WorldWideScience

Sample records for cantilevers

  1. Piezoelectric cantilever sensors

    Science.gov (United States)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  2. Cantilever Based Mass Sensing

    DEFF Research Database (Denmark)

    Dohn, Søren

    2007-01-01

    Cantilever based mass sensors utilize that a change in vibrating mass will cause a change in the resonant frequency. This can be used for very accurate sensing of adsorption and desorption processes on the cantilever surface. The change in resonant frequency caused by a single molecule depends...... on various parameters including the vibrating mass of the cantilever and the frequency at which it vibrates. The minimum amount of molecules detectable is highly dependent on the noise of the system as well as the method of readout. The aim of this Ph.D. thesis has been twofold: To develop a readout method...... suitable for a portable device and to investigate the possibility of enhancing the functionality and sensitivity of cantilever based mass sensors. A readout method based on the hard contact between the cantilever and a biased electrode placed in close proximity to the cantilever is proposed. The viability...

  3. A Weed Cantilever

    Science.gov (United States)

    Keller, Elhannan L.; Padalino, John

    1977-01-01

    Describes the Environmental Action Task activity, which may be used as a recreational game or an environmental perception experience, may be conducted indoors or out-of-doors, using weed stems (or spaghetti) and masking tape to construct a cantilever. Small groups of children work together to make the cantilever with the longest arm. Further…

  4. Nonlinearity in nanomechanical cantilevers

    DEFF Research Database (Denmark)

    Villanueva Torrijo, Luis Guillermo; Karabalin, R. B.; Matheny, M. H.;

    2013-01-01

    . In this article, we report the first highly controlled measurements of the nonlinear response of nanomechanical cantilevers using an ultralinear detection system. This is performed for an extensive range of devices to probe the validity of Euler-Bernoulli theory in the nonlinear regime. We find that its...

  5. Cantilever array sensors

    Directory of Open Access Journals (Sweden)

    Hans Peter Lang

    2005-04-01

    Full Text Available Miniaturized microfabricated sensors have enormous potential in gas detection, biochemical analysis, medical applications, quality and process control, and product authenticity issues. Here, we highlight an ultrasensitive mechanical way of converting (bio-chemical or physical processes into a recordable signal using microfabricated cantilever arrays.

  6. [Physiological behavior of Cantilever].

    Science.gov (United States)

    Feeldman, I; Frugone, R; Vládilo, N T

    1990-11-01

    The prosthetic rehabilitation is common of the integral treatment of patients that integral treatment of patients that have lost one or several dental pieces as a consequence of periodontal diseases. It has been demonstrated that plural fixed prothesis to extention, plovide a distribution pattern and magnitude of favourable forces to the periodontal during the different functions of the stomathologic apparatus, that justify rehabilitation based to it patients periodontically affected. The physiological behaviour of cantilever was basically analized on report on different investigation studies performed on patients periodontically diminis hed treated with plural fixed prothesis of crossed are with two unit or bilateral vear cantilever units, dento supported or fixed in place on implants. It is important to emphasize that favourable results previously analized in base to this type of rehabilitation in its different varieties have been obtained through record done on patients in which considerations of indications, design and occlusion stability have been optimized. PMID:2075270

  7. Gland With Cantilever Seal

    Science.gov (United States)

    Melton, Patrick B.

    1989-01-01

    Single-piece gland forms tight seal on probe or tube containing liquid or gas at high pressure. Gland and probe align as assembled by simple torquing procedure. Disconnected easily and reused at same site. Made from any of wide variety of materials so compatible with application. Cantilever ring at top of gland bites into wall of tube or probe, sealing it. Wall of tube or probe must be thick enough to accommodate deformation without rupturing. Maximum deformation designed in coordination with seating and deformation of boss or conical seal.

  8. Cantilever clamp fitting

    Science.gov (United States)

    Melton, Patrick B. (Inventor)

    1989-01-01

    A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.

  9. Cantilever epitaxial process

    Science.gov (United States)

    Ashby, Carol I.; Follstaedt, David M.; Mitchell, Christine C.; Han, Jung

    2003-07-29

    A process of growing a material on a substrate, particularly growing a Group II-VI or Group III-V material, by a vapor-phase growth technique where the growth process eliminates the need for utilization of a mask or removal of the substrate from the reactor at any time during the processing. A nucleation layer is first grown upon which a middle layer is grown to provide surfaces for subsequent lateral cantilever growth. The lateral growth rate is controlled by altering the reactor temperature, pressure, reactant concentrations or reactant flow rates. Semiconductor materials, such as GaN, can be produced with dislocation densities less than 10.sup.7 /cm.sup.2.

  10. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  11. High throughout reproducible cantilever functionalization

    Science.gov (United States)

    Evans, Barbara R; Lee, Ida

    2014-11-25

    A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.

  12. High throughput reproducible cantilever functionalization

    Science.gov (United States)

    Evans, Barbara R; Lee, Ida

    2014-01-21

    A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate.

  13. Micromachined Silicon Cantilever Magnetometry.

    Science.gov (United States)

    Chaparala, M. V.

    1998-03-01

    Magnetic torque measurements give us a simple and attractive method for characterizing the anisotropic properties of magnetic materials. Silicon torque and force magnetometers have many advantages over traditional torsion fiber torque magnetometers. We have fabricated micromachined silicon torque and force magnetometers employing both capacitive(``Capacitance platform magnetometer for thin film and small crystal superconductor studies'', M. Chaparala et al.), AIP Conf. Proc. (USA), AIP Conference Proceedings, no.273, p. 407 1993. and strain dependent FET detection(``Strain Dependent Characterstics of Silicon MOSFETs and their Applications'', M. Chaparala et al.), ISDRS Conf. Proc. 1997. schemes which realize some of these gains. We will present the pros and cons of each of the different detection schemes and the associated design constraints. We have developed a feedback scheme which enables null detection thus preserving the integrity of the sample orientation. We will present a method of separating out the torque and force terms in the measured signals and will discuss the errors associated with each of the designs. Finally, we present the static magnetic torque measurements on various materials with these devices, including equilibrium properties on sub microgram specimens of superconductors, and dHvA measurements near H_c2. We will also discuss their usefulness in pulsed magnetic fields(``Cantilever magnetometry in pulsed magnetic fields", M. J. Naughton et al.), Rev. of Sci. Instrum., vol.68, p. 4061 1997..

  14. Cantilever-like micromechanical sensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Dohn, Søren; Keller, Stephan Sylvest;

    2011-01-01

    The field of cantilever-based sensing emerged in the mid-1990s and is today a well-known technology for label-free sensing which holds promise as a technique for cheap, portable, sensitive and highly parallel analysis systems. The research in sensor realization as well as sensor applications has...... increased significantly over the past 10 years. In this review we will present the basic modes of operation in cantilever-like micromechanical sensors and discuss optical and electrical means for signal transduction. The fundamental processes for realizing miniaturized cantilevers are described with focus...... on silicon-and polymer-based technologies. Examples of recent sensor applications are given covering such diverse fields as drug discovery, food diagnostics, material characterizations and explosives detection....

  15. Dual-Cantilever-Beam Accelerometer

    Science.gov (United States)

    Reynolds, Emmitt A.; Speckhart, Frank H.

    1988-01-01

    Sensitivity to velocity changes along beam axis reduced. Weighted-end cantilever beams of accelerometer deflected equally by acceleration in y direction. When acceleration to right as well as up or down, right beam deflected more, while left beam deflected less. Bridge circuit averages outputs of strain gauges measuring deflections, so cross-axis sensitivity of accelerometer reduced. New device simple and inexpensive.

  16. Chemical Sensors Based on Piezoresistive Cantilever Array

    Institute of Scientific and Technical Information of China (English)

    于晓梅; 张大成; 王丛舜; 杜先锋; 王小宝; 阮勇

    2003-01-01

    U-shaped and rectangle piezoresistive cantilever arrays have been designed with the analysing results of stress,noise and sensitivity of the cantilevers. Based on silicon micromachining technology, the piezoresistive cantilevers were fabricated by using polysilicon as the piezoresistive materials. With the measurement results of noise and sensitivity, the Hooge factor is calculated to be 3 × 10-3, the gauge factor is 27, and the minimum detectable deflection of piezoresistive cantilevers are calculated to be 1.0nm for rectangle cantilever and 0.5 nm for the Ushaped cantilever at a 6 V bias voltage and a 1000 Hz measurement bandwidth. Using polymer-coated cantilevers as individual sensors, their responses to water vapour and ammonia were tested by measuring their output voltage signals. The measured results show that the sensor sensitivity to ammonia can reach a few ppm and the sensor responses are quick.

  17. Cantilevered probe detector with piezoelectric element

    Science.gov (United States)

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  18. SU-8 cantilever chip interconnection

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Janting, Jakob; Schultz, Peter;

    2006-01-01

    the electrodes on the SU-8 chip to a printed circuit board. Here, we present two different methods of electrically connecting an SU-8 chip, which contains a microfluidic network and free-hanging mechanical parts. The tested electrical interconnection techniques are flip chip bonding using underfill or flip chip...... bonding using an anisotropic conductive film (ACF). These are both widely used in the Si industry and might also be used for the large scale interconnection of SU-8 chips. The SU-8 chip, to which the interconnections are made, has a microfluidic channel with integrated micrometer-sized cantilevers...... that can be used for label-free biochemical detection. All the bonding tests are compared with results obtained using similar Si chips. It is found that it is significantly more complicated to interconnect SU-8 than Si cantilever chips primarily due to the softness of SU-8....

  19. Polymeric Cantilever Arrays for Biosensing Applications

    DEFF Research Database (Denmark)

    Calleja, M.; Tamayo, J.; Johansson, Alicia;

    2003-01-01

    We report the fabrication of arrays of polymeric cantilevers for biochemistry applications. The cantilevers are fabricated in the polymer SU-8. The use of a polymer as the component material for the cantilevers provides the sensors with very high sensitivity due to convenient mechanical material...... properties. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. The method allows obtaining well-controlled and uniform mechanical properties of the cantilevers. The elastic constant of the cantilevers was measured, and their dynamic response...... was studied. Characterization of the devices shows that they are suitable for both static and dynamic measurements for biochemical detection in either air or liquid environments. The sensor was applied to monitoring of the immobilization process of cystamine on a gold-coated SU-8 cantilever....

  20. Optical fibre cantilever sensor for biological application

    Science.gov (United States)

    Li, J.; Zhou, Y. X.; Patterson, G.; Shu, W. M.; Maier, R. R. J.; Fowler, R.; Hand, D. P.; MacPherson, W. N.

    2014-05-01

    Micro-cantilever sensors have shown great promise in a wide range of application are as including chemical and biological sensing. However, many of these devices are based upon a sensor `chip' that requires careful alignment between the cantilever and the read-out system, which can be challenging. Furthermore, optical interrogation typically involves a bulky free-space system. Optical fibre addressed cantilevers have been reported previously in the literature and in this paper we propose techniques to design and fabricate polymer micro-cantilevers for attachment onto the end of standard single mode fibres using laser machining. Low-cost optical sources and a fibre coupled spectrometer are employed to monitor the cantilever deflection and therefore observe biological binding between a species of interest and an activated cantilever. Proof-of-concept experiments show that the sensor is capable of detecting pathogen concentration with down to a level of 105cfu/ml.

  1. Cantilevers orthodontics forces measured by fiber sensors

    Science.gov (United States)

    Schneider, Neblyssa; Milczewski, Maura S.; de Oliveira, Valmir; Guariza Filho, Odilon; Lopes, Stephani C. P. S.; Kalinowski, Hypolito J.

    2015-09-01

    Fibers Bragg Gratings were used to evaluate the transmission of the forces generates by orthodontic mechanic based one and two cantilevers used to move molars to the upright position. The results showed levels forces of approximately 0,14N near to the root of the molar with one and two cantilevers.

  2. Oscillations of end loaded cantilever beams

    Science.gov (United States)

    Macho-Stadler, E.; Elejalde-García, M. J.; Llanos-Vázquez, R.

    2015-09-01

    This article presents several simple experiments based on changing transverse vibration frequencies in a cantilever beam, when acted on by an external attached mass load at the free end. By using a mechanical wave driver, available in introductory undergraduate laboratories, we provide various experimental results for end loaded cantilever beams that fit reasonably well into a linear equation. The behaviour of the cantilever beam’s weak-damping resonance response is studied for the case of metal resonance strips. As the mass load increases, a more pronounced decrease occurs in the fundamental frequency of beam vibration. It is important to note that cantilever construction is often used in architectural design and engineering construction projects but current analysis also predicts the influence of mass load on the sound generated by musical free reeds with boundary conditions similar to a cantilever beam.

  3. NOISE AND SENSITIVITY IN POLYSILICON PIEZORESISTIVE CANTILEVERS*

    Institute of Scientific and Technical Information of China (English)

    于晓梅; 江兴流; J.THAYSEN; O.HANSEN; A.BOISEN

    2001-01-01

    Piezoresistive cantilevers with dimensions of 200 × 50 × 1.8μm3 have been fabricated from polycrystalline silicon using reactive ion etching (RIE) and back etching processes. Full Wheatstone bridges have been designed symmetrically on-chip, with two resistors placed on the cantilevers and two resistors on the substrate. The differential measurements of the two cantilevers can reduce the thermal shift of the signal in the system and the external noise in the laboratory.The characteristics of the fabricated cantilevers have been analysed by measuring the noise and the sensitivity. The measured noise spectra show that the 1/f noise is the dominant noise source at low frequencies. With the linear relation between 1/f noise and bias voltages, the Hooge factor (c) was calculated to be 0.0067. The 1/f noise was explained in terms of a lattice scattering model, which occurs in the depletion region of the grains. The displacement sensitivity of the cantilevers was calculated to be 1× 10-6nm-1 by measuring the resistance change and the vertical deflection of the cantilever. The gauge factor of the piezoresistive cantilever was calculated to be 19. At a 3V bias voltage and 1000 Hz measurement bandwidth, 1 nm of minimum detectable deflection has been obtained.

  4. Improved cantilever profiles for sensor elements

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Sanchitha [School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, VIC 3001 (Australia); Austin, Michael [School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, VIC 3001 (Australia); Chaffey, Jason [Mems-ID, MiniFAB, 1 Dalmore Drive, Caribbean Park, Scoresby, VIC 3179 (Australia)

    2007-12-21

    The problem of simultaneously enhancing sensitivity and noise immunity of microcantilevers is investigated. The dependence of deflection and resonant frequency of a microcantilever on its dimensions is studied. A principle to increase deflection and resonant frequency simultaneously is established. Several cantilevers agreeing with this principle are investigated using analytical models and are compared with FEM simulations. Using these results, a cantilever profile that achieves a larger deflection and a larger resonant frequency compared with uniform cantilevers is proposed to be used in sensor elements.

  5. Improved cantilever profiles for sensor elements

    Science.gov (United States)

    Fernando, Sanchitha; Austin, Michael; Chaffey, Jason

    2007-12-01

    The problem of simultaneously enhancing sensitivity and noise immunity of microcantilevers is investigated. The dependence of deflection and resonant frequency of a microcantilever on its dimensions is studied. A principle to increase deflection and resonant frequency simultaneously is established. Several cantilevers agreeing with this principle are investigated using analytical models and are compared with FEM simulations. Using these results, a cantilever profile that achieves a larger deflection and a larger resonant frequency compared with uniform cantilevers is proposed to be used in sensor elements.

  6. Design & fabrication of cantilever array biosensors

    Directory of Open Access Journals (Sweden)

    Anja Boisen

    2009-09-01

    Full Text Available Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes of samples. Currently available fabrication technology will allow the integration of electronic readout and sample introduction into a single unit, decreasing the device size, detection time, and cost. Biosensing technologies based on microfabricated cantilever arrays involving multiple cantilevers, electronic processing, and even local telemetry on a single chip have the potential of satisfying the need for highly sensitive and selective multiple-target detection in very small samples. Here we will review the design and fabrication process of cantilever-based biosensors.

  7. Equilibrium Configurations of Cantilever under Terminal Loads

    CERN Document Server

    Batista, Milan

    2013-01-01

    The paper provides an exact analytical solution for equilibrium configurations of cantilever rod subject to inclined force and torque acting on its free end. The solution is given in terms of Jacobi elliptical functions and illustrated by several numerical examples and several graphical presentations of shapes of deformed cantilever. Possible forms of cantilever underlying elastica are discussed in details and various simple formulas are given for calculation of characteristic dimensions of elastica. For the case when cantilever is subject only to applied force four load conditions are discussed: follower load problem, load determination problem, conservative load problem and rotational load problem. For all the cases the formulas or effective procedure for solution is given.

  8. Cantilever based optical interfacial force microscope

    Science.gov (United States)

    Bonander, Jeremy R.; Kim, Byung I.

    2008-03-01

    We developed a cantilever based optical interfacial force microscopy (COIFM) that employs a microactuated silicon cantilever and optical detection method to establish the measurement of the single molecular interactions using the force feedback technique. Through the direct measurement of the COIFM force-distance curves, we have demonstrated that the COIFM is capable of unveiling structural and mechanical information on interfacial water at the single molecular level over all distances between two hydrophilic surfaces.

  9. Cantilever-Based Biosensors in CMOS Technology

    CERN Document Server

    Kirstein, K -U; Zimmermann, M; Vancura, C; Volden, T; Song, W H; Lichtenberg, J; Hierlemannn, A

    2011-01-01

    Single-chip CMOS-based biosensors that feature microcantilevers as transducer elements are presented. The cantilevers are functionalized for the capturing of specific analytes, e.g., proteins or DNA. The binding of the analyte changes the mechanical properties of the cantilevers such as surface stress and resonant frequency, which can be detected by an integrated Wheatstone bridge. The monolithic integrated readout allows for a high signal-to-noise ratio, lowers the sensitivity to external interference and enables autonomous device operation.

  10. Cantilever noise in off-cantilever-resonance force-detected nuclear magnetic resonance

    Science.gov (United States)

    Harrell, Lee E.; Thurber, Kent R.; Smith, Doran D.

    2004-03-01

    Early work in force-detected nuclear magnetic resonance (FD-NMR) and magnetic resonance force microscopy was restricted to nuclei with a relatively large gyromagnetic ratio γ. Increasingly, as researchers look to apply FD-NMR to practical problems, observing isotopes with a small γ is becoming necessary. The small γ of these isotopes places severe restrictions on the radio frequency field strength necessary to flip the sample spins at practical cantilever frequencies by adiabatic rapid passage. These restrictions led us to investigate the feasibility of observing FD-NMR by flipping sample spins at a rate well below the cantilever frequency. In this article we show that there is no increase in thermomechanical force noise in off-cantilever-resonance FD-NMR relative to on-cantilever-resonance work. Further, we show that working off-cantilever resonance can reduce artifacts and decrease data acquisition time. The major disadvantage to working off-cantilever resonance—reduced cantilever response—increases the importance of low noise detection of cantilever oscillation.

  11. Three-way flexible cantilever probes for static contact

    DEFF Research Database (Denmark)

    Wang, Fei; Petersen, Dirch Hjorth; Jensen, Helle Vendelbo;

    2011-01-01

    In micro four-point probe measurements, three-way flexible L-shaped cantilever probes show significant advantages over conventional straight cantilever probes. The L-shaped cantilever allows static contact to the sample surface which reduces the frictional wear of the cantilever tips. We analyze...... the geometrical design space that must be fulfilled for the cantilevers to obtain static contact with the test sample. The design space relates the spring constant tensor of the cantilevers to the minimal value of the static tip-to-sample friction coefficient. Using an approximate model, we provide the analytical...... calculation of the compliance matrix of the L-shaped cantilever. Compared to results derived from finite element model simulations, the theoretical model provides a good qualitative analysis while deviations for the absolute values are seen. From a statistical analysis, the deviation is small for cantilevers...

  12. Physics-based signal processing algorithms for micromachined cantilever arrays

    Science.gov (United States)

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  13. Polymer-Based Cantilevers with Integrated Electrodes

    OpenAIRE

    Mouaziz, S.; Boero, G.; Popovic, R; J. Brugger

    2006-01-01

    An innovative release method of polymer cantilevers with embedded integrated metal electrodes is presented. The fabrication is based on the lithographic patterning of the electrode layout on a wafer surface, covered by two layers of SU-8 polymer: a 10-um-thick photo-structured layer for the cantilever, and a 200-um-thick layer for the chip body. The releasing method is based on dry etching of a 2-um-thick sacrificial polysilicon layer. Devices with complex electrode layout embedded in free-st...

  14. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  15. Fabrication of cantilever arrays with tips for parallel optical readout

    NARCIS (Netherlands)

    Koelmans, W.W.; Peters, T.; Abelmann, L.; Elwenspoek, M.C.

    2010-01-01

    We report on progress in the fabrication of cantilever arrays with tips. The process features only one lithographic step for the definition of both the tips and cantilevers. The tips have a uniform height distribution and are placed by selfalignment on the cantilever. The arrays are fabricated for a

  16. Polymeric cantilever-based biosensors with integrated readout

    DEFF Research Database (Denmark)

    Johansson, Alicia; Blagoi, Gabriela; Boisen, Anja

    2006-01-01

    The authors present an SU-8 cantilever chip with integrated piezoresistors for detection of surface stress changes due to adsorption of biomolecules on the cantilever surface. Mercaptohexanol is used as a model biomolecule to study molecular interactions with Au-coated SU-8 cantilevers and surfac...

  17. Cantilever-Based Microwave Biosensors: Analysis, Designs and Optimizations

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Jónasson, Sævar Þór;

    2011-01-01

    This paper presents a novel microwave readout scheme for measuring deflection of cantilevers in nanometer range. The cantilever deflection can be sensed by the variation of transmission levels or resonant frequencies of microwave signals. The sensitivity of the cantilever biosensor based on LC...

  18. From MEMS to NEMS: Scaling Cantilever Sensors

    NARCIS (Netherlands)

    Yang, C.K.

    2012-01-01

    This thesis studies the effects of scaling on the characterisation and readout of micro-electro mechanical systems (MEMS) to nano-electro mechanical systems (NEMS). In particular it focuses on cantilever, which is a basic device building block and an important transducer in many sensing application

  19. Calibration of higher eigenmodes of cantilevers

    Science.gov (United States)

    Labuda, Aleksander; Kocun, Marta; Lysy, Martin; Walsh, Tim; Meinhold, Jieh; Proksch, Tania; Meinhold, Waiman; Anderson, Caleb; Proksch, Roger

    2016-07-01

    A method is presented for calibrating the higher eigenmodes (resonant modes) of atomic force microscopy cantilevers that can be performed prior to any tip-sample interaction. The method leverages recent efforts in accurately calibrating the first eigenmode by providing the higher-mode stiffness as a ratio to the first mode stiffness. A one-time calibration routine must be performed for every cantilever type to determine a power-law relationship between stiffness and frequency, which is then stored for future use on similar cantilevers. Then, future calibrations only require a measurement of the ratio of resonant frequencies and the stiffness of the first mode. This method is verified through stiffness measurements using three independent approaches: interferometric measurement, AC approach-curve calibration, and finite element analysis simulation. Power-law values for calibrating higher-mode stiffnesses are reported for several cantilever models. Once the higher-mode stiffnesses are known, the amplitude of each mode can also be calibrated from the thermal spectrum by application of the equipartition theorem.

  20. SOLVABILITY OF SINGULAR CANTILEVER BEAM EQUATION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Two local existence theorems are established for a class of fourth-order two-point boundary value problems with all order derivatives and singularity.Main ingredients are Green function and integral equation.In mechanics,such class of problems is called cantilever beam equation which describes the deflection of an elastic beam fixed at left and freed at right.

  1. Forced Vibrations of a Cantilever Beam

    Science.gov (United States)

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  2. Design & fabrication of cantilever array biosensors

    DEFF Research Database (Denmark)

    Boisen, Anja; Thundat, T

    2009-01-01

    Surface immobilization of functional receptors on microfabricated cantilever arrays offers a new paradigm for the development of biosensors based on nanomechanics. Microcantilever-based systems are capable of real-time, multiplexed detection of unlabeled disease markers in extremely small volumes...

  3. Microstructure cantilever beam for current measurement

    Directory of Open Access Journals (Sweden)

    M.T.E. Khan

    2010-01-01

    Full Text Available Most microelectromechanical systems (MEMS sensors are based on the microcantilever technology, which uses a broad range of design materials and structures. The benefit ofMEMStechnology is in developing devices with a lower cost, lower power consumption, higher performance and greater integration. A free-end cantilever beam with a magnetic material mass has been designed using MEMS software tools. The magnetic material was used to improve the sensitivity of the cantilever beam to an externally-applied magnetic field. The cantilever was designed to form a capacitance transducer, which consisted of variable capacitance where electrical and mechanical energies were exchanged. The aim of this paper was to analyse the system design of the microcantilever when subjected to a magnetic field produced by a current-carrying conductor. When the signal, a sinusoidal current with a constant frequency, was applied, the cantilever beam exhibited a vibration motion along the vertical axis when placed closer to the line current. This motion created corresponding capacitance changes and generated a voltage output proportional to the capacitive change in the signal-processing circuitry attached to the microcantilever. The equivalent massspring system theory was used to describe and analyse the effect of the natural frequency of the system vibrations and motion due to the applied magnetic field, in a single-degree of freedom. The main application of this microcantilever is in current measurements to develop a non-contact current sensor mote.

  4. Cantilever sensors: Nanomechanical tools for diagnostics

    DEFF Research Database (Denmark)

    Datar, R.; Kim, S.; Jeon, S.;

    2009-01-01

    surface stress due to biomolecular interactions and can be measured by optical or electrical means, thereby reporting on the presence of biomolecules. Biological specificity in detection is typically achieved by immobilizing selective receptors or probe molecules on one side of the cantilever using...

  5. Dynamic characterization of bi-material cantilevers

    NARCIS (Netherlands)

    Bijster, R.J.F.; Vreugd, J. de; Sadeghian Marnani, H.

    2013-01-01

    In this paper, an experimental-theoretical method is proposed to accurately determine the thermal diffusivity, characteristic time constant and layer thicknesses of a bimaterial cantilever using a transient, non-destructive and noncontact measurement. The technique is based on the wellknown optical

  6. Development of Electrochemical Cantilever Sensors for DNA Applications

    DEFF Research Database (Denmark)

    Quan, Xueling; Heiskanen, Arto; Yi, Sun;

    2013-01-01

    In this work, we develop a generic DNA based sensing platform used for characterizing surface functionalization and detecting DNA hybridization. Silicon nitride cantilever sensors are fabricated with an integrated three-electrode system and integrated in a microfluidic chip. Cantilevers with gold...... electrodes are functionalized with thiol-modified single stranded DNA (ssDNA) probes to detect target DNA. During functionalization and hybridization, information related to nanomechanical changes on the surface are obtained by optical measurements of changes in cantilever deflection. Simultaneously......, the process is monitored electrochemically. The results clearly indicate that the electrochemical cantilever sensor is very sensitive for detecting DNA hybridization at the cantilever surface....

  7. Inner Crack Detection Method for Cantilever Beams

    Science.gov (United States)

    Li, Zheng; Zhang, Wei; Li, Yixuan; Su, Xianyue

    2008-02-01

    In this paper, continuous wavelet transform has been performed to extract the inner crack information from the guided waves in cantilever beams, and the location and size of crack can be detected exactly. Considering its best time-frequency property, Gabor continuous wavelet transform is employed to analyze the complicated flexible wave signals in cantilever beam, which is inspirited by an impact on the free end. Otherwise, in order to enhance the sensitivity of detection for some small cracks, an improved method is discussed. Here, both computational and experimental methods are carried out for comparing the influence of different crack location in beam. Therefore, the method proposed can be expected to expand to a powerful damage detection method in a broad engineering application.

  8. Cantilever mounted resilient pad gas bearing

    Science.gov (United States)

    Etsion, I. (Inventor)

    1978-01-01

    A gas-lubricated bearing is described, employing at least one pad mounted on a rectangular cantilever beam to produce a lubricating wedge between the face of the pad and a moving surface. The load-carrying and stiffness characteristics of the pad are related to the dimensions and modulus of elasticity of the beam. The bearing is applicable to a wide variety of types of hydrodynamic bearings.

  9. Cantilever steel post damaged by wind

    Directory of Open Access Journals (Sweden)

    Wei Sha

    2014-10-01

    Full Text Available An analysis for the cause of fracture failure of a cantilever steel sign post damaged by wind has been carried out. An unusual cause of failure has been identified, which is the subject of this paper. Microscopy and microanalysis of the fracture surface showed that the failure was due to pre-existing cracks, from the fabrication of the post. This conclusion was reached after detecting and analysing a galvanised layer on the fracture surfaces.

  10. Bending characteristic of a cantilevered magnetostrictive film-substrate system

    Institute of Scientific and Technical Information of China (English)

    B.; Narsu

    2007-01-01

    The bending problem of a film-substrate cantilever with arbitrary film-to-substrate thickness ratio is solved exactly by employing the force equilibrium equation, and then the optimization and application of the bending characteristic of the magne-tostrictive cantilever is discussed. Furthermore, the influence of geometrical and physical parameters of the two cantilever components on the maximum free-end deflection of the cantilever is addressed. The results indicate that as the substrate thickness is kept constant, the greater film-to-substrate stiffness ratio will induce a larger deflection, while for the case of fixed total cantilever thickness, the optimal cantilever deflection is independent of the physical parameters of the materials such as Young’s modulus and Poisson’s ratio.

  11. Bending characteristic of a cantilevered magnetostrictive film-substrate system

    Institute of Scientific and Technical Information of China (English)

    B. Narsu; YUN GuoHong

    2007-01-01

    The bending problem of a film-substrate cantilever with arbitrary film-to-substrate thickness ratio is solved exactly by employing the force equilibrium equation, and then the optimization and application of the bending characteristic of the magnetostrictive cantilever is discussed. Furthermore, the influence of geometrical and physical parameters of the two cantilever components on the maximum free-end deflection of the cantilever is addressed. The results indicate that as the substrate thickness is kept constant, the greater film-to-substrate stiffness ratio will induce a larger deflection, while for the case of fixed total cantilever thickness, the optimal cantilever deflection is independent of the physical parameters of the materials such as Young's modulus and Poisson's ratio.

  12. Understanding interferometry for micro-cantilever displacement detection.

    Science.gov (United States)

    von Schmidsfeld, Alexander; Nörenberg, Tobias; Temmen, Matthias; Reichling, Michael

    2016-01-01

    Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry-Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber-cantilever configurations. In the Fabry-Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz(0.5) under optimum conditions. PMID:27547601

  13. Magnetic properties of cobalt microwires measured by piezoresistive cantilever magnetometry

    Directory of Open Access Journals (Sweden)

    Tosolini G.

    2014-09-01

    Full Text Available We present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.

  14. Lup-Like Cantilever Beam for Small Deflection

    CERN Document Server

    Viridi, Sparisoma; Fujii, Yusaku

    2014-01-01

    A lup-like cantilever beam are discussed in this work. For small deflection it can be approximated as a spring-mass system with certain spring constant whose effective mass is larger than the usual constant rectangular cross section cantilever beam. A new parameter $\\beta$ is introduced to relates some the properties of lup-like cantilever beam to the usual one. Influence of beam witdh $B_0$ and head width $B_t$ to value of $\\beta$ is also presented.

  15. Resonant Response of Rectangular AFM Cantilever in Liquid

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Hang; HUANG Wen-Hao

    2007-01-01

    Dynamic characteristics of atomic force microscopy (AFM) cantilevers can be influenced by their working media.We perform an experimental study on the resonant responses of rectangular AFM cantilevers with different sizes immersed in various viscous fluids. The measured resonance frequencies in liquids are used to validate several theoretical models. Comparison shows the analytical model proposed by Sader [J. Appl. Phys. 84 (1998) 64] can give the best agreement with the experimental results with the maximum relative error nearly 16% for all the cantilevers in different liquids. The ratio between the resonant frequencies in air and water is almost independent of the cantilever length, which is consistent with the theoretical analyses.

  16. Antibody-based protein detection using piezoresistive cantilever arrays

    Science.gov (United States)

    Dauksaite, Vita; Lorentzen, Martin; Besenbacher, Flemming; Kjems, Jørgen

    2007-03-01

    A piezoresistive cantilever array platform with electrical read-out was applied for protein detection using GST (glutathione-S-transferase) and GST antibodies as a model system. Sensing was performed in the static deflection mode under constant flow conditions. The GST antibodies were directly immobilized on the cantilever gold surface by means of free thiol groups. The setup allowed simultaneous deflection measurements with sensor and control-antibody-immobilized reference cantilevers and enabled detection of 1 ng µl-1 (40 nM) of GST protein, which is similar to the sensitivity reported for cantilever sensors using an optical read-out system.

  17. Fabrication of resonant micro cantilevers with integrated transparent fluidic channel

    DEFF Research Database (Denmark)

    Khan, Faheem; Schmid, Silvan; Davis, Zachary James;

    2011-01-01

    be visually observed through the transparent fluidic channel. The resonant frequency of the cantilever is changed by the fluid inside the channel, due to the change in mass. The shift in the resonant frequency can be translated into a density of the fluid or into the presence of macro/micro molecules......Microfabricated cantilevers are proving their potential as excellent tools for analysis applications. In this paper, we describe the design, fabrication and testing of resonant micro cantilevers with integrated transparent fluidic channels. The cantilevers have been devised to measure the density...

  18. Imaging using lateral bending modes of atomic force microscope cantilevers

    Science.gov (United States)

    Caron, A.; Rabe, U.; Reinstädtler, M.; Turner, J. A.; Arnold, W.

    2004-12-01

    Using scanning probe techniques, surface properties such as shear stiffness and friction can be measured with a resolution in the nanometer range. The torsional deflection or buckling of atomic force microscope cantilevers has previously been used in order to measure the lateral forces acting on the tip. This letter shows that the flexural vibration modes of cantilevers oscillating in their width direction parallel to the sample surface can also be used for imaging. These lateral cantilever modes exhibit vertical deflection amplitudes if the cantilever is asymmetric in thickness direction, e.g., by a trapezoidal cross section.

  19. Analogies between a Meniscus and a Cantilever

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Lin

    2009-01-01

    Systematic and quantitative analyses of exact analogies between a meniscus and an elastica are performed. It is shown that the two governing equations take the same style after coordinate translation and scale transformation. The morphologies of the liquid bridge and the cantilever are calculated in terms of elliptic integrations, which can be reduced to the same shape,after converting the boundary conditions. The present analyses can make us grasp the nature of this physical phenomenon deeply and show some inspiration for designing the analogy experiments. Moreover, the calculated results are helpful to engineering applications, such as design and fabrication of MEMS, and micro-manipulations in micro/nano- technology.

  20. Fabrication of biopolymer cantilevers using nanoimprint lithography

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Feidenhans'l, Nikolaj Agentoft; Fisker-Bødker, Nis;

    2011-01-01

    The biodegradable polymer poly(l-lactide) (PLLA) was introduced for the fabrication of micromechanical devices. For this purpose, thin biopolymer films with thickness around 10 μm were spin-coated on silicon substrates. Patterning of microcantilevers is achieved by nanoimprint lithography. A major...... challenge was the high adhesion between PLLA and silicon stamp. Optimized stamp fabrication and the deposition of a 125 nm thick fluorocarbon anti-stiction coating on the PLLA allowed the fabrication of biopolymer cantilevers. Resonance frequency measurements were used to estimate the Young’s modulus...

  1. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  2. Experimental and Numerical Study of Damaged Cantilever

    DEFF Research Database (Denmark)

    Rytter, A.; Krawczuk, M.; Kirkegaard, Poul Henning

    2000-01-01

    of the results from experimental and numerical tests with hollow section cantileves containing fatigue cracks. Two different finite-element (FE) models have been used to estimate the modal parameters numerically. The first FE model consists of beam elements. The second FE model consists of traditional...... rectangular shell elements and one rectangular shell element with a transverse, internal, open crack. The analytical results from the numerical models are compared with data obtained from experimental tests. The numerical models give good agreements with the experimental data. The beam model takes...

  3. Parallel optical readout of a cantilever array in dynamic mode

    NARCIS (Netherlands)

    Koelmans, W.W.; Honschoten, van J.W.; Vettiger, P.; Abelmann, L.; Elwenspoek, M.C.

    2009-01-01

    In this work we present parallel optical readout of a cantilever array which operates in dynamic mode using a standard optical beam deflection configuration containing only one laser-detector pair. We show accurate readout of the resonance frequency shift of an individual cantilever within an array

  4. Cantilever deflection measurement and actuation by an nterdigitated transducer

    NARCIS (Netherlands)

    Strambini, E.; Piazza, V.; Pingue, P.; Biasiol, G.; Sorba, L.; Beltram, F.

    2010-01-01

    A scheme that allows all-electrical high-bandwidth readout of a cantilever deflection by means of an integrated interdigitated transducer is presented. The present approach takes advantage of the piezoelectricity of the chosen cantilever substrate material to generate and detect surface-acoustic-wav

  5. A new concept in magnetic force microscope cantilevers

    NARCIS (Netherlands)

    Bos, van den A.G.; Dijk, van A.C.J.; Heskamp, I.R.; Abelmann, L.; Lodder, J.C.; Hadjipanayis, G.C.

    2001-01-01

    In this paper, a new design of dedicated magnetic force microscope (MFM) cantilever is presented. In this design, the cantilever and the magnetic tip are realized in an integrated manufacturing process. The use of silicon micromachining techniques enables batch fabrication of several hundred cantile

  6. Resonating cantilever mass sensor with mechanical on-plane excitation

    Science.gov (United States)

    Teva, Jordi; Abadal, Gabriel; Jordà, Xavier; Borrise, Xavier; Davis, Zachary; Barniol, Nuria

    2003-04-01

    The aim of this paper is to report the experimental setup designed, developed and tested in order to achieve the first vibrating mode of a lateral cantilever with mechanical excitation. The on-plane oscillating cantilever is the basis of a proposed mass sensor with an expected resolution in the atto-gram scale. In a first system design, the cantilever is driven electrostatically by an electrode, which is placed parallel to the cantilever. The cantilever is driven to its first resonant mode applying an AC voltage between the cantilever and a driver. Also, a DC voltage is applied to increase the system response. The signal read-out of the transducer is the capacitive current of the cantilever-driver system. The mass sensor proposed, based on this cantilever-driver structure (CDS), is integrated with a CMOS circuitry in order to minimize the parasitic capacitances, that in this case take special relevance because of the low level output current coming from the transducer. Moreover, the electrostatic excitation introduces a parasitic current that overlaps the current due to the resonance. The mechanical excitation is an alternative excitation method which aim is to eliminate the excitation current. Here we describe the experimental facilities developed to achieve mechanical excitation and report preliminary results obtained by this excitation technique. The results are complemented with dynamic simulations of an equivalent system model that are in accordance with the experimental values.

  7. An electrochemical-cantilever platform for hybrid sensing applications

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Dohn, Søren; Boisen, Anja;

    2011-01-01

    This work presents a fully-functional, microfabricated electrochemical-cantilever hybrid platform with flow control. A new cantilever chip format is designed, fabricated, and mounted in a custom polymer flow cell. Issues such as leakage and optical/electrical access are addressed, and combined...

  8. Development of a microfabricated electrochemical-cantilever hybrid platform

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Pedersen, Christoffer; Elkjær, Karl;

    2011-01-01

    The design and fabrication of a combined electrochemical-cantilever microfluidic system is described. A chip integrating cantilevers with electrodes into a microchannel is presented with the accompanying polymer flow cell. Issues such as electrical and fluid connections are addressed, electromech...

  9. Cantilever surface stress sensors with single-crystalline silicon piezoresistors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Andreas; Hansen, Ole; Boisen, Anja

    2005-01-01

    We present a cantilever with piezoresistive readout optimized for measuring the static deflection due to isotropic surface stress on the surface of the cantilever [Sens. Actuators B 79(2-3), 115 (2001)]. To our knowledge nobody has addressed the difference in physical regimes, and its influence o...

  10. Direct and alignment-insensitive measurement of cantilever curvature

    CERN Document Server

    Hermans, Rodolfo I; Aeppli, Gabriel

    2013-01-01

    Silicon-based microfabrication has enabled not only the electronics revolution but also made micromechanics nearly as ubiquitous, with applications from motion sensing to biochemical analysis\\cite{Lavrik2004,Raiteri2001}. The atomic force microscope \\cite{Binnig1986,Hwang2009}, where the motion of a small tip at the end of a cantilever traces nanoscale features on surfaces, provides the fundamental paradigms for nanomechanical metrology, including optical readouts of cantilever displacement and bending. Such readout typically requires careful and costly alignment of mechanical and optical elements. Here we demonstrate an alternative approach based on the recognition that in many applications we are interested not so much in the motion of a tip as in the overall curvature of a cantilever. In particular, near field imaging of entire cantilevers yields diffraction patterns providing precise measures of the tilt, curvature and higher order bending components of cantilevers. Even while we have used very inexpensiv...

  11. Serial weighting of micro-objects with resonant microchanneled cantilevers.

    Science.gov (United States)

    Ossola, Dario; Dörig, Pablo; Vörös, János; Zambelli, Tomaso; Vassalli, Massimo

    2016-10-14

    Atomic force microscopy (AFM) cantilevers have proven to be very effective mass sensors. The attachment of a small mass to a vibrating cantilever produces a resonance frequency shift that can be monitored, providing the ability to measure mass changes down to a few molecules resolution. Nevertheless, the lack of a practical method to handle the catch and release process required for dynamic weighting of microobjects strongly hindered the application of the technology beyond proof of concept measurements. Here, a method is proposed in which FluidFM hollow cantilevers are exploited to overcome the standard limitations of AFM-based mass sensors, providing high throughput single object weighting with picogram accuracy. The extension of the dynamic models of AFM cantilevers to hollow cantilevers was discussed and the effectiveness of mass weighting in air was validated on test samples. PMID:27608651

  12. Uncooled Optically Readable Bimaterial Micro-Cantilever Infrared Imaging Device

    Institute of Scientific and Technical Information of China (English)

    段志辉; 张青川; 伍小平; 潘亮; 陈大鹏; 王玮冰; 郭哲颖

    2003-01-01

    We develop an uncooled infrared imaging device that contains a SiN-Au bimaterial micro-cantilever arrays detector and an optical read-out section. The detector converts the incident infrared radiation to the cantilever inclination angles, and the optical read-out section converts these angles directly to a visible image through an optical filtering operation to the spectra of the cantilever arrays with a knife-edge filter. The present results with the 140 × 98 cantilever arrays and the 8-bit A/D quantizer suggest that the objects at the temperature of 250℃ at the distance as far as / m can be detected and the noise-equivalent temperature difference (NETD)of the device is about 10K. The further improvement of NETD is expected to approach about 14mk with the optimized cantilever design and 12-bit quantizer.

  13. Mathematical modeling of nanomachining with atomic force microscope cantilevers

    International Nuclear Information System (INIS)

    This article theoretically analyzes the cutting depth and material removal rate of an atomic force microscope (AFM) cantilever during nanomachining. An analytical expression for the vibration frequency and displacement of the cantilever has been obtained by using the modified couple stress theory. The theory includes one additional material length scale parameter revealing the micro-scale effect. According to the analysis, the results show that the effect of size-dependent on the vibration behavior of the AFM cantilever is obvious. The maximum displacement of nanomachining with the AFM cantilever represents the cutting depth. The area under the displacement-time curve is related to the material removal rate. When the excitation frequency is closer to the nature frequency of the cantilever, a larger material removal rate is obtained

  14. Serial weighting of micro-objects with resonant microchanneled cantilevers

    Science.gov (United States)

    Ossola, Dario; Dörig, Pablo; Vörös, János; Zambelli, Tomaso; Vassalli, Massimo

    2016-10-01

    Atomic force microscopy (AFM) cantilevers have proven to be very effective mass sensors. The attachment of a small mass to a vibrating cantilever produces a resonance frequency shift that can be monitored, providing the ability to measure mass changes down to a few molecules resolution. Nevertheless, the lack of a practical method to handle the catch and release process required for dynamic weighting of microobjects strongly hindered the application of the technology beyond proof of concept measurements. Here, a method is proposed in which FluidFM hollow cantilevers are exploited to overcome the standard limitations of AFM-based mass sensors, providing high throughput single object weighting with picogram accuracy. The extension of the dynamic models of AFM cantilevers to hollow cantilevers was discussed and the effectiveness of mass weighting in air was validated on test samples.

