMP uses M poly bias resistors for the second-stage, exploiting Miller effect to achieve flat audio...

  4. Flexible Capacitive Electrodes for Minimizing Motion Artifacts in Ambulatory Electrocardiograms

    Directory of Open Access Journals (Sweden)

    Jeong Su Lee

    2014-08-01

    Full Text Available This study proposes the use of flexible capacitive electrodes for reducing motion artifacts in a wearable electrocardiogram (ECG device. The capacitive electrodes have conductive foam on their surface, a shield, an optimal input bias resistor, and guarding feedback. The electrodes are integrated in a chest belt, and the acquired signals are transmitted wirelessly for ambulatory heart rate monitoring. We experimentally validated the electrode performance with subjects standing and walking on a treadmill at speeds of up to 7 km/h. The results confirmed the highly accurate heart rate detection capacity of the developed system and its feasibility for daily-life ECG monitoring.

  5. A Simple Capacitive Charge-Division Readout for Position-Sensitive Solid-State Photomultiplier Arrays

    Science.gov (United States)

    Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Dokhale, Purushottam A.; Shah, Kanai S.; Cherry, Simon R.

    2014-01-01

    A capacitive charge-division readout method for reading out a 2 × 2 array of 5 mm × 5 mm position-sensitive solid-state photomultipliers (PS-SSPM) was designed and evaluated. Using this analog multiplexing method, the 20 signals (16 position, 4 timing) from the PS-SSPM array are reduced to 5 signals (4 position, 1 timing), allowing the PS-SSPM array to be treated as an individual large-area PS-SSPM module. A global positioning approach can now be used, instead of individual positioning for each PS-SSPM in the array, ensuring that the entire light signal is utilized. The signal-to-noise ratio (SNR) and flood histogram quality at different bias voltages (27.5 V to 32.0 V at 0.5 V intervals) and a fixed temperature of 0 °C were evaluated by coupling a 6 × 6 array of 1.3 mm × 1.3 mm × 20 mm polished LSO crystals to the center of the PS-SSPM array. The timing resolution was measured at a fixed bias voltage of 31.0 V and a fixed temperature of 0 °C. All the measurements were evaluated and compared using capacitors with different values and tolerances. Capacitor values ranged from 0.051 nf to 10 nf, and the capacitance tolerance ranged from 1% to 20%. The results show that better performance was achieved using capacitors with smaller values and better capacitance tolerance. Using 0.2 nf capacitors, the SNR, energy resolution and timing resolution were 24.3, 18.2% and 8.8 ns at a bias voltage 31.0 V, respectively. The flood histogram quality was also evaluated by using a 10 × 10 array of 1 mm × 1 mm × 10 mm polished LSO crystals and a 10 × 10 array of 0.7 mm × 0.7 mm × 20 mm unpolished LSO crystals to determine the smallest crystal size resolvable. These studies showed that the high spatial resolution of the PS-SSPM was preserved allowing for 0.7 mm crystals to be identified. These results show that the capacitive charge-division analog signal processing method can significantly reduce the number of electronic channels, from 20 to 5, while retaining the

  6. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  7. The Uses of Binary Thinking.

    Science.gov (United States)

    Elbow, Peter

    1993-01-01

    Argues that oppositional thinking, if handled in the right way, will serve as a way to avoid the very problems that Jonathan Culler and Paul de Mann are troubled by: "purity, order, and hierarchy." Asserts that binary thinking can serve to encourage difference--indeed, encourage nondominance, nontranscendence, instability, and disorder.…

  8. The Colors of Transneptunian Binaries

    Science.gov (United States)

    Benecchi, Susan D.; Noll, K. S.; Grundy, W. M.; Buie, M. W.; Stephens, D. C.; Levison, H. F.

    2008-09-01

    We report resolved photometry of the primary and secondary components of 22 transneptunian binaries obtained with the Hubble Space Telescope. We find the primary and secondary colors to be identical within our measurement uncertainties and correlated with a Spearman rank correlation probability of 99.983%. The V-I colors of the components span the full color range from 0.7 (neutral) to 1.5 (red) with a median uncertainty of 0.05 magnitudes. As a group, the binary colors are indistinguishable from that of the larger population of apparently single transneptunian objects. Whatever mechanism produced the colors of apparently single transneptunian objects acted equally on binary systems. The most likely explanation is that the colors of both single and binary transneptunian objects are primordial and indicative of their origin in a locally homogeneous, globally heterogeneous protoplanetary disk. Support for this research was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  9. Misclassification in binary choice models

    Czech Academy of Sciences Publication Activity Database

    Meyer, B. D.; Mittag, Nikolas

    2017-01-01

    Roč. 200, č. 2 (2017), s. 295-311 ISSN 0304-4076 R&D Projects: GA ČR(CZ) GJ16-07603Y Institutional support: Progres-Q24 Keywords : measurement error * binary choice models * program take-up Subject RIV: AH - Economics Impact factor: 1.633, year: 2016

  10. The Meritfactor of Binary Seqences

    DEFF Research Database (Denmark)

    Høholdt, Tom

    1999-01-01

    Binary sequences with small aperiodic correlations play an important role in many applications ranging from radar to modulation and testing of systems. Golay(1977) introduced the merit factor as a measure of the goodness of the sequence and conjectured an upper bound for this. His conjecture...

  11. Generating Constant Weight Binary Codes

    Science.gov (United States)

    Knight, D.G.

    2008-01-01

    The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…

  12. Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures.

    Science.gov (United States)

    Gao, Yun; Qin, Zhanbin; Guan, Li; Wang, Xiaomian; Chen, George Z

    2015-07-11

    Solutions of calcium chloride in mixed water and formamide are excellent electrolytes for capacitive charge storage in partially oxidised carbon nanotubes at unprecedented sub-zero-temperatures (e.g. 67% capacitance retention at -60 °C).

  13. Interactions in Massive Colliding Wind Binaries

    Directory of Open Access Journals (Sweden)

    Michael F. Corcoran

    2012-03-01

    Full Text Available There are observational difficulties determining dynamical masses of binary star components in the upper HR diagram both due to the scarcity of massive binary systems and spectral and photometric contamination produced by the strong wind outflows in these systems. We discuss how variable X-ray emission in these systems produced by wind-wind collisions in massive binaries can be used to constrain the system parameters, with application to two important massive binaries, Eta Carinae and WR 140.

  14. Massive star population synthesis with binaries

    OpenAIRE

    Vanbeveren, D.; Mennekens, N.

    2015-01-01

    We first give a short historical overview with some key facts of massive star population synthesis with binaries. We then discuss binary population codes and focus on two ingredients which are important for massive star population synthesis and which may be different in different codes. Population simulations with binaries is the third part where we consider the initial massive binary frequency, the RSG/WR and WC/WN and SNII/SNIbc number ratio's, the probable initial rotational velocity distr...

  15. Sensitive Precise p H Measurement with Large-Area Graphene Field-Effect Transistors at the Quantum-Capacitance Limit

    Science.gov (United States)

    Fakih, Ibrahim; Mahvash, Farzaneh; Siaj, Mohamed; Szkopek, Thomas

    2017-10-01

    A challenge for p H sensing is decreasing the minimum measurable p H per unit bandwidth in an economical fashion. Minimizing noise to reach the inherent limit imposed by charge fluctuation remains an obstacle. We demonstrate here graphene-based ion-sensing field-effect transistors that saturate the physical limit of sensitivity, defined here as the change in electrical response with respect to p H , and achieve a precision limited by charge-fluctuation noise at the sensing layer. We present a model outlining the necessity for maximizing the device carrier mobility, active sensing area, and capacitive coupling in order to minimize noise. We encapsulate large-area graphene with an ultrathin layer of parylene, a hydrophobic polymer, and deposit an ultrathin, stoichiometric p H -sensing layer of either aluminum oxide or tantalum pentoxide. With these structures, we achieve gate capacitances ˜0.6 μ F /cm2 , approaching the quantum-capacitance limit inherent to graphene, along with a near-Nernstian p H response of ˜55 ±2 mV /p H . We observe field-effect mobilities as high as 7000 cm2 V-1 s-1 with minimal hysteresis as a result of the parylene encapsulation. A detection limit of 0.1 m p H in a 60-Hz electrical bandwidth is observed in optimized graphene transistors.

  16. Capacitive pressure sensor in post-processing on LTCC substrates

    NARCIS (Netherlands)

    Meijerink, M.G.H.; Nieuwkoop, E.; Veninga, E.P.; Meuwissen, M.H.H.; Tijdink, M.W.W.J.

    2005-01-01

    A capacitive pressure sensor was realized by means of a post-processing step on a low temperature co-fired ceramics (LTCC) substrate. The new sensor fabrication technology allows for integration of the sensor with interface circuitry and possibly also wireless transmission circuits on LTCC

  17. The modelling of a capacitive microsensor for biosensing applications

    CSIR Research Space (South Africa)

    Bezuidenhout, PH

    2014-03-01

    Full Text Available various uses, and this consequently helps with the ever-growing need to provide better health conditions in rural parts of the world. Capacitive biosensors detect a change in permittivity (or dielectric constant) of a biological material, usually within a...

