WorldWideScience

Sample records for capacitive charge division

  1. Calculating and optimizing inter-electrode capacitances of charge division microchannel plate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Bo, E-mail: chenb@ciomp.ac.cn [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, Hong-Ji; Wang, Hai-Feng; He, Ling-Ping [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Jin, Fang-Yuan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-04-01

    Based on the principle of charge division microchannel plate detectors, the inter-electrode capacitances of charge division anodes which are related to electronic noise of the charge sensitive amplifier and crosstalk effect of the anode are presented. Under all the requirements of charge division microchannel plate detectors such as the imaging linearity and spatial resolution, decreasing the inter-electrode capacitances is one way to improve the imaging performance. In this paper, we illustrate the simulation process of calculating the inter-electrode capacitances. Moreover, a Wedge and Strip (WSZ) anode is fabricated with the picosecond laser micromachining process. Comparing the simulated capacitances and measured capacitances, the three-dimensional finite element method is proved to be valid. Furthermore, by adjusting the design parameters of the anode, the effects of the substrate permittivity, insulation width and the size of pitch on the inter-electrode capacitances have been analysed. The structure of the charge division anode has been optimized based on the simulation data.

  2. Induced Charge Capacitive Deionization

    CERN Document Server

    Rubin, S; Biesheuvel, P M; Bercovici, M

    2016-01-01

    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, which leads to rapid and significant deionization of ionic species from a volume which is on the scale of the particle. We show by theory and experiment that the transient response around a cylindrical particle results in spatially non-uniform charging and non-steady growth of depletion regions which emerge around the particle's poles. Potentially, ICCDI can be useful in applications where fast concentration changes of ionic species are required over large volumes.

  3. Complementary surface charge for enhanced capacitive deionization

    NARCIS (Netherlands)

    Gao, X.; Porada, S.; Omosebi, A.; Liu, K.L.; Biesheuvel, P.M.; Landon, J.

    2016-01-01

    Commercially available activated carbon cloth electrodes are treated using nitric acid and ethylenediamine solutions, resulting in chemical surface charge enhanced carbon electrodes for capacitive deionization (CDI) applications. Surface charge enhanced electrodes are then configured in a CDI cel

  4. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    Science.gov (United States)

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  5. Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes

    CERN Document Server

    Biesheuvel, P M

    2009-01-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by super-capacitors, water desalination and purification by capacitive deionization (or desalination), and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory in the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes wi...

  6. MOS Capacitance-Voltage Characteristics Ⅲ.Trapping Capacitance from 2-Charge-State Impurities

    Institute of Scientific and Technical Information of China (English)

    Jie Binbin; Sah Chihtang

    2011-01-01

    Low-frequency and high-frequency capacitance-voltage curves of Metal-Oxide-Semiconductor Capacitors are presented to illustrate giant electron and hole trapping capacitances at many simultaneously present two-charge-state and one-trapped-carrier,or one-energy-level impurity species.Models described include a donor electron trap and an acceptor hole trap,both donors,both acceptors,both shallow energy levels,both deep,one shallow and one deep,and the identical donor and acceptor.Device and material parameters are selected to simulate chemically and physically realizable capacitors for fundamental trapping parameter characterizations and for electrical and optical signal processing applications.

  7. Analytical Charge Voltage Model in MOS Inversion Layer Based on Space Charge Capacitance

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The concept of Space Charge Capacitance (SCC) is proposed and used to make a novel analytical charge model of quantized inversion layer in MOS structures. Based on SCC,continuous expressions of surface potential and inversion layer carrier density are derived.Quantum mechanical effects on both inversion layer carrier density and surface potential are extensively included. The accuracy of the model is verified by the numerical solution to Schrodinger and Poisson equation and the model is demonstrated,too.

  8. Nonlinear dynamics of capacitive charging and desalination by porous electrodes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2010-01-01

    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by supercapacitors, water desalination and purification by capacitive deionization, and capacitive extraction of renewable energy from a salin

  9. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage

    NARCIS (Netherlands)

    Kim, T.; Dykstra, J.E.; Porada, S.; Wal, van der A.; Yoon, J.; Biesheuvel, P.M.

    2015-01-01

    Capacitive deionization (CDI) is an electrochemical method for water desalination using porous carbon electrodes. A key parameter in CDI is the charge efficiency, ¿, which is the ratio of salt adsorption over charge in a CDI-cycle. Values for ¿ in CDI are typically around 0.5-0.8, significantly less

  10. Charge collection and capacitance-voltage analysis in irradiated n-type magnetic Czochralski silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Petterson, M.K.; Sadrozinski, H.F.-W.; Betancourt, C. [SCIPP UC Santa Cruz, 1156 High Street, 95064 CA (United States); Bruzzi, M. [INFN, Dipartimento di Energetica, Universita di Firenze, via S. Marta 3, 50139 Florence (Italy)], E-mail: mara.bruzzi@unifi.it; Scaringella, M.; Tosi, C.; Macchiolo, A. [INFN, Dipartimento di Energetica, Universita di Firenze, via S. Marta 3, 50139 Florence (Italy); Manna, N.; Creanza, D. [Universita di Bari (Italy); Boscardin, M.; Piemonte, C.; Zorzi, N. [ITC, IRST, Povo, Trento (Italy); Borrello, L.; Messineo, A. [INFN Pisa (Italy); Dalla Betta, G.F. [Universita di Trento (Italy)

    2007-12-11

    The depletion depth of irradiated n-type silicon microstrip detectors can be inferred from both the reciprocal capacitance and from the amount of collected charge. Capacitance voltage (C-V) measurements at different frequencies and temperatures are being compared with the bias voltage dependence of the charge collection on an irradiated n-type magnetic Czochralski silicon detector. Good agreement between the reciprocal capacitance and the median collected charge is found when the frequency of the C-V measurement is selected such that it scales with the temperature dependence of the leakage current. Measuring C-V characteristics at prescribed combinations of temperature and frequency allows then a realistic estimate of the depletion characteristics of irradiated silicon strip detectors based on C-V data alone.

  11. Compensation of the detector capacitance presented to charge-sensitive preamplifiers using the Miller effect

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Inyong, E-mail: iykwon@umich.edu [University of Michigan, Ann Arbor, MI (United States); Kang, Taehoon, E-mail: thnkang@umich.edu [University of Michigan, Ann Arbor, MI (United States); Wells, Byron T., E-mail: wells@galtresearch.com [Galt LLC, Ypsilanti, MI (United States); D’Aries, Lawrence J., E-mail: lawrence.j.daries.civ@mail.mil [Picatinny Arsenal, Rockaway Township, NJ (United States); Hammig, Mark D., E-mail: hammig@umich.edu [University of Michigan, Ann Arbor, MI (United States)

    2015-06-01

    This paper describes an integrated circuit design for a modified charge-sensitive amplifier (CSA) that compensates for the effect of capacitance presented by nuclear radiation detectors and other sensors. For applications that require large area semiconductor detectors or for those semiconductor sensors derived from high permittivity materials such as PbSe, the detector capacitance can degrade the system gain and bandwidth of a front-end preamplifier, resulting in extended rise times and attenuated output voltage signals during pulse formation. In order to suppress the effect of sensor capacitance, we applied a bootstrap technique into a traditional CSA. The technique exploits the Miller effect by reducing the effective voltage difference between the two sides of a radiation detector which minimizes the capacitance presented to the differential common-source amplifier. This new configuration is successfully designed to produce effective gain even at high detector capacitance. The entire circuit, including a core CSA with feedback components and a bootstrap amplifier, are implemented in a 0.18 μm CMOS process with a 3.3 V supply voltage. - Highlights: • A modified CSA was implemented for detector capacitance compensation. • Increasing detector capacitance degrades gain and rise time. • A bootstrap amplifier exploiting the Miller effect is described. • It allows using large area radiation sensors for high radiation-interaction rates. • Intensive noise analyses show that SNR is much better with the technique.

  12. On the interfacial capacitance of an electrolyte at a metallic electrode around zero surface charge

    Science.gov (United States)

    Bari Bhuiyan, Lutful; Lamperski, Stanisław

    2013-03-01

    The behaviour of the capacitance of a planar double layer containing a restricted primitive model electrolyte (equi-sized rigid ions moving in a continuum dielectric) at and around zero surface charge is examined for a polarizable electrode with particular emphasis on a metallic surface. Capacitance results are reported for symmetric valency (1:1) salts encompassing a range of concentrations and temperatures covering both electrolyte solution and ionic liquid regimes. Although the modified Poisson-Boltzmann theory is principally employed, at higher concentrations the theoretical calculations have been supplemented by Monte Carlo simulations. Capacitance anomaly, that is, increase of capacitance with temperature at low temperatures, is seen to occur when the electrode is an insulator with a low dielectric constant or when it is unpolarized. No capacitance anomaly is, however, seen for a metallic electrode with an infinite dielectric constant and in this situation the capacitance increases (a) dramatically at low temperatures (strong coupling) at a given concentration, and (b) as concentration increases at a given temperature. These capacitance trends are consistent with earlier works in the presence or absence of surface polarization and, in particular, the results for a conducting electrode at ionic liquid concentrations are consistent with that recently reported by Loth et al. [Phys. Rev. E, 82, 056102 (2010)]. Overall the theoretical predictions are qualitative to semi-quantitative with the simulations.

  13. Bidirectional Flyback Converter with Multiple Series Connected Outputs for High Voltage Capacitive Charge and Discharge Applications

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe;

    2015-01-01

    This paper evaluates two different implementations of a bidirectional flyback converter for driving a capacitive electro active actuator, which must be charged and discharged from 0 V to 2.5 kV DC and vice versa, supplied from a 24 V battery. In one implementation, a high voltage MOSFET (4 kV) in...

  14. ESTIMATING THE LIMIT POSSIBILITIES OF THE STEP CHARGING SYSTEM FOR CAPACITIVE ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    Yu.V. Batygin

    2016-05-01

    Full Text Available The aim of the article is to estimate the limit possibilities of step-by-step charging the capacitive energy storage which are caused by the achievement of a balance among the processes of the receiving and losing of electromagnetic energy. Originality. For the first time a step the charging system as a high power converter for pulsed load was considered, that allow to simplify similar charging systems and make its chipper while saving output characteristics and common quality. Methodology of the analysis applied is based on the classic electric circuits theory. All of the resulted carried out, were obtained as the differential equation solutions and its behavior was analyses analytically. Results. The basic diagram of the step-by-step charging system what is an alternative to the traditional variant with the step-up transformer was described. This system realizes the serial charge voltage increasing by the separate portions of energy, which has been, accumulated preliminary in the inductive energy storage. The formulas for estimating the limit possibilities of the step-by-step charging were got. These limits are caused by achieving a balance of the entering and losing electromagnetic energy. The applicability of the formulas was illustrated by numerical examples. Practical value. According to the results that were obtained, it is possible to note, that the step charging system is acceptable to be used as a high power converter for capacitive storage charging.

  15. Capacitive charge storage at an electrified interface investigated via direct first-principles simulations

    Science.gov (United States)

    Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; Otani, Minoru; Wood, Brandon C.

    2015-03-01

    Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic "quantum capacitance" of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulating charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.

  16. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    CERN Document Server

    Shocron, Amit N

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.

  17. First-principles simulation of capacitive charging of graphene and implications for supercapacitor design

    OpenAIRE

    Radin, Maxwell D.; Ogitsu, Tadashi; Otani, Minoru; Biener, Juergen; Wood, Brandon C.

    2014-01-01

    Supercapacitors store energy via the formation of an electric double layer, which generates a strong electric field at the electrode-electrolyte interface. Unlike conventional metallic electrodes, graphene-derived materials suffer from a low electronic density of states (i.e., quantum capacitance), which limits their ability to redistribute charge and efficiently screen this field. To explore these effects, we introduce a first-principles approach based on the effective screening medium frame...

  18. Effects of dielectric charging on the output voltage of a capacitive accelerometer

    Science.gov (United States)

    Qu, Hao; Yu, Huijun; Zhou, Wu; Peng, Bei; Peng, Peng; He, Xiaoping

    2016-11-01

    Output voltage drifting observed in one typical capacitive microelectromechanical system (MEMS) accelerometer is discussed in this paper. Dielectric charging effect is located as one of the major determinants of this phenomenon through a combination of experimental and theoretical studies. A theoretical model for the electromechanical effects of the dielectric surface charges within the electrode gap is established to analyze the dielectric charge effect on the output voltage. Observations of output voltage drift against time are fitted to this model in order to estimate the possible dielectric layer thickness. Meanwhile, Auger electron spectroscopy is carried out to analyze the electrode surface material composition and confirms a mixture layer of dielectric SiO2 and Si with a thickness about 5 nm, which is very close to the model estimation. In addition, observation of time-varing output drift in the variable bias voltage experiment indicates the movement of dielectric charge can be controlled by the applied electric field.

  19. Bidirectional Flyback Converter with Multiple Series Connected Outputs for High Voltage Capacitive Charge and Discharge Applications

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2015-01-01

    This paper evaluates two different implementations of a bidirectional flyback converter for driving a capacitive electro active actuator, which must be charged and discharged from 0 V to 2.5 kV DC and vice versa, supplied from a 24 V battery. In one implementation, a high voltage MOSFET (4 k...... by lower voltage rating MOSFETs driven by a gate drive transformer. Simulation results to compare the operation of conventional and proposed converters are provided. The advantages of proposed implementation are improved energy efficiency and lower cost. Experimental results with two series connected...

  20. 3D capacitive vibrational micro harvester using isotropic charging of electrets deposited on vertical sidewalls

    Science.gov (United States)

    Nimo, Antwi; Mescheder, Ulrich; Müller, Bernhard; Saad Abou Elkeir, Awad

    2011-06-01

    In this paper the design and fabrication of an integrated micro energy harvester capable of harvesting electrical energy from low amplitude mechanical vibrations is presented. A specific feature of the presented energy harvester is its capability to harvest vibrational energy from different directions (3D). This is done through an innovative approach for electrets placed on vertical sidewalls and thereby allowing for miniaturization of 3D capacitive energy harvester on monolithic CMOS substrates. A new simple electret charging method using ionic hair-dryers/hair ionizers is reported and shown that it can be effectively used for electrets-based micro energy harvesters.

  1. Scanning capacitance microscopy and spectroscopy applied to local charge modifications and characterization of nitride-oxide-silicon heterostructures

    Science.gov (United States)

    Dreyer, M.; Wiesendanger, R.

    1995-10-01

    We have combined a home-built capacitance sensor with a commercial scanning force microscope to obtain a Scanning Capacitance Microscope (SCM). The SCM has been used to study Nitride-Oxide-Silicon (NOS) heterostructures which offer potential applications in charge storage technology. Charge writing and reading on a submicrometer scale is demonstrated with our SCM setup. In addition, SCM appears to be very useful for the characterization of subsurface defects in semiconductor devices which are inaccessible by most of the other scanning probe microscopies. Finally, we introduce a novel spectroscopic mode of SCM operation which offers combined voltage-dependent and spatially resolved information about inhomogeneous charge distributions in semiconductor devices.

  2. Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes.

    Science.gov (United States)

    Cuartero, Maria; Bishop, Josiah; Walker, Raymart; Acres, Robert G; Bakker, Eric; De Marco, Roland; Crespo, Gaston A

    2016-08-11

    This paper presents the first direct spectroscopic evidence for double layer or capacitive charging of carbon nanomaterial-based solid contacts in all-solid-state polymeric ion-selective electrodes (ISEs). Here, we used synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) and SR valence band (VB) spectroscopy in the elucidation of the charging mechanism of the SCs.

  3. Voltammetric quantum charging capacitance behaviour of functionalised carbon nanotubes in solution

    Energy Technology Data Exchange (ETDEWEB)

    Paolucci, Demis [Dipartimento di Chimica ' G. Ciamician' , Universita di Bologna, Via Selmi 2, 40126 Bologna (Italy); INSTM, Section of Bologna, Bologna (Italy)], E-mail: demis.paolucci@unibo.it; Marcaccio, Massimo; Bruno, Carlo [Dipartimento di Chimica ' G. Ciamician' , Universita di Bologna, Via Selmi 2, 40126 Bologna (Italy); INSTM, Section of Bologna, Bologna (Italy); Paolucci, Francesco [Dipartimento di Chimica ' G. Ciamician' , Universita di Bologna, Via Selmi 2, 40126 Bologna (Italy); INSTM, Section of Bologna, Bologna (Italy)], E-mail: francesco.paolucci@unibo.it; Tagmatarchis, Nikos [Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste (Italy); INSTM, Section of Trieste, Trieste (Italy); Prato, Maurizio [Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste (Italy); INSTM, Section of Trieste, Trieste (Italy)], E-mail: prato@units.it

    2008-04-20

    The electronic properties of functionalised single and multi wall carbon nanotubes (SWNTs and MWNTs, respectively) were investigated in depth by conventional electrochemical techniques in solution. Significant differences were observed between these two classes of carbon nanotubes. In fact, despite functionalisation strongly modified the electronic properties of carbon nanotubes, the enrichment of the density of states of MWNTs with respect to SWNTs, due to larger tube diameters, is still appreciated. In addition, the redox behaviour of the MWNTs shows a series of discrete single electron-transfer events (a coulomb staircase), which are undetected in the case of SWNTs. This quantised capacitance charging phenomena is analogous to that observed for other nanosystems which is attributed to the discrete charging of conducting core, coated with a dielectric film in an electrolyte solution.

  4. Effect of ion charges on the electric double layer capacitance of activated carbon in aqueous electrolyte systems

    Science.gov (United States)

    Icaza, Juan C.; Guduru, Ramesh K.

    2016-12-01

    Carbon based electrochemical double layer capacitors (EDLCs) are known for high power density, but their energy density is limited due to surface characteristics of the electrode materials as well as the size and charge of the ions used in the electrolyte. Therefore, considering the current demand for enhanced energy density devices, we investigated the use of multivalent electrolytes to increase the capacitance of activated carbon (AC) based EDLCs. As part of these studies, we examined the effect of the charge of the multivalent ions on the capacitive behavior of microporous AC electrodes and compared with the univalent Li+ system. We performed impedance and cyclic voltammetry measurements on AC electrodes in a symmetric two electrode configuration to determine the impedance and capacitance with respect to varying charge and concentration of the ions in the aqueous nitrate electrolytes. These studies clearly demonstrated an increased capacitance with Mg2+ and Al3+ implying the possible effects of ion mobility and electrolyte conductivity in addition to the multivalent charge. These preliminary observations clearly point to the importance of selection of electrolyte ions with more charge, conductivity, and suitable size with respect to the pore size of the electrodes in order to increase the capacitance of EDLCs.

  5. Variation of Charge Distribution and Capacitance on Thin Wire Using the Method of Moments

    Directory of Open Access Journals (Sweden)

    Mohamed Louzazni

    2013-09-01

    Full Text Available In this paper, we attempting to determine the linear charge density and capacitance on a finite straight segment of thin charged conducting wire of length L=1 m and radius r. we assume that the charge density piecewise constant over the length and the electric potential are is one volt. If the radius are very small compared to the length r<charge density are piecewise constant onto each segment. The integral equation will be transformed to linear equation in N equation with N unknown system. We use the method of moments for solving this system and we obtained a Toeplitz matrix, the results shows the charge density for N=100 is represented on the low levels of discretisation, and the decreasing of the radius increaser the fidelity of the results.

  6. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers

    Science.gov (United States)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  7. In Situ Spatially and Temporally Resolved Measurements of Salt Concentration between Charging Porous Electrodes for Desalination by Capacitive Deionization

    NARCIS (Netherlands)

    Suss, M.E.; Biesheuvel, P.M.; Baumann, T.E.; Stadermann, M.; Santiago, J.G.

    2014-01-01

    Capacitive deionization (CDI) is an emerging water desalination technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and tem

  8. Charging the quantum capacitance of graphene with a single biological ion channel.

    Science.gov (United States)

    Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J

    2014-05-27

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.

  9. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.

    Science.gov (United States)

    Suss, Matthew E; Biesheuvel, P M; Baumann, Theodore F; Stadermann, Michael; Santiago, Juan G

    2014-01-01

    Capacitive deionization (CDI) is an emerging water desalination technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and temporally resolved salt concentration between the CDI electrodes. Our technique measures the local fluorescence intensity of a neutrally charged fluorescent probe which is collisionally quenched by chloride ions. To our knowledge, our system is the first to measure in situ and spatially resolved chloride concentration in a laboratory CDI cell. We here demonstrate good agreement between our dynamic measurements of salt concentration in a charging, millimeter-scale CDI system to the results of a modified Donnan porous electrode transport model. Further, we utilize our dynamic measurements to demonstrate that salt removal between our charging CDI electrodes occurs on a longer time scale than the capacitive charging time scales of our CDI cell. Compared to typical measurements of CDI system performance (namely, measurements of outflow ionic conductivity), our technique can enable more advanced and better-controlled studies of ion transport in CDI systems, which can potentially catalyze future performance improvements.

  10. Generation of reference dc currents at 1 nA level with the capacitance-charging method

    CERN Document Server

    Callegaro, Luca; D'Elia, Vincenzo; Galliana, Flavio

    2013-01-01

    The capacitance-charging method is a well-established and handy technique for the generation of dc current in the 100 pA range or lower. The method involves a capacitance standard and a sampling voltmeter, highly stable devices easy to calibrate, and it is robust and insensitive to the voltage burden of the instrument being calibrated. We propose here a range extender amplifier, which can be employed as a plug-in component in existing calibration setups, and allows the generation of currents in the 1 nA range. The extender has been employed in the INRIM setup and validated with two comparisons at 100 pA and 1 nA current level. The calibration accuracy achieved on a top-class instrument is 10 ppm at 1 nA.

  11. Effect of pH waves on capacitive charging in microfluidic flow channels

    NARCIS (Netherlands)

    Roelofs, Susan H.; Soestbergen, van Michiel; Odijk, Mathieu; Eijkel, Jan C.T.; Berg, van den Albert

    2014-01-01

    Novel energy-efficient desalination techniques, such as capacitive deionization (CDI), are a key element for the future of the fresh water supply, which is increasingly under stress due to the ever-growing world population and ongoing climate changes. CDI is a desalination technique where salt ions

  12. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    Directory of Open Access Journals (Sweden)

    Boris Dyatkin

    2015-12-01

    Full Text Available This study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Unlike hydrogenated pores, aminated pores do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.

  13. Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells

    Science.gov (United States)

    Lie-Feng, Feng; Kun, Zhao; Hai-Tao, Dai; Shu-Guo, Wang; Xiao-Wei, Sun

    2016-03-01

    Negative capacitance (NC) in dye-sensitized solar cells (DSCs) has been confirmed experimentally. In this work, the recombination behavior of carriers in DSC with semiconductor interface as a carrier’s transport layer is explored theoretically in detail. Analytical results indicate that the recombination behavior of carriers could contribute to the NC of DSCs under small signal perturbation. Using this recombination capacitance we propose a novel equivalent circuit to completely explain the negative terminal capacitance. Further analysis based on the recombination complex impedance show that the NC is inversely proportional to frequency. In addition, analytical recombination resistance is composed by the alternating current (AC) recombination resistance (Rrac) and the direct current (DC) recombination resistance (Rrdc), which are caused by small-signal perturbation and the DC bias voltage, respectively. Both of two parts will decrease with increasing bias voltage. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204209 and 60876035) and the Natural Science Foundation of Tianjin City, China (Grant No. 13JCZDJC32800).

  14. Upper-division Student Understanding of Coulomb's Law: Difficulties with Continuous Charge Distributions

    CERN Document Server

    Wilcox, Bethany R; Pepper, Rachel E; Pollock, Steven J

    2012-01-01

    Utilizing the integral expression of Coulomb's Law to determine the electric potential from a continuous charge distribution is a canonical exercise in Electricity and Magnetism (E&M). In this study, we use both think-aloud interviews and responses to traditional exam questions to investigate student difficulties with this topic at the upper-division level. Leveraging a theoretical framework for the use of mathematics in physics, we discuss how students activate, construct, execute and reflect on the integral form of Coulomb's Law when solving problems with continuous charge distributions. We present evidence that junior-level E&M students have difficulty mapping physical systems onto the mathematical expression for the Coulomb potential. Common challenges include difficulty expressing the difference vector in appropriate coordinates as well as determining expressions for the differential charge element and limits of integration for a specific charge distribution. We discuss possible implications of t...

  15. Capacitive Control of Spontaneously Induced Electrical Charge of Droplet by Electric Field-Assisted Pipetting

    Institute of Scientific and Technical Information of China (English)

    Horim Lee; Dongwhi Choi; Dong Sung Kim; Geunbae Lim

    2015-01-01

    The spontaneously generated electrical charge of a droplet dispensed from conventional pipetting is undesirable and unpredictable for most experiments that use pipetting. Hence, a method for controlling and removing the electrical charge needs to be developed. In this study, by using the electrode-deposited pipet tip (E-pipet tip), the charge-controlling system is newly developed and the electrical charge of a droplet is precisely controlled. The effect of electrolyte concentration and volume of the transferred solution to the electrical charge of a dispensed droplet is theoretically and experimentally investigated by using the equivalent capacitor model. Furthermore, a proof-of-concept example of the self-alignment and self-assembly of sequentially dispensed multiple droplets is demonstrated as one of the potential applications. Given that the electrical charge of the various aqueous droplets can be precisely and simply controlled, the fabricated E-pipet tip can be broadly utilized not only as a general charge-controlling platform of aqueous droplets but also as a powerful tool to explore fundamental scientific research regarding electrical charge of a droplet, such as the surface oscillation and evaporation of charged droplets.

  16. Measurement of charge with an active integrator in the presence of noise and pileup effects. A choice of parameters in the charge division method

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Lugol, J.C. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique Nucleaire)

    1991-03-01

    In the presence of electronics noise and pileup effects it is possible to measure charge with an active integrator. The subject of this paper is to deal with the choice of measurement parameters. An application of position sensing with the charge division method is studied and results are compared to those obtained with POMME polarimeter electronics. (orig.).

  17. A linear gate and transmitter for improving localization using the charge division method

    CERN Document Server

    Busso, L; Marcello, S; Morra, O; Panzarasa, A

    2002-01-01

    We developed an electronic system which, used with drift chambers, allows to perform a precise charge division measurement of the longitudinal coordinate, even if the sense wire is held at high voltage and a decoupling capacitor is needed. The idea is to create a temporal gate at the arrival of the signal and transmit to the ADC only this part of the signal. The gate remains open for a short period (120 ns), corresponding to the duration of the anode pulse and delivers, at its output, a pulse of amplitude linearly dependent from the input value. In this way the systematic error is better than 1% of the wire length. It introduces a considerable improvement in comparison with previously used software corrections, mainly from the linearity and simplicity point of view.

  18. Investigation of electric charge transport in conjugated polymer P3HT: PCBM solar cell with temperature dependent current and capacitance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peiqing; Mencaraglia, Denis; Darga, Arouna; Migan, Anne [Laboratoire de Genie Electrique de Paris, CNRS UMR 8507, SUPELEC, UPMC, Universite Paris VI, Universite Paris-Sud, 11 Rue Joliot Curie, Plateau de Moulon, 91192 Gif-Sur-Yvette Cedex (France); Rabdbeh, Roshanak; Ratier, Bernard; Moliton, Andre [Institut Carnot XLim, UMR 6172, CNRS, Universite de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France)

    2010-04-15

    We investigated quantitatively the electronic transport properties of a bulk heterojunction polymer/fullerene solar cell, based on structure Glass/ITO/P3HT:PCBM/Al. The current-voltage I-V characteristics in the intermediate positive bias and temperature regime (0.2 V {<=} V {<=} 1.5 V, 180 K {<=} T {<=} 250 K) can be well fitted by a modified Poole-Frenkel PF detrapping model. Combining these results with the high frequency capacitance measurements, we could then derive independently the absorber thickness and its dielectric constant. At low temperature (80 K {<=} T {<=} 170 K), the I-V data can be well accounted for with Space Charge Limited Current (SCLC) regimes. At intermediate positive bias (1 V {<=} V {<=} 2.3 V), the current is dominated by the trapped space charges with an exponential traps distribution, while at high positive bias (2.5 V {<=} V {<=} 4 V), the space charges due to injected free carrier play an important role for the conduction. From the fits to the two different SCLC models, we could then extract the electrically active defects parameters controlling the transport. These parameters were confirmed by space charge capacitance spectroscopy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. A simple method of extracting the polarization charge density in the AlGaN/GaN heterostructure from current-voltage and capacitance-voltage characteristics

    Institute of Scientific and Technical Information of China (English)

    Lü Yuan-Jie; Lin Zhao-Jun; Yu Ying-Xia; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Wang Zhan-Guo

    2012-01-01

    An Ni Schottky contact on the AlGaN/GaN heterostructure is fabricated.The flat-band voltage for the Schottky contact on the AlGaN/GaN heterostructure is obtained from the forward current-voltage characteristics.With the measured capacitance-voltage curve and the flat-band voltage,the polarization charge density in the AlGaN/GaN heterostructure is investigated,and a simple formula for calculating the polarization charge density is obtained and analyzed.With the approach described in this paper,the obtained polarization charge density agrees well with the one calculated by self-consistently solving Schrodinger's and Poisson's equations.

  20. Novel Approach to Evaluation of Charging on Semiconductor Surface by Noncontact, Electrode-Free Capacitance/Voltage Measurement

    Science.gov (United States)

    Hirae, Sadao; Kohno, Motohiro; Okada, Hiroshi; Matsubara, Hideaki; Nakatani, Ikuyoshi; Kusuda, Tatsufumi; Sakai, Takamasa

    1994-04-01

    This paper describes a novel approach to the quantitative characterization of semiconductor surface charging caused by plasma exposures and ion implantations. The problems in conventional evaluation of charging are also discussed. Following the discussions above, the necessity of unified criteria is suggested for efficient development of systems or processes without charging damage. Hence, the charging saturation voltage between a top oxide surface and substrate, V s, and the charging density per unit area per second, ρ0, should be taken as criteria of charging behavior, which effectively represent the charging characteristics of both processes. The unified criteria can be obtained from the exposure time dependence of a net charging density on the thick field oxide. In order to determine V s and ρ0, the analysis using the C-V curve measured in a noncontact method with the metal-air-insulator-semiconductor (MAIS) technique is employed. The total space-charge density in oxide and its centroid can be determined at the same time by analyzing the flat-band voltage (V fb) of the MAIS capacitor as a function of the air gap. The net charge density can be obtained by analyzing the difference between the total space-charge density in oxide before and after charging. Finally, it is shown that charge damage of the large area metal-oxide-semiconductor (MOS) capacitor can be estimated from both V s and ρ0 which are obtained from results for a thick field oxide implanted with As+ and exposed to oxygen plasma.

  1. Performance, high voltage operation and radiation hardness of full-size ATLAS charge division silicon detectors with LHC electronics

    Science.gov (United States)

    Allport, P. P.; Booth, P. S. L.; Carter, J. R.; Goodrick, M. J.; Green, C.; Greenall, A.; Hanlon, M.; Hill, J. C.; Jackson, J. N.; Jones, T. J.; Martí i García, S.; Munday, D. J.; Murray, W.; Richardson, J. D.; Robinson, D.; Sheridan, A. E.; Smith, N. A.; Tyndel, M.; Wyllie, K.

    1998-02-01

    ATLAS silicon detectors designed for charge division read-out were produced during 1995 and have been extensively studied both in the laboratory and test beam at the CERN SPS. Data have been taken with the analogue read-out FELIX-128 chip and studies simulating other read-out architectures under consideration by ATLAS have been performed. To evaluate survival in the harsh environment of the LHC, detectors have been tested to high voltage, both before and after radiation damage by protons exceeding the expected charged hadron dose after 10 years of LHC operation. These tests have all employed analogue read-out to be sensitive to changes in noise and charge collection efficiency as a function of the detector damage.

  2. 2D position sensitive microstrip sensors with charge division along the strip Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proofof-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis ...

  3. 2D Position Sensitive Microstrip Sensors with Charge Division Along the Strip: Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proof-of-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphas...

  4. Total dose dependence of oxide charge, interstrip capacitance and breakdown behavior of sLHC prototype silicon strip detectors and test structures of the SMART collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sadrozinski, H.F.-W. [SCIPP, UC Santa Cruz, Santa Cruz, CA 95064 (United States)], E-mail: hartmut@scipp.ucsc.edu; Betancourt, C.; Heffern, R.; Henderson, I.; Pixley, J.; Polyakov, A.; Wilder, M. [SCIPP, UC Santa Cruz, Santa Cruz, CA 95064 (United States); Boscardin, M.; Piemonte, C.; Pozza, A.; Zorzi, N. [ITC-irst, Divisione Microsistemi, Via Sommarive 18, I-38050 Povo, Trento (Italy); Dalla Betta, G.-F.; Resta, G. [DIT, Universita di Trento, Via Sommarive 14, I-38050 Povo, Trento (Italy); Bruzzi, M. [Dipt. Energetica, University of Florence, Via S. Marta 3, I-50139 Florence (Italy); Macchiolo, A. [Universita and INFN Florence, Via G. Sansone 1, I-50019 Sesto F. (Italy); Borrello, L.; Messineo, A. [Universita and INFN Pisa, Largo B. Pontecorvo, 3, I-56127 Pisa (Italy); Creanza, D.; Manna, N. [Universita and INFN Bari, Via E. Orabona 4, I-70126 Bari (Italy)

    2007-09-01

    Within the R and D Program for the luminosity upgrade proposed for the Large Hadron Collider (LHC), silicon strip detectors (SSD) and test structures (TS) were manufactured on several high-resistivity substrates: p-type Magnetic Czochralski (MCz) and Float Zone (FZ), and n-type FZ. To test total dose (TID) effects they were irradiated with {sup 60}Co gammas and the impact of surface radiation damage on the detector properties was studied. Selected results from the pre-rad and post-rad characterization of detectors and TS are presented, in particular interstrip capacitance and resistance, break-down voltage, flatband voltage and oxide charge. Surface damage effects show saturation after 150 krad and breakdown performance improves considerably after 210 krad. Annealing was performed both at room temperature and at 60 deg. C, and large effects on the surface parameters observed.

  5. Efficiency of Capacitively Loaded Converters

    DEFF Research Database (Denmark)

    Andersen, Thomas; Huang, Lina; Andersen, Michael A. E.;

    2012-01-01

    This paper explores the characteristic of capacitance versus voltage for dielectric electro active polymer (DEAP) actuator, 2kV polypropylene film capacitor as well as 3kV X7R multi layer ceramic capacitor (MLCC) at the beginning. An energy efficiency for capacitively loaded converters...... is introduced as a definition of efficiency. The calculated and measured efficiency curves for charging DEAP actuator, polypropylene film capacitor and X7R MLCC are provided and compared. The attention has to be paid for the voltage dependent capacitive load, like X7R MLCC, when evaluating the charging...... polypropylene film capacitor can be the equivalent capacitive load. Because of the voltage dependent characteristic, X7R MLCC cannot be used to replace the DEAP actuator. However, this type of capacitor can be used to substitute the capacitive actuator with voltage dependent property at the development phase....

  6. 2D position sensitive microstrip sensors with charge division along the strip: Studies on the position measurement error

    Energy Technology Data Exchange (ETDEWEB)

    Bassignana, D. [Centro Nacional de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Univ. Autónoma de Barcelona, 08193 Bellaterra (Spain); Curras, E.; Fernandez, M.; Jaramillo, R. [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain); Lozano, M. [Centro Nacional de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Univ. Autónoma de Barcelona, 08193 Bellaterra (Spain); Munoz, F.J. [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain); Pellegrini, G.; Quirion, D. [Centro Nacional de Microelectrónica de Barcelona IMB-CNM (CSIC), Campus Univ. Autónoma de Barcelona, 08193 Bellaterra (Spain); Vila, I., E-mail: vila@ifca.unican.es [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain); Vitorero, F. [Instituto de Física de Cantabria IFCA (CSIC-UC), Avd. de los Castros s/n, 39005 Santander (Spain)

    2013-12-21

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proof-of-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis on the study on how the different noise sources are affecting the device position error along the strip.

  7. Water desalination via capacitive deionization

    NARCIS (Netherlands)

    Suss, M.E.; Porada, S.; Sun, X.; Biesheuvel, P.M.; Yoon, J.; Presser, V.

    2015-01-01

    Capacitive deionization (CDI) is an emerging technology for the facile removal of charged ionic species from aqueous solutions, and is currently being widely explored for water desalination applications. The technology is based on ion electrosorption at the surface of a pair of electrically charg

  8. Improved base-collector depletion charge and capacitance model for SiGe HBT on thin-film SOI%薄膜SOI上SiGe HBT集电结耗尽电荷和电容改进模型

    Institute of Scientific and Technical Information of China (English)

    徐小波; 张鹤鸣; 胡辉勇

    2011-01-01

    文章研究了SOI衬底上SiGe npn异质结晶体管集电结耗尽电荷和电容.根据器件实际工作情况,基于课题组前面的工作,对耗尽电荷和电容模型进行扩展和优化.研究结果表明,耗尽电荷模型具有更好的光滑性;耗尽电容模型为纵向耗尽与横向耗尽电容的串联,考虑了不同电流流动面积,与常规器件相比,SOI器件全耗尽工作模式下表现出更小的集电结耗尽电容,因此更大的正向Early电压;在纵向工作模式到横向工作模式转变的电压偏置点,耗尽电荷和电容的变化趋势发生改变.SOI薄膜上纵向SiGe HBT集电结耗尽电荷和电容模型的建立和扩展为毫米波SOI BiCMOS工艺中双极器件核心参数如Early电压、特征频率等的设计提供了有价值的参考.%The SiGe heterojunction bipolar transistor (HBT) on thin film SOI is successfully integrated with SOI CMOS by "folded collector".This paper deals with the collector depletion charge and the capacitance of this structure.An optimized model is presented based on our previous research.The results show that the charge model is smoother,and that the capacitance model with considering different current flow areas,is vertical and horizontal depletion capacitances in series,showing that the depletion capacitance is smaller than that of a bulk HBT.The charge and capacitance vary with the increase of reverse collector-base bias.This collector depletion charge and capacitance model provides valuable reference to the SOI SiGe HBT electrical parameters design and simulation such as Early voltage and transit frequency in the latest 0.13μm SOI BiCMOS technology.

  9. Voltage Dependence of Supercapacitor Capacitance

    Directory of Open Access Journals (Sweden)

    Szewczyk Arkadiusz

    2016-09-01

    Full Text Available Electronic Double-Layer Capacitors (EDLC, called Supercapacitors (SC, are electronic devices that are capable to store a relatively high amount of energy in a small volume comparing to other types of capacitors. They are composed of an activated carbon layer and electrolyte solution. The charge is stored on electrodes, forming the Helmholtz layer, and in electrolyte. The capacitance of supercapacitor is voltage- dependent. We propose an experimental method, based on monitoring of charging and discharging a supercapacitor, which enables to evaluate the charge in an SC structure as well as the Capacitance-Voltage (C-V dependence. The measurement setup, method and experimental results of charging/discharging commercially available supercapacitors in various voltage and current conditions are presented. The total charge stored in an SC structure is proportional to the square of voltage at SC electrodes while the charge on electrodes increases linearly with the voltage on SC electrodes. The Helmholtz capacitance increases linearly with the voltage bias while a sublinear increase of total capacitance was found. The voltage on SC increases after the discharge of electrodes due to diffusion of charges from the electrolyte to the electrodes. We have found that the recovery voltage value is linearly proportional to the initial bias voltage value.

  10. Characterization of space charge layer deep defects in n+-CdS/p-CdTe solar cells by temperature dependent capacitance spectroscopy

    Science.gov (United States)

    Kharangarh, P. R.; Misra, D.; Georgiou, G. E.; Chin, K. K.

    2013-04-01

    Temperature Dependent Capacitance Spectroscopy (TDCS) was used to identify carrier trapping defects in thin film n+-CdS/p-CdTe solar cells, made with evaporated Cu as a primary back contact. By investigating the reverse bias junction capacitance, TDCS allows to identify the energy levels of depletion layer defects. The trap energy levels and trap concentrations were derived from temperature-dependent capacitance spectra. Three distinct deep level traps were observed from the high-temperature (T > 300 K) TDCS due to the ionization of impurity centers located in the depletion region of n+-CdS/p-CdTe junction. The observed levels were also reported by other characterization techniques. TDCS seems to be a much simpler characterization technique for accurate evaluation of deep defects in n+-CdS/p-CdTe solar cells.

  11. Unified capacitance modelling of MOSFETs

    Science.gov (United States)

    Johannessen, O. G.; Fjeldly, T. A.; Ytterdal, T.

    1994-01-01

    A unified physics based capacitance model for MOSFETs suitable for implementation in circuit simulators is presented. This model is based on the charge conserving, so-called Meyer-like approach proposed by Turchetti et al., and utilizes a unified charge control model to assure a continuous description of the MOSFET capacitances both above and below threshold. The capacitances associated with the model are comparable to those of the well-known BSIM model in the above-threshold regime, but it is more precise in the description of near-threshold and subthreshold behaviour. Moreover, the discontinuities at the transitions between the various regimes of operation are removed. The present modelling scheme was implemented in our circuit simulator AIM-Spice, and simulations of the dynamic behaviour of various demanding benchmark circuits clearly reveal its superiority over simulations using the simple Meyer model.

  12. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ťapajna, M., E-mail: milan.tapajna@savba.sk; Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Kuzmík, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Brunner, F.; Cho, E.-M. [Ferdinand-Braun-Institut, Leibniz Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin (Germany); Hashizume, T. [Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, 060-0814 Sapporo, Japan and JST-CREST, 102-0075 Tokyo (Japan)

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from EC-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about EC-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  13. Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization

    NARCIS (Netherlands)

    Zhao, R.; Biesheuvel, P.M.; Miedema, H.; Bruning, H.; Wal, van der A.

    2010-01-01

    Porous electrodes are important in many physical-chemical processes including capacitive deionization (CDI), a desalination technology where ions are adsorbed from solution into the electrostatic double layers formed at the electrode/solution interface inside of two juxtaposed porous electrodes. A k

  14. Magnetically controlled space charge capacitance at La{sub 1-x}Sr{sub x}MnO{sub 3}/Sr{sub x}La{sub 1-x}TiO{sub 3} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Rainer; Garcia-Barriocanal, Javier; Leon, Carlos; Santamaria, Jacobo [Facultad de Ciencias Fisicas, Dpto. Fisica Aplicada III, Universidad Complutense de Madrid, GFMC (Spain); Unidad Asociada ' ' Laboratorio de Heteroestructuras con Aplicacion en Espintronica' ' , UCM/CSIC, Madrid (Spain); Varela, Maria [Facultad de Ciencias Fisicas, Dpto. Fisica Aplicada III, Universidad Complutense de Madrid, GFMC (Spain); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Instituto Pluridisciplinar, Universidad Complutense de Madrid (Spain); Garcia-Hernandez, Mar [Instituto de Ciencia de Materiales de Madrid - Consejo Superior de Investigaciones Cientificas (ICMM-CSIC), Madrid (Spain)

    2016-08-15

    This work reports on magnetocapacitance (MC) effects in epitaxial heterostructures of nominally 15 unit cells (u.c.) LaMnO{sub 3} (LMO) and 2 u.c. SrTiO{sub 3} (STO) with an alternating layer-repetition rate of 8: (LMO{sub 15}/STO{sub 2}){sub 8}. Epitaxial multilayer growth at high temperatures (900 C) activates a selective inter-diffusion of La{sup 3+} and Sr{sup 2+} cations across the interfaces, which gives rise to Sr p-doping of the LMO and La n-doping of the STO layers. MC effects at the buried La{sub 1-x}Sr{sub x}MnO{sub 3}/Sr{sub x}La{sub 1-x}TiO{sub 3} (LSMO/SLTO) interfaces are probed by frequency, temperature and magnetic field dependent AC impedance spectroscopy. The technique is shown to be appropriate to account for the separate analysis of different resistance and capacitance contributions at the buried interfaces. As a result of the La/Sr inter-diffusion process, Schottky barriers are formed at the LSMO/SLTO interfaces, which give rise to massive MC of up to ∼ -200% in the out-of-plane film direction. The capacitance of the manganite-titanate LSMO/SLTO interfaces may be coupled indirectly to the resistance of the LSMO layers, because the Schottky space-charge layers and their capacitance can be modulated by varying the concentration of highly mobile charge carriers in the LSMO with a magnetic field. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Calculation and analysis of depth of charge/discharge of interfacial capacitance for lithium ion battery%锂离子电池界面电容充放电深度的计算与分析

    Institute of Scientific and Technical Information of China (English)

    黄秋安; 栾婷; 方迪; 杨昌平

    2016-01-01

    采用理论计算并结合实验验证的方法讨论脉冲电流法提取锂离子电池(L IB )电路模型参数中静置时间的影响。首先,给出双脉冲激励下L IB二阶电路模型全响应解析解,并计算界面电容瞬态电压随时间演化规律;然后,定义界面电容充放电深度,给出计算公式,分析静置时间长短对界面电容充放电深度影响。最后,采用Solartron1470E‐1455电化学工作站对15AH‐NCM LIB进行充放电测试和电化学阻抗谱测试,实验结果验证了数值计算的正确性。%Theoretical calculation and experimentl validation was conducted to answer how the resting time affect pulse current method ,aiming at parameter identification of circuit mode for lithium ion battery (LIB) .Firstly ,an analytical solution of a second‐order circuit model for LIB was solved under bi‐pulse excitement ,followed by simulation for transient response voltage .Subsequently ,the depth of charge /discharge was defined and formulated for interfacial capacitance ,and effect of resting time on charge stored in interfacial capacitance was quantitatively studied .Finally ,the test of charge/dis‐charge and AC impedance for 15AH‐NCM LIB were carried out with Solartron 1470E‐1455 worksta‐tion ,and experimental results were in agreement with the above conclusions .