  15. In-situ piezoresponse force microscopy cantilever mode shape profiling

    Energy Technology Data Exchange (ETDEWEB)

    Proksch, R., E-mail: roger.proksch@oxinst.com [Asylum Research, an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-08-21

    The frequency-dependent amplitude and phase in piezoresponse force microscopy (PFM) measurements are shown to be a consequence of the Euler-Bernoulli (EB) dynamics of atomic force microscope (AFM) cantilever beams used to make the measurements. Changes in the cantilever mode shape as a function of changes in the boundary conditions determine the sensitivity of cantilevers to forces between the tip and the sample. Conventional PFM and AFM measurements are made with the motion of the cantilever measured at one optical beam detector (OBD) spot location. A single OBD spot location provides a limited picture of the total cantilever motion, and in fact, experimentally observed cantilever amplitude and phase are shown to be strongly dependent on the OBD spot position for many measurements. In this work, the commonly observed frequency dependence of PFM response is explained through experimental measurements and analytic theoretical EB modeling of the PFM response as a function of both frequency and OBD spot location on a periodically poled lithium niobate sample. One notable conclusion is that a common choice of OBD spot location—at or near the tip of the cantilever—is particularly vulnerable to frequency dependent amplitude and phase variations stemming from dynamics of the cantilever sensor rather than from the piezoresponse of the sample.

  16. A piezoresistive micro-cantilever for thermal infrared detector

    Institute of Scientific and Technical Information of China (English)

    Jintao Liang; Junhua Liu; Xin Li; Changchun Zhu

    2006-01-01

    @@ A novel tri-layer Si-based micro-cantilever thermal infrared (IR) detector with carbon nanotube (CNT)film is fabricated. It is based on the characteristic that the composite micro-cantilever bends in response to incident IR thermal radiation due to the bi-material effect. The bending of micro-cantilever is piezoresistively detected. Furthermore, a new IR absorbing layer material - CNTs - is coated in order to enhance IR radiation absorbing characteristic. the micro-electro-mechanical system (MEMS) sensor could be compatible with integrated circuit technology.

  17. Scanned-cantilever atomic force microscope with large scanning range

    Institute of Scientific and Technical Information of China (English)

    Jintao Yang; Wendong Xu

    2006-01-01

    A scanned-cantilever atomic force microscope (AFM) with large scanning range is proposed, which adopts a new design named laser spot tracking. The scanned-cantilever AFM uses the separate flexure x-y scanner and z scanner instead of the conventional piezoelectric tube scanner. The closed-loop control and integrated capacitive sensors of these scanners can insure that the images of samples have excellent linearity and stability. According to the experimental results, the scanned-cantilever AFM can realize maximal 100 × 100 (μm) scanning range, and 1-nm resolution in z direction, which can meet the requirements of large scale sample testing.

  18. Single microparticles mass measurement using an AFM cantilever resonator

    CERN Document Server

    Mauro, Marco; Ferrini, Gianluca; Puglisi, Roberto; Balduzzi, Donatella; Galli, Andrea

    2014-01-01

    In this work is presented a microbalance for single microparticle sensing based on resonating AFM cantilever. The variation of the resonator eigenfrequency is related to the particle mass positioned at the free apex of the cantilever. An all-digital phase locked loop (PLL) control system is developed to detect the variations in cantilever eigenfrequency. Two particle populations of different materials are used in the experimental test, demonstrating a mass sensitivity of 15 Hz/pg in ambient conditions. Thereby it is validated the possibility of developing an inexpensive, portable and sensitive microbalance for point-mass sensing.

  19. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.© 2011 Elsevier Ltd. All rights reserved.

  20. Enhanced functionality of cantilever based mass sensors using higher modes

    DEFF Research Database (Denmark)

    Dohn, Søren; Sandberg, Rasmus Kousholt; Svendsen, Winnie Edith;

    2005-01-01

    By positioning a single gold particle at different locations along the length axis on a cantilever based mass sensor, we have investigated the effect of mass position on the mass responsivity and compared the results to simulations. A significant improvement in quality factor and responsivity...... was achieved by operating the cantilever in the fourth bending mode thereby increasing the intrinsic sensitivity. It is shown that the use of higher bending modes grants a spatial resolution and thereby enhances the functionality of the cantilever based mass sensor. (c) 2005 American Institute of Physics....

  1. Polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes

    DEFF Research Database (Denmark)

    Johansson, Alicia; Calleja, M.; Dimaki, Maria;

    2004-01-01

    A polymer cantilever platform for dielectrophoretic assembly of carbon nanotubes has been designed and realized. Multi-walled carbon nanotubes from aqueous solution have been assembled between two metal electrodes that are separated by 2 mu m and embedded in the polymer cantilever. The entire chip......, except for the metallic electrodes and wiring, was fabricated in the photoresist SU-8. SU-8 allows for an inexpensive, flexible and fast fabrication method, and the cantilever platform provides a hydrophobic surface that should be well suited for nanotube assembly. The device can be integrated in a micro...

  2. Comparison of stress patterns and displacement in conventional cantilever fixed partial denture with resin bonded cantilever fixed partial denture: A finite element analysis

    Directory of Open Access Journals (Sweden)

    Prashanti E

    2010-01-01

    Full Text Available Aim: This study aims to analyze the stress patterns and displacement in the cantilever resin bonded fixed partial denture (RBFPD and compare it with the conventional cantilever fixed partial denture using 3-D finite element analysis. Also, the effect of cement on the displacement and stress patterns in conventional cantilever fixed partial denture was to be analyzed. Materials and Methods: Three-dimensional models were prepared layer wise to depict the conventional cantilever and the cantilever RBFPD. Once the models were made, the material properties were assigned and divided into three groups. (2-conventional cantilever with resin cement, 1- conventional cantilever with GIC cement and 3-resin bonded cantilever with resin cement. Load was applied in vertical as well as lateral directions and the stress patterns along with displacement were analyzed. Results: The results revealed that the von Mises stresses in all the three groups were found to be almost equal under vertical loading. Under lateral loading, the stress was more in cantilever RBFPD. Displacement in all the three axes was significantly less in the cantilever RBFPD. Conclusion: Stress concentration in the lateral direction in cantilever RBFPD was found to be higher than the cantilever conventional group. Displacement in X, Y and Z axes was less in cantilever RBFPD.

  3. Low temperature scanning force microscopy using piezoresistive cantilevers

    Science.gov (United States)

    Meiser, P.; Koblischka, M. R.; Hartmann, U.

    2015-08-01

    A low temperature dynamic scanning force microscope has been constructed using commercially available piezoresistive cantilevers that can be coated with a ferromagnetic material for MFM application. The setup is able to work in a temperature range from room temperature down to 1.5 K. The performance of the piezoresistive cantilevers has been investigated under different working conditions. Topographic as well as magnetic images of a magnetite thin film sample have been taken at 50 and 4.2 K confirming the proper operation of the microscope at cryogenic temperatures. Furthermore, force-distance-curves taken on thin lead films at 4.2 K demonstrate the levitation forces between the magnetized cantilever tip and the superconducting films. Flux lines were generated by the magnetized cantilever tip itself when approaching the sample. It has also been shown that the microscope is sensitive to the detection of single magnetic flux lines penetrating the lead films.

  4. Integrated MEMS/NEMS Resonant Cantilevers for Ultrasensitive Biological Detection

    Directory of Open Access Journals (Sweden)

    Xinxin Li

    2009-01-01

    Full Text Available The paper reviews the recent researches implemented in Chinese Academy of Sciences, with achievements on integrated resonant microcantilever sensors. In the resonant cantilevers, the self-sensing elements and resonance exciting elements are both top-down integrated with silicon micromachining techniques. Quite a lot of effort is focused on optimization of the resonance mode and sensing structure for improvement of sensitivity. On the other hand, to enable the micro-cantilevers specifically sensitive to bio/chemical molecules, sensing materials are developed and modified on the cantilever surface with a self-assembled monolayer (SAM based bottom-up construction and surface functionalization. To improve the selectivity of the sensors and depress environmental noise, multiple and localized surface modifications are developed. The achieved volume production capability and satisfactory detecting resolution to trace-level biological antigen of alpha-fetoprotein (AFP give the micro-cantilever sensors a great promise for rapid and high-resoluble detection.

  5. Realization of cantilever arrays for parallel proximity imaging

    International Nuclear Information System (INIS)

    This paper reports on the fabrication and characterisation of self-actuating, and self-sensing cantilever arrays for large-scale parallel surface scanning. Each cantilever is integrated with a sharp silicon tip, a thermal-driven bimorph actuator, and a piezoresistive deflection sensor. Thus, the tip to the sample distance can be controlled individually for each cantilever. A radius of the tips below 10 nm is obtained, which enables nanometre in-plane surface imaging by Angstrom resolution in vertical direction. The fabricated cantilever probe arrays are also applicable for large-area manipulation, sub-10 nm metrology, bottom-up synthesis, high-speed gas analysis, for different bio-applications like recognition of DNA, RNA, or various biomarkers of a single disease, etc.

  6. Resonance frequency shift of strongly heated micro-cantilevers

    CERN Document Server

    Sandoval, Felipe Aguilar; Bertin, Éric; Bellon, Ludovic

    2015-01-01

    In optical detection setups to measure the deflection of micro-cantilevers, part of the sensing light is absorbed, heating the mechanical probe. We present experimental evidences of a frequency shift of the resonant modes of a cantilever when the light power of the optical measurement set-up is increased. This frequency shift is a signature of the temperature rise, and presents a dependence on the mode number. An analytical model is derived to take into account the temperature profile along the cantilever, it shows that the frequency shifts are given by an average of the profile weighted by the local curvature for each resonant mode. We apply this framework to measurements in vacuum and demonstrate that huge temperatures can be reached with moderate light intensities: a thousand {\\textdegree}C with little more than 10 mW. We finally present some insight into the physical phenomena when the cantilever is in air instead of vacuum.

  7. Study on electrothermally actuated cantilever array for nanolithography

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Nanolithography is a patterning technique for the fabrication of nano-scale structures.A promising method of nanolithography known as scanning probe lithography has particularly extensive applications for its high resolution,high reliability,and simple operation.In this paper,a novel electrothermally actuated cantilever with integrated heater,thermal conductor and actuator for scanning probe lithography is proposed.Cantilevers are designed in an 8×4 array.Analytical models are presented to simulate the temperature distribution,deflection and thermal crosstalk of the cantilever array.This structure is successfully fabricated.It is demonstrated that this structure can produce a tip deflection of 16.9 μm at an actuation current of 5.5 mA and the thermal crosstalk between the cantilevers is neglected.

  8. Dynamic performance analysis of a micro cantilever embedded in elastomer

    Science.gov (United States)

    Hosono, Minako; Noda, Kentaro; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-07-01

    This paper reports on the dynamic characteristics of a micro silicon standing cantilever embedded in a silicone elastomer, polydimethylsiloxane (PDMS). This combined structure, which consists of materials with significantly different Young’s moduli, is employed as a tactile sensor for shear-strain measurement. The frequency responses of the tactile sensor show no resonance near the intrinsic resonant frequency of the standing cantilever, whereas the resonant point was observed near the intrinsic resonant frequency of the PDMS covering. In addition, when the oscillation frequency is below the resonant frequency of the tactile sensor, the standing cantilever can follow the oscillating deformation of the PDMS covering with no delay, and the sensitivity of the tactile sensor does not change. The analytical and experimental results show that the PDMS covering has a dominant influence on the dynamic behavior of the embedded cantilever, and the tactile sensor can be applied to both static and oscillating input in the same way.

  9. An Astigmatic Detection System for Polymeric Cantilever-based Sensors

    DEFF Research Database (Denmark)

    Hwu, En-Te; Liao, Hsien-Shun; Bosco, Filippo;

    2012-01-01

    fluctuation measurements on cantilever beams with a subnanometer resolution. Furthermore, an external excitation can intensify the resonance amplitude, enhancing the signal- to-noise ratio. The full width at half maximum (FWHM) of the laser spot is 568 nm, which facilitates read-out on potentially...... submicrometer-sized cantilevers. The resonant frequency of SU-8 microcantilevers is measured by both thermal fluctuation and excited vibration measurement modes of the ADS....

  10. Improved Sensitivity MEMS Cantilever Sensor for Terahertz Photoacoustic Spectroscopy.

    Science.gov (United States)

    Coutu, Ronald A; Medvedev, Ivan R; Petkie, Douglas T

    2016-01-01

    In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever's anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom built, low-volume, vacuum chamber. The resulting cantilever sensors exhibited improved signal to noise ratios, sensitivities and normalized noise equivalent absorption (NNEA) coefficients of approximately 4.28 × 10(-10) cm(-1)·WHz(-1/2). This reported NNEA represents approximately a 70% improvement over previously fabricated and tested SOI cantilever sensors for THz PA spectroscopy.

  11. Design and optimization of cantilevered magnetostrictive film-substrate microactuator

    Institute of Scientific and Technical Information of China (English)

    B.; Narsu; YUN; GuoHong; RONG; JianHong

    2007-01-01

    The exact solution for the bending problem of a free-end point loaded films-ubstrate cantilever with arbitrary film-to-substrate thickness ratio is obtained by using the basic mechanical equilibrium equation. And then the problem of design and optimization for microactuator buildup of film-substrate cantilever is discussed by taking into account the effect of geometrical and physical parameters of the cantilever components. Furthermore, the optimal condition for actuator application is presented and some theoretical problems are clarified. The results show that, in general, the greater the film-to-substrate thickness ratio, the higher the ability of taking load, namely the larger the exerted force of the cantilever when the thickness of substrate is kept constant. When the total thickness of the cantilever is kept constant, however, the free-end exerted force will experience a maximum and this maximum value of the exerted force will decrease with the increasing film-to-sub- strate stiffness ratio. Meanwhile, the optimal thickness ratio corresponding to this maximum exerted force also decreases with the increasing stiffness ratio. Whether for the cases of fixed substrate or fixed total thickness, the influence of Poisson's ratio of two cantilever components on the exerted force is remarkable, and should not be neglected.

  12. Measurement of Mechanical Properties of Cantilever Shaped Materials

    Directory of Open Access Journals (Sweden)

    Thomas Thundat

    2008-05-01

    Full Text Available Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young’s modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature

  13. Resonance Based Micromechanical Cantilever for Gas Sensing

    Directory of Open Access Journals (Sweden)

    Subhashini. S

    2013-04-01

    Full Text Available Our world is facing some drastic changes in the climatic conditions due to the heating effect caused by various greenhouse gases. The most harmful gas among them is Carbon dioxide and is increasing at anuncontrolled rate.This paper aims in finding out the quantity of the major polluting gas carbon dioxide. The gravimetric sensor works by adsorbing the CO2 molecules on ZnO sensing layer, which alters the overall mass of the sensor. The mechanical structure is a cantilever, having its own resonant frequency. To selectively adsorbCO2 molecules from the mixture of gaseous molecules, ZnO at a specific temperature is used. As the gas molecules are adsorbed the mass increases and hence there is a change in resonant frequency. This change in frequency gives the measure of the quantity of CO2 molecules present in that environment. The major expected advantage of this technique would be the repeatability of the sensor that is used. This Quantitative analysis of CO2 would be helpful for mankind by alerting them about the environment in which they work,by proper conditioning and networking

  14. Cantilever-based electret energy harvesters

    International Nuclear Information System (INIS)

    Integration of structures and functions has permitted the electricity consumption of sensors, actuators and electronic devices to be reduced. Therefore, it is now possible to imagine low-consumption devices able to harvest energy from their surrounding environment. One way to proceed is to develop converters able to turn mechanical energy, such as vibrations, into electricity: this paper focuses on electrostatic converters using electrets. We develop an accurate analytical model of a simple but efficient cantilever-based electret energy harvester. We prove that with vibrations of 0.1g (∼1 m s−2), it is theoretically possible to harvest up to 30 µW per gram of mobile mass. This power corresponds to the maximum output power of a resonant energy harvester according to the model of William and Yates. Simulation results are validated by experimental measurements, raising at the same time the large impact of parasitic capacitances on the output power. Therefore, we 'only' managed to harvest 10 µW per gram of mobile mass, but according to our factor of merit, this is among the best results so far achieved

  15. Piezoresistive cantilever force-clamp system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Goodman, Miriam B. [Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305 (United States)

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  16. Flow shaping and thrust enhancement of sidewall bounded oscillating cantilevers

    International Nuclear Information System (INIS)

    Highlights: • Thrust and power consumption is studied for sidewall bounded cantilever oscillations. • For large sidewalls, thrust per Watt (efficiency) decreases as sidewall gap decreases. • When sidewall is carefully designed, significant flow shaping benefits can be realized. - Abstract: An oscillating cantilever is employed in a vast number of applications ranging from electronics cooling to propulsion. The motion can be driven at resonance by piezoelectrics which make it an energy efficient source of flow generation from a robust solid state device. Commonly known as piezoelectric fans, they have been the topic of numerous studies, and although many applications ultimately require mounting the cantilever within an enclosure of some form, much of the literature only considers idealized conditions, with walls far removed from the beam. Although it is commonly understood that, in general, sidewalls will help direct the flow in a desired direction, there is little knowledge into what impact this has on key performance characteristics such as power consumption, thrust, or convection enhancement. In this paper, in order to develop a strategic design approach for the enclosure, the thrust produced by a cantilever operating at resonance is quantified with two sidewalls present for a range of beam to wall spacings. Additionally, the sensitivity of the thrust on the relative location of the downstream edge of the sidewalls to the free end of the cantilever (fan tip) is experimentally investigated. It is found that the sidewall gap has little effect on thrust enhancement, except for very small gaps, and that the tip location plays a very large and interesting role in power consumption. In effect, there are cantilever tip locations where one can obtain substantial thrust enhancement with little or no extra power consumption, suggesting that flow shaping has the potential to positively impact the performance. The findings in the paper provide not only a relevant basis

  17. SiC-Based Miniature High-Temperature Cantilever Anemometer

    Science.gov (United States)

    Okojie, Robert S.; Fralick, Gustave; Saad, George J.

    2004-01-01

    The figure depicts a miniature cantilever-type anemometer that has been developed as a prototype of compact, relatively nonintrusive anemometers that can function at temperatures up to 600 C and that can be expected to be commercially mass-producible at low cost. The design of this anemometer, and especially the packaging aspect of the design, is intended to enable measurement of turbulence in the high-temperature, high-vibration environment of a turbine engine or in any similar environment. The main structural components of the anemometer include a single-crystal SiC cantilever and two polycrystalline SiC clamping plates, all made from chemical-vapor-deposited silicon carbide. Fabrication of these components from the same basic material eliminates thermal-expansion mismatch, which has introduced spurious thermomechanical stresses in cantilever-type anemometers of prior design. The clamping plates are heavily oxidized to improve electrical insulation at high temperature. A cavity that serves as a receptacle for the clamped end of the cantilever is etched into one end of one clamping plate. Trenches that collectively constitute a socket for a multipin electrical plug (for connection to external electronic circuitry) are etched into the opposite end of this clamping plate. Metal strips for electrical contact are deposited on one face of the other clamping plate. Piezoresistive single-crystal SiC thin-film strain gauges are etched in the n-type SiC epilayer in a Wheatstone-bridge configuration. Metal contact pads on the cantilever that extend into the clamping-receptacle area, are obtained by deposition and patterning using standard semiconductor photolithography and etching methods. The cantilever and the two clamping plates are assembled into a sandwich structure that is then clamped in a stainless-steel housing. The Wheatstone- bridge carrying SiC cantilever with the metal contact pads on the piezoresistors is slid into the receptacle in the bottom clamping plate

  18. SU-8 hollow cantilevers for AFM cell adhesion studies

    International Nuclear Information System (INIS)

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m−1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification. (paper)

  19. Optimization of sensitivity and noise in piezoresistive cantilevers

    DEFF Research Database (Denmark)

    Yu, Xiaomei; Thaysen, Jacob; Hansen, Ole;

    2002-01-01

    , dimension optimized array cantilevers were designed and fabricated by using single-crystal silicon, low-pressure chemical-vapor deposition (LPCVD) amorphous silicon and microcrystalline silicon as piezoresistive layers. Measurement results have shown that the smallest Hooge factor (alpha) was 3.2x10......(-6), the biggest gauge factors was 95, and the minimum detectable deflection (MDD) at 6 V and 200 Hz-measurement bandwidth was 0.3 nm for a single-crystal silicon cantilever. Of the two LPCVD silicon piezoresistive cantilevers, amorphous silicon piezoresistors had relatively lower 1/f noise. The MDD for a LPCVD...... silicon cantilever at a 200 Hz-measurement bandwidth was 0.4 nm. For all kinds of piezoresistive cantilevers, the 1/f noises were decreased by 35%-50% and the gauge factors were decreased by 60-70% if the doping dose were increased by ten times. The annealing at 1050 degreesC for 30 min decreased 1/f...

  20. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Ali E. Kubba

    2013-12-01

    Full Text Available Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA was used as an initial tool to compare the three geometries’ stiffness (K, output open-circuit voltage (Vave, and average normal strain in the piezoelectric transducer (εave that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3, has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle.

  1. Efficiency enhancement of a cantilever-based vibration energy harvester.

    Science.gov (United States)

    Kubba, Ali E; Jiang, Kyle

    2013-01-01

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle). PMID:24366177

  2. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Grutzik, Scott J.; Zehnder, Alan T. [Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853 (United States); Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F. [Nanomechanical Properties Group, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  3. Shear force microscopy using piezoresistive cantilevers in surface metrology

    Science.gov (United States)

    Gotszalk, Teodor; Kopiec, Daniel; Sierakowski, Andrzej; Janus, Paweł; Grabiec, Piotr; Rangelow, Ivo W.

    2014-09-01

    In this article we describe application of piezoresistive cantilevers in surface investigations carried out with the use of shear force microscopy (ShFM). The novel piezoresistive cantilevers integrate a Wheatstone piezoresistive bridge was used to detect the cantilever deflection, thermal deflection detector and planar tip protruding out of the spring beam. Because the planar tip deflection can be detected and controlled electronically the described technology is very flexible and can be applied in many surface investigations. In this article we will present operation theory of the described solution, experimental setup, methods for calibration of the tip deflection detection and actuation The analysis will be illustrated with example results of topography measurements performed using the described technology.

  4. Conductive oxide cantilever for cryogenic nano-potentiometry

    International Nuclear Information System (INIS)

    Nanoscale electrical transport properties have attracted attentions because of new phenomena such as ballistic transport, quantized resistance, and Coulomb blockade. For measurement of nanoscale resistance, we have been developing a cryogenic atomic force microscope that can operate at 1.8 K. To use it as an electrode, we coated the cantilever with conductive oxides of TiO and indium tin oxide (ITO). We verified that TiO and ITO thin films remain conductive even at 4.2 K. Also we measured I-V characteristics of the tip-sample contact with a standard sample of NbSe2 single crystal, and found that the conductive coats were not lost under large stresses due to the tip-sample contact. Moreover, we succeeded in obtaining a room temperature nano-potentiometry of a gold thin film with the ITO coated cantilever. In conclusion, the TiO and ITO coated cantilevers are applicable to cryogenic nano-potentiometry

  5. On the electromechanical modelling of a resonating nano-cantilever-based transducer

    DEFF Research Database (Denmark)

    Teva, J.; Abadal, G.; Davis, Zachary James;

    2004-01-01

    An electromechanical model for a transducer based on a lateral resonating cantilever is described. The on-plane vibrations of the cantilever are excited electrostatically by applying DC and AC voltages from a driver electrode placed closely parallel to the cantilever. The model predicts the stati....... Both the static and dynamic predictions have been validated experimentally by measuring the deflection of the cantilever by means of an optical microscope. (C) 2004 Elsevier B.V. All rights reserved....

  6. Liquid-phase chemical sensing using lateral mode resonant cantilevers.

    Science.gov (United States)

    Beardslee, L A; Demirci, K S; Luzinova, Y; Mizaikoff, B; Heinrich, S M; Josse, F; Brand, O

    2010-09-15

    Liquid-phase operation of resonant cantilevers vibrating in an out-of-plane flexural mode has to date been limited by the considerable fluid damping and the resulting low quality factors (Q factors). To reduce fluid damping in liquids and to improve the detection limit for liquid-phase sensing applications, resonant cantilever transducers vibrating in their in-plane rather than their out-of-plane flexural resonant mode have been fabricated and shown to have Q factors up to 67 in water (up to 4300 in air). In the present work, resonant cantilevers, thermally excited in an in-plane flexural mode, are investigated and applied as sensors for volatile organic compounds in water. The cantilevers are fabricated using a complementary metal oxide semiconductor (CMOS) compatible fabrication process based on bulk micromachining. The devices were coated with chemically sensitive polymers allowing for analyte sorption into the polymer. Poly(isobutylene) (PIB) and poly(ethylene-co-propylene) (EPCO) were investigated as sensitive layers with seven different analytes screened with PIB and 12 analytes tested with EPCO. Analyte concentrations in the range of 1-100 ppm have been measured in the present experiments, and detection limits in the parts per billion concentration range have been estimated for the polymer-coated cantilevers exposed to volatile organics in water. These results demonstrate significantly improved sensing properties in liquids and indicate the potential of cantilever-type mass-sensitive chemical sensors operating in their in-plane rather than out-of-plane flexural modes. PMID:20715842

  7. Optimized Optomechanical Micro-Cantilever Array for Uncooled Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    DONG Feng-Liang; ZHANG Qing-Chuan; CHEN Da-Peng; MIAO Zheng-Yu; XIONG Zhi-Ming; GUO Zhe-Ying; LI Chao-Bo; JIAO Bin-Bin; WU Xiao-Ping

    2007-01-01

    We present a new substrate-free bimaterial cantilever array made of SiNx and Au for an uncooled microoptomechanical infrared imaging device.Each cantilever element has an optimized deformation magnification structure.A 160×160 array with a 120μm×120μm pitch is fabricared and an optical readout is used to collectively measure deflections of all microcantilevers in the array.Tharmal images of room-temperature objects with higher spatial resolution have been obtained and the noise-equivalent temperature difference of the fabricated focal plane arrays is giyen statistically and is measured to be about 270mK.

  8. Novel resonant cantilever mass change detection and resonant frequency tuning

    DEFF Research Database (Denmark)

    Grigorov, Alexander; Boisen, Anja

    2005-01-01

    structure due to mass changes. Thus the device can only be used once and is best suited for qualitative mass detection. At the same time, the resonant frequency of the device can be tuned by the input signal power. This allows scanning power instead of frequency, and simplifies device operation......This paper reports a novel way to detect the resonant frequency of an electro-thermally actuated cantilever sensor that we have previously reported, in order to perform mass detection by resonant frequency shift detection. The device is based on monitoring the rupture of a clamped cantilever...

  9. Integrated optical readout for miniaturization of cantilever-based sensor system

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat;

    2007-01-01

    The authors present the fabrication and characterization of an integrated optical readout scheme based on single-mode waveguides for cantilever-based sensors. The cantilever bending is read out by monitoring changes in the optical intensity of light transmitted through the cantilever that also ac...

  10. Drift study of SU8 cantilevers in liquid and gaseous environments

    DEFF Research Database (Denmark)

    Tenje, Maria; Keller, Stephan Sylvest; Dohn, Søren;

    2010-01-01

    We present a study of the drift, in terms of cantilever deflections without probe/target interactions, of polymeric SU8 cantilevers. The drift is measured in PBS buffer (pH 7.4) and under vacuum (1 mbar) conditions. We see that the cantilevers display a large drift in both environments. We believ...

  11. Indirecte cantilever adhesiefbrug: implantaatalternatief in boven- en onderfront

    NARCIS (Netherlands)

    A. van Dalen

    2012-01-01

    Cantilever adhesiefbruggen kunnen een alternatief zijn bij solitaire tandvervanging. Met name in boven- en onderfront kan de implantoloog niet altijd goed uit de voeten. In het bovenfront niet omdat implanteren in de esthetische zone niet altijd tot een bevredigend resultaat leidt en in het onderfro

  12. A microfluidic AFM cantilever based dispensing and aspiration platform

    NARCIS (Netherlands)

    Van Oorschot, R.; Perez Garza, H.H.; Derks, R.J.S.; Staufer, U.; Ghatkesar, M.K.

    2015-01-01

    We present the development of a microfluidic AFM (atomic force microscope) cantilever-based platform to enable the local dispensing and aspiration of liquid with volumes in the pico-to-femtoliter range. The platform consists of a basic AFM measurement system, microfluidic AFM chip, fluidic interface

  13. Large Deflection of Cantilever Rod Pulled by Cable

    CERN Document Server

    Batista, Milan

    2013-01-01

    The article discusses six problems which can arise in the determination of the equilibrium configuration of an elastic cantilever rod pulled by an inextensible cable. The discussions are illustrated with graphs of equilibrium shapes and tables providing some reference numerical values.

  14. Optimised cantilever biosensor with piezoresistive read-out

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Thaysen, J.; Hansen, Ole;

    2003-01-01

    We present a cantilever-based biochemical sensor with piezoresistive read-out which has been optimised for measuring surface stress. The resistors and the electrical wiring on the chip are encapsulated in low-pressure chemical vapor deposition (LPCVD) silicon nitride, so that the chip is well...

  15. Development of an Electrochemical-Cantilever Hybrid Platform

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie

    I denne afhandling er udviklingen af en nyskabende elektrokemisk-cantilever hybrid sensor platform præsenteret. Mikro cantileverer er meget følsomme over for ændringer i overflade stress, mens elektrokemiske metoder tillader kontrol og udlæsning af overflade ladning og potentiale. Det kan bruges...

  16. Strategy Guideline: Quality Management in Existing Homes - Cantilever Floor Example

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Sikora, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Wood, A. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented.

  17. Self-mixing interferometry in VCSELs for nanomechanical cantilever sensing

    DEFF Research Database (Denmark)

    Larsson, David; Greve, Anders; Hvam, Jørn Märcher;

    2009-01-01

    We have investigated optical read-out of uncoated polymer micrometer-sized cantilever sensors by self-mixing interference in VCSELs for single-molecule gas sensing. A resolution ~0.2 nm is measured, which is much better than current methods....

  18. Wafer scale coating of polymer cantilever fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Greve, Anders; Dohn, Søren; Keller, Stephan Urs;

    2010-01-01

    Microcantilevers can be fabricated in TOPAS by nanoimprint lithography, with the dimensions of 500 ¿m length 4.5 ¿m thickness and 100 ¿m width. By using a plasma polymerization technique it is possible to selectively functionalize individually cantilevers with a polymer coating, on wafer scale...

  19. SU-8 Cantilever Sensor with Integrated Read-Out

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte

    2007-01-01

    resistorer. Cantilever baserede sensorer bliver normalt fremstillet i silicium men fordelen ved at bruge SU-8 er, at SU-8 er et blødere materiale som er billigere og hurtigere at fremstille. For at opnå elektrisk kontakt fra chippen til et printet kredsløbskort, er flere metoder så som flip-chip bonding...

  20. Design of cantilever probes for Atomic Force Microscopy (AFM)

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2000-01-01

    A cantilever beam used in an Atomic Force Microscope is optimized with respect to two different objectives. The first goal is to maximize the first eigenfrequency while keeping the stiffness of the probe constant. The second goal is to maximize the tip angle of the first eigenmode while again...

  1. Approximate analytical solutions and experimental analysis for transient response of constrained damping cantilever beam

    Institute of Scientific and Technical Information of China (English)

    Ming-yong HU; An-wen WANG; Xiang-ming ZHANG

    2010-01-01

    Vibration mode of the constrained damping cantilever is built up according to the mode superposition of the elastic cantilever beam. The control equation of the constrained damping cantilever beam is then derived using Lagrange's equation. Dynamic response of the constrained damping cantilever beam is obtained according to the principle of virtual work,when the concentrated force is suddenly unloaded. Frequencies and transient response of a series of constrained damping cantilever beams are calculated and tested. Influence of parameters of the damping layer on the response time is analyzed. Analyitcai and experimental approaches are used for verification. The results show that the method is reliable.

  2. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-09-15

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  3. Enhancing amplitude changes by mode localization in trio cantilevers with mass perturbation

    International Nuclear Information System (INIS)

    A simplified three-cantilever array was designed and micro-fabricated for demonstrating the response enhancement in amplitude changes when applying small mass perturbations. Three micro-cantilevers, defined as side (outermost) cantilever, center cantilever and another side cantilever, are identical in geometry and are connected micro-mechanically with each other by two coupling overhangs. In the case of analytical characterizations, by applying a picogram order mass perturbation (10 pg) on one side cantilever, significant enhancements in amplitude changes were obtained at the 2nd resonance mode from both of the unloaded cantilevers. The amplitude change from the center cantilever is about 7000 times higher than that with no mass perturbation, while the change in amplitude from another side cantilever is about 4000 times higher. In the aspect of experimental characterizations, the enhancement in amplitude change at the 2nd resonance mode was verified by applying two polystyrene micro-spheres (about 8.8 pg) as a picogram order mass perturbation onto one side cantilever. Due to the operational difficulties in quantitatively manipulating polystyrene micro-spheres, the effects of mass variations on the enhancement in amplitude changes from unloaded cantilevers were further analytically characterized under a range of 0.01–100 pg for three resonance modes respectively. This work is the first comparative study using three identical spring-mass beams on both analytical characterizations by applying small mass perturbations and sensing verification by manipulating a picogram polystyrene micro-sphere. (paper)

  4. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Long, Christian J., E-mail: christian.long@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States); Cannara, Rachel J. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2015-07-15

    Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on the AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision.

  5. Limit cycle oscillation of a fluttering cantilever plate

    Science.gov (United States)

    Dowell, Earl; Ye, Weiliang

    1991-01-01

    A response of a cantilever plate in high supersonic flow to a disturbance is considered. The Rayleigh-Ritz method is used to solve the nonlinear oscillation of a fluttering plate. It is found that the length-to-width ratio for a cantilever plate has a great effect on flutter amplitude of the limit cycle. For small length-to-width ratio, the dominant chordwise modes are translation and rotation. It is suggested that higher bending modes must be included to obtain an accurate prediction of the flutter onset and limit cycle oscillation. For large length-to-width ratio, significant chordwise bending is apparent in the flutter motion, with the trailing edge area having the largest motion.

  6. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    Science.gov (United States)

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  7. Aluminum nano-cantilevers for high sensitivity mass sensors

    DEFF Research Database (Denmark)

    Davis, Zachary James; Boisen, Anja

    2005-01-01

    We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties. Further......We have fabricated Al nano-cantilevers using a very simple one mask contact UV lithography technique with lateral dimensions under 500 nm and vertical dimensions of approximately 100 nm. These devices are demonstrated as highly sensitive mass sensors by measuring their dynamic properties....... Furthermore, it is shown that Al has a potential higher sensitivity than Si based dynamic sensors. Initial testing of these devices has been conducted using a novel scanning electron microscope setup were the devices were tested under high vacuum conditions. The Q-factor was measured to approximately 200...

  8. Electret-based cantilever energy harvester: design and optimization

    CERN Document Server

    Boisseau, S; Sylvestre, A

    2011-01-01

    We report in this paper the design, the optimization and the fabrication of an electret-based cantilever energy harvester. We develop the mechanical and the electrostatic equations of such a device and its implementation using Finite Elements (FEM) and Matlab in order to get an accurate model. This model is then used in an optimization process. A macroscopic prototype (3.2cm^{2}) was built with a silicon cantilever and a Teflon\\textregistered electret. Thanks to this prototype, we manage to harvest 17\\muW with ambient-type vibrations of 0.2g on a load of 210M{\\Omega}. The experimental results are consistent with simulation results.

  9. Vibrations of cantilevered shallow cylindrical shells of rectangular planform

    Science.gov (United States)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.

  10. BIPARAMETRIC PERTURBATION SOLUTIONS OF LARGE DEFLECTION PROBLEM OF CANTILEVER BEAMS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach. This kind of substitution can transform the basic equation, an integral differential equation into nonlinear algebraic ones, thus simplify computational process. Compared with present results, it indicates that the large deflection problem solved by using pseudolinear analysis can lead to simple and precise results.

  11. Solution and Positive Solution to Nonlinear Cantilever Beam Equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the decomposition technique of equation and the fixed point theorem, the existence of solution and positive solution is studied for a nonlinear cantilever beam equation. The equation describes the deformation of the elastic beam with a fixed end and a free end. The main results show that the equation has at least one solution or positive solution, provided that the "height" of nonlinear term is appropriate on a bounded set.

  12. Vibration of a Cantilever Beam in Ambient Fluid

    CERN Document Server

    Metzger, C; Zypman, F

    2016-01-01

    Here we obtain analytical expressions for the frequency response of a cantilever beam in the presence of ambient fluid. The advantage of our approach, besides its simplicity of use, is that it explicitly contains the viscosity and the density of the ambient fluid. Thus, if measuring the frequency spectrum, the expression can be used in the design of viscometers. Conversely, if the ambient fluid is known, the expression can be used in the design of force gauges such as in Atomic Force Microscopy.

  13. Modeling and optimal design of multilayer thermal cantilever microactuators

    Institute of Scientific and Technical Information of China (English)

    FU JianYu; CHEN DaPeng; YE TianChun; JIAO BinBin; OU Yi

    2009-01-01

    A model of curvature and tip deflection of multilayer thermal cantilever actuators is derived. The sim-plified expression received from the model avoids inverting complex matrices enhances understanding and makes it easier to optimize the structure parameters. Experiment is performed, the modeled andexperimental results demonstrate the validity of the model, and it also indicates that ~oung's module makes great contribution to the deflection; therefore, thin layers cannot be ignored arbitrarily.

  14. Nanomechanical detection of drug-target interactions using cantilever sensors

    OpenAIRE

    Vögtli, M

    2011-01-01

    The alarming growth of antibiotic-resistant superbugs including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. Novel cantilever array sensors offer a tool to probe the nanomechanics of biomolecular reactions and have recently attracted much attention as a ’label-free’ biosensor as they require no fluorescent or radioactive tags and ...

  15. Modeling and optimal design of multilayer thermal cantilever microactuators

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A model of curvature and tip deflection of multilayer thermal cantilever actuators is derived.The sim-plified expression received from the model avoids inverting complex matrices enhances understanding and makes it easier to optimize the structure parameters.Experiment is performed,the modeled and experimental results demonstrate the validity of the model,and it also indicates that Young’s module makes great contribution to the deflection;therefore,thin layers cannot be ignored arbitrarily.

  16. Accurate Method for Determining Adhesion of Cantilever Beams

    Energy Technology Data Exchange (ETDEWEB)

    Michalske, T.A.; de Boer, M.P.

    1999-01-08

    Using surface micromachined samples, we demonstrate the accurate measurement of cantilever beam adhesion by using test structures which are adhered over long attachment lengths. We show that this configuration has a deep energy well, such that a fracture equilibrium is easily reached. When compared to the commonly used method of determining the shortest attached beam, the present method is much less sensitive to variations in surface topography or to details of capillary drying.

  17. STATIC STUDY OF CANTILEVER BEAM STICTION UNDER ELECTROSTATIC FORCE INFLUENCE

    Institute of Scientific and Technical Information of China (English)

    ZhangYin; ZhaoYa-pu

    2004-01-01

    The model and analysis of the cantilever beam adhesion problem under the action of electrostatic force are given. Owing to the nonlinearity of electrostatic force, the analytical solution for this kind of problem is not available. In this paper, a systematic method of generating polynomials which are the exact beam solutions of the loads with different distributions is provided. The polynomials are used to approximate the beam displacement due to electrostatic force. The equilibrium equation offers an answer to how the beam deforms but no information about the unstuck length. The derivative of the functional with respect to the unstuck length offers such information. But to compute the functional it is necessary to know the beam deformation, So the problem is iteratively solved until the results are converged. Galerkin and Newton-Raphson methods are used to solve this nonlinear problem. The effects of dielectric layer thickness and electrostatic voltage on the cantilever beam stiction are studied. The method provided in this paper exhibits good convergence. For the adhesion problem of cantilever beam without electrostatic voltage, the analytical solution is available and is also exactly matched by the computational results given by the method presented in this paper.

  18. Vibration analysis of magnetostrictive thin-film composite cantilever actuator

    Science.gov (United States)

    Xu, Yan; Shang, Xinchun

    2016-09-01

    The transverse vibration of a composed cantilever beam with magnetostrictive layer is analyzed, which is employed to simulate dynamic response of an actuator. The high-order shear deformation theory of beam and the coupling magnetoelastic constitutive relationship are introduced to construct the governing equations, all interface conditions between magnetostrictive film and elastic substrate as well as the free stress condition on the top and bottom surfaces of the beam can be satisfied. In order to demonstrate validity of the presented mathematical modeling, the verification examples are also given. Furthermore, the effect of geometry and material parameters on dynamic characteristics of magnetostrictive cantilever beam, such as the nature frequency and amplitude, is discussed. Moreover, through computing the magneto-mechanical coupling factor of the beam structure, the variation tendency curves of the factor along with different parameters and frequencies of magnetostrictive cantilever beam actuator have been presented. These numerical results should be useful for the design of beam-type with magnetostrictive thin-film actuators.

  19. SU8 diaphragm micropump with monolithically integrated cantilever check valves.

    Science.gov (United States)

    Ezkerra, Aitor; Fernández, Luis José; Mayora, Kepa; Ruano-López, Jesús Miguel

    2011-10-01

    This paper presents a SU8 unidirectional diaphragm micropump with embedded out-of-plane cantilever check valves. The device represents a reliable and low-cost solution for integration of microfluidic control in lab-on-a-chip devices. Its planar architecture allows monolithic definition of its components in a single step and potential integration with previously reported PCR, electrophoresis and flow-sensing SU8 microdevices. Pneumatic actuation is applied on a PDMS diaphragm, which is bonded to the SU8 body at wafer level, further enhancing its integration and mass production capabilities. The cantilever check valves move synchronously with the diaphragm, feature fast response (10ms), low dead volume (86nl) and a 94% flow blockage up to 300kPa. The micropump achieves a maximum flow rate of 177 μl min(-1) at 6 Hz and 200 kPa with an effective area of 10 mm(2). The device is reliable, self-priming and tolerant to particles and big bubbles. To the knowledge of the authors, this is the first micropump in SU8 with monolithically integrated cantilever check valves. PMID:21853192

  20. Investigations on antibody binding to a micro-cantilever coated with a BAM pesticide residue

    Directory of Open Access Journals (Sweden)

    Aamand Jens

    2011-01-01

    Full Text Available Abstract The attachment of an antibody to an antigen-coated cantilever has been investigated by repeated experiments, using a cantilever-based detection system by Cantion A/S. The stress induced by the binding of a pesticide residue BAM (2,6 dichlorobenzamide immobilized on a cantilever surface to anti-BAM antibody is measured using the CantiLab4© system from Cantion A/S with four gold-coated cantilevers and piezo resistive readout. The detection mechanism is in principle label-free, but fluorescent-marked antibodies have been used to subsequently verify the binding on the cantilever surface. The bending and increase in mass of each cantilever has also been investigated using a light interferometer and a Doppler Vibrometer. The system has been analyzed during repeated measurements to investigate whether the CantiLab4© system is a suited platform for a pesticide assay system.

  1. Using the Finite Elements Method (FEM) for Nanotechnology Education. A rectangular cantilever as a mass sensor

    International Nuclear Information System (INIS)

    The Finite Element Method FEM can be used in the context of physics engineering education, particularly in nanotechnology training. Cantilevers and cantilevers arrays have been implemented as sensors within lots of applications. In the present paper, FEM was used to assess validity of basic models where cantilevers are used as mass sensors. Resonance frequency of a cantilever transversal vibration was found; this was a silicon one-side clamped cantilever. A number of minor mass elements Am was added on the cantilever's free side. Then in each case, a new resonance frequency was found; this led to obtain the Am values from shifts of resonance frequencies. Finally, those values were compared with CAD model values

  2. Fabrication Effects on Polysilicon-based Micro cantilever Piezo resistivity for Biological Sensing Application

    International Nuclear Information System (INIS)

    In principle, adsorption of biological molecules on a functionalized surface of a micro fabricated cantilever will cause a surface stress and consequently the cantilever bending. In this work, four different type of polysilicon-based piezo resistive micro cantilever sensors were designed to increase the sensitivity of the micro cantilevers sensor because the forces involved is very small. The design and optimization was performed by using finite element analysis to maximize the relative resistance changes of the piezo resistors as a function of the cantilever vertical displacements. The resistivity of the piezo resistivity micro cantilevers was analyzed before and after dicing process. The maximum resistance changes were systematically investigated by varying the piezo resistor length. The results show that although the thickness of piezo resistor was the same at 0.5 μm the resistance value was varied. (author)

  3. Automated cantilever exchange and optical alignment for High-throughput, parallel atomic force microscopy

    CERN Document Server

    Bijnagte, Tom; Kramer, Lukas; Dekker, Bert; Herfst, Rodolf; Sadeghian, Hamed

    2016-01-01

    In atomic force microscopy (AFM), the exchange and alignment of the AFM cantilever with respect to the optical beam and position-sensitive detector (PSD) are often performed manually. This process is tedious and time-consuming and sometimes damages the cantilever or tip. To increase the throughput of AFM in industrial applications, the ability to automatically exchange and align the cantilever in a very short time with sufficient accuracy is required. In this paper, we present the development of an automated cantilever exchange and optical alignment instrument. We present an experimental proof of principle by exchanging various types of AFM cantilevers in 6 seconds with an accuracy better than 2 um. The exchange and alignment unit is miniaturized to allow for integration in a parallel AFM. The reliability of the demonstrator has also been evaluated. Ten thousand continuous exchange and alignment cycles were performed without failure. The automated exchange and alignment of the AFM cantilever overcome a large ...