  18. Multilevel inverter based class D audio amplifier for capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The reduced semiconductor voltage stress makes the multilevel inverters especially interesting, when driving capacitive transducers for audio applications. A ± 300 V flying capacitor class D audio amplifier driving a 100 nF load in the midrange region of 0.1-3.5 kHz with Total Harmonic Distortion...

  19. Capacitance and microstructure of platinum/yttria-stabilised zirconia composites

    NARCIS (Netherlands)

    Hendriks, M.G.H.M.; van Zyl, W.E.; ten Elshof, Johan E.; Verweij, H.

    2001-01-01

    The influence of microstructure on the capacitive behavior in the dual-phase composite system platinum/cubic-yttria-stabilized zirconia (YSZ) was studied at ambient temperature. Three different synthesis methods were employed. The volume fraction of Pt metal in the composite was varied between 0 and

  20. A micromachined capacitive incremental position sensor: part 2. experimental assessment

    NARCIS (Netherlands)

    Kuijpers, A.A.; Krijnen, Gijsbertus J.M.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    2006-01-01

    Part 2 of this two-part paper presents the experimental assessment of a micromachined capacitive incremental position sensor for nanopositioning of microactuator systems with a displacement range of 100 μm or more. Incremental sensing in combination with quadrature detection reduces the requirements

  1. Comparison of neutron scattering and DFM capacitance instruments ...

    African Journals Online (AJOL)

    2012-03-20

    Mar 20, 2012 ... Soil water evaporation is an important parameter that needs to be accurately measured for the design of water-efficient agricultural systems. With this study, the abilities of the DFM capacitance probes and a neutron water meter (NWM) to ..... for calibration and the remaining half were used to validate the.

  2. Optimization of salt adsorption rate in membrane capacitive deionization

    NARCIS (Netherlands)

    Zhao, R.; Satpradit, O.A.; Rijnaarts, H.; Biesheuvel, P.M.; Wal, van der A.

    2013-01-01

    Membrane capacitive deionization (MCDI) is a water desalination technique based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In MCDI, ion-exchange membranes are positioned in front of each porous

  3. Characterisation of a highly symmetrical miniature capacitive triaxial accelerometer

    NARCIS (Netherlands)

    Lotters, Joost Conrad; Lötters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1997-01-01

    A highly symmetrical cubic capacitive triaxial accelerometer for biomedical applications has been designed, realised and tested. The sensors are available in two outer dimensions, namely 2×2×2 and 5×5×5 mm3. The devices are mounted on a standard IC package for easy testing. Features of the sensor

  4. Miniature capacitive accelerometer is especially applicable to telemetry

    Science.gov (United States)

    Coon, G. W.; Harrison, D. R.

    1966-01-01

    Capacitive accelerometer design enables the construction of highly miniaturized instruments having full-scale ranges from 1 g to several hundred g. This accelerometer is applicable to telemetry and can be tailored to cover any of a large number of acceleration ranges and frequency responses.

  5. Three dimensional simulated modelling of diffusion capacitance of ...

    African Journals Online (AJOL)

    A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...

  6. An IC-compatible polyimide pressure sensor with capacitive readout

    NARCIS (Netherlands)

    Pedersen, M.; Meijerink, M.G.H.; Olthuis, Wouter; Bergveld, Piet

    1997-01-01

    A capacitive differential pressure sensor has been developed. The process used for the fabrication of the sensor is IC-compatible, meaning that the device potentially can be integrated on one chip with a suitable signal-conditioning circuit. A sensor for a differential pressure of ±1 bar has been

  7. Microfluidic desalination : capacitive deionization on chip for microfluidic sample preparation

    NARCIS (Netherlands)

    Roelofs, Susan Helena

    2015-01-01

    The main aim of the work described in this thesis is to implement the desalination technique capacitive deionization (CDI) on a microfluidic chip to improve the reproducibility in the analysis of biological samples for drug development. Secondly, microfluidic CDI allows for the in situ study of ion

  8. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  9. An integrated energy-efficient capacitive sensor digital interface circuit

    KAUST Repository

    Omran, Hesham

    2014-06-19

    In this paper, we propose an energy-efficient 13-bit capacitive sensor interface circuit. The proposed design fully relies on successive approximation algorithm, which eliminates the need for oversampling and digital decimation filtering, and thus low-power consumption is achieved. The proposed architecture employs a charge amplifier stage to acheive parasitic insensitive operation and fine absolute resolution. Moreover, the output code is not affected by offset voltages or charge injection. The successive approximation algorithm is implemented in the capacitance-domain using a coarse-fine programmable capacitor array, which allows digitizing wide capacitance range in compact area. Analysis for the maximum achievable resolution due to mismatch is provided. The proposed design is insensitive to any reference voltage or current which translates to low temperature sensitivity. The operation of a prototype fabricated in a standard CMOS technology is experimentally verified using both on-chip and off-chip capacitive sensors. Compared to similar prior work, the fabricated prototype achieves and excellent energy efficiency of 34 pJ/step.

  10. Carbon nanotube yarns as strong flexible conductive capacitive electrodes

    NARCIS (Netherlands)

    Liu, F.; Wagterveld, R.M.; Gebben, B.; Otto, M.J.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    Carbon nanotube (CNT) yarn, consisting of 23 µm diameter CNT filaments, can be used as capacitive electrodes that are long, flexible, conductive and strong, for applications in energy and electrochemical water treatment. We measure the charge storage capacity as function of salt concentration, and

  11. An Approximation Algorithm for the Capacitated Arc Routing Problem

    DEFF Research Database (Denmark)

    Wøhlk, Sanne

    2008-01-01

    In this paper we consider approximation of the Capacitated Arc Routing Problem, which is the problem of servicing a set of edges in a graph using a fleet of capacity constrained vehicles. We present a 7/2 - 3/W-approximation algorithm for the problem and prove that this algorithm outperforms...

  12. Alternating current electrokinetics enhanced in situ capacitive immunoassay.

    Science.gov (United States)

    Li, Shanshan; Ren, Yukun; Cui, Haochen; Yuan, Quan; Wu, Jie; Eda, Shigetoshi; Jiang, Hongyuan

    2015-02-01

    A rapid in situ capacitive immunoassay is presented herein. Conventional immunoassay typically relies on diffusion for transport of analytes in many cases causing long detection time and lack of sensitivity. By integrating alternating current electrokinetics (ACEK) and impedance sensing, this work provides a rapid in situ capacitive affinity biosensing. ACEK induces both fluid flow and particle motion, conveying target molecules toward electrodes immobilized with probes, resulting in rapid enrichment of target molecules and a capacitance change at the ''electrode-fluid'' interface. The benefit of ACEK enhanced immunoassay was demonstrated using the antigen and antibody from Johne's disease (JD) as an example. To clarify the importance of DEP and ACET effects for binding reaction, two different electrode pattern designs for capacitive immunoassay are studied. The asymmetric array and symmetric electrodes exhibit very similar response at lower electric field due to DEP effects, while asymmetric array has remarkable higher response at high-electric field because the convection becomes more important at high field. The disease positive and negative serum samples are distinguished in few minutes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Capacitive Sensing Of Gaseous Fraction In Two-Phase Flow

    Science.gov (United States)

    Crowley, Christopher J.; Sahm, Michael K.

    1995-01-01

    Instrument makes nonintrusive, real-time capacitive measurements to determine volume fraction of vapor or other gas in flowing, electrically nonconductive liquid/gas mixture. Works even with liquids having relatively low permittivities. Useful for measuring proportions of vapor in boiling, condensing, and flowing heat-transfer fluids and in cryogenic fluids.

  14. Comparison of neutron scattering and DFM capacitance instruments ...

    African Journals Online (AJOL)

    Soil water evaporation is an important parameter that needs to be accurately measured for the design of water-efficient agricultural systems. With this study, the abilities of the DFM capacitance probes and a neutron water meter (NWM) to measure evaporation from the soil surface were compared. Measured evaporation was ...

  15. Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes

    NARCIS (Netherlands)

    Porada, S.; Weinstein, L.; Dash, R.; Wal, van der A.F.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P.M.

    2012-01-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in

  16. Dynamic Adsorption/Desorption Process Model of Capacitive Deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Limpt, van B.; Wal, van der A.