  16. Compact monolithic capacitive discharge unit

    Science.gov (United States)

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  17. Capacitance enhancement via electrode patterning

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Tuan A.; Striolo, Alberto, E-mail: a.striolo@ucl.ac.uk [School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019 (United States); Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-11-28

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  18. Capacitance enhancement via electrode patterning

    Science.gov (United States)

    Ho, Tuan A.; Striolo, Alberto

    2013-11-01

    The necessity of increasing the energy density in electric double layer capacitors to meet current demand is fueling fundamental and applied research alike. We report here molecular dynamics simulation results for aqueous electrolytes near model electrodes. Particular focus is on the effect of electrode patterning on the structure of interfacial electrolytes, and on the potential drop between the solid electrodes and the bulk electrolytes. The latter is estimated by numerically integrating the Poisson equation using the charge densities due to water and ions accumulated near the interface as input. We considered uniform and patterned electrodes, both positively and negatively charged. The uniformly charged electrodes are modeled as graphite. The patterned ones are obtained by removing carbon atoms from the top-most graphene layer, yielding nanoscopic squares and stripes patterns. For simplicity, the patterned electrodes are effectively simulated as insulators (the charge remains localized on the top-most layer of carbon atoms). Our simulations show that the patterns alter the structure of water and the accumulation of ions at the liquid-solid interfaces. Using aqueous NaCl solutions, we found that while the capacitance calculated for three positively charged electrodes did not change much, that calculated for the negatively charged electrodes significantly increased upon patterning. We find that both water structure and orientation, as well as ion accumulation affect the capacitance. As electrode patterning affects differently water structure and ion accumulation, it might be possible to observe ion-specific effects. These results could be useful for advancing our understanding of electric double layer capacitors, capacitive desalination processes, as well as of fundamental interfacial electrolytes properties.

  19. Human body capacitance: static or dynamic concept? [ESD

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1998-01-01

    A standing human body insulated from ground by footwear and/or floor covering is in principle an insulated conductor and has, as such, a capacitance, i.e. the ability to store a charge and possibly discharge the stored energy in a spark discharge. In the human body, the human body capacitance (HBC...

  20. Investigation of high resolution compact gamma camera module based on a continuous scintillation crystal using a novel charge division readout method

    Science.gov (United States)

    Dai, Qiu-Sheng; Zhao, Cui-Lan; Zhang, Hua-Lin; Qi, Yu-Jin

    2010-08-01

    The objective of this study is to investigate a high performance and lower cost compact gamma camera module for a multi-head small animal SPECT system. A compact camera module was developed using a thin Lutetium Oxyorthosilicate (LSO) scintillation crystal slice coupled to a Hamamatsu H8500 position sensitive photomultiplier tube (PSPMT). A two-stage charge division readout board based on a novel sub-tractive resistive readout with a truncated center-of-gravity (TCOG) positioning method was developed for the camera. The performance of the camera was evaluated using a flood 99mTc source with a four-quadrant bar-mask phantom. The preliminary experimental results show that the image shrinkage problem associated with the conventional resistive readout can be effectively overcome by the novel subtractive resistive readout with an appropriate fraction subtraction factor. The response output area (ROA) of the camera shown in the flood image was improved up to 34%, and an intrinsic spatial resolution better than 2 mm of detector was achieved. In conclusion, the utilization of a continuous scintillation crystal and a flat-panel PSPMT equipped with a novel subtractive resistive readout is a feasible approach for developing a high performance and lower cost compact gamma camera.

  1. Fringe Capacitance of a Parallel-Plate Capacitor.

    Science.gov (United States)

    Hale, D. P.

    1978-01-01

    Describes an experiment designed to measure the forces between charged parallel plates, and determines the relationship among the effective electrode area, the measured capacitance values, and the electrode spacing of a parallel plate capacitor. (GA)

  2. High Voltage Bi-directional Flyback Converter for Capacitive Actuator

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    This paper presents a high voltage DC-DC converter topology for bi-directional energy transfer between a low voltage DC source and a high voltage capacitive load. The topology is a bi-directional flyback converter with variable switching frequency control during the charge mode, and constant...... switching frequency control during the discharge mode. The converter is capable of charging the capacitive load from 24 V DC source to 2.5 kV, and discharges it to 0 V. The flyback converter has been analyzed in detail during both charge and discharge modes, by considering all the parasitic elements...... in the converter, including the most dominating parameters of the high voltage transformer viz., self-capacitance and leakage inductance. The specific capacitive load for this converter is a dielectric electro active polymer (DEAP) actuator, which can be used as an effective replacement for conventional actuators...

  3. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  4. Capacitive Coupling in Double-Circuit Transmission Lines

    Directory of Open Access Journals (Sweden)

    Zdenka Benesova

    2004-01-01

    Full Text Available The paper describes an algorithm for calculation of capacitances and charges on conductors in systems with earth wires and in double-circuit overhead lines with respect to phase arrangement. A balanced voltage system is considered. A suitable transposition of individual conductors enables to reduce the electric and magnetic fields in vicinity of overhead lines and to limit the inductive and capacitive linkage. The procedure is illustrated on examples the results of which lead to particular recommendations for designers.

  5. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions ar

  6. Steerable Capacitive Proximity Sensor

    Science.gov (United States)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Steerable capacitive proximity sensor of "capaciflector" type based partly on sensing units described in GSC-13377 and GSC-13475. Position of maximum sensitivity adjusted without moving sensor. Voltage of each driven shield adjusted separately to concentrate sensing electric field more toward one side or other.

  7. A new desalination technique using capacitive deionization

    Science.gov (United States)

    Rostamy, Mohammad Sajjad; Khashechi, Morteza; Pipelzadeh, Ehsan; desalination Team

    2016-11-01

    Capacitive deionization (CDI) is an emerging energy efficient, low pressure and low capital intensive desalination process where ions are separated by a pure electrostatic force imposed by a small bias potential as low as 1 V That funded by an external Renewable (Solar) power supply to materials with high specific surface area. The main objective of this configuration is to separate the cation and anions on oppositely charged electrodes. Various electrode materials have been developed in the past, which have suffered from instability and lack of performance. Preliminary experimental results using carbon black, graphite powder, graphene ∖graphite ∖PTFE (Active ∖Conductive ∖binder), show that the graphene reduced via urea method is a suitable method to develop CDI electrode materials with capacitance as high as 52.2 mg/g for free standing graphene electrode. The focus of these studies has been mainly on developing electrodes with high specific surface area, high capacitance, excellent electronic conductivity and fast charge discharge cycles for desalination. Although some progress has been made, production of efficient and stable carbon based electrode materials for large scale desalination has not been fully realized.

  8. Capacitive deionization of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Fix, D.V.; Mack, G.V. [and others

    1995-10-01

    Capacitive deionization with carbon aerogel electrodes is an efficient and economical new process for removing salt and impurities from water. Carbon aerogel is a material that enables the successful purification of water because of its high surface area, optimum pore size, and low electrical resistivity. The electrodes are maintained at a potential difference of about one volt; ions are removed from the water by the imposed electrostatic field and retained on the electrode surface until the polarity is reversed. The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated. The overall process offers advantages when compared to conventional water-purification methods, requiring neither pumps, membranes, distillation columns, nor thermal heaters. Consequently, the overall process is both robust and energy efficient. The current state of technology development, commercialization, and potential applications of this process are reviewed.

  9. A robust parasitic-insensitive successive approximation capacitance-to-digital converter

    KAUST Repository

    Omran, Hesham

    2014-09-01

    In this paper, we present a capacitive sensor digital interface circuit using true capacitance-domain successive approximation that is independent of supply voltage. Robust operation is achieved by using a charge amplifier stage and multiple comparison technique. The interface circuit is insensitive to parasitic capacitances, offset voltages, and charge injection, and is not prone to noise coupling. The proposed design achieves very low temperature sensitivity of 25ppm/oC. A coarse-fine programmable capacitance array allows digitizing a wide capacitance range of 16pF with 12.5-bit quantization limited resolution in a compact area of 0.07mm2. The fabricated prototype is experimentally verified using on-chip sensor and off-chip MEMS capacitive pressure sensor. © 2014 IEEE.

  10. Winding Capacitance Dividing Method for Powerformer

    Institute of Scientific and Technical Information of China (English)

    TIAN Qing; LIN Xiang-ning; LI Jian-jian; TAO Yong-hong

    2008-01-01

    It presents a method which can equivalently arrange the capacitance distribution along with the winding ofthe generator on the terminal and neutral respectively in a reasonable partition, particularly for a type of high-voltagegraded insulated cable wound generator, Powerformer. The winding of the Powerformer adopts graded insulation,which leads to the various cable thicknesses in different portion of the winding, and thus, the uneven capacitancedistribution. The large capacitive currents and large transient outrush currents resulting from the cable consisting ofthe stator winding of Powerformer may cause problems to the generator differential protection. Most of literatures a-vailable in the field of compensated differential protection focus on the charging current compensation for long trans-mission line, instead of for generator. The authors give a method which can be used to compensate the capacitivecurrent wholly to improve the reliability of the differential protection of Powerformer. It is proved that the distribu-ted capacitance can be equivalent as the lump circuit with a capacitance partition coefficient p, and p is proved as aconstant no matter whether the generator experiences the normal operation, external phase(s) fault or internal phase(s) fault. The formula of the partition coefficient is provided and the corresponding equivalent circuit of the Power-former cable to calculate capacitance currents is given. An analysis programming resolving the minimum value of thecoefficient p is written in MATLAB 7. 0/m according to this formula, using the function fmincon() which can workin any type of constraint condition. The program always gets the same global minimum points under the different in-itial values condition which proves our point by mathematical test. With this new approach to winding capacitancedividing method, the protection scheme used for Powerformer can be validated and improved accordingly.

  11. Time dependent capacitance voltage measurements on Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Tobias; Klein, Andreas [Darmstadt University of Technology, Institute of Materials Science, Petersenstrasse 32, D-64287 Darmstadt (Germany); Witte, Wolfram; Hariskos, Dimitrios [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Industriestrasse 6, D-70565 Stuttgart (Germany)

    2011-07-01

    Capacitance Voltage (C-V) measurements are widely used to determine the doping density of semiconductor interfaces in dependence on the width of the space charge layer. In Cu(In,Ga)Se{sub 2} (CIGS) solar cells we observe a time dependent capacitance signal, which can be explained by different models like filling and emptying of electronic (metastable) defect states or by the diffusion of copper ions. The observed capacitance transients are compared to the different models.

  12. Quantum Capacitance of a Topological Insulator-Ferromagnet Interface.

    Science.gov (United States)

    Siu, Zhuo Bin; Chowdhury, Debashree; Jalil, Mansoor B A; Basu, Banasri

    2017-03-24

    We study the quantum capacitance in a topological insulator thin film system magnetized in the in-plane direction in the presence of an out-of-plane magnetic field and hexagonal warping. To first order, the modification in quantum capacitance due to hexagonal warping compared to the clean case, where both the in-plane magnetization and hexagonal warping are absent, is always negative, and increases in magnitude monotonically with the energy difference from the charge neutrality point. In contrast, the change in the quantum capacitance due to in-plane magnetization oscillates with the energy in general, except when a certain relation between the inter-surface coupling, out of plane Zeeman energy splitting and magnetic field strength is satisfied. In this special case, the quantum capacitance remains unchanged by the in-plane magnetization for all energies.

  13. Optimal Procurement Mechanisms for Divisible Goods with Capacitated Suppliers

    Science.gov (United States)

    2007-08-31

    the B2B online auction transactions totaled 109 billion in 1999, and that number was expected to grow to 2.7 trillion by 2004. Although auction...manufacturer, etc.) and n suppliers. The buyer purchases a single commodity from the suppliers and resells it in the consumer market . The buyer receives...an expected revenue, R(q) from selling q units of the product in the consumer market – the expectation is over the random demand realization and any

  14. Capacitance of circular patch resonator

    Energy Technology Data Exchange (ETDEWEB)

    Miano, G.; Verolino, L. [Dip. di Ingegneria Elettrica, Ist. Nazionale di Fisica Nucleare, Naples (Italy); Panariello, G. [Dip. di Ingegneria Elettronica, Naples (Italy); Vaccaro, V.G. [Ist. Nazionale di Fisica Nucleare, Naples (Italy). Dipt. di Scienze Fisiche

    1995-11-01

    In this paper the capacitance of the circular microstrip patch resonator is computed. It is shown that the electrostatic problem can be formulated as a system of dual integral equations, and the most interesting techniques of solutions of these systems are reviewed. Some useful approximated formulas for the capacitance are derived and plots of the capacitance are finally given in a wide range of dielectric constants.

  15. The polarizability and the capacitance change of a bounded object in a parallel plate capacitor

    Science.gov (United States)

    Kristensson, Gerhard

    2012-09-01

    A method for solving the change in capacitance (or charge) if an object is introduced in a parallel plate capacitor is developed. The integral representation of the potential is exploited in a systematic way to solve the potential everywhere inside the capacitor. In particular, the change in capacitance is extracted. The method shows similarities with the null field approach for solving dynamic problems.

  16. Last-passage Monte Carlo algorithm for mutual capacitance.

    Science.gov (United States)

    Hwang, Chi-Ok; Given, James A

    2006-08-01

    We develop and test the last-passage diffusion algorithm, a charge-based Monte Carlo algorithm, for the mutual capacitance of a system of conductors. The first-passage algorithm is highly efficient because it is charge based and incorporates importance sampling; it averages over the properties of Brownian paths that initiate outside the conductor and terminate on its surface. However, this algorithm does not seem to generalize to mutual capacitance problems. The last-passage algorithm, in a sense, is the time reversal of the first-passage algorithm; it involves averages over particles that initiate on an absorbing surface, leave that surface, and diffuse away to infinity. To validate this algorithm, we calculate the mutual capacitance matrix of the circular-disk parallel-plate capacitor and compare with the known numerical results. Good agreement is obtained.

  17. A novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances

    Institute of Scientific and Technical Information of China (English)

    Dong Linxi; Chen Jindan; Yan Haixia; Huo Weihong; Li Yongjie; Sun Lingling

    2009-01-01

    The comb capacitances fabricated by deep reactive ion etching (RIE) process have high aspect ratio which is usually smaller than 30 : 1 for the complicated process factors, and the combs are usually not parallel due to the well-known micro-loading effect and other process factors, which restricts the increase of the seismic mass by increasing the thickness of comb to reduce the thermal mechanical noise and the decrease of the gap of the comb capacitances for increasing the sensitive capacitance to reduce the electrical noise. Aiming at the disadvantage of the deep RIE, a novel capacitive micro-accelerometer with grid strip capacitances and sensing gap alterable capacitances is developed. One part of sensing of inertial signal of the micro-accelerometer is by the grid strip capacitances whose overlapping area is variable and which do not have the non-parallel plate's effect caused by the deep RIE process. Another part is by the sensing gap alterable capacitances whose gap between combs can be reduced by the actuators. The designed initial gap of the alterable comb capacitances is relatively large to depress the effect of the maximum aspect ratio (30 : 1) of deep RIE process. The initial gap of the capacitance of the actuator is smaller than the one of the comb capacitances. The difference between the two gaps is the initial gap of the sensitive capacitor. The designed structure depresses greatly the requirement of deep RIE process. The effects of non-parallel combs on the accelerometer are also analyzed. The characteristics of the micro-accelerometer are discussed by field emission microscopy (FEM) tool ANSYS. The tested devices based on slide-film damping effect are fabricated, and the tested quality factor is 514, which shows that grid strip capacitance design can partly improve the resolution and also prove the feasibility of the designed silicon-glass anodically bonding process.

  18. A molecular dynamics simulation study of the electric double layer and capacitance of [BMIM][PF6] and [BMIM][BF4] room temperature ionic liquids near charged surfaces.

    Science.gov (United States)

    Hu, Zongzhi; Vatamanu, Jenel; Borodin, Oleg; Bedrov, Dmitry

    2013-09-14

    A molecular dynamics simulation study of electric double layer (EDL) structure and differential capacitance (DC) of two 1-butyl-3-methylimidazolium (BMIM)-based room temperature ionic liquids, i.e. [BMIM][BF4] and [BMIM][PF6], has been conducted on basal and prismatic graphite as well as (001) and (011) gold electrode surfaces. The influence of the electrode surface and electrolyte structure on electrode capacitance and EDL structure are discussed. For a given electrode surface both the [BMIM][BF4] and [BMIM][PF6] electrolytes generate very similar DC and EDL structures. The DC for these ionic liquids in contact with atomically flat surfaces (i.e. basal graphite and (001)Au) shows very small variations within the electrolyte chemical stability potential window and fluctuates around an average value of ∼5 μF cm(-2). On atomically more corrugated surfaces (i.e., Au(011) and prismatic graphite) the DC shows more variation with electrode potential and depends on the correspondence between dimensions of the surface roughness and electrolyte ion sizes. The trends and dependencies obtained for DC are used to discriminate between mutually contradictory experimental data reported in the literature for related systems.

  19. RF-MEMS capacitive switches with high reliability

    Science.gov (United States)

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  20. Carbon nanotube yarns as strong flexible conductive capacitive electrodes

    NARCIS (Netherlands)

    Liu, F.; Wagterveld, R.M.; Gebben, B.; Otto, M.J.; Biesheuvel, P.M.; Hamelers, H.V.M.

    2015-01-01

    Carbon nanotube (CNT) yarn, consisting of 23 µm diameter CNT filaments, can be used as capacitive electrodes that are long, flexible, conductive and strong, for applications in energy and electrochemical water treatment. We measure the charge storage capacity as function of salt concentration, and u

  1. Optimal pricing of capacitated networks

    NARCIS (Netherlands)

    Grigoriev, Alexander; Loon, van Joyce; Sitters, René; Uetz, Marc

    2009-01-01

    We address the algorithmic complexity of a profit maximization problem in capacitated, undirected networks. We are asked to price a set of $m$ capacitated network links to serve a set of $n$ potential customers. Each customer is interested in purchasing a network connection that is specified by a si

  2. Recent advances in understanding the capacitive storage in microporous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Daffos, B.; Taberna, P.L. [Universite de Toulouse, CIRIMAT, UMR-CNRS 5085, Toulouse (France); Gogotsi, Y. [Department of Materials Science and Engineering, A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, PA (United States); Simon, P.

    2010-10-15

    This paper presents a review of our recent work on capacitance of carbide-derived carbons (CDCs). Specific capacitance as high as 14 {mu}F cm{sup -2} or 160 F g{sup -1} was achieved using CDCs with tailored subnanometer pore size, which is significantly higher than 6 {mu}F cm{sup -2} or 100 F g{sup -1} for conventional activated carbons. Such high capacitance was obtained in several types of organic electrolytes with or without solvent. A maximum is obtained for the carbons with the mean pore size close to the bare ion size, ruling out the traditional point of view that mesoporosity is highly required for maximum capacitance. Surprisingly, carbons with subnanometer porosity exhibit high capacitance retention, since only a 10% loss is measured when 6 A g{sup -1} discharge is drawn. These findings show the importance of fitting the ion size with the mean pore size. The double layer theory falls short to explain such charge storage mechanisms at the nanometer scale; thus atomistic modelling is required to find out an alternative charge storage model. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Waterproof, Ultrahigh Areal-Capacitance, Wearable Supercapacitor Fabrics.

    Science.gov (United States)

    Yang, Yu; Huang, Qiyao; Niu, Liyong; Wang, Dongrui; Yan, Casey; She, Yiyi; Zheng, Zijian

    2017-02-24

    High-performance supercapacitors (SCs) are promising energy storage devices to meet the pressing demand for future wearable applications. Because the surface area of a human body is limited to 2 m(2) , the key challenge in this field is how to realize a high areal capacitance for SCs, while achieving rapid charging, good capacitive retention, flexibility, and waterproofing. To address this challenge, low-cost materials are used including multiwall carbon nanotube (MWCNT), reduced graphene oxide (RGO), and metallic textiles to fabricate composite fabric electrodes, in which MWCNT and RGO are alternatively vacuum-filtrated directly onto Ni-coated cotton fabrics. The composite fabric electrodes display typical electrical double layer capacitor behavior, and reach an ultrahigh areal capacitance up to 6.2 F cm(-2) at a high areal current density of 20 mA cm(-2) . All-solid-state fabric-type SC devices made with the composite fabric electrodes and water-repellent treatment can reach record-breaking performance of 2.7 F cm(-2) at 20 mA cm(-2) at the first charge-discharge cycle, 3.2 F cm(-2) after 10 000 charge-discharge cycles, zero capacitive decay after 10 000 bending tests, and 10 h continuous underwater operation. The SC devices are easy to assemble into tandem structures and integrate into garments by simple sewing.

  4. Fighting Divisions

    Science.gov (United States)

    1945-12-01

    when it hit the beaches of Morotai to open the drive that later led to the liberation of the Philippines, its Doughboys were alternately whistling...the Dixie Division sailed from Maffin Bay for the reconquest of Morotai , and on the 15th of the month hit the beaches of this Dutch island, less than...quickly secured a beachhead and by noon of D-day had seized Pitoe Airdrome. Morotai gave our forces control of the Halma- hera Sea and cut off 20,000

  5. Negative capacitance for ultra-low power computing

    Science.gov (United States)

    Khan, Asif Islam

    Owing to the fundamental physics of the Boltzmann distribution, the ever-increasing power dissipation in nanoscale transistors threatens an end to the almost-four-decade-old cadence of continued performance improvement in complementary metal-oxide-semiconductor (CMOS) technology. It is now agreed that the introduction of new physics into the operation of field-effect transistors---in other words, "reinventing the transistor'"--- is required to avert such a bottleneck. In this dissertation, we present the experimental demonstration of a novel physical phenomenon, called the negative capacitance effect in ferroelectric oxides, which could dramatically reduce power dissipation in nanoscale transistors. It was theoretically proposed in 2008 that by introducing a ferroelectric negative capacitance material into the gate oxide of a metal-oxide-semiconductor field-effect transistor (MOSFET), the subthreshold slope could be reduced below the fundamental Boltzmann limit of 60 mV/dec, which, in turn, could arbitrarily lower the power supply voltage and the power dissipation. The research presented in this dissertation establishes the theoretical concept of ferroelectric negative capacitance as an experimentally verified fact. The main results presented in this dissertation are threefold. To start, we present the first direct measurement of negative capacitance in isolated, single crystalline, epitaxially grown thin film capacitors of ferroelectric Pb(Zr0.2Ti0.8)O3. By constructing a simple resistor-ferroelectric capacitor series circuit, we show that, during ferroelectric switching, the ferroelectric voltage decreases, while the stored charge in it increases, which directly shows a negative slope in the charge-voltage characteristics of a ferroelectric capacitor. Such a situation is completely opposite to what would be observed in a regular resistor-positive capacitor series circuit. This measurement could serve as a canonical test for negative capacitance in any novel

  6. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    Science.gov (United States)

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  7. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2015-10-01

    Full Text Available Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  8. An integrated energy-efficient capacitive sensor digital interface circuit

    KAUST Repository

    Omran, Hesham

    2014-06-19

    In this paper, we propose an energy-efficient 13-bit capacitive sensor interface circuit. The proposed design fully relies on successive approximation algorithm, which eliminates the need for oversampling and digital decimation filtering, and thus low-power consumption is achieved. The proposed architecture employs a charge amplifier stage to acheive parasitic insensitive operation and fine absolute resolution. Moreover, the output code is not affected by offset voltages or charge injection. The successive approximation algorithm is implemented in the capacitance-domain using a coarse-fine programmable capacitor array, which allows digitizing wide capacitance range in compact area. Analysis for the maximum achievable resolution due to mismatch is provided. The proposed design is insensitive to any reference voltage or current which translates to low temperature sensitivity. The operation of a prototype fabricated in a standard CMOS technology is experimentally verified using both on-chip and off-chip capacitive sensors. Compared to similar prior work, the fabricated prototype achieves and excellent energy efficiency of 34 pJ/step.

  9. Design of a High Voltage Bidirectional DC-DC Converter for Driving Capacitive Incremental Actuators usable in Electric Vehicles (EVs)

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    the converter for efficiently charging and discharging the capacitive actuator from 0 V to 2.5 kV and vice versa, respectively. The converter is used to drive a dielectric electro active polymer (DEAP) based capacitive incremental actuator, which has the potential to be used in automotive (e.g., EVs), space...

  10. Bioenergetics of Mammalian Sperm Capacitation

    Directory of Open Access Journals (Sweden)

    Alessandra Ferramosca

    2014-01-01

    Full Text Available After ejaculation, the mammalian male gamete must undergo the capacitation process, which is a prerequisite for egg fertilization. The bioenergetics of sperm capacitation is poorly understood despite its fundamental role in sustaining the biochemical and molecular events occurring during gamete activation. Glycolysis and mitochondrial oxidative phosphorylation (OXPHOS are the two major metabolic pathways producing ATP which is the primary source of energy for spermatozoa. Since recent data suggest that spermatozoa have the ability to use different metabolic substrates, the main aim of this work is to present a broad overview of the current knowledge on the energy-producing metabolic pathways operating inside sperm mitochondria during capacitation in different mammalian species. Metabolism of glucose and of other energetic substrates, such as pyruvate, lactate, and citrate, is critically analyzed. Such knowledge, besides its obvious importance for basic science, could eventually translate into the development of novel strategies for treatment of male infertility, artificial reproduction, and sperm selection methods.

  11. Slow and fast capacitive process taking place at the ionic liquid/electrode interface.

    Science.gov (United States)

    Roling, Bernhard; Drüschler, Marcel; Huber, Benediki

    2012-01-01

    Electrochemical impedance spectroscopy was used to characterise the interface between the ultrapure room temperature ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and a Au(111) working electrode at electrode potentials more positive than the open circuit potential (-0.14 V vs. Pt pseudo-reference). Plots of the potential-dependent data in the complex capacitance plane reveal the existence of a fast and a slow capacitive process. In order to derive the contribution of both processes to the overall capacitance, the complex capacitance data were fitted using an empirical Cole-Cole equation. The differential capacitance of the fast process is almost constant between -0.14 V and +0.2 V (vs. Pt pseudo-reference) and decreases at more positive potentials, while the differential capacitance of the slower process exhibits a maximum at +0.2 V. This maximum leads to a maximum in the overall differential capacitance. We attribute the slow process to charge redistributions in the innermost ion layer, which require an activation energy in excess of that for ion transport in the room temperature ionic liquid. The differential capacitance maximum of the slow process at +0.2 V is most likely caused by reorientations of the 1-butyl-1l-methylpyrrolidinium cations in the innermost layer with the positively charged ring moving away from the Au(111) surface and leaving behind voids which are then occupied by anions. In a recent Monte Carlo simulation by Federov, Georgi and Kornyshev (Electrochem. Commun. 2010, 12, 296), such a process was identified as the origin of a differential capacitance maximum in the anodic regime. Our results suggest that the time scales of capacitive processes at the ionic liquid/metal interface are an important piece of information and should be considered in more detail in future experimental and theoretical studies.

  12. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres

    Science.gov (United States)

    Zhou, Junshuang; Lian, Jie; Hou, Li; Zhang, Junchuan; Gou, Huiyang; Xia, Meirong; Zhao, Yufeng; Strobel, Timothy A.; Tao, Lu; Gao, Faming

    2015-09-01

    Highly porous nanostructures with large surface areas are typically employed for electrical double-layer capacitors to improve gravimetric energy storage capacity; however, high surface area carbon-based electrodes result in poor volumetric capacitance because of the low packing density of porous materials. Here, we demonstrate ultrahigh volumetric capacitance of 521 F cm-3 in aqueous electrolytes for non-porous carbon microsphere electrodes co-doped with fluorine and nitrogen synthesized by low-temperature solvothermal route, rivaling expensive RuO2 or MnO2 pseudo-capacitors. The new electrodes also exhibit excellent cyclic stability without capacitance loss after 10,000 cycles in both acidic and basic electrolytes at a high charge current of 5 A g-1. This work provides a new approach for designing high-performance electrodes with exceptional volumetric capacitance with high mass loadings and charge rates for long-lived electrochemical energy storage systems.

  13. PERSONNEL DIVISION BECOMES HUMAN RESOURCES DIVISION

    CERN Document Server

    Division des ressources humaines

    2000-01-01

    In the years to come, CERN faces big challenges in the planning and use of human resources. At this moment, Personnel (PE) Division is being reorganised to prepare for new tasks and priorities. In order to accentuate the purposes of the operation, the name of the division has been changed into Human Resources (HR) Division, with effect from 1st January 2000. Human Resources DivisionTel.73222

  14. Ultrananocrystalline diamond films with optimized dielectric properties for advanced RF MEMS capacitive switches

    Science.gov (United States)

    Sumant, Anirudha V.; Auciello, Orlando H.; Mancini, Derrick C.

    2013-01-15

    An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.

  15. Instabilities in a capacitively coupled oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Küllig, C., E-mail: kuellig@physik.uni-greifswald.de; Wegner, Th., E-mail: physics@thwegner.com; Meichsner, J., E-mail: meichsner@physik.uni-greifswald.de [Institute of Physics, University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany)

    2015-04-15

    Periodic fluctuations in the frequency range from 0.3 to 3 kHz were experimentally investigated in capacitively coupled radio frequency (13.56 MHz) oxygen plasma. The Gaussian beam microwave interferometry directly provides the line integrated electron density fluctuations. A system of two Langmuir probes measured the floating potential spatially (axial, radial) and temporally resolved. Hence, the floating potential fluctuation development is mapped within the discharge volume and provides a kind of discharge breathing and no wave propagation. Finally, it was measured the optical emission pattern of atomic oxygen during the fluctuation as well as the RF phase resolved optical emission intensity at selected phase position of the fluctuation by an intensified charge-coupled device camera. The deduced excitation rate pattern reveals the RF sheath dynamics and electron heating mechanisms, which is changing between low and high electronegativity during a fluctuation cycle. A perturbation calculation was taken into account using a global model with 15 elementary collision processes in the balance equations for the charged plasma species (O{sub 2}{sup +}, e, O{sup −}, O{sub 2}{sup −}) and a harmonic perturbation. The calculated frequencies agree with the experimentally observed frequencies. Whereby, the electron attachment/detachment processes are important for the generation of this instability.

  16. DNA Nucleotides Detection via capacitance properties of Graphene

    Science.gov (United States)

    Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash

    2016-05-01

    In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.

  17. Quantum Capacitance in Topological Insulators

    Science.gov (United States)

    Xiu, Faxian; Meyer, Nicholas; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Yong; Yu, Xinxin; Fedorov, Alexei V.; Zou, Jin; Wang, Kang L.

    2012-01-01

    Topological insulators show unique properties resulting from massless, Dirac-like surface states that are protected by time-reversal symmetry. Theory predicts that the surface states exhibit a quantum spin Hall effect with counter-propagating electrons carrying opposite spins in the absence of an external magnetic field. However, to date, the revelation of these states through conventional transport measurements remains a significant challenge owing to the predominance of bulk carriers. Here, we report on an experimental observation of Shubnikov-de Haas oscillations in quantum capacitance measurements, which originate from topological helical states. Unlike the traditional transport approach, the quantum capacitance measurements are remarkably alleviated from bulk interference at high excitation frequencies, thus enabling a distinction between the surface and bulk. We also demonstrate easy access to the surface states at relatively high temperatures up to 60 K. Our approach may eventually facilitate an exciting exploration of exotic topological properties at room temperature. PMID:22993694

  18. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.

    2012-12-06

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  19. Concentration Fluctuations and Capacitive Response in Dense Ionic Solutions

    CERN Document Server

    Uralcan, Betul; Debenedetti, Pablo G; Limmer, David T

    2016-01-01

    We use molecular dynamics simulations in a constant potential ensemble to study the effects of solution composition on the electrochemical response of a double layer capacitor. We find that the capacitance first increases with ion concentration following its expected ideal solution behavior but decreases upon approaching a pure ionic liquid. The non-monotonic behavior of the capacitance as a function of ion concentration results from the competition between the independent motion of solvated ions in the dilute regime and solvation fluctuations in the concentrated regime. When charge fluctuations induced by correlated ion-solvent fluctuations are large relative to those induced by the pure ionic liquid, such non-monotonic behavior is expected to be generic.

  20. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  1. Biology and Medicine Division: Annual report 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  2. An Enhanced Sensing Application Based on a Flexible Projected Capacitive-Sensing Mattress

    Directory of Open Access Journals (Sweden)

    Wen-Ying Chang

    2014-04-01

    Full Text Available This paper presents a cost-effective sensor system for mattresses that can classify the sleeping posture of an individual and prevent pressure ulcers. This system applies projected capacitive sensing to the field of health care. The charge time (CT method was used to sensitively and accurately measure the capacitance of the projected electrodes. The required characteristics of the projected capacitor were identified to develop large-area applications for sensory mattresses. The area of the electrodes, the use of shielding, and the increased length of the transmission line were calibrated to more accurately measure the capacitance of the electrodes in large-size applications. To offer the users comfort in the prone position, a flexible substrate was selected and covered with 16 × 20 electrodes. Compared with the static charge sensitive bed (SCSB, our proposed system-flexible projected capacitive-sensing mattress (FPCSM comes with more electrodes to increase the resolution of posture identification. As for the body pressure system (BPS, the FPCSM has advantages such as lower cost, higher aging-resistance capability, and the ability to sense the capacitance of the covered regions without physical contact. The proposed guard ring design effectively absorbs the noise and interrupts leakage paths. The projected capacitive electrode is suitable for proximity-sensing applications and succeeds at quickly recognizing the sleeping pattern of the user.

  3. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yong-Qiang Dang

    2016-11-01

    Full Text Available There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs on reduced graphene oxide (rGO. The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H2SO4. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g, and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.

  4. Redox regulation of mammalian sperm capacitation

    Directory of Open Access Journals (Sweden)

    Cristian O′Flaherty

    2015-01-01

    Full Text Available Capacitation is a series of morphological and metabolic changes necessary for the spermatozoon to achieve fertilizing ability. One of the earlier happenings during mammalian sperm capacitation is the production of reactive oxygen species (ROS that will trigger and regulate a series of events including protein phosphorylation, in a time-dependent fashion. The identity of the sperm oxidase responsible for the production of ROS involved in capacitation is still elusive, and several candidates are discussed in this review. Interestingly, ROS-induced ROS formation has been described during human sperm capacitation. Redox signaling during capacitation is associated with changes in thiol groups of proteins located on the plasma membrane and subcellular compartments of the spermatozoon. Both, oxidation of thiols forming disulfide bridges and the increase on thiol content are necessary to regulate different sperm proteins associated with capacitation. Reducing equivalents such as NADH and NADPH are necessary to support capacitation in many species including humans. Lactate dehydrogenase, glucose-6-phospohate dehydrogenase, and isocitrate dehydrogenase are responsible in supplying NAD (P H for sperm capacitation. Peroxiredoxins (PRDXs are newly described enzymes with antioxidant properties that can protect mammalian spermatozoa; however, they are also candidates for assuring the regulation of redox signaling required for sperm capacitation. The dysregulation of PRDXs and of enzymes needed for their reactivation such as thioredoxin/thioredoxin reductase system and glutathione-S-transferases impairs sperm motility, capacitation, and promotes DNA damage in spermatozoa leading to male infertility.

  5. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    Science.gov (United States)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  6. Dual Cryogenic Capacitive Density Sensor

    Science.gov (United States)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  7. Flexible PVDF ferroelectric capacitive temperature sensor

    KAUST Repository

    Khan, Naveed

    2015-08-02

    In this paper, a capacitive temperature sensor based on polyvinylidene fluoride (PVDF) capacitor is explored. The PVDF capacitor is characterized below its Curie temperature. The capacitance of the PVDF capacitor changes vs temperature with a sensitivity of 16pF/°C. The linearity measurement of the capacitance-temperature relation shows less than 0.7°C error from a best fit straight line. An LC oscillator based temperature sensor is demonstrated based on this capacitor.

  8. Boosting capacitive blue-energy and desalination devices with waste heat.

    Science.gov (United States)

    Janssen, Mathijs; Härtel, Andreas; van Roij, René

    2014-12-31

    We show that sustainably harvesting "blue" energy from the spontaneous mixing process of fresh and salty water can be boosted by varying the water temperature during a capacitive mixing process. Our modified Poisson-Boltzmann calculations predict a strong temperature dependence of the electrostatic potential of a charged electrode in contact with an adjacent aqueous 1:1 electrolyte. We propose to exploit this dependence to boost the efficiency of capacitive blue engines, which are based on cyclically charging and discharging nanoporous supercapacitors immersed in salty and fresh water, respectively [D. Brogioli, Phys. Rev. Lett. 103, 058501 (2009)]. We show that the energy output of blue engines can be increased by a factor of order 2 if warm (waste-heated) fresh water is mixed with cold sea water. Moreover, the underlying physics can also be used to optimize the reverse process of capacitive desalination of water.

  9. Capacitance of graphene in aqueous electrolytes: The effects of dielectric saturation of water and finite size of ions

    Science.gov (United States)

    Sharma, P.; Mišković, Z. L.

    2014-09-01

    We present a theoretical model for electrolytically top-gated graphene, in which we analyze the effects of dielectric saturation of water due to possibly strong electric fields near the surface of a highly charged graphene, as well as the steric effects due to the finite size of salt ions in an aqueous electrolyte. By combining two well-established analytical models for those two effects, we show that the total capacitance of the solution-gated graphene is dominated by its quantum capacitance for gating potentials ≲1V, which is the range of primary interest for most sensor applications of graphene. On the other hand, at the potentials ≳1V the total capacitance is dominated by a universal capacitance of the electric double layer in the electrolyte, which exhibits a dramatic decrease of capacitance with increasing gating potential due to the interplay of a fully saturated dielectric constant of water and ion crowding near graphene.

  10. Investigation on the Sensitivity Distribution in Electrical Capacitance Tomography System

    Directory of Open Access Journals (Sweden)

    Pan Jiang

    2013-07-01

    Full Text Available The gas-solid-liquid three-phase flow is a very complicated flow pattern in pipeline transportation. By using electrical capacitance tomography (ETC it can acquire the permittivity distribution of the multi-phase. The sensitivity distribution in ETC may affect the analysis of the permittivity distribution of the multi-phase. However, very limited work has been done in this issue. In order to investigate the sensitivity distribution in ETC, this paper employs the finite element method (FEM to establish the principle and components of ECT. The FEM model of the sensitivity distribution as a function of the inter-electrode capacitance was discussed. Simulation tests were carried out to calculate the charge on the electrode pairs to access the potential distribution of the ETC. The analysis results show that the dielectric have great influence on the capacitance value and small distance between the electrode pair and the sensitivity field will produce high sensitivity value. Hence, the findings of this work can provide reference for the design of ECT in practice.

  11. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization

    NARCIS (Netherlands)

    Porada, S.; Borchardt, D.; Oschatz, M.; Bryjak, M.; Atchison, J.S.; Keesman, K.J.; Kaskel, S.; Biesheuvel, P.M.; Presser, V.

    2013-01-01

    Desalination by capacitive deionization (CDI) is an emerging technology for the energy- and cost-efficient removal of ions from water by electrosorption in charged porous carbon electrodes. A variety of carbon materials, including activated carbons, templated carbons, carbon aerogels, and carbon nan

  12. Nonlinear Parasitic Capacitance Modelling of High Voltage Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    State-of-the-art power converter topologies such as resonant converters are either designed with or affected by the parasitic capacitances of the power switches. However, the power switches are conventionally characterized in terms of switching time and/or gate charge with little insight into the...

  13. QUANTUM FLUCTUATIONS IN MESOSCOPIC RESISTANCE INDUCTANCE-CAPACITANCE ELECTRIC CIRCUITS AT FINITE TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    LIANG XIAN-TING; FAN HONG-YI

    2001-01-01

    By using the charge and current in a quantization resistance-inductance-capacitance (RLC) electric circuit, we construct a pair of canonical variables. Using this pair of variables and the thermal field dynamics, we obtain the fluctuations of charge and current in the RLC electric circuit at finite temperatures. It is shown that the fluctuations increase with increasing temperature and decrease with prolonging of time.

  14. Energy-Efficient Capacitive-Sensor Interfaces

    NARCIS (Netherlands)

    Tan, Z.

    2013-01-01

    This thesis describes the theory, design and realization of energy-efficient capacitive-sensor interfaces that are dedicated to energy-constrained applications. The goal of this work is to explore energy-efficient capacitive-sensor interface design techniques both at the system and the circuit level

  15. The pyramidal capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    2010-01-01

    This paper introduces the pyramidal capacitated vehicle routing problem (PCVRP) as a restricted version of the capacitated vehicle routing problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the pyramidal traveling salesman problem (PTSP). A pyramidal...

  16. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2016-01-01

    We study a location-routing problem in the context of capacitated vehicle routing. The input to the k-location capacitated vehicle routing problem (k-LocVRP) consists of a set of demand locations in a metric space and a fleet of k identical vehicles, each of capacity Q. The objective is to locate k...

  17. Novel RF-MEMS capacitive switching structures

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, H.; Fiorini, P.; De Raedt, W.; Tilmans, H.A.C.

    2002-01-01

    This paper reports on novel RF-MEMS capacitive switching devices implementing an electrically floating metal layer covering the dielectric to ensure intimate contact with the bridge in the down state. This results in an optimal switch down capacitance and allows optimisation of the down/up capacitan

  18. Enhanced Capacitive Characteristics of Activated Carbon by Secondary Activation

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; LU Tian-hong; Yoshio Masaki

    2004-01-01

    The effect of the improvement of commercial activated carbon(AC) on its specific capacitance and high rate capability of double layer(dl) charging/discharging process has been studied. The improvement of AC was carried out via a secondary activation under steam in the presence of catalyst NiCl2, and the suitable condition was found to be a heat treatment at about 875 ℃ for 1 h. Under those conditions, the discharge specific capacitance of the improved AC increases up to 53.67 F/g, showing an increase of about 25% as compared with that of as-received AC. The good rectangular-shaped voltammograms and A.C. impedance spectra prove that the high rate capability of the capacitor made of the improved AC is enhanced significantly. The capacitance resistance(RC) time constant of the capacitor containing the improved AC is 1.74 s, which is much lower than that of the one containing as-received AC(an RC value of 4. 73 s). It is noted that both kinds of AC samples show a similar specific surface area and pore size distribution, but some changes have taken place in the carbon surface groups, especially a decrease in the concentration of surface carbonyl groups after the improvement, which have been verified by means of X-photoelectron spectroscopy. Accordingly, it is suggested that the decrease in the concentration of surface carbonyl groups for the improved AC is beneficial to the organic electrolyte ion penetrating into the pores, thus leading to the increase in both the specific capacitance and high rate capability of the supercapacitor.

  19. Capacitively-coupled chopper amplifiers

    CERN Document Server

    Fan, Qinwen; Huijsing, Johan H

    2017-01-01

    This book describes the concept and design of the capacitively-coupled chopper technique, which can be used in precision analog amplifiers. Readers will learn to design power-efficient amplifiers employing this technique, which can be powered by regular low supply voltage such as 2V and possibly having a +\\-100V input common-mode voltage input. The authors provide both basic design concepts and detailed design examples, which cover the area of both operational and instrumentation amplifiers for multiple applications, particularly in power management and biomedical circuit designs. Discusses basic working principles and details of implementation for proven designs; Includes a diverse set of applications, along with measurement results to demonstrate the effectiveness of the technique; Explains advantages and drawbacks of the technique, given particular circumstances.

  20. Capacitance Measurement Methods for Integrated Sensor Applications

    Directory of Open Access Journals (Sweden)

    Alireza Hassanzadeh

    2013-09-01

    Full Text Available In this paper different measurement methods that have been used for integrated capacitance measurement are reviewed and their advantage and disadvantages are discussed. For the designers of high accuracy on chip integrated circuits for capacitive sensors, it is important to know which method will provide the best approach for high accuracy, small chip area and power consumption especially for array sensors. These methods include on chip capacitive sensor and transducer measurement techniques that have been implemented for low value capacitance evaluations using CMOS technology. After the best structure is known the designer can optimize the chip for specific application. Voltage mode and current mode, linear and switched mode techniques are reviewed and a useful comparison table comparing all figures of merit including accuracy, range of measurement, chip area, speed and complexity is provided. The provided comparison table can be used as a reference for analog designers in the design of high accuracy integrated capacitive sensor interface

  1. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents

    KAUST Repository

    Hatzell, Marta C.

    2014-01-01

    Several approaches to generate electrical power directly from salinity gradient energy using capacitive electrodes have recently been developed, but power densities have remained low. By immersing the capacitive electrodes in ionic fields generated by exoelectrogenic microorganisms in bioelectrochemical reactors, we found that energy capture using synthetic river and seawater could be increased ∼65 times, and power generation ∼46 times. Favorable electrochemical reactions due to microbial oxidation of organic matter, coupled to oxygen reduction at the cathode, created an ionic flow field that enabled more effective passive charging of the capacitive electrodes and higher energy capture. This ionic-based approach is not limited to the use of river water-seawater solutions. It can also be applied in industrial settings, as demonstrated using thermolytic solutions that can be used to capture waste heat energy as salinity gradient energy. Forced charging of the capacitive electrodes, using energy generated by the bioelectrochemical system and a thermolytic solution, further increased the maximum power density to 7 W m -2 (capacitive electrode). © 2014 The Royal Society of Chemistry.