  4. A photoresponse-compensated parallel piezoresistive cantilever for cellular force measurements

    International Nuclear Information System (INIS)

    This paper describes a parallel piezoresistive cantilever that is composed of a force-sensing cantilever in addition to a reference cantilever for photoresponse compensation. Piezoresistive cantilevers have been applied in many cellular mechanical measurement studies because of their high sensitivity, high time resolution and ease of handling. However, the electrical resistance changes in response to the excitation light of the fluorescence microscope, which affects the cell measurements. We measured the I–V characteristics of a piezoresistive layer. These photoresponses occurred due to the internal photoelectric effect. We canceled the photoresponses using the reference cantilever. This paper demonstrates compensation of the cantilever photoresponse under irradiation at different angles, wavelengths and light intensities. As a result, the photoresponse could be decreased by 87%. (paper)

  5. Finite Element Modelling of Micro-cantilevers Used as Chemical Sensors

    CERN Document Server

    Louarn, Guy

    2009-01-01

    Nowadays, silicon micro-cantilevers with different geometrical shapes are widely used as micro-electro-mechanical systems and, more recently, as force sensor probes in atomic force microscopy (AFM). During the last ten years, several applications, which include these AFM micrometer-sized cantilevers as mass probes in microbalances or as chemical sensors in chemical micro-system devices, were developed. In the case of complex shapes of cantilevers, where the cross-section is not constant along the cantilever length (case of ?V-shaped? micro-cantilevers), their resonant frequencies can not be analytically calculated. Firstly, in order to validate the accuracy of our FEM approach, we carried out a comparison between analytical, experimental and FEM-computed values of the resonant frequencies for homogenous rectangular shaped micro-cantilevers. Then, we performed a modeling of silicon beams coated with a thin sensitive layer (50 nm of Gold). To precisely calculate the resonant frequencies of these multilayer-cant...

  6. A direct micropipette-based calibration method for atomic force microscope cantilevers

    OpenAIRE

    Liu, Baoyu; Yu, Yan; Yao, Da-Kang; Shao, Jin-Yu

    2009-01-01

    In this report, we describe a direct method for calibrating atomic force microscope (AFM) cantilevers with the micropipette aspiration technique (MAT). A closely fitting polystyrene bead inside a micropipette is driven by precisely controlled hydrostatic pressures to apply known loads on the sharp tip of AFM cantilevers, thus providing a calibration at the most functionally relevant position. The new method is capable of calibrating cantilevers with spring constants ranging from 0.01 to hundr...

  7. Performance of pre-deformed flexible piezoelectric cantilever in energy harvesting

    Science.gov (United States)

    Wang, Pengyingkai; Sui, Li; Shi, Gengchen; Liu, Guohua

    2016-05-01

    This paper proposes a novel structure for pre-rolled flexible piezoelectric cantilevers that use wind energy to power a submunition electrical device. Owing to the particular installation position and working environment, the submunition piezoelectric cantilever should be rolled when not working, but this pre-rolled state can alter the energy harvesting performance. Herein, a working principle and installation method for piezoelectric cantilevers used in submunitions are introduced. To study the influence of the pre-rolled state, pre-rolled piezoelectric cantilevers of different sizes were fabricated and their performances were studied using finite element analysis simulations and experiments. The simulation results show that the resonance frequency and stiffness of the pre-rolled structure is higher than that of a flat structure. Results show that, (1) for both the pre-rolled and flat cantilever, the peak voltage will increase with the wind speed. (2) The pre-rolled cantilever has a higher critical wind speed than the flat cantilever. (3) For identical wind speeds and cantilever sizes, the peak voltage of the flat cantilever (45 V) is less than that of the pre-rolled cantilever (56 V). (4) Using a full-bridge rectifier, the output of the pre-rolled cantilever can sufficiently supply a 10 μF capacitor, whose output voltage may be up to 23 V after 10 s. These results demonstrate that the pre-rolled piezoelectric cantilever and its installation position used in this work are more suitable for submunition, and its output sufficiently meets submunition requirements.

  8. Performance of pre-deformed flexible piezoelectric cantilever in energy harvesting

    Directory of Open Access Journals (Sweden)

    Pengyingkai Wang

    2016-05-01

    Full Text Available This paper proposes a novel structure for pre-rolled flexible piezoelectric cantilevers that use wind energy to power a submunition electrical device. Owing to the particular installation position and working environment, the submunition piezoelectric cantilever should be rolled when not working, but this pre-rolled state can alter the energy harvesting performance. Herein, a working principle and installation method for piezoelectric cantilevers used in submunitions are introduced. To study the influence of the pre-rolled state, pre-rolled piezoelectric cantilevers of different sizes were fabricated and their performances were studied using finite element analysis simulations and experiments. The simulation results show that the resonance frequency and stiffness of the pre-rolled structure is higher than that of a flat structure. Results show that, (1 for both the pre-rolled and flat cantilever, the peak voltage will increase with the wind speed. (2 The pre-rolled cantilever has a higher critical wind speed than the flat cantilever. (3 For identical wind speeds and cantilever sizes, the peak voltage of the flat cantilever (45 V is less than that of the pre-rolled cantilever (56 V. (4 Using a full-bridge rectifier, the output of the pre-rolled cantilever can sufficiently supply a 10 μF capacitor, whose output voltage may be up to 23 V after 10 s. These results demonstrate that the pre-rolled piezoelectric cantilever and its installation position used in this work are more suitable for submunition, and its output sufficiently meets submunition requirements.

  9. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.; Tang, J., E-mail: jtang@engr.uconn.edu [Department of Mechanical Engineering, The University of Connecticut, Storrs, Connecticut 06269 (United States)

    2015-11-23

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  10. Temperature measurement at the end of a cantilever using oxygen paramagnetism in solid air

    CERN Document Server

    Thurber, K R; Smith, D D; Thurber, Kent R.; Harrell, Lee E.; Smith, Doran D.

    2003-01-01

    We demonstrate temperature measurement of a sample attached to the end of a cantilever using cantilever magnetometry of solid air ``contamination'' of the sample surface. In experiments like our Magnetic Resonance Force Microscopy (MRFM), the sample is mounted at the end of a thin cantilever with small thermal conductance. Thus, the sample can be at a significantly different temperature than the bulk of the instrument. Using cantilever magnetometry of the oxygen paramagnetism in solid air provides the temperature of the sample, without any modifications to our MRFM (Magnetic Resonance Force Microscopy) apparatus.

  11. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    International Nuclear Information System (INIS)

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined

  12. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance

    Science.gov (United States)

    Xu, J.; Tang, J.

    2015-11-01

    This letter reports a piezoelectric cantilever-pendulum design for multi-directional energy harvesting. A pendulum is attached to the tip of a piezoelectric cantilever-type energy harvester. This design aims at taking advantage of the nonlinear coupling between the pendulum motion in 3-dimensional space and the beam bending vibration at resonances. Experimental studies indicate that, under properly chosen parameters, 1:2 internal resonance can be induced, which enables the multi-directional energy harvesting with a single cantilever. The advantages of the design with respect to traditional piezoelectric cantilever are examined.

  13. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  14. Double Cantilever Beam Fracture Toughness Testing of Several Composite Materials

    Science.gov (United States)

    Kessler, Jeff A.; Adams, Donald F.

    1992-01-01

    Double-cantilever beam fracture toughness tests were performed by the Composite Materials Research Group on several different unidirectional composite materials provided by NASA Langley Research Center. The composite materials consisted of Hercules IM-7 carbon fiber and various matrix resin formulations. Multiple formulations of four different families of matrix resins were tested: LaRC - ITPI, LaRC - IA, RPT46T, and RP67/RP55. Report presents the materials tested and pertinent details supplied by NASA. For each material, three replicate specimens were tested. Multiple crack extensions were performed on each replicate.

  15. Temperature enhanced photothermal cooling of a micro-cantilever

    CERN Document Server

    Fu, Hao; Mao, Tian-hua; Cao, Gengyu

    2014-01-01

    We present a temperature enhanced photothermal cooling scheme in a micro-cantilever based FP cavity. Experiments at various temperatures show a temperature dependence of photothermal cooling efficiency. And approximate one order of improvement on the cooling efficiency is achieved experimentally when the temperature decreases from 298 K to 100 K. Numerical analysis reveals that the dramatic change of the cooling efficiency is attributed to the temperature dependent dynamics of the photothermal backaction. A high efficient cooling can be achieved by controlling the temperature for an optimized the dynamics of photothermal backaction.

  16. Vibrations of twisted cantilever plates - A comparison of theoretical results

    Science.gov (United States)

    Kielb, R. E.; Leissa, A. W.; Macbain, J. C.

    1985-01-01

    As a result of significant differences in the published results for various methods of analysis involving the use of finite element techniques, there are now some questions regarding the adequacy of these methods to predict accurately the vibratory characteristics of highly twisted cantilever plates. In an attempt to help in a resolution of the arising problems, a joint government/industry/university research effort was initiated. The primary objective of the present paper is to summarize the theoretical methods used in the study and show samples of the obtained results. The study provided 19 sets of theoretical results which are derived from beam theory, shell theory, and finite element methods.

  17. Bending analysis of a functionally graded piezoelectric cantilever beam

    Institute of Scientific and Technical Information of China (English)

    YU Tao; ZHONG Zheng

    2007-01-01

    A new analysis based on Airy stress function method is presented for a functionally graded piezoelectric material cantilever beam.Assuming that the mechanical and electric properties of the material have the same variations along the thickness direction,a two-dimensional plane elasticity solution is obtained for the coupling electroelastic fields of the beam under different loadings.This solution will be useful in analyzing FGPM beam with arbitrary variations of material properties.The influences of the functionally graded material properties on the structural response of the beam subjected to different loads are also studied through numerical examples.

  18. Bending analysis of a functionally graded piezoelectric cantilever beam

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new analysis based on Airy stress function method is presented for a functionally graded piezoelectric material cantilever beam. Assuming that the mechanical and electric properties of the material have the same variations along the thickness direction, a two-dimensional plane elasticity solution is obtained for the coupling electroelastic fields of the beam under different loadings. This solution will be useful in analyzing FGPM beam with arbitrary variations of material properties. The influences of the functionally graded material properties on the structural response of the beam subjected to different loads are also studied through numerical examples.

  19. Micro-cantilever flow sensor for small aircraft

    KAUST Repository

    Ghommem, Mehdi

    2013-10-01

    We extend the use of cantilever beams as flow sensors for small aircraft. As such, we propose a novel method to measure the airspeed and the angle of attack at which the air travels across a small flying vehicle. We measure beam deflections and extract information about the surrounding flow. Thus, we couple a nonlinear beam model with a potential flow simulator through a fluid-structure interaction scheme. We use this numerical approach to generate calibration curves that exhibit the trend for the variations of the limit cycle oscillations amplitudes of flexural and torsional vibrations with the air speed and the angle of attack, respectively. © The Author(s) 2013.

  20. Analytical simulation of the cantilever-type energy harvester

    Directory of Open Access Journals (Sweden)

    Jie Mei

    2016-01-01

    Full Text Available This article describes an analytical model of the cantilever-type energy harvester based on Euler–Bernoulli’s beam theory. Starting from the Hamiltonian form of total energy equation, the bending mode shapes and electromechanical dynamic equations are derived. By solving the constitutive electromechanical dynamic equation, the frequency transfer function of output voltage and power can be obtained. Through a case study of a unimorph piezoelectric energy harvester, this analytical modeling method has been validated by the finite element method.

  1. Integrated optical dual-cantilever arrays in silica on silicon.

    Science.gov (United States)

    Cooper, Peter A; Carpenter, Lewis G; Mennea, Paolo L; Holmes, Christopher; Gates, James C; Smith, Peter G R

    2014-12-29

    A dual cantilever device has been demonstrated which can operate as a force sensor or variable attenuator. The device is fabricated using physical micromachining techniques that do not require cleanroom class facilities. The response of the device to mechanical actuation is measured, and shown to be well described by conventional fiber optic angular misalignment theory. The device has the potential to be utilized within integrated optical components for sensors or attenuators. An array of devices was fabricated with potential for parallel operation. PMID:25607148

  2. Heater-Integrated Cantilevers for Nano-Samples Thermogravimetric Analysis

    Directory of Open Access Journals (Sweden)

    Valeria Toffoli

    2013-12-01

    Full Text Available The design and characteristics of a micro-system for thermogravimetric analysis (TGA in which heater, temperature sensor and mass sensor are integrated into a single device are presented. The system consists of a suspended cantilever that incorporates a microfabricated resistor, used as both heater and thermometer. A three-dimensional finite element analysis was used to define the structure parameters. TGA sensors were fabricated by standard microlithographic techniques and tested using milli-Q water and polyurethane microcapsule. The results demonstrated that our approach provides a faster and more sensitive TGA with respect to commercial systems.

  3. Optical device comprising a cantilever and method of fabrication and use thereof

    NARCIS (Netherlands)

    Iannuzzi, Davide; Deladi, Szabolcs; Elwenspoek, Michael Curt

    2011-01-01

    The present invention provides an optical device, comprising an optical fiber and a cantilever that is arranged on an end of the optical fiber; The cantilever may be an integral part of the optical fiber, and may have a length that is substantially equal to a diameter of the optical fiber. Measureme

  4. 16 CFR Figure 1 to Part 1512 - Bicycle Front Fork Cantilever Bending Test Rig

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Bicycle Front Fork Cantilever Bending Test Rig 1 Figure 1 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS... Fork Cantilever Bending Test Rig EC03OC91.070...

  5. Fabrication, characterization, and simulation of a cantilever-based airflow sensor integrated with optical fiber

    NARCIS (Netherlands)

    Sadegh Cheri, M.; Latifi, H.; Beygi Azar Aghbolagh, F.; Ranjbar Naeini, R.; Taghavi, M.; Ghaderi, M.

    2013-01-01

    In this paper, we present the fabrication and packaging of a cantilever-based airflow sensor integrated with optical fiber. The sensor consists of a micro Fabry–Perot (FP) cavity including a fiber and a micro cantilever that is fabricated using the photolithography method. Airflow causes a small def

  6. Optical device comprising a cantilever and method of fabrication and use thereof

    NARCIS (Netherlands)

    Iannuzzi, Davide; Deladi, Szabolcs; Elwenspoek, Michael Curt

    2009-01-01

    The present invention provides an optical device, comprising an optical fiber and a cantilever that is arranged on an end of the optical fiber; The cantilever may be an integral part of the optical fiber, and may have a length that is substantially equal to a diameter of the optical fiber. Measureme

  7. A mechanistic model for adsorption-induced change in resonance response of submicron cantilevers

    NARCIS (Netherlands)

    Sadeghian, H.; Goosen, J.F.L.; Bossche, A.; Van Keulen, F.

    2008-01-01

    Submicron cantilever structures have been demonstrated to be extremely versatile sensors and have potential applications in physics, chemistry and biology. The basic principle in submicron cantilever sensors is the measurement of the resonance frequency shift due to the added mass of the molecules b

  8. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    Science.gov (United States)

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  9. Investigations on antibody binding to a micro-cantilever coated with a BAM pesticide residue

    DEFF Research Database (Denmark)

    Bache, Michael; Taboryski, Rafael Jozef; Schmid, Silvan;

    2011-01-01

    -BAM antibody is measured using the CantiLab4© system from Cantion A/S with four gold-coated cantilevers and piezo resistive readout. The detection mechanism is in principle label-free, but fluorescent-marked antibodies have been used to subsequently verify the binding on the cantilever surface. The bending...

  10. Polymeric Micro-channel-based Functionalisation System for Micro-Cantilevers

    DEFF Research Database (Denmark)

    Nordström, Maria; Gomez, Montserrat; Boisen, Anja

    2005-01-01

    A micro-channel system intended for functionalising micro-cantilevers used for biochemical detection has been designed, realised and characterised. The chip is fabricated in the resist SU-8, which is a photosensitive polymer offering a fast, cost-efficient and easy processing. Cantilevers present...

  11. Grated waveguide optical cavity as a compact sensor for sub-nanometre cantilever deflections

    NARCIS (Netherlands)

    Kauppinen, L.J.; Hoekstra, H.J.W.M.; Dijkstra, M.; Ridder, de R.M.; Krijnen, G.J.M.; Leijtens, X.J.M.

    2008-01-01

    We propose a novel and highly sensitive integrated read-out scheme, capable of detecting sub-nanometre deflections of a cantilever in close proximity to a grated waveguide structure. We discuss modelling results for an $SiO_2$ cantilever to be integrated with an optical cavity defined by a grated $S

  12. Size-dependent effective Young’s modulus of silicon nitride cantilevers

    NARCIS (Netherlands)

    Babaei Gavan, K.; Westra, H.J.R.; Van der Drift, E.W.J.M.; Venstra, W.J.; Van der Zant, H.S.J.

    2009-01-01

    The effective Young’s modulus of silicon nitride cantilevers is determined for thicknesses in the range of 20–684 nm by measuring resonance frequencies from thermal noise spectra. A significant deviation from the bulk value is observed for cantilevers thinner than 150 nm. To explain the observations

  13. Determination of young's modulus of PZT-influence of cantilever orientation

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, L.; Elwenspoek, M.C.

    2010-01-01

    Calculation of the resonance frequency of cantilevers fabricated from an elastically anisotropic material requires the use of an effective Young’s modulus. In this paper a technique to determine the appropriate effective Young’s modulus for arbitrary cantilever geometries is introduced. This techniq

  14. Sustainability Assessment of Precast Ultra-High Performance Fiber Reinforced Concrete (UHPFRC Cantilever Retaining Walls

    Directory of Open Access Journals (Sweden)

    Behzad Nematollahi

    2014-05-01

    Full Text Available This study evaluates the environmental impacts of a newly designed precast Ultra-High Performance Fiber Reinforced Concrete (UHPFRC cantilever retaining wall as a sustainable alternative approach compared with the conventional precast Reinforced Concrete (RC cantilever retaining wall. Nowadays, according to the shocking reports of many researchers worldwide global warming is one of the most devastating problems of human being. To date, lots of research has been undertaken in the concrete industry to tackle this issue through reducing the environmental footprints of our structural designs. In this regard, UHPFRC technology offers substantial benefits through efficient use of materials as well as optimization of the structural designs resulting less CO2 emissions, Embodied Energy (EE and Global Warming Potential (GWP. UHPFRC as a sustainable construction material is mostly appropriate for the use in the fabrication of precast members such as precast concrete cantilever retaining walls. This study demonstrates the overview of the designed precast concrete cantilever retaining wall manufactured from UHPFRC and its Environmental Impact Calculations (EIC versus the conventional precast RC cantilever retaining walls. Based on the EIC results, the precast UHPFRC cantilever retaining walls are generally more environmentally sustainable than those built of the conventional RC with respect to the reduction of CO2 emissions, EE and GWP. In summary, the precast UHPFRC cantilever retaining wall proposed in this study is an alternative sustainable solution compared with the conventional precast RC cantilever retaining wall which can be used in many civil engineering projects.

  15. Study on the model selection of the cantilever beam of simple cantilever crane%简易悬臂吊车悬臂梁选型研究

    Institute of Scientific and Technical Information of China (English)

    马丽媛

    2014-01-01

    According to known requirements and initial parameters, established the simple cantilever crane model, which provide the basis for the calculation of cantilever beam selection.%根据已知要求及初始参数建立简易悬臂吊车模型,通过计算为悬臂梁选型提供一定的依据。

  16. A novel method using SiNW to measure stress in cantilevers

    Institute of Scientific and Technical Information of China (English)

    Jiang Yanfeng; Wang Jianping

    2009-01-01

    A silicon (SiNW) nanowire device, made by the bottom-up method, has been assembled in a MEMS device for measuring stress in cantilevers. The process for assembling a SiNW on a cantilever has been introduced.The current as a function of the voltage applied to a SiNW have been measured, and the different resistances before and after cantilever releasing have been observed. A parameter, η, has been derived based on the resistances. For a fixed sample, a linear relationship between η and the stress in the cantilever has been observed; and, so, it has been demonstrated that the resistance of SiNW can reflect the variation of the cantilever stress.

  17. Controlling the opto-mechanics of a cantilever in an interferometer via cavity loss

    Energy Technology Data Exchange (ETDEWEB)

    Schmidsfeld, A. von, E-mail: avonschm@uos.de; Reichling, M., E-mail: reichling@uos.de [Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück (Germany)

    2015-09-21

    In a non-contact atomic force microscope, based on interferometric cantilever displacement detection, the optical return loss of the system is tunable via the distance between the fiber end and the cantilever. We utilize this for tuning the interferometer from a predominant Michelson to a predominant Fabry-Pérot characteristics and introduce the Fabry-Pérot enhancement factor as a quantitative measure for multibeam interference in the cavity. This experimentally easily accessible and adjustable parameter provides a control of the opto-mechanical interaction between the cavity light field and the cantilever. The quantitative assessment of the light pressure acting on the cantilever oscillating in the cavity via the frequency shift allows an in-situ measurement of the cantilever stiffness with remarkable precision.

  18. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam

    Science.gov (United States)

    Wagner, R.; Woehl, T. J.; Keller, R. R.; Killgore, J. P.

    2016-07-01

    The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

  19. Cantilever bending based on humidity-actuated mesoporous silica/silicon bilayers.

    Science.gov (United States)

    Ganser, Christian; Fritz-Popovski, Gerhard; Morak, Roland; Sharifi, Parvin; Marmiroli, Benedetta; Sartori, Barbara; Amenitsch, Heinz; Griesser, Thomas; Teichert, Christian; Paris, Oskar

    2016-01-01

    We use a soft templating approach in combination with evaporation induced self-assembly to prepare mesoporous films containing cylindrical pores with elliptical cross-section on an ordered pore lattice. The film is deposited on silicon-based commercial atomic force microscope (AFM) cantilevers using dip coating. This bilayer cantilever is mounted in a humidity controlled AFM, and its deflection is measured as a function of relative humidity. We also investigate a similar film on bulk silicon substrate using grazing-incidence small-angle X-ray scattering (GISAXS), in order to determine nanostructural parameters of the film as well as the water-sorption-induced deformation of the ordered mesopore lattice. The strain of the mesoporous layer is related to the cantilever deflection using simple bilayer bending theory. We also develop a simple quantitative model for cantilever deflection which only requires cantilever geometry and nanostructural parameters of the porous layer as input parameters. PMID:27335753

  20. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    Science.gov (United States)

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.

  1. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    Energy Technology Data Exchange (ETDEWEB)

    Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R. [Centre de Développement des Technologies Avancées (CDTA). BP n°17 Baba Hassen, Alger (Algeria)

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  2. Integrated optical read-out for polymeric cantilever-based sensors

    DEFF Research Database (Denmark)

    Tenje, Maria

    2007-01-01

    This thesis presents a novel read-out method developed for cantilever-based sensors. Cantilevers are thin beams clamped at one end and during the last 10 years they have emerged as an interesting new type of bio/chemical sensor. The specific recognition of a chemical manifests itself as a bending...... of the cantilever from the generated surface stress. Conventionally the read-out used for this type of sensors is external and thereby very bulky. It is beneficial to fabricate a miniaturised system. Moreover, improved sensitivity is obtained by fabricating the cantilever in a polymeric material that has a low...... principles present interesting alternatives for integrated read-out for cantilever based sensors to enable to fabrication of point-of-care analysis systems....

  3. APPROXIMATE SOLUTIONS FOR TRANSIENT RESPONSE OF CONSTRAINED DAMPING LAMINATED CANTILEVER PLATE

    Institute of Scientific and Technical Information of China (English)

    Liuwei Mao; Anwen Wang; Mingyong Hu

    2010-01-01

    The series composed by beam mode function is used to approximate the displacement function of constrained damping of laminated cantilever plates,and the transverse deformation of the plate on which a concentrated force is acted is calculated using the principle of virtual work.By solving Lagrange's equation,the frequencies and model loss factors of free vibration of the plate are obtained,then the transient response of constrained damping of laminated cantilever plate is obtained,when the concentrated force is withdrawn suddenly.The theoretical calculations are compared with the experimental data,the results show:both the frequencies and the response time of theoretical calculation and its variational law with the parameters of the damping layer are identical with experimental results.Also,the response time of steel cantilever plate,unconstrained damping cantilever plate and constrained damping cantilever plate are brought into comparison,which shows that the constrained damping structure can effectively suppress the vibration.

  4. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    Science.gov (United States)

    Zhang, Kewei; Chai, Yuesheng; Fu, Jiahui

    2015-12-01

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position xc satisfied 0 xc xc ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  5. Accurate flexural spring constant calibration of colloid probe cantilevers using scanning laser Doppler vibrometry

    Science.gov (United States)

    Gates, Richard S.; Osborn, William A.; Shaw, Gordon A.

    2015-06-01

    Calibration of the flexural spring constant for atomic force microscope (AFM) colloid probe cantilevers provides significant challenges. The presence of a large attached spherical added mass complicates many of the more common calibration techniques such as reference cantilever, Sader, and added mass. Even the most promising option, AFM thermal calibration, can encounter difficulties during the optical lever sensitivity measurement due to strong adhesion and friction between the sphere and a surface. This may cause buckling of the end of the cantilever and hysteresis in the approach-retract curves resulting in increased uncertainty in the calibration. Most recently, a laser Doppler vibrometry thermal method has been used to accurately calibrate the normal spring constant of a wide variety of tipped and tipless commercial cantilevers. This paper describes a variant of the technique, scanning laser Doppler vibrometry, optimized for colloid probe cantilevers and capable of spring constant calibration uncertainties near ±1%.

  6. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    Science.gov (United States)

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments. PMID:22962737

  7. The stress intensity factor for the double cantilever beam

    Science.gov (United States)

    Fichter, W. B.

    1983-01-01

    Fourier transforms and the Wiener-Hopf technique are used in conjunction with plane elastostatics to examine the singular crack tip stress field in the double cantilever beam (DCB) specimen. In place of the Dirac delta function, a family of functions which duplicates the important features of the concentrated forces without introducing unmanageable mathematical complexities is used as a loading function. With terms of order h-squared/a-squared retained in the series expansion, the dimensionless stress intensity factor is found to be K (h to the 1/2)/P = 12 to the 1/2 (a/h + 0.6728 + 0.0377 h-squared/a-squared), in which P is the magnitude of the concentrated forces per unit thickness, a is the distance from the crack tip to the points of load application, and h is the height of each cantilever beam. The result is similar to that obtained by Gross and Srawley by fitting a line to discrete results from their boundary collocation analysis.

  8. Performance characteristics of valveless and cantilever-valve micropump

    Science.gov (United States)

    Shukur, A. F. M.; Sabani, N.; Taib, B. N.; Azidin, M. A. M.; Shahimin, M. M.

    2013-12-01

    This paper presents comparison between two classes of micropump which are valveless micropump and cantilever-valve micropump. These micropumps consist of basic components which are diaphragm, pumping chamber, actuation mechanism, inlet and outlet. Piezoelectric actuation is carried out by applying pressure on the micropump diaphragm to produce deflection. The micropumps studied in this paper had been designed with specific diaphragm thickness and diameter; while varying the materials, pressure applied and liquid types used. The outer dimension for both micropumps is 4mm × 4mm × 0.5mm with diameter and thickness of the diaphragm are 3.8mm and 20μm respectively. Valveless micropump was shown in this paper to have better performance in mechanical and fluid analysis in terms of maximum deflection and maximum flow rate at actuation pressure 30kPa vis-à-vis cantilever-valve micropump. Valveless micropump was shown in this study to have maximum diaphragm deflection of 183.06μm and maximum flow rate with 191.635μL/s at actuation pressure 30kPa using silicon dioxide as material.

  9. Optimising Performance of a Cantilever-type Micro Accelerometer Sensor

    Directory of Open Access Journals (Sweden)

    B.P. Joshi

    2007-05-01

    Full Text Available A technique for optimising performance of cantilever-type micro acceleration sensor hasbeen developed. Performance of a sensor is judged mainly by its sensitivity and bandwidth.Maximising product of these two important parameters of inertial sensors helps to optimise thesensor performance. It is observed that placement of a lumped mass (add-mass on the sensor'sproof-mass helps to control both sensitivity and the first resonant frequency of the cantileverstructure to the designer's choice. Simulation and modelling of various dimensions of rectangularstructures for acceleration sensor with this novel add-mass technique are discussed. CoventorwareMEMSCAD has been used to model, simulate, and carry out FEM analysis. A simple analyticalmodel is discussed to elaborate the mechanics of cantilever-type micro accelerometer. Thecomparison of the results obtained from analytical model and the finite element simulations revealthese to be in good agreement. The advantages of this technique for choosing the two mostimportant sensor parameters (i.e., sensitivity and bandwidth of an inertial sensor are brought out.

  10. Higher Order Modes Excitation of Micro Cantilever Beams

    KAUST Repository

    Jaber, Nizar

    2014-05-01

    In this study, we present analytical and experimental investigation of electrically actuated micro cantilever based resonators. These devices are fabricated using polyimide and coated with chrome and gold layers from both sides. The cantilevers are highly curled up due to stress gradient, which is a common imperfection in surface micro machining. Using a laser Doppler vibrometer, we applied a noise signal to experimentally find the first four resonance frequencies. Then, using a data acquisition card, we swept the excitation frequency around the first four natural modes of vibrations. Theoretically, we derived a reduced order model using the Galerkin method to simulate the dynamics of the system. Extensive numerical analysis and computations were performed. The numerical analysis was able to provide good matching with experimental values of the resonance frequencies. Also, we proved the ability to excite higher order modes using partial electrodes with shapes that resemble the shape of the mode of interest. Such micro-resonators are shown to be promising for applications in mass and gas sensing.

  11. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters

    Science.gov (United States)

    Tan, T.; Yan, Z.; Hajj, M.

    2016-09-01

    Analysis of cantilever-based piezoelectric energy harvesting systems is usually performed using coupled equations that represent the mechanical displacement and the voltage output. These equations are then solved simultaneously. In contrast to this representation, we use analytical solutions of the governing equation to derive an algebraic equation of the power as a function of the beam displacement, electromechanical coefficients, and the load resistance. Such an equation can be more useful in the design of such harvesters. Particularly, the mechanical displacement is computed from a mechanical governing equation with modified natural frequency and damping ratio that account for the electromechanical coupling. The voltage and the harvested power are then obtained by relating them directly to the mechanical displacement. We validate the proposed analysis by comparing its solution including the tip displacement and harvested power with those of numerical simulations of the governing equations. To demonstrate the generality of the proposed approach, we consider the cases of base excitation, galloping, and autoparametric vibration. The model proposed in this study simplifies the electromechanical coupling problem for practical applications of cantilever-beam piezoelectric energy harvesting systems.

  12. Improving picogram mass sensitivity via frequency doubling in coupled silicon micro-cantilevers

    International Nuclear Information System (INIS)

    Two geometrically different cantilevers, with primary frequencies of 182.506 kHz (u-shaped cantilever for sensing) and 372.503 kHz (rectangular cantilever for detecting), were coupled by two symmetrical coupling overhangs for oscillation-based mass sensing verification with phase-locking. Based on a lumped element model, a theoretical expression, containing a nonlinear spring constant and a term corresponding to the effect of the coupling spring, was proposed to consider the factors influencing the entrainment range, which is defined as a plateau with a frequency ratio (resonant frequency of rectangular cantilever to that of u-shaped cantilever) of 2.000 in present study. A picogram order mass sensing by applying a polystyrene microsphere as a small mass perturbation onto the tip of the u-shaped cantilever was demonstrated. By varying driving voltages, two entrainment regions with and without microsphere were experimentally measured and comparatively shown. At a driving voltage of 1 Vpp, when the u-shaped cantilever was excited at its shifted frequency of 180.29 kHz, the frequency response of the coupled rectangular cantilever had a peak at double the shifted frequency of 360.58 kHz of the u-shaped cantilever. The frequency shift for picogram mass sensing was thus doubled from 2560 Hz to 5133 Hz due to phase-locking. A mass of 3.732 picogram was derived based on the doubled frequency shift corresponding to a calculated mass of 3.771 picogram from measured diameter and reported density. Both experimental demonstration and theoretical discussions from the viewpoint of entrainment range elicits the possibility of increasing the mass sensitivity via phase-locking in the coupled silicon micro-cantilevers. (paper)

  13. Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy.

    Science.gov (United States)

    Somnath, Suhas; Collins, Liam; Matheson, Michael A; Sukumar, Sreenivas R; Kalinin, Sergei V; Jesse, Stephen

    2016-10-14

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip-sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques. PMID:27607339

  14. Imaging via complete cantilever dynamic detection: general dynamic mode imaging and spectroscopy in scanning probe microscopy

    Science.gov (United States)

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; Sukumar, Sreenivas R.; Kalinin, Sergei V.; Jesse, Stephen

    2016-10-01

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify the findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip-sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.

  15. Strain energy release rate distributions for double cantilever beam specimens

    Science.gov (United States)

    Crews, J. H., Jr.; Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A 24-ply composite double cantilever-beam specimen under mode I (opening) loading has been analyzed by a 3D FEM code that calculated along a straight delamination starter for several different specimen materials. An isotropic specimen was found to have a strain-energy release rate distribution which varied along its delamination front due to the boundary-layer effect and another effect associated with the anticlastic curvature of the bent specimen arms. A 0-deg graphite-reinforced epoxy specimen had a nearly-uniform strain-energy release rate distribution which dropped only near the edge, due to the boundary-layer effect, and a +/- 45-deg graphite/epoxy specimen exhibited a pronounced strain-energy release rate variation across the specimen width.

  16. Vibration Characteristics of Partially Covered Double-Sandwich Cantilever Beam

    Science.gov (United States)

    Chen, Qinghua; Levy, Cesar

    1996-01-01

    The differential equations of motion together with the boundary conditions for a partially covered, double-sandwich cantilever beam are derived. Bending and extension, rotational and longitudinal inertia of damping layers, and shear deformation and rotational and longitudinal inertia of the constraining layers and the primary beam are included in the equations. The theory is applicable for long as well as short, soft, or stiff damping layer, double-sandwich beams. Also, the effects of different parameters on the system loss factor and resonance frequency are discussed. Differences are found to exist with the previous beam model (called the Euler beam model) when the damping layers are stiff, when the thickness of the damping layer is large compared to the primary-beam thickness, and in the case of higher modes of vibration.

  17. Interdisciplinary cantilever physics: Elasticity of carrot, celery, and plasticware

    Science.gov (United States)

    Pestka, Kenneth A.

    2014-05-01

    This article presents several simple cantilever-based experiments using common household items (celery, carrot, and a plastic spoon) that are appropriate for introductory undergraduate laboratories or independent student projects. By applying Hooke's law and Euler beam theory, students are able to determine Young's modulus, fracture stress, yield stress, strain energy, and sound speed of these apparently disparate materials. In addition, a cellular foam elastic model is introduced—applicable to biologic materials as well as an essential component in the development of advanced engineering composites—that provides a mechanism to determine Young's modulus of the cell wall material found in celery and carrot. These experiments are designed to promote exploration of the similarities and differences between common inorganic and organic materials, fill a void in the typical undergraduate curriculum, and provide a foundation for more advanced material science pursuits within biology, botany, and food science as well as physics and engineering.

  18. Strategy Guideline: Quality Management in Existing Homes; Cantilever Floor Example

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, J.; Sikora, J.; Wiehagen, J.; Wood, A.

    2011-12-01

    This guideline is designed to highlight the QA process that can be applied to any residential building retrofit activity. The cantilevered floor retrofit detailed in this guideline is included only to provide an actual retrofit example to better illustrate the QA activities being presented. The goal of existing home high performing remodeling quality management systems (HPR-QMS) is to establish practices and processes that can be used throughout any remodeling project. The research presented in this document provides a comparison of a selected retrofit activity as typically done versus that same retrofit activity approached from an integrated high performance remodeling and quality management perspective. It highlights some key quality management tools and approaches that can be adopted incrementally by a high performance remodeler for this or any high performance retrofit. This example is intended as a template and establishes a methodology that can be used to develop a portfolio of high performance remodeling strategies.

  19. High-performance micromachined gyroscope with a slanted suspension cantilever

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Dingbang; Wu Xuezhong; Hou Zhanqiang; Chen Zhihua; Dong Peitao; Li Shengyi, E-mail: Dingbangxiao@yahoo.com.c [Microsystem Laboratory, National University of Defense Technology, Changsha 410073 (China)

    2009-04-15

    This paper presents a novel structure for improving the stability and the mechanical noise of micromachined gyroscopes. Only one slanted cantilever is used for suspension in this gyroscope, so the asymmetry spring and the thermal stress, which most micromachined gyroscopes suffer from, are reduced. In order to reduce the mechanical noise, the proof masses are designed to be much larger than in most micromachined gyroscopes. The gyroscope chip is sealed at 0.001 Pa vacuum. A gyroscope sample and its read-out circuit are fabricated. The scale factor of this gyroscope is measured as 57.6 mV/(deg/sec) with a nonlinearity better than 0.12% in a measurement range of +-100 deg/sec. The short-term bias stability in 20 min is 60 deg/h.

  20. High-performance micromachined gyroscope with a slanted suspension cantilever

    Institute of Scientific and Technical Information of China (English)

    Xiao Dingbang; Wu Xuezhong; Hou Zhanqiang; Chen Zhihua; Dong Peitao; Li Shengyi

    2009-01-01

    This paper presents a novel structure for improving the stability and the mechanical noise of micromachined gyroscopes.Only one slanted cantilever is used for suspension in this gyroscope,so the asymmetry spring and the thermal stress,which most micromachined gyroscopes suffer from,are reduced.In order to reduce the mechanical noise,the proof masses are designed to be much larger than in most micromachined gyroscopes.The gyroscope chip is sealed at 0.00 1 Pa vacuum.A gyroscope sample and its read-out circuit are fabricated.The scale factor of this gyroscope is measured as 57.6 mV/(deg/sec) with a nonlinearity better than 0.12%in a measurement range of ±100 deg/sec.The short-term bias stability in 20 min is 60 deg/h.

  1. Atomic resolution in noncontact AFM by probing cantilever frequency shifts

    Institute of Scientific and Technical Information of China (English)

    Hong Yong Xie

    2007-01-01

    Rutile TiO2(001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantilever for silicon tip scanning along the [110] direction over the rutile TiO2 (001) quantum dots in ultra high vacuum (UHV), scanning routes were explored to achieve atomic resolution from frequency shift image. The tip-surface interaction forces were calculated from Lennard-Jones (12-6) potential by the Hamaker summation method. The calculated results showed that atomic resolution could be achieved by frequency shift image for TiO2 (001) surfaces of rhombohedral quantum dot scanning in a vertical route, and spherical cap quantum dot scanning in a superposition route.

  2. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary

    Institute of Scientific and Technical Information of China (English)

    CHEN LiQun; C.W.LIM; HU QingQuan; DING Hu

    2009-01-01

    Nonlinear vibration of a cantilever in a contact atomic force microscope is analyzed via an asymptotic approach.The asymptotic solution is sought for a beam equation with a nonlinear boundary condition.The steady-state responses are determined in primary resonance and subharmonic resonance.The relations between the response amplitudes and the excitation frequencies and amplitudes are derived from the solvability condition.Multivaluedness occurs in the relations as a consequence of the nonlinearity.The stability of steady-state responses is analyzed by use of the Lyapunov linearized sta-bility theory.The stability analysis predicts the jumping phenomenon for certain parameters.The curves of the response amplitudes changing with the excitation frequencies are numerically compared with those obtained via the method of multiple scales.The calculation results demonstrate that the two methods predict the same varying tendencies while there are small quantitative differences.

  3. Asymptotic analysis of a vibrating cantilever with a nonlinear boundary

    Institute of Scientific and Technical Information of China (English)

    C.; W.; LIM

    2009-01-01

    Nonlinear vibration of a cantilever in a contact atomic force microscope is analyzed via an asymptotic approach. The asymptotic solution is sought for a beam equation with a nonlinear boundary condition. The steady-state responses are determined in primary resonance and subharmonic resonance. The relations between the response amplitudes and the excitation frequencies and amplitudes are derived from the solvability condition. Multivaluedness occurs in the relations as a consequence of the nonlinearity. The stability of steady-state responses is analyzed by use of the Lyapunov linearized stability theory. The stability analysis predicts the jumping phenomenon for certain parameters. The curves of the response amplitudes changing with the excitation frequencies are numerically compared with those obtained via the method of multiple scales. The calculation results demonstrate that the two methods predict the same varying tendencies while there are small quantitative differences.

  4. Integrated Cantilever Magnetometry of (Ga,Mn)As

    Science.gov (United States)

    Meinel, I.; Myers, R. C.; Stephens, J.; Johnston-Halperin, E.; Hanson, M.; Gossard, A. C.; Awschalom, D. D.

    2002-03-01

    Ferromagnetic semiconductors can be used to manipulate the spin dependent properties of adjacent semiconductor layers, ranging from carrier spin polarization in the conduction and valence bands to polarization of the nuclei. Here we investigate the magnetic properties of (Ga,Mn)As grown by MBE on GaAs and patterned into 100 nm thick micromechanical cantilevers. The low spring constants(J. G. E. Harris et al., Phys. Rev. Lett. 86, 4644 (2001).) enable the study of submonolayer ferromagnets, e. g. 0.25 ML MnAs. In addition, optical fibers are used to photo-excite carriers in the adjacent GaAs. These photo-electrons spontanously spin-polarize along the magnetization of the ferromagnet and dynamically orient the nuclei. The ability to independently study the ferromagnet and its influence on the adjacent semiconductor provides an avenue for mechanical detection of optically induced nuclear polarization.

  5. Strain engineering of diamond silicon vacancy centers in MEMS cantilevers

    Science.gov (United States)

    Meesala, Srujan; Sohn, Young-Ik; Atikian, Haig; Holzgrafe, Jeffrey; Zhang, Mian; Burek, Michael; Loncar, Marko

    2016-05-01

    The silicon vacancy (SiV) center in diamond has recently attracted attention as a solid state quantum emitter due to its attractive optical properties. We fabricate diamond MEMS cantilevers, and use electrostatic actuation to apply controlled strain fields to single SiV centers implanted in these devices. The strain response of the four electronic transitions of the SiV at 737 nm is measured via cryogenic (4 K) photoluminescence excitation. We demonstrate over 300 GHz of tuning for the mean transition frequency between the ground and excited states, and over 100 GHz of tuning for the orbital splittings within the ground and excited states. The interaction Hamiltonian for strain fields is inferred, and large strain susceptibilities of the order 1 PHz/strain are measured. We discuss prospects to utilize our device to reduce phonon-induced decoherence in SiV spin qubits, and to exploit the large strain susceptibilities for hybrid quantum systems based on nanomechanical resonators.

  6. Photothermal cantilever deflection spectroscopy of a photosensitive polymer

    International Nuclear Information System (INIS)

    The mechanical and chemical information of a poly(methyl methacrylate) (PMMA) film on a microcantilever were simultaneously acquired by photothermal cantilever deflection spectroscopy as a function of ultraviolet (UV) irradiation time. Nanomechanical infrared (IR) spectra from the PMMA-coated microcantilever agreed well with the Fourier transform infrared spectroscopy (FTIR) spectra of PMMA on gold-coated silicon wafer. The decreasing intensities of nanomechanical IR peaks represent chemical as well as mechanical information of UV radiation-induced photodegradation processes in the PMMA which cannot be obtained by a conventional FTIR technique. The observed decrease in the resonance frequency of the microcantilever is related to the change in the Young's modulus of the PMMA under UV exposure.

  7. Resonant interaction of trapped cold atoms with a magnetic cantilever tip

    CERN Document Server

    Montoya, Cris; Geraci, Andrew A; Eardley, Matthew; Moreland, John; Hollberg, Leo; Kitching, John

    2015-01-01

    Magnetic resonance in an ensemble of laser-cooled trapped Rb atoms is excited using a micro- cantilever with a magnetic tip. The cantilever is mounted on a multi-layer chip designed to capture, cool, and magnetically transport cold atoms. The coupling is observed by measuring the loss from a magnetic trap as the oscillating cantilever induces Zeeman state transitions in the atoms. Interfacing cold atoms with mechanical devices could enable probing and manipulating atomic spins with nanometer spatial resolution and single-spin sensitivity, leading to new capabilities in quantum computation, quantum simulation, or precision sensing.