    2009-01-01

    In capacitive deionization (CDI), an electrical potential difference is applied across oppositely placed electrodes, resulting in the adsorption of ions from aqueous solution and a partially ion-depleted product stream. CDI is a dynamic process which operates in a sequential mode; i.e., after a

  17. Interdigitated array microelectrode capacitive sensor for detection of paraffinophilic mycobacteria

    Science.gov (United States)

    Sampson, Andrew M.; Peterson, Erik T. K.; Papautsky, Ian

    2008-02-01

    Mycobacterium Avium Complex (MAC) is an opportunistic pathogen that threatens public health and has high clinical relevance. While culture-based and molecular biology techniques for identification are available, these methods are prone to error and require weeks to perform. There is a critical need for improved portable lab-on-a-chip sensor technology which will enable accurate and rapid point-of-care detection of these microorganisms. In this work, a new capacitive sensing strategy is explored utilizing interdigitated array (IDA) microelectrodes and exploiting the paraffinophilic nature of MAC. In this approach, paraffin wax is deposited over IDA microelectrodes to selectively extract these microorganisms from samples. As bacteria consume the dielectric paraffin layer, the charging current of the IDA capacitor changes to facilitate detection. Several IDA geometries were designed and simulated using CFD-ACE+ modeling software and compared with mathematical models. Capacitance of fabricated devices was determined using a charge-based capacitance measurement (CBCM) technique. Modeling and experimental results were in good agreement. Detection of femto-Farad changes in capacitance is possible, making this a feasible technique for sensing small changes in the paraffin for detection of paraffinophilic MAC.

  18. Rapid Prototyping of Tangibles with a Capacitive Mouse

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Esbensen, Morten; Kogutowska, Magdalena

    2011-01-01

    lays the capacitive surface and communication capa- bilities of a Microsoft TouchMouse, both of which are ap- propriated to fulfill the mentined requirements. Unlike ex- isting approaches for rapid prototyping of tangibles like the Arduino boards, using the Toki toolkit does not require de- velopers...

  19. Modelling of capacitance and threshold voltage for ultrathin normally ...

    Indian Academy of Sciences (India)

    A compact quantitative model based on oxide semiconductor interface density of states (DOS) is proposed for Al 0.25 Ga 0.75 N/GaN metal oxide semiconductor high electron mobility transistor (MOSHEMT). Mathematical expressions for surface potential, sheet charge concentration, gate capacitance and threshold voltage ...

  20. A Low-Cost Universal Integrated Interface for Capacitive Sensors

    NARCIS (Netherlands)

    Heidary, A.

    2010-01-01

    This thesis reports the results of research on features, options and limitations of low-cost, high-performance, universal integrated interface for capacitive sensors. It concerns development-driven research, where the objectives of the research focus upon possible realization and application of the

  1. Silicon Carbide Capacitive High Temperature MEMS Strain Transducer

    Science.gov (United States)

    2012-03-22

    it is a little difficult to measure using traditional methods. One option could be using the 72 Wheatstone bridge method. Although this method is...commonly used for resistive bridges , it can be adapted to inductive or capacitive bridges . The more difficult task that lies ahead is attachment

  2. Investigation of capacitance characteristics in metal/high-k ...

    Indian Academy of Sciences (India)

    Keywords. C − V characteristic; high-k dielectric; interface state density; MIS structure; nanotechnology; TCAD simulation. Abstract. Capacitance vs. voltage ( C − V ) curves at AC high frequency of a metal–insulator–semiconductor (MIS) capacitorare investigated in this paper. Bi-dimensional simulations with Silvaco TCAD ...

  3. Characterization of dielectric charging in RF MEMS capacitive switches

    NARCIS (Netherlands)

    Herfst, R.W.; Huizing, H.G.A.; Steeneken, P.G.; Schmitz, Jurriaan

    2006-01-01

    RF MEMS capacitive switches show great promise for use in wireless communication devices such as mobile phones, but the successful application of these switches is hindered by reliability concerns: charge injection in the dielectric layer (SiN) can cause irreversible stiction of the moving part of

  4. Solving the Quadratic Capacitated Facilities Location Problem by Computer.

    Science.gov (United States)

    Cote, Leon C.; Smith, Wayland P.

    Several computer programs were developed to solve various versions of the quadratic capacitated facilities location problem. Matrices, which represent various business costs, are defined for the factors of sites, facilities, customers, commodities, and production units. The objective of the program is to find an optimization matrix for the lowest…

  5. Design and development of a MEMS capacitive bending strain sensor

    Science.gov (United States)

    Aebersold, J.; Walsh, K.; Crain, M.; Martin, M.; Voor, M.; Lin, J.-T.; Jackson, D.; Hnat, W.; Naber, J.

    2006-05-01

    The design, modeling, fabrication and testing of a MEMS-based capacitive bending strain sensor utilizing a comb drive is presented. This sensor is designed to be integrated with a telemetry system that will monitor changes in bending strain to assist with the diagnosis of spinal fusion. ABAQUS/CAE finite-element analysis (FEA) software was used to predict sensor actuation, capacitance output and avoid material failure. Highly doped boron silicon wafers with a low resistivity were fabricated into an interdigitated finger array employing deep reactive ion etching (DRIE) to create 150 µm sidewalls with 25 µm spacing between the adjacent fingers. The sensor was adhered to a steel beam and subjected to four-point bending to mechanically change the spacing between the interdigitated fingers as a function of strain. As expected, the capacitance output increased as an inverse function of the spacing between the interdigitated fingers. At the unstrained state, the capacitive output was 7.56 pF and increased inversely to 17.04 pF at 1571 µɛ of bending strain. The FEA and analytical models were comparable with the largest differential of 0.65 pF or 6.33% occurring at 1000 µɛ. Advantages of this design are a dice-free process without the use of expensive silicon-on-insulator (SOI) wafers.

  6. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.  

  7. Impact of oxide thickness on gate capacitance – Modelling and ...

    Indian Academy of Sciences (India)

    gate capacitance and threshold voltage with nanoscale variation of oxide thickness in AlInN/GaN and AlGaN/GaN metal ... The dependence of threshold voltage model on oxide thickness for MOSHEMT is presented in §4. ... The concept of QC was first introduced by Luryi [9] and it originates from the penetra- tion of Fermi ...

  8. Optimization Design Method for the CMOS-type Capacitive Micro-Machined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    D. Y. Chiou

    2011-12-01

    Full Text Available In this study, an integrated modeling technique for characterization and optimization design of the complementary metal-oxide-semiconductor (CMOS capacitive micro-arrayed ultrasonic transducer (pCMOS-CMUT is presented. Electromechanical finite element simulations are performed to investigate its operational characteristics, such as the collapse voltage and the resonant frequency. Both the numerical and experimental results are in good agreement. In order to simultaneously customize the resonant frequency and minimize the collapse voltage, the genetic algorithm (GA is applied to optimize dimensional parameters of the transducer. From the present results, it is concluded that the FE/GA coupling approach provides another efficient numerical tool for multi-objective design of the pCMOS-CMUT.

  9. Topologically Optimized Nano-Positioning Stage Integrating with a Capacitive Comb Sensor

    Science.gov (United States)

    Chen, Tao; Wang, Yaqiong; Liu, Huicong; Yang, Zhan; Wang, Pengbo; Sun, Lining

    2017-01-01

    Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 μm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system. PMID:28134854

  10. Global model for active control of capacitive radio frequency magnetron discharges

    Science.gov (United States)

    Engel, Dennis; Krueger, Dennis; Woelfel, Christian; Oberberg, Moritz; Lunze, Jan; Awakowicz, Peter; Brinkmann, Ralf Peter

    2016-09-01

    Sputtering technologies have a widespread of applications in modern industries. Up to now, no appropriate model is available for active control of these processes. Controlling inhibits the drift of process parameters and therefore helps to improve the quality of deposited thin films. The aim of this work is to develop a global model for radio frequency capacitively coupled plasma (RF-CCP) magnetron discharges. Several global models for RF-CCPs have been proposed, but most of them neglect the existence of a magnetic field inside the plasma. This work builds on existing models but takes into account the underlying magnetic field. Therefore a lumped circuit model with its corresponding system of differential equations is formulated and the influence of the magnetic field is analysed. The proposed model is used to investigate several parameters such as neutral gas pressure, magnetic field strength or applied voltage, to be able to actively control thin film growth.

  11. Characterization and Optimization Design of the Polymer-based Capacitive Micro-arrayed Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    De-Yi CHIOU

    2007-10-01

    Full Text Available The polymer-based capacitive micro-arrayed ultrasonic transducers have been investigated using the finite element analysis. The ANSYS Multiphysics solver with sequential approach and the physics environment files are applied for the solution of the electrostatic-structural coupled-field problem. A 2-D electromechanical model is established to characterize the collapse voltage and the resonant frequency of the P-CMUT. Both the numerical and experimental results were in good agreement. An integrated multi-objective design method involving electrical and mechanical characterization was developed to optimize the geometric parameters of the P-CMUT. The optimization search routine conducted using the genetic algorithm (GA is connected with the ANSYS model to obtain the best design variable. The optimal results show that the proposed approach provides another efficient and versatile numerical tool for multi-objective design and optimization of the P-CMUT.