  2. A 45.8fJ/Step, energy-efficient, differential SAR capacitance-to-digital converter for capacitive pressure sensing

    KAUST Repository

    Alhoshany, Abdulaziz

    2016-05-03

    An energy-efficient readout circuit for a capacitive sensor is presented. The capacitive sensor is digitized by a 12-bit energy efficient capacitance-to-digital converter (CDC) that is based on a differential successive-approximation architecture. This CDC meets extremely low power requirements by using an operational transconductance amplifier (OTA) that is based on a current-starved inverter. It uses a charge-redistribution DAC that involves coarse-fine architecture. We split the DAC into a coarse-DAC and a fine-DAC to allow a wide capacitance range in a compact area. It covers a wide range of capacitance of 16.14 pF with a 4.5 fF absolute resolution. An analog comparator is implemented by cross-coupling two 3-input NAND gates to enable power and area efficient operation. The prototype CDC was fabricated using a standard 180 nm CMOS technology. The 12-bit CDC has a measurement time of 42.5 μs, and consumes 3.54 μW and 0.29 μW from analog and digital supplies, respectively. This corresponds to a state-of-the-art figure-of-merit (FoM) of 45.8 fJ/conversion-step. © 2016 Elsevier B.V. All rights reserved.

  3. Emitter space charge layer transit time in bipolar junction transistors

    Science.gov (United States)

    Rustagi, S. C.; Chattopadhyaya, S. K.

    1981-04-01

    The charge defined emitter space charge layer transit times of double diffused transistors have been calculated using a regional approach, and compared with the corresponding base transit times. The results obtained for emitter space-charge layer transit times have been discussed with reference to the capacitance analysis of Morgan and Smit (1960) for graded p-n junctions.

  4. Computational Fair Division

    DEFF Research Database (Denmark)

    Branzei, Simina

    Fair division is a fundamental problem in economic theory and one of the oldest questions faced through the history of human society. The high level scenario is that of several participants having to divide a collection of resources such that everyone is satisfied with their allocation -- e.g. two...... heirs dividing a car, house, and piece of land inherited. The literature on fair division was developed in the 20th century in mathematics and economics, but computational work on fair division is still sparse. This thesis can be seen as an excursion in computational fair division divided in two parts...... study alternative and richer models, such as externalities in cake cutting, simultaneous cake cutting, and envy-free cake cutting. The second part of the thesis tackles the fair allocation of multiple goods, divisible and indivisible. In the realm of divisible goods, we investigate the well known...

  5. Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Mysyk, R.; Raymundo-Pinero, E.; Beguin, F. [CRMD, CNRS-University, 1B rue de la Ferollerie, 45071 Orleans (France); Anouti, M.; Lemordant, D. [Universite Francois Rabelais, Laboratoire PCMB/CIME, Parc de Grandmont, 37200 Tours (France)

    2010-03-15

    Protic ionic liquids (PILs) were used as novel electrolyte for carbon-based supercapacitors. The cyclic voltammograms in three-electrode cells show reversible redox humps, revealing pseudo-faradaic charge transfer. Oxidative treatment of activated carbon enriches the surface functionality and leads to a higher capacitance owing to a stronger pseudo-faradaic contribution. The capacitors using PILs demonstrate a higher voltage window than with aqueous H{sub 2}SO{sub 4}, while keeping the same values of capacitance, and being able to operate at lower temperature. A combination of activated carbons and PILs holds promise for improving the energy characteristics of supercapacitors. (author)

  6. Sperm capacitation in the porcine oviduct.

    Science.gov (United States)

    Tienthai, P; Johannisson, A; Rodriguez-Martinez, H

    2004-01-01

    In vitro studies suggests that sperm capacitation occurs in the sperm reservoir (SR) of the pig, with spermatozoa progressing towards the ampullary-isthmic junction (AIJ) around ovulation as a consequence of capacitation/hyperactivation. In contrast, in vivo studies are scarce. Consequently, we determined the degree of capacitation in boar spermatozoa that were retrieved from the SR of sows at well-defined periods of spontaneous standing oestrus, namely pre-, peri- and post-ovulation, using flow cytometry of Merocyanine-540/Yo-Pro-1-loaded spermatozoa. SR-spermatozoa retrieved and incubated in non-capacitating medium (bicarbonate-free mBO [mBO-]) were largely viable (70-85%) and uncapacitated (69-73%), irrespective of the stage of oestrus considered. Those undergoing capacitation were a minor proportion (1-5%) during pre- and peri-ovulation, but they significantly increased (14%) in post-ovulation oestrus. To clarify whether these SR-spermatozoa were able to undergo capacitation under stimuli, sperm aliquots were challenged in vitro either by incubation in a bicarbonate-rich medium (capacitation medium, mBO+), then further in mBO+ with 20% (v/v) of in vivo collected homologous pre-ovulatory isthmic oviductal fluid (IOF), or incubation with hyaluronan (HA, 500 microg/ml). Exposure to mBO+ significantly increased the sub-population of capacitated spermatozoa from the pre- and peri-ovulation SR, indicating that the uncapacitated SR-spermatozoa were responsive to the effector/inducer bicarbonate at levels recorded in peri-ovulatory AIJ/ampulla in vivo. While addition of IOF or HA to SR-spermatozoa incubated in capacitating medium (mBO+) maintained sperm viability without obviously inducing capacitation in pre- or peri-ovulatory SR-spermatozoa, they significantly increased these percentages during post-ovulation, when compared to baseline values of control incubations (mBO-). The results suggest that massive sperm capacitation does not occur in vivo in the porcine SR

  7. Variational Stability Form for the Capacitance of an Arbitrarily Shaped Conducting Plate

    Institute of Scientific and Technical Information of China (English)

    LIANGChanghong; LILong; ZHAIHuiqing

    2004-01-01

    A new analytical method for finding the capacitance of an arbitrarily shaped conducting plate is presented in this paper. If the charge density suitable to fringe conditions and the appropriate charge barycenter are supposed, the variational stability form with high accuracy for the capacitance C can be achieved by simple curve integrals or the superposition of basic triangles. In this paper, some analytical examples such as an elliptical plate, a regular polygonal plate and a rectangular plate are given. It is worth pointing out that the analytical closed-form for an elliptical plate is accurate. Comparing the result of the analytical closed-form for the square plate and the numerical result of Richardson's extrapolation, the relative error is less than 1.7%. Furthermore, the relationship between the charge barycenter and the variational stability is discussed.

  8. On infinitely divisible semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Rosiński, Jan

    2015-01-01

    are strictly representable due to Hida's multiplicity theorem, the classical Stricker's theorem follows from our result. Another consequence is that the question when an infinitely divisible process is a semimartingale can often be reduced to a path property, when a certain associated infinitely divisible...

  9. Arithmetic of Division Fields

    CERN Document Server

    Brumer, Armand

    2011-01-01

    We study the arithmetic of division fields of semistable abelian varieties A over the rationals. The Galois group of the 2-division field of A is analyzed when the conductor is odd and squarefree. The irreducible semistable mod 2 representations of small conductor are determined under GRH. These results are used in "Paramodular abelian varieties of odd conductor," arXiv:1004.4699.

  10. Power Dissipation in Division

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2008-01-01

    A few classes of algorithms to implement division in hardware have been used over the years: division by digit-recurrence, by reciprocal approximation by iterative methods and by polynomial approximation. Due to the differences in the algorithms, a comparison among their implementation in terms...

  11. Division: The Sleeping Dragon

    Science.gov (United States)

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  12. Effect of surface asperities on the capacitances of capacitive RF MEMS switches

    Science.gov (United States)

    Chen, Zhiqiang; Tian, Wenchao; Zhang, Xiaotong

    2017-03-01

    The effects of surface asperities on the up- and down-state capacitances of the capacitive radio frequency (RF) micro electromechanical system (MEMS) switches were studied in this paper based on the single asperity model and statics. The research results demonstrated that surface asperities effects on the up-state capacitance could be neglected, whereas surface asperities must be taken into consideration at the down-state position in the RF MEMS switches because the surface asperities significantly affected the down-state capacitance. The down-state capacitance typically decreased as the root mean square (RMS) roughness and asperity radius increased. The down-state capacitance was approximately 26% of the theoretical value when the RMS roughness was 20 nm, and 32% of the theoretical value when the asperity radius was 100 nm. The experimental results were in good agreement with the simulation results.

  13. Capacitive Cells for Dielectric Constant Measurement

    Science.gov (United States)

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  14. Capacitive Mixing for Harvesting the Free Energy of Solutions at Different Concentrations

    Directory of Open Access Journals (Sweden)

    Renéa van Roij

    2013-04-01

    Full Text Available An enormous dissipation of the order of 2 kJ/L takes place during the natural mixing process of fresh river water entering the salty sea. “Capacitive mixing” is a promising technique to efficiently harvest this energy in an environmentally clean and sustainable fashion. This method has its roots in the ability to store a very large amount of electric charge inside supercapacitor or battery electrodes dipped in a saline solution. Three different schemes have been studied so far, namely, Capacitive Double Layer Expansion (CDLE, Capacitive Donnan Potential (CDP and Mixing Entropy Battery (MEB, respectively based on the variation upon salinity change of the electric double layer capacity, on the Donnan membrane potential, and on the electrochemical energy of intercalated ions.

  15. Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Fragiacomo, Giulio; Hansen, Ole

    2009-01-01

    This paper describes the design and fabrication of a capacitive pressure sensor that has a large capacitance signal and a high sensitivity of 76 pF/bar in touch mode operation. Due to the large signal, problems with parasitic capacitances are avoided and hence it is possible to integrate the sens...... bonding to create vacuum cavities. The exposed part of the sensor is perfectly flat such that it can be coated with corrosion resistant thin films. Hysteresis is an inherent problem in touch mode capacitive pressure sensors and a technique to significantly reduce it is presented....

  16. Divisible ℤ-modules

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2016-03-01

    Full Text Available In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].

  17. Capacitance Sensing and Software-Realized Lock-in Amplifier for the Electromagnetically Levitated Micro Gyroscope

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-gang; CHEN Wen-yuan; LIU Wu; ZHANG Wei-ping; WU Xiao-sheng

    2007-01-01

    In the novel prototype of micro-gyroscope structure, the new configured capacitance sensing scheme for the micro gyroscope was analyzed and the virtual instrument based detection scheme was implemented. The digital lock-in amplifier was employed in the capacitance detection to restrain the noise interference. The capacitance analysis shows that 1 fF capacitance variation corresponds to 0.1 degree of the turn angle. The differential capacitance bridge and the charge integral amplifier were used as the front signal input interface. In the implementation of digital lock-in amplifier, a new routine which warranted the exactly matching of the reference phase to signal phase was proposed. The result of the experiment shows that digital lock-in amplifier can greatly eliminate the noise in the output signal. The non linearity of the turn angle output is 2.3 % and the minimum resolution of turn angle is 0.04 degrees. The application of the software demodulation in the signal detection of micro-electro-mechanical-system (MEMS) device is a new attempt, and it shows the prospective for a high-performance application.

  18. Enhanced Capacitance of Hybrid Layered Graphene/Nickel Nanocomposite for Supercapacitors

    Science.gov (United States)

    Mohd Zaid, Norsaadatul Akmal; Idris, Nurul Hayati

    2016-08-01

    In this work, Ni nanoparticles were directly decorated on graphene (G) nanosheets via mechanical ball milling. Based on transmission electron microscopy observations, the Ni nanoparticles were well dispersed and attached to the G nanosheet without any agglomerations. Electrochemical results showed that the capacitance of a G/Ni nanocomposite was 275 F g-1 at a current density of 2 A g-1, which is higher than the capacitance of bare G (145 F g-1) and bare Ni (3 F g-1). The G/Ni electrode also showed superior performance at a high current density, exhibiting a capacitance of 190 F g-1 at a current density of 5 A g-1 and a capacitance of 144 F g-1 at a current density of 10 A g-1. The equivalent series resistance for G/Ni nanocomposites also decreased. The enhanced performance of this hybrid supercapacitor is best described by the synergistic effect, i.e. dual charge-storage mechanism, which is demonstrated by electrical double layer and pseudocapacitance materials. Moreover, a high specific surface area and electrical conductivity of the materials enhanced the capacitance. These results indicate that the G/Ni nanocomposite is a potential supercapacitor.

  19. Size asymmetric hard spheres as a convenient model for the capacitance of the electrical double layer of an ionic liquid.

    Science.gov (United States)

    Lamperski, Stanisław; Sosnowska, Joanna; Bhuiyan, Lutful Bari; Henderson, Douglas

    2014-01-07

    Even though ionic liquids are composed of nonspherical ions, it is shown here that the general features of the capacitance of an electrical double layer can be obtained using a charged hard sphere model. We have shown in our earlier studies that at high electrolyte concentrations or large magnitudes of the electrode charge density the fact that the ions have a finite size, and are not point ions, cause the capacitance near the potential of zero charge to increase and change from a minimum to a maximum as the ionic concentration is increased and to decrease as the magnitude of the electrode charge density increases. Here, we show that the asymmetry of the capacitance of an ionic liquid can be explained qualitatively by using spherical ions of different size without attempting to introduce the ionic shape in a detailed manner. This means that the general features of the capacitance of the double layer of an ionic liquid can be studied without using a complex model, although the study of the density or charge profiles of an ionic fluid would require one. However, this is often unnecessary in the analysis of many experiments.

  20. Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure

    Science.gov (United States)

    Kim, Yu Jin; Park, Min Hyuk; Lee, Young Hwan; Kim, Han Joon; Jeon, Woojin; Moon, Taehwan; Do Kim, Keum; Jeong, Doo Seok; Yamada, Hiroyuki; Hwang, Cheol Seong

    2016-01-01

    Enhancement of capacitance by negative capacitance (NC) effect in a dielectric/ferroelectric (DE/FE) stacked film is gaining a greater interest. While the previous theory on NC effect was based on the Landau-Ginzburg-Devonshire theory, this work adopted a modified formalism to incorporate the depolarization effect to describe the energy of the general DE/FE system. The model predicted that the SrTiO3/BaTiO3 system will show a capacitance boost effect. It was also predicted that the 5 nm-thick Al2O3/150 nm-thick BaTiO3 system shows the capacitance boost effect with no FE-like hysteresis behavior, which was inconsistent with the experimental results; the amorphous-Al2O3/epitaxial-BaTiO3 system showed a typical FE-like hysteresis loop in the polarization – voltage test. This was due to the involvement of the trapped charges at the DE/FE interface, originating from the very high field across the thin Al2O3 layer when the BaTiO3 layer played a role as the NC layer. Therefore, the NC effect in the Al2O3/BaTiO3 system was frustrated by the involvement of reversible interface charge; the highly stored charge by the NC effect of the BaTiO3 during the charging period could not be retrieved during the discharging process because integral part of the polarization charge was retained within the system as a remanent polarization.

  1. Underwater Sound Reference Division

    Data.gov (United States)

    Federal Laboratory Consortium — The Underwater Sound Reference Division (USRD) serves as the U.S. standardizing activity in the area of underwater acoustic measurements, as the National Institute...

  2. Position sensitive anodes for MCP read-out using induced charge measurement

    Science.gov (United States)

    Jagutzki, O.; Lapington, J. S.; Worth, L. B. C.; Spillman, U.; Mergel, V.; Schmidt-Böcking, H.

    2002-01-01

    We investigate the method of an indirect detection of a MCP charge avalanche projected onto a resistive layer (G. Battistoni, et al., Nucl. Instr. and Meth., 202 (1982) 459). If the sheet resistance is favourable one can detect the charge cloud by the capacitive coupling to an anode structure a few millimetres behind the layer. The anode structure can be, for example, a wedge-and-strip electrode pattern (M. Unverzagt, Diplomarbeit, Universität Frankfurt 1992, private communication) as it is used for directly collecting the electron avalanche from a MCP. Detection of the induced charge is beneficial in several respects. Firstly, image distortions produced by secondary electron mediated charge redistribution are eliminated. Secondly, the noise component due to quantized charge collection, commonly referred to as partition noise, is not present. In addition, the dielectric substrate can function both as an element of the vacuum enclosure and HV insulator, making the electrical connections easily accessible and the pattern operable at ground potential, independently of detector operating voltages. This technique can be used to simplify the electronic design requirements where varying high voltages are required at the detector input face such as plasma analysers, etc. It also has application in the manufacture of intensifier tubes (J. Barnstedt, M. Grewing, Nucl. Instr. and Meth., these proceedings) where the inclusion of a readout pattern inside the intensifier body with associated electrical feed-throughs can prove problematic. We will present data on the performance of such detection geometries using several types of charge division anode, and discuss the advantages compared with the "traditional" charge collecting method.

  3. Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation

    NARCIS (Netherlands)

    Porada, S.; Hamelers, H.V.M.; Bryjak, M.; Presser, V.; Biesheuvel, P.M.; Weingarth, D.

    2014-01-01

    Capacitive technologies, such as capacitive deionization and energy harvesting based on mixing energy (“capmix” and “CO2 energy”), are characterized by intermittent operation: phases of ion electrosorption from the water are followed by system regeneration. From a system application point of view, c

  4. High capacitance of coarse-grained carbide derived carbon electrodes

    Science.gov (United States)

    Dyatkin, Boris; Gogotsi, Oleksiy; Malinovskiy, Bohdan; Zozulya, Yuliya; Simon, Patrice; Gogotsi, Yury

    2016-02-01

    We report exceptional electrochemical properties of supercapacitor electrodes composed of large, granular carbide-derived carbon (CDC) particles. Using a titanium carbide (TiC) precursor, we synthesized 70-250 μm sized particles with high surface area and a narrow pore size distribution. Electrochemical cycling of these coarse-grained powders defied conventional wisdom that a small particle size is strictly required for supercapacitor electrodes and allowed high charge storage densities, rapid transport, and good rate handling ability. The material showcased capacitance above 100 F g-1 at sweep rates as high as 250 mV s-1 in organic electrolyte. 250-1000 micron thick dense CDC films with up to 80 mg cm-2 loading showed superior areal capacitances. The material significantly outperformed its activated carbon counterpart in organic electrolytes and ionic liquids. Furthermore, large internal/external surface ratio of coarse-grained carbons allowed the resulting electrodes to maintain high electrochemical stability up to 3.1 V in ionic liquid electrolyte. In addition to presenting novel insights into the electrosorption process, these coarse-grained carbons offer a pathway to low-cost, high-performance implementation of supercapacitors in automotive and grid-storage applications.

  5. Charge Qubit-Atom Hybrid

    CERN Document Server

    Yu, Deshui; Hufnagel, C; Kwek, L C; Amico, Luigi; Dumke, R

    2016-01-01

    We investigate a novel hybrid system of a superconducting charge qubit interacting directly with a single neutral atom via electric dipole coupling. Interfacing of the macroscopic superconducting circuit with the microscopic atomic system is accomplished by varying the gate capacitance of the charge qubit. To achieve strong interaction, we employ two Rydberg states with an electric-dipole-allowed transition, which alters the polarizability of the dielectric medium of the gate capacitor. Sweeping the gate voltage with different rates leads to a precise control of hybrid quantum states. Furthermore, we show a possible implementation of a universal two-qubit gate.

  6. Ion channels, phosphorylation and mammalian sperm capacitation

    Institute of Scientific and Technical Information of China (English)

    Pablo E Visconti; Dario Krapf; José Luis de la Vega-Beltrán; Juan José Acevedo; Alberto Darszon

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.

  7. Ion channels, phosphorylation and mammalian sperm capacitation.

    Science.gov (United States)

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-05-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.

  8. Preconditioning first and second kind integral formulations of the capacitance problem

    Energy Technology Data Exchange (ETDEWEB)

    Tausch, J.; White, J.

    1996-12-31

    Engineering programs which compute electrostatic capacitances for complicated arrangements of conductors commonly set up the electrostatic potential u as a superposition of surface carges {sigma} u(x) = {integral}{sub s}G(x, y){sigma}(y) dS(y). Where G(x, y) = {1/4}{pi}{vert_bar}x - y{vert_bar} is the Green`s function for the Laplacian in the three-space. For a specified potential on the conductor surface(s) S, this approach leads to an integral equation of the first kind on S for the charge density {sigma}. The capacitance is the net-charge on the conductors and is given by the surface integral of {sigma}.

  9. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer.

    Science.gov (United States)

    Chmiola, J; Yushin, G; Gogotsi, Y; Portet, C; Simon, P; Taberna, P L

    2006-09-22

    Carbon supercapacitors, which are energy storage devices that use ion adsorption on the surface of highly porous materials to store charge, have numerous advantages over other power-source technologies, but could realize further gains if their electrodes were properly optimized. Studying the effect of the pore size on capacitance could potentially improve performance by maximizing the electrode surface area accessible to electrolyte ions, but until recently, no studies had addressed the lower size limit of accessible pores. Using carbide-derived carbon, we generated pores with average sizes from 0.6 to 2.25 nanometer and studied double-layer capacitance in an organic electrolyte. The results challenge the long-held axiom that pores smaller than the size of solvated electrolyte ions are incapable of contributing to charge storage.

  10. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  11. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  12. Carbon nanofiber supercapacitors with large areal capacitances

    KAUST Repository

    McDonough, James R.

    2009-01-01

    We develop supercapacitor (SC) devices with large per-area capacitances by utilizing three-dimensional (3D) porous substrates. Carbon nanofibers (CNFs) functioning as active SC electrodes are grown on 3D nickel foam. The 3D porous substrates facilitate a mass loading of active electrodes and per-area capacitance as large as 60 mg/ cm2 and 1.2 F/ cm2, respectively. We optimize SC performance by developing an annealing-free CNF growth process that minimizes undesirable nickel carbide formation. Superior per-area capacitances described here suggest that 3D porous substrates are useful in various energy storage devices in which per-area performance is critical. © 2009 American Institute of Physics.

  13. Microphonics in biopotential measurements with capacitive electrodes.

    Science.gov (United States)

    Luna-Lozano, Pablo S; Pallas-Areny, Ramon

    2010-01-01

    Biopotential measurements with capacitive electrodes do not need any direct contact between electrode and skin, which saves the time devoted to expose and prepare the contact area when measuring with conductive electrodes. However, mechanical vibrations resulting from physiological functions such as respiration and cardiac contraction can change the capacitance of the electrode and affect the recordings. This transformation of mechanical vibrations into undesired electric signals is termed microphonics. We have evaluated microphonics in capacitive ECG recordings obtained from a dressed subject seated on a common chair with electrodes placed on the front side of the backrest of the chair. Depending on the softness of the backrest, the recordings may be clearly affected by the displacement of the thorax back wall due to the respiration and to the heart's mechanical activity.

  14. Role of the oviduct in sperm capacitation.

    Science.gov (United States)

    Rodriguez-Martinez, H

    2007-09-01

    Following insemination of spermatozoa pre-ovulation, the mammalian oviduct ensures, by the formation of a functional sperm reservoir (SR), that suitable (low) numbers of viable and potentially fertile spermatozoa are available for fertilization at the ampullary isthmic junction (AIJ). As ovulation approaches, a proportion of the SR-stored spermatozoa is continuously distributed towards the AIJ and individually activated leading to step-wise capacitation and the attainment of hyperactivated motility. This paper reviews in vivo changes in the intra-luminal milieu of the oviduct of pigs and cows, in particular the SR and the AIJ which relate to the modulation of sperm capacitation around spontaneous ovulation. In vivo, most viable spermatozoa in the pre-ovulatory SR are uncapacitated. Capacitation rates significantly increase after ovulation, apparently not massively but concurrent with the individual, continuous sperm dislocation from the SR. Bicarbonate, whose levels differ between the SR and the AIJ, appears as the common primary effector of the membrane destabilizing changes that encompasses the first stages of capacitation. Sperm activation can be delayed or even reversed by co-incubation with membrane proteins of the tubal lining, isthmic fluid or specific tubal glycosaminoglycans, such as hyaluronan. Although the pattern of response to in vitro induction of sperm activation - capacitation in particular - is similar for all spermatozoa, the capacity and speed of the response is very individual. Such diversity in responsiveness among spermatozoa insures full sperm viability before ovulation and the presence of spermatozoa at different stages of capacitation at the AIJ, thus maximizing the chances of normal fertilization.

  15. A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link

    OpenAIRE

    Lee, Hyung-Min; Ghovanloo, Maysam

    2013-01-01

    A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of ...

  16. Capacitance sensor for automatic soil retreat measurements

    Institute of Scientific and Technical Information of China (English)

    GU Jun; YANG Juan; YIN Wu-liang; WANG Chao; WANG Hua-xiang; LIU Ze; CHENG Su-sen

    2008-01-01

    To continuously monitor the soil retreat due to erosion in field, provide valuable information about the erosion processes and overcome the disadvantages of inefficiency, high time-consumption and labor-intensity of existing methods, this paper describes a novel capacitance sensor for measuring the soil retreat. A capaci-tance sensor based probe is proposed, which can measure the depth of the soil around it automatically and the data can be recorded by a data logger. Experimental results in the lab verify its usefulness.

  17. Experimental study of negative capacitance in LEDs

    Institute of Scientific and Technical Information of China (English)

    FENG Lie-feng; WANG Jun; ZHU Chuan-yun; CONG Hong-xia; CHEN Yong; WANG Cun-da

    2005-01-01

    The experimental study on negative capacitance(NC) of various light-emitting diodes(LEDs) is presented.Experimental result shows that all LEDs display the NC phenomenon.The voltage modulated electroluminescence(VMEL) experiment confirms that the reason of negative capacitance is the strong recombination of the injected carriers in the active region of luminescence.The measures also verify that the dependence of NC on voltage and frequency in different LEDs is similar: NC phenomenon is more obvious with higher voltage or lower frequency.

  18. Metal nanoparticle-directed NiCo2O4 nanostructure growth on carbon nanofibers with high capacitance.

    Science.gov (United States)

    Chen, Long; Zhu, Jiahua

    2014-08-04

    Metal nanoparticles (Ni, Co) decorated on an electrospun carbon nanofiber surface directed the growth of NiCo2O4 into nanorod and nanosheet morphologies. These metal nanoparticles served as a transition layer to strengthen the interface and promote charge transfer between carbon and NiCo2O4 to achieve a high capacitance of 781 F g(-1).

  19. Novel graphene-like electrodes for capacitive deionization.

    Science.gov (United States)

    Li, Haibo; Zou, Linda; Pan, Likun; Sun, Zhuo

    2010-11-15

    Capacitive deionization (CDI) is a novel technology that has been developed for removal of charged ionic species from salty water, such as salt ions. The basic concept of CDI, as well as electrosorption, is to force charged ions toward oppositely polarized electrodes through imposing a direct electric field to form a strong electrical double layer and hold the ions. Once the electric field disappears, the ions are instantly released back to the bulk solution. CDI is an alternative low-energy consumption desalination technology. Graphene-like nanoflakes (GNFs) with relatively high specific surface area have been prepared and used as electrodes for capacitive deionization. The GNFs were synthesized by a modified Hummers' method using hydrazine for reduction. They were characterized by atomic force microscopy, N2 adsorption at 77 K and electrochemical workstation. It was found that the ratio of nitric acid and sulfuric acid plays a vital role in determining the specific surface area of GNFs. Its electrosorption performance was much better than commercial activated carbon (AC), suggesting a great potential in capacitive deionisation application. Further, the electrosorptive performance of GNFs electrodes with different bias potentials, flow rates and ionic strengths were measured and the electrosorption isotherm and kinetics were investigated. The results showed that GNFs prepared by this process had the specific surface area of 222.01 m²/g. The specific electrosorptive capacity of the GNFs was 23.18 µmol/g for sodium ions (Na+) when the initial concentration was at 25 mg/L, which was higher than that of previously reported data using graphene and AC under the same experimental condition. In addition, the equilibrium electrosorption capacity was determined as 73.47 µmol/g at 2.0 V by fitting data through the Langmuir isotherm, and the rate constant was found to be 1.01 min⁻¹ by fitting data through pseudo first-order adsorption. The results suggested that the

  20. Frequency division using a micromechanical resonance cascade

    Energy Technology Data Exchange (ETDEWEB)

    Qalandar, K. R., E-mail: kamala@engineering.ucsb.edu; Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L. [Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106 (United States); Strachan, B. S. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Electrical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Shaw, S. W. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823 (United States)

    2014-12-15

    A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.

  1. Sperner's lemma and fair division

    OpenAIRE

    DAKSKOBLER, LARISA

    2016-01-01

    Fair division is an active research area in Mathematics, Economics, Computer Science, etc. There are many different kinds of fair division problems. These are often named after everyday situations: fair resource allocation, fair cake-cutting, fair chore division, room assignment – rent division, and more. Although many exact and approximative methods for finding fair solutions already exist, the area of fair division still expands and tries to find better solutions for everyday problems. The...

  2. Effect of Additive Agent on the Electrochemical Capacitance of Activated Carbon

    Institute of Scientific and Technical Information of China (English)

    Wang Gui-Xin; Qu Mei-Zhen; Chen Li; Wang Guo-Ping; Zhang Qing-Tang; Yu Zuo-Long

    2004-01-01

    In order to compare the effect of additive agent on the electrochemical capacitance of activated carbon, three additive agents like carbon nanotubes (CNTs), activated carbon fibre (ACF)and acetylene black (AB) were added to activated carbon by ultrasonic dispersion. Two electrodes including 95wt.% activated carbon, 2wt.% additive agent and 3wt.% PTFE binder were prepared.Ecs were assembled in an argon-filled glove box by sandwiching a microporous separator (Celgard 2400) between two electrodes. 1.0 M LiClO4/ethylene carbonate (EC)-diethyl carbonate (DEC) (1:1in vol.) was used as the electrolyte. The performance of the Ecs was tested with constant current charge-discharge model between 0.0 and 3.0V at 298K using a battery-testing instrument under the same conditions.From the Fig. 1, we can know that the specific capacitance decreases with the current density increasing. As far as the three carbon materials, CNTs show better performance than others. At low current density, the specific capacitance of CNTs is adjacent to that of ACF, while higher than that of AB; At high current density, the specific capacitance of CNTs is higher than that of both ACF and AB. What's more, capacity fading of CNTs is smaller than those of both ACF and AB. At 10 mA/cm2 current density, the specific capacitance of CNTs is 1.33 times of that ACF and 1.58 times of that AB, respectively. From the CVs (Fig. 2), the capacitance of three materials is contributed mainly by double-layer, nonfaradically. The performance difference is ascribed to the structure and electrolyte reservoir: CNTs used have a wide diameter range between 20 and 100nm and hollow tube structure, ACF has a narrow diameter range and many micropores, AB are dots and cannot form good conductive net. All the above reasons lead the different electrochemical properties of three additive agents.

  3. EFFECT OF AMBIENT AIR CONDITIONS ON LOW FREQUENCY NEGATIVE CAPACITANCE OF NC-TIO2/P3HT HETEROJUNCTION SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    H. Al-Dmour

    2014-01-01

    Full Text Available We report the negative capacitance of nanocrystalline titanium dioxide/poly (3-hexyl thiophene, nc-TiO2/P3HT, heterojunction solar cells. In air, a low frequency negative capacitance has been observed under forward bias condition associated with high values of conductance. Interestingly, the negative capacitance disappear when the device is placed in vacuum chamber. These results are attributed to affect the ambient condition on the charge carrier concentration in materials used to fabricated solar cells and increase bulk region resistance.

  4. Division algebras and supersymmetry

    CERN Document Server

    Baez, John C

    2009-01-01

    Supersymmetry is deeply related to division algebras. Nonabelian Yang--Mills fields minimally coupled to massless spinors are supersymmetric if and only if the dimension of spacetime is 3, 4, 6 or 10. The same is true for the Green--Schwarz superstring. In both cases, supersymmetry relies on the vanishing of a certain trilinear expression involving a spinor field. The reason for this, in turn, is the existence of normed division algebras in dimensions 1, 2, 4 and 8: the real numbers, complex numbers, quaternions and octonions. Here we provide a self-contained account of how this works.

  5. Estimation of Transformer Parameters and Loss Analysis for High Voltage Capacitor Charging Application

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Ouyang, Ziwei;

    2013-01-01

    In a bi-directional DC-DC converter for capacitive charging application, the losses associated with the transformer makes it a critical component. In order to calculate the transformer losses, its parameters such as AC resistance, leakage inductance and self capacitance of the high voltage (HV) w...

  6. Enhanced capacitive deionization of graphene/mesoporous carbon composites

    Science.gov (United States)

    Zhang, Dengsong; Wen, Xiaoru; Shi, Liyi; Yan, Tingting; Zhang, Jianping

    2012-08-01

    Capacitive deionization (CDI) with low-energy consumption and no secondary waste is emerging as a novel desalination technology. Graphene/mesoporous carbon (GE/MC) composites have been prepared via a direct triblock-copolymer-templating method and used as CDI electrodes for the first time. The influences of GE content on the textural properties and electrochemical performance were studied. The transmission electron microscopy and nitrogen adsorption-desorption analysis indicate that mesoporous structures are well retained and the composites display improved specific surface area and pore size distribution, as well as pore volume. Well dispersed GE nanosheets are deduced to be beneficial for enhanced electrical conductivity. The electrochemical performance of electrodes in an NaCl aqueous solution was characterized by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy measurements. The composite electrodes perform better on the capacitance values, conductive behaviour, rate performance and cyclic stability. The desalination capacity of the electrodes was evaluated by a batch mode electrosorptive experiment and the amount of adsorbed ions can reach 731 μg g-1 for the GE/MC composite electrode with a GE content of 5 wt%, which is much higher than that of MC alone (590 μg g-1). The enhanced CDI performance of the composite electrodes can be attributed to the better conductive behaviour and higher specific surface area.Capacitive deionization (CDI) with low-energy consumption and no secondary waste is emerging as a novel desalination technology. Graphene/mesoporous carbon (GE/MC) composites have been prepared via a direct triblock-copolymer-templating method and used as CDI electrodes for the first time. The influences of GE content on the textural properties and electrochemical performance were studied. The transmission electron microscopy and nitrogen adsorption-desorption analysis indicate that mesoporous structures are

  7. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors

    Science.gov (United States)

    Zhou, Haihan; Han, Gaoyi; Xiao, Yaoming; Chang, Yunzhen; Zhai, Hua-Jin

    2014-10-01

    A simple and low-cost electrochemical codeposition method has been introduced to fabricate polypyrrole/graphene oxide (PPy/GO) nanocomposites and the areal capacitance of conducting polymer/GO composites is reported for the first time. Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) are implemented to determine the PPy/GO nanocomposites are successfully prepared and the interaction between PPy and GO. The as-prepared PPy/GO nanocomposites show the curly sheet-like morphology, superior capacitive behaviors and cyclic stability. Furthermore, the varying deposition time is implemented to investigate the impact of the loading amount on electrochemical behavior of the composites, and a high areal capacitance of 152 mF cm-2 is achieved at 10 mV s-1 CV scan. However, the thicker films caused by the long deposition time would result in larger diffusion resistance of electrolyte ions, consequently exhibit the relatively lower capacitance value at the high current density. The GCD tests indicate moderate deposition time is more suitable for the fast charge/discharge. Considering the very simple and effective synthetic process, the PPy/GO nanocomposites with relatively high areal capacitance are competitive candidate for supercapacitor application, and its capacitive performances can be easily tuned by varying the deposition time.

  8. How much have students learned? Research-based teaching on electrical capacitance

    Directory of Open Access Journals (Sweden)

    Kristina Zuza

    Full Text Available We examine the pedagogical suitability of introducing a teaching sequence for the concept of electrical capacitance within the context of charging a body. This short sequence targets first year university students and was designed following students’ common conceptions on this topic. The evaluation is made by comparing the results with a control group using written questionnaires. The results show that the elements within the sequence help students to establish a connection between the movement of charges (microframe and the energetic analysis of the system (macroframe.

  9. Locating Depots for Capacitated Vehicle Routing

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Nagarajan, Viswanath

    2011-01-01

    We study a location-routing problem in the context of capacitated vehicle routing. The input to k-LocVRP is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so...

  10. Thermodynamic cycle analysis for capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.

    2009-01-01

    Capacitive deionization (CDI) is an ion removal technology based on temporarily storing ions in the polarization layers of two oppositely positioned electrodes. Here we present a thermodynamic model for the minimum work required for ion separation in the fully reversible case by describing the ionic

  11. Negative capacitance in multidomain ferroelectric superlattices

    Science.gov (United States)

    Zubko, Pavlo; Wojdeł, Jacek C.; Hadjimichael, Marios; Fernandez-Pena, Stéphanie; Sené, Anaïs; Luk'Yanchuk, Igor; Triscone, Jean-Marc; Íñiguez, Jorge

    2016-06-01

    The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.

  12. Comparison of piezoresistive and capacitive ultrasonic transducers

    Science.gov (United States)

    Neumann, John J.; Greve, David W.; Oppenheim, Irving J.

    2004-07-01

    MEMS ultrasonic transducers for flaw detection have heretofore been built as capacitive diaphragm-type devices. A diaphragm forms a moveable electrode, placed at a short gap from a stationary electrode, and diaphragm movement has been detected by capacitance change. Although several research teams have successfully demonstrated that technology, the detection of capacitance change is adversely affected by stray and parasitic capacitances, limiting the sensitivity of such transducers and typically requiring relatively large diaphragm areas. We describe the design and fabrication of what to our knowledge is the first CMOS-MEMS ultrasonic phased array transducer using piezoresistive strain sensing. Piezoresistors have been patterned within the diaphragms, and diaphragm movement creates bending strain which is detected by a bridge circuit, for which conductor losses will be less significant. The prospective advantage of such piezoresistive transducers is that sufficient sensitivity may be achieved with very small diaphragms. We compare transducer response under fluid-coupled ultrasonic excitation and report the experimental gauge factor for the piezoresistors. We also discuss the phased array performance of the transducer in sensing the direction of an incoming wave.

  13. Inside-out electrical capacitance tomography

    DEFF Research Database (Denmark)

    Kjærsgaard-Rasmussen, Jimmy; Meyer, Knud Erik

    2011-01-01

    In this work we demonstrate the construction of an ‘inside-out’ sensor geometry for electrical capacitance tomography (ECT). The inside-out geometry has the electrodes placed around a tube, as usual, but measuring ‘outwards’. The flow between the electrodes and an outer tube is reconstructed...

  14. Investigation on a Novel Capacitive Electrode for Geophysical Surveys

    Directory of Open Access Journals (Sweden)

    Zhiyu Wang

    2016-01-01

    Full Text Available Nonpolarizable electrodes are applied widely in the electric field measurement for geophysical surveys. However, there are two major problems: (1 systematic errors caused by poor electrical contact in the high resistive terrains and (2 environmental damage associated with using nonpolarizable electrodes. A new alternative structure of capacitive electrode, which is capable of sensing surface potential through weak capacitive coupling, is presented to solve the above problems. A technique is introduced to neutralize distributed capacitance and input capacitance of the detection circuit. With the capacitance neutralization technique, the transmission coefficient of capacitive electrode remains stable when environmental conditions change. The simulation and field test results indicate that the new capacitive electrode has an operating bandwidth range from 0.1 Hz to 1 kHz. The capacitive electrodes have a good prospect of the applications in geophysical prospecting, especially in resistive terrains.

  15. Quantum capacitance of the armchair-edge graphene nanoribbon

    Indian Academy of Sciences (India)

    Ling-Feng Mao

    2013-08-01

    The quantum capacitance, an important parameter in the design of nanoscale devices, is derived for armchair-edge single-layer graphene nanoribbon with semiconducting property. The quantum capacitance oscillations are found and these capacitance oscillations originate from the lateral quantum confinement in graphene nanoribbon. Detailed studies of the capacitance oscillations demonstrate that the local channel electrostatic potential at the capacitance peak, the height and the number of the capacitance peak strongly depend on the width, especially a few nanometres, of the armchair-edge graphene nanoribbon. It implies that the capacitance oscillations observed in the experiments can be utilized to measure the width of graphene nanoribbon. The results also show that the capacitance oscillations are not seen when the width is larger than 30 nm.

  16. MOS Capacitance-Voltage Characteristics:V.Methods to Enhance the Trapping Capacitance

    Institute of Scientific and Technical Information of China (English)

    揭斌斌; 薩支唐

    2012-01-01

    Low-frequency and High-frequency Capacitance-Voltage (C-V) curves of Silicon Metal-Oxide-Semiconductor Capacitors,showing electron and hole trapping at shallow-level dopant and deep-level generationrecombination-trapping impurities,are presented to illustrate the enhancement of the giant trapping capacitances by physical means via device and circuit designs,in contrast to chemical means via impurity characteristics previously reported.Enhancement is realized by masking the electron or/and hole storage capacitances to make the trapping capacitances dominant at the terminals.Device and materials properties used in the computed CV curves are selected to illustrate experimental realizations for fundamental trapping parameter characterizations and for electrical and optical signal processing applications.

  17. Encrypted integer division

    NARCIS (Netherlands)

    Veugen, P.J.M.

    2010-01-01

    When processing signals in the encrypted domain, homomorphic encryption can be used to enable linear operations on encrypted data. Integer division of encrypted data however requires an additional protocol with the server and will be relatively expensive. We present new solutions for dividing encryp

  18. The Problem with Division

    Science.gov (United States)

    Pope, Sue

    2012-01-01

    Of the "big four", division is likely to regarded by many learners as "the odd one out", "the difficult one", "the one that is complicated", or "the scary one". It seems to have been that way "for ever", in the perception of many who have trodden the learning pathways through the world of number. But, does it have to be like this? Clearly the…

  19. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  20. | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  1. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications

    Science.gov (United States)

    Han, Kook In; Kim, Seungdu; Lee, In Gyu; Kim, Jong Pil; Kim, Jung-Ha; Hong, Suck Won; Cho, Byung Jin; Hwang, Wan Sik

    2017-01-01

    Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF’s positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO’s excellent sensing properties and SF’s flexibility, expediting the production of flexible, low power consumption devices at relatively low costs. PMID:28218728

  2. The Capacitive Behaviors of Manganese Dioxide Thin-Film Electrochemical Capacitor Prototypes

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2011-01-01

    Full Text Available We have documented the fabrication of manganese dioxide (MnO2 thin-film electrochemical capacitor (EC prototypes with dual-planar electrode configuration. These EC prototypes exhibited good capacitive behaviors in mild Na2SO4 aqueous electrolyte. Enhanced capacitive behaviors of EC prototypes were observed upon prolonged voltammetric cycling which could be associated with microstructural transformation of MnO2 thin-film electrodes from densely packed plate-like to irregular petal-like surface morphology. Effects of voltammetric scan rates, prolonged voltammetric cycling, electrolyte composition, and electrolyte concentration on the surface morphology of MnO2 thin-film electrodes, and associated capacitive behaviors of MnO2 thin-film EC prototypes were investigated by cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS, and galvanostatic charge/discharge (GCD techniques. Results of both CV and EIS indicated that thin-film MnO2 EC prototypes exhibited the highest specific capacitance of 327 F/g in 0.2 M Na2SO4 aqueous electrolyte. Being environmentally benign and cheap, MnO2 thin-film electrochemical capacitors have high potential utility as pulsed power sources, as well as load-leveling functions in various consumer electronic devices.

  3. Comparison of capacitive behavior of activated carbons with different pore structures in aqueous and nonaqueous systems

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shao-yun; LI Xin-hai; WANG Zhi-xing; GUO Hua-jun; PENG Wen-jie

    2008-01-01

    The pore structures of two activated carbons from sawdust with KOH activation and coconut-shell with steam activation for supercapacitor were analyzed by N2 adsorption method. The electrochemical properties of both activated carbons in 6mol/L KOH solution and 1mol/L Et4NPF4/PC were compared, and the effect of pore structure on the capacitance was investigated by cyclic voltammetry, AC impedance and charge-discharge measurements. The results indicate that the capacitance mainly depends on effective surface area, but the power property mainly depends on mesoporosity. At low specific current (1A/g), the maximum specific capacitances of 276.3F/g in aqueous system and 123.9F/g in nonaqueous system can be obtained from sawdust activated carbon with a larger surface area of 1808m2/g, but at a high specific current, the specific capacitance of coconut-shell activated carbon with a higher mesoporosity of 75.1% is more excellent. Activated carbon by KOH activation is fitter for aqueous system and that by steam activation is fitter for nonaqueous system.

  4. An electrostatic model for biological cell division

    CERN Document Server

    Faraggi, Eshel

    2010-01-01

    Probably the most fundamental processes for biological systems is their ability to create themselves through the use of cell division and cell differentiation. In this work a simple physical model is proposed for biological cell division. The model consists of a positive ionic gradient across the cell membrane, and concentration of charge at the nodes of the spindle and on the chromosomes. A simple calculation, based on Coulomb's Law, shows that under such circumstances a chromosome will tend to break up to its constituent chromatids and that the chromatids will be separated by a distance that is an order of thirty percent of the distance between the spindle nodes. Further repulsion between the nodes will tend to stretch the cell and eventually break the cell membrane between the separated chromatids, leading to cell division. The importance of this work is in continuing the understanding of the electromagnetic basis of cell division and providing it with an analytical model. A central implication of this and...