  8. Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate

    CERN Document Server

    Yan, Leilei; Zhang, Shuo; Feng, Mang

    2014-01-01

    The efficient cooling of the nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-frequency mechanical mode and under weak cooling lasers. The cantilever is attached by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and unexpected carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.

  9. The analytical solutions for orthotropic cantilever beams (Ⅰ):Subjected to surface forces

    Institute of Scientific and Technical Information of China (English)

    JIANG Ai-min; DING Hao-jiang

    2005-01-01

    This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of distinct eigenvalues, a series of beam problems, including the problem of cantilever beam under uniform loads, cantilever beam with axial load and bending moment at the free end, cantilever beam under the first, second, third and fourth power ofx tangential loads, is solved by the superposition principle and the trial-and-error methods.

  10. A novel fabrication technique for free-hanging homogeneous polymeric cantilever waveguides

    DEFF Research Database (Denmark)

    Nordström, M.; Calleja, M.; Hübner, Jörg;

    2008-01-01

    We present a novel bonding technique developed for the fabrication of a cantilever-based biosensing system with integrated optical read-out. The read-out mechanism is based on single-mode waveguides fabricated monolithically in SU-8. For optimal operation of the read-out mode, the cantilever...... waveguides should be homogenous and this bonding technique ensures free-hanging cantilevers that are surrounded by the same material for bottom and top claddings. The bonding step is necessary because SU-8 is a negative resist where free-hanging structures cannot be fabricated directly. This paper gives...

  11. Integrated MOSFET-Embedded-Cantilever-Based Biosensor Characteristic for Detection of Anthrax Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Salwa [University of Tennessee, Knoxville (UTK); Lee, Ida [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); Eliza, Sazia A. [University of Tennessee, Knoxville (UTK); Shekhawat, Gajendra [Northwestern University, Evanston; Dravid, Vinayak [Northwestern University, Evanston; Tulip, Fahmida S [ORNL

    2011-01-01

    In this work, MOSFET-embedded cantilevers are configured as microbial sensors for detection of anthrax simulants, Bacillus thuringiensis. Anthrax simulants attached to the chemically treated gold-coated cantilever cause changes in the MOSFET drain current due to the bending of the cantilever which indicates the detection of anthrax simulant. Electrical properties of the anthrax simulant are also responsible for the change in the drain current. The test results suggest a detection range of 10 L of stimulant test solution (a suspension population of 1.3 107 colony-forming units/mL diluted in 40% ethanol and 60% deionized water) with a linear response of 31 A/ L.

  12. Approximating the effect of the Casimir force on the instability of electrostatic nano-cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Abadyan, Mohamadreza [Islamic Azad University, Tonekabon Branch, Ramsar Center, Ramsar (Iran, Islamic Republic of); Novinzadeh, Alireza [Aerospace Engineering Department, K N Toosi University of Technology, East Vafadar Street, PO Box 16765-3381, Tehran (Iran, Islamic Republic of); Kazemi, AsiehSadat [School of Physics and Center for Solid State Research, Damghan University of Basic Sciences, PO Box 367164-167, Damghan (Iran, Islamic Republic of)], E-mail: novinzadeh@kntu.ac.ir

    2010-01-15

    In this paper, the homotopy perturbation method (HPM) is used to investigate the effect of the Casimir force on the pull-in instability of electrostatic actuators at nano-scale separations. The proposed HPM is employed to solve nonlinear constitutive equations of cantilever beam-type nanoactuators. An analytical solution is obtained in terms of convergent series with easily computable components. Basic design parameters such as critical cantilever tip deflection and pull-in voltage of the nano-cantilevers are computed. As special cases of this work, freestanding nanoactuators and electrostatic micro-actuators are investigated. The analytical HPM results agree well with numerical solutions and those from the literature.

  13. Characteristics of vibration energy harvesting using giant magnetostrictive cantilevers with resonant tuning

    Science.gov (United States)

    Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu; Shindo, Yasuhide; Narita, Fumio

    2015-12-01

    This work deals with the dynamic bending and energy harvesting characteristics of giant magnetostrictive cantilevers with resonant tuning both numerically and experimentally. The giant magnetostrictive cantilever is fabricated using a thin Terfenol-D layer, SUS layer, movable proof mass, etc, and, is designed to automatically adjust its own resonant frequency to match the external vibration frequency in real time. Three-dimensional finite element analysis was conducted, and the resonant frequency, induced voltage and stress in the magnetostrictive cantilevers were predicted. The resonant frequency and induced voltage were also measured, and comparison was made between simulation and experiment. The time-varying behavior and self-tuning ability are discussed in detail.

  14. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    OpenAIRE

    Che-Ming Chiang; Chia-Yen Lee; Yu-Hsiang Wang

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in...

  15. Temperature effects in Au piezoresistors integrated in SU-8 cantilever chips

    DEFF Research Database (Denmark)

    Johansson, Alicia; Hansen, Ole; Hales, Jan Harry;

    2006-01-01

    the temperature increase of the cantilever surfaces. The obtained results indicate that although low voltages of about 0.5–1 V are required to avoid self-heating of the cantilevers, surface stress changes below 1 mN m−1 can still be detected. The results are compared to previously presented results for Si...... to binding of biomolecules on the surface of the cantilever. Here we present the characterization of the chip with respect to temperature changes in the surrounding environment. Furthermore, self-heating of the piezoresistors due to the applied voltage over the resistors is investigated including...

  16. Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles

    DEFF Research Database (Denmark)

    Dohn, Søren; Sandberg, Rasmus Kousholt; Svendsen, Winnie Edith;

    2005-01-01

    By positioning a single gold-particle at different locations along the length axis on a cantilever based mass sensor, we have investigated the effect of mass position on the mass responsivity and compared the results to simulations. A significant improvement in quality factor and responsivity...... was achieved by operating the cantilever in the 4th bending mode, thereby increasing the intrinsic sensitivity. It is shown that the use of higher bending modes grants a spatial resolution and thereby enhances the functionality of the cantilever based mass sensor....

  17. Modeling and experimental vibration analysis of nanomechanical cantilever active probes

    International Nuclear Information System (INIS)

    Nanomechanical cantilever (NMC) active probes have recently received increased attention in a variety of nanoscale sensing and measurement applications. Current modeling practices call for a uniform cantilever beam without considering the intentional jump discontinuities associated with the piezoelectric layer attachment and the NMC cross-sectional step. This paper presents a comprehensive modeling framework for modal characterization and dynamic response analysis of NMC active probes with geometrical discontinuities. The entire length of the NMC is divided into three segments of uniform beams followed by applying appropriate continuity conditions. The characteristics matrix equation is then used to solve for system natural frequencies and mode shapes. Using an equivalent electromechanical moment of a piezoelectric layer, forced motion analysis of the system is carried out. An experimental setup consisting of a commercial NMC active probe from Veeco and a state-of-the-art microsystem analyzer, the MSA-400 from Polytec, is developed to verify the theoretical developments proposed here. Using a parameter estimation technique based on minimizing the modeling error, optimal values of system parameters are identified. Mode shapes and the modal frequency response of the system for the first three modes determined from the proposed model are compared with those obtained from the experiment and commonly used theory for uniform beams. Results indicate that the uniform beam model fails to accurately predict the actual system response, especially in multiple-mode operation, while the proposed discontinuous beam model demonstrates good agreement with the experimental data. Such detailed and accurate modeling framework can lead to significant enhancement in the sensitivity of piezoelectric-based NMC sensors for use in variety of sensing and imaging applications

  18. A DVD-ROM based high-throughput cantilever sensing platform

    DEFF Research Database (Denmark)

    Bosco, Filippo

    (Cantilevers, Calorimetric, Colorimetric and Raman) were to be integrated into a single portable platform. My PhD project has been focusing on the cantilever technology part. Furthermore, I have been addressing the issue of designing and fabricating the overall sensing platform, which is going to integrate...... the four different sensors. The platform was developed specifically for cantilever sensor applications Preliminary tests on Raman-based device integration has been carried out. The inclusion of the other two sensing techniques is currently under development. This thesis reports on the demonstration...... of a high-throughput label-free sensor platform utilizing cantilever based sensors. These sensors have often been acclaimed to facilitate highly parallelized operation. Unfortunately, so far no concept has been presented which offers large data sets as well as easy liquid sample handling. We use optics...

  19. Intermittent contact interaction between an atomic force microscope cantilever and a nanowire

    Science.gov (United States)

    Knittel, I.; Ungewitter, L.; Hartmann, U.

    2012-05-01

    We investigate in theory and experiment the intermittent contact interaction between an atomic force microscope (AFM) cantilever and a nanowire under ambient conditions. The nanowire is modeled as a spring reacting instantaneously to any change of the force between the wire and the cantilever. This implies that the cantilever is subject to an "effective" force-distance relation, containing not only the surface forces but also the deflection of the nanowire. Experimentally, CVD-grown tin oxide nanowires and lithographically structured silicon nanowire arrays were investigated by intermittent contact AFM. By comparison of experimental and simulated distance-dependent resonance curves it is found that the nanowires behave like "fast nanosprings" and that the adhesion force is one of the key factors determining distance-dependent resonance curves. The results are fully applicable to a scenario in which a cantilever equipped by a nanowire interacts with a surface.

  20. Cantilever-based bio-chemical sensor integrated in a microliquid handling system

    DEFF Research Database (Denmark)

    Thaysen, Jacob; Marie, Rodolphe; Boisen, Anja

    2001-01-01

    The cantilevers have integrated piezoresistive readout which, compared to optical readout, enables simple measurements on even non-transparent liquids, such as blood. First, we introduce a simple theory for using piezoresistive cantilevers as surface stress sensors. Then, the sensor fabrication b...... monitored, and immobilization of single-stranded thiol modified DNA-oligos has been detected by the sensor. Finally, it is demonstrated that it is possible to analyze two samples simultaneously by utilizing the laminar flow in the microliquid handling system.......The cantilevers have integrated piezoresistive readout which, compared to optical readout, enables simple measurements on even non-transparent liquids, such as blood. First, we introduce a simple theory for using piezoresistive cantilevers as surface stress sensors. Then, the sensor fabrication...

  1. A direct micropipette-based calibration method for atomic force microscope cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baoyu; Yu Yan; Yao Dakang; Shao Jinyu [Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130 (United States)

    2009-06-15

    In this report, we describe a direct method for calibrating atomic force microscope (AFM) cantilevers with the micropipette aspiration technique (MAT). A closely fitting polystyrene bead inside a micropipette is driven by precisely controlled hydrostatic pressures to apply known loads on the sharp tip of AFM cantilevers, thus providing a calibration at the most functionally relevant position. The new method is capable of calibrating cantilevers with spring constants ranging from 0.01 to hundreds of newtons per meter. Under appropriate loading conditions, this new method yields measurement accuracy and precision both within 10%, with higher performance for softer cantilevers. Furthermore, this method may greatly enhance the accuracy and precision of calibration for colloidal probes.

  2. Piezoelectric cantilever-pendulum for multi-directional energy harvesting with internal resonance

    Science.gov (United States)

    Xu, J.; Tang, J.

    2015-04-01

    Piezoelectric transducers are widely employed in vibration-based energy harvesting schemes. Simple piezoelectric cantilever for energy harvesting is uni-directional and has bandwidth limitation. In this research we explore utilizing internal resonances to harvest vibratory energy due to excitations from an arbitrary direction with the usage of a single piezoelectric cantilever. Specifically, it is identified that by attaching a pendulum to the piezoelectric cantilever, 1:2 internal resonances can be induced based on the nonlinear coupling. The nonlinear effect induces modal energy exchange between beam bending motion and pendulum motions in 3-dimensional space, which ultimately yield multidirectional energy harvesting by a single cantilever. Systematic analysis and experimental investigation are carried out to demonstrate this new concept.

  3. Synthetic sialylglycopolymer receptor for virus detection using cantilever-based sensors.

    Science.gov (United States)

    Gorelkin, P V; Erofeev, A S; Kiselev, G A; Kolesov, D V; Dubrovin, E V; Yaminsky, I V

    2015-09-01

    We describe the rapid, label-free detection of Influenza A viruses using a cantilever transducer modified with a synthetic sialylglycopolymer receptor layer. Surface stresses induced by viruses binding to the receptor layer were used as the analytical signal. The synthetic sialylglycopolymer receptor layer can be used in nanoscale strain-gauge cantilever transducers for highly sensitive virus detection. Strain-gage transducers using such sensor layers exhibit long lifetimes, high sensitivities, and possible regeneration. Nanomechanical cantilever systems using optical detectors were used for the surface stress measurements. We demonstrated the positive, label-free detection of Influenza A at concentrations below 10(6) viruses per ml. In contrast to hemagglutination assays, cantilever sensors are label free, in situ, and rapid (less than 30 min), and they require minimal or nearly no sample preparation. PMID:26215598

  4. Exact Solution of Quantum Dynamics of a Cantilever Coupling to a Single Trapped Ultracold Ion

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; FENG Mang; WANG Ke-Lin

    2007-01-01

    The quantum behavior of a precooled cantilever can be probed highly efficiently by electrostatically coupling to a trapped ultracold ion, in which a fast cooling of the cantilever down to the ground vibrational state is possible.Within a simple model with an ultracold ion coupled to a cantilever with only few vibrational quanta, we solve the dynamics of the coupling system by a squeezed-state expansion technique, and can in principle obtain the exact solution of the time-evolution of the coupling system in the absence of the rotating-wave approximation. Comparing to the treatment under the rotating-wave approximation, we present a more accurate description of the quantum behavior of the cantilever.

  5. Fabrication of a cantilever-based microfluidic flow meter with nL min(-1) resolution

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2011-01-01

    A microfluidic flow meter based on cantilever deflection is developed, showing a resolution down to 3 nL min(-1) for flows in the microliter range. The cantilevers are fabricated in SU-8 and have integrated holes with dimensions from 5 x 5 to20x 20 mu m(2). The holes make it possible to measure......). With this etch the cantilever structures are under-etched before they are released by tweezers and the release yield is enhanced from 41.5% to 84.0%. In a continuous flow mode, the deflection of the cantilevers is directly proportional to the flow rate. By tuning the design of the integrated grid (hole size......, hole-to-hole distance, amount of holes, etc) the sensitivity of the sensor can be changed....

  6. Laser-induced cantilever behaviour in apertureless scanning near-field optical microscopes

    International Nuclear Information System (INIS)

    The laser-induced deformation of a typical commercial cantilever commonly used for scanning near-field optical microscopes was investigated by means of a software package based on the finite element method. The thermo-mechanical behaviour of such a cantilever whose tip was irradiated by a laser beam was calculated in the temperature regime between room temperature and 850 K. The spatial tip displacement was simulated at timescales <0.1 ms, since feedback-based constant force measurements exhibit reaction times in this range. It could be shown that in addition to former tip-based thermal expansion calculations the cantilever deformation is already significant at moderate temperatures, particularly when a reflective coating is present. The experimental and calculated results suggest that tip scanning in cantilever-based scanning probe microscopes for laser-based surface modification applications should be performed in thermal equilibrium. (paper)

  7. Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boubekri, R.; Cambril, E.; Couraud, L.; Bernardi, L.; Madouri, A. [LPN, CNRS-UPR20, route de Nozay, 91460 Marcoussis (France); Portail, M. [Centre de Recherche sur l' Hetero-Epitaxie et ses Applications CNRS, Rue Bernard Gregory, 06560 Valhonne (France); Chassagne, T.; Moisson, C.; Zielinski, M. [NOVASiC, Savoie Technolac, Arche bât 4, BP 267, 73375 Le Bourget du Lac Cedex (France); Jiao, S.; Michaud, J.-F.; Alquier, D. [Université François Rabelais, Tours, GREMAN, CNRS-UMR7347, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Bouloc, J.; Nony, L.; Bocquet, F.; Loppacher, C. [IM2NP-CNRS/Aix-Marseille University, 38 rue Frédéric Joliot-Curie, 13451 Marseille (France); Martrou, D.; Gauthier, S., E-mail: gauthier@cemes.fr [CEMES, CNRS UPR 8011 et Université de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse (France)

    2014-08-07

    Cantilevers with resonance frequency ranging from 1 MHz to 100 MHz have been developed for dynamic atomic force microscopy. These sensors are fabricated from 3C-SiC epilayers grown on Si(100) substrates by low pressure chemical vapor deposition. They use an on-chip method both for driving and sensing the displacement of the cantilever. A first gold metallic loop deposited on top of the cantilever is used to drive its oscillation by electrothermal actuation. The sensing of this oscillation is performed by monitoring the resistance of a second Au loop. This metallic piezoresistive detection method has distinct advantages relative to more common semiconductor-based schemes. The optimization, design, fabrication, and characteristics of these cantilevers are discussed.

  8. Nanoscale deflection detection of a cantilever-based biosensor using MOSFET structure: A theoretical analysis

    Science.gov (United States)

    Paryavi, Mohsen; Montazeri, Abbas; Tekieh, Tahereh; Sasanpour, Pezhman

    2016-10-01

    A novel method for detection of biological species based on measurement of cantilever deflection has been proposed and numerically evaluated. Employing the cantilever as a moving gate of a MOSFET structure, its deflection can be analyzed via current characterization of the MOSFET consequently. Locating the cantilever as a suspended gate of a MOSFET on a substrate, the distance between cantilever and oxide layer will change the carrier concentration. Accordingly, it will be resulted in different current voltage characteristics of the device which can be easily measured using simple apparatuses. In order to verify the proposed method, the performance of system has been theoretically analyzed using COMSOL platform. The simulation results have confirmed the performance and sensitivity of the proposed method.

  9. Effect of cantilever length on stress distribution around implants in mandibular overdentures supported by two and three implants

    Science.gov (United States)

    Ebadian, Behnaz; Mosharraf, Ramin; Khodaeian, Niloufar

    2016-01-01

    Objective: There is no definitive study comparing stress distribution around two versus three implants in implant-retained overdentures with different cantilever length. The purpose of this finite element study was to evaluate stress pattern around the implants of the 2 or 3 implant- supported mandibular overdenture with different cantilevered length. Materials and Methods: The models used in this study were 2 and 3 implant-supported overdenture with bar and clip attachment system on an edentulous mandibular arch. Each model was modified according to cantilever length (0 mm, 7 mm, and 13 mm); thus, 6 models were obtained. The vertical load of 15 and 30 pounds were applied unilaterally to the first molar and 15 pounds to the first premolar, and the stress in bone was analyzed. Results: With increasing cantilever length, no similar stress pattern changes were observed in different areas, but in most instances, an increase in cantilever length did not increase the stress around the implant adjacent to cantilever. Conclusions: Within the limitations of this study, it can be concluded that increasing of cantilever length in mandibular overdentures retained by 2–3 implants did not cause distinct increasing in stress, especially around the implant adjacent to cantilever, it may be helpful to use cantilever in cases of mandibular overdenture supported by splinted implants with insufficient retention and stability. Based on the findings of this study, optimal cantilever length in mandibular overdenture cannot be determined. PMID:27403049

  10. A Novel Approach to the Sensing of Liquid Density Using a Plastic Optical Fibre Cantilever Beam

    Science.gov (United States)

    Kulkarni, Atul; Kim, Youngjin; Kim, Taesung

    2009-01-01

    This article reports for the first time the use of a plastic optical fibre (POF) cantilever beam to measure the density of a liquid. The sensor is based on the Archimedes buoyancy principle. The sensor consists of a POF bonded on the surface of a metal beam in the form of a cantilever configuration, and at the free end of the beam a displacer is…

  11. Effect of finite width on deflection and energy release rate of an orthotropic double cantilever specimen

    Science.gov (United States)

    Schapery, R. A.; Davidson, B. D.

    1988-01-01

    The problem of an orthotropic cantilevered plate subjected to a uniformly distributed end load is solved by the Rayleigh-Ritz energy method. The result is applied to laminated composite, double cantilevered specimens to estimate the effect of crack tip constraint on the transverse curvature, deflection and energy release rate. The solution is also utilized to determined finite width correction factors for fracture energy characterization tests in which neither plane stress nor plane strain conditions apply.

  12. A closed-loop system for frequency tracking of piezoresistive cantilever sensors

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.

  13. MEMS-based silicon cantilevers with integrated electrothermal heaters for airborne ultrafine particle sensing

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).

  14. Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions in Atomic Force Microscopy

    OpenAIRE

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The various dynamical implementations of the atomic force microscope have become important nanoscale characterization tools for the development of novel materials and devices. One of the most significant factors affecting all dynamical AFM modalities is the cantilever tip-sample surface interaction force. We have developed a detailed mathematical model of this interaction that includes a quantitative consideration of the nonlinearity of the interaction force as a function of the cantilever ti...

  15. In-plane excitation of thin silicon cantilevers using piezoelectric thin films

    OpenAIRE

    Leighton, Glenn J. T.; Kirby, Paul B.; Fox, Colin H. J.

    2007-01-01

    This paper deals with the actuation of in-plane and out-of-plane motions of silicon cantilevers, using a single thin film of lead zirconate titanate with a divided electrode configuration. In-plane actuation is demonstrated practically, and excellent agreement is obtained between theoretically predicted and experimentally measured resonant amplitudes, for the fundamental out-of-plane and in-plane modes of vibration of the fabricated test cantilevers.

  16. DYNAMIC ANALYSIS OF FOLDED CANTILEVER SHEAR STRUCTURE AND BASE ISOLATED STRUCTURE

    OpenAIRE

    Wijaya, Ming Narto; Katayama, Takuro; Yamao, Toshitaka; ウィジャヤ, ミン ナルト; 片山, 拓朗; 山尾, 敏孝

    2014-01-01

    Seismic isolation is the most important in earthquake resistant structural design. Many isolation techniques have been developed to reduce the impact of earthquake. The seismic responses of eleven-storey models of folded cantilever shear structure as a proposed structure have been studied numerically. Folded cantilever shear structure (FCSS) consist of fixed-movable-fixed supported shear sub-frames and connection rigid sub-frame which connect their sub-frames at the top. The movable sub-frame...

  17. Actuating Mechanism and Design of a Cylindrical Traveling Wave Ultrasonic Motor Using Cantilever Type Composite Transducer

    OpenAIRE

    Yingxiang Liu; Weishan Chen; Junkao Liu; Shengjun Shi

    2010-01-01

    BACKGROUND: Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the ...

  18. Cantilever measurements of surface stress, surface reconstruction, film stress and magnetoelastic stress of monolayers

    OpenAIRE

    Jürgen Kirschner; Zhen Tian; Dirk Sander

    2008-01-01

    We review the application of cantilever-based stress measurements in surface science and magnetism. The application of thin (thickness appr. 0.1 mm) single crystalline substrates as cantilevers has been used successfully to measure adsorbate-induced surface stress changes, lattice misfit induced film stress, and magneto-elastic stress of ferromagnetic monolayers. Surface stress changes as small as 0.01 N/m can be readily measured, and this translates into a sensitivity for adsorbate-coverage ...

  19. Evaluation of Tissues Surrounding Implant Supported Fixed Partial Denture with and without Cantilever Extension

    OpenAIRE

    Fazel, A.; M. Rismanchian

    2007-01-01

    Objective: The aim of this study was to evaluate and compare the status of supporting tissue around implant-supported fixed partial denture with or without cantilever clinically and radiographically during a four-year period.Materials and Methods: One hundred and fifty nine patients who were treated by 482 implants supported fixed partial prosthesis with and without cantilever after at least four years of treatment, were evaluated. Clinical and radiographic indices of plaque index,probing poc...

  20. SEISMIC SAFETY OF THE PRECAST BALCONY CANTILEVER ELEMENTS FOR PREVENTION OF THERMAL BRIDGES

    Directory of Open Access Journals (Sweden)

    Boris Azinović

    2014-12-01

    Full Text Available In the paper the seismic response of precast balcony cantilever structural elements for prevention of thermal bridges was analysed. This solution has been developed in seismic non-prone areas with the main purpose of eliminating a thermal bridge at the point where the balcony is fixed to the building. The solution has been specially made to withstand vertical static loading, not accounting for eventual vertical seismic loads in the case of transferring the solution to more active seismic zones. This paper deals with the seismic analysis of existent precast cantilever elements exposed to vertical accelerations and has proven that some elements in the case of lifting are not sufficient from the safety point of view. The results of the main research results obtained by numerous seismic analyses can be summarized as follows: 1 the insertion of a precast load-bearing thermal insulation element increases the flexibility of RC fixed base cantilevers and therefore limits their length to 300–400 cm, 2 vertical seismic loads can result in the cantilever uplift, which means that tensile stresses could appear also at the bottom of the cross-section 3 precast elements, that appear on the Slovenian market to this day, do not have the appropriate steel reinforcement in the bottom part of the cross-section. For this reason, the possibility of damage is considerably higher for precast cantilever structural elements than for RC fixed base cantilevers. Statistically calculated probability of cantilever uplift for Ljubljana, which would result in severe damage, is relatively low (3% in the 50-year life span. However, the calculated value is greater than the maximum acceptable level of seismic risk for collapse. One of the possible solutions to prevent the negative influences of cantilever uplift is to consider the proper reinforcement also at the bottom of the precast elements' crosssection, or by other measures preventing uplift.

  1. Cancelation of thermally induced frequency shifts in bimaterial cantilevers by nonlinear optomechanical interactions

    Science.gov (United States)

    Vy, Nguyen Duy; Tri Dat, Le; Iida, Takuya

    2016-08-01

    Bimaterial cantilevers have recently been used in, for example, the calorimetric analysis with picowatt resolution in microscopic space based on state-of-the-art atomic force microscopes. However, thermally induced effects usually change physical properties of the cantilevers, such as the resonance frequency, which reduce the accuracy of the measurements. Here, we propose an approach to circumvent this problem that uses an optical microcavity formed between a metallic layer coated on the back of the cantilever and one coated at the end of an optical fiber irradiating the cantilever. In addition to increasing the sensitivity, the optical rigidity of this system diminishes the thermally induced frequency shift. For a coating thickness of several tens of nanometers, the input power is 5-10 μW. These values can be evaluated from parameters derived by directly irradiating the cantilever in the absence of the microcavity. The system has the potential of using the cantilever both as a thermometer without frequency shifting and as a sensor with nanometer-controlled accuracy.

  2. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kewei, E-mail: drzkw@126.com; Chai, Yuesheng [School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024 (China); Fu, Jiahui [College of Energy Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  3. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    Science.gov (United States)

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever.

  4. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.

    Science.gov (United States)

    Cho, Hyunok; Park, Jongcheol; Park, Jae Yeong

    2016-05-01

    A piezoelectric vibration energy harvester with interdigital shaped cantilever was developed by using silicon bulk micromachining technology. The proposed energy harvester was designed to obtain multi degree-of-freedom (m-DOF). Most of the piezoelectric vibration energy harvesters are comprised of mass-loaded cantilever beams having several resonant frequencies. The second resonant frequency of such a device has lower amplitude compared to its first resonant frequency (fundamental frequency). Therefore, the interdigital shaped cantilever has been proposed for multiple fundamental resonant frequencies. The fabricated piezoelectric vibration energy harvester is composed of main cantilever (MC), sub-main cantilever (SMC), and secondary cantilevers (SC). MC surrounds SMC and SC which have same dimension of 5600 x 800 x 10 μm3. The fabricated piezoelectric energy harvester can generate 51.4 mV(p-p) and 11 mV(p-p) of output voltages at 24.2 Hz and 33 Hz of its resonant frequencies by MC. Moreover, it can generate 8 mV(p-p) and 6.6 mV(p-p) of output voltages at 24.2 Hz and 33.2 Hz of its resonant frequencies by SMC; and 364 mV(p-p) of output voltage at 33.6 Hz of its resonant frequency by SC.

  5. In-plane load measuring technique for the strength test of MEMS micro-cantilever

    Institute of Scientific and Technical Information of China (English)

    HUAN Yong; ZHANG Taihua; YANG Yemin

    2006-01-01

    An in-plane load measuring technique is developed to perform the strength test of the micro-cantilever. Based on electromagnetism theorem,Micro UTM (Universal Testing Machine) was in-house made with the load range ±1 N and the displacement range ±300 μm. It applies an in-plane load on the free-end of the micro-cantilever. The load acts as a bending moment for the root of the cantilever, but as a torque for the anchor. The results show that for samples with different sizes the ultimate loads range from 1.3 to 69.8 mN and the calculated torque is approximately proportional to the square of the bonding length. Two failure modes, fracture at the root of the cantilever and fracture at the anchor, are observed by micro examination to the debris, which indicates that there is a critical design to achieve the strength balance between the cantilever and the anchor. The work demonstrates that Micro UTM is a powerful instrument for the strength test of the micro-cantilever and similar micro-structures.

  6. Evaluation of Tissues Surrounding Implant Supported Fixed Partial Denture with and without Cantilever Extension

    Directory of Open Access Journals (Sweden)

    A. Fazel

    2007-12-01

    Full Text Available Objective: The aim of this study was to evaluate and compare the status of supporting tissue around implant-supported fixed partial denture with or without cantilever clinically and radiographically during a four-year period.Materials and Methods: One hundred and fifty nine patients who were treated by 482 implants supported fixed partial prosthesis with and without cantilever after at least four years of treatment, were evaluated. Clinical and radiographic indices of plaque index,probing pocket depth, bleeding index, and marginal bone loss were measured. Collected data were analyzed by Mann-Whitney, Fridman and repeated-measures ANOVA tests using SPSS software.Results: The overall survival rate of implant supported prosthesis was 95.9% after at least four years of treatment. The success rates of implant supported fixed prosthesis with and without cantilever were 94.6% and 96.8% respectively. Marginal bone loss in the cantilevered fixed prosthesis was significantly more than the second group after two and four years of treatment (P<0.001, however, all the clinical indices were not significantly different.Conclusion: Considering the guidelines of cantilever prosthesis applications, using the cantilevered fixed partial dentures have a similar and comparable prognosis as the traditional implant-supported fixed prostheses.

  7. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    Directory of Open Access Journals (Sweden)

    Kewei Zhang

    2015-12-01

    Full Text Available Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonance modes. For the first resonance mode, when mass loading position xc satisfied 0 < xc < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end, mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ xc ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.

  8. Development of Multi-Degree-Of-Freedom Piezoelectric Energy Harvester Using Interdigital Shaped Cantilevers.

    Science.gov (United States)

    Cho, Hyunok; Park, Jongcheol; Park, Jae Yeong

    2016-05-01

    A piezoelectric vibration energy harvester with interdigital shaped cantilever was developed by using silicon bulk micromachining technology. The proposed energy harvester was designed to obtain multi degree-of-freedom (m-DOF). Most of the piezoelectric vibration energy harvesters are comprised of mass-loaded cantilever beams having several resonant frequencies. The second resonant frequency of such a device has lower amplitude compared to its first resonant frequency (fundamental frequency). Therefore, the interdigital shaped cantilever has been proposed for multiple fundamental resonant frequencies. The fabricated piezoelectric vibration energy harvester is composed of main cantilever (MC), sub-main cantilever (SMC), and secondary cantilevers (SC). MC surrounds SMC and SC which have same dimension of 5600 x 800 x 10 μm3. The fabricated piezoelectric energy harvester can generate 51.4 mV(p-p) and 11 mV(p-p) of output voltages at 24.2 Hz and 33 Hz of its resonant frequencies by MC. Moreover, it can generate 8 mV(p-p) and 6.6 mV(p-p) of output voltages at 24.2 Hz and 33.2 Hz of its resonant frequencies by SMC; and 364 mV(p-p) of output voltage at 33.6 Hz of its resonant frequency by SC. PMID:27483909

  9. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    Science.gov (United States)

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever. PMID:25971046

  10. Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide

    Science.gov (United States)

    Burcham, Kevin E.; De Brabander, Gregory N.; Boyd, Joseph T.

    1993-01-01

    A micromachined cantilever beam accelerometer is described in which beam deflection is determined optically. A diving board structure is anisotropically etched into a silicon wafer. This diving board structure is patterned from the wafer backside so as to leave a small gap between the tip of the diving board and the opposite fixed edge on the front side of the wafer. In order to sense a realistic range of accelerations, a foot mass incorporated onto the end of the beam is found to provide design flexibility. A silicon nitride optical waveguide is then deposited by low pressure chemical vapor deposition (LPCVD) onto the sample. Beam deflection is measured by the decrease of light coupled across the gap between the waveguide sections. In order to investigate sensor response and simulate deflection of the beam, we utilized a separate beam and waveguide section which could be displaced from one another in a precisely controlled manner. Measurements were performed on samples with gaps of 4.0, 6.0, and 8.0 micron and the variation of the fraction of light coupled across the gap as a function of displacement and gap spacing was found to agree with overlap integral calculations.

  11. Factors influencing elastic stresses in double cantilever beam specimens

    Science.gov (United States)

    Crews, J. H., Jr.; Shivakumar, K. N.; Raju, I. S.

    1988-01-01

    An elastic stress analysis was conducted for a double cantilever beam (DCB) specimen using finite-element methods. The purpose of this study was to identify the important parameters that influence stresses ahead of the delamination front. The study focused on an aluminum DCB specimen, typical of adhesively-bonded joints, and on a graphite/epoxy specimen representing a cocured composite. Opening mode sigma sub y stresses ahead of the crack tip were calculated and compared with those for a monolithic reference specimen. Beyond the singularity-dominated region very near the crack tip, the sigma sub y distribution was elevated compared to the monolithic case. Both the adhesive thickness and the adherend transverse (thickness-direction) stiffness were found to influence the elevation of sigma sub y. In contrast, adherend thickness and longitudinal stiffness has very little effect on this stress distribution. Estimates for adhesive yielding beyond the aluminum DCB crack tip showed that both the area and height of the plastic zone increased to a peak value for increasing adhesive thicknesses. Results from this study would provide insight for comparing data from different DCB specimens and for designing new DCB specimens.

  12. An Experimental and Theoretical Investigation of Electrostatically Coupled Cantilever Microbeams

    KAUST Repository

    Ilyas, Saad

    2016-06-16

    We present an experimental and theoretical investigation of the static and dynamic behavior of electrostatically coupled laterally actuated silicon microbeams. The coupled beam resonators are composed of two almost identical flexible cantilever beams forming the two sides of a capacitor. The experimental and theoretical analysis of the coupled system is carried out and compared against the results of beams actuated with fixed electrodes individually. The pull-in characteristics of the electrostatically coupled beams are studied, including the pull-in time. The dynamics of the coupled dual beams are explored via frequency sweeps around the neighborhood of the natural frequencies of the system for different input voltages. Good agreement is reported among the simulation results and the experimental data. The results show considerable drop in the pull-in values as compared to single microbeam resonators. The dynamics of the coupled beam resonators are demonstrated as a way to increase the bandwidth of the resonator near primary resonance as well as a way to introduce increased frequency shift, which can be promising for resonant sensing applications. Moreover the dynamic pull-in characteristics are also studied and proposed as a way to sense the shift in resonance frequency.

  13. MODAL TEST AND ANALYSIS OF CANTILEVER BEAM WITH TIP MASS

    Institute of Scientific and Technical Information of China (English)

    肖世富; 杜强; 陈滨; 刘才山; 向荣山; 周为华; 徐友钜; 徐有刚

    2002-01-01

    The phenomenon of dynamic stiffening is a research field of general interest for flexible multi-body systems. In fact, there are not only dynamic stiffening but also dynamic softening phenomenon in the flexible multi-body systems. In this paper, a non-linear dynamic model and its linearization characteristic equations of a cantilever beam with tip mass in the centrifugal field are established by adopting the general Hamilton Variational Principle. Then, the problems of the dynamic stiffening and the dynamic softening are studied by using numerical simulations. Meanwhile,the modal test is carried out on our centrifuge. The numerical results show that the system stiffness will be strengthened when the centrifugal tension force acts on the beam (i.e. the dynamic stiffening). However, the system stiffness will be weakened when the centrifugal compression force acts on the beam (i.e. the dynamic softening).Furthermore, the equilibrium position of the system will lose its stability when the inertial force reaches a critical value. Through theoretical analysis, we find that this phenomenon comes from the effect of dynamic softening resulting from the centrifugal compression force. Our test results verify the above conclusions and confirm that both dynamic stiffening and softening phenomena exist in flexible multi-body systems.

  14. Advanced structural optimization of a heliostat with cantilever arms

    Science.gov (United States)

    Bogdanov, Dimitar; Zlatanov, Hristo

    2016-05-01

    The weight of the support structure of heliostats, CPV and PV trackers is important cost element of a solar plant and reducing it will improve the economic viability of a solar project. Heliostats with rectangular area (1 to 5 in 1 m² steps; 5 to 150 in 5 m² steps) and aspect ratios (0.5, 1.0, 1.2, 1.5, 2.0) were investigated under various winds speeds (0, 5 to 100 in 5 m/s steps), wind direction (0 to 180° in 15° steps) and elevation positions (0 to 90° in 10° steps). Each load case was run with three different cantilever arms. The inclination angle of the chords and bracings was chosen so as to fulfill the geometrical boundary condition. Stress and buckling validations were performed according to Eurocode. The results of research carried out can be used to determine the specific weight of a heliostat in kg/m² as a function of the wind speed, tracker area and tracker aspect ratio. Future work should investigate the impact of using cold formed structural hollow sections and cross sections with thinner wall thickness which is not part of EN 10210.

  15. Research of fiber Bragg grating geophone based on cantilever beam

    Science.gov (United States)

    Wang, Liang; Chen, Shao-hua; Tao, Guo; Lu, Gui-wu; Zhao, Kun

    2009-07-01

    Along with the development of seismic exploration, the demand of frequency, dynamic range, precision and resolution ration is increased. However, the traditional geophone has disadvantages of narrower bandwidth, lower dynamic range and resolution, and cannot meet the new needs of seismic exploration. Geophone technology is a choke point, which constrains the development of petroleum prospecting in recent years. Fiber Bragg Grating seism demodulation technology is the newest kind of seism demodulation technology. The sensing probe of the Fiber Bragg Grating geophone is made up of Fiber Bragg Gating. The information which it collects is embodied by wavelength. The modulation-demodulation is accomplished by Fiber Bragg Gating geophone directly. In this paper, we design different size Fiber Bragg Grating geophones based on the transmission properties of Fiber Bragg Grating and cantilever beam method. Beryllium bronze and stainless steel are chosen as the elastic beam and shell materials, respectively. The parameters such as response function and sensitivity are given theoretically. In addition, we have simulated the transmission characteristics of Fiber Bragg Grating geophone by virtue of finite element analysis. The influences of wavelength, mass block, fiber length on the characteristics of geophones are discussed in detail, and finally the appropriate structural parameters are presented.

  16. Non-Linear Piezoelectric Actuator with a Preloaded Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Yue Wu

    2015-08-01

    Full Text Available Piezoelectric actuation is widely used for the active vibration control of smart structural systems, and corresponding research has largely focused on linear electromechanical devices. This paper investigates the design and analysis of a novel piezoelectric actuator that uses a piezoelectric cantilever beam with a loading spring to produce displacement outputs. This device has a special nonlinear property relating to converting between kinetic energy and potential energy, and it can be used to increase the output displacement at a lower voltage. The system is analytically modeled with Lagrangian functional and Euler–Lagrange equations, numerically simulated with MATLAB, and experimentally realized to demonstrate its enhanced capabilities. The model is validated using an experimental device with several pretensions of the loading spring, therein representing three interesting cases: a linear system, a low natural frequency system with a pre-buckled beam, and a system with a buckled beam. The motivating hypothesis for the current work is that nonlinear phenomena could be exploited to improve the effectiveness of the piezoelectric actuator’s displacement output. The most practical configuration seems to be the pre-buckled case, in which the proposed system has a low natural frequency, a high tip displacement, and a stable balanced position.

  17. Effect of cantilever length and alloy framework on the stress distribution in peri-implant area of cantilevered implant-supported fixed partial dentures.

    Science.gov (United States)

    Suedam, Valdey; Moretti Neto, Rafael Tobias; Sousa, Edson Antonio Capello; Rubo, José Henrique

    2016-04-01

    Because many mechanical variables are present in the oral cavity, the proper load transfer between the prosthesis and the bone is important for treatment planning and for the longevity of the implant-supported fixed partial denture. Objectives To verify the stress generated on the peri-implant area of cantilevered implant-supported fixed partial dentures and the potential effects of such variable. Material and Methods A U-shaped polyurethane model simulating the mandibular bone containing two implants (Ø 3.75 mm) was used. Six groups were formed according to the alloy's framework (CoCr or PdAg) and the point of load application (5 mm, 10 mm and 15 mm of cantilever arm). A 300 N load was applied in pre-determined reference points. The tension generated on the mesial, lingual, distal and buccal sides of the peri-implant regions was assessed using strain gauges. Results Two-way ANOVA and Tukey statistical tests were applied showing significant differences (p<0.05) between the groups. Pearson correlation test (p<0.05) was applied showing positive correlations between the increase of the cantilever arm and the deformation of the peri-implant area. Conclusions This report demonstrated the CoCr alloy shows larger compression values compared to the PdAg alloy for the same distances of cantilever. The point of load application influences the deformation on the peri-implant area, increasing in accordance with the increase of the lever arm. PMID:27119758

  18. SU-8 cantilevers for bio/chemical sensing; Fabrication, characterisation and development of novel read-out methods

    DEFF Research Database (Denmark)

    Nordström, M.; Keller, Stephan Urs; Lillemose, Michael;

    2008-01-01

    Here, we present the activities within our research group over the last five years with cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interesting polymer for fabrication of cantilevers for bio/chemical sensing due to its simple processing and low Young's modulus. We show...... examples of different integrated read-out methods and their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity to changes in the environmental temperature and pH of the buffer solution. Moreover, we show that the SU-8 cantilever surface can be functionalised directly...

  19. MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyung

    2011-05-11

    Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to the reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (K{sub d}) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA

  20. MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyung [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to the reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (Kd) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA

  1. Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer.

    Science.gov (United States)

    Inada, Natsumi; Asakawa, Hitoshi; Kobayashi, Taiki; Fukuma, Takeshi

    2016-01-01

    Photothermal excitation is a cantilever excitation method that enables stable and accurate operation for dynamic-mode AFM measurements. However, the low excitation efficiency of the method has often limited its application in practical studies. In this study, we propose a method for improving the photothermal excitation efficiency by coating cantilever backside surface near its fixed end with colloidal graphite as a photothermal conversion (PTC) layer. The excitation efficiency for a standard cantilever of PPP-NCHAuD with a spring constant of ≈40 N/m and a relatively stiff cantilever of AC55 with a spring constant of ≈140 N/m were improved by 6.1 times and 2.5 times, respectively, by coating with a PTC layer. We experimentally demonstrate high stability of the PTC layer in liquid by AFM imaging of a mica surface with atomic resolution in phosphate buffer saline solution for more than 2 h without any indication of possible contamination from the coating. The proposed method, using a PTC layer made of colloidal graphite, greatly enhances photothermal excitation efficiency even for a relatively stiff cantilever in liquid. PMID:27335733

  2. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials.

    Science.gov (United States)

    Qureshi, Awais; Li, Bing; Tan, K T

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  3. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor.

    Science.gov (United States)

    Körner, Julia; Reiche, Christopher F; Gemming, Thomas; Büchner, Bernd; Gerlach, Gerald; Mühl, Thomas

    2016-01-01

    Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup. PMID:27547621

  4. Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester

    Science.gov (United States)

    Takei, Ryohei; Makimoto, Natsumi; Okada, Hironao; Itoh, Toshihiro; Kobayashi, Takeshi

    2016-06-01

    We report the design of piezoelectric MEMS cantilevers formed on a silicon-on-insulator wafer to efficiently harvest electrical power from harmonic vibration with a frequency of approximately 30 Hz. Numerical simulation indicates that a >4-µm-thick top silicon layer and >3-µm-thick piezoelectric film are preferable to maximize the output electrical power. An in-plane structure of the cantilever is also designed retaining the footprint of the cantilever. The simulation results indicate that the output power is maximized when the length ratio of the proof mass to the cantilever beam is 1.5. To ensure the accuracy of the simulation, we fabricated and characterized cantilevers with a 10-µm-thick top silicon layer and a 1.8-µm-thick piezoelectric film, resulting in 0.21 µW at a vibration of 0.5 m/s2 and 25.1 Hz. The measured output power is in agreement with the simulated value, meaning that the design is significantly reliable for low-frequency vibration energy harvesters.

  5. Measurement and reliability issues in resonant mode cantilever for bio-sensing application in fluid medium

    Science.gov (United States)

    Kathel, G.; Shajahan, M. S.; Bhadra, P.; Prabhakar, A.; Chadha, A.; Bhattacharya, E.