  12. Formation and evolution of compact binaries

    NARCIS (Netherlands)

    Sluijs, Marcel Vincent van der

    2006-01-01

    In this thesis we investigate the formation and evolution of compact binaries. Chapters 2 through 4 deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters. We show that the proposed scenario of magnetic capture produces too few ultra-compact X-ray binaries to explain

  13. Testing predictive performance of binary choice models

    NARCIS (Netherlands)

    A.C.D. Donkers (Bas); B. Melenberg (Bertrand)

    2002-01-01

    textabstractBinary choice models occur frequently in economic modeling. A measure of the predictive performance of binary choice models that is often reported is the hit rate of a model. This paper develops a test for the outperformance of a predictor for binary outcomes over a naive prediction

  14. Division Unit for Binary Integer Decimals

    DEFF Research Database (Denmark)

    Lang, Tomas; Nannarelli, Alberto

    2009-01-01

    In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm and implements binary encodings (binary integer decimal or BID) for significands. Recent decimal division designs are all based on the binary coded decimal (BCD) encoding. We adapt the radix-10 digit...

  15. Interdependent binary choices under social influence: Phase diagram for homogeneous unbiased populations

    Science.gov (United States)

    Fernández del Río, Ana; Korutcheva, Elka; de la Rubia, Javier

    2012-07-01

    Coupled Ising models are studied in a discrete choice theory framework, where they can be understood to represent interdependent choice making processes for homogeneous populations under social influence. Two different coupling schemes are considered. The nonlocal or group interdependence model is used to study two interrelated groups making the same binary choice. The local or individual interdependence model represents a single group where agents make two binary choices which depend on each other. For both models, phase diagrams, and their implications in socioeconomic contexts, are described and compared in the absence of private deterministic utilities (zero opinion fields).

  16. Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions

    Science.gov (United States)

    Vidal, Keith R.; Baalrud, Scott D.

    2017-10-01

    Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.

  17. Binary Linear-Time Erasure Decoding for Non-Binary LDPC codes

    CERN Document Server

    Savin, Valentin

    2009-01-01

    In this paper, we first introduce the extended binary representation of non-binary codes, which corresponds to a covering graph of the bipartite graph associated with the non-binary code. Then we show that non-binary codewords correspond to binary codewords of the extended representation that further satisfy some simplex-constraint: that is, bits lying over the same symbol-node of the non-binary graph must form a codeword of a simplex code. Applied to the binary erasure channel, this description leads to a binary erasure decoding algorithm of non-binary LDPC codes, whose complexity depends linearly on the cardinality of the alphabet. We also give insights into the structure of stopping sets for non-binary LDPC codes, and discuss several aspects related to upper-layer FEC applications.

  18. On the small-signal capacitance of RF MEMS switches at very low frequencies

    NARCIS (Netherlands)

    Wang, J.; Bielen, Jeroen; Salm, Cora; Krijnen, Gijsbertus J.M.; Schmitz, Jurriaan

    2016-01-01

    This paper presents on-wafer capacitance measurements of silicon-based RF MEMS capacitive switches down to frequencies below 1 Hz. The capacitance-voltage (C-V) curve measured at very-low frequency (0.01-10 Hz) deviates from the commonly measured and well-understood high-frequency C-V curve,

  19. 3D printed biomimetic whisker-based sensor with co-planar capacitive sensing

    NARCIS (Netherlands)

    Delamare, John; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2016-01-01

    This paper describes the development of a whisker sensor for tactile purposes and which is fabricated by 3D printing. Read-out consists of a capacitive measurement of a co-planar capacitance which is affected by a dielectric that is driven into the electric field of the capacitance. The current

  20. Comparison of C-V measurement methods for RF-MEMS capacitive switches

    NARCIS (Netherlands)

    Wang, J.; Salm, Cora; Schmitz, Jurriaan

    2013-01-01

    The applicability of several capacitance-voltage measurement methods is investigated for the on-wafer characterization of RF-MEMS capacitive switches. These devices combine few-picofarad capacitance with a high quality factor. The standard quasistatic and high-frequency measurements are employed, as

  1. Numerical simulation and experimental investigation of structural optimization of capacitance sensors for measuring steam wetness with different coaxial cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Lipeng, Du, E-mail: ad186062@163.com [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); National Defense Key Discipline Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin 150001 (China); Ruifeng, Tian, E-mail: tianruifeng1997@126.com [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); National Defense Key Discipline Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin 150001 (China); Xiaoyi, Liu [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); China Shipbuilding Industry Company Limited, Bhai Shipbuilding Heavy Industry Company Limited, Huludao 125000 (China); Zhongning, Sun [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); National Defense Key Discipline Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin 150001 (China)

    2013-09-15

    Highlights: • A simulation on capacitance sensors with different coaxial cylinders is performed. • An experimental system is designed to measure steam wetness. • A sensor performance depends on the plate thickness, plate length and plate separation. • The max discrepancy of the experimental and numerical simulation result is 19.8%. -- Abstract: Steam wetness is an important parameter, which is difficult to measure accurately. A simulation study is performed based on the theories of electrodynamics and hydrodynamics to investigate the characteristics of wetness capacitance sensors with different coaxial cylinders, and an experimental system and two capacitance probes were designed to measure steam wetness. Using a FLUENT user defined function (UDF) code, a program to compute the electric field was compiled which can transmit the data between the electric field and the flow field. The coupling of the steam flow field and the electric field within the sensors is investigated through numerical simulation. The results show that the electric field intensity decreases from the inner electrode plate to the outer electrode plate. The electric field intensity near the inner plate increases with increasing plate thickness while the sensor length has no effect on the electric field intensity distribution in the radial direction, but the peak electric field intensity decreases with increasing sensor length. The peak electric field intensity weakens with increasing electrode separation. Comparison of the numerical simulation results and the experimental results shows that the results of the simulation are similar to those of the experiments, with the output capacitance fluctuating around a fixed value as the steam flow rate changes and increasing linearly with increasing wetness. The maximum difference between the experimental data and the numerical simulation data is 0.78 nF, which is a discrepancy of 19.8%.

  2. Detecting Malicious Code by Binary File Checking

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2014-01-01

    Full Text Available The object, library and executable code is stored in binary files. Functionality of a binary file is altered when its content or program source code is changed, causing undesired effects. A direct content change is possible when the intruder knows the structural information of the binary file. The paper describes the structural properties of the binary object files, how the content can be controlled by a possible intruder and what the ways to identify malicious code in such kind of files. Because the object files are inputs in linking processes, early detection of the malicious content is crucial to avoid infection of the binary executable files.

  3. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  4. Spectral-domain analysis of single and coupled cylindrical striplines

    Science.gov (United States)

    Deshpande, Manohar D.; Reddy, C. Jagadeswara

    1987-01-01

    A spectral-domain technique for finding the characteristic impedances of a single cylindrical stripline and a coupled pair of cylindrical striplines is presented. Assuming a charge distribution on the strip, the variational expression for the line capacitance for single cylindrical stripline is derived. Good agreement with published results is obtained. The cylindrical coupled strip and microstrip lines are also analyzed and a comparison with their planar counterparts is made.

  5. Mass transfer between binary stars

    Science.gov (United States)

    Modisette, J. L.; Kondo, Y.

    1980-01-01

    The transfer of mass from one component of a binary system to another by mass ejection is analyzed through a stellar wind mechanism, using a model which integrates the equations of motion, including the energy equation, with an initial static atmosphere and various temperature fluctuations imposed at the base of the star's corona. The model is applied to several situations and the energy flow is calculated along the line of centers between the two binary components, in the rotating frame of the system, thereby incorporating the centrifugal force. It is shown that relatively small disturbances in the lower chromosphere or photosphere can produce mass loss through a stellar wind mechanism, due to the amplification of the disturbance propagating into the thinner atmosphere. Since there are many possible sources of the disturbance, the model can be used to explain many mass ejection phenomena.

  6. Binary data regression: Weibull distribution

    Science.gov (United States)

    Caron, Renault; Polpo, Adriano

    2009-12-01

    The problem of estimation in binary response data has receivied a great number of alternative statistical solutions. Generalized linear models allow for a wide range of statistical models for regression data. The most used model is the logistic regression, see Hosmer et al. [6]. However, as Chen et al. [5] mentions, when the probability of a given binary response approaches 0 at a different rate than it approaches 1, symmetric linkages are inappropriate. A class of models based on Weibull distribution indexed by three parameters is introduced here. Maximum likelihood methods are employed to estimate the parameters. The objective of the present paper is to show a solution for the estimation problem under the Weibull model. An example showing the quality of the model is illustrated by comparing it with the alternative probit and logit models.

  7. Slow Rotating Trojans: Tidally Synchronized Binaries?

    Science.gov (United States)

    Noll, Keith

    2017-08-01

    We propose HST observations of six slow-rotating Trojans to search for tidally synchronous binaries similar to the Patroclus binary system. A significant excess of slow rotators over Maxwellian suggests that additional binaries may be present. If any of the targets are binary, they can be resolved by HST. This target selection strategy has recently yielded the third known resolved Trojan binary, detected in a sample of seven slow-rotating Trojans. We wish to extend this successful strategy with another similarly selected sample. Even one additional resolved binary in the Trojans, which would become the fourth, would be of extreme interest. The discovery of no binaries among this group of slow rotators would challenge the understanding of the source of the excess slow rotators in the Trojans.