  5. Rain Drop Charge Sensor

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  6. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres

    Science.gov (United States)

    Sarma, Biplab; Jurovitzki, Abraham L.; Ray, Rupashree S.; Smith, York R.; Mohanty, Swomitra K.; Misra, Mano

    2015-07-01

    The effect of annealing atmosphere on the supercapacitance behavior of iron oxide nanotube (Fe-NT) electrodes has been explored and reported here. Iron oxide nanotubes were synthesized on a pure iron substrate through an electrochemical anodization process in an ethylene glycol solution containing 3% H2O and 0.5 wt.% NH4F. Subsequently, the annealing of the nanotubes was carried out at 500 °C for 2 h in various gas atmospheres such as air, oxygen (O2), nitrogen (N2), and argon (Ar). The morphology and crystal phases evolved after the annealing processes were examined via field emission scanning electron microscopy, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical capacitance properties of the annealed Fe-NT electrodes were evaluated by conducting cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy tests in the Li2SO4 electrolyte. Based on these experiments, it was found that the capacitance of the Fe-NT electrodes annealed in air and O2 atmospheres shows mixed behavior comprising both the electric double layer and pseudocapacitance. However, annealing in N2 and Ar environments resulted in well-defined redox peaks in the CV profiles of the Fe-NT electrodes, which are therefore attributed to the relatively higher pseudonature of the capacitance in these electrodes. Based on the galvanostatic charge-discharge studies, the specific capacitance achieved in the Fe-NT electrode after annealing in Ar was about 300 mF cm-2, which was about twice the value obtained for N2-annealed Fe-NTs and three times higher than those annealed in air and O2. The experiments also demonstrated excellent cycle stability for the Fe-NT electrodes with 83%-85% capacitance retention, even after many charge-discharge cycles, irrespective of the gas atmospheres used during annealing. The increase in the specific capacitance was discussed in terms of increased oxygen vacancies as a result of the

  7. Soft-template-synthesis of hollow CuO/Co3O4 composites for pseudo-capacitive electrode: A synergetic effect on electrochemical performance

    Science.gov (United States)

    Wang, Kuaibing; Lv, Bo; Wu, Hua; Luo, Xuefei; Xu, Jiangyan; Geng, Zhirong

    2016-12-01

    Hollow CuO/Co3O4 hybrids, which inherited from its coordination polymer precursor consisting of sheets layer and nanoparticles layer composites, were synthesized and characterized by SEM, EDX, XRD and XPS. To assess its electrochemical capacitive performances, cyclic voltammetry, galvanostatic charging-discharging measurements and A.C. impedance tests were performed successively. The CuO/Co3O4 hybrids had higher capacitance and lower charge transfer resistance than bare Co3O4 nanostructures, revealing that it provided a protection layer and produced a synergistic effect due to the existence of CuO layer. The distinct synergistic effect could be further confirmed by endurance cycling tests. The capacitance of the CuO/Co3O4 hybrids was 111% retained after 500 cycles at a charging rate of 1.0 A g-1 and remained an intense growth trend after 2000 cycles at scan rate of 200 mV s-1.

  8. A simple scheme to generate x-type four-charge entangled states in circuit QED

    Institute of Scientific and Technical Information of China (English)

    Gao Gui-Long; Song Fu-Quan; Huang Shou-Sheng; Wang Hui; Yuan Xian-Zhang; Wang Ming-Feng; Jiang Nian-Quan

    2012-01-01

    We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR).The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit.The experimental feasibility of our scheme is also shown.

  9. 2016 T Division Lightning Talks

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Marilyn Leann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Adams, Luke Clyde [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ferre, Gregoire Robing [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Grantcharov, Vesselin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Krishnapriyan, Aditi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Kurtakoti, Prajvala Kishore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Le Thien, Minh Quan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lim, Jonathan Ng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Low, Thaddeus Song En [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Lystrom, Levi Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Ma, Xiaoyu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Nguyen, Hong T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Pogue, Sabine Silvia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Orandle, Zoe Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Reisner, Andrew Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Revard, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Roy, Julien [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Sandor, Csanad [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Slavkova, Kalina Polet [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Weichman, Kathleen Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Wu, Fei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Yang, Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division

    2016-11-29

    These are the slides for all of the 2016 T Division lightning talks. There are 350 pages worth of slides from different presentations, all of which cover different topics within the theoretical division at Los Alamos National Laboratory (LANL).

  10. 75 FR 16178 - Antitrust Division

    Science.gov (United States)

    2010-03-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Joint... Director of Operations, Antitrust Division. BILLING CODE 4410-11-M...

  11. Conductive MOF electrodes for stable supercapacitors with high areal capacitance

    Science.gov (United States)

    Sheberla, Dennis; Bachman, John C.; Elias, Joseph S.; Sun, Cheng-Jun; Shao-Horn, Yang; Dincă, Mircea

    2016-10-01

    Owing to their high power density and superior cyclability relative to batteries, electrochemical double layer capacitors (EDLCs) have emerged as an important electrical energy storage technology that will play a critical role in the large-scale deployment of intermittent renewable energy sources, smart power grids, and electrical vehicles. Because the capacitance and charge-discharge rates of EDLCs scale with surface area and electrical conductivity, respectively, porous carbons such as activated carbon, carbon nanotubes and crosslinked or holey graphenes are used exclusively as the active electrode materials in EDLCs. One class of materials whose surface area far exceeds that of activated carbons, potentially allowing them to challenge the dominance of carbon electrodes in EDLCs, is metal-organic frameworks (MOFs). The high porosity of MOFs, however, is conventionally coupled to very poor electrical conductivity, which has thus far prevented the use of these materials as active electrodes in EDLCs. Here, we show that Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2), a MOF with high electrical conductivity, can serve as the sole electrode material in an EDLC. This is the first example of a supercapacitor made entirely from neat MOFs as active materials, without conductive additives or other binders. The MOF-based device shows an areal capacitance that exceeds those of most carbon-based materials and capacity retention greater than 90% over 10,000 cycles, in line with commercial devices. Given the established structural and compositional tunability of MOFs, these results herald the advent of a new generation of supercapacitors whose active electrode materials can be tuned rationally, at the molecular level.

  12. Division of Labor

    KAUST Repository

    Oke, Muse

    2014-09-12

    The first assignment of DNA polymerases at the eukaryotic replication fork was possible after the in vitro reconstitution of the simian virus 40 (SV40) replication system. In this system, DNA polymerase α (Pol α) provides both leading and lagging strands with RNA-DNA primers that are extended by DNA polymerase δ (Pol δ). Extrapolating the architecture of the replication fork from the SV40 model system to an actual eukaryotic cell has been challenged by the discovery of a third DNA polymerase in Saccharomyces cerevisiae, DNA polymerase ε (Pol ε). A division of labor has been proposed for the eukaryotic replication fork whereby Pol ε replicates the leading strand and Pol δ replicates the lagging strand. However, an alternative model of unequal division of labor in which Pol δ can still participate in leading-strand synthesis is plausible.

  13. Porous Alumina Based Capacitive MEMS RH Sensor

    CERN Document Server

    Juhasz, L; Timar-Horvath, Veronika; Desmulliez, Marc; Dhariwal, Resh

    2008-01-01

    The aim of a joint research and development project at the BME and HWU is to produce a cheap, reliable, low-power and CMOS-MEMS process compatible capacitive type relative humidity (RH) sensor that can be incorporated into a state-of-the-art, wireless sensor network. In this paper we discuss the preparation of our new capacitive structure based on post-CMOS MEMS processes and the methods which were used to characterize the thin film porous alumina sensing layer. The average sensitivity is approx. 15 pF/RH% which is more than a magnitude higher than the values found in the literature. The sensor is equipped with integrated resistive heating, which can be used for maintenance to reduce drift, or for keeping the sensing layer at elevated temperature, as an alternative method for temperature-dependence cancellation.

  14. The Pyramidal Capacitated Vehicle Routing Problem

    DEFF Research Database (Denmark)

    Lysgaard, Jens

    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal...... found in many optimal solutions to CVRP instances. An optimal solution to the PCVRP may therefore be useful in itself as a heuristic solution to the CVRP. Further, an attempt can be made to find an even better CVRP solution by solving a TSP, possibly leading to a non-pyramidal route, for each...... of the routes in the PCVRP solution. This paper develops an exact branch-and-cut-and-price (BCP) algorithm for the PCVRP. At the pricing stage, elementary routes can be computed in pseudo-polynomial time in the PCVRP, unlike in the CVRP. We have therefore implemented pricing algorithms that generate only...

  15. Automatic Power Factor Correction Using Capacitive Bank

    Directory of Open Access Journals (Sweden)

    Mr.Anant Kumar Tiwari,

    2014-02-01

    Full Text Available The power factor correction of electrical loads is a problem common to all industrial companies. Earlier the power factor correction was done by adjusting the capacitive bank manually [1]. The automated power factor corrector (APFC using capacitive load bank is helpful in providing the power factor correction. Proposed automated project involves measuring the power factor value from the load using microcontroller. The design of this auto-adjustable power factor correction is to ensure the entire power system always preserving unity power factor. The software and hardware required to implement the suggested automatic power factor correction scheme are explained and its operation is described. APFC thus helps us to decrease the time taken to correct the power factor which helps to increase the efficiency.

  16. CMOS Integrated Capacitive DC-DC Converters

    CERN Document Server

    Van Breussegem, Tom

    2013-01-01

    This book provides a detailed analysis of all aspects of capacitive DC-DC converter design: topology selection, control loop design and noise mitigation. Readers will benefit from the authors’ systematic overview that starts from the ground up, in-depth circuit analysis and a thorough review of recently proposed techniques and design methodologies.  Not only design techniques are discussed, but also implementation in CMOS is shown, by pinpointing the technological opportunities of CMOS and demonstrating the implementation based on four state-of-the-art prototypes.  Provides a detailed analysis of all aspects of capacitive DC-DC converter design;  Analyzes the potential of this type of DC-DC converter and introduces a number of techniques to unleash their full potential; Combines system theory with practical implementation techniques; Includes unique analysis of CMOS technology for this application; Provides in-depth analysis of four fabricated prototypes.

  17. Biorepositories- | Division of Cancer Prevention

    Science.gov (United States)

    Carefully collected and controlled high-quality human biospecimens, annotated with clinical data and properly consented for investigational use, are available through the Division of Cancer Prevention Biorepositories listed in the charts below. Biorepositories Managed by the Division of Cancer Prevention Biorepositories Supported by the Division of Cancer Prevention Related Biorepositories | Information about accessing biospecimens collected from DCP-supported clinical trials and projects.

  18. Division Quilts: A Measurement Model

    Science.gov (United States)

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  19. Evaluation of a Capacitance Scaling System

    Science.gov (United States)

    2007-01-01

    2009 at 11:32 from IEEE Xplore . Restrictions apply. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Downloaded on January 30, 2009 at 11:32 from IEEE Xplore . Restrictions apply. 2162 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 56, NO. 6...30, 2009 at 11:32 from IEEE Xplore . Restrictions apply. AVRAMOV-ZAMUROVIC et al.: EVALUATION OF A CAPACITANCE SCALING SYSTEM 2163 measured to vary by

  20. THERMAL DRIFT CHARACTERISTICS OF CAPACITIVE PRESSURE SENSORS

    OpenAIRE

    2016-01-01

    The capacitive pressure sensors based on silicon are characterized by their very high sensitivities and their low power consumption. Nevertheless, their thermal behavior remains more or less unpredictable because they can indicate very high thermal coefficients. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics drift. In this study, we modeled the thermal behavior of this sensors, using Finite Element Analysis (FE...

  1. Capacitive Structures for Gas and Biological Sensing

    KAUST Repository

    Sapsanis, Christos

    2015-04-01

    The semiconductor industry was benefited by the advances in technology in the last decades. This fact has an impact on the sensors field, where the simple transducer was evolved into smart miniaturized multi-functional microsystems. However, commercially available gas and biological sensors are mostly bulky, expensive, and power-hungry, which act as obstacles to mass use. The aim of this work is gas and biological sensing using capacitive structures. Capacitive sensors were selected due to its design simplicity, low fabrication cost, and no DC power consumption. In the first part, the dominant structure among interdigitated electrodes (IDEs), fractal curves (Peano and Hilbert) and Archimedean spiral was investigated from capacitance density perspective. The investigation consists of geometrical formula calculations, COMSOL Multiphysics simulations and cleanroom fabrication of the capacitors on a silicon substrate. Moreover, low-cost fabrication on flexible plastic PET substrate was conducted outside cleanroom with rapid prototyping using a maskless laser etching. The second part contains the humidity, Volatile Organic compounds (VOCs) and Ammonia sensing of polymers, Polyimide and Nafion, and metal-organic framework (MOF), Cu(bdc)2.xH2O using IDEs and tested in an automated gas setup for experiment control and data extraction. The last part includes the biological sensing of C - reactive protein (CRP) quantification, which is considered as a biomarker of being prone to cardiac diseases and Bovine serum albumin (BSA) protein quantification, which is used as a reference for quantifying unknown proteins.

  2. Multi-Channel Capacitive Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Bingnan Wang

    2016-01-01

    Full Text Available In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved.

  3. Evaluation of EHD films by electrical capacitance

    Science.gov (United States)

    Jablonka, Karolina; Glovnea, Romeo; Bongaerts, Jeroen

    2012-09-01

    The elastohydrodynamic (EHD) lubrication regime occurs in many machine elements where a combination of hydrodynamic effect, elastic deformation of the loaded surfaces and increase in the viscosity of the lubricant with pressure ensures the formation of a very thin, but continuous film of lubricant separating the contacting surfaces. Electrical methods to determine this film's thickness have preceded optical methods, which are widely used today. Although they generally give more qualitative thickness information, electrical methods have the main advantage that they can be applied to metallic contacts in machines, which makes them useful tools in the study of elastohydrodynamically lubricated contacts. This paper is part of a larger study on the application of electrical capacitance for the evaluation of film formation in EHD contacts. The main focus is on the quantitative measurements of film thickness using electrical capacitance. A new approach allowing the lubricant film thickness to be extracted from the measured capacitance is developed using a chromium-coated glass disc and subsequently applied to a steel-on-steel contact. The results show good agreement with optical measurements and theoretical models over a range of film thickness.

  4. Effect of Astaxanthin on Human Sperm Capacitation

    Directory of Open Access Journals (Sweden)

    Luciana Bordin

    2013-06-01

    Full Text Available In order to be able to fertilize oocytes, human sperm must undergo a series of morphological and structural alterations, known as capacitation. It has been shown that the production of endogenous sperm reactive oxygen species (ROS plays a key role in causing cells to undergo a massive acrosome reaction (AR. Astaxanthin (Asta, a photo-protective red pigment belonging to the carotenoid family, is recognized as having anti-oxidant, anti-cancer, anti-diabetic and anti-inflammatory properties and is present in many dietary supplements. This study evaluates the effect of Asta in a capacitating buffer which induces low ROS production and low percentages of acrosome-reacted cells (ARC. Sperm cells were incubated in the presence or absence of increasing concentrations of Asta or diamide (Diam and analyzed for their ROS production, Tyr-phosphorylation (Tyr-P pattern and percentages of ARC and non-viable cells (NVC. Results show that Asta ameliorated both sperm head Tyr-P and ARC values without affecting the ROS generation curve, whereas Diam succeeded in enhancing the Tyr-P level but only of the flagellum without increasing ARC values. It is suggested that Asta can be inserted in the membrane and therefore create capacitation-like membrane alteration which allow Tyr-P of the head. Once this has occurred, AR can take place and involves a higher numbers of cells.

  5. Physics division annual report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium

  6. Conductive two-dimensional titanium carbide `clay' with high volumetric capacitance

    Science.gov (United States)

    Ghidiu, Michael; Lukatskaya, Maria R.; Zhao, Meng-Qiang; Gogotsi, Yury; Barsoum, Michel W.

    2014-12-01

    Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the `MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a `MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide `clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.

  7. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.

    Science.gov (United States)

    Ghidiu, Michael; Lukatskaya, Maria R; Zhao, Meng-Qiang; Gogotsi, Yury; Barsoum, Michel W

    2014-12-04

    Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.

  8. A realistic quantum capacitance model for quantum Hall edge state based Fabry-Pérot interferometers

    Science.gov (United States)

    Kilicoglu, O.; Eksi, D.; Siddiki, A.

    2017-01-01

    In this work, the classical and the quantum capacitances are calculated for a Fabry-Pérot interferometer operating in the integer quantized Hall regime. We first consider a rotationally symmetric electrostatic confinement potential and obtain the widths and the spatial distribution of the insulating (incompressible) circular strips using a charge density profile stemming from self-consistent calculations. Modelling the electrical circuit of capacitors composed of metallic gates and incompressible/compressible strips, we investigate the conditions to observe Aharonov-Bohm (quantum mechanical phase dependent) and Coulomb blockade (capacitive coupling dependent) effects reflected in conductance oscillations. In a last step, we solve the Schrödinger and the Poisson equations self-consistently in a numerical manner taking into account realistic experimental geometries. We find that, describing the conductance oscillations either by Aharanov-Bohm or Coulomb blockade strongly depends on sample properties also other than size, therefore, determining the origin of these oscillations requires further experimental and theoretical investigation.

  9. Energy from CO2 using capacitive electrodes--theoretical outline and calculation of open circuit voltage.

    Science.gov (United States)

    Paz-Garcia, J M; Schaetzle, O; Biesheuvel, P M; Hamelers, H V M

    2014-03-15

    Recently, a new technology has been proposed for the utilization of energy from CO2 emissions (Hamelers et al., 2014). The principle consists of controlling the dilution process of CO2-concentrated gas (e.g., exhaust gas) into CO2-dilute gas (e.g., air) thereby extracting a fraction of the released mixing energy. In this paper, we describe the theoretical fundamentals of this technology when using a pair of charge-selective capacitive electrodes. We focus on the behavior of the chemical system consisting of CO2 gas dissolved in water or monoethanolamine solution. The maximum voltage given for the capacitive cell is theoretically calculated, based on the membrane potential. The different aspects that affect this theoretical maximum value are discussed.

  10. Fast and Precise 3D Computation of Capacitance of Parallel Narrow Beam MEMS Structures

    CERN Document Server

    Majumdar, N

    2007-01-01

    Efficient design and performance of electrically actuated MEMS devices necessitate accurate estimation of electrostatic forces on the MEMS structures. This in turn requires thorough study of the capacitance of the structures and finally the charge density distribution on the various surfaces of a device. In this work, nearly exact BEM solutions have been provided in order to estimate these properties of a parallel narrow beam structure found in MEMS devices. The effect of three-dimensionality, which is an important aspect for these structures, and associated fringe fields have been studied in detail. A reasonably large parameter space has been covered in order to follow the variation of capacitance with various geometric factors. The present results have been compared with those obtained using empirical parametrized expressions keeping in view the requirement of the speed of computation. The limitations of the empirical expressions have been pointed out and possible approaches of their improvement have been d...

  11. Electrical properties of nanostructured SiN films for MEMS capacitive switches

    Science.gov (United States)

    Koutsoureli, M.; Xavier, S.; Michalas, L.; Lioutas, C.; Bansropun, S.; Papaioannou, G.; Ziaei, A.

    2017-01-01

    The electrical properties of gold nanorods nanostructured silicon nitride films are comprehensively investigated with the aid of metal-insulator-metal capacitors and RF MEMS capacitive switches. Different nanorod diameters and densities were grown on the bottom electrode and with orientation normal to dielectric film surface. A simple physical model, which does not take the effect of electric field fringing into account, was developed to describe both the DC and low frequency electrical properties. It has been shown that the nanorods distribution and dimensions determine the electrical properties as well as the dielectric charging phenomena of the nanostructured films. Finally, in MEMS switches it has been shown that the nanorods presence does not affect the capacitance variance nor the RF characteristics of the device.

  12. CAS Academic Divisions in 2001

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ 1.Election of New Members In 2001, 56 scientists were elected new CAS members, including l0 in the Division of Mathematics & Physics, 10 in the Division of Chemistry, 12 in the Division of Biology, nine in the Division of Earth Sciences and 15 in the Division of Engineering Sciences.The average age of the new members is 60.4, and the youngest one is 38 years old. They are now working in nine provinces or municipalities, or governmental departments under the State Council, including 23 outstanding experts working for the CAS.

  13. Leaf thermal and hydraulic capacitances - structural safeguards for rapid ambient fluctuations

    Science.gov (United States)

    Schymanski, S. J.; Or, D.; Zwieniecki, M.

    2011-12-01

    Leaves may be subjected to rapidly fluctuating irradiation or thermal conditions due to motion of sun flecks and clouds or passage of warm and dry wind gusts. Given a stomatal characteristic time scale (~5 min) for adjusting transpiration flux, fluctuations of environmental conditions at shorter time scales (~1 min) could push leaf hydraulic and thermal status beyond its operational limits resulting in xylem cavitation or overheating. As active stomatal protection may not be adequate, we propose that leaf thermal and hydraulic capacitances and hence leaf specific mass (hydrated thickness) provide passive protection and play a critical role for autonomous and intrinsic capacitive-based responses to rapid fluctuations. For example, a simple variable leaf mass per unit area can affect both thermal and hydraulic capacitances. Thus a thin leaf (0.2 mm) exposed to a sunfleck can experience an increase in leaf temperature by 20K in the order of 3 minutes, i.e. before stomata can activate evaporative cooling. Increasing leaf thickness can be an effective measure to increase the buffer for such environmental fluctuations, so that slower regulatory measures such as stomatal adjustments can take over before detrimental effects take place. Systematic measurements of thermal changes in response to step changes in radiation conditions were obtained using laser illumination and infra-red thermal imaging of leaf laser-illuminated area across a wide range of leaf morphologies from major plant divisions (ferns, gymnosperms and angiosperms). Results confirm inverse relationships between leaf thickness and temperature rise (measured as steady state temperature increase). Hydraulic impacts of such structural capacitance on xylem function will be discussed.

  14. Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes

    Science.gov (United States)

    Hu, Xuedong; You, J. Q.; Nori, Franco

    2005-03-01

    Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in a Cooper-pair box (CPB). Here we discuss an encoding approachootnotetextJ.Q. You, X.Hu, and F. Nori, cond-mat/0407423. to control the decoherence effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system has a low-decoherence subspace of two states, for which we calculate the dephasing and relaxation rates using a master equation approach. Our results show that the inter-box Coulomb correlation can significantly suppress decoherence of this two-level system by reducing the strength of the system-environment interaction, making it a promising candidate as a logical qubit, encoded using two CPBs.

  15. Neuron division or enucleation.

    Science.gov (United States)

    Sotnikov, O S; Laktionova, A A; Solovieva, I A; Krasnova, T V

    2010-10-01

    The classical Bielschowsky-Gross neurohistological method was used to reproduce all the morphological phenomena interpreted by many authors as signs of neuron division, budding, and fission. It is suggested that these signs are associated with the effects of enucleation, which occurs in many cells of other tissue types in response to a variety of chemical and physical treatments. Studies were performed using neurons isolated from the mollusk Lymnaea stagnalis and exposed in tissue culture to the actin microfilament inhibitor cytochalasin B. Phase contrast time-lapse video recording over periods of 4-8 h demonstrated nuclear displacement, ectopization, and budding, to the level of almost complete fission of the neuron body. This repeats the pattern seen in static fixed preparations in "normal" conditions and after different experimental treatments. Budding of the cytoplasm was also sometimes seen at the early stages of the experiments. Control experiments in which cultured neurons were exposed to the solvent for cytochalasin B, i.e., dimethylsulfoxide (DMSO), did not reveal any changes in neurons over a period of 8 h. We take the view that the picture previously interpreted as neuron division and fission can be explained in terms of the inhibition of actin microfilaments, sometimes developing spontaneously in cells undergoing individual metabolic changes preventing the maintenance of cytoskeleton stability.

  16. Preparation and electrochemical capacitance of cobalt oxide (Co{sub 3}O{sub 4}) nanotubes as supercapacitor material

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juan [Jiangsu Polytechnic University, Changzhou 213164 (China); Qualtec Co., Ltd., Changzhou 213164 (China); Gao Lan; Cao Jianyu; Wang Wenchang [Jiangsu Polytechnic University, Changzhou 213164 (China); Chen Zhidong, E-mail: cjytion3@163.co [Jiangsu Polytechnic University, Changzhou 213164 (China) and Qualtec Co., Ltd., Changzhou 213164 (China)

    2010-12-30

    Cobalt oxide (Co{sub 3}O{sub 4}) nanotubes have been successfully synthesized by chemically depositing cobalt hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500 {sup o}C. The synthesized nanotubes have been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrochemical capacitance behavior of the Co{sub 3}O{sub 4} nanotubes electrode was investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 6 mol L{sup -1} KOH solution. The electrochemical data demonstrate that the Co{sub 3}O{sub 4} nanotubes display good capacitive behavior with a specific capacitance of 574 F g{sup -1} at a current density of 0.1 A g{sup -1} and a good specific capacitance retention of ca. 95% after 1000 continuous charge-discharge cycles, indicating that the Co{sub 3}O{sub 4} nanotubes can be promising electroactive materials for supercapacitor.

  17. Deconstructing Calculation Methods, Part 4: Division

    Science.gov (United States)

    Thompson, Ian

    2008-01-01

    In the final article of a series of four, the author deconstructs the primary national strategy's approach to written division. The approach to division is divided into five stages: (1) mental division using partition; (2) short division of TU / U; (3) "expanded" method for HTU / U; (4) short division of HTU / U; and (5) long division. [For part…

  18. Tunable Lowpass Filter with RF MEMS Capacitance and Transmission Line

    Directory of Open Access Journals (Sweden)

    Shimul C. Saha

    2012-01-01

    Full Text Available We have presented an RF MEMS tuneable lowpass filter. Both distributed transmission lines and RF MEMS capacitances were used to replace the lumped elements. The use of RF MEMS capacitances gives the flexibility of tuning the cutoff frequency of the lowpass filter. We have designed a low-pass filter at 9–12 GHz cutoff frequency using the theory of stepped impedance transmission lines. A prototype of the filter has been fabricated using parallel plate capacitances. The variable shunt capacitances are formed by a combination of a number of parallel plate RF MEMS capacitances. The cutoff frequency is tuned from C to X band by actuating different combinations of parallel capacitive bridges. The measurement results agree well with the simulation result.

  19. Numerical analysis of capacitive pressure micro-sensors

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiaomin; LI; Mingxuan; WANG; Chenghao

    2005-01-01

    Pseudo-spectral method is used to numerically model the diaphragm deflection of capacitive pressure micro-sensor under uniform load. The relationship between the capacitance of the micro-sensor and the load is then analyzed after the description of the computational principle. For normal mode micro-sensor, the tensile force on the diaphragm can be ignored and thereby the capacitance increases linearly with the load increase only when the load is so small that the resultant deflection is less than the diaphragm thickness. The linear relationship between the capacitance and the load turns to be nonlinear thereafter and the capacitance rises dramatically with the constant increase of the load. For touch mode micro-sensor, an algorithm to determine the touch radius of the diaphragm and substrate is presented and the curve of capacitance versus load is shown on the numerical results laying a theoretical foundation for micro-sensor design.

  20. CMOS MEMS capacitive absolute pressure sensor

    Science.gov (United States)

    Narducci, M.; Yu-Chia, L.; Fang, W.; Tsai, J.

    2013-05-01

    This paper presents the design, fabrication and characterization of a capacitive pressure sensor using a commercial 0.18 µm CMOS (complementary metal-oxide-semiconductor) process and postprocess. The pressure sensor is capacitive and the structure is formed by an Al top electrode enclosed in a suspended SiO2 membrane, which acts as a movable electrode against a bottom or stationary Al electrode fixed on the SiO2 substrate. Both the movable and fixed electrodes form a variable parallel plate capacitor, whose capacitance varies with the applied pressure on the surface. In order to release the membranes the CMOS layers need to be applied postprocess and this mainly consists of four steps: (1) deposition and patterning of PECVD (plasma-enhanced chemical vapor deposition) oxide to protect CMOS pads and to open the pressure sensor top surface, (2) etching of the sacrificial layer to release the suspended membrane, (3) deposition of PECVD oxide to seal the etching holes and creating vacuum inside the gap, and finally (4) etching of the passivation oxide to open the pads and allow electrical connections. This sensor design and fabrication is suitable to obey the design rules of a CMOS foundry and since it only uses low-temperature processes, it allows monolithic integration with other types of CMOS compatible sensors and IC (integrated circuit) interface on a single chip. Experimental results showed that the pressure sensor has a highly linear sensitivity of 0.14 fF kPa-1 in the pressure range of 0-300 kPa.

  1. Capacitive tool standoff sensor for dismantlement tasks

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, D.J.; Weber, T.M. [Sandia National Labs., Albuquerque, NM (United States); Liu, J.C. [Univ. of Illinois, Urbana, IL (United States)

    1996-12-31

    A capacitive sensing technology has been applied to develop a Standoff Sensor System for control of robotically deployed tools utilized in Decontamination and Dismantlement (D and D) activities. The system combines four individual sensor elements to provide non-contact, multiple degree-of-freedom control of tools at distances up to five inches from a surface. The Standoff Sensor has been successfully integrated to a metal cutting router and a pyrometer, and utilized for real-time control of each of these tools. Experiments demonstrate that the system can locate stationary surfaces with a repeatability of 0.034 millimeters.

  2. Magnetic field tunable capacitive dielectric:ionic-liquid sandwich composites

    Science.gov (United States)

    Wu, Ye; Bhalla, Amar; Guo, Ruyan

    2016-03-01

    We examined the tunability of the capacitance for GaFeO3-ionic liquid-GaFeO3 composite material by external magnetic and electric field. Up to 1.6 folds of capacitance tunability could be achieved at 957 kHz with voltage 4 V and magnetic field 0.02 T applied. We show that the capacitance enhancement is due to the polarization coupling between dielectric layer and ionic liquid layer.

  3. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  4. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time.

  5. Circuit analysis and simulation of an ultrahigh-frequency capacitance sensor for scanning capacitance microscopy

    Science.gov (United States)

    Yang, Jing; Postula, A.; Bialkowski, M.

    2004-03-01

    Quantitative two-dimensional dopant profiling tools are urgently needed for nowadays semiconductor industry. Scanning Capacitance Microscopy (SCM) holds most promise to become such a tool. The key component of SCM is an ultra high frequency (UHF) capacitance sensor. The output of the sensor has been approximately regarded as dC/dV, the derivative of the capacitance between the SCM tip and the sample versus the applied bias voltage. The SCM dopant profiling involves extracting the dopant profile from the SCM signal using analytic or numerical simulation models of Metal-Oxide-Semiconductor physics. To achieve a quantitative SCM dopant profiling, the operational principle of the whole SCM measurement has to be well understood and correctly included in those models. Recently, experimental evidences show the SCM signal is dramatically affected by many SCM experimental factors, including the behavior of the UHF capacitance sensor. However, till now, very little research has been reported on the behavior of the sensor in SCM measurement of semiconductors. In this paper, we derive an analytic expression of the sensor output, a circuit simulation model of the sensor is established using Advanced Design System 2003, and the dependences of the sensor output on the SCM operational factors are simulated.

  6. Physics Division annual report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.

    2006-04-06

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne

  7. A capacitive biosensor based on an interdigitated electrode with nanoislands.

    Science.gov (United States)

    Jung, Ha-Wook; Chang, Young Wook; Lee, Ga-yeon; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2014-09-24

    A capacitive biosensor based on an interdigitated electrode (IDE) with nanoislands was developed for label-free detection of antigen-antibody interactions. To enable sensitive capacitive detection of protein adsorption, the nanoislands were fabricated between finger electrodes of the IDE. The effect of the nanoislands on the sensitive capacitive measurement was estimated using horseradish peroxidase (HRP) as a model protein. Additionally, a parylene-A film was coated on the IDE with nanoislands to improve the efficiency of protein immobilization. By using HRP and hepatitis B virus surface antigen (HBsAg) as model analytes, the effect of the parylene-A film on the capacitive detection of protein adsorption was demonstrated.

  8. Bipolarity and the relational division

    OpenAIRE

    Tamani, Nouredine; Lietard, Ludovic; Rocacher, Daniel

    2011-01-01

    International audience; A fuzzy bipolar relation is a relation defined by a fuzzy bipolar condition, which could be interpreted as an association of a constraint and a wish. In this context, the extension of the relational division operation to bipolarity is studied in this paper. Firstly, we define a bipolar division when the involved relations are crisp. Then, we define, from the semantic point of view, several forms of bipolar division when the involved relations are defined by fuzzy bipol...

  9. Individual and competitive removal of heavy metals using capacitive deionization.

    Science.gov (United States)

    Huang, Zhe; Lu, Lu; Cai, Zhenxiao; Ren, Zhiyong Jason

    2016-01-25

    This study presents the viability and preference of capacitive deionization (CDI) for removing different heavy metal ions in various conditions. The removal performance and mechanisms of three ions, cadmium (Cd(2+)), lead (Pb(2+)) and chromium (Cr(3+)) were investigated individually and as a mixture under different applied voltages and ion concentrations. It was found that CDI could effectively remove these metals, and the performance was positively correlated with the applied voltage. When 1.2 V was applied into solution containing 0.5mM individual ions, the Cd(2+), Pb(2+), and Cr(3+) removal was 32%, 43%, and 52%, respectively, and the electrosorption played a bigger role in Cd(2+) removal than for the other two ions. Interestingly, while the removal of Pb(2+) and Cr(3+) remained at a similar level of 46% in the mixture of three ions, the Cd(2+) removal significantly decreased to 14%. Similar patterns were observed when 0.05 mM was used to simulate natural contaminated water condition, but the removal efficiencies were much higher, with the removal of Pb(2+), Cr(3+), and Cd(2+) increased to 81%, 78%, and 42%, respectively. The low valence charge and lack of physical sorption of Cd(2+) were believed to be the reason for the removal behavior, and advanced microscopic analysis showed clear deposits of metal ions on the cathode surface after operation.

  10. Security and Emergency Management Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Security and Emergency Management Division identifies vulnerabilities, risks, and opportunities to improve the security of transportation systems, critical...

  11. Infrastructure Engineering and Deployment Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Infrastructure Engineering and Deployment Division advances transportation innovation by being leaders in infrastructure technology, including vehicles and...

  12. Systems Safety and Engineering Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Systems Safety and Engineering Division conducts engineering, research, and analysis to improve transportation safety, capacity, and resiliency. We provide...

  13. Situational Awareness and Logistics Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Situational Awareness and Logistics Division researches, develops, implements, and analyzes advanced systems to protect, enhance, and ensure resilienceof the...

  14. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  15. Physics division annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example

  16. Nanostructured conducting polymer based reagentless capacitive immunosensor.

    Science.gov (United States)

    Bandodkar, Amay Jairaj; Dhand, Chetna; Arya, Sunil K; Pandey, M K; Malhotra, Bansi D

    2010-02-01

    Nanostructured polyaniline (PANI) film electrophoretically fabricated onto indium-tin-oxide (ITO) coated glass plate has been utilized for development of an immunosensor based on capacitance change of a parallel plate capacitor (PPC) by covalently immobilizing anti-human IgG (Anti-HIgG) using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide chemistry. These fabricated PANI/ITO and Anti-HIgG/PANI/ITO plates have been characterized using scanning electron microscopy, cyclic voltammetry, differential pulse voltammetry and Fourier transform infra-red studies. The capacitance measurements indicate that dielectric medium of this biologically modified PPC (Anti-HIgG/PANI/ITO) is sensitive to HIgG in 5 - 5 x 10(5) ng mL(-1) range and has lower detection limit of 1.87 ng mL(-1). The observed results reveal that this Anti-HIgG modified PPC can be used as a robust, easy-to-use, reagentless, sensitive and selective immunosensor for estimation of human IgG.

  17. THERMAL DRIFT CHARACTERISTICS OF CAPACITIVE PRESSURE SENSORS

    Directory of Open Access Journals (Sweden)

    ABDELAZIZ BEDDIAF

    2016-03-01

    Full Text Available The capacitive pressure sensors based on silicon are characterized by their very high sensitivities and their low power consumption. Nevertheless, their thermal behavior remains more or less unpredictable because they can indicate very high thermal coefficients. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics drift. In this study, we modeled the thermal behavior of this sensors, using Finite Element Analysis (FEA made in COMSOL. The model solved by COMSOL environment takes into account the entire sensor and thermal effects due to the temperature considering the materials’ properties, the geometric shape and also the heat transfer mechanisms. By COMSOL we determine how the temperature affects the sensor during the manufacturing process. For that end, we calculated the thermal drift of capacitance at rest, the thermal coefficients and we compared them with experimental results to validate our model. Further, we studied the thermal drift of sensor characteristics both at rest and under constant and uniform pressure. Further, our study put emphasis on the geometric influence parameters on these characteristics to optimize the sensor performance. Finally, this study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the geometrical parameters.

  18. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  19. Particle-in-Cell/Test-Particle Simulations of Technological Plasmas: Sputtering Transport in Capacitive Radio Frequency Discharges

    OpenAIRE

    Trieschmann, Jan; Schmidt, Frederik; Mussenbrock, Thomas

    2016-01-01

    The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kinetic approach is actually needed and which numerical concepts allow for the inherent nonequilibrium behavior of the charged and neutral particles. At the example of a generic sputtering discharge both the fundamentals of the applied Monte Carlo me...

  20. An associative capacitive network based on nanoscale complementary resistive switches for memory-intensive computing.

    Science.gov (United States)

    Kavehei, Omid; Linn, Eike; Nielen, Lutz; Tappertzhofen, Stefan; Skafidas, Efstratios; Valov, Ilia; Waser, Rainer

    2013-06-07

    We report on the implementation of an Associative Capacitive Network (ACN) based on the nondestructive capacitive readout of two Complementary Resistive Switches (2-CRSs). ACNs are capable of performing a fully parallel search for Hamming distances (i.e. similarity) between input and stored templates. Unlike conventional associative memories where charge retention is a key function and hence, they require frequent refresh cycles, in ACNs, information is retained in a nonvolatile resistive state and normal tasks are carried out through capacitive coupling between input and output nodes. Each device consists of two CRS cells and no selective element is needed, therefore, CMOS circuitry is only required in the periphery, for addressing and read-out. Highly parallel processing, nonvolatility, wide interconnectivity and low-energy consumption are significant advantages of ACNs over conventional and emerging associative memories. These characteristics make ACNs one of the promising candidates for applications in memory-intensive and cognitive computing, switches and routers as binary and ternary Content Addressable Memories (CAMs) and intelligent data processing.

  1. Studying tantalum-based high-κ dielectrics in terms of capacitance measurements

    Science.gov (United States)

    Stojanovska-Georgievska, L.

    2016-08-01

    The trend of rapid development of microelectronics towards nano-miniaturization dictates the inevitable introduction of dielectrics with high permittivity (high-κ dielectrics), as alternative material for replacing SiO2. Therefore, studying these materials in terms of their characteristics, especially in terms of reliability, is of great importance for proper design and manufacture of devices. In this paper, alteration of capacitance in different frequency regimes is used, in order to determine the overall behavior of the material. Samples investigated here are MOS structures containing nanoscale tantalum based dielectrics. Layers of pure Ta2O5, but also Hf and Ti doped tantalum pentoxide, i.e. Ta2O5:Hf and Ta2O5:Ti are studied here. All samples are considered as ultrathin oxide layers with thicknesses less than 15 nm, obtained by radio frequent sputtering on p-type silicon substrate. Measuring capacitive characteristics enables determination of several specific parameters of the structures. The obtained results for capacitance in accumulation, the thickness and time evolution of the interfacial SiO2 layer, values of flatband and threshold voltage, density of oxide charges, interfacial and border states, and reliability properties favor the possibilities for more intensive use of studied materials in new nanoelectronic technologies.

  2. Reinterpretation of defect levels derived from capacitance spectroscopy of CIGSe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Igalson, Malgorzata [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL 00 662 Warszawa (Poland)], E-mail: igalson@if.pw.edu.pl; Urbaniak, Aleksander [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, PL 00 662 Warszawa (Poland); Edoff, Marika [Angstroem Solar Center, Uppsala University, P.O. Box 534, SE-751 21, Uppsala (Sweden)

    2009-02-02

    In this work we make an attempt to clarify ambiguities and to present our present understanding of defects and defect-related phenomena affecting the capacitance characteristics of Cu(In,Ga)Se{sub 2}-based solar cells. We discuss deep defect levels derived from admittance and deep level transient spectroscopy, as well as shallow levels affecting the charge distributions by capacitance-voltage profiling. The discussion includes two types of metastable effects affecting capacitance characteristics: one induced at room temperature by light or voltage bias, and one created at low temperature by red illumination of reverse-biased junction (ROB effect). Recent theoretical achievements on negative-U properties of such intrinsic defects as selenium vacancies and In{sub Cu} antisites are used to explain the experimental data. We show that the most prominent level in the admittance spectra is due to the response of interface states combined with contribution of deep V{sub Se}-V{sub Cu}{sup -/2-} acceptor level. We attribute the ROB metastability to the relaxation of In{sub Cu} defects upon electron capture. Finally we discuss the influence of these defects on the device efficiency.

  3. Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage

    Science.gov (United States)

    Li, Zijiong; Yang, Baocheng; Su, Yuling; Wang, Haiyan; Groeper, Jonathan

    2016-01-01

    We have demonstrated a novel three-dimensional (3D) architecture of a graphene/carbon nanotube (G-CNT) hybrid synthesized at large scale within just 5 s via a simple microwave-heating method without the usage of any other conducting or expanding agent for the first time. The carbon composites obtained consist of evenly grown CNTs with an average diameter of about 15 nm on the surface of graphene nanosheets. The G-CNT hybrid exhibits enhanced electrochemical performance for both aqueous and organic supercapacitor devices. Particularly, the G-CNT electrodes demonstrate an enhanced specific capacitance of 361 F g-1 at a current density of 1.1 A g-1 in an aqueous electrolyte and a volumetric capacitance of 254 F cm-3 in an organic electrolyte. They also display excellent cycle stability with nearly 91.2% of the initial capacitance retained after 10 000 charging-discharging cycles at a current density of 15 A g-1. This demonstrates that the developed composites have potential applications in supercapacitors and other energy storage devices.

  4. Preparation and capacitive properties of lithium manganese oxide intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fang; Xie, Yibing, E-mail: ybxie@seu.edu.cn [Southeast University, School of Chemistry and Chemical Engineering (China)

    2015-12-15

    Lithium manganese oxide intercalation compound (Li{sub 0.7}MnO{sub 2}) supported on titanium nitride nanotube array (TiN NTA) was applied as cathode electrode material for lithium-ion supercapacitor application. Li{sub 0.7}MnO{sub 2}/TiN NTA was fabricated through electrochemical deposition and simultaneous intercalation process using TiN NTA as a substrate, Mn(CH{sub 3}COO){sub 2} as manganese source, and Li{sub 2}SO{sub 4} as lithium source. The morphology and microstructure of the Li{sub 0.7}MnO{sub 2}/TiN NTA were characterized by scanning electron microscopy and X-ray diffraction analysis. The electrochemical performance of the Li{sub 0.7}MnO{sub 2}/TiN NTA was investigated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge measurements. Li{sub 0.7}MnO{sub 2}/TiN NTA exhibited higher capacitive performance in Li{sub 2}SO{sub 4} electrolyte solution rather than that in Na{sub 2}SO{sub 4} electrolyte solution, which was due to the different intercalation effects of lithium-ion and sodium-ion. The specific capacitance was improved from 503.3 F g{sup −1} for MnO{sub 2}/TiN NTA to 595.0 F g{sup −1} for Li{sub 0.7}MnO{sub 2}/TiN NTA at a current density of 2 A g{sup −1} in 1.0 M Li{sub 2}SO{sub 4} electrolyte solution, which was due to the intercalation of lithium-ion for Li{sub 0.7}MnO{sub 2}. Li{sub 0.7}MnO{sub 2}/TiN NTA also kept 90.4 % capacity retention after 1000 cycles, presenting a good cycling stability. An all-solid-state lithium-ion supercapacitor was fabricated and showed an energy density of 82.5 Wh kg{sup −1} and a power density of 10.0 kW kg{sup −1}.

  5. Impact of the Capacitance of the Dielectric on the Contact Resistance of Organic Thin-Film Transistors

    Science.gov (United States)

    Zojer, K.; Zojer, E.; Fernandez, A. F.; Gruber, M.

    2015-10-01

    As the operation of organic thin-film transistors relies exclusively on injected charge carriers, the gate-induced field assumes a dual role: It is responsible for charge-carrier accumulation and, provided that an injection barrier at the contact-semiconductor interface is present, aids charge-carrier injection across this barrier. Besides the gate-source bias, the thickness of the insulator and its dielectric constant influence the gate field. Here, we explore the impact of the capacitance of the gate dielectric on the performance of organic thin-film transistors utilizing drift-diffusion-based simulations comprising a self-consistent consideration of injection. Upon varying the capacitance of the insulating layer, we observe a conceptually different behavior for top-contact and bottom-contact architectures. Top-contact devices possess a nearly constant contact voltage in the linear regime leading to an apparent mobility lowering. In strong contrast, bottom-contact architectures possess non-Ohmic contact resistances in the linear regime due to a contact voltage whose value depends strongly on both the gate-source bias and the capacitance. Counterintuitively, this is accompanied by a mobility being apparently unaffected by the substantial contact resistance. Additionally, threshold-voltage shifts appear due to gate-limited injection. The latter is particularly dominant in bottom-contact architectures, where the threshold voltages steeply increase with the thickness of the insulating layer.

  6. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  7. 78 FR 17431 - Antitrust Division

    Science.gov (United States)

    2013-03-21

    ... January 2, 2013 (78 FR 117). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division. BILLING...) of the Act on July 30, 2001 (66 FR 39336). The last notification was filed with the Department on... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of...

  8. 77 FR 54611 - Antitrust Division

    Science.gov (United States)

    2012-09-05

    ... on June 8, 2012 (77 FR 34067). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division... Section 6(b) of the Act on June 30, 2000 (65 FR 40693). The last notification was filed with the... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of...

  9. Inversive meadows and divisive meadows

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2011-01-01

    Inversive meadows are commutative rings with a multiplicative identity element and a total multiplicative inverse operation satisfying 0−1=0. Divisive meadows are inversive meadows with the multiplicative inverse operation replaced by a division operation. We give finite equational specifications of

  10. Lightning Talks 2015: Theoretical Division

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  11. Developmental control of cell division

    NARCIS (Netherlands)

    Boxem, M. (Mike)

    2002-01-01

    During development of multicellular organisms, cell divisions need to be coordinated with the developmental program of the entire organism. Although the mechanisms that drive cells through the division cycle are well understood, very little is known about the pathways that link extracellular signals

  12. Electric field theory and the fallacy of void capacitance

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    The concept of the capacitance of a gaseous void is discussed as applied to electrical insulation science. The most pertinent aspect of the capacitance definition is that of reference to a single-valued potential difference between surfaces. This implies that these surfaces must be surfaces...