    2016-09-01

    Cantilevers immersed in liquid experience viscous damping and hydrodynamic loading. We report on the use of such cantilevers, operating in the dynamic mode with, (i) frequency sweeping and (ii) phase locked loop methods. The solution to reliability issues such as random drift in the resonant peak values, and interference of spurious modes in the resonance frequency spectrum, are explained based on the actuation signal provided and laser spot size. The laser beam spot size and its position on the cantilever were found to have an important role, on the output signal and resonance frequency. We describe a method to distinguish the normal modes from the spurious modes for a cantilever. Uncertainties in the measurements define the lower limit of mass detection (m min). The minimum detection limits of the two measurement methods are investigated by measuring salt adsorption from phosphate buffer solution, as an example, a mass of 14 pg was measured using the 14th transverse mode of a 500~μ m  ×  100 μm  ×  1 μm silicon cantilever. The optimized measurement was used to study the interaction between antibody and antigen.

  6. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

    Science.gov (United States)

    Körner, Julia; Reiche, Christopher F; Gemming, Thomas; Büchner, Bernd; Gerlach, Gerald

    2016-01-01

    Summary Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup. PMID:27547621

  7. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    Science.gov (United States)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  8. Surface-patterned SU-8 cantilever arrays for preliminary screening of cardiac toxicity.

    Science.gov (United States)

    Kim, Jong Yun; Choi, Young-Soo; Lee, Bong-Kee; Lee, Dong-Weon

    2016-06-15

    Arrays of a μgrooved SU-8 cantilever were utilized to analyze changes in the contraction force and beating frequency of cardiomyocytes in vitro. The longitudinally patterned μgrooves facilitates alignment of cardiomyocytes on top of the SU-8 cantilever, which increases the contraction force of cardiomyocytes by a factor of about 2.5. The bending displacement of the SU-8 cantilever was precisely measured in nanoscale using a laser-based measurement system combined with a motorized xyz stage. The cantilever displacement due to contraction of the cardiomyocytes showed the maximum on day 8 after their cultivation. Following preliminary experiments, Isoproterenol, Verapamil, and Astemizole were used to investigate the effect of drug toxicity on the physiology of cardiomyocytes. The experimental results indicated that 1 µM of Isoproterenol treatment increased contraction force and beating frequencies of cardiomyocytes by 30% and 200%, respectively, whereas 500 nM of Verapamil treatment decreased contraction force and beating frequencies of cardiomyocytes by 56% and 42%, respectively. A concentration of less than 5 nM of the hERG channel suppression drug Astemizole did not change the contraction forces in the displacement but slightly decreased the beating frequencies. However, irregular or abnormal heartbeats were observed at Astemizole concentrations of 5 nM and higher. We experimentally conformed that the proposed SU-8 cantilever arrays combined with the laser-based measurement systems has the great potential for a high-throughput drug toxicity screening system in future. PMID:26878482

  9. Design Optimization of PZT-Based Piezoelectric Cantilever Beam by Using Computational Experiments

    Science.gov (United States)

    Kim, Jihoon; Park, Sanghyun; Lim, Woochul; Jang, Junyong; Lee, Tae Hee; Hong, Seong Kwang; Song, Yewon; Sung, Tae Hyun

    2016-08-01

    Piezoelectric energy harvesting is gaining huge research interest since it provides high power density and has real-life applicability. However, investigative research for the mechanical-electrical coupling phenomenon remains challenging. Many researchers depend on physical experiments to choose devices with the best performance which meet design objectives through case analysis; this involves high design costs. This study aims to develop a practical model using computer simulations and to propose an optimized design for a lead zirconate titanate (PZT)-based piezoelectric cantilever beam which is widely used in energy harvesting. In this study, the commercial finite element (FE) software is used to predict the voltage generated from vibrations of the PZT-based piezoelectric cantilever beam. Because the initial FE model differs from physical experiments, the model is calibrated by multi-objective optimization to increase the accuracy of the predictions. We collect data from physical experiments using the cantilever beam and use these experimental results in the calibration process. Since dynamic analysis in the FE analysis of the piezoelectric cantilever beam with a dense step size is considerably time-consuming, a surrogate model is employed for efficient optimization. Through the design optimization of the PZT-based piezoelectric cantilever beam, a high-performance piezoelectric device was developed. The sensitivity of the variables at the optimum design is analyzed to suggest a further improved device.

  10. Development of the magnetic force-induced dual vibration energy harvester using a unimorph cantilever

    Science.gov (United States)

    Umaba, M.; Nakamachi, E.; Morita, Y.

    2015-12-01

    In this study, a high frequency piezoelectric energy harvester converted from the human low vibrated motion energy was newly developed. This hybrid energy harvester consists of the unimorph piezoelectric cantilever, the pendulum and a pair of permanent magnets. One magnet was attached at the edge of cantilever, and the counterpart magnet at the edge of pendulum. The mechanical energy provided through the human walking motion, which is a typical ubiquitous existence of vibration, is converted to the electric energy via the piezoelectric unimorph cantilever vibration. At first, we studied the energy convert mechanism and analyze the performance of novel energy harvester, where the resonance free vibration of unimorph piezoelectric cantilever generated a high electric power. Next, we equipped the counterpart permanent magnet at the edge of pendulum, which vibrates with a very low frequency caused by the human walking. Then the counterpart magnet was set at the edge of unimorph piezoelectric cantilever, which vibrated with a high frequency. This low-to-high frequency convert "dual vibration system" can be characterized as an enhanced energy harvester. We examined and obtained average values of voltage and power in this system, as 8.31 mV and 0.33 μW. Those results show the possibility to apply for the energy harvester in the portable and implantable Bio-MEMS devices.

  11. Fabrication and characterization of large arrays of mesoscopic gold rings on large-aspect-ratio cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, D. Q.; Petković, I., E-mail: ivana.petkovic@yale.edu; Lollo, A. [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Castellanos-Beltran, M. A. [National Institute for Standards and Technology, Boulder, Colorado 80305 (United States); Harris, J. G. E. [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2014-10-15

    We have fabricated large arrays of mesoscopic metal rings on ultrasensitive cantilevers. The arrays are defined by electron beam lithography and contain up to 10{sup 5} rings. The rings have a circumference of 1 μm, and are made of ultrapure (6N) Au that is deposited onto a silicon-on-insulator wafer without an adhesion layer. Subsequent processing of the SOI wafer results in each array being supported at the end of a free-standing cantilever. To accommodate the large arrays while maintaining a low spring constant, the cantilevers are nearly 1 mm in both lateral dimensions and 100 nm thick. The extreme aspect ratio of the cantilevers, the large array size, and the absence of a sticking layer are intended to enable measurements of the rings' average persistent current in the presence of relatively small magnetic fields. We describe the motivation for these measurements, the fabrication of the devices, and the characterization of the cantilevers' mechanical properties. We also discuss the devices' expected performance in measurements of .

  12. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    Science.gov (United States)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  13. Dynamic analysis and temperature measurements of concrete cantilever beam using fibre Bragg gratings

    Science.gov (United States)

    da Silva, Jean Carlos Cardozo; Martelli, Cicero; Kalinowski, Hypolito José; Penner, Elisabeth; Canning, John; Groothoff, Nathaniel

    2007-01-01

    We analyzed the action of fire, causing degradation in a concrete cantilever beam using dynamic testing. The structure was fitted with two fibre Bragg gratings (FBG) sensors. One of them measured vibration and the other measured the temperature inside of the cantilever beam, while the beam was exposed to fire. A high-temperature probe based on a simple packaging system, which isolates the sensing FBG from any mechanical action, was developed. A low-cost fibre Bragg grating interrogation system, including easy assembly and maintenance, was used for the measurements. The temperature in the cantilever beam increased until 150 °C and a reduction in the strength of concrete was observed through modal analysis. Results reveal a considerable reduction in strength occurs even with exposures to moderate temperatures (less than 90 °C).

  14. Lattice Boltzmann Simulation of the Cross Flow Over a Cantilevered and Longitudinally Vibrating Circular Cylinder

    Institute of Scientific and Technical Information of China (English)

    XIA Yong; LU De-Tang; LIU Yang; XU You-Sheng

    2009-01-01

    The multiple-relaxation-time lattice Boltzmann method (MRT-LBM) is implemented to numerically simulate the cross flow over a longitudinal vibrating circular cylinder.This research is carried out on a three-dimensional (3D) finite cantilevered cylinder to investigate the effect of forced vibration on the wake characteristics and the 319 effect of a cantilevered cylinder.To meet the accuracy of this method,the present calculation is carried out at a low Reynolds number Re = 100,as well as to make the vibration obvious,we make the vibration strong enough.The calculation results indicate that the vibration has significant influence on the wake characteristics. When the vibrating is big enough,our early works show that the 2D vortex shedding would be locked up by vibration.Contrarily,this phenomenon would not appear in the present 313 case because of the end effect of the cantilevered cylinder.

  15. ABNORMAL BENDING OF MICRO-CANTILEVER PLATE INDUCECD BY A DROPLET

    Institute of Scientific and Technical Information of China (English)

    Jianlin Liu; Xueyan Zhu; Xinkang Li; Zhiwei Li

    2010-01-01

    The abnormal bending of a micro-cantilever plate induced by a droplet is of great interest and of significance in micro/nano-manipulations.In this study,the physical mechanism of this abnormal phenomenon induced by an actual droplet is elucidated.Firstly,the morphologies of 2D and 3D droplets are solved analytically or numerically.Then the Laplace pressure difference acting on the cantilever plate caused by the droplet is presented.Finally,the deflections of the micro-cantilever plates driven by the capillary forces are quantitatively analyzed.These analytical results may be beneficial to some engineering applications,such as micro-sensors,MEMS and the micro/nano-measurement.

  16. Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-02-01

    The study presented in this paper introduces a new intelligent methodology to mitigate the vibration response of flexible cantilever plates. The use of the piezoelectric sensor/actuator pairs for active control of plates is discussed. An intelligent neural network based controller is designed to control the optimal voltage applied on the piezoelectric patches. The control technique utilizes a neurocontroller along with a Kalman Filter to compute the appropriate actuator command. The neurocontroller is trained based on an algorithm that incorporates a set of emulator neural networks which are also trained to predict the future response of the cantilever plate. Then, the neurocontroller is evaluated by comparing the uncontrolled and controlled responses under several types of dynamic excitations. It is observed that the neurocontroller reduced the vibration response of the flexible cantilever plate significantly; the results demonstrated the success and robustness of the neurocontroller independent of the type and distribution of the excitation force.

  17. Atomic Force Microscopy in Dynamic Mode with Displacement Current Detection in Double Cantilever Devices

    Science.gov (United States)

    Müller, Falk; Müller, Anne‑Dorothea; Hietschold, Michael; Gessner, Thomas

    2006-03-01

    A cantilever array for dynamic mode atomic force microscopy (AFM) is presented, the vertical displacement of which is analyzed by the detection of displacement currents in the electrodes. Each cantilever in the array consists of an actuation part that allows an independent vertical movement, and a sensor part. The lateral distance between the tips of the different cantilevers is fixed to 10 μm. When operated as an actuator, a voltage is applied between the silicon membrane and the underlaying electrode. Due to the resulting coulomb forces, the vertical position of the tip is controllable. The reaction time in this mode is shorter than the response time of a piezostack. The sensor part, on the other hand, allows the device to work in dynamic mode without a laser deflection system. The vertical resolution achieved is below 1 nm. The dependence of force distance curves on the excitation amplitude is shown.

  18. Determination of the response distributions of cantilever beam under sinusoidal base excitation

    International Nuclear Information System (INIS)

    As a kind of base excitation, shaking table is often used to test the dynamic characteristics of structures. However, the prediction of response to base excitation hasn't been solved effectively, which limits the further research on the test and analysis method with respect to base movement. This article is based on a cantilever beam and focuses on its response prediction under sinusoidal base excitation. By moment and force equilibrium equations, an analytical model is built for this cantilever beam, and then a method to predict dynamic response at base excitation is proposed. Finally, the method is used to solve the vibration response distributions of the cantilever beam at base excitation. Correctness of this method is also proved by comparing the result with experimental data

  19. Ultrasensitive measurement of MEMS cantilever displacement sensitivity below the shot noise limit

    CERN Document Server

    Pooser, R C

    2014-01-01

    The displacement of micro-electro-mechanical-systems(MEMs) cantilevers is used to measure a variety of phenomena in devices ranging from force microscopes for single spin detection[1] to biochemical sensors[2] to uncooled thermal imaging systems[3]. The displacement readout is often performed optically with segmented detectors or interference measurements. Until recently, various noise sources have limited the minimum detectable displacement in MEMs systems, but it is now possible to minimize all other sources[4] so that the noise level of the coherent light field, called the shot noise limit(SNL), becomes the dominant source. Light sources dis- playing quantum-enhanced statistics below this limit are available[5, 6], with applications in gravitational wave astronomy[7] and bioimaging[8], but direct displacement measurements of MEMS cantilevers below the SNL have been impossible until now. Here, we demonstrate the first direct measurement of a MEMs cantilever displacement with sub-SNL sensitivity, thus enabli...

  20. Wide frequency range capacitive detection of loss in a metallic cantilever using resonance and relaxation modes.

    Science.gov (United States)

    Richert, Ranko

    2007-05-01

    The impedance of a capacitor which embraces a charged cantilever is used to measure the mechanical properties of the cantilever material. The technique has been tested with an amorphous metallic specimen, but is applicable for many other solids. The material damping can be measured at the resonance frequency of the cantilever via the width of the resonance curve or by recording the ring-down behavior. Additionally, several decades in frequency are accessible below the resonance frequency, where values as low as nu=0.03 Hz are achieved easily. The data are analyzed with a single equation that captures the damping at all frequencies in terms of the material specific Young's modulus E and its loss angle tan delta=E"/E'.

  1. Design for minimizing fracture risk of all-ceramic cantilever dental bridge.

    Science.gov (United States)

    Zhang, Zhongpu; Zhou, Shiwei; Li, Eric; Li, Wei; Swain, Michael V; Li, Qing

    2015-01-01

    Minimization of the peak stresses and fracture incidence induced by mastication function is considered critical in design of all-ceramic dental restorations, especially for cantilever fixed partial dentures (FPDs). The focus of this study is on developing a mechanically-sound optimal design for all-ceramic cantilever dental bridge in a posterior region. The topology optimization procedure in association with Extended Finite Element Method (XFEM) is implemented here to search for the best possible distribution of porcelain and zirconia materials in the bridge structure. The designs with different volume fractions of zirconia are considered. The results show that this new methodology is capable of improving FPD design by minimizing incidence of crack in comparison with the initial design. Potentially, it provides dental technicians with a new design tool to develop mechanically sound cantilever fixed partial dentures for more complicated clinical situation. PMID:26405963

  2. Digital control of force microscope cantilevers using a field programmable gate array

    CERN Document Server

    Jacky, Jonathan P; Ettus, Matthew; Sidles, John A

    2008-01-01

    This report describes a cantilever controller for magnetic resonance force microscopy (MRFM) based on a field programmable gate array (FPGA), along with the hardware and software used to integrate the controller into an experiment. The controller is assembled from a low-cost commercially available software defined radio (SDR) device and libraries of open-source software. The controller includes a digital filter comprising two cascaded second-order sections ("biquads"), which together can implement transfer functions for optimal cantilever controllers. An appendix in this report shows how to calculate filter coefficients for an optimal controller from measured cantilever characteristics. The controller also includes an input multiplexer and adder used in calibration protocols. Filter coefficients and multiplexer settings can be set and adjusted by control software while an experiment is running. The input is sampled at 64 MHz; the sampling frequency in the filters can be divided down under software control to ...

  3. Nano-Workbench: A Combined Hollow AFM Cantilever and Robotic Manipulator

    Directory of Open Access Journals (Sweden)

    Héctor Hugo Pérez Garza

    2015-05-01

    Full Text Available To manipulate liquid matter at the nanometer scale, we have developed a robotic assembly equipped with a hollow atomic force microscope (AFM cantilever that can handle femtolitre volumes of liquid. The assembly consists of four independent robots, each sugar cube sized with four degrees of freedom. All robots are placed on a single platform around the sample forming a nano-workbench (NWB. Each robot can travel the entire platform and has a minimum position resolution of 5 nm both in-plane and out-of-plane. The cantilever chip was glued to the robotic arm. Dispensing was done by the capillarity between the substrate and the cantilever tip, and was monitored visually through a microscope. To evaluate the performance of the NWB, we have performed three experiments: clamping of graphene with epoxy, mixing of femtolitre volume droplets to synthesize gold nanoparticles and accurately dispense electrolyte liquid for a nanobattery.

  4. Design and experimental evaluation of flextensional-cantilever based piezoelectric transducers for flow energy harvesting

    Science.gov (United States)

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Colonius, Tim

    2016-04-01

    Cantilever type piezoelectric harvesters, such as bimorphs, are typically used for vibration induced energy harvesting. However, a major drawback of a piezoelectric bimorph is its brittle nature in harsh environments, precipitating short life-times as well as output power degradation. The emphasis in this work is to design robust, highly efficient piezoelectric harvesters that are capable of generating electrical power in the milliwatt range. Various harvesters were modeled, designed and prototyped, and the flextensional actuator based harvester, where the metal cantilever is mounted and coupled between two flextensional actuators, was found to be a viable alternative to the cantilever type piezoelectric harvesters. Preliminary tests show that these devices equipped with 5x5x36 mm two piezoelectric PZT stacks can produce greater than 50 mW of power under air flow induced vibrations.

  5. Design and Simulation of Array of Rectangular Micro Cantilevers Piezoelectric Energy Harvester

    Directory of Open Access Journals (Sweden)

    Komal Kumari

    2016-09-01

    Full Text Available This paper presents the design, analysis and simulation of MEMS based array of bimorph rectangular microcantilever piezoelectric energy harvester structure with and without tip mass, to analyze their sensitivity. The microcantilever beams are made up of piezoelectric material and Aluminium as a substrate material. The analytical simulation of design is done by FEM (COMSOL Multiphysics. The simulation results of bimorph cantilever structure, applied force of 0.1 N and obtained end displacement and electric potential developed are given. The analytical model of the cantilever beam will be analyzed and the process of its construction will be discussed. The changes in the sensitivity of a cantilever beam with respect to change in its shape for the same applied force of 0.1N are denoted.

  6. Study on the Design Method of the Jack-up’s X-Type Cantilever Allowable Load Nephogram

    Institute of Scientific and Technical Information of China (English)

    Yazhou Zhu; Chengmeng Sun; Hongde Qin; Bin Jiang; Yansong Fan

    2014-01-01

    The extending of a cantilever and transverse moving of a drilling floor enable the jack-up to operate in several well positions after the Jack-up has pitched. The cantilever allowable load nephogram is the critical reference which can evaluate the jack-up’s drilling ability, design the cantilever structure and instruct a jack-up manager to make the operations safe. The intent of this paper is to explore the interrelationships between the cantilever position, drilling floor and the loads including wind force, the stand set-back weight etc., through analyzing the structure and load characteristics of the x-type cantilever and the simplified mechanics model with the restriction of the maximum moment capacity of the cantilever single side beam. Referring to several typical position designs load values, the cantilever allowable load nephogram is obtained by using the suitable interpolation method. The paper gives a method for cantilever allowable load design, which is proved reliable and effective by the calculation example.

  7. Three-dimensional finite element analysis of anterior two-unit cantilever resin-bonded fixed dental prostheses

    NARCIS (Netherlands)

    F. Keulemans; A. Shinya; L.V.J. Lassila; P.K. Vallittu; C.J. Kleverlaan; A.J. Feilzer; R.J.G. De Moor

    2015-01-01

    The aim of this study was to evaluate the influence of different framework materials on biomechanical behaviour of anterior two-unit cantilever resin-bonded fixed dental prostheses (RBFDPs). A three-dimensional finite element model of a two-unit cantilever RBFDP replacing a maxillary lateral incisor

  8. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2014-01-01

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different m...... pumps connected to the microfluidic system. © 2013 by the authors; licensee MDPI, Basel, Switzerland....

  9. Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers

    NARCIS (Netherlands)

    Das, Theerthankar; Becker, Thomas; Nair, Balagopal N.

    2010-01-01

    Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever

  10. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: Combining normal spring constant and classical beam theory

    DEFF Research Database (Denmark)

    Álvarez-Asencio, R.; Thormann, Esben; Rutland, M.W.

    2013-01-01

    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power...

  11. Influence of silicon orientation and cantilever undercut on the determination of the Young’s modulus of thin films

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, L.; Nguyen, M.D.; Rijnders, G.; Elwenspoek, M.C.

    2011-01-01

    The Young’s modulus of thin films can be determined by deposition on a micronsized Si cantilever and measuring the resonance frequency before and after deposition. The accuracy of the method depends strongly on the initial determination of the mechanical properties and dimensions of the cantilever.

  12. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications.

    Science.gov (United States)

    Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho

    2013-12-01

    We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested. PMID:24266167

  13. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    Science.gov (United States)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-08-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.

  14. Torsional Vibrations of a Cantilever with Lateral Friction in a Resonance Friction Microscope

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-Song; GE Yun; ZHANG Hui

    2012-01-01

    A model of fundamental torsional vibration of a cantilever with lateral friction is presented by using the harmonic balance method. The model demonstrates that the torsional vibration has close relations with the lateral friction threshold, the lateral contact stiffness and the torsional vibration amplitude of the cantilever. When the threshold is larger than a product of the stiffness and the vibration amplitude, the lateral friction is a linear force with the amplitude. If the lateral friction threshold is less than the product, the motions of the tip on the sample can be stick-slip or slip motions. The results are useful to optimize and to manipulate the fundamental flexural vibration of the piezo-cantilever, and give an insight into the tribological characterization of the interface in a resonance friction microscope.%A model of fundamental torsional vibration of a cantilever with lateral friction is presented by using the harmonic balance method.The model demonstrates that the torsional vibration has close relations with the lateral friction threshold,the lateral contact stiffness and the torsional vibration amplitude of the cantilever.When the threshold is larger than a product of the stiffness and the vibration amplitude,the lateral friction is a linear force with the amplitude.If the lateral friction threshold is less than the product,the motions of the tip on the sample can be stick-slip or slip motions.The results are useful to optimize and to manipulate the fundamental flexural vibration of the piezo-cantilever,and give an insight into the tribological characterization of the interface in a resonance friction microscope.

  15. Development and characterization of electrochemical cantilever sensor for bio/chemical sensing applications

    DEFF Research Database (Denmark)

    Quan, Xueling; Fischer, Lee MacKenzie; Boisen, Anja;

    2011-01-01

    We report the improvements made to our previously developed electrochemical cantilever (EC) sensor, where nanoporous gold material is employed as working electrodes in microcantilever arrays, while combined counter-reference electrodes are integrated on the chip. For a surface stress change of 1m......N/m induced on the microcantilever, the cantilever deflects is 7.3 nm at the free end, indicating high sensitivity to surface stress changes. The results suggest that the performance of the electrochemical cell is stable. A much enhanced sensitivity in surface chemistry-driven actuation can be achieved...

  16. LCO flutter of cantilevered woven glass/epoxy laminate in subsonic flow

    Institute of Scientific and Technical Information of China (English)

    Dayang Laila Abang Haji Abdul Majid; ShahNor Basri

    2008-01-01

    The paper presents aeroelastic characteristics of a cantilevered composite wing,idealized as a composite flat plate laminate.The composite laminate was made from woven glass fibers with epoxy matrix.The elastic and dynamic properties of the laminate were determined experimentally for aeroelastic calculations.Aeroelastic wind tunnel testing of the laminate was performed and the result showed that flutter,a dynamic instability occurred.The cantilevered laminate also displayed limit cycle amplitude,post-flutter oscillation.The experimental flutter velocity and frequency were verified by our computational analysis.

  17. Forced response of a cantilever beam with a dry friction damper attached. I - Theory. II - Experiment

    Science.gov (United States)

    Dowell, E. H.; Schwartz, H. B.

    1983-01-01

    A theoretical and experimental study of the forced vibration response of a cantilevered beam with Coulomb damping nonlinearity is described. Viscous damping in the beam is neglected. Beam and dry friction damper configurations of interest for applications to turbine blade vibrations are considered. It is shown that the basic phenomena found by Dowell (1983) for a simply supported beam with an attached dry friction damper of specific geometry also apply to a cantilevered beam and a more general representation of the dry friction damper and its associated mass and stiffness.

  18. Investigation of cleaning and regeneration methods for reliable construction of DNA cantilever biosensors

    DEFF Research Database (Denmark)

    Quan, Xueling; Yi, Sun; Heiskanen, Arto;

    Biosensing systems based on detecting changes in cantilever surface stress have attracted great interest. To achieve high reliability of measurements, high quality and high reproducibility in functionalization of the sensor surface are key points. In this paper, we investigate different methods...... to clean and regenerate the sensing surface of cantilever biosensors. Perchloric acid potential sweep, potassium hydroxide-hydrogen peroxide, and piranha cleaning are investigated here. Peak-current potential differences from cyclic voltammetry, X-ray photo-electron spectroscopy and fluorescence detection...

  19. Nonlinear output properties of cantilever driving low frequency piezoelectric energy harvester

    Science.gov (United States)

    Xu, Chundong; Ren, Bo; Liang, Zhu; Chen, Jianwei; Zhang, Haiwu; Yue, Qingwen; Xu, Qing; Zhao, Xiangyong; Luo, Haosu

    2012-11-01

    Cantilever driving low frequency piezoelectric energy harvester (CANDLE) has been found as a promising structure for vibration energy harvesting. This paper presents the nonlinear output properties of the CANDLE to optimize the performance of the device. Simulation results of the finite element method illustrate that nonlinear contacts between the cymbal transducers and the cantilever beam are main reasons of the nonlinear output. However, high excitation acceleration of the nonlinear leap point limits the application of the device. Based on the simulation results and theory analysis, the excitation acceleration is reduced to 30 m/s2 by increasing the proof mass.

  20. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat;

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...... of the system and characterisation of the read-out method....

  1. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    Science.gov (United States)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  2. In vacuo elastodynamics of a flexible cantilever for wideband energy harvesting

    Science.gov (United States)

    Tan, D.; Erturk, A.

    2016-04-01

    We explore the potential for bandwidth enhancement by merely exploiting the hardening nonlinearity of a flexible cantilever. To date, this cubic hardening behavior has been minor due to dissipative effects, especially fluid drag. The goal here is to minimize the fluid damping and thereby achieve the jump phenomenon. A vacuum setup that is compatible with the armature of a long-stroke shaker is employed. Experiments are conducted for a range of air pressure and base excitation levels. The overall nonlinear non-conservative elastodynamics of the cantilever is also modeled and experimentally validated by empirically accounting for fluid damping.

  3. Rotating Cantilever Beam Dynamic Strain Measurement and Analysis Based on FBG

    OpenAIRE

    Jiang Xi-Xin

    2013-01-01

    The main form of machine’s working principle is rotation. The mechanical properties of rotating component is significant importance to improve the machine’s reliability. In the measurement, the difficult thing is to transmit signals form sensors on a rotor to a stationary part . In this paper, using the FBG’s(Fibre Bragg Gauge)  properties of wireless transmission, author measure the local strains of rotating cantilever beam cantilever by utilizing the strain principle gauge FBG(Fibre Bragg G...

  4. Integrated Cantilever-Based Flow Sensors with Tunable Sensitivity for In-Line Monitoring of Flow Fluctuations in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Nadine Noeth

    2013-12-01

    Full Text Available For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  5. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems.

    Science.gov (United States)

    Noeth, Nadine; Keller, Stephan Sylvest; Boisen, Anja

    2013-12-23

    For devices such as bio-/chemical sensors in microfluidic systems, flow fluctuations result in noise in the sensor output. Here, we demonstrate in-line monitoring of flow fluctuations with a cantilever-like sensor integrated in a microfluidic channel. The cantilevers are fabricated in different materials (SU-8 and SiN) and with different thicknesses. The integration of arrays of holes with different hole size and number of holes allows the modification of device sensitivity, theoretical detection limit and measurement range. For an average flow in the microliter range, the cantilever deflection is directly proportional to the flow rate fluctuations in the microfluidic channel. The SiN cantilevers show a detection limit below 1 nL/min and the thinnest SU-8 cantilevers a detection limit below 5 nL/min. Finally, the sensor is applied for in-line monitoring of flow fluctuations generated by external pumps connected to the microfluidic system.

  6. Effect of cantilever length and alloy framework on the stress distribution in peri-implant area of cantilevered implant-supported fixed partial dentures

    Science.gov (United States)

    SUEDAM, Valdey; MORETTI, Rafael Tobias; SOUSA, Edson Antonio Capello; RUBO, José Henrique

    2016-01-01

    ABSTRACT Because many mechanical variables are present in the oral cavity, the proper load transfer between the prosthesis and the bone is important for treatment planning and for the longevity of the implant-supported fixed partial denture. Objectives To verify the stress generated on the peri-implant area of cantilevered implant-supported fixed partial dentures and the potential effects of such variable. Material and Methods A U-shaped polyurethane model simulating the mandibular bone containing two implants (Ø 3.75 mm) was used. Six groups were formed according to the alloy’s framework (CoCr or PdAg) and the point of load application (5 mm, 10 mm and 15 mm of cantilever arm). A 300 N load was applied in pre-determined reference points. The tension generated on the mesial, lingual, distal and buccal sides of the peri-implant regions was assessed using strain gauges. Results Two-way ANOVA and Tukey statistical tests were applied showing significant differences (p<0.05) between the groups. Pearson correlation test (p<0.05) was applied showing positive correlations between the increase of the cantilever arm and the deformation of the peri-implant area. Conclusions This report demonstrated the CoCr alloy shows larger compression values compared to the PdAg alloy for the same distances of cantilever. The point of load application influences the deformation on the peri-implant area, increasing in accordance with the increase of the lever arm. PMID:27119758

  7. Effect of cantilever length and alloy framework on the stress distribution in peri-implant area of cantilevered implant-supported fixed partial dentures

    OpenAIRE

    SUEDAM, Valdey; MORETTI NETO, Rafael Tobias; Edson Antonio Capello SOUSA; RUBO, José Henrique

    2016-01-01

    ABSTRACT Because many mechanical variables are present in the oral cavity, the proper load transfer between the prosthesis and the bone is important for treatment planning and for the longevity of the implant-supported fixed partial denture. Objectives To verify the stress generated on the peri-implant area of cantilevered implant-supported fixed partial dentures and the potential effects of such variable. Material and Methods A U-shaped polyurethane model simulating the mandibular bone c...

  8. Effect of cantilever length and alloy framework on the stress distribution in peri-implant area of cantilevered implant-supported fixed partial dentures

    Directory of Open Access Journals (Sweden)

    Valdey SUEDAM

    2016-04-01

    Full Text Available ABSTRACT Because many mechanical variables are present in the oral cavity, the proper load transfer between the prosthesis and the bone is important for treatment planning and for the longevity of the implant-supported fixed partial denture. Objectives To verify the stress generated on the peri-implant area of cantilevered implant-supported fixed partial dentures and the potential effects of such variable. Material and Methods A U-shaped polyurethane model simulating the mandibular bone containing two implants (Ø 3.75 mm was used. Six groups were formed according to the alloy’s framework (CoCr or PdAg and the point of load application (5 mm, 10 mm and 15 mm of cantilever arm. A 300 N load was applied in pre-determined reference points. The tension generated on the mesial, lingual, distal and buccal sides of the peri-implant regions was assessed using strain gauges. Results Two-way ANOVA and Tukey statistical tests were applied showing significant differences (p<0.05 between the groups. Pearson correlation test (p<0.05 was applied showing positive correlations between the increase of the cantilever arm and the deformation of the peri-implant area. Conclusions This report demonstrated the CoCr alloy shows larger compression values compared to the PdAg alloy for the same distances of cantilever. The point of load application influences the deformation on the peri-implant area, increasing in accordance with the increase of the lever arm.

  9. Series solution for large deflections of a cantilever beam with variable flexural rigidity

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Lund, Erik; Thomsen, Ole Thybo

    2012-01-01

    /cross section properties and lengths for beams undergoing large deformations. The results obtained from HAM are compared with results reported in previous works. Finally, the load–displacement characteristics of a uniform cantilever beam with different material properties under a follower force applied normal...

  10. A case study of analysis methods for large deflections of a cantilever beam

    Science.gov (United States)

    Craig, L. D.

    1994-01-01

    A load case study of geometric nonlinear large deflections of a cantilever beam is presented. The bending strain must remain elastic. Closed form solution and finite element methods of analysis are illustrated and compared for three common load cases. A nondimensional nomogram for each case is presented in the summary.

  11. Comment on ‘Longest reach of a cantilever with a tip load’

    Science.gov (United States)

    Batista, Milan

    2016-09-01

    In this contribution, the longest horizontal reach of a cantilever subject to a dead load is analysed in terms of Jacobi elliptical functions. The problem is reduced to finding the solution of a system of transcendental equations. Several analytical results that cannot be obtained using pure numerical methods are discussed.

  12. Modelling the double cantilever beam test with bending moments by using bilinear discontinuous cohesive laws

    DEFF Research Database (Denmark)

    Valvo, Paolo S.; Sørensen, Bent F.; Toftegaard, Helmuth Langmaack

    2015-01-01

    A theoretical model of the double cantilever beam tests with bending moments (DCB-UBM) is presented. The specimen is modelled as the assemblage of two laminated beams connected by a cohesive interface. It is assumed that the traction-separation laws – i.e. the relationships between the interfacial...

  13. Large deflection analysis of cantilever beam under end point and distributed load

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Tolou, N; Barari, Amin;

    2014-01-01

    requires numerical solution of simultaneous equations which is a significant drawback for optimization or reliability analysis. This paper is motivated to overcome these shortcomings by presenting an analytical solution for the large deflection analysis of a cantilever beam under free end point and uniform...

  14. Measurement of length-scale and solution of cantilever beam in couple stress elasto-plasticity

    Institute of Scientific and Technical Information of China (English)

    Bin Ji; Wanji Chen; Jie Zhao

    2009-01-01

    Owing to the absence of proper analytical solu-tion of cantilever beams for couple stress/strain gradient elas-to-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plas-ticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of or0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materi-als, and thus the solution can be used to determine the mate-rial length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.

  15. Comparison of Theory with Experimental Data For a Partially Covered Double-Sandwich Cantilever Beam

    Science.gov (United States)

    Chen, Qinghua; Levy, Cesar

    1998-01-01

    In this paper, vibration characteristics of a partially covered, double-sandwich cantilever beam are evaluated experimentally and compared to the theoretical results of Levy and Chen for partially covered beams with and without end mass. The results obtained indicate that the theoretical models serve very well in providing the frequency factors and loss factors for the system being investigated.

  16. Comparison of Five Topologies of Cantilever-based MEMS Piezoelectric Vibration Energy Harvesters

    Science.gov (United States)

    Jia, Y.; Seshia, A. A.

    2014-11-01

    In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. Despite being deceptively simple, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is able to accommodate a proof mass without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. While other contending designs do exist, this paper investigates five micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer higher average mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 μ AlN on 10 μm Si) with the same practical dimensions of 500 μm and 2000 μm, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain topology.

  17. Cantilever-based micro-particle filter with simultaneous single particle detection

    DEFF Research Database (Denmark)

    Noeth, Nadine-Nicole; Keller, Stephan Sylvest; Boisen, Anja

    2011-01-01

    Currently, separation of whole blood samples on lab-on-a-chip systems is achieved via filters followed by analysis of the filtered matter such as counting of blood cells. Here, a micro-chip based on cantilever technology is developed, which enables simultaneous filtration and counting of micro...

  18. Fabrication of thin SU-8 cantilevers: initial bending, release and time stability

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Haefliger, D.; Boisen, Anja

    2010-01-01

    development of the thin SU-8 film resulted in reduced cantilever bending due to removal of residual stress gradients. Further, improved time-stability of the devices was achieved due to the enhanced cross-linking of the polymer. A post-exposure bake at a temperature T-PEB = 50 degrees C followed by a hard...

  19. Self-aligned cantilever positioning for on-substrate measurements using DVD pickup head

    DEFF Research Database (Denmark)

    Bosco, Filippo; Hwu, E. T.; Keller, Stephan Urs;

    2010-01-01

    In this paper, we present a novel approach for measuring the resonant frequency of cantilevers fabricated in polymeric materials. We re-designed the use of a commercial DVD-ROM pickup head and combine it with a glass-polymer substrate in order to obtain a light and portable device to measure...

  20. Evaluation of the therapeutic efficiency of mandibular anterior implant-supported fixed bridges with cantilevers

    Institute of Scientific and Technical Information of China (English)

    WU Min-jie; WANG Xiao-jing; ZOU Li-dong; XU Wei-hua; ZHANG Xiang-hao

    2013-01-01

    Background Dental implant technology has developed rapidly in recent years.However,the use of implant-supported fixed bridges with cantilevers has been controversial.The purpose of this study was to evaluate the clinical results of the mandibular anterior implant-supported fixed bridges with a cantilever.Method Thirty-three patients (15 males,18 females; mean age,42.6 years; range 20-54 years) with two missing anterior mandibular teeth had single implant-supported fixed bridges with a cantilever.Clinical examination was recorded and radiographs were taken.The mean duration of follow-up was 30 months (15-44 months).Results All implants survived.Loosening or fracture of the prosthesis was not observed.All patients were satisfied with the treatment.The mean bone resorption values after 12,24,and 36 months of implant loading were 0.94,1.18 and 1.35 mm respectively.The changes of gingival papilla height ranged from 0 to 0.5 mm.There was significant difference between 1-year and 2 or 3 years restoration groups regarding the average gingival height changes (P <0.05).Conclusion After careful and precise selection of patients,restoration with a single implant-supported fixed bridge with a cantilever can be recommended if two anterior mandibular teeth are missing.

  1. A piezoelectric cantilever with a Helmholtz resonator as a sound pressure sensor

    International Nuclear Information System (INIS)

    In this paper, a piezoelectric cantilever with a Helmholtz resonator (HR) is proposed as a sound pressure sensor that generates a sufficiently large output voltage at a specific frequency without a power supply to drive the sensing element. A Pb (Zr, Ti) O3 (PZT) cantilever with dimensions of 1500 µm × 1000 µm × 2 µm is designed so that its mechanical resonance frequency agrees with the target frequency. When sound pressure is applied at the target frequency, a large piezoelectric voltage can be obtained due to a high amplification ratio. Additionally, the PZT cantilever is combined with a HR whose resonant frequency is designed to be equal to that of the cantilever. This multiplication of two resonant vibration systems can generate detectable signals by sound pressures of several Pascals. The fabricated sensor generated a piezoelectric voltage of 13.4 mV Pa−1 at the resonant frequency of 2.6 kHz. Furthermore, the fabricated sensor performed as an electrical trigger switch when a sound pressure of 2 Pa was applied at the resonant frequency. (paper)

  2. An Experimental Study of the Local Parameters of a Damaged Cantilever

    DEFF Research Database (Denmark)

    Rytter, A.; Brincker, Rune; Kirkegaard, Poul Henning

    of results from experimental tests with six hollow section steel cantilevers containing a fatigue crack introduced from a narrow laser cut slot. The modal parameters have been identified for different size and location of a crack. The modal parameters have been estimated by mean of frequency domain and time...

  3. An Experimental Study of the Modal Parameters of a Damaged Cantilever

    DEFF Research Database (Denmark)

    Rytter, A.; Brincker, Rune; Kirkegaard, Poul Henning

    of results from experimental tests with six hollow section steel cantilevers containing a fatigue crack introduced from a narrow laser cut slot. The modal parameters have been identified for different size and location of a crack. The modal parameters have been estimated by mean of frequency domain and time...

  4. Analysis of resonance frequency and pull-in voltages of curled micro-bimorph cantilevers

    NARCIS (Netherlands)

    Abdulla, S.M.C.; Yagubizade, H.; Krijnen, G.J.M.

    2012-01-01

    A systematic study is presented on the modelling, fabrication and measurements of curled micro-bimorph cantilevers, which are composed of a dielectric beam with a metal electrode layer coated on top. The device, having stress-induced upward curvature in the electrical off-state, functions as a verti

  5. Position and mass determination of multiple particles using cantilever based mass sensors

    DEFF Research Database (Denmark)

    Dohn, Søren; Schmid, Silvan; Amiot, Fabien;

    2010-01-01

    of several added particles to the resonant frequencies of a cantilever, and an identification procedure valid for particles with different masses is proposed. The identification procedure is tested by calculating positions and mass of multiple microparticles with similar mass positioned on individual...

  6. Stress distribution in implant-supported prostheses using different connection systems and cantilever lengths: digital photoelasticity.

    Science.gov (United States)

    Goiato, Marcelo Coelho; Shibayama, Ricardo; Gennari Filho, Humberto; de Medeiros, Rodrigo Antonio; Pesqueira, Aldiéris Alves; dos Santos, Daniela Micheline; de Araújo, Cleudmar Amaral

    2016-01-01

    Photoelastic analysis was used to evaluate the biomechanical behaviour of implant-supported, double-screwed crowns with different connection systems and cantilever lengths. Three models were made in PL-2 photoelastic resin and divided into six groups, on the basis of the implant connection system (external hexagon [EH] or Morse taper [MT]), type of abutment (Mini Pilar [Neodent, Curitiba, Paraná, Brazil] or "UCLA") and number of crowns in the cantilever (one or two). The implant-prosthesis unit was placed in a circular polariscope. Occlusal surfaces of the crowns were subjected to 100-N loads in the axial and oblique (45°) directions in a universal testing machine (EMIC). Generated stresses were recorded and analysed qualitatively in a graphics program (Adobe Photoshop). Under axial loading, all of the groups had similar numbers of fringes, which were increased when the crowns were subjected to oblique loading. The highest number of fringes was found during oblique loading in the EH + Mini Pilar group. In conclusion, although the type of implant connection system did not have a direct influence on the stress distribution for axial loading, the cantilever length did have a direct influence on stress distribution. Models with two crowns in the cantilever showed more stress, with a greater concentration of force on the cervical part of the implant. PMID:26783652

  7. Performance Improvisation of Cantilever-type Silicon Micro AccelerationSensors Using Stress Concentration Regions Technique

    Directory of Open Access Journals (Sweden)

    B.P. Joshi

    2007-05-01

    Full Text Available Acceleration sensors find applications in missile and competent munitions subsystems.Cantilever-type sensor's sensitivity and bandwidth are dependant on material properties of  thecantilever and structure of proof mass. It is always desired to design a sensor as sensitive aspossible but also maintaining higher bandwidth. In piezoresistive (cantilever-type accelerometers,various techniques were employed by designers to enhance their sensitivity and bandwidth.Most of these techniques are usually focused on shape and size of either cantilever or proofmass. This paper presents a concept of creating stress concentration regions (SCRs on thecantilever for enhancing its sensitivity. Five types of structures were simulated to study thebehaviour of piezoresistive sensors with SCRs implementation. Use of SCRs results in substantialincrease in the sensitivity, which is of the order of 1.85 times the nominal sensitivity. It was aimedat maximising sensor's performance factor, which is the product of sensor bandwidth andsensitivity. This study gives new dimension to the ways of improving performance of cantilever-type inertial piezoresistive sensor.

  8. Mass and position determination of attached particles on cantilever based mass sensors

    DEFF Research Database (Denmark)

    Dohn, Søren; Svendsen, Winnie Edith; Boisen, Anja;

    2007-01-01

    modes. This finding is verified experimentally using a microscale cantilever with and without an attached gold bead. The resonant frequencies of several bending modes are measured as a function of the bead position. The bead mass and position calculated from the measured resonant frequencies are in good...

  9. Insight into mechanics of AFM tip-based nanomachining: bending of cantilevers and machined grooves

    Science.gov (United States)

    Al-Musawi, R. S. J.; Brousseau, E. B.; Geng, Y.; Borodich, F. M.

    2016-09-01

    Atomic force microscope (AFM) tip-based nanomachining is currently the object of intense research investigations. Values of the load applied to the tip at the free end of the AFM cantilever probe used for nanomachining are always large enough to induce plastic deformation on the specimen surface contrary to the small load values used for the conventional contact mode AFM imaging. This study describes an important phenomenon specific for AFM nanomachining in the forward direction: under certain processing conditions, the deformed shape of the cantilever probe may change from a convex to a concave orientation. The phenomenon can principally change the depth and width of grooves machined, e.g. the grooves machined on a single crystal copper specimen may increase by 50% on average following such a change in the deformed shape of the cantilever. It is argued that this phenomenon can take place even when the AFM-based tool is operated in the so-called force-controlled mode. The study involves the refined theoretical analysis of cantilever probe bending, the analysis of experimental signals monitored during the backward and forward AFM tip-based machining and the inspection of the topography of produced grooves.