  8. Optical bistability in electrically coupled SOA-BJT devices

    Science.gov (United States)

    Costanzo-Caso, Pablo A.; Jin, Yiye; Gehl, Michael; Granieri, Sergio; Siahmakoun, Azad

    2010-06-01

    A novel optical bistable device based on an electrically coupled semiconductor optical amplifier (SOA) and a bipolar juncture transistor (BJT) is proposed and experimentally demonstrated. The measured switching time is about 0.9-1.0 us, mainly limited by the electrical capacitance of the SOA and the parasitic inductance of the electrical connections. However, the effects of parasitic components can be reduced employing current electronic-photonic integration circuits (EPIC). Numerical simulations confirm that for capacitance values in tens of femtofarads switching speed can reach tens of GHz.

  9. Binary Multidimensional Scaling for Hashing.

    Science.gov (United States)

    Huang, Yameng; Lin, Zhouchen

    2017-10-04

    Hashing is a useful technique for fast nearest neighbor search due to its low storage cost and fast query speed. Unsupervised hashing aims at learning binary hash codes for the original features so that the pairwise distances can be best preserved. While several works have targeted on this task, the results are not satisfactory mainly due to the oversimplified model. In this paper, we propose a unified and concise unsupervised hashing framework, called Binary Multidimensional Scaling (BMDS), which is able to learn the hash code for distance preservation in both batch and online mode. In the batch mode, unlike most existing hashing methods, we do not need to simplify the model by predefining the form of hash map. Instead, we learn the binary codes directly based on the pairwise distances among the normalized original features by Alternating Minimization. This enables a stronger expressive power of the hash map. In the online mode, we consider the holistic distance relationship between current query example and those we have already learned, rather than only focusing on current data chunk. It is useful when the data come in a streaming fashion. Empirical results show that while being efficient for training, our algorithm outperforms state-of-the-art methods by a large margin in terms of distance preservation, which is practical for real-world applications.

  10. Finite Element Approach for Coupled Striplines Embedded in Dielectric Material

    Directory of Open Access Journals (Sweden)

    Matthew N.O. Sadiku

    2013-03-01

    Full Text Available In this paper, we present finite element method (FEM to investigate the quasi-static analysis of two dimensional (2D shielded two coupled stripline structures for microelectronic devices.  In the proposed method, we specifically determine the values of capacitance per unit length and inductance per unit length of shielded two vertically coupled striplines and shielded two coupled striplines embedded in dielectric material.  Extensive simulation results are presented, and some comparative results are given by other methods and found them to be in excellent agreement. Furthermore, we determine the quasi-TEM spectral for the potential distribution of these shielded two coupled striplines.

  11. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    Directory of Open Access Journals (Sweden)

    Yogesh B. Gianchandani

    2008-04-01

    Full Text Available This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane roomtemperature- vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μmdiameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated.

  12. Inverter-based successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham

    2017-03-23

    An energy-efficient capacitance-to-digital converter (CDC) is provided that utilizes a capacitance-domain successive approximation (SAR) technique. Unlike SAR analog- to-digital converters (ADCs), analysis shows that for SAR CDCs, the comparator offset voltage will result in signal-dependent and parasitic-dependent conversion errors, which necessitates an op-amp-based implementation. The inverter-based SAR CDC contemplated herein provides robust, energy-efficient, and fast operation. The inverter- based SAR CDC may include a hybrid coarse-fine programmable capacitor array. The design of example embodiments is insensitive to analog references, and thus achieves very low temperature sensitivity without the need for calibration. Moreover, this design achieves improved energy efficiency.

  13. Investigation and Modeling of Capacitive Human Body Communication.

    Science.gov (United States)

    Zhu, Xiao-Qi; Guo, Yong-Xin; Wu, Wen

    2017-04-01

    This paper presents a systematic investigation of the capacitive human body communication (HBC). The measurement of HBC channels is performed using a novel battery-powered system to eliminate the effects of baluns, cables and instruments. To verify the measured results, a numerical model incorporating the entire HBC system is established. Besides, it is demonstrated that both the impedance and path gain bandwidths of HBC channels is affected by the electrode configuration. Based on the analysis of the simulated electric field distribution, an equivalent circuit model is proposed and the circuit parameters are extracted using the finite element method. The transmission capability along the human body is also studied. The simulated results using the numerical and circuit models coincide very well with the measurement, which demonstrates that the proposed circuit model can effectively interpret the operation mechanism of the capacitive HBC.

  14. Capacitance of edge plane of pyrolytic graphite in acetonitrile solutions

    Energy Technology Data Exchange (ETDEWEB)

    Minick, Steven Kent [Stony Brook Univ., NY (United States); Ishida, Takanobu [Stony Brook Univ., NY (United States)

    1991-05-01

    The capacitance of the edge plane of pyrolytic graphite electrodes, in acetonitrile solutions, is measured by recording the current response to an applied triangular voltage sweep; TVS, and then fitting the current response with an appropriate function, (via a set of adjustable parameters). The pretreatment of the electrodes, the supporting electrolyte concentration used, and the frequency of the input TVS, were all found to affect the measured capacitance. In these experiments, a background current was also seen and the shape of the current output for the TVS; the charging/discharging curve, is shown to correlate with the magnitude of this background current. In addition, the size of the background current was found to have some dependence on the type of electrode pretreatment procedure used.

  15. Capacitance of edge plane of pyrolytic graphite in acetonitrile solutions

    Energy Technology Data Exchange (ETDEWEB)

    Minick, S.K.; Ishida, Takanobu.

    1991-05-01

    The capacitance of the edge plane of pyrolytic graphite electrodes, in acetonitrile solutions, is measured by recording the current response to an applied triangular voltage sweep; TVS, and then fitting the current response with an appropriate function, (via a set of adjustable parameters). The pretreatment of the electrodes, the supporting electrolyte concentration used, and the frequency of the input TVS, were all found to affect the measured capacitance. In these experiments, a background current was also seen and the shape of the current output for the TVS; the charging/discharging curve, is shown to correlate with the magnitude of this background current. In addition, the size of the background current was found to have some dependence on the type of electrode pretreatment procedure used. 60 refs., 49 figs., 3 tabs.

  16. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  17. Natural Frequency Design for an Integrated Capacitive MEMS Inertial Sensor

    Science.gov (United States)

    Jeong, Heewon; Degawa, Munenori; Goto, Yasushi

    A capacitive microelectromechanical systems (MEMS) inertial sensor that is able to measure an acceleration and angular rate (rotation) simultaneously has been developed. Integration is the only practical approach to realizing low-cost and small-size sensors, largely because both assembling and aligning tasks for individual sensors such as for accelerometers and gyroscopes are eliminated. In this paper the developed sensor shares mechanical parts such as seismic masses and suspensions as well as electrical parts such as a capacitive-voltage conversion circuits for measuring different inertial information such as acceleration and angular rate. We report the design scheme for the natural frequencies of the inertial sensor element with which the mechanical parts and detection circuits are shared for a specific application such as for a vehicle electronic stability control system. This design scheme can also be applied for a device that contains peripheral circuits on the sensor element as well.

  18. A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Michael Tiemann

    2011-03-01

    Full Text Available Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C and high (up to 210 °C operating temperatures.

  19. Cable Capacitance Attack against the KLJN Secure Key Exchange

    Directory of Open Access Journals (Sweden)

    Hsien-Pu Chen

    2015-10-01

    Full Text Available The security of the Kirchhoff-law-Johnson-(like-noise (KLJN key exchange system is based on the fluctuation-dissipation theorem of classical statistical physics. Similarly to quantum key distribution, in practical situations, due to the non-idealities of the building elements, there is a small information leak, which can be mitigated by privacy amplification or other techniques so that unconditional (information-theoretic security is preserved. In this paper, the industrial cable and circuit simulator LTSPICE is used to validate the information leak due to one of the non-idealities in KLJN, the parasitic (cable capacitance. Simulation results show that privacy amplification and/or capacitor killer (capacitance compensation arrangements can effectively eliminate the leak.

  20. A high temperature capacitive humidity sensor based on mesoporous silica.

    Science.gov (United States)

    Wagner, Thorsten; Krotzky, Sören; Weiss, Alexander; Sauerwald, Tilman; Kohl, Claus-Dieter; Roggenbuck, Jan; Tiemann, Michael

    2011-01-01

    Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures.

  1. Mesoporous nanocrystalline film architecture for capacitive storage devices

    Science.gov (United States)

    Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John; Brezesinski, Torsten; Gruner, George

    2017-05-16

    A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoes a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).

  2. A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica

    Science.gov (United States)

    Wagner, Thorsten; Krotzky, Sören; Weiß, Alexander; Sauerwald, Tilman; Kohl, Claus-Dieter; Roggenbuck, Jan; Tiemann, Michael

    2011-01-01

    Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures. PMID:22163790

  3. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation

    OpenAIRE

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q.; Kentish, Sandra E.