  13. Capacitance tuning of nanoscale split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Xiao, Sanshui; Mortensen, Niels Asger;

    2010-01-01

    In this paper, we investigate the capacitance tuning of nanoscale split-ring resonators. Based on a simple LC circuit model (LC-model), we derive an expression where the inductance is proportional to the area while the capacitance reflects the aspect ratio of the slit. The resonance frequency may...

  14. Capacitance tuning of nanoscale split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mortensen, Asger; Kristensen, Anders

    2009-01-01

    We investigate the capacitance tuning of nanoscale split-ring resonators. Based on a simple inductor-capacitor circuit model, we derive an expression, where the inductance is proportional to the area while the capacitance reflects the aspect ratio of the slit. The resonance frequency may thus be ...

  15. Distributed Capacitance of Coaxial Line With Perturbed Walls

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Perturbation method of boundary geometry(PMOBG) used in Laplacian problems is dealt with and the three-term perturbation expression of distributed capacitance of a coaxial line with perturbed walls is obtained. As an example,four-order expression of distributed capacitance of a elliptic coaxial line with small eccentricity is given.

  16. Nanoscale capacitance: A quantum tight-binding model

    Science.gov (United States)

    Zhai, Feng; Wu, Jian; Li, Yang; Lu, Jun-Qiang

    2017-01-01

    Landauer-Buttiker formalism with the assumption of semi-infinite electrodes as reservoirs has been the standard approach in modeling steady electron transport through nanoscale devices. However, modeling dynamic electron transport properties, especially nanoscale capacitance, is a challenging problem because of dynamic contributions from electrodes, which is neglectable in modeling macroscopic capacitance and mesoscopic conductance. We implement a self-consistent quantum tight-binding model to calculate capacitance of a nano-gap system consisting of an electrode capacitance C‧ and an effective capacitance Cd of the middle device. From the calculations on a nano-gap made of carbon nanotube with a buckyball therein, we show that when the electrode length increases, the electrode capacitance C‧ moves up while the effective capacitance Cd converges to a value which is much smaller than the electrode capacitance C‧. Our results reveal the importance of electrodes in modeling nanoscale ac circuits, and indicate that the concepts of semi-infinite electrodes and reservoirs well-accepted in the steady electron transport theory may be not applicable in modeling dynamic transport properties.

  17. Characterizing Inductive and Capacitive Nonlinear RLC Circuits : A Passivity Test

    NARCIS (Netherlands)

    García-Canseco, Eloísa; Jeltsema, Dimitri; Ortega, Romeo; Scherpen, Jacquelien M.A.

    2004-01-01

    Linear time-invariant RLC circuits are said to be inductive (capacitive) if the current waveform in sinusoidal steady-state has a negative (resp., positive) phase shift with respect to the voltage. Furthermore, it is known that the circuit is inductive (capacitive) if and only if the magnetic energy

  18. Effect of estrogens on boar sperm capacitation in vitro

    Directory of Open Access Journals (Sweden)

    Ded Lukas

    2010-07-01

    Full Text Available Abstract Background Mammalian sperm must undergo a series of controlled molecular processes in the female reproductive tract called capacitation before they are capable of penetrating and fertilizing the egg. Capacitation, as a complex biological process, is influenced by many molecular factors, among which steroidal hormone estrogens play their role. Estrogens, present in a high concentration in the female reproductive tract are generally considered as primarily female hormones. However, there is increasing evidence of their important impact on male reproductive parameters. The purpose of this study is to investigate the effect of three natural estrogens such as estrone (E1, 17beta-estradiol (E2 and estriol (E3 as well as the synthetical one, 17alpha-ethynylestradiol (EE2 on boar sperm capacitation in vitro. Methods Boar sperm were capacitated in vitro in presence of estrogens. Capacitation progress in control and experimental samples was analyzed by flow cytometry with the anti-acrosin monoclonal antibody (ACR.2 at selected times of incubation. Sperm samples were analyzed at 120 min of capacitation by CTC (chlortetracycline assay, immunocytochemistry and flow cytometry with anti-acrosin ACR.2 antibody. Furthermore, sperm samples and capacitating media were analyzed by immunocytochemistry, ELISA with the ACR.2 antibody, and the acrosin activity assay after induced acrosomal reaction (AR. Results Estrogens stimulate sperm capacitation of boar sperm collected from different individuals. The stimulatory effect depends on capacitation time and is highly influenced by differences in the response to estrogens such as E2 by individual animals. Individual estrogens have relatively same effect on capacitation progress. In the boar samples with high estrogen responsiveness, estrogens stimulate the capacitation progress in a concentration-dependent manner. Furthermore, estrogens significantly increase the number of acrosome-reacted sperm after zona

  19. Circuit Modeling of a MEMS Varactor Including Dielectric Charging Dynamics

    Science.gov (United States)

    Giounanlis, P.; Andrade-Miceli, D.; Gorreta, S.; Pons-Nin, J.; Dominguez-Pumar, M.; Blokhina, E.

    2016-10-01

    Electrical models for MEMS varactors including the effect of dielectric charging dynamics are not available in commercial circuit simulators. In this paper a circuit model using lumped ideal elements available in the Cadence libraries and a basic Verilog-A model, has been implemented. The model has been used to simulate the dielectric charging in function of time and its effects over the MEMS capacitance value.

  20. Improving the low-temperature capacitance of CoNiAl three-component layered double hydroxide in a redox electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Su, Linghao, E-mail: qauslh@163.com; Song, Zuwei; Lu, Lihua; Pang, Guanglong

    2013-09-01

    Graphical abstract: The specific capacitance of CoNiAl layered double hydroxide in 6 M KOH reduces sharply from room temperature to −20 °C, which is effectively enhanced by adding redox pair Fe(CN){sub 6}{sup 3−}/Fe(CN){sub 6}{sup 4−} in the electrolyte. - Highlights: • CoNiAl layered double hydroxide is synthesized by homogeneous precipitation. • The specific capacitance reduces sharply with the decrease of temperature. • At −20 °C the specific capacitance is increased by 178% in a redox electrolyte. - Abstract: CoNiAl three-component layered double hydroxide with a lamellar structure similar to hydrotalcite-like compounds is synthesized via homogeneous precipitation and the effect of temperature on its capacitive performances in 6 M KOH is investigated. Electrochemical tests show its specific capacitance reduces sharply with the decrease of temperature from 18 to −20 °C. At −20 °C an increase of specific capacitance by 178% is achieved by adding redox pair Fe(CN){sub 6}{sup 3−}/Fe(CN){sub 6}{sup 4−} as the electron shuttle in the electrolyte due to their cooperation with the electrode reaction during the charge/discharge processes.

  1. Capacitated dynamic lot sizing with capacity acquisition

    DEFF Research Database (Denmark)

    Li, Hongyan; Meissner, Joern

    2011-01-01

    batch, along with inventory carrying costs. The production per period is limited by a capacity restriction. The underlying capacity must be purchased up front for the upcoming season and remains constant over the entire season. We assume that the capacity acquisition cost is smooth and convex......One of the fundamental problems in operations management is determining the optimal investment in capacity. Capacity investment consumes resources and the decision, once made, is often irreversible. Moreover, the available capacity level affects the action space for production and inventory...... planning decisions directly. In this article, we address the joint capacitated lot-sizing and capacity-acquisition problems. The firm can produce goods in each of the finite periods into which the production season is partitioned. Fixed as well as variable production costs are incurred for each production...

  2. Capacitated Dynamic Lot Sizing with Capacity Acquisition

    DEFF Research Database (Denmark)

    Li, Hongyan; Meissner, Joern

    with inventory carrying costs. The production per period limited by a capacity restriction. The underlying capacity must be purchased up front for the upcoming season and remains constant over the entire season. We assume that the capacity acquisition cost is smooth and convex. For this situation, we develop......One of the fundamental problems in operations management is to determine the optimal investment in capacity. Capacity investment consumes resources and the decision is often irreversible. Moreover, the available capacity level affects the action space for production and inventory planning decisions...... directly. In this paper, we address the joint capacitated lot sizing and capacity acquisition problem. The firm can produce goods in each of the finite periods into which the production season is partitioned. Fixed as well as variable production costs are incurred for each production batch, along...

  3. Fund allocation using capacitated vehicle routing problem

    Science.gov (United States)

    Mamat, Nur Jumaadzan Zaleha; Jaaman, Saiful Hafizah; Ahmad, Rokiah Rozita; Darus, Maslina

    2014-09-01

    In investment fund allocation, it is unwise for an investor to distribute his fund into several assets simultaneously due to economic reasons. One solution is to allocate the fund into a particular asset at a time in a sequence that will either maximize returns or minimize risks depending on the investor's objective. The vehicle routing problem (VRP) provides an avenue to this issue. VRP answers the question on how to efficiently use the available fleet of vehicles to meet a given service demand, subjected to a set of operational requirements. This paper proposes an idea of using capacitated vehicle routing problem (CVRP) to optimize investment fund allocation by employing data of selected stocks in the FTSE Bursa Malaysia. Results suggest that CRVP can be applied to solve the issue of investment fund allocation and increase the investor's profit.

  4. Creatinine Diffusion Modeling in Capacitive Sensors

    Science.gov (United States)

    Mohabbati-Kalejahi, Elham; Azimirad, Vahid; Bahrami, Manouchehr

    2016-12-01

    In this paper, creatinine diffusion in capacitive sensors is discussed. The factors influencing the response time of creatinine biosensors are mathematically formulated and then three novel approaches for decreasing the response time are presented. At first, a piezoelectric actuator is used to vibrate the microtube that contains the blood sample, in order to reduce the viscosity of blood, and thus to increase the coefficient of diffusion. Then, the blood sample is assumed to be pushed through a porous medium, and the relevant conditions are investigated. Finally, the effect of the dentate shape of dielectric on response time is studied. The algorithms and the mathematical models are presented and discussed, and the results of simulations are illustrated. The response times for the first, second and third method are 60, 0.036 and about 31 s, respectively. It is also found that pumping results in very fast responses.

  5. [Wireless ECG measurement system with capacitive coupling].

    Science.gov (United States)

    Aleksandrowicz, Adrian; Walter, Marian; Leonhardt, Steffen

    2007-04-01

    This paper describes a measurement system that captures an electrocardiogram (ECG) using capacitively coupled electrodes. The measurement system was integrated into an off-the-shelf office chair (so-called "Aachen SmartChair"). Whereas for classical ECG measurement adhesive is used to attach conductively coupled electrodes to bare skin, the system presented allows ECG measurement through clothing without direct skin contact. Furthermore, a ZigBee communication module was integrated to allow wireless transmission of ECG data to a PC or an ICU patient monitor. For system validation, classical ECG using conductive electrodes was obtained simultaneously. First measurement results, including variations of cloth thickness and material, are presented and some of the system-specific problems of this approach are discussed.

  6. Physics Division computer facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cyborski, D.R.; Teh, K.M.

    1995-08-01

    The Physics Division maintains several computer systems for data analysis, general-purpose computing, and word processing. While the VMS VAX clusters are still used, this past year saw a greater shift to the Unix Cluster with the addition of more RISC-based Unix workstations. The main Divisional VAX cluster which consists of two VAX 3300s configured as a dual-host system serves as boot nodes and disk servers to seven other satellite nodes consisting of two VAXstation 3200s, three VAXstation 3100 machines, a VAX-11/750, and a MicroVAX II. There are three 6250/1600 bpi 9-track tape drives, six 8-mm tapes and about 9.1 GB of disk storage served to the cluster by the various satellites. Also, two of the satellites (the MicroVAX and VAX-11/750) have DAPHNE front-end interfaces for data acquisition. Since the tape drives are accessible cluster-wide via a software package, they are, in addition to replay, used for tape-to-tape copies. There is however, a satellite node outfitted with two 8 mm drives available for this purpose. Although not part of the main cluster, a DEC 3000 Alpha machine obtained for data acquisition is also available for data replay. In one case, users reported a performance increase by a factor of 10 when using this machine.

  7. Study of CMOS integrated signal processing circuit in capacitive sensors

    Institute of Scientific and Technical Information of China (English)

    CAO Yi-jiang; YU Xiang; WANG Lei

    2007-01-01

    A CMOS integrated signal processing circuit based on capacitance resonance principle whose structure is simple in capacitive sensors is designed. The waveform of output voltage is improved by choosing bootstrap reference current mirror with initiate circuit, CMOS analogy switch and positive feedback of double-stage inverter in the circuit. Output voltage of this circuit is a symmetric square wave signal. The variation of sensitive capacitance, which is part of the capacitive sensors, can be denoted by the change of output voltage's frequency. The whole circuit is designed with 1.5 μm P-well CMOS process and simulated by PSpice software.Output frequency varies from 261.05 kHz to 47.93 kHz if capacitance varies in the range of 1PF~15PF. And the variation of frequency can be easily detected using counter or SCU.

  8. Study of High Capacitance Ratios CPW MEMS Shunt Switches

    Institute of Scientific and Technical Information of China (English)

    Jianhai Sun; Dafu Cui

    2006-01-01

    This paper describes a fixed-fixed beam ohmic switch in series with a fixed capacitor as a replacement for a capacitive switch. In this switch, a metal plate deposited on the dielectric ensures perfectly contact with the dielectric layer in the down state. The area size of the metal plate directly influences the capacitance ratio of the switch, as the area size of the metal cap decreases, the capacitance ratio dramatically rises up. The down/up capacitance ratio can exceed 800 times over the conventional designs using the same materials and the equal size. Measurement results show that high capacitance ratio of the switches has a large effect on the isolation, and can actually improve the performance of the switches.

  9. Analysis of polypyrrole-coated stainless steel electrodes - Estimation of specific capacitances and construction of equivalent circuits

    Indian Academy of Sciences (India)

    R Ramya; M V Sangaranarayanan

    2008-01-01

    The galvanostatic polymerization of pyrrole is carried out on stainless steel electrodes using -toluene sulphonic acid. The morphology of the film is studied from Scanning Electron Microscopy (SEM) measurements while the nature of the substrate is analysed using Energy Dispersive X-ray Spectroscopy (EDAX) technique. The electrochemical behaviour is studied using cyclic voltammetry, charge-discharge analysis and impedance spectroscopy. The feasibility of the electrode for supercapacitor applications is investigated. The specific capacitance is estimated as ∼ 102 Farads per gram with 103 charge-discharge cycles. A plausible equivalent circuit for the system is proposed and the circuit parameters are obtained by non-linear regression analysis.

  10. Supercapacitor electrode with a homogeneously Co3O4-coated multiwalled carbon nanotube for a high capacitance.

    Science.gov (United States)

    Tao, Li; Shengjun, Li; Bowen, Zhang; Bei, Wang; Dayong, Nie; Zeng, Chen; Ying, Yan; Ning, Wan; Weifeng, Zhang

    2015-01-01

    Cobalt oxide (Co3O4) was homogeneously coated on multiwalled carbon nanotube through a simple chemical deposition method and employed in supercapacitor electrodes. SEM image indicated the uniform distribution of Co3O4 nanoparticles on the surface of the multiwalled carbon nanotube. A maximum specific capacitance of 273 Fg(-1) was obtained at the charge-discharge current density of 0.5 Ag(-1). After 500 cycles of continuous charge-discharge process, about 88% of the initial capacity could be retained.

  11. Physics division annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K., ed.; Physics

    2000-12-06

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example

  12. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor

    DEFF Research Database (Denmark)

    Hu, Yongjie; Churchill, Hugh; Reilly, David

    2007-01-01

    and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin...

  13. CHARGE syndrome

    Directory of Open Access Journals (Sweden)

    Prasad Chitra

    2006-09-01

    Full Text Available Abstract CHARGE syndrome was initially defined as a non-random association of anomalies (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness. In 1998, an expert group defined the major (the classical 4C's: Choanal atresia, Coloboma, Characteristic ears and Cranial nerve anomalies and minor criteria of CHARGE syndrome. Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome. However, there have been individuals genetically identified with CHARGE syndrome without the classical choanal atresia and coloboma. The reported incidence of CHARGE syndrome ranges from 0.1–1.2/10,000 and depends on professional recognition. Coloboma mainly affects the retina. Major and minor congenital heart defects (the commonest cyanotic heart defect is tetralogy of Fallot occur in 75–80% of patients. Choanal atresia may be membranous or bony; bilateral or unilateral. Mental retardation is variable with intelligence quotients (IQ ranging from normal to profound retardation. Under-development of the external genitalia is a common finding in males but it is less apparent in females. Ear abnormalities include a classical finding of unusually shaped ears and hearing loss (conductive and/or nerve deafness that ranges from mild to severe deafness. Multiple cranial nerve dysfunctions are common. A behavioral phenotype for CHARGE syndrome is emerging. Mutations in the CHD7 gene (member of the chromodomain helicase DNA protein family are detected in over 75% of patients with CHARGE syndrome. Children with CHARGE syndrome require intensive medical management as well as numerous surgical interventions. They also need multidisciplinary follow up. Some of the hidden issues of CHARGE syndrome are often forgotten, one being the feeding adaptation of these children, which needs an early aggressive approach from a feeding team. As the child

  14. Screening length and quantum capacitance in graphene by scanning probe microscopy.

    Science.gov (United States)

    Giannazzo, F; Sonde, S; Raineri, V; Rimini, E

    2009-01-01

    A nanoscale investigation on the capacitive behavior of graphene deposited on a SiO2/n(+) Si substrate (with SiO2 thickness of 300 or 100 nm) was carried out by scanning capacitance spectroscopy (SCS). A bias V(g) composed by an AC signal and a slow DC voltage ramp was applied to the macroscopic n(+) Si backgate of the graphene/SiO(2)/Si capacitor, while a nanoscale contact was obtained on graphene by the atomic force microscope tip. This study revealed that the capacitor effective area (A(eff)) responding to the AC bias is much smaller than the geometrical area of the graphene sheet. This area is related to the length scale on which the externally applied potential decays in graphene, that is, the screening length of the graphene 2DEG. The nonstationary charges (electrons/holes) induced by the AC potential spread within this area around the contact. A(eff) increases linearly with the bias and in a symmetric way for bias inversion. For each bias V(g), the value of A(eff) is related to the minimum area necessary to accommodate the not stationary charges, according to the graphene density of states (DOS) at V(g). Interestingly, by decreasing the SiO(2) thickness from 300 to 100 nm, the slope of the A(eff) versus bias curve strongly increases (by a factor of approximately 50). The local quantum capacitance C(q) in the contacted graphene region was calculated starting from the screening length, and the distribution of the values of C(q) for different tip positions was obtained. Finally the lateral variations of the DOS in graphene was determined.

  15. Effect of different nickel precursors on capacitive behavior of electrodeposited NiO thin films

    Science.gov (United States)

    Kore, R. M.; Ghadge, T. S.; Ambare, R. C.; Lokhande, B. J.

    2016-04-01

    In the present study, the effect of nickel precursors containing different anions like nitrate, chloride and sulphate on the morphology and pseudocapacitance behavior of NiO is investigated. The NiO samples were prepared by using a potentiondynamic electrodeposition technique in the three electrode cell. Cyclic voltammetry technique was exploited for potentiodynamic deposition of the films. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), etc. The XRD reveals the cubic crystal structure for all samples. The SEM micrograph shows nanoflakelike, up grown nanoflakes and honeycomb like nanostructured morphologies for nitrate, chloride and sulphate precursors respectively. The capacitive behavior of these samples was recorded using cyclic voltammetry (CV), charge-discharge and electrochemical impedance spectroscopy (EIS) in 1 M KOH electrolyte. The specific capacitance values of NiO samples obtained using CV for nitrate, chloride and sulphate precursors were 136, 214 and 893 Fg-1 respectively, at the scan rate of 5 mVs-1. The charge discharge study shows high specific energy for the sample obtained from sulphate (23.98 Whkg-1) as compared to chloride (9.67 Whkg-1) and nitrate (4.9 Whkg-1), whereas samples of cholride (13.9 kWkg-1 and nitrate (10.5 kWkg-1) shows comparatively more specific power than samples obtained from sulphate (7.6 kWkg-1). The equivalent series resistance of NiO samples observed from EIS study are 1.34, 1.29 and 1.27 Ω respectively for nitrate, chloride and sulphate precursors. These results emphasizes that the samples obtained from sulphate precursors provides very low impedance through honeycomb like nanostructured morphology which supports good capacitive behavior of NiO.

  16. One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang-Mei; SONG Yuan-Hong; WANG You-Nian

    2009-01-01

    A self-consistent fluid model, which incorporates density and flux balances of electrons, ions, neutrals and nanopar ticles, electron energy balance, and Poiaaon 's equation, is employed to investigate the capacitively coupled silane discharge modulated by dual-frequency electric sources. In this discharge process, nanoparticles are formed by a successive chemical reactions of anion with silane. The density distributions of the precursors in the dust particle formation are put forward, and the charging, transport and growth of nanoparticles are simulated. In this work, we focus our main attention on the influences of the high-frequency and low-frequency voltage on nanoparticle densities, nanoparticle charge distributions in both the bulk plasma and sheath region.

  17. Physics division annual report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  18. Characterization of electrical and mechanical activities of rabbit uterus associated with the presence of capacitated and non-capacitated spermatozoa

    Directory of Open Access Journals (Sweden)

    J.F. Lazcano-Reyes

    2013-12-01

    Full Text Available To investigate the effects capacitated spermatozoa may exert upon motility of the rabbit uterus, both contractility and electrical activity (frequency and intensity were measured in 3 distinctive uterine segments of anaesthetized does: horn (UH, uterotubal junction (UTJ and tube (UT after 1 natural mating, 2 infusion of either seminal plasma or PBS, 3 infusion of either capacitated or non-capacitated spermatozoa. Basal values were: 17.1, 15.7, 16.4 g (contractility, P>0.05; 3.5, 3.5, 3.4 Hz (frequency, P>0.05; 0.49, 0.50, 0.57 μV (intensity, P>0.05 for UH, UTJ, UT, respectively. Seminal plasma caused an increase (P<0.05 in the UH contractility: 26.3 vs. 11.7 (natural mating and 17.0 g (PBS; it also caused a decrease (P<0.05 in electrical intensity at the UTJ: 0.24 vs. 0.67 (natural mating and 0.58 μV (PBS. The presence of either capacitated or non-capacitated spermatozoa caused no changes in contractility and electrical frequency in any of the uterine segments. However, there was a change in electrical intensity at UTJ (0.37 vs. 0.57 μV for non-capacitated and capacitated spermatozoa, respectively; P<0.05. There were also differences between segments by treatment: UTJ (0.37 vs. UT (0.59 μV for non-capacitated; UH (0.46 vs. UT (0.71 μV for capacitated spermatozoa (P<0.05. In conclusion, use of this experimental model showed that uterine electrical activity was slightly modified by the presence of capacitated spermatozoa.

  19. ftsZ gene and plastid division

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Plastid is one of the most important cellular organelles, the normal division process of plastid is essential for the differentiation and development of plant cells. For a long time, morphological observations and genetic analyses to special mutants are the major research fields of plastid division, but the molecular mechanisms underlying plastid division are largely unknown. Because of the endosymbiotic origin, plastid division might have mechanisms in common with those involved in bacterial cell division. It has been proved that several prokaryotic cell division genes also participate in the plastid division. Recently, the mechanisms of prokaryotic cell division have been well documented, which provides a valuable paradigm for understanding the plastid division mechanisms. In plants, the functional analyses of ftsZ, a key gene involved both in bacteria and plastid division, have established the solid foundation for people to understand the plastid division in molecular level. In this paper we will make a review for the research history and progress of plastid division.

  20. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  1. Physics division annual report - October 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K. [ed.

    2000-10-16

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (RIA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part, defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design.

  2. Division 1137 property control system

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  3. High division of sciatic nerve

    Directory of Open Access Journals (Sweden)

    Tripti Shrivastava

    2014-04-01

    Results: In all except two cadavers, the nerve divided at the apex of the popliteal fossa. In two cadavers the sciatic nerve divided bilaterally in the upper part of thigh. Conclusion: The high division presented in this study can make popliteal nerve blocks partially ineffective. The high division of sciatic nerve must always be borne in mind as they have important clinical implications. [Int J Res Med Sci 2014; 2(2.000: 686-688

  4. Bloch inductance in small-capacitance Josephson junctions.

    Science.gov (United States)

    Zorin, A B

    2006-04-28

    We show that the electrical impedance of a small-capacitance Josephson junction also includes, in addition to the capacitive term -i/(omega)CB, an inductive term i(omega)LB. Similar to the known Bloch capacitance CB(q), the Bloch inductance LB(q) also depends periodically on the quasicharge, q, and its maximum value achieved at q=e(mod 2e) always exceeds the value of the Josephson inductance of this junction LJ(phi) at fixed phi=0. The effect of the Bloch inductance on the dynamics of a single junction and a one-dimensional array is described.

  5. Layer-by-layer assembled carbon nanotube films with molecule recognition function and lower capacitive background current.

    Science.gov (United States)

    Kong, Bo; Zeng, Jinxiang; Luo, Guangming; Luo, Shenglian; Wei, Wanzhi; Li, Jun

    2009-02-01

    Multilayer films of multiwalled carbon nanotubes (MWCNTs) with molecule recognition function were assembled on glassy carbon (GC) electrode with lower capacitive background current by two steps: first, MWCNTs interacted with beta-cyclodextrin (beta-CD) with the aid of sonication to form beta-CD-MWCNTs nanocomposite, then the beta-CD-MWCNTs nanocomposite was assembled on GC electrode using layer-by-layer (LBL) method based on electrostatic interaction of positively charged biopolymer chitosan and negatively charged MWCNTs. The assembled beta-CD-MWCNTs multilayer films were characterized by scanning electron microscopy (SEM) and cyclic voltammetry. The SEM indicated that the MWCNTs multilayer films with beta-CD were somewhat more compact than that of the MWCNTs multilayer films without beta-CD. The cyclic voltammetric results indicated that the assembled MWCNTs with beta-CD on GC electrode exhibited lower capacitive background current than the assembled MWCNTs without beta-CD. The MWCNTs multilayer films with beta-CD were studied with respect to the electrocatalytic activity toward dopamine (DA). Compared with the MWCNTs multilayer films without beta-CD, the MWCNTs multilayer films with beta-CD possesses a much lower capacitive background current and higher electrocatalytic activity in phosphate buffer, which was ascribed to the relatively compact three-dimensional structure of the MWCNTs multilayer films with beta-CD and the excellent molecule recognition function of beta-CD.

  6. Design Considerations in Capacitively Coupled Plasmas

    Science.gov (United States)

    Song, Sang-Heon; Ventzek, Peter; Ranjan, Alok

    2015-11-01

    Microelectronics industry has driven transistor feature size scaling from 10-6 m to 10-9 m during the past 50 years, which is often referred to as Moore's law. It cannot be overstated that today's information technology would not have been so successful without plasma material processing. One of the major plasma sources for the microelectronics fabrication is capacitively coupled plasmas (CCPs). The CCP reactor has been intensively studied and developed for the deposition and etching of different films on the silicon wafer. As the feature size gets to around 10 nm, the requirement for the process uniformity is less than 1-2 nm across the wafer (300 mm). In order to achieve the desired uniformity, the hardware design should be as precise as possible before the fine tuning of process condition is applied to make it even better. In doing this procedure, the computer simulation can save a significant amount of resources such as time and money which are critical in the semiconductor business. In this presentation, we compare plasma properties using a 2-dimensional plasma hydrodynamics model for different kinds of design factors that can affect the plasma uniformity. The parameters studied in this presentation include chamber accessing port, pumping port, focus ring around wafer substrate, and the geometry of electrodes of CCP.

  7. Locating Depots for Capacitated Vehicle Routing

    CERN Document Server

    Goertz, Inge Li

    2011-01-01

    We study a location-routing problem in the context of capacitated vehicle routing. The input is a set of demand locations in a metric space and a fleet of k vehicles each of capacity Q. The objective is to locate k depots, one for each vehicle, and compute routes for the vehicles so that all demands are satisfied and the total cost is minimized. Our main result is a constant-factor approximation algorithm for this problem. To achieve this result, we reduce to the k-median-forest problem, which generalizes both k-median and minimum spanning tree, and which might be of independent interest. We give a (3+c)-approximation algorithm for k-median-forest, which leads to a (12+c)-approximation algorithm for the above location-routing problem, for any constant c>0. The algorithm for k-median-forest is just t-swap local search, and we prove that it has locality gap 3+2/t; this generalizes the corresponding result known for k-median. Finally we consider the "non-uniform" k-median-forest problem which has different cost ...

  8. An uncooled capacitive sensor for IR detection

    Science.gov (United States)

    Siebke, Georg; Gerngroß, Kathrin; Holik, Peter; Schmitz, Sam; Rohloff, Markus; Tätzner, Simon; Steltenkamp, Siegfried

    2014-06-01

    The beetle Melanophila acuminata detects forest fires from distances as far as 80 miles away. To accomplish this, the beetle uses highly specific IR receptors with a diameter of approximately 15 μm. These receptors are mechanoreceptors that detect deformations induced by the absorption of radiation. Although the detection mechanism is understood in principle, it is still unclear how the beetle reaches such high sensitivity. In this work, we present the biomimetic approach of an uncooled IR sensor based on the beetle's receptors. This sensor is based on a fluid-filled pressure cell and operates at room temperature. Upon absorbing IR radiation, the fluid heats up and expands. The expanding fluid deflects one electrode of a plate capacitor. By measuring the change in capacitance, the volume increase and the absorbed energy can be inferred. To prevent the risk of damage at high energy absorption, a compensation mechanism is presented in this work. The mechanism prevents large but slow volume changes inside the pressure cell by a microfluidic connection of the pressure cell with a compensation chamber. The channel and the compensation chamber act as a microfluidic low-pass filter and do not affect the overall sensitivity above an appropriate cut-off frequency. Using MEMS technology, we are able to incorporate the complete system into a silicon chip with an area of a few mm2. Here, we show a proof-of-concept and first measurements of the sensor.

  9. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  10. Topology Optimization of Stressed Capacitive RF MEMS Switches

    DEFF Research Database (Denmark)

    Philippine, Mandy A.; Sigmund, Ole; Rebeiz, Gabriel M.

    2013-01-01

    Geometry design can improve a capacitive radio-frequency microelectromechanical system switch's reliability by reducing the impacts of intrinsic biaxial stresses and stress gradients on the switch's membrane. Intrinsic biaxial stresses cause stress stiffening, whereas stress gradients cause out...

  11. A Review of High Voltage Drive Amplifiers for Capacitive Actuators

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail, ......, including linear as well as switched mode amplifiers. In the past much attention has been paid on the driver for piezoelectric actuator. As DEAP is a type of new material, there is not much literature reference for it.......This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail...

  12. Voidage measurement based on genetic algorithm and electrical capacitance tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-wei; WANG Bao-liang; HUANG Zhi-yao; LI Hai-qing

    2005-01-01

    A new voidage measurement method based on electrical capacitance tomography (ECT) technique, Genetic Algorithm (GA) and Partial Least Square (PLS) method was proposed. The voidage measurement model, linear capacitance combination, was developed to measure on-line voidage. GA and PLS method were used to determine the coefficients of the voidage measurement model. GA was used to explore the optimal capacitance combination which gave significant contribution to the voidage measurement. PLS method was applied to determine the weight coefficient of the contribution of each capacitance to the voidage measurement. Flow pattern identification result was introduced to improve the voidage measurement accuracy. Experimental results showed that the proposed voidage measurement method is effective and that the measurement accuracy is satisfactory.

  13. Structure and Capacitance of Electrical Double Layers inside Micropores

    Science.gov (United States)

    Feng, Guang; Qiao, Rui; Huang, Jingsong; Sumpter, Bobby G.; Meunier, Vincent

    2010-03-01

    Recent experiments indicate that the specific capacitance of micropores (diameter less than 2nm) increases anomalously as the pore size decreases^[1]. To understand the physical origin of this discovery, we performed a series of molecular dynamics simulations to study the electrical double layers (EDLs) in micropores with different shapes (tube vs slit) and pore sizes (0.668nm - 3.342nm). Several different aqueous electrolytes (K^+, Na^+, Cl^-, and F^- in water) were used in these micropores. We quantified the structure of EDLs inside the pores, and computed the capacitance of EDLs. The scaling of capacitance shows a qualitative agreement with the experimental observations. We attribute the anomalous enhancement of capacitance in micropores to the short-range ionelectrode and ionsolvent interactions.[1] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P.L. Taberna, Science 2006, 313, 1760.

  14. Prostaglandin modulation of mouse and human sperm capacitation.

    Science.gov (United States)

    Herrero, M B; Viggiano, J M; Boquet, M; Gimeno, M A

    1997-09-01

    To determine whether prostaglandins produce a capacitation and/or acrosome reaction, the effect of prostaglandins on capacitated mouse spermatozoa and the effect of prostaglandin pre-incubation on human and mouse spermatozoa were studied. Prostaglandins did not induce an acrosome reaction in capacitated mouse sperm. PGE1 pre-incubation in a protein-free medium enhanced acrosome loss of mouse sperm challenged with A-23187 or solubilized mouse zona pellucida. Human sperm were pre-incubated in media containing prostaglandins, and an acrosome reaction was induced with calcium ionophore or human follicular fluid. PGE1 pre-incubation enhanced acrosome loss by human sperm when the action was induced with calcium ionophore, but had no effect on follicular fluid induction. We conclude that PGE1 acts as a capacitating factor in vitro for mouse spermatozoa, and enhances acrosome-reaction induction with calcium ionophore in human spermatozoa.

  15. Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization.

    Science.gov (United States)

    El-Deen, Ahmed G; Boom, Remko M; Kim, Hak Yong; Duan, Hongwei; Chan-Park, Mary B; Choi, Jae-Hwan

    2016-09-28

    Nanoporous graphene based materials are a promising nanostructured carbon for energy storage and electrosorption applications. We present a novel and facile strategy for fabrication of asymmetrically functionalized microporous activated graphene electrodes for high performance capacitive desalination and disinfection of brackish water. Briefly, thiocarbohydrazide coated silica nanoparticles intercalated graphene sheets are used as a sacrificial material for creating mesoporous graphene followed by alkaline activation process. This fabrication procedure meets the ideal desalination pore diameter with ultrahigh specific surface area ∼ 2680 m(2) g(-1) of activated 3D graphene based micropores. The obtained activated graphene electrode is modified by carboxymethyl cellulose as negative charge (COO(-2)) and disinfectant quaternary ammonium cellulose with positively charged polyatomic ions of the structure (NR4(+)). Our novel asymmetric coated microporous activated 3D graphene employs nontoxic water-soluble binder which increases the surface wettability and decreases the interfacial resistance and moreover improves the electrode flexibility compared with organic binders. The desalination performance of the fabricated electrodes was evaluated by carrying out single pass mode experiment under various cell potentials with symmetric and asymmetric cells. The asymmetric charge coated microporous activated graphene exhibits exceptional electrosorption capacity of 18.43 mg g(-1) at a flow rate of 20 mL min(-1) upon applied cell potential of 1.4 V with initial NaCl concentration of 300 mg L(-1), high charge efficiency, excellent recyclability, and, moreover, good antibacterial behavior. The present strategy provides a new avenue for producing ultrapure water via green capacitive deionization technology.

  16. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    Science.gov (United States)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  17. Capacitance Variation of Electrolyte-Gated Bilayer Graphene Based Transistors

    OpenAIRE

    Hediyeh Karimi; Rubiyah Yusof; Mohammad Taghi Ahmadi; Mehdi Saeidmanesh; Meisam Rahmani; Elnaz Akbari; Wong King Kiat

    2013-01-01

    Quantum capacitance of electrolyte-gated bilayer graphene field-effect transistors is investigated in this paper. Bilayer graphene has received huge attention due to the fact that an energy gap could be opened by chemical doping or by applying external perpendicular electric field. So, this extraordinary property can be exploited to use bilayer graphene as a channel in electrolyte-gated field-effect transistors. The quantum capacitance of bi-layer graphene with an equivalent circuit is presen...

  18. Modeling high-frequency capacitance in SOI MOS capacitors

    Science.gov (United States)

    Łukasiak, Lidia; Jasiński, Jakub; Beck, Romuald B.; Ikraiam, Fawzi A.

    2016-12-01

    This paper presents a model of high frequency capacitance of a SOI MOSCAP. The capacitance in strong inversion is described with minority carrier redistribution in the inversion layer taken into account. The efficiency of the computational process is significantly improved. Moreover, it is suitable for the simulation of thin-film SOI structures. It may also be applied to the characterization of non-standard SOI MOSCAPS e.g. with nanocrystalline body.

  19. Label-free RNA aptamer-based capacitive biosensor for the detection of C-reactive protein.

    Science.gov (United States)

    Qureshi, Anjum; Gurbuz, Yasar; Kallempudi, Saravan; Niazi, Javed H

    2010-08-28

    In this study, we report a novel aptamer-based capacitive label-free biosensor for monitoring transducing aptamer-protein recognition events, based on charge distribution under the applied frequency by non-Faradaic impedance spectroscopy (NFIS). This approach to capacitive biosensors is reported for the first time in this study, is reagent-less in processing and is developed using gold interdigitated (GID) capacitor arrays functionalized with synthetic RNA aptamers. The RNA atpamers served as biorecognition elements for C-reactive protein (CRP), a biomarker for cardiovascular disease risk (CVR). The signal is generated as a result of the change in relative capacitance occurring as a result of the formation of an RNA-CRP complex on GID capacitors with the applied AC electrical frequency (50-350 MHz). The dispersion peak of the capacitance curve was dependent on the CRP concentration and tends to shift toward lower frequencies, accompanied by the increase in relaxation time due to the increased size of the aptamer-CRP complex. The dissociation constant (K(d)) calculated from the non-linear regression analysis of the relative capacitance change with the applied frequency showed that strong binding of CRP occurred at 208 MHz (K(d) = 1.6 microM) followed by 150 MHz (K(d) = 4.2 microM) and 306 MHz (K(d) = 3.4 microM) frequencies. The dynamic detection range for CRP is determined to be within 100-500 pg ml(-1). Our results demonstrates the behavior of an RNA-protein complex on GID capacitors under an applied electric field, which can be extended to other pairs of affinity biomolecules as well as for the development of electrical biosensor systems for different applications, including the early diagnosis of diseases.

  20. Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance

    Science.gov (United States)

    Senokos, E.; Reguero, V.; Palma, J.; Vilatela, J. J.; Marcilla, Rebeca

    2016-02-01

    In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through control of the synthetic and assembly processes of the fibres, it is possible to obtain an active material that combines a surface area of 250 m2 g-1, high electrical conductivity (3.5 × 105 S m-1) and mechanical properties in the high-performance range including toughness (35 J g-1) comparable to that of aramid fibre (e.g. Kevlar). These properties are a consequence of the predominant orientation of the CNTs, observed by wide- and small-angle X-ray diffraction, and to the exceptionally long CNT length on the millimetre scale. Cyclic voltammetry measurements in a three-electrode configuration and using 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) ionic liquid electrolyte, show that the CNT fibres have a large quantum capacitance, evidenced by the near linear dependence of geometric capacitance (and conductivity) on potential bias. This reflects the low dimensionality of the CNT building blocks, which were purposely synthesised to have 1-5 layers and a high degree of graphitization. From the charge-discharge measurements of supercapacitor devices with symmetric CNT fibre electrodes we obtain power and energy densities as high as 58 kW kg-1 and 14 Wh kg-1, respectively. These record-high values for CNT fibre-based supercapacitors, are a consequence of the low equivalent series resistance due to the high conductivity of the fibres, the large contribution from quantum capacitance, and the wide stability window of the ionic liquid (3.5 V). Cycle life experiments demonstrate stable capacitance and energy retention over 10 000 cycles of charge-discharge at 3.5 V.In this work we present a combined electrochemical and mechanical study of mesoporous electrodes based on CNT fibres in the context of electric double layer capacitors. We show that through

  1. Research and Experiments on a Unipolar Capacitive Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Qiang Zhou

    2015-08-01

    Full Text Available Voltage sensors are an important part of the electric system. In service, traditional voltage sensors need to directly contact a high-voltage charged body. Sensors involve a large volume, complex insulation structures, and high design costs. Typically an iron core structure is adopted. As a result, ferromagnetic resonance can occur easily during practical application. Moreover, owing to the multilevel capacitor divider, the sensor cannot reflect the changes of measured voltage in time. Based on the electric field coupling principle, this paper designs a new voltage sensor; the unipolar structure design solves many problems of traditional voltage sensors like the great insulation design difficulty and high costs caused by grounding electrodes. A differential signal input structure is adopted for the detection circuit, which effectively restrains the influence of the common-mode interference signal. Through sensor modeling, simulation and calculations, the structural design of the sensor electrode was optimized, miniaturization of the sensor was realized, the voltage division ratio of the sensor was enhanced, and the phase difference of sensor measurement was weakened. The voltage sensor is applied to a single-phase voltage class line of 10 kV for testing. According to the test results, the designed sensor is able to meet the requirements of accurate and real-time measurement for voltage of the charged conductor as well as to provide a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system. Therefore, it can satisfy the development demands of the smart power grid.

  2. Optimizing the Materials Response in Humidity Capacitive Sensors

    Directory of Open Access Journals (Sweden)

    Elham Noroozi Afshar

    2015-10-01

    Full Text Available The number of humidity outputs on the cap of a cylindrical capacitance sensor is optimized by designing three different probes with direct and indirect windows. The time interval is measured within which 30-70 % humidity can influence the dielectric constant and conductivity of the capacitance when exposed to a range of relative humidity. It is then compared with a simple set-up including a simplified equivalent circuit. The direct probes had four and double outputs on the window of the cylindrical capacitive sensor while the indirect probe had a thin plastic layer only. We observed that the dielectric constant and its conductivity depend closely to the humidity outgoing pathway and also to the increasing rate of humidity between the capacitance plates. The final variation in the materials properties alters the capacitance of the sensor which is measured simply by a LCR. This technique presents a simple method for tracking the recovery and reliability of the humidity sensors over time and assists in optimizing and controlling the materials response to the relative environment humidity. As a result, by controlling the environment humidity rate (0.02 %/s., we could measure the increment rate of capacitance with accuracy of 0.01 pf/%.

  3. Simulation Study on Quantum Capacitances of Graphene Nanoribbon VLSI Interconnects

    Science.gov (United States)

    Dutta, Arin; Rahman, Silvia; Nandy, Turja; Mahmood, Zahid Hasan

    2016-03-01

    In this paper, study on the capacitive effects of Graphene nanoribbon (GNR) in VLSI interconnect has been studied as a function of GNR width, Fermi function and gate voltage. The quantum capacitance of GNR has been simulated in terms of Fermi function for three different values of insulator thickness — 1.5nm, 2nm and 2.5nm. After that, quantum capacitance is studied in both degenerate and nondegenerate region with respect to Fermi function and gate voltage of range 1-5V. Then, the total capacitance of GNR is studied as a function of gate voltage of -2-5V range at degenerate and nondegenerate regions, where width of GNR is considered 4nm. Finally, the total capacitance of GNR is studied in both regions with varying GNR width, considering fixed gate voltage of 3V. After analyzing these simulations, it has been found that GNR in degenerate region shows nearly steady capacitance under a certain applied gate voltage.

  4. Beyond Cookies: Understanding Various Division Models

    Science.gov (United States)

    Jong, Cindy; Magruder, Robin

    2014-01-01

    Having a deeper understanding of division derived from multiple models is of great importance for teachers and students. For example, students will benefit from a greater understanding of division contexts as they study long division, fractions, and division of fractions. The purpose of this article is to build on teachers' and students'…

  5. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    Energy Technology Data Exchange (ETDEWEB)

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael [Laboratoire d' Ingénierie et Sciences des Matériaux (LISM EA 4695), Université de Reims Champagne-Ardenne, 51687 Reims cedex 2 (France); Dellis, Jean-Luc [Laboratoire de Physique de la Matière Condensée (LPMC EA 2081), Université de Picardie Jules Vernes, 80009 Amiens cedex 1 (France)

    2013-09-23

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  6. Charging process of polyurethane based composites under electronic irradiation: Effects of cellulose fiber content

    Science.gov (United States)

    Hadjadj, Aomar; Jbara, Omar; Tara, Ahmed; Gilliot, Mickael; Dellis, Jean-Luc

    2013-09-01

    The study deals with the charging effect of polyurethanes-based composites reinforced with cellulose fibers, under electronic beam irradiation in a scanning electron microscope. The results indicate that the leakage current and the trapped charge as well as the kinetics of charging process significantly change beyond a critical concentration of 10% cellulose fibers. These features are correlated with the cellulose concentration-dependence of the electrical properties, specifically resistivity and capacitance, of the composite.

  7. Enhanced Salt Removal in an Inverted Capacitive Deionization Cell Using Amine Modified Microporous Carbon Cathodes.

    Science.gov (United States)

    Gao, Xin; Omosebi, Ayokunle; Landon, James; Liu, Kunlei

    2015-09-15

    Microporous SpectraCarb carbon cloth was treated using nitric acid to enhance negative surface charges of COO(-) in a neutral solution. This acid-treated carbon was further modified by ethylenediamine to attach -NH2 surface functional groups, resulting in positive surface charges of -NH3(+) via pronation in a neutral solution. Through multiple characterizations, in comparison to pristine SpectraCarb carbon, amine-treated SpectraCarb carbon displays a decreased potential of zero charge but an increased point of zero charge, which is opposed to the effect obtained for acid-treated SpectraCarb carbon. An inverted capacitive deionization cell was constructed using amine-treated cathodes and acid-treated anodes, where the cathode is the negatively polarized electrode and the anode is the positively polarized electrode. Constant-voltage switching operation using NaCl solution showed that the salt removal capacity was approximately 5.3 mg g(-1) at a maximum working voltage of 1.1/0 V, which is an expansion in both the salt capacity and potential window from previous i-CDI results demonstrated for carbon xerogel materials. This improved performance is accounted for by the enlarged cathodic working voltage window through ethylenediamine-derived functional groups, and the enhanced microporosity of the SpectraCarb electrodes for salt adsorption. These results expand the use of i-CDI for efficient desalination applications.