  10. Maximizing Output Power in a Cantilevered Piezoelectric Vibration Energy Harvester by Electrode Design

    Science.gov (United States)

    Du, Sijun; Jia, Yu; Seshia, Ashwin

    2015-12-01

    A resonant vibration energy harvester typically comprises of a clamped anchor and a vibrating shuttle with a proof mass. Piezoelectric materials are embedded in locations of high strain in order to transduce mechanical deformation into electric charge. Conventional design for piezoelectric vibration energy harvesters (PVEH) usually utilizes piezoelectric material and metal electrode layers covering the entire surface area of the cantilever with no consideration provided to examining the trade-off involved with respect to maximizing output power. This paper reports on the theory and experimental verification underpinning optimization of the active electrode area of a cantilevered PVEH in order to maximize output power. The analytical formulation utilizes Euler-Bernoulli beam theory to model the mechanical response of the cantilever. The expression for output power is reduced to a fifth order polynomial expression as a function of the electrode area. The maximum output power corresponds to the case when 44% area of the cantilever is covered by electrode metal. Experimental results are also provided to verify the theory.

  11. Micro-cantilevers for non-destructive characterization of nanograss uniformity

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Wang, Fei; Olesen, Mikkel Buster;

    2011-01-01

    measurements may be useful for process uniformity characterization. The method is applied for characterization of TiW coated nanograss uniformity. Three-way flexible L-shaped cantilever electrodes are used to avoid damage to the fragile surface, and a relative standard deviation on measurement repeatability...

  12. Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate

    Science.gov (United States)

    Qiu, Zhi-cheng; Zhang, Xian-min; Wu, Hong-xin; Zhang, Hong-hua

    2007-04-01

    Some flexible appendages of spacecraft are cantilever plate structures, such as sun plate and satellite antenna. Thus, vibration problem will be caused by parameter uncertainties and environmental disturbances. In this paper, piezoelectric ceramics patches are used as sensors and actuators to suppress the vibration of the smart flexible clamped plate. Firstly, modal equations and piezoelectric control equations of cantilever plate are derived. Secondly, an optimal placement method for the locations of piezoelectric actuators and sensors is developed based on the degree of observability and controllability indices for cantilever plate. The bending and torsional modes are decoupled by the proposed method using bandwidth Butterworth filter. Thirdly, an efficient control method by combining positive position feedback and proportional-derivative control is proposed for vibration reduction. The analytical results for modal frequencies, transient responses and control responses are carried out. Finally, an experimental setup of piezoelectric smart plate is designed and built up. The modal frequencies and damping ratios of the plate setup are obtained by identification method. Also, the experimental studies on vibration control of the cantilever plate including bending modes and torsional modes are conducted. The analytical and experimental results demonstrate that the presented control method is feasible, and the optimal placement method is effective.

  13. Stress distribution in implant-supported prostheses using different connection systems and cantilever lengths: digital photoelasticity.

    Science.gov (United States)

    Goiato, Marcelo Coelho; Shibayama, Ricardo; Gennari Filho, Humberto; de Medeiros, Rodrigo Antonio; Pesqueira, Aldiéris Alves; dos Santos, Daniela Micheline; de Araújo, Cleudmar Amaral

    2016-01-01

    Photoelastic analysis was used to evaluate the biomechanical behaviour of implant-supported, double-screwed crowns with different connection systems and cantilever lengths. Three models were made in PL-2 photoelastic resin and divided into six groups, on the basis of the implant connection system (external hexagon [EH] or Morse taper [MT]), type of abutment (Mini Pilar [Neodent, Curitiba, Paraná, Brazil] or "UCLA") and number of crowns in the cantilever (one or two). The implant-prosthesis unit was placed in a circular polariscope. Occlusal surfaces of the crowns were subjected to 100-N loads in the axial and oblique (45°) directions in a universal testing machine (EMIC). Generated stresses were recorded and analysed qualitatively in a graphics program (Adobe Photoshop). Under axial loading, all of the groups had similar numbers of fringes, which were increased when the crowns were subjected to oblique loading. The highest number of fringes was found during oblique loading in the EH + Mini Pilar group. In conclusion, although the type of implant connection system did not have a direct influence on the stress distribution for axial loading, the cantilever length did have a direct influence on stress distribution. Models with two crowns in the cantilever showed more stress, with a greater concentration of force on the cervical part of the implant.

  14. In vitro evaluation of failure loads of nonmetal cantilevered resin-bonded fixed dental prostheses

    NARCIS (Netherlands)

    A. van Dalen; A.J. Feilzer; C.J. Kleverlaan

    2008-01-01

    Purpose: To evaluate in vitro the influence of fiber reinforcement on the failure loads of resin composite beams, simulating cantilevered two-unit resin-bonded fixed dental prostheses, and compare the results with similarly obtained failure loads of ZrO2 and CoCr beams of a comparable design. Materi

  15. Measurements of laboratory turbulence with the 2d-Laser Cantilever Anemometer

    Science.gov (United States)

    Puczylowski, Jaroslaw; Peinke, Joachim; Hoelling, Michael

    2013-11-01

    A newly developed anemometer, the 2d-Laser Cantilever Anemometer, was used to measure the two-dimensional wind speed vector in laboratory-generated turbulence. The anemometer provides a temporal and spatial resolution comparable or even higher to those of commercial hot-wires and thus is an excellent alternative for high-resolution measurements. The 2d-Laser Cantilever Anemometer uses a previously unseen measurement technique in the range of anemometers. The principle is adopted from atomic force microscopes (AFM). A tiny micro-structured cantilever is brought into the airflow, where it experiences a drag force due to the moving fluid. The resulting deflection is measured using the laser pointer principle. Unlike the measuring principle of hot-wires this technique can be applied in challenging environments such as in liquids or very close to walls. Our comparing measurements with the 2d-Laser Cantilever Anemometer and an x-wire were carried out in the wake of rigid bodies and grids. The results show a great agreement with regards to the increment statistics on various scales, power spectra and turbulence intensity, thus proving the new anemometer.

  16. Self-mixing interferometry in vertical-cavity surface-emitting lasers for nanomechanical cantilever sensing

    DEFF Research Database (Denmark)

    Larsson, David; Greve, Anders; Hvam, Jørn Märcher;

    2009-01-01

    We have experimentally investigated self-mixing interference produced by the feedback of light from a polymer micrometer-sized cantilever into a vertical-cavity surface-emitting laser for sensing applications. In particular we have investigated how the visibility of the optical output power and t...

  17. Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor

    DEFF Research Database (Denmark)

    Gammelgaard, Lauge; Rasmussen, Peter Andreas; Calleja, M.;

    2006-01-01

    We present an SU-8 micrometer sized cantilever strain sensor with an integrated piezoresistor made of a conductive composite of SU-8 polymer and carbon black particles. The composite has been developed using ultrasonic mixing. Cleanroom processing of the polymer composite has been investigated...

  18. Highly Sensitive Polymer-based Cantilever-sensors for DNA Detection

    DEFF Research Database (Denmark)

    Gomez, Montserrat; Nordström, Maria; Alvarez, M.;

    2005-01-01

    polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized...

  19. Flexural Vibration Test of a Cantilever Beam with a Force Sensor: Fast Determination of Young's Modulus

    Science.gov (United States)

    Digilov, Rafael M.

    2008-01-01

    We describe a simple and very inexpensive undergraduate laboratory experiment for fast determination of Young's modulus at moderate temperatures with the aid of a force sensor. A strip-shaped specimen rigidly bolted to the force sensor forms a clamped-free cantilever beam. Placed in a furnace, it is subjected to free-bending vibrations followed by…

  20. Nano-Workbench: A Combined Hollow AFM Cantilever and Robotic Manipulator

    NARCIS (Netherlands)

    Pérez Garza, H.; Ghatkesar, M.K.; Basak, S.; Löthman, P.; Staufer, U.

    2015-01-01

    To manipulate liquid matter at the nanometer scale, we have developed a robotic assembly equipped with a hollow atomic force microscope (AFM) cantilever that can handle femtolitre volumes of liquid. The assembly consists of four independent robots, each sugar cube sized with four degrees of freedom.

  1. Fracture strength of fiber-reinforced surface-retained anterior cantilever restorations

    NARCIS (Netherlands)

    Oezcan, Mutlu; Kumbuloglu, Ovul; User, Atilla

    2008-01-01

    Purpose: This study compared the fracture strength of direct anterior cantilever fiber-reinforced composite (FRC) fixed partial dentures (FPD) reinforced with 3 types of E-glass fibers preimpregnated with either urethane tetramethacrylate, bisphenol glycidylmethacrylate/polymethyl methacrylate, or b

  2. Optimisation study of micro cantilevers for switching of photonic band gap crystals

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.; Berenschot, E.; Boer, de M.J.; Kauppinen, L.J.; Ridder, de R.M.; Krijnen, G.J.M.

    2009-01-01

    We propose to use electrostatically actuated micro bimorph cantilevers with tips for nanometric perturbations in the evanescent field of various resonators and photonic band gap crystals (PBG) using a self aligning technology. Since in PBG and in other high optical index contrast structures the inte

  3. Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers

    Science.gov (United States)

    Dukic, Maja; Winhold, Marcel; Schwalb, Christian H.; Adams, Jonathan D.; Stavrov, Vladimir; Huth, Michael; Fantner, Georg E.

    2016-01-01

    The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors' conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy. PMID:27666316

  4. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.

    Science.gov (United States)

    Cheri, Mohammad Sadegh; Latifi, Hamid; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Shahraki, Hamidreza; Hajghassem, Hasan

    2014-01-21

    Real-time and accurate measurement of flow rate is an important reqirement in lab on a chip (LOC) and micro total analysis system (μTAS) applications. In this paper, we present an experimental and numerical investigation of a cantilever-based optofluidic flow sensor for this purpose. Two sensors with thin and thick cantilevers were fabricated by engraving a 2D pattern of cantilever/base on two polymethylmethacrylate (PMMA) slabs using a CO2 laser system and then casting a 2D pattern with polydimethylsiloxane (PDMS). The basic working principle of the sensor is the fringe shift of the Fabry-Pérot (FP) spectrum due to a changing flow rate. A Finite Element Method (FEM) is used to solve the three dimensional (3D) Navier-Stokes and structural deformation equations to simulate the pressure distribution, velocity and cantilever deflection results of the flow in the channel. The experimental results show that the thin and thick cantilevers have a minimum detectable flow change of 1.3 and 4 (μL min(-1)) respectively. In addition, a comparison of the numerical and experimental deflection of the cantilever has been done to obtain the effective Young's modulus of the thin and thick PDMS cantilevers. PMID:24291805

  5. Calibration of AFM cantilever stiffness: a microfabricated array of reflective springs.

    Science.gov (United States)

    Cumpson, P J Peter J; Zhdan, Peter; Hedley, John

    2004-08-01

    Calibration of the spring constant of atomic force microscope (AFM) cantilevers is necessary for the measurement of nanonewton and piconewton forces, which are critical to analytical applications of AFM in the analysis of polymer surfaces, biological structures and organic molecules. We have developed a compact and easy-to-use reference standard for this calibration. The new artifact consists of an array of 12 dual spiral-cantilever springs, each supporting a mirrored polycrystalline silicon disc of 160 microm in diameter. These devices were fabricated by a three-layer polysilicon surface micromachining method, including a reflective layer of gold on chromium. We call such an array a Microfabricated Array of Reference Springs (MARS). These devices have a number of advantages. Cantilever calibration using this device is straightforward and rapid. The devices have very small inertia, and are therefore resistant to shock and vibration. This means they need no careful treatment except reasonably clean laboratory conditions. The array spans the range of spring constant from around 0.16 to 11 N/m important in AFM, allowing almost all contact-mode AFM cantilevers to be calibrated easily and rapidly. Each device incorporates its own discrete gold mirror to improve reflectivity. The incorporation of a gold mirror both simplifies calibration of the devices themselves (via Doppler velocimetry) and allows interferometric calibration of the AFM z-axis using the apparent periodicity in the force-distance curve before contact. Therefore, from a single force-distance curve, taking about one second to acquire, one can calibrate the cantilever spring constant and, optionally, the z-axis scale. These are all the data one needs to make accurate and reliable force measurements. PMID:15231316

  6. Optimization of Q-factor of AFM cantilevers using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Cruz, Angel, E-mail: elapc27@gmail.com [Faculty of Engineering, Universidad Autonoma de Queretaro, Queretaro (Mexico); Dominguez-Gonzalez, Aurelio [Faculty of Engineering, Universidad Autonoma de Queretaro, Queretaro (Mexico); Stiharu, Ion [Department of Mechanical and Industrial Engineering, Concordia University, Montreal (Canada); Osornio-Rios, Roque A. [Faculty of Engineering, Universidad Autonoma de Queretaro, Queretaro (Mexico)

    2012-04-15

    Micro cantilever beams have been intensively used in sensing applications including to scanning profiles and surfaces where there resolution and imaging speed are critical. Force resolution is related to the Q-factor. When the micro-cantilever operates in air with small separation gaps, the Q-factor is even more reduced due to the squeeze-film damping effect. Thus, the optimization of the configuration of an AFM micro-cantilever is presented in this work with the objective of improving its Q-factor. To accomplish this task, we propose the inclusion of holes as breathing chimneys in the initial design to reduce the squeeze-film damping effect. The evaluation of the Q-factor was carried out using finite element model, which is implemented to work together with the squeeze-film damping model. The methodology applied in the optimization process was genetic algorithms, which considers as constraints the maximum allowable stress, fundamental frequency and spring constant with respect to the initial design. The results show that the optimum design, which includes holes with an optimal location, increases the Q-factor almost five times compared to the initial design. -- Highlights: Black-Right-Pointing-Pointer It was optimized the Q-factor of a cantilever, which operates near to the surface in air. Black-Right-Pointing-Pointer It was proposed the inclusion of holes as breathing chimneys in the cantilever's surface. Black-Right-Pointing-Pointer Genetic algorithms and finite element analysis were applied to find the optimum configuration for the Q-factor. Black-Right-Pointing-Pointer Optimum design keeps first frequency and the spring constant very close to the original and has a better force resolution. Black-Right-Pointing-Pointer Final design can be easily manufactured through a mask.

  7. Experimental Determination of Bending Resonances of Millimeter Size PVF2 Cantilevers

    Directory of Open Access Journals (Sweden)

    David F. Thompson

    2003-07-01

    Full Text Available The polymer piezoelectric polvinylidene fluoride has found widespread use in sensors and actuators. The bending mode of piezoelectricity offers very high sensitivities and low mechanical input impedance, but has not been studied in as much detail for sensor applications. We report the dynamic electromechanical properties of millimeter size cantilevers made from electroded films of PVF2. All devices tested had a single polymer layer. Several resonances are found below 1 kHz and the experimentally observed resonance frequency dependence on cantilever thickness and length are seen to agree well with published models which take the properties of the electrodes into account. It is found that bending resonances are also modulated by the width of the cantilever. Therefore, though the length and thickness control the resonance frequency most strongly, the actual realized value can be fine-tuned by changing cantilever width and the electrode material and its thickness. Further, all resonances display high piezoelectric coupling coefficients (keff, ranging between 0.2 - 0.35. The data presented here will be extremely useful in the design of sensors and actuators for a number of applications, since the combination of millimeter size scales and high piezoelectric sensitivities in the low audio range can be realized with this marriage of polymeric materials and cantilever geometries. Such an array of sensors can be used in cochlear implant applications, and when integrated with a resonance interrogation circuit can be used for the detection of low frequency vibrations of large structures. If appropriate mass/elasticity sensitive layers are coated on the electrodes, such a sensor can be used for the detection of a wide range of chemicals and biochemicals.

  8. ELASTIC-PLASTIC DYNAMIC RESPONSE OF A CANTILEVER BEAM SUBJECTED TO OBLIQUE IMPACT AT ITS TIP

    Institute of Scientific and Technical Information of China (English)

    Xi Feng; Liu Feng

    2005-01-01

    By employing large deformation governing equations expressed in the form of finite difference, the dynamic responses of an elastic, perfectly plastic cantilever subjected to an oblique impact at its tip was numerically studied. Through analyzing the instantaneous distribution of the yield function (ψ= |M/Mo|+ (N/No)2), bending moment and axial force during the early stage of the response, the elastic-plastic deformation mechanism and the influence of axial component of an oblique impact on the dynamic response of a cantilever beam were discussed. The present analysis shows that the deformation mechanism of an elastic-plastic cantilever subjected to an obtained by using the rigid, perfectly plastic approach, the mode of shrinking plastic region that occurred instantly after the oblique impact and the mode of stationary hinge were both confirmed.The primary features of the deformation mechanism are captured by both analysis methods. It has also been found that the beam's deformation is mainly controlled by the axial component of the oblique impact in the early phase of the dynamic response, the deformation mechanism is obviously different from the case of a transverse impact. With further development of the response,the axial component attenuates rapidly and gives negligible contribution to the yielding of the beam cross-section. At the same time, the bending moments along the cantilever develop gradually and dominate the beam's deformation. The numerical results indicate that the mass, impact speed and oblique angle are the important factors that influence the elastic-plastic dynamic response of a cantilever beam.

  9. Characterization of piesoelectric ZnO thin films and the fabrication of piezoelectric micro-cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Raegan Lynn

    2005-08-01

    In Atomic Force Microscopy (AFM), a microcantilever is raster scanned across the surface of a sample in order to obtain a topographical image of the sample's surface. In a traditional, optical AFM, the sample rests on a bulk piezoelectric tube and a control loop is used to control the tip-sample separation by actuating the piezo-tube. This method has several disadvantages--the most noticeable one being that response time of the piezo-tube is rather long which leads to slow imaging speeds. One possible solution aimed at improving the speed of imaging is to incorporate a thin piezoelectric film on top of the cantilever beam. This design not only improves the speed of imaging because the piezoelectric film replaces the piezo-tube as an actuator, but the film can also act as a sensor. In addition, the piezoelectric film can excite the cantilever beam near its resonance frequency. This project aims to fabricate piezoelectric microcantilevers for use in the AFM. Prior to fabricating the cantilevers and also part of this project, a systematic study was performed to examine the effects of deposition conditions on the quality of piezoelectric ZnO thin films deposited by RF sputtering. These results will be presented. The deposition parameters that produced the highest quality ZnO film were used in the fabrication of the piezoelectric cantilevers. Unfortunately, the fabricated cantilevers warped due to the intrinsic stress of the ZnO film and were therefore not usable in the AFM. The complete fabrication process will be detailed, the results will be discussed and reasons for the warping will be examined.

  10. Optical and mechanical detection of near-field light by atomic force microscopy using a piezoelectric cantilever

    Science.gov (United States)

    Satoh, Nobuo; Kobayashi, Kei; Watanabe, Shunji; Fujii, Toru; Matsushige, Kazumi; Yamada, Hirofumi

    2016-08-01

    In this study, we developed an atomic force microscopy (AFM) system with scanning near-field optical microscopy (SNOM) using a microfabricated force-sensing cantilever with a lead zirconate titanate (PZT) thin film. Both optical and mechanical detection techniques were adopted in SNOM to detect scattered light induced by the interaction of the PZT cantilever tip apex and evanescent light, and SNOM images were obtained for each detection scheme. The mechanical detection technique did allow for a clear observation of the light scattered from the PZT cantilever without the interference observed by the optical detection technique, which used an objective lens, a pinhole, and a photomultiplier tube.

  11. Design and processing of a cost-effective piezoresistive MEMS cantilever sensor for medical and biomedical use

    International Nuclear Information System (INIS)

    In this special section article, cost-effective methods for fabrication of a piezoresistive cantilever sensor for industrial use are focused on. The intended use of the presented cantilever is a medical application. A closer description of the cantilever design is given. The low-cost processing sequence is presented and each processing step is explained in detail. The processing sequence is also compared to other low-cost fabrication techniques. Results from the electrical probing and mechanical strength test are given. The results demonstrate that the chosen low-cost processing route results in high yield and a mechanical robust device. (paper)

  12. Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection

    DEFF Research Database (Denmark)

    Abadal, G.; Davis, Zachary James; Helbo, Bjarne;

    2001-01-01

    A simple linear electromechanical model for an electrostatically driven resonating cantilever is derived. The model has been developed in order to determine dynamic quantities such as the capacitive current flowing through the cantilever-driver system at the resonance frequency, and it allows us...... to calculate static magnitudes such as position and voltage of collapse or the voltage versus deflection characteristic. The model is used to demonstrate the theoretical sensitivity on the attogram scale of a mass sensor based on a nanometre-scale cantilever, and to analyse the effect of an extra feedback loop...

  13. Flexible SiO2 cantilevers for torsional self-aligning micro scale four-point probes

    DEFF Research Database (Denmark)

    Kjær, Daniel; Gammelgaard, Lauge; Bøggild, Peter;

    2007-01-01

    In order to successfully measure the conductivity of a sample with a four- point probe, good alignment of the electrodes to the sample is important to establish even contact pressure and contact areas of the electrodes. By incorporating a hinge in a microfabricated SiO2 mono- cantilever the abili...... by proper dimensioning and placement of the hinge. Furthermore, it is shown that polymeric macro scale cantilever models can provide a fast and reliable understanding of the mechanical deflection properties of microfabricated SiO2 cantilevers....

  14. Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory.

    Science.gov (United States)

    Lee, Haw-Long; Chang, Win-Jin

    2016-01-01

    The modified couple stress theory is adopted to study the sensitivity of a rectangular atomic force microscope (AFM) cantilever immersed in acetone, water, carbon tetrachloride (CCl4), and 1-butanol. The theory contains a material length scale parameter and considers the size effect in the analysis. However, this parameter is difficult to obtain via experimental measurements. In this study, a conjugate gradient method for the parameter estimation of the frequency equation is presented. The optimal method provides a quantitative approach for estimating the material length scale parameter based on the modified couple stress theory. The results show that the material length scale parameter of the AFM cantilever immersed in acetone, CCl4, water, and 1-butanol is 0, 25, 116.3, and 471 nm, respectively. In addition, the vibration sensitivities of the AFM cantilever immersed in these liquids are investigated. The results are useful for the design of AFM cantilevers immersed in liquids.

  15. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    CERN Document Server

    Hoof, Sebastian; Hoogenboom, Bart W

    2012-01-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here we show that a high-quality resonance (Q>20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity --- as expressed via the minimum detectable force gradient --- is hardly affected, because of the enhanced quality factor. Via the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up which includes magnetic actuation of the cantilevers and which can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  16. SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods

    Directory of Open Access Journals (Sweden)

    Anja Boisen

    2008-03-01

    Full Text Available Here, we present the activities within our research group over the last five yearswith cantilevers fabricated in the polymer SU-8. We believe that SU-8 is an interestingpolymer for fabrication of cantilevers for bio/chemical sensing due to its simple processingand low Young’s modulus. We show examples of different integrated read-out methodsand their characterisation. We also show that SU-8 cantilevers have a reduced sensitivity tochanges in the environmental temperature and pH of the buffer solution. Moreover, weshow that the SU-8 cantilever surface can be functionalised directly with receptormolecules for analyte detection, thereby avoiding gold-thiol chemistry.

  17. The multi-position calibration of the stiffness for atomic-force microscope cantilevers based on vibration

    International Nuclear Information System (INIS)

    Calibration of the stiffness of atomic force microscope (AFM) cantilevers is critical for industry and academic research. The multi-position calibration method for AFM cantilevers based on vibration is investigated. The position providing minimum uncertainty is deduced. The validity of the multi-position approach is shown via theoretical and experimental means. We applied it to the recently developed vibration method using an AFM cantilever with a normal stiffness of 0.1 N m−1. The standard deviation of the measured stiffness is 0.002 N m−1 with a mean value of 0.189 N m−1 and the relative combined uncertainty is approximately 7%, which is better than the approach using the single position at the tip of the cantilever. (paper)

  18. Investigation of static and dynamic behavior of functionally graded piezoelectric actuated Poly-Si micro cantilever probe

    Science.gov (United States)

    Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar

    2016-04-01

    In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d15 has much higher value than coupling coefficients d31 and d33, hence in the present work the micro cantilever beam actuated by d15 effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done. The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.

  19. The influence of refractive index change and initial bending of cantilevers on the optical lever readout method

    DEFF Research Database (Denmark)

    Dohn, Søren; Greve, Anders; Svendsen, Winnie Edith;

    2010-01-01

    It has been speculated that the initial bending of cantilevers has a major influence on the detector signal in a cantilever-based sensor using the optical lever readout method. We have investigated theoretically as well as experimentally the changes induced in the detector signal when the optical...... experimentally using an environmental chamber and varying the pressure. We sketch routes to circumvent the problem and formulas suitable for data treatment are given....

  20. Discussion of the Improved Methods for Analyzing a Cantilever Beam Carrying a Tip-Mass under Base Excitation

    Directory of Open Access Journals (Sweden)

    Wang Hongjin

    2014-01-01

    Full Text Available Two improved analytical methods of calculations for natural frequencies and mode shapes of a uniform cantilever beam carrying a tip-mass under base excitation are presented based on forced vibration theory and the method of separation of variables, respectively. The cantilever model is simplified in detail by replacing the tip-mass with an equivalent inertial force and inertial moment acting at the free end of the cantilever based on D’Alembert’s principle. The concentrated equivalent inertial force and inertial moment are further represented as distributed loads using Dirac Delta Function. In this case, some typical natural frequencies and mode shapes of the cantilever model are calculated by the improved and unimproved analytical methods. The comparing results show that, after improvement, these two methods are in extremely good agreement with each other even the offset distance between the gravity center of the tip-mass and the attachment point is large. As further verification, the transient and steady displacement responses of the cantilever system under a sine base excitation are presented in which two improved methods are separately utilized. Finally, an experimental cantilever system is fabricated and the theoretical displacement responses are validated by the experimental measurements successfully.

  1. Dynamically forced cantilever system: A piezo-polymer characterization tool with possible application for micromechanical HF resonator devices

    Science.gov (United States)

    Schwödiauer, Reinhard

    2005-04-01

    A cantilever system, driven to a dynamically forced oscillation by a small piezoelectric specimen is presented as a simple and accurate tool to determine the converse dynamic piezocoefficient up to several kHz. The piezoelectric sample is mounted on top of a reflective cantilever where it is free to oscillate without any mechanical constraint. A Nomarsky-interferometer detects the induced cantilever displacement. The presented technique is especially suited for a precise characterization of small and soft piezoelectric polymer-samples with rough surfaces. The capability of the dynamically forced cantilever principle is demonstrated with a LiNbO3 crystal and with a porous ferroelectretic polypropylene foam. Results from measurements between 400 Hz and 5 kHz were found to be in excellent agreement with published values. Additionally, the dynamically forced cantilever principle may possibly improve the sensitivity of some micromechanical cantilever-sensors and it could also be interesting for the design of enhanced micromechanical high frequency mixer filters. Some ideas about are briefly presented.

  2. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.

    Science.gov (United States)

    Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas

    2015-12-23

    The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.

  3. Cantilever beam static and dynamic response comparison with mid-point bending for thin MDF composite panels

    Directory of Open Access Journals (Sweden)

    John F. Hunt

    2013-02-01

    Full Text Available A new cantilever beam apparatus has been developed to measure static and vibrational properties of small and thin samples of wood or composite panels. The apparatus applies a known displacement to a cantilever beam, measures its static load, then releases it into its natural first mode of transverse vibration. Free vibrational tip displacements as a function of time were recorded. This paper compares the test results from the cantilever beam static bending and vibration with standard mid-point simply supported bending samples. Medium density fiberboard panels were obtained from four different commercial sources. Comparisons were made using a set of fiberboard panels with thicknesses of 8.1, 4.5, 3.7, and 2.6 mm and nominal densities of 700, 770, 780, and 830 kg/m3, respectively. Cantilever beam static modulus and dynamic modulus of elasticity linearly correlated well but were consistently higher than standard mid-point bending modulus of elasticity having linear correlations of 1.12:1 and 1.26:1, respectively. The higher strain rates of both the static and vibrating cantilever beam could be the primary reason for the slightly higher dynamic modulus values. The log decrement of the displacement was also used to calculate the damping ratio for the cantilever beam. As expected, damping ratio had a slightly decreasing slope as density increased. This paper discusses the new apparatus and initial results.

  4. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.

    Science.gov (United States)

    Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas

    2015-01-01

    The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines. PMID:26703623

  5. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes

    Directory of Open Access Journals (Sweden)

    Darius Zizys

    2015-12-01

    Full Text Available The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.

  6. Closed-form solution for a cantilevered sectorial plate subjected to a tip concentrated force.

    Science.gov (United States)

    Christy, Carl W; Weggel, David C; Smelser, R E

    2016-01-01

    A closed-form solution is presented for a cantilevered sectorial plate subjected to a tip concentrated force. Since the particular solution for this problem was not found in the literature, it is derived here. Deflections from the total solution (particular plus homogeneous solutions) are compared to those from a finite element analysis and are found to be in excellent agreement, producing an error within approximately 0.08 %. Normalized closed-form deflections and slopes at the fixed support, resulting from an approximate enforcement of the boundary conditions there, deviate from zero by cantilevered sectorial plate subjected to independent applications of a tip concentrated force, a tip bending moment, and a tip twisting moment, are compiled. PMID:27390653

  7. An analytical investigation of delamination front curvature in double cantilever beam specimens

    Science.gov (United States)

    Davidson, B. D.

    1990-01-01

    An analytical investigation is conducted to determine the shape of a growing delamination and the distribution of the energy release rate along the delamination front in a laminated composite double cantilever beam specimen. Distributions of the energy release rate for specimens with straight delamination fronts and delamination front contours for delaminations whose growth is governed by the fracture criterion that G = Gc at all points are predicted as a function of material properties and delamination length. The predicted delamination front contours are utilized to ascertain the effect of the changing shape of the delamination front on the value of the critical strain energy release rate as computed from double cantilever beam fracture toughness test data.

  8. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever

    Science.gov (United States)

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M.

    2016-09-01

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.

  9. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meng; Mao, Haiyang; Li, Zhigang; Liu, Ruiwen; Ming, Anjie [Key laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academic of Sciences, Beijing 100029 (China); Ou, Yi; Ou, Wen [Key laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academic of Sciences, Beijing 100029 (China); Smart Sensor Engineering Center, Jiangsu R& D Center for Internet of Things, Wuxi 214315 (China)

    2015-07-15

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  10. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    Directory of Open Access Journals (Sweden)

    Meng Wu

    2015-07-01

    Full Text Available This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes.

  11. A performance-enhanced energy harvester for low frequency vibration utilizing a corrugated cantilevered beam

    Science.gov (United States)

    Kim, In-Ho; Jin, SeungSeop; Jang, Seon-Jun; Jung, Hyung-Jo

    2014-03-01

    This note proposes a performance-enhanced piezoelectric energy harvester by replacing a conventional flat cantilevered beam with a corrugated beam. It consists of a proof mass and a sinusoidally or trapezoidally corrugated cantilevered beam covered by a polyvinylidene fluoride (PVDF) film. Compared to the conventional energy harvester of the same size, it has a more flexible bending stiffness and a larger bonding area of the PVDF layer, so higher output voltage from the device can be expected. In order to investigate the characteristics of the proposed energy harvester, analytical developments and numerical simulations on its natural frequency and tip displacement are carried out. Shaking table tests are also conducted to verify the performance of the proposed device. It is clearly shown from the tests that the proposed energy harvester not only has a lower natural frequency than an equivalent sized standard energy harvester, but also generates much higher output voltage than the standard one.

  12. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.

    Science.gov (United States)

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M

    2016-09-21

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model. PMID:27420398

  13. Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers

    Science.gov (United States)

    Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso

    2015-12-01

    We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations.

  14. Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever

    International Nuclear Information System (INIS)

    This article reports a compact wideband piezoelectric vibration energy harvester consisting of three proof masses and an asymmetric M-shaped cantilever. The M-shaped beam comprises a main beam and two folded and dimension varied auxiliary beams interconnected through the proof mass at the end of the main cantilever. Such an arrangement constitutes a three degree-of-freedom vibrating body, which can tune the resonant frequencies of its first three orders close enough to obtain a utility wide bandwidth. The finite element simulation results and the experimental results are well matched. The operation bandwidth comprises three adjacent voltage peaks on account of the frequency interval shortening mechanism. The result shows that the proposed piezoelectric energy harvester could be efficient and adaptive in practical vibration circumstance based on multiple resonant modes

  15. High sensitivity resonance frequency measurements of individualmicro-cantilevers using fiber optical interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Duden, Thomas; Radmilovic, Velimir

    2009-03-04

    We describe a setup for the resonance frequency measurement of individual microcantilevers. The setup displays both high spatial selectivity and sensitivity to specimen vibrations by utilizing a tapered uncoated fiber tip. The high sensitivity to specimen vibrations is achieved by the combination of optical Fabry-Perot interferometry and narrow band RF detection. Wave fronts reflected on the specimen and on the fiber tip end face interfere, thus no reference plane on the specimen is needed, as demonstrated with the example of freestanding silicon nitride micro-cantilevers. The resulting system is integrated in a DB-235 dual beam FIB system, thereby allowing the measurement of micro-cantilever responses during observation in SEM mode. The FIB was used to modify the optical fiber tip. At this point of our RF system development, the microcantilevers used to characterize the detector were not modified in situ.

  16. Approximations for Large Deflection of a Cantilever Beam under a Terminal Follower Force and Nonlinear Pendulum

    Directory of Open Access Journals (Sweden)

    H. Vázquez-Leal

    2013-01-01

    Full Text Available In theoretical mechanics field, solution methods for nonlinear differential equations are very important because many problems are modelled using such equations. In particular, large deflection of a cantilever beam under a terminal follower force and nonlinear pendulum problem can be described by the same nonlinear differential equation. Therefore, in this work, we propose some approximate solutions for both problems using nonlinearities distribution homotopy perturbation method, homotopy perturbation method, and combinations with Laplace-Padé posttreatment. We will show the high accuracy of the proposed cantilever solutions, which are in good agreement with other reported solutions. Finally, for the pendulum case, the proposed approximation was useful to predict, accurately, the period for an angle up to 179.99999999∘ yielding a relative error of 0.01222747.

  17. Free Vibration Analysis for Dynamic Stiffness Degradation of Cracked Cantilever Plate

    Directory of Open Access Journals (Sweden)

    Oday. I. Abdullah

    2005-01-01

    Full Text Available In the present work a dynamic analysis technique have been developed to investigate and characterize the quantity of elastic module degradation of cracked cantilever plates due to presence of a defect such as surface of internal crack under free vibration. A new generalized technique represents the first step in developing a health monitoring system, the effects of such defects on the modal frequencies has been the main key quantifying the elasticity modulii due to presence any type of un-visible defect. In this paper the finite element method has been used to determine the free vibration characteristics for cracked cantilever plate (internal flaws, this present work achieved by different position of crack. Stiffness reduction in term of elastic material properties is analyzed through a parametric study of crack density factor. Results are given for Young’s modulus and shear modulus variation with respects the vibrational characteristics.

  18. RBFNN Model for Predicting Nonlinear Response of Uniformly Loaded Paddle Cantilever

    Directory of Open Access Journals (Sweden)

    Abdullah H. Abdullah

    2009-01-01

    Full Text Available The Radial basis Function neural network (RBFNN model has been developed for the prediction of nonlinear response for paddle Cantilever with built-in edges and different sizes, thickness and uniform loads. Learning data was performed by using a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The neural network model has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, eight nodes at hidden layer and one output node representing the max. deflection response (1500×1 represent the deflection response of load. Regression analysis between finite element results and values predicted by the neural network model shows the least error.

  19. A virtual instrument to standardise the calibration of atomic force microscope cantilevers

    CERN Document Server

    Sader, John E; Gibson, Christopher T; Haviland, David B; Higgins, Michael J; Kilpatrick, Jason I; Lu, Jianing; Mulvaney, Paul; Shearer, Cameron J; Slattery, Ashley D; Thorén, Per-Anders; Tran, Jim; Zhang, Heyou; Zhang, Hongrui; Zheng, Tian

    2016-01-01

    Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This is performed without reference to a global standard, which hinders robust comparison of force measurements reported by different laboratories. In this article, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others - standardising AFM force measurements - and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry. This global calibration initiative requires no additional instrumentation or data processing on the part of the user. It utilises a single website where users upload currently available data. A proof-of-principle demonstration of this initiative is presented using measured data from five independent laboratories across three countries, which also allows for an assessment of current calibratio...

  20. MODELLING AND OPTIMISATION OF A BIMORPH PIEZOELECTRIC CANTILEVER BEAM IN AN ENERGY HARVESTING APPLICATION

    Directory of Open Access Journals (Sweden)

    CHUNG KET THEIN

    2016-02-01

    Full Text Available Piezoelectric materials are excellent transducers in converting vibrational energy into electrical energy, and vibration-based piezoelectric generators are seen as an enabling technology for wireless sensor networks, especially in selfpowered devices. This paper proposes an alternative method for predicting the power output of a bimorph cantilever beam using a finite element method for both static and dynamic frequency analyses. Experiments are performed to validate the model and the simulation results. In addition, a novel approach is presented for optimising the structure of the bimorph cantilever beam, by which the power output is maximised and the structural volume is minimised simultaneously. Finally, the results of the optimised design are presented and compared with other designs.

  1. Theoretical & Experimental Studies on Vibration & Damping of Fibre-Reinforced Cantilever Laminates.

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    2000-07-01

    Full Text Available In this paper, vibration and damping analyses  of glass fibre-reinforced laminated composite cantilever beams and plates are studied using C1 finite element using shear deformation theory and alsothrough experiments. The formulation in the theoretical model includes in-plane and rotary inertiaterms. The governing equations for the complex eigenvalue problem based on complex elastic moduliare formulated. The solutions are obtained using QR algorithm. Parametric study is carried out tohighlight; the effects of lay-up and ply-angle of the laminates. A limited number of experimentalinvestigafions on cantilever laminates are conducted for obtaining the natural frequenciqs, dampingfactor and frequency responses. The comparison between the theoretical and the experimfntal resultsshows good agreement.

  2. Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator

    Science.gov (United States)

    Li, Xuequan; Liu, Mengmeng; Huang, Baisheng; Liu, Hong; Hu, Weiguo; Shao, Li-Hua; Wang, Zhong Lin

    2016-01-01

    We firstly designed an electrochemical system for dealloying to synthesize nanoporous gold (NPG) and also driving the novel NPG based actuator by utilizing a modified rotary triboelectric nanogenerator (TENG). Compared to the previous reported TENG whose outputs decline due to temperature rising resulting from electrodes friction, the modified TENG with a cooling system has stable output current and voltage increased by 14% and 20%, respectively. The novel cantilevered hybrid actuator characterised by light-weight (ca. 3 mg) and small volume (ca. 30 mm × 2 mm × 10 μm) is driven by a microcontroller modulated TENG with the displacement of 2.2 mm, which is about 106 times larger than that of traditional cantilever using planar surfaces. The energy conversion efficiencies defined as the energy consumed during dealloying and actuation compared with the output of TENG are 47% and 56.7%, respectively. PMID:27063987

  3. Aeroelastic Flutter Behavior of Cantilever within a Nozzle-Diffuser Geometry

    Science.gov (United States)

    Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae

    2015-11-01

    Aeroelastic flutter arises when the motion of a structure and its surrounding flowing fluid are coupled in a constructive manner, causing large amplitudes of vibration in the immersed solid. A cantilevered beam in axial flow within a nozzle-diffuser geometry exhibits interesting resonance behavior that presents good prospects for internal flow energy harvesting. Different modes can be excited as a function of throat velocity, nozzle geometry, fluid and cantilever material parameters. This work explores the relationship between the aeroelastic flutter instability boundaries and relevant non-dimensional parameters via experiments. Results suggest that for a linear expansion diffuser geometry, a non-dimensional stiffness, non-dimensional mass, and non-dimensional throat size are the critical parameters in mapping the instability. This map can serve as a guide to future work concerning possible electrical output and failure prediction in energy harvesters.

  4. Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers

    Science.gov (United States)

    Moro, L.; Benasciutti, D.

    2010-11-01

    This paper presents a preliminary investigation on energy harvesting from human walking via piezoelectric vibrating cantilevers. Heel accelerations during human gait are established by correlating data gathered from the literature with direct experimental measurements. All the observed relevant features are synthesized in a typical (standard) acceleration signal, used in subsequent numerical simulations. The transient electromechanical response and the harvested power of a shoe-mounted bimorph cantilever excited by the standard acceleration signal is computed by numerical simulations and compared with measurements on a real prototype. A sensitivity analysis is finally developed to estimate the mean harvested power for a wide range of scavenger configurations. Acceptability criteria based on imposed geometrical constraints and resistance strength limits (e.g. fatigue limit) are also established. This analysis allows a quick preliminary screening of harvesting performance of different scavenger configurations.

  5. Increasing Energy-harvesting ability of piezoelectric unimorph cantilevers using Spring Supports

    Science.gov (United States)

    Kim, Kyung Bum; Nahm, San; Sung, Tae Hyun; Paik, Jong Hoo; Kim, Hyoung Jae

    2016-06-01

    We fabricated a spring-supported piezoelectric unimorph cantilever (SPUC) with enhanced energy-harvesting characteristics by using a 0.69Pb(Zr0.47Ti0.53)O3-0.31Pb(Ni0.6Zn0.4)1/3Nb2/3)O3 + CuO (0.5 mol%) thick film sintered at 950 °C; a spring having a spring constant of 14,320 N/m was used as the cantilever support. The SPUC could generate an output power as high as 29 mW with a spring constant of 14,320 N/m across a resistance of 150 kΩ; this corresponded to a power density of 34 mW/cm3. We, therefore, that the thus-fabricated SPUCs when supported by a spring can harvest increased levels of energy.

  6. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    Science.gov (United States)

    Montanini, Roberto; Quattrocchi, Antonino

    2016-06-01

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d31 mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  7. Maximization of the Output Voltage of a Cantilevered Energy Harvester Comprising Piezoelectric Fiber Composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Myeong; Kim, Cheol [Chungnam National University, Daejeon (Korea, Republic of)

    2011-07-15

    In this study, a cantilevered energy harvester comprising piezoelectric fiber and epoxy composites was designed and analyzed electro-mechanically. In order to maximize the power of the cantilevered energy harvester, its exciting frequency was tuned to the first natural frequency of the beam. An efficient analysis method for predicting the output voltage of the beam was developed by using the finite element method coupled with piezoelectric behavior. By using this method, the effects of geometric parameters and various piezoelectric materials on power generation were investigated and the electric characteristics were evaluated. Design optimization of the beam geometries was performed for a base model. The optimum MFC design generated a maximum electric output of 40.1 V at a first natural frequency of 24.5 Hz.

  8. Response of a Cracked Cantilever Beam to Free and Forced Vibrations

    Directory of Open Access Journals (Sweden)

    V. M. Radhakrishnan

    2004-01-01

    Full Text Available Cracks present in machine parts affect their vibrational behaviour like the fundamental frequency and the resonance. In this paper, the resonance response of a cracked cantilever rectangular beam has been studied based on fracture mechanics quantities like strain energy release rate, stress intensity factor and compliance. The spring stiffness and the fundamental frequency decrease with increase in crack length. The amplitude of vibration increases and the occurrence of resonance gets shifted with increase in crack length.

  9. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  10. An approximate solution for the free vibrations of rotating uniform cantilever beams

    Science.gov (United States)

    Peters, D. A.

    1973-01-01

    Approximate solutions are obtained for the uncoupled frequencies and modes of rotating uniform cantilever beams. The frequency approximations for flab bending, lead-lag bending, and torsion are simple expressions having errors of less than a few percent over the entire frequency range. These expressions provide a simple way of determining the relations between mass and stiffness parameters and the resultant frequencies and mode shapes of rotating uniform beams.

  11. Large deflections of a cantilever beam under arbitrarily directed tip load

    Science.gov (United States)

    Mccomb, H. E., Jr.

    1985-01-01

    The nonlinear beam equation was integrated numerically in a direct fashion to obtain results for large deflections of cantilevers under tip loads of arbitrary direction. A short BASIC computer program for performing this integration is presented. Results for selected load cases are presented. The numerical process is performed rapidly on a modern microcomputer, and comparisons with results from closed form solutions show that the process is accurate.

  12. The analytical solutions for orthotropic cantilever beams (Ⅱ): Solutions for density functionally graded beams

    Institute of Scientific and Technical Information of China (English)

    JIANG Ai-min; DING Hao-jiang

    2005-01-01

    In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally graded orthotropic media, a series of beam problem, including the problems of cantilever beam with body forces depending only on z or on x coordinate and expressed by z or x polynomial is solved by the principle of superposition and the trial-and-error method.