    2017-01-01

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This...

  4. Fabricating Capacitive Micromachined Ultrasonic Transducers with Wafer Bonding Technique

    OpenAIRE

    Anil ARORA; Ram GOPAL; V K DWIVEDI; Chandra SHEKHAR

    2008-01-01

    We report the fabrication of capacitive micromachined ultrasonic transducer by wafer bonding technique. Membrane is transferred from SOI wafer to the prime wafer having silicon dioxide cavity. The thickness of cavity height depends on silicon dioxide grown on prime wafer by dry/wet oxidation. Thinning of device wafer of SOI by oxidation, controls membrane thickness. Two wafers are bonded in vacuum under optimized controlled parameters. Using this method, we can get single crystal silicon as m...

  5. Capacitive MEMS accelerometer wide range modeling using artificial neural network

    OpenAIRE

    A. Baharodimehr; A. Abolfazl Suratgar; H. Sadeghi

    2009-01-01

    This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA). System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN) uses the Levenberg‐Marquardt (LM) method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation result...

  6. Capacitive MEMS accelerometer wide range modeling using artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Baharodimehr

    2009-08-01

    Full Text Available This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA. System parameters ofthe accelerometer are developed using the effect of cubic term of the folded‐flexure spring. To solve this equation, we use theFEA method. The neural network (NN uses the Levenberg‐Marquardt (LM method for training the system to have a moreaccurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. Thesimulation results are very promising.

  7. Capacitance-based damage detection sensing for aerospace structural composites

    Science.gov (United States)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket

  8. Sensitivity limits of capacitive transducer for gravitational wave resonant antennas

    Energy Technology Data Exchange (ETDEWEB)

    Bassan, M.; Pizzella, G. [Rome Tor Vergata Univ. (Italy). Dip. di Fisica

    1996-12-01

    It is analyzed the performance of a resonant gravitational wave antenna equipped with a resonant, d.c. biased capacitive transducer, an untuned superconducting matching circuit and a d.c. Squid. It is derived simple relations for the detector energy sensitivity that serve as guidelines for device development and it is shown that, with reasonable improvements in Squid technology, an effective temperature for burst detection of 2miK can be achieved.

  9. Renforcement des capacités au Bénin

    International Development Research Centre (IDRC) Digital Library (Canada)

    prise de décisions. Renforcement des capacités au Bénin. Formation des cadres techniques des mairies du bassin de l´Okpara à l'utilisation des outils SIG pour la gestion de l´eau, la modélisation hydrologique et la conservation des sols. Introduction. Dans le cadre du programme panafricain de recherche ICT4D intitulé «.

  10. Label-Free Multiplex DNA Detection Utilizing Projected Capacitive Touchscreen.

    Science.gov (United States)

    Lee, Joon Young; Won, Byoung Yeon; Park, Hyun Gyu

    2017-10-13

    A novel strategy to achieve label-free multiplex DNA detection system based on the projected capacitive touchscreen is developed. Touchscreen panel is first fabricated by patterning the ITO (indium-tin-oxide) electrode array on the glass wafer, and the electrodes are modified with the respective capture probe DNA sequences complementary to hemagglutinin1 (H1), neuraminidase1 (N1), and matrix1 (M1) DNA to demonstrate the molecular diagnosis of H1N1 influenza virus as a model pathogen. DNA sample is applied to the electrodes to allow hybridization of target DNA with the corresponding complementary capture probe. As a result, the hybridization event significantly enhanced the capacitance on the electrode, which can be very conveniently detected by the projected capacitive touchscreen. Based on this design principle, the authors have successfully detected target regions of H1N1 influenza virus in a label-free multiplexed manner. This touchscreen-based detecting system would greatly benefit the point-of-care testing (POCT) in various diagnostic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Capacitive energy storage and recovery for synchrotron magnets

    Science.gov (United States)

    Koseki, K.

    2014-06-01

    Feasibility studies on capacitive energy storage and recovery in the main-ring synchrotron of the Japan Proton Accelerator Research Complex were conducted by circuit simulation. The estimated load fluctuation was 96 MVA in total for dipole magnets, which is likely to induce a serious disturbance in the main grid. It was found that the energy stored in the magnets after the excitation period can be recovered to the storage capacitor by controlling the voltage across the energy-storage capacitor using a pulse-width-modulation converter and reused in the next operational cycle. It was also found that the power fluctuation in the main grid can be reduced to 12 MVA. An experimental evaluation of an aluminum metalized film capacitor revealed that capacitance loss was induced by a fluctuating voltage applied to the storage capacitor when applying the proposed method. The capacitance loss was induced by corona discharge around the edges of segmented electrodes of a self-healing capacitor. The use of aluminum-zinc alloy was evaluated as a countermeasure to mitigate the effect induced by the corona discharge. For a zinc content of 8%, which was optimized experimentally, a capacitor with a sufficient life time expectancy of 20 years and a working potential gradient of 250 V/μm was developed.

  12. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    Science.gov (United States)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  13. FPGA Based Low Power ROM Design Using Capacitance Scaling

    DEFF Research Database (Denmark)

    Bansal, Meenakshi; Bansal, Neha; Saini, Rishita

    2015-01-01

    An ideal capacitor will not dissipate any power, but a real capacitor wil l have some power dissipation. In this work, we are going to design capacitance scaling based low power ROM design. In order to test the compatibility of this ROM design with latest i7 Processor, we are operating this ROM...... with frequencies (2.9GHz, 3.3GHz, 3.6GHz, 3.8GHz and 4.0GHz) supported by i7 processor.By using different capacitance there comes is reduction in I/O Power and Total power but not in other Powers like Clock, and Leakage (almost negligible). When capacitance goes from 30pF to 5pF, there is a saving of 28.12% occur...... in I/O Power, saving of 0.2% occur in Leakage Power, there will be a saving of 11.54% occur in Total Power. This design is implemented on Virtex-5 FPGA using Xilinx ISE and Verilog....

  14. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer.

    Science.gov (United States)

    Li, Tie; Luo, Hui; Qin, Lin; Wang, Xuewen; Xiong, Zuoping; Ding, Haiyan; Gu, Yang; Liu, Zheng; Zhang, Ting

    2016-09-01

    Flexible tactile sensors are considered as an effective way to realize the sense of touch, which can perform the synchronized interactions with surrounding environment. Here, the utilization of bionic microstructures on natural lotus leaves is demonstrated to design and fabricate new-type of high-performance flexible capacitive tactile sensors. Taking advantage of unique surface micropattern of lotus leave as the template for electrodes and using polystyrene microspheres as the dielectric layer, the proposed devices present stable and high sensing performance, such as high sensitivity (0.815 kPa-1 ), wide dynamic response range (from 0 to 50 N), and fast response time (≈38 ms). In addition, the flexible capacitive sensor is not only applicable to pressure (touch of a single hair), but also to bending and stretching forces. The results indicate that the proposed capacitive tactile sensor is a promising candidate for the future applications in electronic skins, wearable robotics, and biomedical devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Capacitive properties of polypyrrole/activated carbon composite

    Directory of Open Access Journals (Sweden)

    Porjazoska-Kujundziski Aleksandra

    2014-01-01

    Full Text Available Electrochemical synthesis of polypyrrole (PPy and polypyrrole / activated carbon (PPy / AC - composite films, with a thickness between 0.5 and 15 μm were performed in a three electrode cell containing 0.1 mol dm-3 Py, 0.5 mol dm-3 NaClO4 dissolved in ACN, and dispersed particles of AC (30 g dm-3. Electrochemical characterization of PPy and PPy / AC composites was performed using cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS techniques. The linear dependences of the capacitance (qC, redox capacitance (qred, and limiting capacitance (CL of PPy and PPy / AC - composite films on their thickness (L, obtained by electrochemical and impedance analysis, indicate a nearly homogeneous distribution of the incorporated AC particles in the composite films (correlation coefficient between 0.991 and 0.998. The significant enhancement of qC, qred, and CL, was observed for composite films (for ∼40 ± 5% in respect to that of the “pure” PPy. The decreased values of a volume resistivity in the reduced state of the composite film, ρ = 1.3 ⋅ 106 Ω cm (for L = 7.5 μm, for two orders of magnitude, compared to that of PPy - film with the same thickness, ρ ∼ 108 Ω cm, was also noticed.

  16. Hysteresis free negative total gate capacitance in junctionless transistors

    Science.gov (United States)

    Gupta, Manish; Kranti, Abhinav

    2017-09-01

    In this work, we report on the hysteresis free impact ionization induced off-to-on transition while preserving sub-60 mV/decade Subthreshold swing (S-swing) using asymmetric mode operation in double gate silicon (Si) and germanium (Ge) junctionless (JL) transistor. It is shown that sub-60 mV/decade steep switching due to impact ionization implies a negative value of the total gate capacitance. The performance of asymmetric gate JL transistor is compared with symmetric gate operation of JL device, and the condition for hysteresis free current transition with a sub-60 mV/decade switching is analyzed through the product of current density (J) and electric field (E). It is shown that asymmetric gate operation limits the degree of impact ionization inherent in the semiconductor film to levels sufficient for negative total gate capacitance but lower than that required for the occurrence of hysteresis. The work highlights new viewpoints related to the suppression of hysteresis associated with steep switching JL transistors while maintaining S-swing within the range 6-15 mV/decade leading to the negative value of total gate capacitance.