  8. Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions.

    Science.gov (United States)

    García-Quismondo, Enrique; Santos, Cleis; Lado, Julio; Palma, Jesús; Anderson, Marc A

    2013-10-15

    Capacitive deionization (CDI) is a rapidly emerging desalination technology that promises to deliver clean water while storing energy in the electrical double layer (EDL) near a charged surface in a capacitive format. Whereas most research in this subject area has been devoted to using CDI for removing salts, little attention has been paid to the energy storage aspect of the technology. However, it is energy storage that would allow this technology to compete with other desalination processes if this energy could be stored and reused efficiently. This requires that the operational aspects of CDI be optimized with respect to energy used both during the removal of ions as well as during the regeneration cycle. This translates into the fact that currents applied during deionization (charging the EDL) will be different from those used in regeneration (discharge). This paper provides a mechanistic analysis of CDI in terms of energy consumption and energy efficiencies during the charging and discharging of the system under several scenarios. In a previous study, we proposed an operational buffer mode in which an effective separation of deionization and regeneration steps would allow one to better define the energy balance of this CDI process. This paper reports on using this concept, for optimizing energy efficiency, as well as to improve upon the electro-adsorption of ions and system lifetime. Results obtained indicate that real-world operational modes of running CDI systems promote the development of new and unexpected behavior not previously found, mainly associated with the inhomogeneous distribution of ions across the structure of the electrodes.

  9. Charge fluctuations in nano-scale capacitors

    CERN Document Server

    Limmer, David T; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-01-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers an efficient and accurate route to the differential capacitance and is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes, and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  10. Novel integration of ultrathin Al2O3 with low-k dielectric as bilayer liner for capacitance optimization and stress mitigation in Cu through-silicon-via

    Science.gov (United States)

    Zhang, Lin; Li, Hong Yu; Shang, Yang; Yoo, Woosik; Yu, Hao; Tan, Chuan Seng

    2016-04-01

    Through-silicon-via (TSV) used in three-dimensional (3D) stacked dies must present small electrical parasitic, such as capacitance, to allow for low latency signal transmission. Stable TSV capacitance is desired to overcome the spatial circuit performance variation caused by non-uniform hot-spot heating. In this work, a novel combination of low-k with ultrathin Al2O3 bilayer liner is successfully integrated in the TSV. The TSV capacitance is reduced by ˜26% as compared to plasma-enhanced tetrahydrothosilicate (PETEOS) oxide liner. Stable TSV capacitance within the operating voltage of interest (˜0-5 V) is achieved by operating the TSV in a stable accumulation capacitance region. The positive shift in the flat-band voltage (ΔV FB = +19 V) is achieved by utilizing Al2O3-induced negative fixed charge (|Q f| = 1.3 × 1012 cm-2) at the Si/low-k interface. Leakage current density of the bilayer liner is improved to a level comparable with the PETEOS oxide liner post annealing [forming gas (N2/H2) at 350 °C for 2 h or 400 °C for 0.5 h]. Low-k material with a smaller elastic modulus improves the thermo-mechanical stress exerted on the surrounding Si substrate compared with PETEOS oxide.

  11. The role of Stern layer in the interplay of dielectric saturation and ion steric effects for the capacitance of graphene in aqueous electrolytes

    Science.gov (United States)

    Daniels, Lindsey; Scott, Matthew; Mišković, Z. L.

    2017-03-01

    Nano-scale devices continue to challenge our theoretical understanding of microscopic systems. Of particular interest is the characterization of the interface electrochemistry of graphene-based sensors. Typically operated in a regime of high ion concentration and high surface charge density, dielectric saturation and ion crowding become non-negligible at the interface, complicating continuum treatments based upon the Poisson-Boltzmann equation. Using the Poisson-Boltzmann equation, modified with the Bikerman-Freise model to account for non-zero ion size and the Booth model to account for dielectric saturation at the interface, we characterize the diffuse layer capacitance of both metallic and graphene electrodes immersed in an aqueous electrolyte. We find that the diffuse layer capacitance exhibits two peaks when the surface charge density of the electrode is increased, in contrast with experimental results. We propose a self-consistent (and parameter-free) method to include the Stern layer which eliminates the spurious secondary peak in the capacitance and restores the correspondence of the model with experimental observations. This study sheds light on the interplay between the ion steric effects and the dielectric saturation in solvent, exposes the importance of quantum capacitance when graphene is used as an electrode, and demonstrates the importance of a self-consistent treatment of the Stern layer in continuum models of the electrode-electrolyte interface. Furthermore, the theoretical foundation provides a base upon which more detailed models of graphene-based sensors can be built.

  12. Surface-charge accumulation effects on open-circuit voltage in organic solar cells based on photoinduced impedance analysis.

    Science.gov (United States)

    Zang, Huidong; Hsiao, Yu-Che; Hu, Bin

    2014-03-14

    The accumulation of dissociated charge carriers plays an important role in reducing the loss occurring in organic solar cells. We find from light-assisted capacitance measurements that the charge accumulation inevitably occurred at the electrode and photovoltaic layer interface for bulk-heterojunction ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al solar cells. Our results indicate, for the first time through impedance measurements, that the charge accumulation exists at the anode side of the device, and more importantly, we successfully identify the type of charge accumulated. Further study shows that the charge accumulation can significantly affect open circuit voltage and short circuit current. As a result, our experimental results from light assisted capacitance measurements provide a new understanding of the loss in open-circuit voltage and short-circuit photocurrent based on charge accumulation. Clearly, controlling charge accumulation presents a new mechanism to improve the photovoltaic performance of organic solar cells.

  13. A New Triazine-Based Covalent Organic Framework for High-Performance Capacitive Energy Storage.

    Science.gov (United States)

    Bhanja, Piyali; Bhunia, Kousik; Das, Sabuj K; Pradhan, Debabrata; Kimura, Ryuto; Hijikata, Yuh; Irle, Stephan; Bhaumik, Asim

    2017-03-09

    The new covalent organic framework material TDFP-1 was prepared through a solvothermal Schiff base condensation reaction of the monomers 1,3,5-tris-(4-aminophenyl)triazine and 2,6-diformyl-4-methylphenol. Owing to its high specific surface area of 651 m(2)  g(-1) , extended π conjugation, and inherent microporosity, TDFP-1 exhibited an excellent energy-storage capacity with a maximum specific capacitance of 354 F g(-1) at a scan rate of 2 mV s(-1) and good cyclic stability with 95 % retention of its initial specific capacitance after 1000 cycles at 10 A g(-1) . The π-conjugated polymeric framework as well as ionic conductivity owing to the possibility of ion conduction inside the micropores of approximately 1.5 nm make polymeric TDFP-1 a favorable candidate as a supercapacitor electrode material. The electrochemical properties of this electrode material were measured through cyclic voltammetry, galvanic charge-discharge, and electrochemical impedance spectroscopy, and the results indicate its potential for application in energy-storage devices.

  14. Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes.

    Science.gov (United States)

    Hou, Chia-Hung; Liu, Nei-Ling; Hsi, Hsing-Cheng

    2015-12-01

    Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials.

  15. Capacitive tunnels in single-walled carbon nanotube networks on flexible substrate

    Science.gov (United States)

    Iqbal, M. Z.; Iqbal, M. W.; Eom, Jonghwa; Ahmad, Muneer; Ferrer-Anglada, Núria

    2012-03-01

    We report the analysis of single-walled carbon nanotube networks, which are expected to be suitable as miniaturized flexible radio frequency RC filters and also have important implications for high frequency devices. The surface morphology obtained by atomic force microscopy shows that most of the growth on polypropylene carbonate substrate is homogeneous. The large value of peak intensity ratio of G and D band in Raman spectra indicates the high purity network. Nyquist plots of carbon nanotube networks on a flexible substrate are close to real circles, indicating that the material is conducting, and suggest a simple equivalent circuit having a resistor in parallel with a capacitor. The Bode plots give the dependence of real and imaginary impedances on frequency. While at high frequency, the impedance decreases, due to generation of capacitance between a single-walled carbon nanotube; at low frequency, it shows the normal behavior, having constant value. The tunnels among different carbon nanotubes are capable of storing electric charge. The accumulative capacitances of tunnels for three varied concentrations are calculated by electrochemical impedance spectroscopy simulations to fit the observed Nyquist plots.

  16. 78 FR 17430 - Antitrust Division

    Science.gov (United States)

    2013-03-21

    ... pursuant to Section 6(b) of the Act on April 4, 2003 (68 FR 16552). The last notification was filed with... Section 6(b) of the Act on March 23, 2012 (77 FR 17095). Patricia A. Brink, Director of Civil Enforcement... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of...

  17. Inversive meadows and divisive meadows

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2009-01-01

    An inversive meadow is a commutative ring with identity and a total multiplicative inverse operation whose value at 0 is 0. Previously, inversive meadows were shortly called meadows. In this paper, we introduce divisive meadows, which are inversive meadows with the multiplicative inverse operation r

  18. Environmental Transport Division: 1979 report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

    1980-03-01

    During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

  19. Home | Division of Cancer Prevention

    Science.gov (United States)

    Our Research The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into cancer. |

  20. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  1. Capacitance and compressibility of heterostructures with strong electronic correlations

    Science.gov (United States)

    Steffen, Kevin; Frésard, Raymond; Kopp, Thilo

    2017-01-01

    Strong electronic correlations related to a repulsive local interaction suppress the electronic compressibility in a single-band model, and the capacitance of a corresponding metallic film is directly related to its electronic compressibility. Both statements may be altered significantly when two extensions to the system are implemented which we investigate here: (i) we introduce an attractive nearest-neighbor interaction V as antagonist to the repulsive onsite repulsion U , and (ii) we consider nanostructured multilayers (heterostructures) assembled from two-dimensional layers of these systems. We determine the respective total compressibility κ and capacitance C of the heterostructures within a strong coupling evaluation, which builds on a Kotliar-Ruckenstein slave-boson technique. Whereas the capacitance C (n ) for electronic densities n close to half-filling is suppressed, illustrated by a correlation induced dip in C (n ) , it may be appreciably enhanced close to a van Hove singularity. Moreover, we show that the capacitance may be a nonmonotonic function of U close to half-filling for both attractive and repulsive V . The compressibility κ can differ from C substantially, as κ is very sensitive to internal electrostatic energies which in turn depend on the specific setup of the heterostructure. In particular, we show that a capacitor with a polar dielectric has a smaller electronic compressibility and is more stable against phase separation than a standard nonpolar capacitor with the same capacitance.

  2. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    CERN Document Server

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  3. Operational Characterization of Divisibility of Dynamical Maps

    Science.gov (United States)

    Bae, Joonwoo; Chruściński, Dariusz

    2016-07-01

    In this work, we show the operational characterization to the divisibility of dynamical maps in terms of the distinguishability of quantum channels. It is proven that the distinguishability of any pair of quantum channels does not increase under divisible maps, in which the full hierarchy of divisibility is isomorphic to the structure of entanglement between system and environment. This shows that (i) channel distinguishability is the operational quantity signifying (detecting) divisibility (indivisibility) of dynamical maps and (ii) the decision problem for the divisibility of maps is as hard as the separability problem in entanglement theory. We also provide the information-theoretic characterization to the divisibility of maps with conditional min-entropy.

  4. Estimation of Transformer Winding Capacitances through Frequency Response Analysis - An Experimental Investigation

    Science.gov (United States)

    Shah, Krupa; Ragavan, K.

    2013-10-01

    This article focuses on developing a non-invasive method for determining capacitances using frequency response data. The proposed methodology involves acquiring driving-point impedance of the winding under consideration over wide frequency range. With certain terminal conditions and using the terminal impedance measured at specific frequencies, input and shunt capacitances are determined. For the purpose of estimating series capacitance of the winding, an algorithm is proposed. To demonstrate the capability of the method, initially model coils that have provisions for connecting external capacitances are considered. Then, it is found that the estimated values of capacitances are nearly same as those of connected capacitances. The method is, then, extended to transformer winding, and a capacitive ladder network is constructed. To assess the accuracy of estimation, capacitive voltage distribution is utilized. That is, the voltage distribution in the winding is compared with that of synthesized circuit. A good agreement between those data reveals that the estimated capacitance values are accurate.

  5. Simulating Capacitances to Silicon Quantum Dots: Breakdown of the Parallel Plate Capacitor Model

    Science.gov (United States)

    Thorbeck, Ted; Fujiwara, Akira; Zimmerman, Neil M.

    2012-09-01

    Many electrical applications of quantum dots rely on capacitively coupled gates; therefore, to make reliable devices we need those gate capacitances to be predictable and reproducible. We demonstrate in silicon nanowire quantum dots that gate capacitances are reproducible to within 10% for nominally identical devices. We demonstrate the experimentally that gate capacitances scale with device dimensions. We also demonstrate that a capacitance simulator can be used to predict measured gate capacitances to within 20%. A simple parallel plate capacitor model can be used to predict how the capacitances change with device dimensions; however, the parallel plate capacitor model fails for the smallest devices because the capacitances are dominated by fringing fields. We show how the capacitances due to fringing fields can be quickly estimated.

  6. Calculation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics

    Science.gov (United States)

    Heitzer, Henry Matthew

    with experiment. This method is then used to help design new high-capacitance molecular dielectrics by determining what materials and chemical properties are important in maximizing dielectric response in Self-Assembled Monolayers (SAMs). Highly (hyper)polarizable Donor-Bridge-Acceptor (DBA) molecular materials are shown to have remarkable dielectric responses. Lastly, the interplay between charge conduction and dielectric constant is examined and it is demonstrated that high dielectric constant materials with low conductance are achievable through molecular design. This technique is a powerful tool for understanding and designing molecular dielectric systems, whose properties are fundamental in many scientific pursuits.

  7. Capacitive and photocatalytic performance of Bi2S3 nanostructures synthesized by solvothermal method

    Science.gov (United States)

    Liang, Kangqiang; Wang, Chenggang; Xu, Xijin; Leng, Jiancai; Ma, Hong

    2017-02-01

    Different Bi2S3 nanoarchitectures (nanorods and nanobelts) were successfully synthesized with a facile solvothermal method at different temperature. The nanobelts transformed into nanorods when the temperature was 200 °C increased from 150 °C. The nanorod-morphology was kept even the temperature was further increased. The galvanostatic charge/discharge performance showed that the prepared Bi2S3 nanorods had good performance of discharge efficiency at current density from 1 A g-1 to 4 A g-1. The specific capacitance was 270 F g-1 at a current density of 1 A g-1. Furthermore, the nanorods were also used as the efficient UV-light photocatalysts for the degradation of Rhodamine B (RhB), which showed almost complete degradation (∼87%) of RhB dye at 100 min.

  8. Two-dimensional dopant profiling of gallium nitride p–n junctions by scanning capacitance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lamhamdi, M. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Ecole national des sciences appliquées khouribga, Université Hassan 1er, 26000 Settat (Morocco); Cayrel, F. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France); Frayssinet, E. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Bazin, A.E.; Yvon, A.; Collard, E. [STMicroelectronics, 16 Rue Pierre et Marie Curie, BP 7155, 37071 Tours (France); Cordier, Y. [CRHEA-CNRS, Rue Bernard Grégory, Sophia Antipolis, 06560 Valbonne (France); Alquier, D. [GREMAN UMR 7347-Université de Tours, 10 Rue Thales de Milet, BP 7155, 37071 Tours (France)

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p–n and unipolar junctions. For both p–n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p–n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  9. Numerical Study of a System of Long Josephson Junctions with Inductive and Capacitive Couplings

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.; Plecenik, A.; Zemlyanaya, E. V.; Bashashin, M. V.

    2016-02-01

    The phase dynamics of the stacked long Josephson junctions is investigated taking into account the inductive and capacitive couplings between junctions and the diffusion current. The simulation of the current-voltage characteristics is based on the numerical solution of a system of nonlinear partial differential equations by a fourth order Runge-Kutta method and finite-difference approximation. A parallel implementation is based on the MPI technique. The effectiveness of the MPI/C++ code is confirmed by calculations on the multi-processor cluster CICC (LIT JINR, Dubna). We demonstrate the appearance of the charge traveling wave (CTW) at the boundary of the zero field step. Based on this fact, we conclude that the CTW and the fluxons coexist.

  10. Numerical Study of a System of Long Josephson Junctions with Inductive and Capacitive Couplings

    Directory of Open Access Journals (Sweden)

    Rahmonov I. R.

    2016-01-01

    Full Text Available The phase dynamics of the stacked long Josephson junctions is investigated taking into account the inductive and capacitive couplings between junctions and the diffusion current. The simulation of the current–voltage characteristics is based on the numerical solution of a system of nonlinear partial differential equations by a fourth order Runge–Kutta method and finite-difference approximation. A parallel implementation is based on the MPI technique. The effectiveness of the MPI/C++ code is confirmed by calculations on the multi-processor cluster CICC (LIT JINR, Dubna. We demonstrate the appearance of the charge traveling wave (CTW at the boundary of the zero field step. Based on this fact, we conclude that the CTW and the fluxons coexist.

  11. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage

    Science.gov (United States)

    Lin, Tianquan; Chen, I.-Wei; Liu, Fengxin; Yang, Chongyin; Bi, Hui; Xu, Fangfang; Huang, Fuqiang

    2015-12-01

    Carbon-based supercapacitors can provide high electrical power, but they do not have sufficient energy density to directly compete with batteries. We found that a nitrogen-doped ordered mesoporous few-layer carbon has a capacitance of 855 farads per gram in aqueous electrolytes and can be bipolarly charged or discharged at a fast, carbon-like speed. The improvement mostly stems from robust redox reactions at nitrogen-associated defects that transform inert graphene-like layered carbon into an electrochemically active substance without affecting its electric conductivity. These bipolar aqueous-electrolyte electrochemical cells offer power densities and lifetimes similar to those of carbon-based supercapacitors and can store a specific energy of 41 watt-hours per kilogram (19.5 watt-hours per liter).

  12. Using Flow Electrodes in Multiple Reactors in Series for Continuous Energy Generation from Capacitive Mixing

    KAUST Repository

    Hatzell, Marta C.

    2014-12-09

    Efficient conversion of “mixing energy” to electricity through capacitive mixing (CapMix) has been limited by low energy recoveries, low power densities, and noncontinuous energy production resulting from intermittent charging and discharging cycles. We show here that a CapMix system based on a four-reactor process with flow electrodes can generate constant and continuous energy, providing a more flexible platform for harvesting mixing energy. The power densities were dependent on the flow-electrode carbon loading, with 5.8 ± 0.2 mW m–2 continuously produced in the charging reactor and 3.3 ± 0.4 mW m–2 produced in the discharging reactor (9.2 ± 0.6 mW m–2 for the whole system) when the flow-electrode carbon loading was 15%. Additionally, when the flow-electrode electrolyte ion concentration increased from 10 to 20 g L–1, the total power density of the whole system (charging and discharging) increased to 50.9 ± 2.5 mW m–2.

  13. Noise and mismatch optimization for capacitive MEMS readout

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chong; Wu Qisong; Yin Tao; Yang Haigang, E-mail: yanghg@mail.ie.ac.c [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2009-11-15

    This paper presents a high precision CMOS readout circuit for a capacitive MEMS gyroscope. A continuous time topology is employed as well as the chopper noise cancelling technique. A detailed analysis of the noise and mismatch of the capacitive readout circuit is given. The analysis and measurement results have shown that thermal noise dominates in the proposed circuit, and several approaches should be used for both noise and mismatch optimization. The circuit chip operates under a single 5 V supply, and has a measured capacitance resolution of 0.2 aF/sq rootHz. With such a readout circuit, the gyroscope can accurately measure the angular rate with a sensitivity of 15.3 mV/{sup 0}/s. (semiconductor integrated circuits)

  14. Noise and mismatch optimization for capacitive MEMS readout

    Institute of Scientific and Technical Information of China (English)

    Zhang Chong; Wu Qisong; Yin Tao; Yang Haigang

    2009-01-01

    This paper presents a high precision CMOS readout circuit for a capacitive MEMS gyroscope. A continuous time topology is employed as well as the chopper noise cancelling technique. A detailed analysis of the noise and mismatch of the capacitive readout circuit is given. The analysis and measurement results have shown that thermal noise dominates in the proposed circuit, and several approaches should be used for both noise and mismatch optimization. The circuit chip operates under a single 5 V supply, and has a measured capacitance resolution of 0.2 aF/√Hz. With such a readout circuit, the gyroscope can accurately measure the angular rate with a sensitivity of 15.3 mV/°/s.

  15. CMOS capacitive biosensors for highly sensitive biosensing applications.

    Science.gov (United States)

    Chang, An-Yu; Lu, Michael S-C

    2013-01-01

    Magnetic microbeads are widely used in biotechnology and biomedical research for manipulation and detection of cells and biomolecules. Most lab-on-chip systems capable of performing manipulation and detection require external instruments to perform one of the functions, leading to increased size and cost. This work aims at developing an integrated platform to perform these two functions by implementing electromagnetic microcoils and capacitive biosensors on a CMOS (complementary metal oxide semiconductor) chip. Compared to most magnetic-type sensors, our detection method requires no externally applied magnetic fields and the associated fabrication is less complicated. In our experiment, microbeads coated with streptavidin were driven to the sensors located in the center of microcoils with functionalized anti-streptavidin antibody. Detection of a single microbead was successfully demonstrated using a capacitance-to-frequency readout. The average capacitance changes for the experimental and control groups were -5.3 fF and -0.2 fF, respectively.

  16. Extracting Impurity Locations using Scanning Capacitance Microscopy Measurements

    Directory of Open Access Journals (Sweden)

    AGHAEI, S.

    2016-08-01

    Full Text Available In this article we investigate the possibility to use scanning capacitance microscopy (SCM for the 2-D and 3-D "atomistic" dopant profiling of semiconductor materials. For this purpose, we first analyze the effects of random dopant fluctuations (RDF on SCM measurements with nanoscale probes and show that the discrete and random locations of dopant impurities significantly affect the differential capacitance measured in SCM experiments if the dimension of the probe is below 50 nm. Then, we present an algorithm to compute the x, y, and z coordinates of the ionized impurities in the semiconductor material using a set of SCM measurements. The algorithm is based on evaluating the doping sensitivity functions of the differential capacitance and uses a gradient-based iterative method to compute the locations of dopants. Finally, we discuss a standard simulation case and show that we are able to successfully retrieve the locations of the ionized impurities using the proposed algorithm.

  17. A Wearable Capacitive Sensor for Monitoring Human Respiratory Rate

    Science.gov (United States)

    Kundu, Subrata Kumar; Kumagai, Shinya; Sasaki, Minoru

    2013-04-01

    Realizing an untethered, low-cost, and comfortably wearable respiratory rate sensor for long-term breathing monitoring application still remains a challenge. In this paper, a conductive-textile-based wearable respiratory rate sensing technique based on the capacitive sensing approach is proposed. The sensing unit consists of two conductive textile electrodes that can be easily fabricated, laminated, and integrated in garments. Respiration cycle is detected by measuring the capacitance of two electrodes placed on the inner anterior and posterior sides of a T-shirt at either the abdomen or chest position. A convenient wearable respiratory sensor setup with a capacitance-to-voltage converter has been devised. Respiratory rate as well as breathing mode can be accurately identified using the designed sensor. The sensor output provides significant information on respiratory flow. The effectiveness of the proposed system for different breathing patterns has been evaluated by experiments.

  18. Quantum Capacitance Modifies Interionic Interactions in Semiconducting Nanopores

    CERN Document Server

    Lee, Alpha A; Goriely, Alain

    2016-01-01

    Nanopores made with low dimensional semiconducting materials, such as carbon nanotubes and graphene slit pores, are used in supercapacitors. In theories and simulations of their operation, it is often assumed that such pores screen ion-ion interactions like metallic pores, i.e. that screening leads to an exponential decay of the interaction potential with ion separation. By introducing a quantum capacitance that accounts for the density of states in the material, we show that ion-ion interactions in carbon nanotubes and graphene slit pores actually decay algebraically with ion separation. This result suggests a new avenue of capacitance optimization based on tuning the electronic structure of a pore: a marked enhancement in capacitance might be achieved by developing nanopores made with metallic materials or bulk semimetallic materials.

  19. Low Power/Low Voltage Interface Circuitry for Capacitive Sensors

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    This thesis focuses mainly on low power/low voltage interface circuits, implemented in CMOS, for capacitive sensors. A brief discussion of demands and possibilities for analog signal processing in the future is presented. Techniques for low power design is presented. This is done by analyzing power...... consumption of different amplifier topologies. Next, low power features of different amplifier types are analyzed on transistor level. A brief comparison of SI circuits for low power applications vs. SC circuits is presented. Methodologies for low voltage design is presented. This is followed by a collection...... power consumption. It is shown that the Sigma-Delta modulator is advantageous when embedded in a feedback loop with a mechanical sensor. Here a micro mechanical capacitive microphone. Feedback and detection circuitry for a capacitive microphone is presented. Practical implementations of low power...

  20. Extraction method for parasitic capacitances and inductances of HEMT models

    Science.gov (United States)

    Zhang, HengShuang; Ma, PeiJun; Lu, Yang; Zhao, BoChao; Zheng, JiaXin; Ma, XiaoHua; Hao, Yue

    2017-03-01

    A new method to extract parasitic capacitances and inductances for high electron-mobility transistors (HEMTs) is proposed in this paper. Compared with the conventional extraction method, the depletion layer is modeled as a physically significant capacitance model and the extrinsic values obtained are much closer to the actual results. In order to simulate the high frequency behaviour with higher precision, series parasitic inductances are introduced into the cold pinch-off model which is used to extract capacitances at low frequency and the reactive elements can be determined simultaneously over the measured frequency range. The values obtained by this method can be used to establish a 16-elements small-signal equivalent circuit model under different bias conditions. The results show good agreements between the simulated and measured scattering parameters up to 30 GHz.

  1. On Machine Capacitance Dimensional and Surface Profile Measurement System

    Science.gov (United States)

    Resnick, Ralph

    1993-01-01

    A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.

  2. Intrinsic Low Hysteresis Touch Mode Capacitive Pressure Sensor

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio; Pedersen, Thomas; Hansen, Ole

    2011-01-01

    Hysteresis has always been one of the main concerns when fabricating touch mode capacitive pressure sensors (TMCPS). This phenomenon can be fought at two different levels: during fabrication or after fabrication with the aid of a dedicated signal conditioning circuit. We will describe a microfabr......Hysteresis has always been one of the main concerns when fabricating touch mode capacitive pressure sensors (TMCPS). This phenomenon can be fought at two different levels: during fabrication or after fabrication with the aid of a dedicated signal conditioning circuit. We will describe...... a microfabrication step that can be introduced in order to reduce drastically the hysteresis of this type of sensors without compromising their sensitivity. Medium-high range (0 to 10 bar absolute pressure) TMCPS with a capacitive signal span of over 100pF and less than 1 % hysteresis in the entire pressure range...

  3. Vanadium Oxide Electrochemical Capacitors: An Investigation into Aqueous Capacitive Degradation, Alternate Electrolyte-Solvent Systems, Whole Cell Performance and Graphene Oxide Composite Electrodes

    Science.gov (United States)

    Engstrom, Allison Michelle

    Vanadium oxide has emerged as a potential electrochemical capacitor material due to its attractive pseudocapacitive performance; however, it is known to suffer from capacitive degradation upon sustained cycling. In this work, the electrochemical cycling behavior of anodically electrodeposited vanadium oxide films with various surface treatments in aqueous solutions is investigated at different pH. Quantitative compositional analysis and morphological studies provide additional insight into the mechanism responsible for capacitive degradation. Furthermore, the capacitance and impedance behavior of vanadium oxide electrochemical capacitor electrodes is compared for both aqueous and nonaqueous electrolyte-solvent systems. Alkali metal chloride and bromide electrolytes were studied in aqueous systems, and nonaqueous systems containing alkali metal bromides were studied in polar aprotic propylene carbonate (PC) or dimethyl sulfoxide (DMSO) solvents. The preferred aqueous and nonaqueous systems identified in the half-cell studies were utilized in symmetric vanadium oxide whole-cells. An aqueous system utilizing a 3.0 M NaCl electrolyte at pH 3.0 exhibited an excellent 96% capacitance retention over 3000 cycles at 10 mV s-1. An equivalent system tested at 500 mV s-1 displayed an increase in capacitance over the first several thousands of cycles, and eventually stabilized over 50,000 cycles. Electrodes cycled in nonaqueous 1.0 M LiBr in PC exhibited mostly non-capacitive charge-storage, and electrodes cycled in LiBr-DMSO exhibited a gradual capacitive decay over 10,000 cycles at 500 mV s-1. Morphological and compositional analyses, as well as electrochemical impedance modeling, provide additional insight into the cause of the cycing behavior. Lastly, reduced graphene oxide and vanadium oxide nanowire composites have been successfully synthesized using electrophoretic deposition for electrochemical capacitor electrodes. The composite material was found to perform with a

  4. Penicillamine prevents ram sperm agglutination in media that support capacitation.

    Science.gov (United States)

    Leahy, T; Rickard, J P; Aitken, R J; de Graaf, S P

    2016-02-01

    Ram spermatozoa are difficult to capacitate in vitro. Here we describe a further complication, the unreported phenomenon of head-to-head agglutination of ram spermatozoa following dilution in the capacitation medium Tyrodes plus albumin, lactate and pyruvate (TALP). Sperm agglutination is immediate, specific and persistent and is not associated with a loss of motility. Agglutination impedes in vitro sperm handling and analysis. So the objectives of this study were to investigate the cause of sperm agglutination and potential agents which may reduce agglutination. The percentage of non-agglutinated, motile spermatozoa increased when bicarbonate was omitted from complete TALP suggesting that bicarbonate ions stimulate the agglutination process. d-penicillamine (PEN), a nucleophilic thiol, was highly effective at reducing agglutination. The inclusion of 250 μM PEN in TALP reduced the incidence of motile, agglutinated spermatozoa from 76.7 ± 2.7% to 2.8 ± 1.4%. It was then assessed if PEN (1 mM) could be included in existing ram sperm capacitation protocols (TALP +1 mM dibutyryl cAMP, caffeine and theophylline) to produce spermatozoa that were simultaneously capacitated and non-agglutinated. This protocol resulted in a sperm population which displayed high levels of tyrosine phosphorylated proteins and lipid disordered membranes (merocyanine-540) while remaining motile, viable, acrosome-intact and non-agglutinated. In summary, PEN (1 mM) can be included in ram sperm capacitation protocols to reduce sperm agglutination and allow for the in vitro assessment of ram sperm capacitation.

  5. 3D flexible O/N Co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances

    Science.gov (United States)

    Qin, Tianfeng; Wan, Zunyuan; Wang, Zilei; Wen, Yuxiang; Liu, Mengting; Peng, Shanglong; He, Deyan; Hou, Juan; Huang, Fei; Cao, Guozhong

    2016-12-01

    3D flexible O/N co-doped graphene foams (GF) have been designed and fabricated successfully via combining the compression/hot curing strategy with chemical reduction and hydrothermal treatment, in which melamine foams were used not only as the source of N/O functional groups for the introduction of pseudocapacitance but also as the sacrificial template to inhibit the agglomeration of graphene. Also, the mechanism for method of the compressing/hot curing has been investigated systematically. And the resultant GF demonstrates excellent mechanical strength and flexibility. When the compacting GF is used as free-standing electrodes for supercapacitor, it exhibits more excellent ability of charge storage than that of pristine graphene foams. And 10 MPa-GF electrodes delivers high areal capacitance of 375 μF cm-2 at a current density of 1 A g-1, excellent rate capabilities and superior cycling stability of above 100%. According to the analysis of capacitance contribution for 10 MPa-GF electrode, the pseudocapacitance originated from N/O functional groups is up to ∼65% of the contribution of total capacitance. Moreover, the symmetric supercapacitor comprised of 10 MPa-GF electrodes presents a maximum energy density of 16 Wh kg-1 (8 Wh L-1) and a maximum power density of 17 kW kg-1 (8.6 kW L-1).

  6. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes

    Science.gov (United States)

    Dall'Agnese, Yohan; Rozier, Patrick; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2016-02-01

    Pseudocapacitive materials that store charges by fast redox reactions are promising candidates for designing high energy density electrochemical capacitors. MXenes - recently discovered two-dimensional carbides, have shown excellent capacitance in aqueous electrolytes, but in a narrow potential window, which limits both the energy and power density. Here, we investigated the electrochemical behavior of Ti3C2 MXene in 1M solution of 1-ethly-3-methylimidazolium bis- (trifluoromethylsulfonyl)-imide (EMITFSI) in acetonitrile and two other common organic electrolytes. This paper describes the use of clay, delaminated and composite Ti3C2 electrodes with carbon nanotubes in order to understand the effect of the electrode architecture and composition on the electrochemical performance. Capacitance values of 85 F g-1 and 245 F cm-3 were obtained at 2 mV s-1, with a high rate capability and good cyclability. In situ X-ray diffraction study reveals the intercalation of large EMI+ cations into MXene, which leads to increased capacitance, but may also be the rate limiting factor that determines the device performance.

  7. A hierarchical porous carbon membrane from polyacrylonitrile/polyvinylpyrrolidone blending membranes:Preparation, characterization and electrochemical capacitive performance

    Institute of Scientific and Technical Information of China (English)

    Huili Fan; Fen Ran∗; Xuanxuan Zhang; Haiming Song; Wenxia Jing; Kuiwen Shen; Lingbin Kong; Long Kang

    2014-01-01

    Novel hierarchical porous carbon membranes were fabricated through a simple carbonization procedure of well-defined blending polymer membrane precursors containing the source of carbon polyacrylonitrile (PAN) and an additive of polyvinylpyrrolidone (PVP), which was prepared using phase inversion method. The as-fabricated materials were further used as the active electrode materials for supercapacitors. The effects of PVP concentration in the casting solution on structure feature and electrochemical capacitive performance of the as-prepared carbon membranes were also studied in detail. As the electrode material for supercapacitor, a high specific capacitance of 278.0 F/g could be attained at a current of 5 mA/cm2 and about 92.90%capacity retention could be maintained after 2000 charge/discharge cycles in 2 mol/L KOH solution with a PVP concentration of 0.3 wt%in the casting solution. The facile hierarchical pore structure preparation method and the good electrochemical capacitive performance make the prepared carbon membrane particularly promising for use in supercapacitor.

  8. Modelling of capacitance and threshold voltage for ultrathin normally-off AlGaN /GaN MOSHEMT

    Science.gov (United States)

    Swain, R.; Jena, K.; Lenka, T. R.

    2017-01-01

    A compact quantitative model based on oxide semiconductor interface density of states (DOS) is proposed for Al0.25Ga0.75N/GaN metal oxide semiconductor high electron mobility transistor (MOSHEMT). Mathematical expressions for surface potential, sheet charge concentration, gate capacitance and threshold voltage have been derived. The gate capacitance behaviour is studied in terms of capacitance-voltage (CV) characteristics. Similarly, the predicted threshold voltage ( V T) is analysed by varying barrier thickness and oxide thickness. The positive V T obtained for a very thin 3 nm AlGaN barrier layer enables the enhancement mode operation of the MOSHEMT. These devices, along with depletion mode devices, are basic constituents of cascode configuration in power electronic circuits. The expressions developed are used in conventional long-channel HEMT drain current equation and evaluated to obtain different DC characteristics. The obtained results are compared with experimental data taken from literature which show good agreement and hence endorse the proposed model.

  9. Effects of microwave and oxygen plasma treatments on capacitive characteristics of supercapacitor based on multiwalled carbon nanotubes

    Science.gov (United States)

    Dulyaseree, Paweena; Yordsri, Visittapong; Wongwiriyapan, Winadda

    2016-02-01

    The effects of microwave and oxygen plasma treatments on the capacitive characteristics of a supercapacitor based on multiwalled carbon nanotubes (MWNTs) were investigated. MWNTs were heat-treated under air ambient at 500 °C for 1 h, and subsequently microwave-treated at 650 W for 70 s (m-MWNTs). Another batch of MWNTs was treated by oxygen plasma for 30 min (p-MWNTs). Pristine MWNTs, m-MWNTs, and p-MWNTs were separately used as electrode materials for supercapacitors. Their cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy results were analyzed. The p-MWNTs show the best performance with a specific capacitance of 238.23 F·g-1. The capacitance improvement is attributed to the increase in the number of oxygen-containing functional groups, as evidenced by Fourier transform-infrared spectroscopy and contact angle measurement. These results suggest that oxygen plasma treatment is a rapid and efficient method for oxygen functionalization.

  10. SEMICONDUCTOR DEVICES Multi-bias capacitance voltage characteristic of AlGaN/GaN HEMT

    Science.gov (United States)

    Yan, Pu; Liang, Wang; Tingting, Yuan; Sihua, Ouyang; Lei, Pang; Guoguo, Liu; Weijun, Luo; Xinyu, Liu

    2010-10-01

    The method of multi-bias capacitance voltage measurement is presented. The physical meaning of gate—source and gate—drain capacitances in AlGaN/GaN HEMT and the variations in them with different bias conditions are discussed. A capacitance model is proposed to reflect the behaviors of the gate—source and gate—drain capacitances, which shows a good agreement with the measured capacitances, and the power performance obtains good results compared with the measured data from the capacitance model.

  11. The modelling of a capacitive microsensor for biosensing applications

    Science.gov (United States)

    Bezuidenhout, P. H.; Schoeman, J.; Joubert, T. H.

    2014-06-01

    Microsensing is a leading field in technology due to its wide application potential, not only in bio-engineering, but in other fields as well. Microsensors have potentially low-cost manufacturing processes, while a single device type can have various uses, and this consequently helps with the ever-growing need to provide better health conditions in rural parts of the world. Capacitive biosensors detect a change in permittivity (or dielectric constant) of a biological material, usually within a parallel plate capacitor structure which is often implemented with integrated electrodes of an inert metal such as gold or platinum on a microfluidic substrate typically with high dielectric constant. There exist parasitic capacitance components in these capacitive sensors, which have large influence on the capacitive measurement. Therefore, they should be considered for the development of sensitive and accurate sensing devices. An analytical model of a capacitive sensor device is discussed, which accounts for these parasitic factors. The model is validated with a laboratory device of fixed geometry, consisting of two parallel gold electrodes on an alumina (Al2O3) substrate mounted on a glass microscope slide, and with a windowed cover layer of poly-dimethyl-siloxane (PDMS). The thickness of the gold layer is 1μm and the electrode spacing is 300μm. The alumina substrate has a thickness of 200μm, and the high relative permittivity of 11.5 is expected to be a significantly contributing factor to the total device capacitance. The 155μm thick PDMS layer is also expected to contribute substantially to the total device capacitance since the relative permittivity for PDMS is 2.7. The wideband impedance analyser evaluation of the laboratory device gives a measurement result of 2pF, which coincides with the model results; while the handheld RLC meter readout of 4pF at a frequency of 10kHz is acceptable within the measurement accuracy of the instrument. This validated model will

  12. Touch mode micromachined capacitive pressure sensor with signal conditioning electronics

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio; Eriksen, Gert F.; Christensen, Carsten

    2010-01-01

    is one of the key challenges nowadays. In this context, house heating is a priority for environmental issues. For this reason, the possibilities of using a low power consumption technique, such as capacitive pressure sensing, in harsh environments is a concrete market opportunity. Our aim is therefore....... A measurement setup was arranged and tested for accuracy and reliability with respect to hysteresis. Finally, designs with different radii of the top plate were characterized by a capacitance versus pressure curve at different frequencies and temperatures (Fig. 3). Industrial possibilities Energy saving systems...

  13. Flexible Capacitive Electrodes for Minimizing Motion Artifacts in Ambulatory Electrocardiograms

    Directory of Open Access Journals (Sweden)

    Jeong Su Lee

    2014-08-01

    Full Text Available This study proposes the use of flexible capacitive electrodes for reducing motion artifacts in a wearable electrocardiogram (ECG device. The capacitive electrodes have conductive foam on their surface, a shield, an optimal input bias resistor, and guarding feedback. The electrodes are integrated in a chest belt, and the acquired signals are transmitted wirelessly for ambulatory heart rate monitoring. We experimentally validated the electrode performance with subjects standing and walking on a treadmill at speeds of up to 7 km/h. The results confirmed the highly accurate heart rate detection capacity of the developed system and its feasibility for daily-life ECG monitoring.

  14. Analysis of Capacitive Parasitism in PWM Inverter-Fed Motor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of parasitic capacitance in induction motor system are unnoticed when it is fed from the AC line. but they are obvious when supplied directly from a PWM inverter. Consequently. many parasitic problems occur, such as motor-to-earth leakage current, bearing current, incoming line current distortion and uneven distribution of electrical stresses along the winding. On the ba sis of the uniform transmission line principle, a complete equivalent circuit of the PWM inverter-fed motor system is presented, based on which all the capacitive parasitic problems mentioned above are analyzed and simulated by means of PSPICE. All the results are consistent with the existing ones.

  15. An Effective Hybrid Optimization Algorithm for Capacitated Vehicle Routing Problem

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Capacitated vehicle routing problem (CVRP) is an important combinatorial optimization problem. However, it is quite difficult to achieve an optimal solution with the traditional optimization methods owing to the high computational complexity. A hybrid algorithm was developed to solve the problem, in which an artificial immune clonal algorithm (AICA) makes use of the global search ability to search the optimal results and simulated annealing (SA) algorithm employs certain probability to avoid becoming trapped in a local optimum. The results obtained from the computational study show that the proposed algorithm is a feasible and effective method for capacitated vehicle routing problem.

  16. Comprehensive measurements of GaAs pixel detectors capacitance

    CERN Document Server

    Caria, M; D'Auria, S; Lai, A; Randaccio, P; Cadeddu, S

    2002-01-01

    We have studied GaAs pixel detectors on semi-insulating wafers with Schottky contacts. We performed comprehensive measurements on the inter-pixel and capacitance to back plane. Being semi-insulating, the behaviour is totally different with respect to other common semiconductors, such as high resistivity silicon. Non-homogeneities are also an issue, due to both the contacts and the crystal bulk. In order to detect them and their influence on capacitance, we undertook systematic measurements with different configurations of the measuring electrodes.

  17. Capacitive Touch User Interface and Implementation with Virtual Refrigerator

    Directory of Open Access Journals (Sweden)

    MIT Academy of Engineering Global Technology and Engineering centre, Whirlpool of India

    2014-05-01

    Full Text Available The proposed User Interface incorporates 14 Touch keys, including slider and wheeler functionality using self capacitance technology, 24 side throw LED with intensity controlled Fade-IN, Fade-OUT effects, Buzzer chime, Voltage regulator circuit, and communication circuitry for the control board. The major advantage that this User Interface is that the entire assembly is less than 10mm thick including PCB, components, light guide and graphics sticker. In this project the mentioned capacitive touch user Interface is interfaced with a Lab view system simulating a virtual refrigerator capable of responding to the commands from the User Interface.

  18. Micromachined capacitive pressure sensor with signal conditioning electronics

    DEFF Research Database (Denmark)

    Fragiacomo, Giulio

    Micromachined capacitive pressure sensors for harsh environment together with interfacing electronic circuits have been studied in this project. Micro-electromechanical systems (MEMS) have been proposed as substitutes for macro scale sensor’s systems in many different fields and are the only...... a great deal of sensors are used. Pressure sensors are among the most successful MEMS and are used in a huge variety of applications. In this project an absolute capacitive pressure sensor has been developed with the aim to integrate it in pump control systems to improve the efficiency of the pump...

  19. Nickel Oxide/Carbon Nanotubes Nanocomposite for Electrochemical Capacitance

    Institute of Scientific and Technical Information of China (English)

    Kui LIANG; Kayhyeok AN; Younghee LEE

    2005-01-01

    A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mass fraction of CNTs (carbon nanotubes) in NiO/CNT composites increases, the electrical resistivity of nanocomposites decreases and becomes similar to that of pure CNTs when it reaches 30%. The specific surface area of composites increases with increasing CNT mass fraction and the specific capacitance reaches 160 F/g under 10 mA/g discharge current density at CNT mass fraction of 10%.

  20. Quantum capacitance in monolayers of silicene and related buckled materials

    Science.gov (United States)

    Nawaz, S.; Tahir, M.

    2016-02-01

    Silicene and related buckled materials are distinct from both the conventional two dimensional electron gas and the famous graphene due to strong spin orbit coupling and the buckled structure. These materials have potential to overcome limitations encountered for graphene, in particular the zero band gap and weak spin orbit coupling. We present a theoretical realization of quantum capacitance which has advantages over the scattering problems of traditional transport measurements. We derive and discuss quantum capacitance as a function of the Fermi energy and temperature taking into account electron-hole puddles through a Gaussian broadening distribution. Our predicted results are very exciting and pave the way for future spintronic and valleytronic devices.

  1. [Impact of sperm capacitation on various populations of human spermatozoa].

    Science.gov (United States)

    Villanueva Díaz, C; Suárez Juárez, M; Díaz, M A; Ayala Ruiz, A

    1989-02-01

    With the purpose of evaluating the impact of spermatic capacitation on different spermatozooa populations, 49 samples of semen, before and after in vitro spermatic capacitation with Ham F-10 medium, were studied; motility of cells was evaluated according to WHO criteria. There was diminution of percentage of immobile cells, 27.8 to 20.0, as well as increase in population of cells with more mobility, 28.6% to 39.1%. Both difference were statistically significant (p = less than 0.05 and p = less than 0.005, respectively). These data suggest that spermatic capacitacion activates "in cascade" all groups of gametes.