  13. Eigenvalues of an axially loaded cantilever beam with an eccentric end rigid body

    CERN Document Server

    Lajimi, S Amir Mousavi

    2014-01-01

    An analytical form of the characteristic equation for a vertically mounted cantilever beam with an end rigid body is obtained and solved for the eigenvalues of the structure. The effect of the weight of the structure is taken into consideration by estimating the load as a function of the length of the beam. The mass, rotary inertia and eccentricity of the end rigid body are demonstrated to considerably affect the eigenvalues of the structure.

  14. An ultra-high Q silicon compound cantilever resonator for Young's modulus measurements.

    Science.gov (United States)

    Metcalf, Thomas H; Liu, Xiao

    2013-07-01

    We describe the design of ultra-high Q mechanical cantilever resonators, fabricated from single-crystal silicon wafers. The mechanical resonance mode at f ≈ 8.5 kHz achieves a background damping of Q(-1) friction of thin films. It is compatible with both the mounting apparatus and measurement electronics of the torsional resonator, and the two resonators together can be used to provide a complete description of the elastic properties of isotropic thin films. PMID:23902093

  15. Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

    OpenAIRE

    Daniel Kiracofe; Arvind Raman; Dalia Yablon

    2013-01-01

    One of the key goals in atomic force microscopy (AFM) imaging is to enhance material property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors...

  16. Experimental & Theoretical Analysis of Composite (Polyester & Silicon-Carbide) Cantilever Beam

    OpenAIRE

    Yousif K. Yousif

    2012-01-01

    A cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving th...

  17. Investigation of the Transient Behavior of a Cantilever Beam Using PVDF Sensors

    OpenAIRE

    Shan-Ying Pan; Yu-Hsi Huang; Chien-Ching Ma

    2012-01-01

    In this paper, a PVDF film sensor was used to measure the transient responses of a cantilever beam subjected to an impact loading. The measurement capability of a PVDF sensor is affected by the area of the PVDF film sensor and the signal conditioner (charge amplifier). The influences of these effects on the experimental measurements were investigated. The transient responses for the dynamic strain of the beam were measured simultaneously by the PVDF sensor and a conventional strain gauge. The...

  18. Microfabricated photoplastic cantilever with integrated photoplastic/carbon based piezoresistive strain sensor

    OpenAIRE

    Gammelgaard, L.; Rasmussen, P. A.; Calleja, Montserrat; Vettiger, P.; Boisen, Anja

    2006-01-01

    L. Gammelgaard, P. A. Rasmussen, M. Calleja, P. Vettiger, and A. Boisen Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark We present an SU-8 micrometer sized cantilever strain sensor with an integrated piezoresistor made of a conductive composite of SU-8 polymer and carbon black particles. The composite has been developed using ultrasonic mixing. Cleanroom processing of the polymer composite has been investigated and it has been show...

  19. Dynamic behaviour of dagger-shaped cantilevers for atomic force microscopy

    Science.gov (United States)

    Shen, Kangzhi; Hurley, Donna C.; Turner, Joseph A.

    2004-11-01

    Experimental techniques based on the atomic force microscope (AFM) have been developed for characterizing mechanical properties at the nanoscale and applied to a variety of materials and structures. Atomic force acoustic microscopy (AFAM) is one such technique that uses spectral information of the AFM cantilever as it vibrates in contact with a sample. In this paper, the dynamic behaviour of AFM cantilevers that have a dagger shape is investigated using a power-series method. Dagger-shaped cantilevers have plan-view geometry consisting of a rectangular section at the clamped end and a triangular section at the tip. Their geometry precludes modelling using closed-form expressions. The convergence of the series is demonstrated and the convergence radius is shown to be related to the given geometry. The accuracy and efficiency of the method are investigated by comparison with finite element results for several different cases. AFAM experiments are modelled by including a linear spring at the tip that represents the contact stiffness. The technique developed is shown to be very effective for inversion of experimental frequency information into contact stiffness results for AFAM. In addition, the sensitivities of the frequencies to the contact stiffness are discussed in terms of the various geometric parameters of the problem including the slope, the ratio of the rectangular to triangular lengths and the tip location. Calculations of contact stiffness from experimental data using this model are shown to be very good in comparison with other models. It is anticipated that this approach may be useful for other cantilever geometries as well, such that AFAM accuracy may be improved.

  20. Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography.

    Science.gov (United States)

    Chan, Vincent; Jeong, Jae Hyun; Bajaj, Piyush; Collens, Mitchell; Saif, Taher; Kong, Hyunjoon; Bashir, Rashid

    2012-01-01

    Cell-based biohybrid actuators are integrated systems that use biological components including proteins and cells to power material components by converting chemical energy to mechanical energy. The latest progress in cell-based biohybrid actuators has been limited to rigid materials, such as silicon and PDMS, ranging in elastic moduli on the order of mega (10(6)) to giga (10(9)) Pascals. Recent reports in the literature have established a correlation between substrate rigidity and its influence on the contractile behavior of cardiomyocytes (A. J. Engler, C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang and D. W. Speicher, et al., J. Cell Sci., 2008, 121(Pt 22), 3794-3802, P. Bajaj, X. Tang, T. A. Saif and R. Bashir, J. Biomed. Mater. Res., Part A, 2010, 95(4), 1261-1269). This study explores the fabrication of a more compliant cantilever, similar to that of the native myocardium, with elasticity on the order of kilo (10(3)) Pascals. 3D stereolithographic technology, a layer-by-layer UV polymerizable rapid prototyping system, was used to rapidly fabricate multi-material cantilevers composed of poly(ethylene glycol) diacrylate (PEGDA) and acrylic-PEG-collagen (PC) mixtures. The incorporation of acrylic-PEG-collagen into PEGDA-based materials enhanced cell adhesion, spreading, and organization without altering the ability to vary the elastic modulus through the molecular weight of PEGDA. Cardiomyocytes derived from neonatal rats were seeded on the cantilevers, and the resulting stresses and contractile forces were calculated using finite element simulations validated with classical beam equations. These cantilevers can be used as a mechanical sensor to measure the contractile forces of cardiomyocyte cell sheets, and as an early prototype for the design of optimal cell-based biohybrid actuators.

  1. Study on blister of the coating on solid cantilevers of hydraulic supports for coal mining

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work, blister of the Cu-Sn plus Cr coating on solid cantilevers of hydraulic supports for coal mining was investigated by hydrogen-charging, Devanathan-Stachurski method and electrochemical impedance spectroscopy (EIS) measurement. It was found that the permeation hydrogen during the pickling process and the electroplating process was responsible for the blisters. The residual tensile stress due to the machining process would increase the permeation hydrogen amount during pickling and electroplating processes.

  2. Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy.

    Science.gov (United States)

    Klocke, Michael; Wolf, Dietrich E

    2016-01-01

    A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively. PMID:27335760

  3. A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye.

    Science.gov (United States)

    Fraiwan, Arwa; Lee, Hankeun; Choi, Seokheun

    2016-09-01

    Volatile organic compound (VOC) detection is critical for controlling industrial and commercial emissions, environmental monitoring, and public health. Simple, portable, rapid and low-cost VOC sensing platforms offer the benefits of on-site and real-time monitoring anytime and anywhere. The best and most practically useful approaches to monitoring would include equipment-free and power-free detection by the naked eye. In this work, we created a novel, paper-based cantilever sensor array that allows simple and rapid naked-eye VOC detection without the need for power, electronics or readout interface/equipment. This simple VOC detection method was achieved using (i) low-cost paper materials as a substrate and (ii) swellable thin polymers adhered to the paper. Upon exposure to VOCs, the polymer swelling adhered to the paper-based cantilever, inducing mechanical deflection that generated a distinctive composite pattern of the deflection angles for a specific VOC. The angle is directly measured by the naked eye on a 3-D protractor printed on a paper facing the cantilevers. The generated angle patterns are subjected to statistical algorithms (linear discriminant analysis (LDA)) to classify each VOC sample and selectively detect a VOC. We classified four VOC samples with 100% accuracy using LDA. PMID:27343578

  4. Internal resonance in forced vibration of coupled cantilevers subjected to magnetic interaction

    Science.gov (United States)

    Chen, Li-Qun; Zhang, Guo-Ce; Ding, Hu

    2015-10-01

    Forced vibration is investigated for two elastically connected cantilevers, under harmonic base excitation. One of the cantilevers is with a tip magnet repelled by a magnet fixed on the base. The cantilevers are uniform viscoelastic beams constituted by the Kelvin model. The system is formulated as a set of two linear partial differential equations with nonlinear boundary conditions. The method of multiple scales is developed to analyze the effects of internal resonances on the steady-state responses to external excitations in the nonlinear boundary problem of the partial differential equations. In the presence of 2:1 internal resonance, both the first and the second primary resonances are examined in detail. The analytical frequency-amplitude response relationships are derived from the solvability conditions. It is found that the frequency-amplitude response curves reveal typical nonlinear phenomena such as jumping and hysteresis in both primary resonances as well as saturation in the second primary resonance. The frequency-amplitude response curves may be converted from hardening-type single-jumping to double-jumpings, and further to softening-type single-jumping by adjusting the distance between two magnets. It is also found that the unstable parts of the frequency-amplitude response curves correspond to quasi-periodic motions. The finite difference scheme is proposed to discretize both the temporal and the spatial variables, and thus the numerical solutions can be calculated. The analytical results are supported by the numerical solutions.

  5. Characterization of a silicon nanowire-based cantilever air-flow sensor

    International Nuclear Information System (INIS)

    Silicon nanowire (SiNW)-based cantilever flow sensors with three different cantilever sizes (10 × 50, 20 × 90 and 40 × 100 µm2) and various SiNW lengths (2, 5 and 10 µm) have been designed for air velocity sensing. The total device thickness is around 3 µm, which consists of the bottom SiO2 layer (0.5 µm) and the top SiNx layer (2.5 µm). In addition, the SiNx layer is used to compensate the initial stress and also enhance the device immunity to air-flow-induced vibrations significantly. To experience the maximum strain induced by the air flow, SiNWs are embedded at the clamp point where the cantilever is anchored to the substrate. Taking advantage of the superior properties of SiNWs, the reported flow sensor shows outstanding air-flow-sensing capability in terms of sensitivity, linearity and hysteresis. With only a supply voltage of 0.1 V and the high initial resistance of the piezoresistive SiNWs, significant energy saving is reached in contrast to the thermal-based flow sensors as well as other recently reported piezoresistive designs. Last but not least, the significant size reduction of our device demonstrates the great scalability of SiNW-based flow sensors. (paper)

  6. In-situ micro-cantilever tests to study the fracture properties of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Farasat; Ast, Johannes; Durst, Karsten; Goeken, Mathias [Institute of General Materials Properties, Department of Materials Science and Engineering, University of Erlangen-Nuernberg (Germany)

    2011-07-01

    In recent years the nanomechanical testing of materials becomes an important tool to test the materials at micron or even sub-micron scale with the help of different methods. In order to understand mechanical behavior of the bulk materials at micron or sub-micron scale different existing methods including nanoindentation, micro-tensile, bulge test, micro-compression and micro-cantilever fracture test are used on different material systems. In order to understand the relation between micron scale fracture toughness to that of the bulk materials, we carried out in-situ micro-cantilever tests on anisotropic NiAl-single crystals. The reason for choosing NiAl is its brittle nature and the macroscopic fracture toughness using ASTM E399 standard has been already investigated and reported in literature. NiAl possess two orientation namely hard <101> and soft <100> and the macroscopic fracture toughness measured using ASTM 399 standard ranges 3-4 MPa m1/2 for soft orientations and 5-7 MPa m1/2 for hard orientations. Hence the micro cantilever method was used to investigate the orientation dependent fracture toughness of NiAl at micron scale and its possible relation to the macroscopic fracture toughness is also discussed.

  7. Optimization of Q-factor of AFM cantilevers using genetic algorithms.

    Science.gov (United States)

    Perez-Cruz, Angel; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Osornio-Rios, Roque A

    2012-04-01

    Micro cantilever beams have been intensively used in sensing applications including to scanning profiles and surfaces where there resolution and imaging speed are critical. Force resolution is related to the Q-factor. When the micro-cantilever operates in air with small separation gaps, the Q-factor is even more reduced due to the squeeze-film damping effect. Thus, the optimization of the configuration of an AFM micro-cantilever is presented in this work with the objective of improving its Q-factor. To accomplish this task, we propose the inclusion of holes as breathing chimneys in the initial design to reduce the squeeze-film damping effect. The evaluation of the Q-factor was carried out using finite element model, which is implemented to work together with the squeeze-film damping model. The methodology applied in the optimization process was genetic algorithms, which considers as constraints the maximum allowable stress, fundamental frequency and spring constant with respect to the initial design. The results show that the optimum design, which includes holes with an optimal location, increases the Q-factor almost five times compared to the initial design. PMID:22459119

  8. A new approach to integrate PLZT thin films with micro-cantilevers

    Indian Academy of Sciences (India)

    Ravindra Singh; T C Goel; Sudhir Chandra

    2009-08-01

    In the present work, we report the preparation of PLZT thin films in pure perovskite phase by RF magnetron sputtering without external substrate heating and their integration with micro-cantilevers. The ‘lift-off’ process for patterning different layers of a micro-cantilever including PLZT, Pt/Ti and Au/Cr was employed. The basic requirement of lift-off process is that the deposition temperature should not exceed 200°C otherwise photoresist will burn out. Therefore, one of the aims of the present work was to prepare PLZT film at lower deposition temperatures, which can be subsequently annealed to form pure perovskite phase. This also strongly favours the incorporation of ‘lift-off’ process for patterning in the complete process flow. As no external substrate heating was required in the deposition of PLZT film, this objective has been successfully accomplished in the present work. The ‘lift-off’ process has been successfully adopted for patterning the composite layers of PLZT/Pt/Ti and Au/Cr using thick positive photo-resist (STR-1045). Different types of cantilever beams incorporating PLZT films have been successfully fabricated using ‘lift-off’ process and bulk micromachining technology. The proposed process can be advantageously applied for the fabrication of various MEMS devices.

  9. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.

    Science.gov (United States)

    Ostasevicius, Vytautas; Janusas, Giedrius; Milasauskaite, Ieva; Zilys, Mindaugas; Kizauskiene, Laura

    2015-01-01

    This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4-4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation. PMID:26029948

  10. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Vytautas Ostasevicius

    2015-05-01

    Full Text Available This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

  11. Numerical simulation of cantilevered ramp injector flow fields for hypervelocity fuel/air mixing enhancement

    Science.gov (United States)

    Schumacher, Jurgen Christian

    Increasing demand for affordable access to space and high speed terrestrial transport has spawned research interest into various air-breathing hypersonic propulsion systems. Propulsion concepts such as the supersonic combustion ramjet (scramjet) and the shock-induced combustion ramjet (shcramjet) utilize oxygen freely available in the atmosphere and thereby substantially reduce the weight penalty of on-board oxidizer tankage used in rocket based systems. Of key importance to the ultimate success of an air-breathing concept is the ability to efficiently mix the fuel with atmospheric air. In the case of a hypersonic air-breather the challenge is accentuated due to the requirement of supersonic combustion. Flow velocities through the combustor on the order of thousands of meters per second provide the fuel and air with only a brief time to adequately combine. Contemporary mixing augmentation methods to address this issue have focused on fuel injection devices which promote axial vortices to enhance the mixing process. Much research effort has been expended on investigation of ramp injectors for this purpose. The present study introduces a new ramp injector design, based on the conventional ramp injector, dubbed the cantilevered ramp injector. A two-pronged numerical approach was employed to investigate the mixing performance and characteristics of the cantilevered injector consisting of, (1) comparison with conventional designs and (2) a parametric study of various cantilevered injector geometries. A laminar, three-dimensional, multispecies flowsolver was developed in generalized coordinates to solve the Navier-Stokes equations for the flow fields of injected H2 into high-enthalpy air. The scheme consists of an upwind TVD scheme for discretization of the convective fluxes coupled with a semi-implicit LU-SGS scheme for temporal discretization. Through analysis of the numerical solutions, it has been shown that the cantilevered ramp injector is a viable fuel injection

  12. Material Transport and Synthesis by Cantilever-free Scanning Probe Lithography

    Science.gov (United States)

    Liao, Xing

    Reliably synthesizing and transporting materials in nanoscale is the key question in many fields of nanotechnology. Cantilever-free scanning probe lithography, by replacing fragile and costly cantilevers with a robust and low cost elastomeric structure, fundamentally solved the low-throughput nature of scanning probe lithography, which has great potential to be a powerful and point-of-use tool for high throughput synthesis of various kinds of nanomaterials. Two nanolithographic methods, polymer pen lithography (PPL) and beam pen lithography (BPL), have been developed based on the cantilever-free architecture to directly deliver materials and transfer energy to substrates, respectively. The first portion of my thesis, including chapter two and chapter three, addresses major challenges remaining in the cantilever-free scanning probe lithographic techniques. Chapter two details the role of contact force in polymer pen lithography. A geometric model was developed to quantitatively explain the relationship between the z-piezo extension, the contact force and the resulted feature size. With such a model, force can be used as the in-situ feedback during the patterning and a new method for leveling the pen arrays was developed, which utilizes the total force between the pen arrays and the surface to achieve leveling with a tilt of less than 0.004°. In chapter three, massively multiplexed near-field photolithography has been demonstrated by combining BPL with a batch method to fabricate nanometer scale apertures in parallel fashion and a strategy to individually actuation of each pen in the pen array are discussed. This transformative combination enables one to writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures, creating a unified tool for constructing and studying nanomaterials. The second portion of this thesis focuses on applications of cantilever-free scanning

  13. Design and Experimental Implementation of a Beam-Type Twin Dynamic Vibration Absorber for a Cantilevered Flexible Structure Carrying an Unbalanced Rotor: Numerical and Experimental Observations

    OpenAIRE

    Abdullah Özer; Mojtaba Ghodsi; Akio Sekiguchi; Ashraf Saleem; Mohammed Nasser Al-Sabari

    2015-01-01

    This paper presents experimental and numerical results about the effectiveness of a beam-type twin dynamic vibration absorber for a cantilevered flexible structure carrying an unbalanced rotor. An experimental laboratory prototype setup has been built and implemented in our laboratory and numerical investigations have been performed through finite element analysis. The proposed system design consists of a primary cantilevered flexible structure with an attached dual-mass cantilevered secondar...

  14. Colloid probes with increased tip height for higher sensitivity in friction force microscopy and less cantilever damping in dynamic force microscopy.

    Science.gov (United States)

    Schmutz, Jan-Erik; Schäfer, Marcus M; Hölscher, Hendrik

    2008-02-01

    We present a method how to glue small spheres to atomic force microscope cantilevers. In difference to an often used approach where the sphere is glued to a tipless cantilever, we suggest to mount small spheres to a conventional cantilever with integrated tips modified by a focused ion beam. In this way it is possible to manufacture a spherical probe with increased tip height which enhances the sensitivity in friction force microscopy and reduces the cantilever damping in dynamic force microscopy. By milling cavities for the spheres at the tip apex the colloid particles can be attached at defined positions and contamination with glue can be prevented. PMID:18315335

  15. AFM lithography for the definition of nanometre scale gaps: application to the fabrication of a cantilever-based sensor with electrochemical current detection

    Science.gov (United States)

    Villarroya, María; Pérez-Murano, Francesc; Martín, Cristina; Davis, Zachary; Boisen, Anja; Esteve, Jaume; Figueras, Eduard; Montserrat, Josep; Barniol, Núria

    2004-07-01

    The concept, design and fabrication of a cantilever-based sensor operating in liquid for biochemical applications are reported. A novel approach for detecting the deflection of a functionalized cantilever is proposed. It consists of detecting the change of the electrochemical current level when a voltage is applied between a deflecting cantilever, acting as one of the electrodes, and a reference fixed electrode placed in close proximity to the free extreme of the cantilever. The detection is possible since the distance between the two electrodes is smaller than 50 nm. The sensor is fabricated by using a combination of MEMS technology and AFM-based lithography.

  16. Calibration of measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy using a contact detection method

    International Nuclear Information System (INIS)

    An accurate experimental method is proposed for on-spot calibration of the measurement sensitivities of multiple micro-cantilever dynamic modes in atomic force microscopy. One of the key techniques devised for this method is a reliable contact detection mechanism that detects the tip-surface contact instantly. At the contact instant, the oscillation amplitude of the tip deflection, converted to that of the deflection signal in laser reading through the measurement sensitivity, exactly equals to the distance between the sample surface and the cantilever base position. Therefore, the proposed method utilizes the recorded oscillation amplitude of the deflection signal and the base position of the cantilever at the contact instant for the measurement sensitivity calibration. Experimental apparatus along with various signal processing and control modules was realized to enable automatic and rapid acquisition of multiple sets of data, with which the calibration of a single dynamic mode could be completed in less than 1 s to suppress the effect of thermal drift and measurement noise. Calibration of the measurement sensitivities of the first and second dynamic modes of three micro-cantilevers having distinct geometries was successfully demonstrated. The dependence of the measurement sensitivity on laser spot location was also experimentally investigated. Finally, an experiment was performed to validate the calibrated measurement sensitivity of the second dynamic mode of a micro-cantilever.

  17. An elastography method based on the scanning contact resonance of a piezoelectric cantilever

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Ji; Li, Faxin, E-mail: lifaxin@pku.edu.cn [State Key Lab for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China and HEDPS, Center for Applied Physics and Technologies, Peking University, Beijing 100871 (China)

    2013-12-15

    Purpose: Most tissues may become significantly stiffer than their normal states when there are lesions inside. The tissue's modulus can then act as an identification parameter for clinic diagnosis of tumors or fibrosis, which leads to elastography. This study introduces a novel elastography method that can be used for modulus imaging of superficial organs. Methods: This method is based on the scanning contact-resonance of a unimorph piezoelectric cantilever. The cantilever vibrates in its bending mode with the tip pressed tightly on the sample. The contact resonance frequency of the cantilever-sample system is tracked at each scanning point, from which the sample's modulus can be derived based on a beam dynamic model and a contact mechanics model. Scanning is performed by a three-dimensional motorized stage and the whole system is controlled by a homemade software program based on LabVIEW. Results: Testing onin vitro beef tissues indicates that the fat and the muscle can be easily distinguished using this system, and the accuracy of the modulus measurement can be comparable with that of nanoindentation. Imaging on homemade gelatin phantoms shows that the depth information of the abnormalities can be qualitatively obtained by varying the pressing force. The detection limit of this elastography method is specially examined both experimentally and numerically. Results show that it can detect the typical lesions in superficial organs with the depth of several centimeters. The lateral resolution of this elastography method/system is better than 0.5 mm, and could be further enhanced by using more scanning points. Conclusions: The proposed elastography system can be regarded as a sensitive palpation robot, which may be very promising in early diagnosis of tumors in superficial organs such as breast and thyroid.

  18. A numerical method for determining the natural vibration characteristics of rotating nonuniform cantilever blades

    Science.gov (United States)

    White, W. F., Jr.; Malatino, R. E.

    1975-01-01

    A method is presented for determining the free vibration characteristics of a rotating blade having nonuniform spanwise properties and cantilever boundary conditions. The equations which govern the coupled flapwise, chordwise, and torsional motion of such a blade are solved using an integrating matrix method. By expressing the equations of motion and matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the equations are formulated into an eigenvalue problem whose solutions may be determined by conventional methods. Computer results are compared with experimental data.

  19. Dynamic crack propagation and arrest in orthotropic DCB fiber composite specimens. [Double Cantilever Beam

    Science.gov (United States)

    Williams, J. H., Jr.; Lee, S. S.; Kousiounelos, P. N.

    1981-01-01

    An orthotropic double cantilever beam (DCB) model is used to study dynamic crack propagation and arrest in 90 deg unidirectional Hercules AS/3501-6 graphite fiber epoxy composites. The dynamic fracture toughness of the composite is determined from tests performed on the long-strip specimen and DCB crack arrest experiments are conducted. By using the dynamic fracture toughness in a finite-difference solution of the DCB governing partial differential equations, a numerical solution of the crack propagation and arrest events is computed. Excellent agreement between the experimental and numerical crack arrest results are obtained.

  20. Cantilever Beam Equation for Almost Arbitrary Deflections: Derivation and Worked Examples

    CERN Document Server

    Berkopec, Aleš

    2014-01-01

    We derived a non-linear 4th-order ordinary differential equation the solutions of which lead to the exact shapes of the cantilever beam. The result of the equation in a non-dimensional form was found to depend on two parameters only: the angle of the beam at the fixed end, and the parameter encompassing the material characteristics and geometry of the beam. The parameter space was explored in detail and the results were used to suggest the areas in which they could be applied.

  1. CRACK IDENTIFICATION IN STEPPED CANTILEVER BEAM COMBINING WAVELET ANALYSIS WITH TRANSFORM MATRIX

    Institute of Scientific and Technical Information of China (English)

    Weiwei Zhang; Zhihua Wang; Hongwei Ma

    2009-01-01

    This paper illustrates the crack identification method combining wavelet analysis with transform matrix. Firstly, the fundamental vibration mode was applied to wavelet analysis. The crack location was found by the peaks of the wavelet coefficients. Secondly, based on the identified crack locations, a simple transform matrix method requiring only the first two tested natural frequencies was used to further identify the crack depth. The present method can be used for crack identification in a complex structure. Numerical results of crack identification of a stepped cantilever beam show that the suggested method is feasible.

  2. Bandwidth increasing mechanism by introducing a curve fixture to the cantilever generator

    Science.gov (United States)

    Liu, Weiqun; Liu, Congzhi; Ren, Bingyu; Zhu, Qiao; Hu, Guangdi; Yang, Weiqing

    2016-07-01

    A nonlinear wideband generator architecture by clamping the cantilever beam generator with a curve fixture is proposed. Devices with different nonlinear stiffness can be obtained by properly choosing the fixture curve according to the design requirements. Three available generator types are presented and discussed for polynomial curves. Experimental investigations show that the proposed mechanism effectively extends the operation bandwidth with good power performance. Especially, the simplicity and easy feasibility allow the mechanism to be widely applied for vibration generators in different scales and environments.

  3. Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The bending problem of a functionally graded anisotropic cantilever beam subjected to thermal and uniformly distributed load is investigated, with material parameters being arbitrary functions of the thickness coordinate. The heat conduction problem is treated as a 1D problem through the thickness. Based on the elementary formulations for plane stress problem, the stress function is assumed to be in the form of polynomial of the longitudinal coordinate variable, from which the stresses can be derived.The stress function is then determined completely with the compatibility equation and boundary conditions. A practical example is presented to show the application of the method.

  4. A Sub-$\\rm \\lambda^{3}$-Volume Cantilever-based Fabry-P\\'erot Cavity

    CERN Document Server

    Kelkar, Hrishikesh; Martín-Cano, Diego; Hoffmann, Björn; Christiansen, Silke; Götzinger, Stephan; Sandoghdar, Vahid

    2015-01-01

    We report on the realization of an open plane-concave Fabry-P\\'erot resonator with a mode volume of $\\lambda^3/2$ at optical frequencies. We discuss some of the unconventional features of this new microcavity regime and show that the ultrasmall mode volume allows us to detect cavity resonance shifts induced by single nanoparticles even at quality factors as low as $120$. Being based on low-reflectivity micromirrors fabricated on a silicon cantilever, our experimental arrangement provides broadband operation, tunability of the cavity resonance, lateral scanning and promise for optomechanical studies.

  5. Application of GRASP (General Rotorcraft Aeromechanical Stability Program) to nonlinear analysis of a cantilever beam

    Science.gov (United States)

    Hinnant, Howard E.; Hodges, Dewey H.

    1987-01-01

    The General Rotorcraft Aeromechanical Stability Program (GRASP) was developed to analyse the steady-state and linearized dynamic behavior of rotorcraft in hovering and axial flight conditions. Because of the nature of problems GRASP was created to solve, the geometrically nonlinear behavior of beams is one area in which the program must perform well in order to be of any value. Numerical results obtained from GRASP are compared to both static and dynamic experimental data obtained for a cantilever beam undergoing large displacements and rotations caused by deformations. The correlation is excellent in all cases.

  6. Characterization of Interlaminar Crack Growth in Composites with the Double Cantilever Beam Specimen

    Science.gov (United States)

    Hunston, D. L.

    1984-01-01

    A project to examine the double cantilever beam specimen as a quantitative test method to assess the resistance of various composite materials to interlaminar crack growth is discussed. A second objective is to investigate the micromechanics of failure for composites with tough matrix resins from certain generic types of polymeric systems: brittle thermosets, toughened thermosets, and thermoplastics. Emphasis is given to a discussion of preliminary results in two areas: the effects of temperature and loading rate for woven composites, and the effects of matrix toughening in woven and unidirectional composites.

  7. Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry

    Science.gov (United States)

    Macon, David J.

    2006-01-01

    An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.

  8. Hydrogen Gas Sensors Fabricated on Atomically Flat 4H-SiC Webbed Cantilevers

    Science.gov (United States)

    Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.; Evans, Laura J.; Chen, Liang-Yu; Hunter, Gary W.; Androjna, Drago

    2007-01-01

    This paper reports on initial results from the first device tested of a "second generation" Pt-SiC Schottky diode hydrogen gas sensor that: 1) resides on the top of atomically flat 4H-SiC webbed cantilevers, 2) has integrated heater resistor, and 3) is bonded and packaged. With proper selection of heater resistor and sensor diode biases, rapid detection of H2 down to concentrations of 20 ppm was achieved. A stable sensor current gain of 125 +/- 11 standard deviation was demonstrated during 250 hours of cyclic test exposures to 0.5% H2 and N2/air.

  9. Wind Pressure Characteristics at Windward Side of Long-Span Cantilevered Roof by Wind Tunnel Test

    Institute of Scientific and Technical Information of China (English)

    XIAN Rong; LIAO Hai-li; LI Ming-shui

    2009-01-01

    A rigid mode of long-span cantilevered roof was tested in wind tunnel.By analyzing the relation between wind angle and wind pressure coefficient and the relation between wind angle and wind shape factor,we found that 90° is the most disadvantageous wind angle.Furthermore,the fluctuation of wind pressure at the windward edge was reflected by power spectrum density (PSD) and coherence function.The correlation coefficients of measuring points on outer and inner surfaces verifys that the largest lift force was produced at 90°.

  10. Analytical solution for functionally graded anisotropic cantilever beam subjected to linearly distributed load

    Institute of Scientific and Technical Information of China (English)

    HUANG De-jin; DING Hao-jiang; CHEN Wei-qiu

    2007-01-01

    The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation.The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.

  11. Analysis of Dual-beam Asymmetrical Torsional Bi-Material Cantilever for Temperature Sensing Applications

    CERN Document Server

    Conwell, Matthew; McKinley, Ian; Shi, Xiaoyang

    2012-01-01

    An extremely sensitive temperature measurement MEMS device is developed based on the principle of structural deflection in a bi-material cantilever caused by a difference in thermal expansion coefficients. A dual-beam asymmetrical geometry is used to produce a torsional response from the device. An analytical model is developed to predict the performance and optimize the free parameters of the device. In this work, it is performed to analyze the flexural and torsional eigenfrequencies as well as confirm the theoretical predictions of DC and AC response. Lastly, a procedure is developed to allow fabrication of the device using equipment available in the Columbia University clean room.

  12. ACTIVE CONTROL OF A FLEXIBLE CANTILEVER PLATE WITH MULTIPLE TIME DELAYS

    Institute of Scientific and Technical Information of China (English)

    Longxiang Chen; Ji Pan; Guoping Cai

    2008-01-01

    Active control of a flexible cantilever plate with multiple time delays is investigated using the discrete optimal control method.A controller with multiple time delays is presented.In this controller,time delay effect is incorporated in the mathematical model of the dynamic system throughout the control design and no approximations and assumptions are made in the controller derivation,so the system stability is easily guaranteed.Furthermore,this controller is available for both small time delays and large time delays.The feasibility and efficiency of the proposed controller are verified through numerical simulations in the end of this paper.

  13. Laser spot position dependent photothermal mode cooling of a micro-cantilever

    CERN Document Server

    Fu, Hao; Liu, Yong; Chu, Jiaru; Cao, Gengyu

    2011-01-01

    We explore the laser spot position (LSP) dependent photothermal mode cooling of a micro-cantilever in a Fabry-P\\'erot (FP) cavity. Depending on the LSP along the lever, photothermal coupling to the first two mechanical modes can be either parallel or anti-parallel. This LSP dependent behavior is analyzed theoretically by a simple model, which is in quantitatively agreement with our experimental observation. From simulation, the parallel and anti-parallel coupling region is identified along the lever. We conclude that a more efficient mode cooling may be achieved in the parallel coupling region.

  14. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.;

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material....... It provides mechanical support but it also reduces the power output. Our device replaces the support with another layer of the piezoelectric material, and with the absence of an inactive mechanical support all of the stresses induced by the vibrations will be harvested by the active piezoelectric elements....

  15. Three-dimensional elastic analysis of a composite double cantilever beam specimen

    Science.gov (United States)

    Raju, I. S.; Shivakumar, K. N.; Crews, J. H., Jr.

    1988-01-01

    Attention is given to the stresses and the strain energy release rate along the delamination front in the present three-dimensional elastic analysis of a 24-ply, cocured double-cantilever beam specimen by means of 20-noded parabolic-isoparametric finite elements. At the free surface, the strain energy release rate was found to be substantially smaller than the plane strain value; this is suggested to be due to the free-surface effect that exists where the delamination meets the surface edge.

  16. Compact FBG diaphragm accelerometer based on L-shaped rigid cantilever beam

    Institute of Scientific and Technical Information of China (English)

    Yinyan Weng; Xueguang Qiao; Zhongyao Feng; Manli Hu; Jinghua Zhang; YangYang

    2011-01-01

    A compact fiber Bragg grating (FBG) diaphragm accelerometer based on L-shaped rigid cantilever beam is proposed and experimentally demonstrated. The sensing system is based on the integration of a flat diaphragm and an L-shaped rigid cantilever beam. The FBG is pre-tensioned and the two side points are fixed, efficiently avoiding the unwanted chirp effect of grating. Dynamic vibration measurement shows that the proposed FBG diaphragm accelerometer provides a wide frequency response range (0-110 Hz) and an extremely high sensitivity (106.5 pm/g), indemnifying it as a good candidate for embedding structural health monitoring and seismic wave measurement.%A compact fiber Bragg grating (FBG) diaphragm accelerometer based on L-shaped rigid cantilever beam is proposed and experimentally demonstrated.The sensing system is based on the integration of a flat diaphragm and an L-shaped rigid cantilever beam.The FBG is pre-tensioned and the two side points are fixed,efficiently avoiding the unwanted chirp effect of grating.Dynamic vibration measurement shows that the proposed FBG diaphragm accelerometer provides a wide frequency response range (0-110 Hz) and an extremely high sensitivity (106.5 pm/g),indentifying it as a good candidate for embedding structural health monitoring and seismic wave measurement.In the past few decades,accelerometers based on fiber Bragg grating (FBG) have attracted a great deal of interest from researchers and engineers because they play a vital role in vibration measurements.In recent years,FBG accelerometers have been more and more applied in structural health monitoring[1-3) and seismic wave measurement[4-6].This study concerns about the development of geophones composed of FBG accelerometers in seismic exploration.The main frequency of geophones in seismic wave measurement of oil and gas exploration is usually below 100 Hz.An FBG-based accelerometer consisting of a mass resting on a layer of compliant material supported by a rigid base plate

  17. Finite element vibration analysis of a partially covered cantilever beam with concentrated tip mass

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Mustafa [Department of Mechanical Engineering, Ataturk University, 25240 Erzurum (Turkey)]. E-mail: myaman@atauni.edu.tr

    2006-07-01

    The work presented in this paper is the theoretical investigation of the dynamical behavior of a cantilever beam, partially covered by damping and constraining layers, with concentrated mass at the free end. A finite element method is used in order to obtain the resonant frequencies and loss factors. The resonant frequencies and loss factors for different physical and geometrical parameters are determined. The variations of these two parameters are found to be strongly dependent on the geometrical and physical properties of the constraining layers and the mass ratio.

  18. Finite Element Analysis of Micro-cantilever Beam Experiments in UO2

    Science.gov (United States)

    Gong, Bowen

    Uranium Dioxide (UO2) is a significant nuclear fission fuel, which is widely used in nuclear reactors. Understanding the influence of microstructure on thermo-mechanical behavior of UO2 is extremely important to predict its performance. In particular, evaluating mechanical properties, such as elasticity, plasticity and creep at sub-grain length scales is key to developing this understanding as well as building multi-scale models of fuel behavior with predicting capabilities. In this work, modeling techniques were developed to study effects of microstructure on Young's modulus, which was selected as a key representative property that affects overall mechanical behavior, using experimental data obtained from micro-cantilever bending testing as benchmarks. Beam theory was firstly introduced to calculate Young's modulus of UO2 from the experimental data and then three-dimensional finite element models of the micro-cantilever beams were constructed to simulate bending tests in UO2 at room temperature. The influence of the pore distribution was studied to explain the discrepancy between predicted values and experimental results. Results indicate that results of tests are significantly affected by porosity given that both pore size and spacing in the samples are of the order of the micro-beam dimensions. Microstructure reconstruction was conducted with images collected from three-dimensional serial sectioning using focused ion beam (FIB) and electron backscattering diffraction (EBSD) and pore clusters were placed at different locations along the length of the beam. Results indicate that the presence of pore clusters close to the substrate, i.e., the clamp of the micro-cantilever beam, has the strongest effect on load-deflection behavior, leading to a reduction of stiffness that is the largest for any location of the pore cluster. Furthermore, it was also found from both numerical and i analytical models that pore clusters located towards the middle of the span and close

  19. SEM in situ MiniCantilever Beam Bending of U-10Mo/Zr/Al Fuel Elements

    Energy Technology Data Exchange (ETDEWEB)

    Mook, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baldwin, Jon K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Ricardo M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-06-16

    In this work, the fracture behavior of Al/Zr and Zr/dU-10Mo interfaces was measured via the minicantilever bend technique. The energy dissipation rates were found to be approximately 3.7-5 mj/mm2 and 5.9 mj/mm2 for each interface, respectively. It was found that in order to test the Zr/U-10Mo interface, location of the hinge of the cantilever was a key parameter. While this test could be adapted to hot cell use through careful alignment fixturing and measurement of crack lengths with an optical microscope (as opposed to SEM, which was used here out of convenience), machining of the cantilevers via MiniMill in such a way as to locate the interfaces at the cantilever hinge, as well as proper placement of a femtosecond laser notch will continue to be key challenges in a hot cell environment.

  20. Constitutive relationship of ionic polymer-metal composite and static response character of its cantilever setup to voltage

    Institute of Scientific and Technical Information of China (English)

    TANG Hua-ping; NIE Tuo; TANG Yun-jun; YIN Chen-feng; TANG Chun-xi; WANG Qiao-yi

    2008-01-01

    As a new ionic polymer-metal composite (IPMC) for artificial muscle, the mechanical performance parameters and the relationship between the deformation and the electrical parameters of the IPMC were studied. With the digital speckle correlation method, the constitutive relationship of the IPMC was confirmed. With non-contact photography measurement, a cantilever setup was designed to confirm the relationship between the deformation of the IPMC film and the applied voltage. The relationship curve of tip displacement of the IPMC cantilever setup vs the voltage was achieved. The results indicate that the IPMC is isotropic, its elastic modulus is 232 MPa and Poisson ratio is 0.163. The curve achieved from the test of the tip displacement of the IPMC cantilever setup shows that the tip displacement reaches the maximum when the stimulated voltage is 5 V. And the tip displacement descends largely when the frequency of the applied voltage is between 30 mHz and 100 mHz.

  1. Fabrication of ionic liquid thin film by nano-inkjet printing method using atomic force microscope cantilever tip

    International Nuclear Information System (INIS)

    We demonstrate the fabrication of thin films of ionic liquid (IL), 1-butyl-3-methyl-imidazolium tetrafluoborate, by nano-inkjet printing method using an atomic force microscope (AFM) cantilever. The IL filled in a pyramidal hollow of the AFM cantilever tip was extracted from an aperture at the bottom of the hollow and deposited onto a Pt substrate when the bias voltage was applied between the cantilever and the substrate. We succeeded in fabricating IL thin films with a thickness of 4 nm. The areas and thicknesses of IL thin films were controlled by the fabrication conditions in this method, which is also useful for the investigations of nanometer-scale properties of ionic liquid.

  2. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NARCIS (Netherlands)

    Irimia, D.; Dobrikov, D.; Kortekaas, R.; Voet, H.; Ende, D.A. van den; Groen, W.A.; Janssen, M.H.M.

    2009-01-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms t

  3. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    International Nuclear Information System (INIS)

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8–12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed–fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than −25 dB and an insertion loss of around 0.1 dB at 8–12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW−1 at 8, 10 and 12 GHz, respectively. (paper)

  4. Height-tapered double cantilever beam specimen for study of rate effects on fracture toughness of composites

    Science.gov (United States)

    Yaniv, Gershon; Daniel, Isaac M.

    1988-01-01

    Loading rate effects on the mode I delamination fracture toughness of AS4/3501-6 graphite/epoxy are presently studied by means of a height-tapered double-cantilever beam specimen whose height contour is designed to furnish a slightly decreasing compliance with increasing crack length, in order to yield a stable and smooth crack propagation at high loading rates. This specimen geometry also allows much higher crack propagation velocities to be obtained with either uniform or width-tapered double cantilever beam specimens.

  5. Evaluation of the split cantilever beam for Mode 3 delamination testing

    Science.gov (United States)

    Martin, Roderick H.

    1989-01-01

    A test rig for testing a thick split cantilever beam for scissoring delamination (mode 3) fracture toughness was developed. A 3-D finite element analysis was conducted on the test specimen to determine the strain energy release rate, G, distribution along the delamination front. The virtual crack closure technique was used to calculate the G components resulting from interlaminar tension, GI, interlaminar sliding shear, GII, and interlaminar tearing shear, GIII. The finite element analysis showed that at the delamination front no GI component existed, but a GII component was present in addition to a GIII component. Furthermore, near the free edges, the GII component was significantly higher than the GIII component. The GII/GIII ratio was found to increase with delamination length but was insensitive to the beam depth. The presence of GII at the delamination front was verified experimentally by examination of the failure surfaces. At the center of the beam, where the failure was in mode 3, there was significant fiber bridging. However, at the edges of the beam where the failure was in mode 3, there was no fiber bridging and mode 2 shear hackles were observed. Therefore, it was concluded that the split cantilever beam configuration does not represent a pure mode 3 test. The experimental work showed that the mode 2 fracture toughness, GIIc, must be less than the mode 3 fracture toughness, GIIIc. Therefore, a conservative approach to characterizing mode 3 delamination is to equate GIIIc to GIIc.

  6. Evaluation of the split cantilever beam for mode III delamination testing

    Science.gov (United States)

    Martin, Roderick, H.

    1991-01-01

    A test rig for testing a thick split cantilever beam for scissoring delamination (mode 3) fracture toughness was developed. A 3-D finite element analysis was conducted on the test specimen to determine the strain energy release rate, G, distribution along the delamination front. The virtual crack closure technique was used to calculate the G components resulting from interlaminar tension, GI, interlaminar sliding shear, GII, and interlaminar tearing shear, GIII. The finite element analysis showed that at the delamination front no GI component existed, but a GII component was present in addition to a GIII component. Furthermore, near the free edges, the GII component was significantly higher than the GIII component. The GII/GIII ratio was found to increase with delamination length but was insensitive to the beam depth. The presence of GII at the delamination front was verified experimentally by examination of the failure surfaces. At the center of the beam, where the failure was in mode 3, there was significant fiber bridging. However, at the edges of the beam where the failure was in mode 3, there was no fiber bridging and mode 2 shear hackles were observed. Therefore, it was concluded that the split cantilever beam configuration does not represent a pure mode 3 test. The experimental work showed that the mode 2 fracture toughness, GIIc, must be less than the mode 3 fracture toughness, GIIIc. Therefore, a conservative approach to characterizing mode 3 delamination is to equate GIIIc to GIIc.

  7. Piezoceramic Cantilever Sensor Design for Weak-Impact Detection on Plates

    Directory of Open Access Journals (Sweden)

    Young-Sup Lee

    2012-01-01

    Full Text Available A piezoelectric cantilever type sensor for locating the precise weak-impact or touch position on a plate is presented in this paper. Since the importance of human-computer interface such as a touch panel system has been rapidly increasing recently, this study could suggest an appropriate sensor for the detection of a weak-impact point effectively and accurately for such a system. This sensor detects the out-of-plane vibration of a panel when a touch with a finger or pen is applied on it. The sensor is made with a steel beam and a single crystal PMN-PT patch is bonded on the beam, which is designed to detect the base vibration of the panel. The sensor was designed, manufactured to verify the detect ability of a weak-impact and attached on two different plates of a glass of 400 × 400 × 4 mm and a wooden MDF of 600 × 600 × 9 mm. The experiment result of the sensor was compared with that of an accelerometer which can also be used for the same purpose and shows clear weak-impact responses with a narrow-band property at its resonant frequency. It is expected that the cantilever type sensor in this study could be applied to make a simple flat plate into a touch panel when the time difference of arrivals method is used to locate the weak-impact point.