  17. Model for convection in binary liquids

    Science.gov (United States)

    Hollinger, St.; Lücke, M.; Müller, H. W.

    1998-04-01

    A minimal, analytically manageable Galerkin type model for convection in binary mixtures subject to realistic boundary conditions is presented. The model elucidates and reproduces the typical bifurcation topology of extended stationary and oscillatory convective states seen for negative Soret coupling: backwards stationary and Hopf bifurcations, saddle node bifurcations to stable strongly nonlinear stationary and traveling wave (TW) states, and merging of the TW solution branch with stationary states. Also unstable standing wave solutions are obtained. A systematic analysis of the concentration balance for liquid mixture parameters has led to a representation of the concentration field in terms of two linear and two nonlinear modes. This truncation captures the important large-scale effects in the laterally averaged concentration field resulting from advective and diffusive mixing. Also the fact that with increasing flow intensity along the TW solution branch the frequency decreases monotonically in the same way as the mixing increases-the variance of the concentration distribution decreases-is ensured and reproduced well. Universal scaling relations between flow intensity, frequency, and variance of the concentration distribution (degree of mixing) in a TW are predicted by the model and have been confirmed by numerical solutions of the full equations. The validity of the model is checked by comparison with numerical solutions of the full field equations.

  18. Coexisting pulses in a model for binary-mixture convection

    Energy Technology Data Exchange (ETDEWEB)

    Riecke, H.; Rappel, W. [Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208 (United States)]|[Department of Physics, Northeastern University, 111 Dana Research Center, Boston, Massachusetts 02115 (United States)

    1995-11-27

    We address the striking coexistence of localized waves (``pulses``) of different lengths, which was observed in recent experiments and full numerical simulations of binary-mixture convection. Using a set of extended Ginzburg-Landau equations, we show that this multiplicity finds a natural explanation in terms of the competition of two distinct, physical localization mechanisms; one arises from dispersion and the other from a concentration mode. This competition is absent in the standard Ginzburg-Landau equation. It may also be relevant in other waves coupled to a large-scale field. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  19. Evaluation of the differential capacitance for ferroelectric materials using either charge-based or energy-based expressions

    Directory of Open Access Journals (Sweden)

    C. M. Krowne

    2014-07-01

    Full Text Available Differential capacitance is derived based upon energy, charge or current considerations, and determined when it may go negative or positive. These alternative views of differential capacitances are analyzed, and the relationships between them are shown. Because of recent interest in obtaining negative capacitance for reducing the subthreshold voltage swing in field effect type of devices, using ferroelectric materials characterized by permittivity, these concepts are now of paramount interest to the research community. For completeness, differential capacitance is related to the static capacitance, and conditions when the differential capacitance may go negative in relation to the static capacitance are shown.

  20. Towards a unified model for black hole X-ray binary jets

    NARCIS (Netherlands)

    Fender, R.P.; Belloni, T.; Gallo, E.

    2004-01-01

    We present a unified semiquantitative model for the disc-jet coupling in black hole X-ray binary systems. In the process we have compiled observational aspects from the existing literature, as well as performing new analyses. We argue that during the rising phase of a black hole transient outburst

  1. Binary Black Holes from Dense Star Clusters

    Science.gov (United States)

    Rodriguez, Carl

    2017-01-01

    The recent detections of gravitational waves from merging binary black holes have the potential to revolutionize our understanding of compact object astrophysics. But to fully utilize this new window into the universe, we must compare these observations to detailed models of binary black hole formation throughout cosmic time. In this talk, I will review our current understanding of cluster dynamics, describing how binary black holes can be formed through gravitational interactions in dense stellar environments, such as globular clusters and galactic nuclei. I will review the properties and merger rates of binary black holes from the dynamical formation channel. Finally, I will describe how the spins of a binary black hole are determined by its formation history, and how we can use this to discriminate between dynamically-formed binaries and those formed from isolated evolution in galactic fields.

  2. Theory of water treatment by capacitive deionization with redox active porous electrodes.

    Science.gov (United States)

    He, Fan; Biesheuvel, P M; Bazant, Martin Z; Hatton, T Alan

    2018-01-03

    Capacitive deionization (CDI) for water treatment, which relies on the capture of charged species to sustain the electrical double layers (EDLs) established within porous electrodes under an applied electrical potential, can be enhanced by the chemical attachment of fixed charged groups to the porous electrode electrodes (ECDI). It has recently been demonstrated that further improvements in capacity and energy storage can be gained by functionalization of the electrode surfaces with redox polymers in which the charge on the electrodes can be modulated through Faradaic reactions under different cell voltages in a capacitive process that can be called "Faradaic CDI" (FaCDI). Here, we extend recent mathematical models developed for the characterization of CDI and ECDI systems to incorporate the redox mediated contributions by allowing for the variable chemical charges generated by reactions in FaCDI. The lumped model developed here assumes the spacer channel is well-mixed with uniform electrosorption in each electrode. We demonstrate that the salt adsorption performance characterization of the fixed chemical charge ECDI and variable chemical charge FaCDI materials can be unified within a common theoretical framework based on the point of zero charge (PZC) of the electrode material. In the latter case the PZC is determined by the equilibrium potentials of the redox couples immobilized on the porous electrodes. The new model is able to predict the experimentally observed enhanced and inverted performance of CDI cells, and illuminates the benefit of choosing redox active materials for water treatment applications. The deionization performance of FaCDI cells is shown to be superior to that of CDI and ECDI systems with equilibrium adsorption capacities 50-100% higher than attained with CDI systems, and at smaller cell voltages, depending on the redox potentials of the Faradaic moieties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  4. SYSTEMATICALLY MISCLASSIFIED BINARY DEPENDENT VARIABLES.

    Science.gov (United States)

    Tennekoon, Vidhura; Rosenman, Robert

    When a binary dependent variable is misclassified, that is, recorded in the category other than where it really belongs, probit and logit estimates are biased and inconsistent. In some cases the probability of misclassification may vary systematically with covariates, and thus be endogenous. In this paper we develop an estimation approach that corrects for endogenous misclassification, validate our approach using a simulation study, and apply it to the analysis of a treatment program designed to improve family dynamics. Our results show that endogenous misclassification could lead to potentially incorrect conclusions unless corrected using an appropriate technique.

  5. The structures of binary compounds

    CERN Document Server

    Hafner, J; Jensen, WB; Majewski, JA; Mathis, K; Villars, P; Vogl, P; de Boer, FR

    1990-01-01

    - Up-to-date compilation of the experimental data on the structures of binary compounds by Villars and colleagues. - Coloured structure maps which order the compounds into their respective structural domains and present for the first time the local co-ordination polyhedra for the 150 most frequently occurring structure types, pedagogically very helpful and useful in the search for new materials with a required crystal structure. - Crystal co-ordination formulas: a flexible notation for the interpretation of solid-state structures by chemist Bill Jensen. - Recent important advances in unders

  6. Numerical study of capacitive coupled HBr/Cl2 plasma discharge for dry etch applications

    Science.gov (United States)

    Gul, Banat; Ahmad, Iftikhar; Zia, Gulfam; Aman-ur-Rehman

    2016-09-01

    HBr/Cl2 plasma discharge is investigated to study the etchant chemistry of this discharge by using the self-consistent fluid model. A comprehensive set of gas phase reactions (83 reactions) including primary processes such as excitation, dissociation, and ionization are considered in the model along with 24 species. Our findings illustrate that the densities of neutral species (i.e., Br, HCl, Cl, H, and H2) produced in the reactor are higher than charged species (i.e., Cl2+, Cl-, HBr+, and Cl+). Density profile of neutral and charged species followed bell shaped and double humped distributions, respectively. Increasing Cl2 fraction in the feedback gases (HBr/Cl2 from 90/10 to 10/90) promoted the production of Cl, Cl+, and Cl2+ in the plasma, indicating that chemical etching pathway may be preferred at high Cl-environment. These findings pave the way towards controlling/optimizing the Si-etching process.

  7. Surface-plasma interactions in GaAs subjected to capacitively coupled RF plasmas

    CERN Document Server

    Surdu-Bob, C C

    2002-01-01

    Surface compositional changes in GaAs due to RF plasmas of different gases have been investigated by XPS and etch rates were measured using AFM. Angular Resolved XPS (ARXPS) was also employed for depth analysis of the composition of the surface layers. An important role in this study was determination of oxide thickness using XPS data. The study of surface - plasma interaction was undertaken by correlating results of surface analysis with plasma diagnosis. Different experiments were designed to accurately measure the BEs associated with the Ga 3d, Ga 2p sub 3 sub / sub 2 and LMM peaks using XPS analysis and propose identification in terms of the oxides of GaAs. Along with GaAs wafers, some reference compounds such as metallic Ga and Ga sub 2 O sub 3 powder were used. A separate study aiming the identification of the GaAs surface oxides formed on the GaAs surface during and after plasma processing was undertaken. Surface compositional changes after plasma treatment, prior to surface analysis are considered, wi...