  2. Stray capacitances in the watt balance operation: electrostatic forces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Mana, G.

    2014-01-01

    In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results of a fin......In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil creates a difference in electric potentials between the coil and magnet, their electrostatic interactions must be taken into account. This paper reports the results...

  3. Physiographic divisions of the conterminous U. S.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is a polygon coverage of Physiographic Divisions in the conterminous United States. It was automated from Fenneman's 1:7,000,000-scale map, "Physical Divisions...

  4. Long-term RF burn-in effects on dielectric charging of MEMS capacitive switches

    KAUST Repository

    Molinero, David G.

    2013-03-01

    This paper experimentally quantified the long-term effects of RF burn-in, in terms of burn-in and recovery times, and found the effects to be semipermanent. Specifically, most of the benefit could be realized after approximately 20 min of RF burn-in, which would then last for several months. Additionally, since similar effects were observed on both real and faux switches, the effects appeared to be of electrical rather than mechanical nature. These encouraging results should facilitate the application of the switches in RF systems, where high RF power could be periodically applied to rejuvenate the switches. © 2001-2011 IEEE.

  5. Health, Safety, and Environment Division

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C [comp.

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  6. Cell division in apicomplexan parasites.

    Science.gov (United States)

    Francia, Maria E; Striepen, Boris

    2014-02-01

    Toxoplasma gondii and Plasmodium falciparum are important human pathogens. These parasites and many of their apicomplexan relatives undergo a complex developmental process in the cells of their hosts, which includes genome replication, cell division and the assembly of new invasive stages. Apicomplexan cell cycle progression is both globally and locally regulated. Global regulation is carried out throughout the cytoplasm by diffusible factors that include cell cycle-specific kinases, cyclins and transcription factors. Local regulation acts on individual nuclei and daughter cells that are developing inside the mother cell. We propose that the centrosome is a master regulator that physically tethers cellular components and that provides spatial and temporal control of apicomplexan cell division.

  7. 7 CFR 29.16 - Division.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION Regulations Definitions § 29.16 Division. Tobacco Division, Agricultural Marketing Service, U.S... 7 Agriculture 2 2010-01-01 2010-01-01 false Division. 29.16 Section 29.16 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections,...

  8. Take a Bite out of Fraction Division

    Science.gov (United States)

    Cengiz, Nesrin; Rathouz, Margaret

    2011-01-01

    Division of fractions is often considered the most mechanical and least understood topic in elementary school. Enacting fraction division tasks in meaningful ways requires that teachers know not only "how" fraction division works but also "why" it works. The authors have created materials to help preservice teachers develop that knowledge. To…

  9. 77 FR 40586 - Coastal Programs Division

    Science.gov (United States)

    2012-07-10

    ... request for comments in the Federal Register at 77 FR 12245 on the request of Lockheed Martin Corp. to... National Oceanic and Atmospheric Administration Coastal Programs Division AGENCY: Coastal Programs Division... licenses. FOR FURTHER INFORMATION CONTACT: Kerry Kehoe, Coastal Programs Division (NORM/3), Office of...

  10. Division of household tasks and financial management

    NARCIS (Netherlands)

    Antonides, G.

    2011-01-01

    Both the standard economic model and bargaining theory make predictions about financial management and the division of household labor between household partners. Using a large Internet survey, we have tested several predictions about task divisions reported by Dutch household partners. The division

  11. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Fei; Li, Li; Zhang, Xiaohua, E-mail: mickyxie@hnu.edu.cn; Chen, Jinhua, E-mail: chenjinhua@hnu.edu.cn

    2015-06-15

    Highlights: • Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were prepared from ZIF-11. • The activated N-PCMPs with fused KOH (N-PCMPs-A) have high specific surface area. • N-PCMPs-A exhibits high specific capacitance. • N-PCMPs-A reveals good cycling performance even at a high current density. - Abstract: Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were successfully prepared by direct carbonization of ZIF-11 polyhedra and further activated with fused KOH to obtain N-PCMPs-A. The morphology and microstructure of samples were examined by scanning electron microscopy, X-ray diffraction, and micropore and chemisorption analyzer. Electrochemical properties were characterized by cyclic voltammetry and galvanostatic charge/discharge method in 1.0 M H{sub 2}SO{sub 4} aqueous solution on a standard three-electrode system. Results show that, compared with N-PCMPs, N-PCMPs-A has higher specific surface area (2188 m{sup 2} g{sup −1}) and exhibits improved electrochemical capacitive properties (307 F g{sup −1} at 1.0 A g{sup −1}). The mass specific capacitance of N-PCMPs-A is also higher than that of most MOF-derived carbons, some carbide-derived carbons and carbon aerogel-derived carbons. In addition, the capacitance of the N-PCMPs-A retains 90% after 4000 cycles even at a high current density of 10 A g{sup −1}. These imply that N-PCMPs-A is the promising materials for the construction of a high-performance supercapacitor.

  12. 75 FR 16843 - Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc., Division, Including Leased...

    Science.gov (United States)

    2010-04-02

    ... Employment and Training Administration Core Manufacturing, Multi-Plastics, Inc., Division, Sipco, Inc..., 2009, applicable to workers of Core Manufacturing, Multi-Plastics, Inc., Division and Sipco, Inc... of Core Manufacturing, Multi-Plastics, Inc., Division and Sipco, Inc., Division, including...

  13. Terms in elliptic divisibility sequences divisible by their indices

    CERN Document Server

    Stange, Katherine E

    2010-01-01

    Let D = (D_n)_{n\\ge1} be an elliptic divisibility sequence. We study the set S(D) of indices n satisfying n | D_n. In particular, given an index n in S(D), we explain how to construct elements nd in S(D), where d is either a prime divisor of D_n, or d is the product of the primes in an aliquot cycle for D. We also give bounds for the exceptional indices that are not constructed in this way.

  14. Capacitive sensor probe to assess frying oil degradation

    Directory of Open Access Journals (Sweden)

    Alfadhl Yahya Khaled

    2015-09-01

    Full Text Available The repeated usage of frying oil has been proven hazardous due to the degradation process by chemical reactions that lead to changes in the quality of the oil. Currently, the degree of frying oil degradation is indicated by the percentage of its total polar compounds (TPC. In this study, a capacitive sensor was designed to assess frying oil degradation at several heating time intervals by measuring changes on its electrical capacitance. The sensor was designed using interdigitated electrode structure. A total of 30 samples of 130 ml palm oil were heated at 180 °C up to 30 h. For each one hour interval, one sample was moved out from the laboratory oven. The electrical capacitance, total polar compound (TPC and viscosity of the samples were measured for analysis. Preliminary results demonstrated significant correlation between oil electrical capacitance with TPC and viscosity with R2 ranged from 0.83 to 0.90. The designed sensor has good potential for simple and inexpensive way of determining frying oil quality.

  15. Dynamic Adsorption/Desorption Process Model of Capacitive Deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Limpt, van B.; Wal, van der A.

    2009-01-01

    In capacitive deionization (CDI), an electrical potential difference is applied across oppositely placed electrodes, resulting in the adsorption of ions from aqueous solution and a partially ion-depleted product stream. CDI is a dynamic process which operates in a sequential mode; i.e., after a cert

  16. Stray capacitances in the watt balance operation: electrostatic forces

    CERN Document Server

    Quagliotti, Danilo

    2014-01-01

    In a watt balance, stray capacitances exist between the coil and the magnet. Since the electric current flowing in the coil originates a difference between the coil and magnet electric-potentials, their electrostatic interactions must be taken into account. This paper reports the results of a finite element analysis of the forces acting on the coil.

  17. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.  

  18. A Multifunction Low-Power Preamplifier for MEMS Capacitive Microphones

    DEFF Research Database (Denmark)

    Jawed, Syed Arsalan; Nielsen, Jannik Hammel; Gottardi, Massimo;

    2009-01-01

    A multi-function two-stage chopper-stabilized preamplifier (PAMP) for MEMS capacitive microphones (MCM) is presented. The PAMP integrates digitally controllable gain, high-pass filtering and offset control, adding flexibility to the front-end readout of MCMs. The first stage of the PAMP consists...

  19. Multilevel inverter based class D audio amplifier for capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The reduced semiconductor voltage stress makes the multilevel inverters especially interesting, when driving capacitive transducers for audio applications. A ± 300 V flying capacitor class D audio amplifier driving a 100 nF load in the midrange region of 0.1-3.5 kHz with Total Harmonic Distortion...

  20. Energy consumption and constant current operation in membrane capacitive deionization

    NARCIS (Netherlands)

    Zhao, R.; Biesheuvel, P.M.; Wal, van der A.F.

    2012-01-01

    Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In the salt removal step, ions are adsorbed at the carbon–water interf

  1. Capacitive pressure sensor in post-processing on LTCC substrates

    NARCIS (Netherlands)

    Meijerink, M.G.H.; Nieuwkoop, E.; Veninga, E.P.; Meuwissen, M.H.H.; Tijdink, M.W.W.J.

    2005-01-01

    A capacitive pressure sensor was realized by means of a post-processing step on a low temperature co-fired ceramics (LTCC) substrate. The new sensor fabrication technology allows for integration of the sensor with interface circuitry and possibly also wireless transmission circuits on LTCC substrate

  2. A Micro Dynamically Tuned Gyroscope with Adjustable Static Capacitance

    Directory of Open Access Journals (Sweden)

    Lun Kong

    2013-02-01

    Full Text Available This paper presents a novel micro dynamically tuned gyroscope (MDTG with adjustable static capacitance. First, the principle of MDTG is theoretically analyzed. Next, some simulations under the optimized structure parameters are given as a reference for the mask design of the rotor wafer and electrode plates. As two key components, the process flows of the rotor wafer and electrode plates are described in detail. All the scanning electron microscopy (SEM photos show that the fabrication process is effective and optimized. Then, an assembly model is designed for the static capacitance adjustable MDTG, whose static capacitance can be changed by rotating the lower electrode plate support and substituting gasket rings of different thicknesses. Thus, the scale factor is easily changeable. Afterwards, the digitalized closed-loop measurement circuit is simulated. The discrete correction and decoupling modules are designed to make the closed-loop stable and cross-coupling effect small. The dual axis closed-loop system bandwidths can reach more than 60 Hz and the dual axis scale factors are completely symmetrical. All the simulation results demonstrate the proposed fabrication of the MDTG can meet the application requirements. Finally, the paper presents the test results of static and dynamic capacitance values which are consistent with the simulation values.

  3. High bandwidth on-chip capacitive tuning of microtoroid resonators

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sheridan, Eoin; Bowen, Warwick P

    2016-01-01

    We report on the design, fabrication and characterization of silica microtoroid based cavity opto-electromechanical systems (COEMS). Electrodes patterned onto the microtoroid resonators allow for rapid capacitive tuning of the optical whispering gallery mode resonances while maintaining their ultrahigh quality factor, enabling applications such as efficient radio to optical frequency conversion, optical routing and switching applications.

  4. Performance analysis of a digital capacitance measuring circuit.

    Science.gov (United States)

    Xu, Lijun; Sun, Shijie; Cao, Zhang; Yang, Wuqiang

    2015-05-01

    This paper presents the design and study of a digital capacitance measuring circuit with theoretical analysis, numerical simulation, and experimental evaluation. The static and dynamic performances of the capacitance measuring circuit are first defined, including signal-to-noise ratio (SNR), standard deviation, accuracy, linearity, sensitivity, and response time, within a given measurement range. Then numerical simulation is carried out to analyze the SNR and standard deviation of the circuit, followed by experiments to validate the overall performance of the circuit. The simulation results show that when the standard deviation of noise is 0.08 mV and the measured capacitance decreases from 6 pF to 3 fF, the SNR decreases from 90 dB to 22 dB and the standard deviation is between 0.17 fF and 0.24 fF. The experimental results show that when the measured capacitance decreases from 6 pF to 40 fF and the data sampled in a single period are used for demodulation, the SNR decreases from 88 dB to 40 dB and the standard deviation is between 0.18 fF and 0.25 fF. The maximum absolute error and relative error are 5.12 fF and 1.26%, respectively. The SNR and standard deviation can be further improved if the data sampled in more than one period are used for demodulation by the circuit.

  5. Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes

    NARCIS (Netherlands)

    Porada, S.; Weinstein, L.; Dash, R.; Wal, van der A.F.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P.M.

    2012-01-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrost

  6. Micro coriolis mass flow sensor with integrated capacitive readout

    NARCIS (Netherlands)

    Haneveld, J.; Lammerink, T.S.J.; Boer, de M.J.; Wiegerink, R.J.

    2009-01-01

    We have realized a micromachined micro Coriolis mass flow sensor with integrated capacitive readout to detect the extremely small Coriolis vibration of the sensor tube. A special comb-like detection electrode design eliminates the need for multiple metal layers and sacrificial layer etching methods.

  7. An organic integrated capacitive DC-DC up-converter

    NARCIS (Netherlands)

    Marien, H.; Steyaert, M.; Steudel, S.; Vicca, P.; Smout, S.; Gelinck, G.H.; Heremans, P.L.

    2010-01-01

    In this paper a fully integrated organic DC-DC upconverter is presented in a pentacene p-type only technology. This 3-stage Dickson converter reaches a voltage conversion factor of 3 for a purely capacitive load and 2.5 for a 10 μA load current. The maximal output voltage goes up to 75 V and the Dic

  8. Optimization of salt adsorption rate in membrane capacitive deionization

    NARCIS (Netherlands)

    Zhao, R.; Satpradit, O.A.; Rijnaarts, H.; Biesheuvel, P.M.; Wal, van der A.

    2013-01-01

    Membrane capacitive deionization (MCDI) is a water desalination technique based on applying a cell voltage between two oppositely placed porous electrodes sandwiching a spacer channel that transports the water to be desalinated. In MCDI, ion-exchange membranes are positioned in front of each porous

  9. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  10. An Approximation Algorithm for the Capacitated Arc Routing Problem

    DEFF Research Database (Denmark)

    Wøhlk, Sanne

    2008-01-01

    In this paper we consider approximation of the Capacitated Arc Routing Problem, which is the problem of servicing a set of edges in a graph using a fleet of capacity constrained vehicles. We present a 7/2 - 3/W-approximation algorithm for the problem and prove that this algorithm outperforms...

  11. Simple and economical capacitive displacement system for UHV operation.

    Science.gov (United States)

    Chow, R; Tiller, W A

    1979-12-01

    A parallel plate capacitor was assembled as a displacement transducer for operation in an UHV environment. The capacitive displacement system was linear over a 2.5 mum range with a resolution of 0.051 mum. Components in the electric circuit were common laboratory instruments.

  12. Parasitic capacitance characteristics of deep submicrometre grooved gate MOSFETs

    Science.gov (United States)

    Sreelal, S.; Lau, C. K.; Samudra, G. S.

    2002-03-01

    Grooved gate metal-oxide-semiconductor field-effect transistors (MOSFETs) are known to alleviate many of the short channel and hot carrier effects that arise when MOSFET devices are scaled down to very short channel lengths. However, they exhibit much higher parasitic capacitance with stronger bias dependence when compared to conventional planar devices. In this paper, we present a model for gate-to-drain and gate-to-source capacitance characteristics of a deep submicrometre grooved gate MOSFET. Both the intrinsic and extrinsic parts of the capacitance are modelled separately. In particular, the model presents a novel but simple way to account for the accumulation layer formation in the source/drain region of MOSFETs due to the application of the gate voltage. The results are compared with those obtained from a two-dimensional device simulator. The close match between the modelled and simulated data establishes the validity of the model. The model is then used to account for the superiority of capacitance characteristics of planar device structures and to arrive at optimization guidelines for grooved gate devices to match these characteristics.

  13. Physics Division annual review, 1 April 1975--31 March 1976. [ANL

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, G. T.

    1976-01-01

    An overview is given of Physics Division activities in the following areas: the heavy-ion booster; medium-energy physics; heavy-ion physics; low-energy charged-particle physics; accelerator operations; neutron physics; theoretical nuclear physics, and atomic and molecular physics. A bibliography of publications amounts to 27 pages. (RWR)

  14. CHARGE Association

    Directory of Open Access Journals (Sweden)

    Semanti Chakraborty

    2012-01-01

    Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have

  15. Organic memory device with polyaniline nanoparticles embedded as charging elements

    Science.gov (United States)

    Kim, Yo-Han; Kim, Minkeun; Oh, Sewook; Jung, Hunsang; Kim, Yejin; Yoon, Tae-Sik; Kim, Yong-Sang; Ho Lee, Hyun

    2012-04-01

    Polyaniline nanoparticles (PANI NPs) were synthesized and fabricated as charging elements for organic memory devices. The PANI NPs charging layer was self-assembled by epoxy-amine bonds between 3-glycidylpropyl trimethoxysilane functionalized dielectrics and PANI NPs. A memory window of 5.8 V (ΔVFB) represented by capacitance-voltage hysteresis was obtained for metal-pentacene-insulator-silicon capacitor. In addition, program/erase operations controlled by gate bias (-/+90 V) were demonstrated in the PANI NPs embedded pentacene thin film transistor device with polyvinylalcohol dielectric on flexible polyimide substrate. These results can be extended to development of fully organic-based electronic device.

  16. Deep-Hole Inner Diameter Measuring System Based on Non-contact Capacitance Sensor

    Institute of Scientific and Technical Information of China (English)

    于永新; 张恒; 王宗超; 常以哲

    2010-01-01

    A precise aperture measuring system of small deep holes with capacitance sensors is presented. Based on the working principle of non-contact capacitance sensors, influence of the edge effect of gauge head is studied, and one capacitance sensor for measuring the aperture of the small blind holes or through holes is introduced. The system is composed of one positioning device, one aperture measuring capacitance sensor, one measuring circuit, and software. This system employs visual CCD and two-dimensional mic...

  17. Analysis of capacitive effect and life estimation of hydrodynamic journal bearings on repeated starts and stops of a machine operating under the influence of shaft voltages

    Science.gov (United States)

    Prashad, Har; Rao, K. N.

    1994-07-01

    A theoretical analysis has been carried out to study the capacitive effect and life estimation of hydrodynamic journal bearings on repeated starts and stops of a machine operating under the influence of shaft voltages. The analysis gives the time required for the charge accumulation and increase of charge with time on the liner surface of a journal bearing based on bearing capacitance, resistance of film thickness, and the shaft voltage. Also, it investigates the effect of gradual leakage of the accumulated charges with time as the shaft voltage falls when the power supply to the machine is switched off. This paper gives an approach to determine the ratio of the number of shaft revolutions required for charge accumulation and gradual discharge of the accumulated charges on the liner surface of a bearing depending on bearing-to-shaft voltage. Also, the number of repeated starts and stops before initiation of craters on the liner surface of a hydrodynamic journal bearing is established to restrict deterioration and damage of the liner. The diagnosis has the potential to study the transient effect of the shaft voltages on a journal bearing during the start and stop cycle of a machine.

  18. How to Demonstrate the Voltage on a charged object in Physics Laboratory

    CERN Document Server

    Baddi, Raju

    2013-01-01

    Common Objects like a comb or a pen get charged when rubbed against something like human hair or garment clothing. Charged objects exhibit noticeable attractive or repulsive force lifting small pieces of paper or pushing/pulling a suspended light object charged with the same/opposite(uncharged) polarity respectively. This indicates the strong electrical nature of charged objects. Flashes due to spark between oppositely charged objects can be seen in total darkness. Implying a large potential difference between these charged objects which is not possible at lower voltages. This article describes a method to measure the voltage on commonly charged objects with respect to earth using simple instrumentation based on capacitors and CMOS voltmeter. Once the potential difference is known the average charge on the object can be calculated as well. The article also suggests a simple femto-farad capacitance meter for electrostatics work.

  19. Capacitance of the double electrical layer on the copper-group metals in molten alkali metal halides

    Science.gov (United States)

    Kirillova, E. V.; Stepanov, V. P.

    2016-08-01

    The electrochemical impedance is measured to study the capacitance of the double electrical layer of metallic Au, Ag, and Cu as a function of potential and temperature in nine molten salts, namely, the chlorides, bromides, and iodides of sodium, potassium, and cesium. The C- E curve of a gold electrode has an additional minimum in the anodic branch. This minimum for silver is less pronounced and is only observed at low ac signal frequencies in cesium halides. The additional minimum is not detected for copper in any salt under study. This phenomenon is explained on the assumption that the adsorption of halide anions on a positively charged electrode surface has a predominantly chemical rather than an electrostatic character. The specific adsorption in this case is accompanied by charge transfer through the interface and the formation of an adsorbent-adsorbate covalent bond.

  20. Analysis and design of a charge pump circuit for high output current applications

    NARCIS (Netherlands)

    Steenwijk, van Gijs; Hoen, Klaas; Wallinga, Hans

    1993-01-01

    A charge pump circuit has been developed that can deliver high currents even for a system supply voltage of 3 V. The circuit consists of capacitances, connected by MOS switches. The influence of the on-resistance of the switches on the circuit's output resistance has been analysed. The switches are

  1. Theory of Water Desalination by Porous Electrodes with Immobile Chemical Charge

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Hamelers, H.V.M.; Suss, M.E.

    2015-01-01

    In capacitive deionization (CDI), water is desalinated by storing ions in electrical double layers (EDLs) within the micropores of charged porous carbon electrodes. Recent experiments using chemically modified electrodes have shown differing, novel phenomena such as "inverted CDI," "enhanced CDI,

  2. Code division multiple access (CDMA)

    CERN Document Server

    Buehrer, R Michael

    2006-01-01

    This book covers the basic aspects of Code Division Multiple Access or CDMA. It begins with an introduction to the basic ideas behind fixed and random access systems in order to demonstrate the difference between CDMA and the more widely understood TDMA, FDMA or CSMA. Secondly, a review of basic spread spectrum techniques are presented which are used in CDMA systems including direct sequence, frequency-hopping and time-hopping approaches. The basic concept of CDMA is presented, followed by the four basic principles of CDMA systems that impact their performance: interference averaging, universa

  3. 3D printed biomimetic whisker-based sensor with co-planar capacitive sensing

    NARCIS (Netherlands)

    Delamare, John; Sanders, Remco; Krijnen, Gijs

    2016-01-01

    This paper describes the development of a whisker sensor for tactile purposes and which is fabricated by 3D printing. Read-out consists of a capacitive measurement of a co-planar capacitance which is affected by a dielectric that is driven into the electric field of the capacitance. The current impl

  4. A branch-and-cut-and-price algorithm for the mixed capacitated general routing problem

    DEFF Research Database (Denmark)

    Bach, Lukas; Wøhlk, Sanne; Lysgaard, Jens

    2016-01-01

    In this paper, we consider the Mixed Capacitated General Routing Problem which is a combination of the Capacitated Vehicle Routing Problem and the Capacitated Arc Routing Problem. The problem is also known as the Node, Edge, and Arc Routing Problem. We propose a Branch-and-Cut-and-Price algorithm...

  5. Comparison of C-V measurement methods for RF-MEMS capacitive switches

    NARCIS (Netherlands)

    Wang, J; Salm, Cora; Schmitz, Jurriaan

    2013-01-01

    The applicability of several capacitance-voltage measurement methods is investigated for the on-wafer characterization of RF-MEMS capacitive switches. These devices combine few-picofarad capacitance with a high quality factor. The standard quasistatic and high-frequency measurements are employed, as

  6. Direct observation of electrical properties of grain boundaries in sputter-deposited CdTe using scan-probe microwave reflectivity based capacitance measurements

    Science.gov (United States)

    Tuteja, Mohit; Koirala, Prakash; MacLaren, Scott; Collins, Robert; Rockett, Angus

    2015-10-01

    Polycrystalline CdTe in 12% efficient solar cells has been studied using scanning microwave impedance microscopy (sMIM). The CdS/CdTe junctions were grown on transparent-conducting-oxide-coated soda lime glass using rf sputter deposition. sMIM based capacitance measurements were performed on the exposed surface of CdCl2 treated CdTe adjacent to thermal-evaporation-deposited Cu/Au back contacts. The sMIM instrument was operated at ˜3 GHz, and capacitance measurements were performed as a function of ac and dc voltage biases applied to the tip, with and without sample illumination. Although dc capacitance measurements are affected by sample topography, the differential capacitance measurement was shown to be topography independent. It was found that the grain boundaries exhibit a depleted carrier concentration as compared to the grain bulk. This depletion effect is enhanced under photo-generated carrier separation or under sufficiently large probe tip biases opposite to the majority carrier charge.

  7. A power-autonomous self-rolling wheel using ionic and capacitive actuators

    Science.gov (United States)

    Must, Indrek; Kaasik, Toomas; Baranova, Inna; Johanson, Urmas; Punning, Andres; Aabloo, Alvo

    2015-04-01

    Ionic electroactive polymer (IEAP) laminates are often considered as perspective actuator technology for mobile robotic appliances; however, only a few real proof-of-concept-stage robots have been built previously, a majority of which are dependent on an off-board power supply. In this work, a power-autonomous robot, propelled by four IEAP actuators having carbonaceous electrodes, is constructed. The robot consists of a light outer section in the form of a hollow cylinder, and a heavy inner section, referred to as the rim and the hub, respectively. The hub is connected to the rim using IEAP actuators, which form `spokes' of variable length. The effective length of the spokes is changed via charging and discharging of the capacitive IEAP actuators and a change in the effective lengths of the spokes eventuate in a rolling motion of the robot. The constructed IEAP robot takes advantage of the distinctive properties of the IEAP actuators. The IEAP actuators transform the geometry of the whole robot, while being soft and compliant. The low-voltage IEAP actuators in the robot are powered directly from an embedded single-cell lithium-ion battery, with no voltage regulation required; instead, only the input current is regulated. The charging of the actuators is commuted correspondingly to the robot's transitory position using an on-board control electronics. The constructed robot is able to roll for an extended period on a smooth surface. The locomotion of the IEAP robot is analyzed using video recognition.

  8. Charge storage in β-FeSi{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Theis, Jens; Küpper, Sebastian; Lorke, Axel [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Bywalez, Robert; Wiggers, Hartmut [Institut für Verbrennung und Gasdynamik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2015-02-07

    We report on the observation of a surprisingly high specific capacitance of β-FeSi{sub 2} nanoparticle layers. Lateral, interdigitated capacitor structures were fabricated on thermally grown silicon dioxide and covered with β-FeSi{sub 2} particles by drop or spin casting. The β-FeSi{sub 2}-nanoparticles, with crystallite sizes in the range of 10–30 nm, were fabricated by gas phase synthesis in a hot wall reactor. Compared to the bare electrodes, the nanoparticle-coated samples exhibit a 3–4 orders of magnitude increased capacitance. Time-resolved current voltage measurements show that for short times (seconds to minutes), the material is capable of storing up to 1 As/g at voltages of around 1 V. The devices are robust and exhibit long-term stability under ambient conditions. The specific capacitance is highest for a saturated relative humidity, while for a relative humidity below 40% the capacitance is almost indistinguishable from a nanoparticle-free reference sample. The devices work without the need of a fluid phase, the charge storing material is abundant and cost effective, and the sample design is easy to fabricate.

  9. Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage

    Science.gov (United States)

    Sahu, Vikrant; Goel, Shubhra; Sharma, Raj Kishore; Singh, Gurmeet

    2015-12-01

    This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg-1 (ZnO/GNR symmetric) to 9.4 Wh kg-1 (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm-2, paves the way to a high performance aqueous electrochemical supercapacitive energy storage.This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny Zn

  10. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  11. Chemical Technology Division annual technical report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  12. Spin-orbit controlled capacitance of a polar heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Kevin; Kopp, Thilo [Center for Electronic Correlations and Magnetism, EP VI, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany); Loder, Florian [Center for Electronic Correlations and Magnetism, EP VI and TP III, Institute of Physics, University of Augsburg, 86135 Augsburg (Germany)

    2015-07-01

    Oxide heterostructures with polar films display special electronic properties, such as the electronic reconstruction at their internal interfaces with the formation of two-dimensional metallic states. Moreover, the electrical field from the polar layers is inversion-symmetry breaking and may generate a strong Rashba spin-orbit coupling (RSOC) in the interfacial electronic system. We investigate the capacitance of a heterostructure in which a strong RSOC at a metallic interface is controlled by the electric field of a surface electrode. Such a structure is for example given by a LaAlO{sub 3} film on a SrTiO{sub 3} substrate which is gated by a top electrode. We find that due to a strong RSOC the capacitance can be larger than the classical geometric value.

  13. Capacitated Vehicle Routing with Non-Uniform Speeds

    CERN Document Server

    Gortz, Inge Li; Nagarajan, Viswanath; Ravi, R

    2010-01-01

    The capacitated vehicle routing problem (CVRP) involves distributing (identical) items from a depot to a set of demand locations, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform speeds (that we call Heterogenous CVRP), and present a constant-factor approximation algorithm. The technical heart of our result lies in achieving a constant approximation to the following TSP variant (called Heterogenous TSP). Given a metric denoting distances between vertices, a depot r containing k vehicles with possibly different speeds, the goal is to find a tour for each vehicle (starting and ending at r), so that every vertex is covered in some tour and the maximum completion time is minimized. This problem is precisely Heterogenous CVRP when vehicles are uncapacitated. The presence of non-uniform speeds introduces difficulties for employing standard tour-splitting techniques. In order to get a better understanding of this technique in our con...

  14. Microbial desalination cell with capacitive adsorption for ion migration control.

    Science.gov (United States)

    Forrestal, Casey; Xu, Pei; Jenkins, Peter E; Ren, Zhiyong

    2012-09-01

    A new microbial desalination cell with capacitive adsorption capability (cMDC) was developed to solve the ion migration problem facing current MDC systems. Traditional MDCs remove salts by transferring ions to the anode and cathode chambers, which may prohibit wastewater beneficial reuse due to increased salinity. The cMDC uses adsorptive activated carbon cloth (ACC) as the electrodes and utilizes the formed capacitive double layers for electrochemical ion adsorption. The cMDC removed an average of 69.4% of the salt from the desalination chamber through electrode adsorption during one batch cycle, and it did not add salts to the anode or cathode chamber. It was estimated that 61-82.2mg of total dissolved solids (TDS) was adsorbed to 1g of ACC electrode. The cMDC provides a new approach for salt management, organic removal, and energy production. Further studies will be conducted to optimize reactor configuration and achieve in situ electrode regeneration.

  15. Leakage Currents and Capacitances of Thick CZT Detectors

    CERN Document Server

    Garson, Alfred; Jung, Ira V; Dowkontt, Paul; Bose, Richard; Simburger, Garry; Krawczynski, Henric

    2009-01-01

    The quality of Cadmium Zinc Telluride (CZT) detectors is steadily improving. For state of the art detectors, readout noise is thus becoming an increasingly important factor for the overall energy resolution. In this contribution, we present measurements and calculations of the dark currents and capacitances of 0.5 cm-thick CZT detectors contacted with a monolithic cathode and 8x8 anode pixels on a surface of 2 cm x 2 cm. Using the NCI ASIC from Brookhaven National Laboratory as an example, we estimate the readout noise caused by the dark currents and capacitances. Furthermore, we discuss possible additional readout noise caused by pixel-pixel and pixel-cathode noise coupling.

  16. Parameter optimization of temperature field in RF-capacitive hyperthermia

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To realize a certain target temperature distribution in tumor tissues and avoid over-heating in normal tissues in radio frequency (RF)-capacitive hyperthermia, an objective function and some weight coefficients are introduced. Then using the 2-D finite element method, the electromagnetic and bio-heat transfer equations are solved, and using the genetic algorithm the heating configurations are recursively modified to minimize the objective function. Finally an optimum solution of the expected heating field distribution in hyperthermia is achieved. And with a human heterogeneous tissue model extracted from X-ray CT images, satisfactory optimization results are obtained in the simulations on a biplate RF-capacitive hyperthermia device. This optimization technique for controlling the body temperature field has shown scientific importance and practical values in the research of hyperthermia.

  17. Sugar Cube Purity: Capacitive Sensing and Image Processing Approach

    Science.gov (United States)

    Madhumitha, S.; Rajath, R.; Venkatanathan, N.; Raajan, N. R.; Sridharan, M.

    2016-12-01

    Several methods have been implemented to find out if impurity is present in sugar cubes or powders so far. Several high end imaging techniques with X-ray scanners have been used to check the quality of the sugar. In this present study, without disturbing the physical nature of sugar, we have simply used the dielectric property analysis to check the purity of the sugar. This method can detect even infinitesimal amounts of impurity present in sugar with good accuracy. The positional accuracy is derived using artificial neural networks, which is been trained with various capacitance values when the impurity is present and gives the details on the change in capacitance value as the impurity position changes.

  18. OPTIMIZATION OF CAPACITATED VEHICLE ROUTING PROBLEM USING PSO

    Directory of Open Access Journals (Sweden)

    S.R.VENKATESAN

    2011-10-01

    Full Text Available This paper presents solution techniques for Capacitated Vehicle Routing Problem (CVRP using metaheuristics. Capacitated Vehicle Routing Problem is divided into set of customers called cluster, and find optimum travel distance of vehicle route. The CVRP is a combinatorial optimization problem; particle swarm optimization(PSO technique is adapted in this paper to solve this problem. The main problem is divided into subprograms/clusters and each subprogram is treated as travelling salesman problem and solved by usingparticle swarm optimization techniques (PSO. This paper presents a sweep, Clark and wright algorithm to form the clusters. This model is then solved by using a particle swarm optimization (PSO method to find optimum travel distance of vehicle route. Our analysis suggests that the proposed model enables users to establish route to serve all given customers with minimum distance of vehicles and maximum capacity.

  19. Composition change and capacitance properties of ruthenium oxide thin film

    Institute of Scientific and Technical Information of China (English)

    刘泓; 甘卫平; 刘仲武; 郑峰

    2015-01-01

    RuO2·nH2O film was deposited on tantalum foils by electrodeposition and heat treatment using RuCl3·3H2O as precursor. Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·nH2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2 h, RuO2·nH2O electrode surface gains mass of 2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly 20%with voltage scan rate increasing from 5 to 250 mV/s.

  20. Capacitance of a passive iron electrode in acidic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Grilikhes, M.S.; Berezin, M.Yu.; Gorlin, A.V.; Sapelova, E.V.; Sokolov, M.A.; Sukhotin, A.M.

    1985-12-01

    In the present work the authors measured the capacitance of the electrical double layer on passive Armco iron in acidic solutions with the simultaneous recording of the potentiodynamic curves. The measurements were carried out on an apparatus which is based on the double-pulse variant of the galvanostatic method with a pulse lifetime of 2 microseconds, in which the influence of the faradic processes on the capacitance curves is negligibly small in the case of electrochemical systems with small exchange currents. The experiments were carried out at room temperature in 0.5 M sulfuric acid (pH 0.25) and 0.5 M tartaric acid H/sub 2/C/sub 4/H/sub 4/O/sub 6/ (pH 1.6).

  1. Capacitance Variation of Electrolyte-Gated Bilayer Graphene Based Transistors

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi

    2013-01-01

    Full Text Available Quantum capacitance of electrolyte-gated bilayer graphene field-effect transistors is investigated in this paper. Bilayer graphene has received huge attention due to the fact that an energy gap could be opened by chemical doping or by applying external perpendicular electric field. So, this extraordinary property can be exploited to use bilayer graphene as a channel in electrolyte-gated field-effect transistors. The quantum capacitance of bi-layer graphene with an equivalent circuit is presented, and also based on the analytical model a numerical solution is reported. We begin by modeling the DOS, followed by carrier concentration as a function V in degenerate and nondegenerate regimes. To further confirm this viewpoint, the presented analytical model is compared with experimental data, and acceptable agreement is reported.

  2. Capacitated Vehicle Routing with Non-Uniform Speeds

    DEFF Research Database (Denmark)

    Gørtz, Inge Li; Molinaro, Marco; Nagarajan, Viswanath

    2011-01-01

    The capacitated vehicle routing problem (CVRP) [21] involves distributing (identical) items from a depot to a set of demand locations in the shortest possible time, using a single capacitated vehicle. We study a generalization of this problem to the setting of multiple vehicles having non-uniform...... vehicles having speeds {λ i } i = 1 k , the goal is to find a tour for each vehicle (starting and ending at r), so that every vertex is covered in some tour and the maximum completion time is minimized. This problem is precisely Heterogenous CVRP when vehicles are uncapacitated. The presence of non-uniform...... the introduction of a new approximate MST construction called Level-Prim, which is related to Light Approximate Shortest-path Trees [18]. The last component of our algorithm involves partitioning the Level-Prim tree and matching the resulting parts to vehicles. This decomposition is more subtle than usual since...

  3. Divisions Panel Discussion: Astronomy for Development

    Science.gov (United States)

    Govender, Kevin; Hemenway, Mary Kay; Wolter, Anna; Haghighipour, Nader; Yan, Yihua; van Dishoeck, E. F.; Silva, David; Guinan, Edward

    2016-10-01

    The main purpose of this panel discussion was to encourage conversation around potential collaborations between the IAU Office of Astronomy for Development (OAD) and IAU Divisions. The discussion was facilitated by the OAD and the conversation revolved mainly around two questions: (i) What should the OAD be doing to enhance the work of the Divisions? (ii) What could the Divisions (both members and respective scientific discipline in general) contribute towards the implementation of the IAU strategic plan?

  4. Electrochemical energy generation from natural and synthetic salinity gradients using reverse electrodialysis and capacitive mixing

    Science.gov (United States)

    Hatzell, Marta C.

    Salinity gradient energy (SGE) technologies are emerging systems designed to recover energy from engineered and natural mixing processes. Two electricity producing SGE systems are reverse electrodialysis (RED) and capacitive mixing (CapMix). RED captures mixing energy using a series of ion exchange membranes that drive electrochemical reactions at redox electrodes. CapMix utilizes polarizable electrodes to store charge in the surfaces electric double layer (EDL). Energy generation can then occur when the EDL is expanded and compressed in different concentration solutions. The use of themolytic salt solutions (e.g. ammonium bicarbonate--AmB) within a RED system is promising, as AmB can be regenerated using low-grade waste--heat (e.g. 40--60°C). One disadvantage to using AmB is the potential for gas bubbles (CO2, NH3) to form within the stack. Accumulation of bubbles can impede ion migration, and reduce system performance. The management and minimization of gaseous bubbles in RED flow fields is an important operational issue, and has not previously been addressed within RED literature. Flow field design with and without spacers in a RED stack was analyzed to determine how fluid flow and geometry effected the accumulation and removal of bubbles. In addition, the performance changes, in terms of power and resistance were measured in the presence of bubbles. Gaseous bubble accumulation was minimized using short vertically aligned channels, which resulted in a reduction in the amount of the membrane area which was restricted due to bubbles from ~20% to 7%. The stack power density improved by 12% when all gaseous bubbles were removed from the cell. AmB-RED systems can potentially produce hydrogen or electrical energy through altering the cathodic reaction. With a kinetically favorable cathodic reaction (oxygen reduction reaction), the projected electrical energy generated by a single pass AmB--RED system approached 78 Wh per m--3 (low concentrate). However, when RED was

  5. A High-Stability Capacitance Sensor System and Its Evaluation

    Science.gov (United States)

    2008-12-01

    15:45 from IEEE Xplore . Restrictions apply. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...45 from IEEE Xplore . Restrictions apply. AVRAMOV-ZAMUROVIC AND LEE: HIGH-STABILITY CAPACITANCE SENSOR SYSTEM AND ITS EVALUATION 957 Fig. 4...Authorized licensed use limited to: US Naval Academy. Downloaded on May 13, 2009 at 15:45 from IEEE Xplore . Restrictions apply. 958 IEEE TRANSACTIONS

  6. Simulation of New Switched Capacitance Power Converter for Srm

    Directory of Open Access Journals (Sweden)

    S. M. Mohamed Saleem

    2014-06-01

    Full Text Available In this paper, design and simulation of switched capacitance power converter are proposed for 6/4 switched reluctance motor (SRM drive. The operating principle and design consideration of the proposed converter is explained. The proposed converter performance is better in reduction of torque ripple and constant speed can be achieved quickly with reduced power loss when compared with asymmetric converter. The proposed system is simulated by using MATLAB Simulink and their results are clearly presented.

  7. Computation of Capacitance for MEMS Comb-Drive Structures

    Institute of Scientific and Technical Information of China (English)

    LI Ming-hui; GAO Shi-qiao; LIU Hai-peng; LIANG Xin-jian

    2009-01-01

    According to the characteristics of comb-drive structures,the electrical potential field is analyzed;the model based on corner capacitor is presented and solved with the capacitance characteristic formula of nonlinear capacitor.Compared with the results of finite element method simulation,the model based on corner capacitor is more accurate than the models based on infinite parallel plate capacitor and parallel plate capacitor with edge effects,

  8. A Capacitated Facility Location Approach for the Tanker Employment Problem

    Science.gov (United States)

    2005-03-01

    Depot (MD) Vehicle Routing Problem (VRP) ......................................... 14 2.5 Capacitated Facility Location Problem (CFLP) with Sole...service receiver groups. In this sense the problem can be viewed as a multi-depot vehicle routing problem . Anchor points are two stationary points...for future research. 2.4 Multi-Depot (MD) Vehicle Routing Problem (VRP) Another approach to the Tanker Employment Problem is to model it as a VRP

  9. Capacitive technology for energy extraction from chemical potential differences

    OpenAIRE

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.   Chapter 2 introduces the principle and initial tests. The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potent...

  10. Managing periodic review inventory systems with capacitated replenishments

    OpenAIRE

    B. RAA; Dubois, T.; Dullaert, W

    2011-01-01

    This paper studies periodic review inventory systems in which replenishments are capacitated. This capacity restriction implies that the order-up-to level may not always be reached at each replenishment, such that additional safety stock is needed to achieve the same service level as in the uncapacitated case usually assumed in the existing literature. To determine the required level of safety stock, and hence the order-up-to level, an iterative procedure is proposed which can be adjusted to ...

  11. Fair division theory and climate change policy

    Energy Technology Data Exchange (ETDEWEB)

    Helm, C. [Technical University Darmstadt (Germany). Department of Law and Economics

    2008-09-30

    This paper analyzes the fair division of common property resources when monetary compensations are feasible. A prominent example is the fair division of the atmosphere's limited absorptive capacity for greenhouse gases. I propose a solution that is Pareto efficient and satisfies the axiomatic fair division criteria of individual rationality, stand-alone upper bound, and a version of envy-freeness. The latter criterion is adapted to problems where monetary compensations can be used to facilitate the fair division of the common resource. Applied to climate change, the solution implies that developing countries should participate in emission reduction efforts, but should be fully compensated for their incremental abatement costs.

  12. Power Efficient Division and Square Root Unit

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2012-01-01

    shows that division and square root units based on the digit-recurrence algorithm offer the best tradeoff delay-area-power. Moreover, the two operations can be combined in a single unit. Here, we present a radix-16 combined division and square root unit obtained by overlapping two radix-4 stages......Although division and square root are not frequent operations, most processors implement them in hardware to not compromise the overall performance. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work...

  13. Major Programs | Division of Cancer Prevention

    Science.gov (United States)

    The Division of Cancer Prevention supports major scientific collaborations, research networks, investigator-initiated grants, postdoctoral training, and specialized resources across the United States. |

  14. Division Unit for Binary Integer Decimals

    DEFF Research Database (Denmark)

    Lang, Tomas; Nannarelli, Alberto

    2009-01-01

    -recurrence algorithm to BID representation and implement the division unit in standard cell technology. The implementation of the proposed BID division unit is compared to that of a BCD based unit implementing the same algorithm. The comparison shows that for normalized operands the BID unit has the same latency......In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm and implements binary encodings (binary integer decimal or BID) for significands. Recent decimal division designs are all based on the binary coded decimal (BCD) encoding. We adapt the radix-10 digit...

  15. Division Algebras and Quantum Theory

    CERN Document Server

    Baez, John C

    2011-01-01

    Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the "three-fold way". It is perhaps easiest to see it in the study of irreducible unitary representations of groups on complex Hilbert spaces. These representations come in three kinds: those that are not isomorphic to their own dual (the truly "complex" representations), those that are self-dual thanks to a symmetric bilinear pairing (which are "real", in that they are the complexifications of representations on real Hilbert spaces), and those that are self-dual thanks to an antisymmetric bilinear pairing (which are...

  16. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    Science.gov (United States)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  17. Ring VCO Design with Variable Capacitance XNOR Delay Cell

    Science.gov (United States)

    Kumar, Manoj; Arya, Sandeep; Pandey, Sujata

    2015-12-01

    This paper presents the new designs of voltage controlled oscillator (VCO) with three transistors XNOR gate as variable capacitive load. Design of three, five and seven stage VCO have been reported using single ended ring topology. CMOS inverter based delay cell is modified with addition of XNOR capacitive load. Output frequency has been controlled by applied voltage to variable capacitive load. Control voltage of VCO has been varied from 1.3 to 2.1 V. Three stage VCO provides output frequency variation in the range of 3.52-3.34 GHz with power consumption variation from 0.81 to 1.76 mW. Five stage VCO shows frequency variation from 2.06 to 1.98 GHz with power consumption varying from 1.35 to 2.94 mW. Moreover, frequency of seven stage VCO varies from 1.47 to 1.41 GHz with varying power from 1.89 to 4.12 mW. Power consumption and output frequency of proposed VCO circuits have been compared with earlier reported circuits and present approach shows considerable improvements.