  8. A High-Performance, Low-Cost Laser Shutter using a Piezoelectric Cantilever Actuator

    CERN Document Server

    Bowden, W; Baird, P E G; Gill, P

    2016-01-01

    We report the design and characterization of an optical shutter based on a piezoelectric cantilever. Compared to conventional electro-magnetic shutters, the device is intrinsically low power and acoustically quiet. The cantilever position is controlled by a high-voltage op-amp circuit for easy tuning of the range of travel, and mechanical slew rate, which enables a factor of 30 reduction in mechanical noise compared to a rapidly switched device. We achieve shuttering rise and fall times of 11 $\\mu$s, corresponding to mechanical slew rates of 1.3 $\\textrm{ ms}^{-1}$, with an timing jitter of less than 1 $\\mu$s. When used to create optical pulses, we achieve minimum pulse durations of 250 $\\mu$s. The reliability of the shutter was investigated by operating continuously for one week at 10 Hz switching rate. After this period, neither the shutter delay or actuation speed had changed by a notable amount. We also show that the high-voltage electronics can be easily configured as a versatile low-noise, high-bandwidt...

  9. 2D MEMS electrostatic cantilever waveguide scanner for potential image display application

    Directory of Open Access Journals (Sweden)

    Gu Kebin

    2015-01-01

    Full Text Available This paper presents the current status of our micro-fabricated SU-8 2D electrostatic cantilever waveguide scanner. The current design utilizes a monolithically integrated electrostatic push-pull actuator. A 4.0 μm SU-8 rib waveguide design allows a relatively large core cross section (4μm in height and 20 μm in width to couple with existing optical fiber and a broad band single mode operation (λ= 0.7μm to 1.3μm with minimal transmission loss (85% to 87% output transmission efficiency with Gaussian beam profile input. A 2D scanning motion has been successfully demonstrated with two fundamental resonances found at 202 and 536 Hz in vertical and horizontal directions. A 130 μm and 19 μm, corresponding displacement and 0.062 and 0.009 rad field of view were observed at a +150V input. Beam divergence from the waveguide was corrected by a focusing GRIN lens and a 5μm beam diameter is observed at the focal plane. The transmission efficiency is low (~10% and cantilever is slightly under tensile residual stress due to inherent imperfection in the process and tooling in fabrication. However, 2D light scanning pattern was successfully demonstrated using 1-D push-pull actuation.

  10. Microsphere-based cantilevers for polarization-resolved and femtosecond SNOM

    Science.gov (United States)

    González Mora, C. A.; Hartelt, M.; Bayer, D.; Aeschlimann, M.; Ilin, E. A.; Oesterschulze, E.

    2016-04-01

    We present a cantilever-based near-field probe with integrated Mie scattering dielectric SiO2 microsphere (MSDM) for near-field optical imaging as well as femtosecond spectroscopy applications. In contrast to the state-of-the-art transmissive near-field probes, the MSDM reveals a transmission of almost unity known from far-field microscopy configuration. For proper handling, the microsphere is integrated at the apex of a conventional pyramidal aperture tip carried by an atomic force microscopy cantilever. It proved to be mechanically robust during the scanning process even if operating it in the contact mode. The spherical symmetry provides on the one hand a well-defined mechanical contact point with the sample irrespective of its inclination angle to the sample surface. On the other hand, the symmetry of the device preserves the polarization of light proving to be useful for the investigation of the polarization dependent behavior of plasmonic nanostructures. The high transmission combined with low dispersion renders spectroscopic investigations on the femtosecond timescale with a moderate lateral resolution. Second order autocorrelation experiments on a BBO crystal reveals a time resolution well below 100 {fs at } 191 {nm} spatial resolution.

  11. Modeling of a micro-cantilevered piezo-actuator considering the buffer layer and electrodes

    International Nuclear Information System (INIS)

    Considering the buffer layer and electrodes, we set up a piezoelectric multilayered cantilever model to evaluate the dynamic performance of the micro-cantilevered piezo-actuator (MCPA) based on Euler–Bernoulli beam theory without considering the residual stresses on the MCPA. Adopting the material and geometric parameters of the previous MCPAs with the different lengths, the first-mode resonance frequency–beam length, the tip deflection–voltage and harmonic response curves are simulated by using the traditional and proposed models, and the results based on the proposed model are much closer to the experimental and finite element simulation results than those based on the traditional model, indicating that the proposed model is valid for evaluating the actuation performances of the MCPA. The effect of the mechanical damping and bending stiffness on the actuation performance of the MCPA is also discussed. Using the proposed model, the dependences of the first-mode resonance frequency and tip deflection of the MCPA on non-piezoelectric layer thicknesses are analyzed at the certain driving voltage. The above-mentioned methods and conclusions can be used for the structure optimized design and performance improvement of MCPAs. (paper)

  12. Design and experimental research on cantilever accelerometer based on fiber Bragg grating

    Science.gov (United States)

    Xiang, Longhai; Jiang, Qi; Li, Yibin; Song, Rui

    2016-06-01

    Currently, an acceleration sensor based on fiber Bragg grating (FBG) has been widely used. A cantilever FBG accelerometer is designed. The simulation of this structure was implemented by finite element software (ANSYS) to analyze its sensing performance parameters. And then the optimized structure was produced and calibration experiments were conducted. On the basis of simulation, optical fiber is embedded in the inner tank of the vibrating mass, and Bragg grating is suspended above the cantilever structure, which can effectively avoid the phenomenon of center wavelength chirp or broadening, and greatly improve the sensitivity of the sensor. The experimental results show that the FBG accelerometer exhibits a sensitivity of 75 pm/(m/s2) (100 Hz) and dynamic range of 60 dB. Its linearity error is <2.31% and repeatability error is <2.76%. And the resonant frequency is ˜125 Hz. The simulation results match the experimental results to demonstrate the good performance of FBG accelerometer, which is expected to be used in the actual project.

  13. Fiber faceplate modulation readout in Bi-material micro-cantilever mirror array imaging system

    Science.gov (United States)

    Hui, Mei; Xia, Zhengzheng; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2016-05-01

    Fiber faceplate modulation was applied to read out the precise actuation of silicon-based, surface micro-fabricated cantilever mirrors array in optical imaging system. The faceplate was made by ordered bundles consisting of as many as ten thousands fibers. The transmission loss of an individual fiber in the bundles was 0.35dB/cm and the cross talk between neighboring fibers in the faceplate was about 15%. Micro-cantilever mirrors array (Focal-Plane Array (FPA)) which composed of two-level bi-material pixels, absorb incident infrared flux and result in a temperature increase. The temperature distribution of incident flux transformed to the deformation distribution in FPA which has a very big difference in coefficients of thermal expansion. FPA plays the roles of target sensing and has the characteristics of high detection sensitivity. Instead of general filter such as knife edge or pinhole, fiber faceplate modulate the beam reflected by the units of FPA. An optical readout signal brings a visible spectrum into pattern recognition system, yielding a visible image on monitor. Thermal images at room temperature have been obtained. The proposed method permits optical axis compact and image noise suppression.

  14. Force spectroscopy with BSA functionalized cantilevers on TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Jens; Marxer, Elena Eva Julianne; Bakowsky, Udo [Department of Pharmaceutics, Philipps-Universitaet Marburg, Ketzerbach 63, 35037 Marburg (Germany)

    2011-06-15

    The contact of nanoparticle surfaces with biomolecules often results in interactions. Proteins as one of the most important biomolecules adsorb on nanoparticle surfaces and can affect the way of recognition or of uptake in the cell. Even inhaled nanoparticles can be found on the luminal side of airways and alveoli, major lung tissue compartment or cells and within capillaries. They cross the cell membrane not by endocytotic processes, but by diffusion or adhesive interactions. Due to the possible interaction after inhalative exposure of inorganic nanoparticles with blood biomolecules we investigated the adhesion properties between different TiO{sub 2} nanoparticles and commercial silicon or BSA (as a model protein) modified cantilevers with atomic force microscopy (AFM). The characterization of the nanoparticles was done using laser doppler electrophoresis (LDE), dynamic light scattering (DLS) and transmission electron microscopy (TEM) for zeta potential and size. AFM was used to perform force measurements with unmodified tips and BSA functionalized tips. Adhesion measurements showed differences between the inorganic nanoparticles, regarding their ability to interact with the major serum compound BSA. Scheme of the adhesion measurements on TiO{sub 2} nanoparticles performed with unmodified and BSA modified cantilevers. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Stiffening and damping capacity of an electrostatically tuneable functional composite cantilever beam

    Science.gov (United States)

    Ginés, R.; Bergamini, A.; Motavalli, M.; Ermanni, P.

    2015-09-01

    The damping capacity of a novel composite film, designed to exhibit high dielectric strength and a high friction coefficient for an electrostatic tuneable friction damper, is tested on a cantilever beam. Such a system consists of a carbon fibre reinforced polymer stiffening element which is reversibly laminated onto a host structure with a dielectric material by means of electrostatic fields. Damping is achieved when the maximum shear at the interface between the stiffening element and structure exceeds the shear strength of the electrostatically laminated interface. The thin films tested consist of barium titanate particles and alumina platelets in an epoxy matrix. Their high dielectric constant and high coefficient of friction compared to a commercial available polymer film, polyvinylidene fluoride, lead to a reduction of the required electric field to stiffen and damp the cantilever beam. Reducing the operating voltage affects different aspects of the studied damper. The cost of possible applications of the frictional damper can be reduced, as the special components necessary at high voltages become redundant. Furthermore, the enhanced security positively affects the damping system’s appeal as an alternative damping method.

  16. Analysis of film strain and stress in a film-substrate cantilever system

    Institute of Scientific and Technical Information of China (English)

    BAI; Narsu

    2008-01-01

    The bending problem of a magnetic film-nonmagnetic substrate cantilever system is studied by using the principle of energy minimization. Emphasis is placed on the analysis of geometrical and physical parameter dependence of the neutral plane,internal film stress and strain of the cantilever system,and then the influence of such a parameter on the bending characteristic is presented. The results indicate,owing to the anisotropic expanding feature of the magnetostriction,that the neutral plane is generally anisotropic,and moves downwards rapidly with the increasing thickness ratio. Meanwhile,the bounding rigidity of substrate on the film will de-crease with the increasing thickness ratio,and thus release the film stress,i.e.,it decreases,but the film strain increases. The effect of Poisson’s ratio of the materi-als on the film strain,the stress and the neutral plane in the direction transverse to the magnetization is prominent. For the strain and the stress in the magnetization,however,the role of Poisson’s ratio is inconspicuous. This property is due to the initiative elongating (or contracting) feature of the magnetic film along its mag-netization.

  17. An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system

    Institute of Scientific and Technical Information of China (English)

    Hong-yan WANG; Xiao-biao SHAN; Tao XIE

    2012-01-01

    This paper presents a type of vibration energy harvester combining a piezoelectric cantilever and a single degree of freedom (SDOF) elastic system.The main function of the additional SDOF elastic system is to magnify vibration displacement of the piezoelectric cantilever to improve the power output.A mathematical model of the energy harvester is developed based on Hamilton's principle and Rayleigh-Ritz method.Furthermore,the effects of the structural parameters of the SDOF elastic system on the electromechanical outputs of the energy harvester are analyzed numerically.The accuracy of the output performance in the numerical solution is identified from the finite element method (FEM).A good agreement is found between the numerical results and FEM results.The results show that the power output can be increased and the frequency bandwidth can be improved when the SDOF elastic system has a larger lumped mass and a smaller damping ratio.The numerical results also indicate that a matching load resistance under the short circuit resonance condition can obtain a higher current output,and so is more suitable for application to the piezoelectric energy harvester.

  18. Efficiency improvement of a cantilever-type energy harvester using torsional vibration

    Science.gov (United States)

    Kim, In-Ho; Jang, Seon-Jun; Koo, Jeong-Hoi; Jung, Hyung-Jo

    2016-04-01

    In this paper, a piezoelectric vibrational energy harvester utilizing coupled bending and torsional vibrations is investigated. The proposed system consists of a cantilever-type substrate covered by the piezoelectric ceramic and a proof mass which is perpendicularly connected to the free end of the cantilever beam by a rigid bar. While the natural frequency and output voltage of the conventional system are affected by bending deformation of the piezoelectric plate, the proposed system makes use of its twisting deformation. The natural frequency of the device can be significantly decreased by manipulating the location of the proof mass on the rigid bar. In order to validate the performance of the proposed energy harvester, numerical simulations and vertical shaker tests are carried out. It is demonstrated that the proposed energy harvester can shift down its resonant frequency considerably and generate much higher output power than the conventional system. It is, therefore, concluded that the proposed energy harvester utilizing the coupled bending and torsional vibrations can be effectively applied to low-frequency vibration situations.

  19. Assessing the severity of fatigue crack using acoustics modulated by hysteretic vibration for a cantilever beam

    Science.gov (United States)

    He, Qingbo; Lin, Yin

    2016-05-01

    This paper investigates fatigue crack severity assessment using acoustics modulated by hysteretic vibration for a cantilever beam. In this study, a nonlinear oscillator system is constructed to induce the hysteretic frequency response of the cantilever beam in dynamics, and the hysteretic vibration is then used to modulate the acoustic waves to generate the vibro-acoustic modulation (VAM) effect. Through modulation of hysteretic vibration, the hysteretic response of the VAM can be achieved. The experimental results further validated that the VAM hysteresis phenomenon can be enhanced with the increase of crack severity owing to the change of beam's effective stiffness. Simulations in the proposed physical model explained the reason of enhancement of hysteresis phenomenon. Combined with nonlinear bistable structural model, a fatigue crack severity assessment approach was proposed by evaluating the hysteretic region (e.g., bandwidth or jumping frequency) in the vibration frequency response of the VAM effect. The reported study is valuable in building a monotonic relationship to assess the severity of fatigue crack by a nonlinear acoustics approach.

  20. Generation Performance of Variable Section Piezoelectric Unimorph Cantilever%变截面压电单晶梁发电性能研究

    Institute of Scientific and Technical Information of China (English)

    刘祥建

    2014-01-01

    With the aim to know about the generation performance of variable section piezoelectric unimorph cantilever ,the finite element simulation was performed to abtain the effect of structural parameters of the piezoelectric cantilever on generation performance .Some experiments were performed to verify the simulation results . The simulation results show that the output voltages of the piezoelectric cantilever increase as the thickness of the piezoelectric film and the length of the piezoelectric cantilever increase ,the output voltages of the piezoelectric cantilever decrease as the width of the piezoelectric cantilever increases ,the output voltages of the piezoelectric cantilever have a maximum in the variation of piezoelectric cantilever angle .Furthemore ,the piezoelectric cantilever with a beryllium bronze substrate is superior to the piezoelectric cantilever with a steel substrate .%为研究变截面悬臂梁形压电振动能量收集装置的发电能力,建立了变截面压电单晶梁的有限元计算模型,分析了压电梁结构参数对其发电能力的影响,并通过实验验证了有限元仿真结果。仿真结果表明,压电陶瓷片厚度和压电梁长度的增加将引起压电梁产生开路电压的升高;压电梁宽度的增加将引起压电梁产生开路电压的不断减小;压电梁夹角的增加将使得其开路电压先增大后减小;铍青铜基片压电梁要优于钢基片压电梁。

  1. Detection of Staphylococcus Enterotoxin B at Picogram Levels Using Piezoelectric-Excited Millimeter-Sized Cantilever Sensors

    Science.gov (United States)

    We report a highly sensitive and rapid method for thhe detection of Staphylocoiccus aureus enterotoxin B (SEB) at picogram levels using a piezolelectric-excited millimeter cantilever (PEMC) sensor. Affinity purified polyclonal antibody to staphylococcal enterotoxin B (anti-SEB) was immobilized on th...

  2. An ultra-sensitive DeltaR/R measurement system for biochemical sensors using piezoresistive micro-cantilevers.

    Science.gov (United States)

    Nag, Sudip; Kale, Nitin S; Rao, V; Sharma, Dinesh K

    2009-01-01

    Piezoresistive micro-cantilevers are interesting bio-sensing tool whose base resistance value (R) changes by a few parts per million (DeltaR) in deflected conditions. Measuring such a small deviation is always being a challenge due to noise. An advanced and reliable DeltaR/R measurement scheme is presented in this paper which can sense resistance changes down to 6 parts per million. The measurement scheme includes the half-bridge connected micro-cantilevers with mismatch compensation, precision op-amp based filters and amplifiers, and a lock-in amplifier based detector. The input actuating sine wave is applied from a function generator and the output dc voltage is displayed on a digital multimeter. The calibration is performed and instrument sensitivity is calculated. An experimental set-up using a probe station is discussed that demonstrates a combined performance of the measurement system and SU8-polysilicon cantilevers. The deflection sensitivity of such polymeric cantilevers is calculated. The system will be highly useful to detect bio-markers such as myoglobin and troponin that are released in blood during or after heart attacks. PMID:19964819

  3. All-thin-film PZT/FeGa Multiferroic Cantilevers and Their Applications in Switching Devices and Parametric Amplification

    Science.gov (United States)

    Wang, Yi; Onuta, Tiberiu-Dan; Long, Chris; Lofland, Samuel; Takeuchi, Ichiro

    2014-03-01

    We are investigating the characteristics of microfabricated PZT/FeGa multiferroic cantilevers. The cantilevers can be driven by AC or DC magnetic and electric field, and the device response can be read off as a piezo-induced voltage. We can use the multiple input parameters to operate the devices in a variety of manners for different applications. They include electromagnetic energy harvesting, pulse triggered nonlinear memory devices, and parametrically amplified ME sensors. Due to the competition of anisotropy and Zeeman energies, the mechanical resonant frequency of the cantilevers was found to follow a hysteresis behavior with DC bias magnetic field applied in the cantilever easy axis. We can also control and tune the occurrence of nonlinear bifurcation in the frequency spectrum. The resulting hysteresis in the frequency spectrum can be used to make switching devices, where the input can be DC electric and magnetic fields, as well as pulses of AC fields. We have also demonstrated parametric pumping of the response from an AC magnetic field using frequency-doubled AC electric field. The enhanced equivalent ME coefficient is as high as 10 million V/(cm*Oe), when the pumping voltage is very close to a threshold voltage. The quality factor also increases from 2000 to 80000 with pumping.

  4. Comparison of macrobend seismic optical fiber accelerometer and ferrule-top cantilever fiber sensor for vibration monitoring

    Science.gov (United States)

    Poczęsny, Tomasz; Prokopczuk, Krzysztof; Domański, Andrzej W.

    2012-04-01

    The paper presents the exemplary application and comparison of a macrobend seismic optical fiber accelerometer and ferrule-top cantilever fiber sensor for long distance vibration monitoring with use of typical telecommunication optical transmission systems including optical fibers, transmitters and receivers. Use of telecommunication optical systems allows developing cost-effective monitoring and sensing architecture. All-optical fiber sensors do not create any fire hazard due to transmitting low power light through the optical fibers and lack of electrically driven parts in sensing part. Optical fiber macrobend seismic sensor consists of single mode optical fiber bended into a loop of radius around few millimeters with attached small seismic mass around 0.3 grams. We achieve signal that is proportional to the geometrical deformation of the loop. The ferrule-top cantilever (made by Optics11 - Amsterdam, Netherlands) optical fiber sensor is fabricated on a rectangular 3 mm x 3mm x 7 mm glass ferrule equipped with a central borehole and laser curved cantilever with dimensions of 200 microns wide, 30 microns thick and around 3 mm long. Construction allows measuring bending of the cantilever. Both optical fiber sensors in this setup measure force and acceleration similar to the piezoelectric accelerometers. The advantage of these devices is insensitivity to electromagnetic interference because of all-optical sensor head. We compared parameters and measurement capabilities of both sensor types.

  5. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy.

    Science.gov (United States)

    Lai, Y W; Hamann, S; Ehmann, M; Ludwig, A

    2011-06-01

    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent.

  6. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

    Directory of Open Access Journals (Sweden)

    Tobias Meier

    2015-02-01

    Full Text Available We describe an atomic force microscope (AFM for the characterization of self-sensing tunneling magnetoresistive (TMR cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm3 is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm3. In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.

  7. Resonant frequency and sensitivity of a caliper formed with assembled cantilever probes based on the modified strain gradient theory.

    Science.gov (United States)

    Abbasi, Mohammad; Afkhami, Seyed E

    2014-12-01

    The resonant frequency and sensitivity of an atomic force microscope (AFM) with an assembled cantilever probe (ACP) is analyzed utilizing strain gradient theory, and then the governing equation and boundary conditions are derived by a combination of the basic equations of strain gradient theory and Hamilton's principle. The resonant frequency and sensitivity of the proposed AFM microcantilever are then obtained numerically. The proposed ACP includes a horizontal cantilever, two vertical extensions, and two tips located at the free ends of the extensions that form a caliper. As one of the extensions is located between the clamped and free ends of the AFM microcantilever, the cantilever is modeled as two beams. The results of the current model are compared with those evaluated by both modified couple stress and classical beam theories. The difference in results evaluated by the strain gradient theory and those predicted by the couple stress and classical beam theories is significant, especially when the microcantilever thickness is approximately the same as the material length-scale parameters. The results also indicate that at the low values of contact stiffness, scanning in the higher cantilever modes decrease the accuracy of the proposed AFM ACP. PMID:25205330

  8. Influence of cementation variables on fatigue of simulated two-unit cantilever resin-bonded fixed partial dentures

    NARCIS (Netherlands)

    A. van Dalen; A.J. Feilzer; C.J. Kleverlaan

    2008-01-01

    PURPOSE: To determine the influence of various combinations of surface pretreatment and luting cement on flexural fatigue limits of two-unit CoCr cantilever resin-bonded fixed partial dentures. METHODS: Cyclic fatigue tests were performed at 1 Hz on an ACTA fatigue tester. The staircase test method

  9. Characterization of epitaxial Pb(Zr,Ti)O3 thin films deposited by pulsed laser deposition on silicon cantilevers

    NARCIS (Netherlands)

    Nguyen, M.D.; Nazeer, H.; Karakaya, K.; Pham, S.V.; Steenwelle, R.; Dekkers, M.; Abelmann, L.; Blank, D.H.A.; Rijnders, G.

    2010-01-01

    This paper reports on the piezoelectric-microelectromechanical system micro-fabrication process and the behavior of piezoelectric stacks actuated silicon cantilevers. All oxide layers in the piezoelectric stacks, such as buffer-layer/bottom-electrode/film/top-electrode: YSZ/SrRuO\\3/Pb(Zr, Ti)\\3/SrRu

  10. Characterization of epitaxial Pb(Zr,Ti)O3 thin films deposited by pulsed laser deposition on silicon cantilevers

    NARCIS (Netherlands)

    Nguyen, M.D.; Nazeer, H.; Karakaya, K.; Pham, S.V.; Steenwelle, R.; Dekkers, M.; Abelmann, L.; Blank, D.H.A.

    2010-01-01

    This paper reports on the piezoelectric-microelectromechanical system micro-fabrication process and the behavior of piezoelectric stacks actuated silicon cantilevers. All oxide layers in the piezoelectric stacks, such as buffer-layer/bottom-electrode/film/top-electrode: YSZ/SrRuO3/Pb(Zr,Ti)3/SrRuO3,

  11. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shingo [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Uchihashi, Takayuki; Ando, Toshio [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2015-06-15

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α{sub 3}β{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ∼7 frames/s.

  12. A longitudinal thermal actuation principle for mass detection using a resonant micro -cantilever in a fluid medium

    DEFF Research Database (Denmark)

    Grigorov, Alexander; Davis, Zachary James; Rasmussen, Peter;

    2004-01-01

    We propose a new thermal actuation mechanical principle, which allows dynamic actuation in most media: air, water, etc. It is used to excite a cantilever, aiming to perform mass detection using resonance shifts, in place of the electrostatic or magnetic actuation that are normally used. It differs...... configuration, subject of investigation in the following paper. (C) 2004 Elsevier B.V. All rights reserved....

  13. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams

    Science.gov (United States)

    Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.

    2015-04-01

    In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized

  14. 激振底座与叠层芯片悬臂相互作用研究%Interaction between exciting base and cantilever of stacked chip

    Institute of Scientific and Technical Information of China (English)

    李进军; 韩雷

    2014-01-01

    A two-probe Laser Doppler Vibrometer (LDV)system was used for detecting the vibrations of the cantilever and the base.The velocity spectra of the cantilever and base were comparatively analysed,and then the dimensionless frequency response of the cantilever,and the phase difference between the cantilever and base were acquired,based on which the resonant frequency of the cantilever was estimated accarately.The effect of the cantilever resonance on the base vibration and the interaction between the two cantilevers were analysed.%利用动态频率扫描对叠层芯片进行激振,用双探头激光多普勒测振仪同时测量底座激振下悬臂叠层芯片底座及悬臂端速度,对比分析二者响应速度频谱获得两悬臂与底座相位差;分析悬臂共振时对底座影响及两悬臂相互作用关系,准确获得芯片悬臂端共振频率。该实验方案合理可行,对微结构动力学分析及精确数值仿真具有一定指导意义。

  15. Micromachined lead zirconium titanate thin-film-cantilever-based acoustic emission sensor with poly(N-isopropylacrylamide) actuator for increasing contact pressure

    Science.gov (United States)

    Feng, Guo-Hua; Chen, Wei-Ming

    2016-05-01

    This paper presents an innovative acousticemission (AE) sensor with a cantilever sensing structure. A hydrothermal lead zirconium titanate (PZT) film was deposited on the cantilever for AE sensing, and an SU8 micropillar at the free end of the cantilever served as an AE wave coupler; in addition, a poly(N-isopropylacrylamide)-based thermoresponsive actuator was integrated with the cantilever to increase the contact pressure exerted on the target. The AE sensor showed higher performance compared with an existing commercial AE sensor. Micromachining technology was used to fabricate AE sensors, and an array of four sensors was fabricated on a 50 μm thick titanium substrate of dimensions 15 mm × 15 mm. The piezoelectric properties of the hydrothermal PZT film were verified by electrically driving the cantilever and measuring the displacement; the piezoelectric constant d 31 of the cantilever was 2.43 pC N‑1. The output force of the sensing cantilever generated by activating the thermoresponsive actuator was determined. For an electrical power input of 2.5 W, the maximum force output at the SU8 micropillar was 1 N. This force corresponded to the application of a pressure of 1.4 MPa on the target. Pencil lead break tests were conducted to determine and compare the performance of the proposed AE sensor with commercial sensors. Here, experimental and theoretical discussions on the effect of the activation of the thermoresponsive actuator of the proposed AE sensor on AE detection are presented.

  16. Measurement of cantilever vibration using impedance-loaded surface acoustic wave sensor

    Science.gov (United States)

    Oishi, Masaki; Hamashima, Hiromitsu; Kondoh, Jun

    2016-07-01

    In this study, an impedance-loaded surface acoustic wave (SAW) sensor was demonstrated to monitor the vibration frequency. Commercialized pressure sensors and a variable capacitor were chosen as external sensors, which were connected to a reflector on a SAW device. As the reflection coefficient of the reflector depended on the impedance, the echo amplitude was influenced by changes in the impedance of the external sensor. The vibration frequency of the cantilever was determined by monitoring the echo amplitude of the SAW device. Moreover, the attenuation constant of an envelope was estimated. The results of our feasibility study indicate that the impedance-loaded SAW sensor can be applied as a detector for structural health monitoring.

  17. An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams

    Science.gov (United States)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1983-01-01

    An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.

  18. Sizing Single Cantilever Beam Specimens for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure

    Science.gov (United States)

    Ratcliffe, James G.

    2010-01-01

    This paper details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. The specific test method selected for the standardized test procedure utilizes a single cantilever beam (SCB) specimen configuration. The objective of the current work is to develop a method for establishing SCB specimen dimensions. This is achieved by imposing specific limitations on specimen dimensions, with the objectives of promoting a linear elastic specimen response, and simplifying the data reduction method required for computing the critical strain energy release rate associated with debonding. The sizing method is also designed to be suitable for incorporation into a standardized test protocol. Preliminary application of the resulting sizing method yields practical specimen dimensions.

  19. Experimental investigation of the cornering of a C40 x 14-21 cantilever aircraft tire

    Science.gov (United States)

    Dreher, R. C.; Tanner, J. A.

    1973-01-01

    An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to define the cornering characteristics of a size C40 x14-21 aircraft tire of cantilever design. These characteristics, which include the cornering-force and drag-force friction coefficients and self-alining torque, were obtained for the tire operating on dry, damp, and flooded runway surfaces over a range of yaw angles from 0 deg to 20 deg and at ground speeds of 5 to 100 knots, both with and without braking. The results of this investigation show that the cornering-force and drag-force friction coefficients and self-alining torque were influenced by the yaw angle, ground speed, brake torque, surface wetness, and the locked-wheel condition.

  20. Simulation of large motions of nonuniform beams in orbit. I - The cantilever beam

    Science.gov (United States)

    Levinson, D. A.; Kane, T. R.

    1981-01-01

    An algorithm is developed for producing numerical simulations of large motions of a nonuniform cantilever beam in orbit. Special emphasis is given to the effective formulation of equations of motion and to the use of the finite element method to construct modal functions. Finite element methods are used to generate modal functions in such a way as to permit a particularly harmonious relationship to be established between the disciplines of rigid body dynamics and structural analysis. Sufficient information is provided to enable a reader to create, with relatively little effort, his own simulation program; simulation results are reported, both to provide check cases for other investigators and to illustrate certain important facets of the behavior of flexible spacecraft.

  1. Impact Response of Cantilever Fiber Metal Laminate (FML Plates Using a Coupled Analytical-Numerical Method

    Directory of Open Access Journals (Sweden)

    Faramarz Ashenai Ghasemi

    2013-05-01

    Full Text Available In this study, dynamic response of cantilever Fiber Metal Laminate (FML plates subjected to the impact of a large mass is studied. Aluminum (Al sheets are placed instead of some Fiber Reinforced Plastic (FRP layers. The effect of the Al layers on contact force and deflection of the plates is investigated by considering the interaction between the impactor and the target in the impact analysis. A two degrees-of-freedom system consisting of springs-masses and finite element modeling of the ABAQUS/Explicit software were employed to model the interaction between the impactor and the target. The results indicate that some parameters like the layer sequence, mass and velocity of the impactor, mass of the target are important factors which affect the impact response of the plates.

  2. Sensitivity of inelastic response to numerical integration of strain energy. [for cantilever beam

    Science.gov (United States)

    Kamat, M. P.

    1976-01-01

    The exact solution to the quasi-static, inelastic response of a cantilever beam of rectangular cross section subjected to a bending moment at the tip is obtained. The material of the beam is assumed to be linearly elastic-linearly strain-hardening. This solution is then compared with three different numerical solutions of the same problem obtained by minimizing the total potential energy using Gaussian quadratures of two different orders and a Newton-Cotes scheme for integrating the strain energy of deformation. Significant differences between the exact dissipative strain energy and its numerical counterpart are emphasized. The consequence of this on the nonlinear transient responses of a beam with solid cross section and that of a thin-walled beam on elastic supports under impulsive loads are examined.

  3. Approximate study of the free vibrations of a cantilever anisotropic plate carrying a concentrated mass

    Science.gov (United States)

    Ciancio, P. M.; Rossit, C. A.; Laura, P. A. A.

    2007-05-01

    This study is concerned with the vibration analysis of a cantilevered rectangular anisotropic plate when a concentrated mass is rigidly attached to its center point. Based on the classical theory of anisotropic plates, the Ritz method is employed to perform the analysis. The deflection of the plate is approximated by a set of beam functions in each principal coordinate direction. The influence of the mass magnitude on the natural frequencies and modal shapes of vibration is studied for a boron-epoxy plate and also in the case of a generic anisotropic material. The classical Ritz method with beam functions as the spatial approximation proved to be a suitable procedure to solve a problem of this analytical complexity.

  4. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aichao; Li, Ping, E-mail: liping@cqu.edu.cn; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng [Research Center of Sensors and Instruments, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density at 170–206 Hz.

  5. Low-frequency vibration sensors based on a cascaded gapped cantilever

    Science.gov (United States)

    Hu, Y.; Tu, H.; Xu, Y.

    2016-09-01

    This paper reports the development of low-cost high-performance vibration sensors based on a cascaded asymmetric-gapped cantilever for low-frequency sensing. The cascaded structure is implemented to reduce the spring constant for a high sensitivity and simultaneously avoid the undesirable shear bending. A prototype with a proof mass of 40 g and an overall size of 124 mm × 39 mm × 5.1 mm (l × w × t) has been successfully constructed. The sensor body was made of aluminum and two lead zirconate titanate sheets were implemented as the sensing element. Based on a coherence method, a noise equivalent acceleration close to the theoretical value has been achieved at 35 Hz (~3 ng/√Hz). Finally, the prototype has been successfully demonstrated for ballistocardiogaph monitoring for both sitting and lying positions.

  6. Quasi-static and dynamical bending of a cantilever poroelastic beam

    Institute of Scientific and Technical Information of China (English)

    YANG Yi; LI Li; YANG Xiao

    2009-01-01

    Based on the theory of porous media, the quasi-static and dynamical bending of a cantilever poroelastic beam subjected to a step load at its free end is investigated, and the influences of its permeability on bending deformation is examined.The initial boundary value problems for dynamical and quasi-static responses are solved with the Laplace transform technique,and the deflections, the bending moments of the solid skeleton and the equivalent couples of the pore fluid pressure are shown in figures. It is shown that the dynamical and quasi-static behavior of the saturated poroelastic beam depends closely on the permeability conditions at the beam ends. Under the different permeability conditions, the deflections of the beam may oscillate or not. The Mandel-Cryer effect also exists in liquid-saturated poroelastic beams.

  7. Photo-thermo-mechanically actuated bending and snapping kinetics of liquid crystal elastomer cantilever

    International Nuclear Information System (INIS)

    A composite of liquid crystal elastomer (LCE) incorporated with carbon nanotubes (CNTs) can convert absorbed photon energy into thermal energy to trigger the phase transition of the LCE, resulting in photo-thermo-mechanically actuated devices. We model the transient temperature distribution and the bending kinetics of a straight cantilever beam actuator under the radiation of a laser diode (LD) light. Three possible bending modes of the beam for various LD light powers are identified. The temperature distribution and the bending modes are found to be in good agreement with the reported experimental observations. The underlying deformation mechanisms and bending modes are manifested by probing the stress evolution and propagation of nonzero stress regions during the bending process. For a beam that is initially slightly curved, we also predict the possibility of snap-through instability, and three typical phases of snapping are captured. This procedure paves the way for the design of LCE-based soft actuators. (paper)

  8. Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene.

    Science.gov (United States)

    Shim, Wooyoung; Brown, Keith A; Zhou, Xiaozhu; Rasin, Boris; Liao, Xing; Mirkin, Chad A

    2012-11-01

    Scanning probe instruments have expanded beyond their traditional role as imaging or "reading" tools and are now routinely used for "writing." Although a variety of scanning probe lithography techniques are available, each one imposes different requirements on the types of probes that must be used. Additionally, throughput is a major concern for serial writing techniques, so for a scanning probe lithography technique to become widely applied, there needs to be a reasonable path toward a scalable architecture. Here, we use a multilayer graphene coating method to create multifunctional massively parallel probe arrays that have wear-resistant tips of uncompromised sharpness and high electrical and thermal conductivities. The optical transparency and mechanical flexibility of graphene allow this procedure to be used for coating exceptionally large, cantilever-free arrays that can pattern with electrochemical desorption and thermal, in addition to conventional, dip-pen nanolithography. PMID:23086161

  9. ANALYSIS ON THE MAGNETO-ELASTIC-PLASTIC BUCKLING/SNAPPING OF CANTILEVER RECTANGULAR FERROMAGNETIC PLATES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping,and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.

  10. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    International Nuclear Information System (INIS)

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  11. Haptic sensing for MEMS with application for cantilever and Casimir effect

    CERN Document Server

    Calis, M

    2008-01-01

    This paper presents an implementation of the Cosserat theory into haptic sensing technologies for real-time simulation of microstructures. Cosserat theory is chosen instead of the classical theory of elasticity for a better representation of stress, especially in the nonlinear regime. The use of Cosserat theory leads to a reduction of the complexity of the modelling and thus increases its capability for real time simulation which is indispensable for haptic technologies. The incorporation of Cosserat theory into haptic sensing technology enables the designer to simulate in real-time the components in a virtual reality environment (VRE) which can enable virtual manufacturing and prototyping. The software tool created as a result of this methodology demonstrates the feasibility of the proposed model. As test demonstrators, a cantilever microbeam and microbridge undergoing bending in VRE are presented.

  12. Free Vibrations of a Cantilevered SWCNT with Distributed Mass in the Presence of Nonlocal Effect

    Directory of Open Access Journals (Sweden)

    M. A. De Rosa

    2015-01-01

    Full Text Available The Hamilton principle is applied to deduce the free vibration frequencies of a cantilever single-walled carbon nanotube (SWCNT in the presence of an added mass, which can be distributed along an arbitrary part of the span. The nonlocal elasticity theory by Eringen has been employed, in order to take into account the nanoscale effects. An exact formulation leads to the equations of motion, which can be solved to give the frequencies and the corresponding vibration modes. Moreover, two approximate semianalytical methods are also illustrated, which can provide quick parametric relationships. From a more practical point of view, the problem of detecting the mass of the attached particle has been solved by calculating the relative frequency shift due to the presence of the added mass: from it, the mass value can be easily deduced. The paper ends with some numerical examples, in which the nonlocal effects are thoroughly investigated.

  13. Inertia Force Identification of Cantilever under Moving-Mass by Inverse Method

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2012-12-01

    Full Text Available In this paper, a recursive inverse method is applied to solve the identification problem of inertia force between the cantilever and moving mass. The recursive inverse method consists of two parts: Kalman filter and recursive least-square algorithm. The basic Euler-Bernoulli beam model is introduced. Then, the differential equations and the state space model of the modal responses and the inertia force can be obtained. Finally, the recursive inverse method, which is based on the discretized state function of the system, is adapted. The identification results show that the recursive inverse method is suitable to be adapted in this problem. Some characteristics of the identification results are discussed and some further conclusions are reached.

  14. Determination of the J integral for laminated double cantilever beam specimens: The curvature approach

    DEFF Research Database (Denmark)

    Rask, Morten; Sørensen, Bent F.

    2012-01-01

    A new approach is proposed for measuring the J integral (and thus the fracture resistance) of interface cracks in multiply laminates. With this approach the J integral is found from beam curvatures and applied moments. Knowledge of ply layup and stiffness is not required. In order to test the acc...... was obtained between the two approaches. © 2012 Elsevier Ltd. All rights reserved.......A new approach is proposed for measuring the J integral (and thus the fracture resistance) of interface cracks in multiply laminates. With this approach the J integral is found from beam curvatures and applied moments. Knowledge of ply layup and stiffness is not required. In order to test...... the accuracy of the proposed approach, double cantilever beam specimen loaded with uneven bending moments (DCB-UBM) specimens were tested and analysed using the curvature approach and a method based on laminate beam theory. Beam curvatures were determined using a configuration of strain gauges. Good agreement...

  15. Simulation of an ultralow-power power management circuit for MEMS cantilever piezoelectric vibration energy harvesters

    Science.gov (United States)

    Takei, Ryohei; Okada, Hironao; Makimoto, Natsumi; Itoh, Toshihiro; Kobayashi, Takeishi

    2016-10-01

    We developed a power management circuit for piezoelectric microelectromechanical system cantilever vibration energy harvesters (VEHs) with ultralow-power consumption. The power management circuit was effective in a wireless vibration monitoring system. To operate the system, ultralow-power electronics were required because only a small amount of electrical power was generated from the faint environmental vibration. Pb(Zr,Ti)O3 (PZT) and aluminum nitride (AlN) VEHs were fabricated and their equivalent circuits were extracted from output voltage measurements. The power management circuit was simulated using the extracted circuits. The simulation suggested that the power management circuit can be driven by a vibration acceleration of 1.0 m/s2 by lowering the power consumption of the power management circuit using existing electronics.

  16. Study on the Effects of End-bend Cantilevered Stator in a 2-stage Axial Compressor

    Institute of Scientific and Technical Information of China (English)

    Songtao WANG; Xin DU; Zhongqi WANG

    2009-01-01

    Leading edge recambering is applied to the cantilevered stator vanes in a 2-stage compressor in this paper. Dif-ferent curving effects are produced when the end-bend stator vanes are stacked in different ways. Stacking on the leading edge induces a positive curving effect near the casing.When it is stacked on the centre of gravity, a nega-tive curving effect takes place. The numerical investigation shows that the flow field is redistributed when the end-bend stators with leading edge stacking are applied. The variations in the stage matching for the mainstream and near the hub have an impact on the performance of the 2-stage compressor. The isentropic efficiency and the total pressure ratio of the compressor are increased near the design condition. The compressor total pressure ratio is decreased near choke and near stall. The maximum flow rate is reduced and the stall margin is decreased.

  17. Optimized plasma-deposited fluorocarbon coating for dry release and passivation of thin SU-8 cantilevers

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Häfliger, Daniel; Boisen, Anja

    2008-01-01

    -based photoresist SU-8 was used to fabricate polymer structures such as cantilevers and membranes on top of the nonadhesive release layer. The authors identify the plasma density as the main parameter determining the surface properties of the deposited fluorocarbon films. They show that by modifying the pressure......Plasma-deposited fluorocarbon coatings are introduced as a convenient method for the dry release of polymer structures. In this method, the passivation process in a deep reactive ion etch reactor was used to deposit hydrophobic fluorocarbon films. Standard photolithography with the negative epoxy...... during fluorocarbon deposition, the surface free energy of the coating can be tuned to allow for uniform wetting during spin coating of arbitrary thin SU-8 films. Further, they define an optimal pressure regime for the release of thin polymer structures at high yield. They demonstrate the successful...

  18. FLOW-INDUCED INTERNAL RESONANCES AND MODE EXCHANGE IN HORIZONTAL CANTILEVERED PIPE CONVEYING FLUID (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    XU Jian; YANG Qian-biao

    2006-01-01

    Based on the nonlinear mathematical model of motion of a horizontally cantilevered rigid pipe conveying fluid, the 3:1 internal resonance induced by the minimum critical velocity is studied in details. With the detuning parameters of internal and primary resonances and the amplitude of the external disturbing excitation varying, the flow in the neighborhood of the critical flow velocity yields that some nonlinearly dynamical behaviors occur in the system such as mode exchange, saddle-node, Hopf and co-dimension 2 bifurcations. Correspondingly, the periodic motion losses its stability by jumping or flutter, and more complicated motions occur in the pipe under consideration.The good agreement between the analytical analysis and the numerical simulation for several parameters ensures the validity and accuracy of the present analysis.

  19. Computation of Onset and Growth of Delamination in Double Cantilever beam Specimens Subjected to Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Krishna Lok Singh

    2014-07-01

    Full Text Available In this article, the delamination onset and growth behavior of double cantilever beam (DCB specimens has been presented. The modeling of a debonded region using master and slave surface technique for DCB specimens is done in ABAQUS CAE. The analysis of DCB specimens comprising of fatigue cyclic load has been done in ABAQUS. An onset and Paris delamination growth regimes are plotted. The growth regime being linear in log-log scale, the prediction of constants of this regime has been obtained using the polyfit command in the MATLAB environment. To obtain these constants has been explained in this article. Comparison of experimental and analytical results is shown for delamination growth. The strain energy release rate values for threshold and critical are indicated on the graphs. The number of cycles for delamination onset and growth has been tabulated for various load cases.

  20. Adaptation of the IBM ECR [electric cantilever robot] robot to plutonium processing applications

    International Nuclear Information System (INIS)

    The changing regulatory climate in the US is adding increasing incentive to reduce operator dose and TRU waste for DOE plutonium processing operations. To help achieve that goal the authors have begun adapting a small commercial overhead gantry robot, the IBM electric cantilever robot (ECR), to plutonium processing applications. Steps are being taken to harden this robot to withstand the dry, often abrasive, environment within a plutonium glove box and to protect the electronic components against alpha radiation. A mock-up processing system for the reduction of the oxide to a metal was prepared and successfully demonstrated. Design of a working prototype is now underway using the results of this mock-up study. 7 figs., 4 tabs