  8. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  9. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    Science.gov (United States)

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  10. Speech perception of noise with binary gains

    DEFF Research Database (Denmark)

    Wang, DeLiang; Kjems, Ulrik; Pedersen, Michael Syskind

    2008-01-01

    For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by comparing speech energy and noise energy within local time-frequency units. It is observed that listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed by the i......For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by comparing speech energy and noise energy within local time-frequency units. It is observed that listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed...

  11. Binary and multiple systems of stars

    CERN Document Server

    Batten, Alan H

    1973-01-01

    Binary and Multiple Systems of Stars focuses on spectroscopic observational results and interpretations of binaries, and a few of multiple systems. Organized into 10 chapters, this book begins with the basic concepts and terminologies used in the study of binary and multiple systems of stars. Then, the incidence of both star systems is described. Subsequent chapters explore the properties of individual binaries, as well as the evolution and origin of such star system. This book will be a valuable reference material for astronomers, scientists in related fields, as well as graduate students.

  12. Survival of planets around shrinking stellar binaries.

    Science.gov (United States)

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  13. Eliciting Subjective Probabilities with Binary Lotteries

    DEFF Research Database (Denmark)

    Harrison, Glenn W.; Martínez-Correa, Jimmy; Swarthout, J. Todd

    We evaluate the binary lottery procedure for inducing risk neutral behavior in a subjective belief elicitation task. Harrison, Martínez-Correa and Swarthout [2013] found that the binary lottery procedure works robustly to induce risk neutrality when subjects are given one risk task defined over...... objective probabilities. Drawing a sample from the same subject population, we find evidence that the binary lottery procedure induces linear utility in a subjective probability elicitation task using the Quadratic Scoring Rule. We also show that the binary lottery procedure can induce direct revelation...

  14. Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide diels-alder cycloaddition polymer.

    Science.gov (United States)

    Li, Junpeng; Liang, Jiajie; Li, Lu; Ren, Fengbo; Hu, Wei; Li, Juan; Qi, Shuhua; Pei, Qibing

    2014-12-23

    A healable transparent capacitive touch screen sensor has been fabricated based on a healable silver nanowire-polymer composite electrode. The composite electrode features a layer of silver nanowire percolation network embedded into the surface layer of a polymer substrate comprising an ultrathin soldering polymer layer to confine the nanowires to the surface of a healable Diels-Alder cycloaddition copolymer and to attain low contact resistance between the nanowires. The composite electrode has a figure-of-merit sheet resistance of 18 Ω/sq with 80% transmittance at 550 nm. A surface crack cut on the conductive surface with 18 Ω is healed by heating at 100 °C, and the sheet resistance recovers to 21 Ω in 6 min. A healable touch screen sensor with an array of 8×8 capacitive sensing points is prepared by stacking two composite films patterned with 8 rows and 8 columns of coupling electrodes at 90° angle. After deliberate damage, the coupling electrodes recover touch sensing function upon heating at 80 °C for 30 s. A capacitive touch screen based on Arduino is demonstrated capable of performing quick recovery from malfunction caused by a razor blade cutting. After four cycles of cutting and healing, the sensor array remains functional.

  15. Entrepreneurial Couples

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Van Praag, Mirjam; Thompson, Peter

    2015-01-01

    We study possible motivations for co-entreprenurial couples to start up a joint firm, using a sample of 1,069 Danish couples that established a joint enterprise between 2001 and 2010. We compare their pre-entry characteristics, firm performance and post-dissolution private and financial outcomes...... with a selected set of comparable firms and couples. We find evidence that couples often establish a business together because one spouse – most commonly the female – has limited outside opportunities in the labor market. However, the financial benefits for each of the spouses, and especially the female...

  16. Method of all-optical frequency encoded decimal to binary and binary coded decimal, binary to gray, and gray to binary data conversion using semiconductor optical amplifiers

    Science.gov (United States)

    Garai, Sisir Kumar

    2011-07-01

    Conversion of optical data from decimal to binary format is very important in optical computing and optical signal processing. There are many binary code systems to represent decimal numbers, the most common being the binary coded decimal (BCD) and gray code system. There are a wide choice of BCD codes, one of which is a natural BCD having a weighted code of 8421, by means of which it is possible to represent a decimal number from 0 to 9 with a combination of 4bit binary digits. The reflected binary code, also known as the Gray code, is a binary numeral system where two successive values differ in only 1bit. The Gray code is very important in digital optical communication as it is used to prevent spurious output from optical switches as well as to facilitate error correction in digital communications in an optical domain. Here in this communication, the author proposes an all-optical frequency encoded method of ``:decimal to binary, BCD,'' ``binary to gray,'' and ``gray to binary'' data conversion using the high-speed switching actions of semiconductor optical amplifiers. To convert decimal numbers to a binary form, a frequency encoding technique is adopted to represent two binary bits, 0 and 1. The frequency encoding technique offers advantages over conventional encoding techniques in terms of less probability of bit errors and greater reliability. Here the author has exploited the polarization switch made of a semiconductor optical amplifier (SOA) and a property of nonlinear rotation of the state of polarization of the probe beam in SOA for frequency conversion to develop the method of frequency encoded data conversion.

  17. Inferring Binary Pulsar Population Statistics Using the NANOGrav 11 YearData Set

    Science.gov (United States)

    Stetzler, Steven; Stovall, Kevin; Demorest, Paul

    2018-01-01

    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) monitors a set of millisecond pulsars to search for the effects of gravitational waves on pulsar signals. The NANOGrav 11 Year Data Set offers a unique opportunity to explore the statistics of binary pulsar populations. Containing the timing solutions for 31 millisecond pulsars in binary orbits with white dwarf companions, this data set provides us with access to a large number of binary pulsars which have been observed with a unique level of consistency over multi-year time scales. We have used this data set to examine the binary pulsar orbital inclination angle distribution to see if the results are consistent with the standard assumption that the angles are uniformly distributed over the cosine of the inclination. This assumption could be violated if, for example, coupling between a pulsar's spin and its binary orbit causes preferential beaming in certain directions relative to the orbital plane. We will present multiple approaches and statistical tests that we have used to check this assumption. We will discuss our results for each when applied to the binary pulsars in the NANOGrav 11 Year Data Set. While only applied to orbital inclinations, the statistical analysis tools we develop are quite powerful and can be used to infer and test the population statistics of any of the parameters present in a pulsar's timing solution.

  18. A Ferroelectric Ceramic/Polymer Composite-Based Capacitive Electrode Array for In Vivo Recordings.

    Science.gov (United States)

    Chen, Changyong; Xue, Miaomiao; Wen, Yige; Yao, Guang; Cui, Yan; Liao, Feiyi; Yan, Zhuocheng; Huang, Long; Khan, Saeed Ahmed; Gao, Min; Pan, Taisong; Zhang, Hulin; Jing, Wei; Guo, Daqing; Zhang, Sanfeng; Yao, Hailiang; Zhou, Xiong; Li, Qiang; Xia, Yang; Lin, Yuan

    2017-08-01

    A new implantable capacitive electrode array for electrocorticography signal recording is developed with ferroelectric ceramic/polymer composite. This ultrathin and electrically safe capacitive electrode array is capable of attaching to the biological tissue conformably. The barium titanate/polyimide (BaTiO3 /PI) nanocomposite with high dielectric constant is successfully synthesized and employed as the ultrathin dielectric layer of the capacitive BaTiO3 /PI electrode array. The performance of the capacitive BaTiO3 /PI electrode array is evaluated by electrical characterization and 3D finite-element modeling. In vivo, neural experiments on the visual cortex of rats show the reliability of the capacitive BaTiO3 /PI electrode array. This work shows the potentials of capacitive BaTiO3 /PI electrode array in the field of brain/computer interfaces. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of an Intelligent Capacitive Mass Sensor Based on Co-axial Cylindrical Capacitor

    Directory of Open Access Journals (Sweden)

    Amir ABU AL AISH

    2009-06-01

    Full Text Available The paper presents a linear, robust and intelligent capacitive mass sensor made of a co-axial cylindrical capacitor. It is designed such that the mass under measurement is directly proportional to the capacitance of the sensor. The average value of the output voltage of a capacitance to voltage converter is proportional to the capacitance of the sensor. The output of the converter is measured and displayed, as mass, with the help of microcontroller. The results are free from the effect of stray capacitances which cause errors at low values of capacitances. Developed sensor is linear, free from errors due to temperature and highly flexible in design. The proto-type of the mass sensor can weigh up to 4 kilogram only.

  20. The Semen pH Affects Sperm Motility and Capacitation.

    Science.gov (United States)

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.