  18. Investigation of capacitively coupled ultrasonic transducer system for nondestructive evaluation.

    Science.gov (United States)

    Zhong, Cheng Huan; Wilcox, Paul D; Croxford, Anthony J

    2013-12-01

    Capacitive coupling offers a simple solution to wirelessly probe ultrasonic transducers. This paper investigates the theory, feasibility, and optimization of such a capacitively coupled transducer system (CCTS) in the context of nondestructive evaluation (NDE) applications. The noncontact interface relies on an electric field formed between four metal plates-two plates are physically connected to the electrodes of a transducer, the other two are in a separate probing unit connected to the transmit/receive channel of the instrumentation. The complete system is modeled as an electric network with the measured impedance of a bonded piezoelectric ceramic disc representing a transducer attached to an arbitrary solid substrate. A transmission line model is developed which is a function of the physical parameters of the capacitively coupled system, such as the permittivity of the material between the plates, the size of the metal plates, and their relative positions. This model provides immediate prediction of electric input impedance, pulse-echo response, and the effect of plate misalignment. The model has been validated experimentally and has enabled optimization of the various parameters. It is shown that placing a tuning inductor and series resistor on the transmitting side of the circuit can significantly improve the system performance in terms of the signal-to-crosstalk ratio. Practically, bulk-wave CCTSs have been built and demonstrated for underwater and through-composite testing. It has been found that electrical conduction in the media between the plates limits their applications.

  19. Capacitive-coupled Series Spoof Surface Plasmon Polaritons

    Science.gov (United States)

    Yin, Jia Yuan; Ren, Jian; Zhang, Hao Chi; Zhang, Qian; Cui, Tie Jun

    2016-04-01

    A novel method to realize stopband within the operating frequency of spoof surface plasmon polaritons (SPPs) is presented. The stopband is introduced by a new kind of capacitive-coupled series spoof SPPs. Two conventional H-shaped unit cells are proposed to construct a new unit cell, and every two new unit cells are separated by a gap with certain distance, which is designed to implement capacitive coupling. The original surface impedance matching is disturbed by the capacitive coupling, leading to the stopband during the transmission of SPPs. The proposed method is verified by both numerical simulations and experiments, and the simulated and measured results have good agreements. It is shown that the proposed structure exhibits a stopband in 9-9.5 GHz while the band-pass feature maintains in 5-9 GHz and 9.5-11 GHz. In the passband, the reflection coefficient is less than -10 dB, and the transmission loss is around 3 dB in the stopband, the reflection coefficient is -2 dB, and the transmission coefficient is less than -30 dB. The compact size, easy fabrication and good band-pass and band-stop features make the proposed structure a promising plasmonic device in SPP communication systems.

  20. Capacitive properties of polypyrrole/activated carbon composite

    Directory of Open Access Journals (Sweden)

    Porjazoska-Kujundziski Aleksandra

    2014-01-01

    Full Text Available Electrochemical synthesis of polypyrrole (PPy and polypyrrole / activated carbon (PPy / AC - composite films, with a thickness between 0.5 and 15 μm were performed in a three electrode cell containing 0.1 mol dm-3 Py, 0.5 mol dm-3 NaClO4 dissolved in ACN, and dispersed particles of AC (30 g dm-3. Electrochemical characterization of PPy and PPy / AC composites was performed using cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS techniques. The linear dependences of the capacitance (qC, redox capacitance (qred, and limiting capacitance (CL of PPy and PPy / AC - composite films on their thickness (L, obtained by electrochemical and impedance analysis, indicate a nearly homogeneous distribution of the incorporated AC particles in the composite films (correlation coefficient between 0.991 and 0.998. The significant enhancement of qC, qred, and CL, was observed for composite films (for ∼40 ± 5% in respect to that of the “pure” PPy. The decreased values of a volume resistivity in the reduced state of the composite film, ρ = 1.3 ⋅ 106 Ω cm (for L = 7.5 μm, for two orders of magnitude, compared to that of PPy - film with the same thickness, ρ ∼ 108 Ω cm, was also noticed.

  1. Can a Pressure Standard be Based on Capacitance Measurements?

    Science.gov (United States)

    Moldover, Michael R

    1998-01-01

    We consider the feasibility of basing a pressure standard on measurements of the dielectric constant ϵ and the thermodynamic temperature T of helium near 0 °C. The pressure p of the helium would be calculated from fundamental constants, quantum mechanics, and statistical mechanics. At present, the relative standard uncertainty of the pressure ur(p) would exceed 20 × 10(-6), the relative uncertainty of the value of the molar polarizability of helium Aϵ calculated ab initio. If the relativistic corrections to Aϵ were calculated as accurately as the classical value is now known, a capacitance-based pressure standard might attain ur(p) < 6 × 10(-6) for pressures near 1 MPa, a result of considerable interest for pressure metrology. One obtains p by eliminating the density from the virial expansions for p and ϵ - 1. If ϵ - 1 were measured with a very stable, 0.5 pF toroidal cross capacitor, the small capacitance and the small values of ϵ - 1 would require state-of-the-art capacitance measurements to achieve a useful pressure standard.

  2. Charge-discharge process of MnO2 supercapacitor

    Institute of Scientific and Technical Information of China (English)

    LIU Kai-yu; ZHANG Ying; ZHANG Wei; ZHENG He; SU Geng

    2007-01-01

    Mechanochemical synthesis of α-MnO2 was carried out with KMnO4 and Mn(CH3COO)2 in 1-1 mole ratio. The electrochemical performance of MnO2 electrode was investigated by cyclic voltammograms and alternating current impedance. The charge-discharge process of MnO2 supercapacitor in 6 mol/L KOH was studied within 1.2 V at 200 mA/g, suggesting that it displays double-layer capacibility in low potential scope and pseudo-capacitance properties in high potential scope. It is found that Mn3O4, an electrochemical inert, mainly forms in the initial 40 charge-discharge cycles. During cycling, the pseudo-capacitance properties disappear and the discharge curves are close to ideal ones, indicating double-layer capability. The maximum capacitance of MnO2 electrode is as high as 416 F/g, and retains 240 F/g after 200 cycles. The equivalent series resistance increases from 17 to 41 Ω.

  3. Hemispheric Division of Labour in Reading

    Science.gov (United States)

    Shillcock, Richard C.; McDonald, Scott A.

    2005-01-01

    We argue that the reading of words and text is fundamentally conditioned by the splitting of the fovea and the hemispheric division of the brain, and, furthermore, that the equitable division of labour between the hemispheres is a characteristic of normal visual word recognition. We report analyses of a representative corpus of the eye fixations…

  4. Cognitive and Neural Sciences Division, 1991 Programs.

    Science.gov (United States)

    Vaughan, Willard S., Ed.

    This report documents research and development performed under the sponsorship of the Cognitive and Neural Sciences Division of the Office of Naval Research in fiscal year 1991. It provides abstracts (title, principal investigator, project code, objective, approach, progress, and related reports) of projects of three program divisions (cognitive…

  5. The Division of Labor as Social Interaction

    Science.gov (United States)

    Freidson, Eliot

    1976-01-01

    Three different principles and ideologies by which the division of labor can be organized are sketched, along with their consequences for variation in structure and content. It is noted that the reality of the division of labor lies in the social interaction of its participants. (Author/AM)

  6. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  7. Polarized Cell Division of Chlamydia trachomatis.

    Science.gov (United States)

    Abdelrahman, Yasser; Ouellette, Scot P; Belland, Robert J; Cox, John V

    2016-08-01

    Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.

  8. Distinguishing division algebras by finite splitting fields

    CERN Document Server

    Krashen, Daniel

    2010-01-01

    This paper is concerned with the problem of determining the number of division algebras which share the same collection of finite splitting fields. As a corollary we are able to determine when two central division algebras may be distinguished by their finite splitting fields over certain fields.

  9. Nicely semiramified division algebras over Henselian fields

    Directory of Open Access Journals (Sweden)

    Karim Mounirh

    2005-01-01

    Full Text Available This paper deals with the structure of nicely semiramified valued division algebras. We prove that any defectless finite-dimensional central division algebra over a Henselian field E with an inertial maximal subfield and a totally ramified maximal subfield (not necessarily of radical type (resp., split by inertial and totally ramified field extensions of E is nicely semiramified.

  10. "American Gothic" and the Division of Labor.

    Science.gov (United States)

    Saunders, Robert J.

    1987-01-01

    Provides historical review of gender-based division of labor. Argues that gender-based division of labor served a purpose in survival of tribal communities but has lost meaning today and may be a handicap to full use of human talent and ability in the arts. There is nothing in various art forms which make them more appropriate for males or…

  11. Introduction to JPL's Mechanical Systems Division

    Science.gov (United States)

    Short, Kendra

    2007-01-01

    This slide presentation reviews the work of the Mechanical Systems Division. It reviews the projects, both past and current that the engineers of this division have worked on. It also reviews the work environment as an exciting place for the entry level engineer.

  12. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Science.gov (United States)

    Dartora, C. A.; Nobrega, K. Z.; Cabrera, G. G.

    2016-08-01

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  13. Theoretical study of quantum capacitance and associated delay in armchair-edge graphene nanoribbons

    Science.gov (United States)

    Hassan, Asif; Hossain, Md. Faruque; Rana, Md. Sohel; Kouzani, Abbas Z.

    2015-09-01

    This work presents a comprehensive investigation of the quantum capacitance and the associated effects on the carrier transit delay in armchair-edge graphene nanoribbons (A-GNRs) based on semi-analytical method. We emphasize on the realistic analysis of bandgap with taking edge effects into account by means of modified tight binding (TB) model. The results show that the edge effects have significant influence in defining the bandgap which is a necessary input in the accurate analyses of capacitance. The quantum capacitance is discussed in both nondegenerate (low gate voltage) and degenerate (high gate voltage) regimes. We observe that the classical capacitance limits the total gate (external) capacitance in the degenerate regime, whereas, quantum capacitance limits the external gate capacitance in the nondegenerate regime. The influence of gate capacitances on the gate delay is studied extensively to demonstrate the optimization of switching time. Moreover, the high-field behavior of a GNR is studied in the degenerate and nondegenerate regimes. We find that a smaller intrinsic capacitance appears in the channel due to high velocity carrier, which limits the quantum capacitance and thus limit the gate delay. Such detail analysis of GNRs considering a realistic model would be useful for the optimized design of GNR-based nanoelectronic devices.

  14. A simple efficient model of parasitic capacitances of deep-submicron LDD MOSFETs

    Science.gov (United States)

    Prégaldiny, Fabien; Lallement, Christophe; Mathiot, Daniel

    2002-12-01

    Estimation of parasitic capacitances in a MOSFET device is very important, notably in mixed circuit simulation. For deep-submicron LDD MOSFETs, the extrinsic capacitance (overlap plus fringing capacitances) is a growing fraction of the total gate capacitance. A correct estimation of the extrinsic capacitance requires an accurate modeling of each of its constituents. However the major existing models do not correctly predict the overlap capacitance and the inner fringing capacitance (which is often ignored). In this paper a new approach to model the overlap Cov and fringing Cif+ Cof capacitances in the zero-current regime is presented. The bias dependence of the extrinsic capacitance is investigated and a detailed study of the influence of the LDD doping dose is also undertaken. Then, an efficient, simple and continuous model describing the evolution of overlap and fringing capacitances in all operating regimes of a n-channel LDD MOSFET is developed. Finally this model is incorporated in an existing compact-model for circuit simulation. It is shown that this new model leads to excellent results in comparison with full 2D numerical device simulation.

  15. Israel: the Division before Peace

    Directory of Open Access Journals (Sweden)

    Ferran Izquierdo Brichs

    2000-01-01

    Full Text Available The process of the Middle East peace negotiations at the beginning of the 1990s has its roots in the changes in the international system and in Israeli society. The end of the Cold War, the Gulf War in 1990-1991 and globalization forced all the region’s actors to resituate themselves within the new international context. However, Israeli society neither experienced the international changes in the same way as its neighbors nor did it undergo the same evolutionduring the conflict with the Arabs. Because of this, the debate over peace and the future of the occupied territories became a factor for political and ideological division. Influencing this debate were revised conceptions on security, the economy, and the role Israel should play in the world. The Middle East peace talks began because the strongest side in the conflict, Israel’s Labor government, came to perceive that the maintenance of the status quo was negative forits interests. From the Israeli point of view, the conflict had long been considered a zero-sum game despite the Palestinian’s compromises since the construction of the Palestinian State involved handing over part of the territory claimed by the Jews. Recent changes in the perceptions of Israeli’s own interests, though, led some sectors of Jewish society to re-think and diminish the supposed incompatibility between Palestine nationalism and Zionism, which then opened the doors towards peace. For the Labor government, the territorial occupation of all Palestine was no longer a central objective. In fact, the basic interests of the Labor party’s policies shifted due to the globalization of the international system. For Likud and the Zionist revisionists, however, the occupation and the colonization of Eretz Israel still form the basic ideology of the State –of its reason for being– for which even today both are associated with the national interest, together with Israel’s very survival. Seen this way, Israel

  16. 1998 Chemical Technology Division Annual Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  17. Strongly capacitively coupled double quantum dots in GaAs-AlGaAs heterostructures. Preparation and electrical transport; Kapazitativ stark gekoppelte Doppelquantenpunkte in GaAs-AlGaAs-Heterostrukturen. Herstellung und elektrischer Transport

    Energy Technology Data Exchange (ETDEWEB)

    Huebel, A.

    2007-11-22

    In this work, a double quantum dot system is studied whose two dots are electrically insulated from one another and contacted independently with two leads. The geometry is optimized to maximize the capacitive interaction between the dots. The samples are characterized by electrical transport measurements in a dilution refrigerator. It is then studied at different tunnel couplings how the capacitive interaction influences the electrical transport in equilibrium. Under certain conditions correlated tunnel processes can be observed. A simple model is derived that serves to understand these processes. The double quantum dot system is defined in lateral arrangement by reactive ion etching of a two-dimensional electron system located only 50 nm below the surface of a GaAs-AlGaAs heterostructure. The samples are characterized in a dilution refrigerator at 25 mK near the common pinch-off point of all four tunnel barriers. A measurement of the differential equilibrium conductances of both quantum dots as a function of two gate voltages yields a honeycomb-like charge stability diagram. The most important sample characteristic is the ratio between the interaction capacitance and the total capacitance of a single quantum dot. For the optimized sample, this ratio turns out to be larger than one third near the common pinch-off point, with a single-dot charging energy of up to 800 {mu}eV. At more positive gate voltages, the capacitances between the quantum dots and their leads increase more and more, thereby diminishing the charging energy. It is shown for the optimized sample that all capacitance coefficients except the dot-lead capacitances are constant to within considerable accuracy over several Coulomb blockade oscillations. In order to measure correlated electrical transport in equilibrium, special parameter regions are examined in which the charges of both quantum dots cannot fluctuate independently of each other. An analytical formula is derived that describes the

  18. Battery charging system

    Energy Technology Data Exchange (ETDEWEB)

    Carollo, J.A.; Kalinsky, W.A.

    1984-02-21

    A battery charger utilizes three basic modes of operation that includes a maintenance mode, a rapid charge mode and time controlled limited charging mode. The device utilizes feedback from the battery being charged of voltage, current and temperature to determine the mode of operation and the time period during which the battery is being charged.

  19. Magnetoresistance and capacitance oscillations and hysteresis in type-II InAsSbP ellipsoidal quantum dots

    Science.gov (United States)

    Gambaryan, K. M.; Harutyunyan, V. G.; Aroutiounian, V. M.; Ai, Y.; Ashalley, E.; Wang, Z. M.

    2015-06-01

    The InAsSbP composition type-II quantum dots (QDs) are grown on a InAs(1 0 0) substrate from In-As-Sb-P quaternary liquid phase at a constant temperature in Stranski-Krastanow growth mode. Device structures in the form of photoconductive cells are prepared for investigation. Magnetospectroscopy and high-precision capacitance spectrometry are used to explore the QDs structure’s electric sheet resistance in a magnetic field and the capacitance (charge) law at lateral current flow. Aharonov-Bohm (AB) oscillations with the period of δB = 0.38   ±   0.04 T are found on the magnetoresistance curve at both room and liquid nitrogen temperatures. The influence of the QDs size distribution on the period of AB oscillations is investigated. The magnetoresistance hysteresis equals to ~50 mΩ and ~400 mΩ is revealed at room and liquid nitrogen temperature, respectively. The capacitance hysteresis (CH) and contra-directional oscillations are also detected. Behavior of the CH versus applied voltage frequency in the range f = 103-106 Hz is investigated. It is shown that the CH decreases with increasing frequency up to 106 Hz. The time constant and corresponding frequency for the QDs R-C parallel circuit (generator) equal to τ = 2.9   ×   10-7 s and f 0 = 5.5   ×   105 Hz, respectively, are calculated.

  20. EDH 'Millionaire' in PS Division

    CERN Multimedia

    2001-01-01

    Christmas cheer! Left to right: Gerard Lobeau receives a bottle of Champagne from Derek Mathieson and Jurgen De Jonghe in recognition of EDH's millionth document. At 14:33 on Monday 3 December a technician in PS division, Gerard Lobeau, unwittingly became part of an important event in the life of CERN's Electronic Document Handling system (EDH). While ordering some pieces of aluminum for one of the PS's 10Mhz RF cavities, he created EDH document number 1,000,000. To celebrate the event Derek Mathieson (EDH Project Leader) and Jurgen De Jonghe (Original EDH Project Leader) presented Mr Lobeau with a bottle of champagne. As with 93% of material requests, Mr Lobeau's order was delivered within 24 hours. 'I usually never win anything' said Mr Lobeau as he accepted his prize, 'I initially though there may have been a problem with EDH when the document number had so many zeros in it, and was then surprised to get a phone call from you a few minutes later.' The EDH team had been monitoring the EDH document number ...

  1. Physics Division research and development

    Science.gov (United States)

    Hollen, G. Y.; Schappert, G. T.

    1994-07-01

    This report discusses its following topics: Recent Weapons-Physics Experiments on the Pegasus II Pulsed Power Facility; Operation of a Large-Scale Plasma Source Ion Implantation Experiment; Production of Charm and Beauty Mesons at Fermilab Sudbury Neutrino Observatory; P-Division's Essential Role in the Redirected Inertial Confinement Fusion Program; Trident Target Physics Program; Comparative Studies of Brain Activation with Magnetocephalography and Functional Magnetic Resonance Imaging; Cellular Communication, Interaction of G-Proteins, and Single-Photon Detection; Nuclear Magnetic Resonance Studies of Oxygen-doped La2CuO(4+delta) Thermoacoustic Engines; A Shipborne Raman Water-Vapor Lidar for the Central Pacific Experiment; Angara-5 Pinch Temperature Verification with Time-resolved Spectroscopy; Russian Collaborations on Megagauss Magnetic Fields and Pulsed-Power Applications; Studies of Energy Coupling from Underground Explosions; Trapping and Cooling Large Numbers of Antiprotons: A First Step Toward the Measurement of Gravity on Antimatter; and Nuclear-Energy Production Without a Long-Term High-Level Waste Stream.

  2. 49 CFR 1242.03 - Made by accounting divisions.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Made by accounting divisions. 1242.03 Section 1242... accounting divisions. The separation shall be made by accounting divisions, where such divisions are maintained, and the aggregate of the accounting divisions reported for the quarter and for the year....

  3. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window.

    Science.gov (United States)

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-05-11

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10(-4) pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range.

  4. The Semen pH Affects Sperm Motility and Capacitation.

    Science.gov (United States)

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  5. Detection and control of charge states in a quintuple quantum dot

    Science.gov (United States)

    Ito, Takumi; Otsuka, Tomohiro; Amaha, Shinichi; Delbecq, Matthieu R.; Nakajima, Takashi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Noiri, Akito; Kawasaki, Kento; Tarucha, Seigo

    2016-12-01

    A semiconductor quintuple quantum dot with two charge sensors and an additional contact to the center dot from an electron reservoir is fabricated to demonstrate the concept of scalable architecture. This design enables formation of the five dots as confirmed by measurements of the charge states of the three nearest dots to the respective charge sensor. The gate performance of the measured stability diagram is well reproduced by a capacitance model. These results provide an important step towards realizing controllable large scale multiple quantum dot systems.

  6. Magnetization-induced double-layer capacitance enhancement in active carbon/Fe3O4 nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Guoxiang Wang; Hongfeng Xu; Lu Lu; Hong Zhao

    2014-01-01

    The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im-proving capacitor performance. In this study, active carbon/Fe3O4-NPs nanocomposites (AC/Fe3O4-NPs) were synthesized using a facile hy-drothermal method and ultrasonic technique. Transmission electron micrographs (TEM) showed that Fe3O4 nanoparticles (Fe3O4-NPs) grew along the edge of AC. AC/Fe3O4-NPs nanocomposites were further used as an electrochemical electrode, and its electrochemical performance was tested under magnetization and non-magnetization conditions, respectively, in a three-electrode electrochemical device. Micro-magnetic field could improve the electric double-layer capacitance, reduce the charge transfer resistance, and enhance the discharge performance. The capacitance enhancement of magnetized electrode was increased by 33.1%at the current density of 1 A/g, and the energy density was improved to 15.97 Wh/kg, due to the addition of magnetic particles.

  7. Modelling of capacitance and threshold voltage for ultrathin normally-off AlGaN/GaN MOSHEMT

    Indian Academy of Sciences (India)

    R SWAIN; K JENA; T R LENKA

    2017-01-01

    A compact quantitative model based on oxide semiconductor interface density of states (DOS) is proposed for Al$_{0.25}$Ga$_{0.75}$N/GaN metal oxide semiconductor high electron mobility transistor (MOSHEMT). Mathematical expressions for surface potential, sheet charge concentration, gate capacitance and threshold voltage have been derived. The gate capacitance behaviour is studied in terms of capacitance–voltage (CV) characteristics. Similarly, the predicted threshold voltage ($V_T$) is analysed by varying barrier thickness and oxide thickness. The positive $V_T$ obtained for a very thin 3 nm AlGaN barrier layer enables the enhancement mode operation of the MOSHEMT. These devices, along with depletion mode devices, are basic constituents of cascode configuration in power electronic circuits. The expressions developed are used in conventional long-channel HEMT drain current equation and evaluated to obtain different DC characteristics. The obtained results are compared withexperimental data taken from literature which show good agreement and hence endorse the proposed model.

  8. Self-bridging of vertical silicon nanowires and a universal capacitive force model for spontaneous attraction in nanostructures.

    Science.gov (United States)

    Sun, Zhelin; Wang, Deli; Xiang, Jie

    2014-11-25

    Spontaneous attractions between free-standing nanostructures have often caused adhesion or stiction that affects a wide range of nanoscale devices, particularly nano/microelectromechanical systems. Previous understandings of the attraction mechanisms have included capillary force, van der Waals/Casimir forces, and surface polar charges. However, none of these mechanisms universally applies to simple semiconductor structures such as silicon nanowire arrays that often exhibit bunching or adhesions. Here we propose a simple capacitive force model to quantitatively study the universal spontaneous attraction that often causes stiction among semiconductor or metallic nanostructures such as vertical nanowire arrays with inevitably nonuniform size variations due to fabrication. When nanostructures are uniform in size, they share the same substrate potential. The presence of slight size differences will break the symmetry in the capacitive network formed between the nanowires, substrate, and their environment, giving rise to electrostatic attraction forces due to the relative potential difference between neighboring wires. Our model is experimentally verified using arrays of vertical silicon nanowire pairs with varied spacing, diameter, and size differences. Threshold nanowire spacing, diameter, or size difference between the nearest neighbors has been identified beyond which the nanowires start to exhibit spontaneous attraction that leads to bridging when electrostatic forces overcome elastic restoration forces. This work illustrates a universal understanding of spontaneous attraction that will impact the design, fabrication, and reliable operation of nanoscale devices and systems.

  9. A 97 dB dynamic range CSA-based readout circuit with analog temperature compensation for MEMS capacitive sensors

    Science.gov (United States)

    Tao, Yin; Chong, Zhang; Huanming, Wu; Qisong, Wu; Haigang, Yang

    2013-11-01

    This paper presents a charge-sensitive-amplifier (CSA) based readout circuit for capacitive microelectro-mechanical-system (MEMS) sensors. A continuous-time (CT) readout structure using the chopper technique is adopted to cancel the low frequency noise and improve the resolution of the readout circuits. An operational trans-conductance amplifier (OTA) structure with an auxiliary common-mode-feedback-OTA is proposed in the fully differential CSA to suppress the chopper modulation induced disturbance at the OTA input terminal. An analog temperature compensation method is proposed, which adjusts the chopper signal amplitude with temperature variation to compensate the temperature drift of the CSA readout sensitivity. The chip is designed and implemented in a 0.35 μm CMOS process and is 2.1 × 2.1 mm2 in area. The measurement shows that the readout circuit achieves 0.9 aF / √Hz capacitive resolution, 97 dB dynamic range in 100 Hz signal bandwidth, and 0.8 mV/fF sensitivity with a temperature drift of 35 ppm/°C after optimized compensation.

  10. Technical evaluation of vehicle ignition systems: conduct differences between a high energy capacitive system and a standard inductive system

    Directory of Open Access Journals (Sweden)

    Bruno Santos Goulart

    2014-09-01

    Full Text Available An efficient combustion depends on many factors, such as injection, turbulence and ignition characteristics. With the improvement of internal combustion engines the turbulence intensity and internal pressure have risen, demanding more efficient and powerful ignition systems. In direct injection engines, the stratified charge resultant from the wall/air-guided or spray-guided system requires even more energy. The Paschen’s law shows that spark plug gap and mixture density are proportional to the dielectric rupture voltage. It is known that larger spark gaps promote higher efficiency in the internal combustion engines, since the mixture reaction rate rises proportionally. However, the ignition system must be adequate to the imposed gap, not only on energy, but also on voltage and spark duration. For the reported study in this work two test benches were built: a standard inductive ignition system and a capacitive discharge high energy ignition system, with variable voltage and capacitance. The influence of the important parameters energy and ignition voltage on the spark duration, as well as the electrode gap and shape were analyzed. It was also investigated the utilization of a coil with lower resistance and inductance values, as well as spark plugs with and without internal resistances.

  11. Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes.

    Science.gov (United States)

    Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Yu, Yinsheng; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Liao, Qingliang; Zhang, Yue

    2016-03-15

    The design and optimization of supercapacitors electrodes nanostructures are critically important since the properties of supercapacitors can be dramatically enhanced by tunable ion transport channels. Herein, we demonstrate high-performance supercapacitor electrodes materials based on α-Fe2O3 by rationally designing the electrode microstructure. The large solid-liquid reaction interfaces induced by hollow nanoshuttle-like structures not only provide more active sites for faradic reactions but also facilitate the diffusion of the electrolyte into electrodes. These result in the optimized electrodes with high capacitance of 249 F g(-1) at a discharging current density of 0.5 A g(-1) as well as good cycle stability. In addition, the relationship between charge storage and the operating temperature has been researched. The specific capacitance has no significant change when the working temperature increased from 20 °C to 60 °C (e.g. 203 F g(-1) and 234 F g(-1) at 20 °C and 60 °C, respectively), manifesting the electrodes can work stably in a wide temperature range. These findings here elucidate the α-Fe2O3 hollow nanoshuttles can be applied as a promising supercapacitor electrode material for the efficient energy storage at various potential temperatures.

  12. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  13. Dynamic actuation methods for capacitive MEMS shunt switches

    Science.gov (United States)

    Khater, M. E.; Vummidi, K.; Abdel-Rahman, E. M.; Nayfeh, A. H.; Raman, S.

    2011-03-01

    We develop dynamic actuation methods for capacitive MEMS shunt switches. We show that the dynamic actuation voltage is significantly less than the static actuation voltage and demonstrate 60% reduction in the actuation voltage. We also show that this reduction in the actuation voltage depends on the specific dynamic switching technique adopted. For a given operating condition, the minimum realizable switching time is that obtained using static switching. However, we developed a dynamic switching method that yields comparable switching time to that minimum. We also found that squeeze-film damping is the dominant damping mechanism for a shunt switch with a relatively slender bridge (aspect ratio of 11:1).

  14. Low-Frequency Relaxation Oscillations in Capacitive Discharge Processes

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhu-Wen; M.A.LIEBERMAN; Sungjin KIM; JI Shi-Yin; DENG Ming-Sen; SUN Guang-Yu

    2008-01-01

    Low-frequency (2.72-3.70 Hz) relaxation oscillations at 100m Tort at higher absorbed power were observed from time-varying optical emission of the main discharge chamber and the periphery.We interpret the low frequency oscillations using an electromagnetic model of the slot impedance with parallel connection variational peripheral capacitance,coupled to a circuit analysis of the system including the matching network.The model results are in general agreement with the experimental observations,and indicate a variety of bchaviours dependent on the matching conditions.

  15. Leakage Currents and Capacitances of Thick CZT Detectors

    OpenAIRE

    Garson III, Alfred; Li, Qiang; Jung, Ira V.; Dowkontt, Paul; Bose, Richard; Simburger, Garry; Krawczynski, Henric

    2009-01-01

    The quality of Cadmium Zinc Telluride (CZT) detectors is steadily improving. For state of the art detectors, readout noise is thus becoming an increasingly important factor for the overall energy resolution. In this contribution, we present measurements and calculations of the dark currents and capacitances of 0.5 cm-thick CZT detectors contacted with a monolithic cathode and 8x8 anode pixels on a surface of 2 cm x 2 cm. Using the NCI ASIC from Brookhaven National Laboratory as an example, we...

  16. Rapid Prototyping of Tangibles with a Capacitive Mouse

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Esbensen, Morten; Kogutowska, Magdalena

    2011-01-01

    This paper presents the Toki toolkit: a do-it-yourself guide and API to support the rapid prototyping of tangibles. The toolkit provides support for two common requirements for tangibles: capture of touch input by an user and commu- nication of such input to a computer. At the core of the toolkit...... lays the capacitive surface and communication capa- bilities of a Microsoft TouchMouse, both of which are ap- propriated to fulfill the mentined requirements. Unlike ex- isting approaches for rapid prototyping of tangibles like the Arduino boards, using the Toki toolkit does not require de- velopers...

  17. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling....... Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments...

  18. Experimental Analysis of Bisbenzocyclobutene Bonded Capacitive Micromachined Ultrasonic Transducers

    OpenAIRE

    2016-01-01

    Experimental measurement results of a 1.75 mm × 1.75 mm footprint area Capacitive Micromachined Ultrasonic Transducer (CMUT) planar array fabricated using a bisbenzocyclobutene (BCB)-based adhesive wafer bonding technique has been presented. The array consists of 40 × 40 square diaphragm CMUT cells with a cavity thickness of 900 nm and supported by 10 µm wide dielectric spacers patterned on a thin layer of BCB. A 150 µm wide one µm thick gold strip has been used as the contact pad for gold wi...

  19. New Multipole Method for 3-D Capacitance Extraction

    Institute of Scientific and Technical Information of China (English)

    Zhao-Zhi Yang; Ze-Yi Wang

    2004-01-01

    This paper describes an effcient improvement of the multipole accelerated boundary element method for 3-D capacitance extraction.The overall relations between the positions of 2-D boundary elements are considered instead of only the relations between the center-points of the elements,and a new method of cube partitioning is introduced.Numerical results are presented to demonstrate that the method is accurate and has nearly linear computational growth as O(n),where n is the number of panels/boundary elements.The proposed method is more accurate and much faster than Fastcap.

  20. Design of capacitance sensor system for void fraction measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-ping; NIU Gang; WANG Jing

    2005-01-01

    Simulation and optimization were applied to a capacitive sensor system based on electrical tomography technology.Sensors, consisting of Morgantown Energy Technology Center (METC) axial synchro driving guard electrodes and two sets of detecting electrodes, make it possible to obtain simultaneously two groups of signals of the void fraction in oil-gas two-phase flow.The computational and experimental results showed that available sensors, charactered by high resolution and fast real-time response can be used for real-time liquid-gas two-phase flow pattern determination.

  1. Contrast distortion induced by modulation voltage in scanning capacitance microscopy

    Science.gov (United States)

    Chang, M. N.; Hu, C. W.; Chou, T. H.; Lee, Y. J.

    2012-08-01

    With a dark-mode scanning capacitance microscopy (SCM), we directly observed the influence of SCM modulation voltage (MV) on image contrasts. For electrical junctions, an extensive modulated area induced by MV may lead to noticeable changes in the SCM signal phase and intensity, resulting in a narrowed junction image and a broadened carrier concentration profile. This contrast distortion in SCM images may occur even if the peak-to-peak MV is down to 0.3 V. In addition, MV may shift the measured electrical junction depth. The balance of SCM signals components explain these MV-induced contrast distortions.

  2. FPGA Based Low Power ROM Design Using Capacitance Scaling

    DEFF Research Database (Denmark)

    Bansal, Meenakshi; Bansal, Neha; Saini, Rishita

    2015-01-01

    An ideal capacitor will not dissipate any power, but a real capacitor wil l have some power dissipation. In this work, we are going to design capacitance scaling based low power ROM design. In order to test the compatibility of this ROM design with latest i7 Processor, we are operating this ROM w...... in I/O Power, saving of 0.2% occur in Leakage Power, there will be a saving of 11.54% occur in Total Power. This design is implemented on Virtex-5 FPGA using Xilinx ISE and Verilog....

  3. Capacitively Loaded Loop-Based Antennas with Reconfigurable Radiation Patterns

    Directory of Open Access Journals (Sweden)

    Saber Dakhli

    2015-01-01

    Full Text Available A class of metamaterial-inspired antennas having reconfigurable radiation patterns is proposed. They consist of a driven monopole antenna with one- and two-capacitively loaded loop (CLL, near field resonant parasitic elements. Two configurations are studied by considering the state of these CLL elements as being either open or closed configurations. Simulation results explain the design features and demonstrate that the structure can change its beam direction simply by controlling the switched states. Two prototypes with one- and two-CLL elements were fabricated and tested. The measured impedance mismatch and radiation pattern results are presented and compared to the corresponding simulated values.

  4. Analytical comparison of circular diaphragm based simple, single and double touch mode - MEMS capacitive pressure sensor

    Science.gov (United States)

    Jindal, Sumit Kumar; Raghuwanshi, Sanjeev Kumar

    2016-03-01

    In this paper a comparative study is done between normal capacitive pressure sensor, a touch mode capacitive pressure sensor and a double touch mode capacitive pressure sensor. The diaphragm in use is of circular shape. The theory and underlying equations has been described for the said devices and then simulations have been done for different performance parameters to understand the advantage of one over the other.

  5. Asymmetric stem cell division: lessons from Drosophila.

    Science.gov (United States)

    Wu, Pao-Shu; Egger, Boris; Brand, Andrea H

    2008-06-01

    Asymmetric cell division is an important and conserved strategy in the generation of cellular diversity during animal development. Many of our insights into the underlying mechanisms of asymmetric cell division have been gained from Drosophila, including the establishment of polarity, orientation of mitotic spindles and segregation of cell fate determinants. Recent studies are also beginning to reveal the connection between the misregulation of asymmetric cell division and cancer. What we are learning from Drosophila as a model system has implication both for stem cell biology and also cancer research.

  6. Earth Sciences Division collected abstracts: 1979

    Energy Technology Data Exchange (ETDEWEB)

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  7. Chemical Sciences Division annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  8. Predicting division plane position and orientation.

    Science.gov (United States)

    Minc, Nicolas; Piel, Matthieu

    2012-04-01

    Predicting cellular behavior is a major challenge in cell and developmental biology. Since the late nineteenth century, empirical rules have been formulated to predict the position and orientation of mitotic cleavage planes in plant and animal cells. Here, we review the history of division plane orientation rules and discuss recent experimental and theoretical studies that refine these rules and provide mechanistic insights into how division can be predicted. We describe why some of these rules may better apply to certain cell types and developmental contexts and discuss how they could be integrated in the future to allow the prediction of division positioning in tissues.

  9. Bovine serum albumin detection and quantitation based on capacitance measurements of liquid crystals

    Science.gov (United States)

    Lin, Chi-Hao; Lee, Mon-Juan; Lee, Wei

    2016-08-01

    Liquid crystal (LC)-based biosensing is generally limited by the lack of accurate quantitative strategies. This study exploits the unique electric capacitance properties of LCs to establish quantitative assay methods for bovine serum albumin (BSA) biomolecules. By measuring the voltage-dependent electric capacitance of LCs under an alternating-current field with increasing amplitude, positive correlations were derived between the BSA concentration and the electric capacitance parameters of LCs. This study demonstrates that quantitative analysis can be achieved in LC-based biosensing through electric capacitance measurements extensively employed in LCD research and development.

  10. Chemical and Laser Sciences Division annual report 1989

    Energy Technology Data Exchange (ETDEWEB)

    Haines, N. (ed.)

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  11. Magnetic charge quantisation and fractionally charged quarks

    NARCIS (Netherlands)

    Hooft, G. 't

    1976-01-01

    If magnetic monopoles with Schwinger's value of the magnetic charge would exist then that would pose serious restrictions on theories with fractionally charged quarks, even if they are confined. Weak and electromagnetic interactions must be unified with color, leading to a Weinberg angle w close to

  12. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luís Lemos

    2012-07-06

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). Simulations use a hybrid code that couples a two-dimensional time-dependent fluid module, describing the dynamics of the charged particles (electrons and positive ions N 2 + and N 4 + ), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species. The coupling between these modules adopts the local mean energy approximation to define spacetime-dependent electron parameters for the fluid module and to work out spacetime-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 34. © 2012 IOP Publishing Ltd.

  13. Facile synthesis of novel graphene sponge for high performance capacitive deionization

    Science.gov (United States)

    Xu, Xingtao; Pan, Likun; Liu, Yong; Lu, Ting; Sun, Zhuo; Chua, Daniel H. C.

    2015-02-01

    Capacitive deionization (CDI) is an effective desalination technique offering an appropriate route to obtain clean water. In order to obtain excellent CDI performance, a rationally designed structure of electrode materials has been an urgent need for CDI application. In this work, a novel graphene sponge (GS) was proposed as CDI electrode for the first time. The GS was fabricated via directly freeze-drying graphene oxide solution followed by annealing in nitrogen atmosphere. The morphology, structure and electrochemical performance of GS were characterized by scanning electron microscopy, Raman spectroscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The electrosorption performance of GS in NaCl solution was studied and compared with pristine graphene (PG). The results show that due to the unique 3D interconnected porous structure, large accessible surface area and low charge transfer resistance, GS electrode exhibits an ultrahigh electrosorption capacity of 14.9 mg g-1 when the initial NaCl concentration is ~500 mg L-1, which is about 3.2 times of that of PG (4.64 mg g-1), and to our knowledge, it should be the highest value reported for graphene electrodes in similar experimental conditions by now. These results indicate that GS should be a promising candidate for CDI electrode.

  14. Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene.

    Science.gov (United States)

    Cai, P-F; Su, C-J; Chang, W-T; Chang, F-C; Peng, C-Y; Sun, I-W; Wei, Y-L; Jou, C-J; Wang, H Paul

    2014-08-30

    Drinking water shortage has become worse in recent decades. A new capacitive deionization (CDI) method for increasing water supplies through the effective desalination of seawater has been developed. Silver as nano Ag and Ag@C which was prepared by carbonization of the Ag(+)-β-cyclodextrin complex at 573 K for 30 min can add the antimicrobial function into the CDI process. The Ag@C and Ag nanoparticles dispersed on reduced graphene oxide (Ag@C/rGO and nano Ag/rGO) were used as the CDI electrodes. The nano Ag/rGO and Ag@C/rGO electrodes can reduce the charging resistant, and enhance the electrosorption capability. Better CDI efficiencies with the nano Ag/rGO and Ag@C/rGO electrodes can therefore be obtained. When reversed the voltage, the electrodes can be recovered up to 90% within 5 min. This work presents the feasibility for the nano Ag and Ag@C on rGO electrodes applied in CDI process to produce drinking water from seawater or saline water.

  15. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization.

    Science.gov (United States)

    Tang, Wangwang; Kovalsky, Peter; He, Di; Waite, T David

    2015-11-01

    Capacitive deionization (CDI) is an emerging water desalination technology in which pairs of porous electrodes are electrically charged to remove ionic species from water. In this work, the feasibility of fluoride and nitrate removal from brackish groundwaters by batch-mode CDI was investigated. Initially, the effects of flow rate, initial fluoride concentration, and initial coexisting NaCl concentration on fluoride removal were studied. The steady-state fluoride concentration declined as the initial fluoride concentration decreased while initial NaCl concentration remained constant. Due to the competitive electrosorption between fluoride and chloride for limited pore surface sites, a higher initial chloride concentration resulted in a higher equilibrium dissolved fluoride concentration. A simplified one-dimensional transport model for dual anions was developed and found to reliably describe the dynamic process of removal of both fluoride and chloride ions in CDI cells over a range of well-defined operating conditions. Based on the ability of the model to describe fluoride removal, it was extended to description of nitrate removal from brackish groundwaters and also found to perform well. Thus, the approach to description of ion removal, at least in batch studies, appears robust and should assist in optimization of design and operating conditions such that optimal removal of trace ionic species is achieved even when high background concentrations of salt are present.

  16. A Fast Multipole Algorithm with Virtual Cube Partitioning for 3-D Capacitance Extraction

    Institute of Scientific and Technical Information of China (English)

    YANGZhaozhi; WANGZeyi

    2004-01-01

    In this paper a fast indirect boundaryelement method based on the multipole algorithm for capacitance extraction of three-dimensional (3-D) geometries, virtual cube multipole algorithm, is described. First,each 2-D boundary element is regarded as a set of particles with charge rather than a single particle, so the relations between the positions of elements themselves are considered instead of the relations between the center-points of the elements, and a new strategy for cube partitioning is introduced. This strategy overcomes the inadequacy of the methods that associating panels to particles, does not need to break up every panel contained in more than one cube, and has higher speed and precision. Next, a new method is proposed to accelerate the potential integration between the panels that are near to each other. Making good use of the similarity in the 2-D boundary integration,the fast potential integral approach decreases the burden of direct potential computing. Experiments confirm that the algorithm is accurate and has nearly linear computational growth as O(nm), where n is the number of panels and rn is the number of conductors. The new algorithm is implemented and the performance is compared with previous algorithms, such as Fastcap2 of MIT, for k×k bus examples.

  17. Capacitively coupled pickup in MCP-based photodetectors using a conductive metallic anode

    CERN Document Server

    Angelico, Evan; Adams, Bernhard; Elagin, Andrey; Frisch, Henry; Spieglan, Eric

    2016-01-01

    We have designed and tested a robust 20 $\\times$ 20 cm$^2$ thin metal film internal anode capacitively coupled to an external array of signal pads or micro-strips for use in fast microchannel plate photodetectors. The internal anode, in this case a 10nm-thick NiCr film deposited on a 96% pure Al$_2$O$_3$ 3mm-thick ceramic plate and connected to HV ground, provides the return path for the electron cascade charge. The multi-channel pickup array consists of a printed-circuit card or glass plate with metal signal pickups on one side and the signal ground plane on the other. The pickup can be put in close proximity to the bottom outer surface of the sealed photodetector, with no electrical connections through the photodetector hermetic vacuum package other than a single ground connection to the internal anode. Two pickup patterns were tested using a small commercial MCP-PMT as the signal source: 1) parallel 50$\\Omega$ 25-cm-long micro-strips with an analog bandwidth of 1.5 GHz, and 2) a 20 $\\times$ 20 cm$^2$ array...

  18. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content

    Science.gov (United States)

    da Costa, Eduardo Ferreira; de Oliveira, Nestor E.; Morais, Flávio J. O.; Carvalhaes-Dias, Pedro; Duarte, Luis Fernando C.; Cabot, Andreu; Siqueira Dias, J. A.

    2017-01-01

    We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor’s capacitance (measured in a laboratory prototype) increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S=15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θv sensor’s root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit) is less than 1.5 μA, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested. PMID:28287495

  19. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content

    Directory of Open Access Journals (Sweden)

    Eduardo Ferreira da Costa

    2017-03-01

    Full Text Available We present here the design and fabrication of a self-powered and autonomous fringing field capacitive sensor to measure soil water content. The sensor is manufactured using a conventional printed circuit board and includes a porous ceramic. To read the sensor, we use a circuit that includes a 10 kHz triangle wave generator, an AC amplifier, a precision rectifier and a microcontroller. In terms of performance, the sensor’s capacitance (measured in a laboratory prototype increases up to 5% when the volumetric water content of the porous ceramic changed from 3% to 36%, resulting in a sensitivity of S = 15.5 pF per unity change. Repeatability tests for capacitance measurement showed that the θ v sensor’s root mean square error is 0.13%. The average current consumption of the system (sensor and signal conditioning circuit is less than 1.5 μ A, which demonstrates its suitability for being powered by energy harvesting systems. We developed a complete irrigation control system that integrates the sensor, an energy harvesting module composed of a microgenerator installed on the top of a micro sprinkler spinner, and a DC/DC converter circuit that charges a 1 F supercapacitor. The energy harvesting module operates only when the micro sprinkler spinner is irrigating the soil, and the supercapacitor is fully charged to 5 V in about 3 h during the first irrigation. After the first irrigation, with the supercap fully charged, the system can operate powered only by the supercapacitor for approximately 23 days, without any energy being harvested.

  20. Nanoclay-based hierarchical interconnected mesoporous CNT/PPy electrode with improved specific capacitance for high performance supercapacitors.

    Science.gov (United States)

    Oraon, Ramesh; De Adhikari, Amrita; Tiwari, Santosh Kumar; Nayak, Ganesh Chandra

    2016-05-31

    charging-discharging analysis performed at 5 A g(-1). It was also found that all the nanocomposite retains about 94% initial specific capacitance even after 2000 consecutive cycles. Thus, this kind of nanoclay-based hierarchical nanostructured framework is believed to be extremely beneficial for SCs applications.