WorldWideScience

Sample records for cantilever-actuated peristaltic micropump

  1. Development and Research of Peristaltic Multiphase Piezoelectric Micro-Pump

    Science.gov (United States)

    Vinogradov, Alexander N.; Ivanikin, Igor A.; Lubchenco, Roman V.; Matveev, Yegor V.; Titov, Pavel A.

    2016-01-01

    The paper presents the results of a study of existing models and mathematical representations of a range of truly peristaltic multiphase micro-pumps with a piezoelectric actuator (piezo drive). Piezo drives with different types of substrates use vertical movements at deformation of individual piezoelectric elements, which define device…

  2. PDMS Based Thermopnuematic Peristaltic Micropump for Microfluidic Systems

    International Nuclear Information System (INIS)

    Mamanee, W; Tuantranont, A; Afzulpurkar, N V; Porntheerapat, N; Rahong, S; Wisitsoraat, A

    2006-01-01

    A thermopnuematic peristaltic micropump for controlling micro litters of fluid was designed and fabricated from multi-stack PDMS structure on glass substrate. Pump structure consists of inlet and outlet, microchannel, three thermopneumatic actuation chambers, and three heaters. In microchannel, fluid is controlled and pumped by peristaltic motion of actuation diaphragm. Actuation diaphragm can bend up and down by exploiting air expansion that is induced by increasing heater temperature. The micropump characteristics were measured as a function of applied voltage and frequency. The flow rate was determined by periodically recording the motion of fluid at Nanoport output and computing flow volume from height difference between consecutive records. From the experiment, an optimum flow rate of 0.82 μl/min is obtained under 14 V three-phase input voltages at 0.033 Hz operating frequency

  3. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen

    2008-01-01

    In this thesis an all polymer micropump, and the fabrication method required to fabricate this, are examined. Polymer microfluidic. devices are of major scientific interest because they can combine complicated chemical and biological analys~s in cheap and disposable devices. The electrode system...... in the micropump is based on the conducting polymer poly(3,4 ethylenedioxythiophene) (PEDOT). The majority of the work conducted was therefore aimed at developing methods for patterning and processing PEDOT. First a method was developed, where the conducting polymer PEDOT can be integrated into non...... of the substrate, the PEDOT is integrated into the non-conductive polymer. The result is a material that retains the good conductivity of PEDOT, but gains the mechanical stability of the substrate. The best results were obtained for PEDOTjPMMA. The new mechanically stable PEDOTjPMMA was micro-patterned using clean...

  4. Hydrodynamics of Peristaltic Propulsion

    Science.gov (United States)

    Athanassiadis, Athanasios; Hart, Douglas

    2014-11-01

    A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.

  5. Design and implementation of ejector driven micropump

    International Nuclear Information System (INIS)

    Chuech, S.G.; Chen, C.-C.; Lu, J.-C.; Yan, M.-M.

    2007-01-01

    The working principle of the ejector, which converts fluid energy into suction power, was utilized for designing the miniaturized pump. The present micropump with the structure scale in the size range of microns to millimeters was fabricated through the MEMS manufacturing processes. The pump may offer portable convenience and requires no electrical power; especially it can be used in many applications where electricity is unsafe or impractical. To optimize the design, the size of the diffuser throat in the micropump was varied and used as a design parameter. The optimization results indicate that there exists an optimal width for the diffuser throat, which is critically important to the design of an ejector driven micropump. For testing the pump, the fabricated micropump was driven by compressed air from a portable can to pump water and air. In the experimental tests, the pumping flow rates of water and air were measured and compared for design optimization

  6. Pressure-driven peristaltic flow

    International Nuclear Information System (INIS)

    Mingalev, S V; Lyubimov, D V; Lyubimova, T P

    2013-01-01

    The peristaltic motion of an incompressible fluid in two-dimensional channel is investigated. Instead of fixing the law of wall's coordinate variation, the law of pressure variation on the wall is fixed and the border's coordinate changes to provide the law of pressure variation on the wall. In case of small amplitude of pressure-variation on the wall A, expansion wave propagates along the length of channel and the wave results in the peristaltic transport of fluid. In the case of large A, the channel divides into two parts. The small pulsating part in the end of the tube creates the flow as a human heart, while the other big part loses this function. The solution of problem for the first peristaltic mode is stable, while the solution for the second 'heart' mode is unstable and depends heavily on boundary conditions.

  7. Microvalves and Micropumps for BioMEMS

    Directory of Open Access Journals (Sweden)

    Albert Folch

    2011-05-01

    Full Text Available This review presents an extensive overview of a large number of microvalve and micropump designs with great variability in performance and operation. The performance of a given design varies greatly depending on the particular assembly procedure and there is no standardized performance test against which all microvalves and micropumps can be compared. We present the designs with a historical perspective and provide insight into their advantages and limitations for biomedical uses.

  8. A plastic micropump constructed with conventional techniques and materials

    NARCIS (Netherlands)

    Bohm, S.; Olthuis, Wouter; Bergveld, Piet

    1999-01-01

    A plastic micropump which can be produced using conventional production techniques and materials is presented. By applying well-known techniques and materials, economic fabrication of micropumps for various applications is feasible even at low production volumes. The micropump is capable of pumping

  9. Self-powered enzyme micropumps

    Science.gov (United States)

    Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman

    2014-05-01

    Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.

  10. Hummingbird tongues are elastic micropumps

    Science.gov (United States)

    Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret A.

    2015-01-01

    Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue–fluid interaction in 18 hummingbird species, from seven of the nine main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue's grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates. PMID:26290074

  11. High precision innovative micropump for artificial pancreas

    Science.gov (United States)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  12. Mems based valveless micropump for biomedical applications

    CSIR Research Space (South Africa)

    Van der Merwe, SW

    2010-01-01

    Full Text Available as the piezoelectric disc oscillation frequency, are selected for numerical investigation. The influences of the determined parameters on the flow rate of the micropump are then studied using three dimensional transient CFD analyses. The data from the CFD analyses...

  13. Peristaltic pumps for waste disposal

    International Nuclear Information System (INIS)

    Griffith, G.W.

    1992-09-01

    Laboratory robots are capable of generating large volumes of hazardous liquid wastes when they are used to perform chemical analyses of metal finishing solutions. A robot at Allied-Signal Inc., Kansas City Division, generates 30 gallons of acid waste each month. This waste contains mineral acids, heavy metals, metal fluorides, and other materials. The waste must be contained in special drums that are closed to the atmosphere. The initial disposal method was to have the robot pour the waste into a collecting funnel, which contained a liquid-sensing valve to admit the waste into the drum. Spills were inevitable, splashing occurred, and the special valve often didn't work well. The device also occupied a large amount of premium bench space. Peristaltic pumps are made to handle hazardous liquids quickly and efficiently. A variable-speed pump, equipped with a quick-loading pump head, was mounted below the robot bench near the waste barrel. The pump inlet tube was mounted above the bench within easy reach of the robot, while the outlet tube was connected directly to the barrel. During operation, the robot brings the waste liquid up to the pump inlet tube and activates the pump. When the waste has been removed, the pump stops. The procedure is quick, simple, inexpensive, safe, and reliable

  14. Development of PZT Actuated Valveless Micropump

    Directory of Open Access Journals (Sweden)

    Fathima Rehana Munas

    2018-04-01

    Full Text Available A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.

  15. Development of PZT Actuated Valveless Micropump.

    Science.gov (United States)

    Munas, Fathima Rehana; Melroy, Gehan; Abeynayake, Chamitha Bhagya; Chathuranga, Hiniduma Liyanage; Amarasinghe, Ranjith; Kumarage, Pubudu; Dau, Van Thanh; Dao, Dzung Viet

    2018-04-24

    A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT) metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA) sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.

  16. Design and modeling of a light powered biomimicry micropump

    Science.gov (United States)

    Sze, Tsun-kay Jackie; Liu, Jin; Dutta, Prashanta

    2015-06-01

    The design of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. In this work, a novel micropump concept is introduced utilizing bacteriorhodopsin and sugar transporter proteins. The micropump utilizes light energy to activate the transporter proteins, which create an osmotic pressure gradient and drive the fluid flow. The capability of the bio inspired micropump is demonstrated using a quasi 1D numerical model, where the contributions of bacteriorhodopsin and sugar transporter proteins are taken care of by appropriate flux boundary conditions in the flow channel. Proton flux created by the bacteriorhodopsin proteins is compared with experimental results to obtain the appropriate working conditions of the proteins. To identify the pumping capability, we also investigate the influences of several key parameters, such as the membrane fraction of transporter proteins, membrane proton permeability and the presence of light. Our results show that there is a wide bacteriorhodopsin membrane fraction range (from 0.2 to 10%) at which fluid flow stays nearly at its maximum value. Numerical results also indicate that lipid membranes with low proton permeability can effectively control the light source as a method to turn on/off fluid flow. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. In comparison with existing micropumps, this pump generates higher pressures than mechanical pumps. It can produce peak fluid flow and shutoff head comparable to other non-mechanical pumps.

  17. Design and modeling of a light powered biomimicry micropump

    International Nuclear Information System (INIS)

    Sze, Tsun-kay Jackie; Liu, Jin; Dutta, Prashanta

    2015-01-01

    The design of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. In this work, a novel micropump concept is introduced utilizing bacteriorhodopsin and sugar transporter proteins. The micropump utilizes light energy to activate the transporter proteins, which create an osmotic pressure gradient and drive the fluid flow. The capability of the bio inspired micropump is demonstrated using a quasi 1D numerical model, where the contributions of bacteriorhodopsin and sugar transporter proteins are taken care of by appropriate flux boundary conditions in the flow channel. Proton flux created by the bacteriorhodopsin proteins is compared with experimental results to obtain the appropriate working conditions of the proteins. To identify the pumping capability, we also investigate the influences of several key parameters, such as the membrane fraction of transporter proteins, membrane proton permeability and the presence of light. Our results show that there is a wide bacteriorhodopsin membrane fraction range (from 0.2 to 10%) at which fluid flow stays nearly at its maximum value. Numerical results also indicate that lipid membranes with low proton permeability can effectively control the light source as a method to turn on/off fluid flow. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. In comparison with existing micropumps, this pump generates higher pressures than mechanical pumps. It can produce peak fluid flow and shutoff head comparable to other non-mechanical pumps. (paper)

  18. Peristalticity-driven banded chemical garden

    Science.gov (United States)

    Pópity-Tóth, É.; Schuszter, G.; Horváth, D.; Tóth, Á.

    2018-05-01

    Complex structures in nature are often formed by self-assembly. In order to mimic the formation, to enhance the production, or to modify the structures, easy-to-use methods are sought to couple engineering and self-assembly. Chemical-garden-like precipitation reactions are frequently used to study such couplings because of the intrinsic chemical and hydrodynamic interplays. In this work, we present a simple method of applying periodic pressure fluctuations given by a peristaltic pump which can be used to achieve regularly banded precipitate membranes in the copper-phosphate system.

  19. Modular Architecture of a Non-Contact Pinch Actuation Micropump

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2012-09-01

    Full Text Available This paper demonstrates a modular architecture of a non-contact actuation micropump setup. Rapid hot embossing prototyping was employed in micropump fabrication by using printed circuit board (PCB as a mold material in polymer casting. Actuator-membrane gap separation was studied, with experimental investigation of three separation distances: 2.0 mm, 2.5 mm and 3.5 mm. To enhance the micropump performance, interaction surface area between plunger and membrane was modeled via finite element analysis (FEA. The micropump was evaluated against two frequency ranges, which comprised a low driving frequency range (0–5 Hz, with 0.5 Hz step increments and a nominal frequency range (0–80 Hz, with 10 Hz per step increments. The low range frequency features a linear relationship of flow rate with the operating frequency function, while two magnitude peaks were captured in the flow rate and back pressure characteristic in the nominal frequency range. Repeatability and reliability tests conducted suggest the pump performed at a maximum flow rate of 5.78 mL/min at 65 Hz and a backpressure of 1.35 kPa at 60 Hz.

  20. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  1. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  2. Optimization of the Performance of a Biomedical Micro-Pump

    Directory of Open Access Journals (Sweden)

    E Bourbaba

    2016-06-01

    Full Text Available This paper discusses the optimization of a micro-pump composed by deformable polymeric membrane in contact with reservoir and examines the effect of the materials property at the performance and the functionality of the system. The Neo Hookean  hyperelastic material model is used to simulate the deformation of polydimethylsiloxane (PDMS elastomer and compared with Poly methyl methacrylate (PMMA. The results of simulation by finite element are presented and discussed.  In second steps we study the power to inject by active membrane a Newtonian and a non Newtonian fluid in microcanalization, the power law is used to model the variation of the blood viscosity and precise the maximum value of flow rate at minimum applied pressure and control the fluid transportation. This type of micropump appears to be suitable for biomedical applications and demonstrate the versatile use of active membrane as moving parts to inject the fluids us blood or glucose.

  3. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    Science.gov (United States)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  4. A polymer chip-integrable piezoelectric micropump with low backpressure dependence

    DEFF Research Database (Denmark)

    Conde, A. J.; Bianchetti, A.; Veiras, F. E.

    2015-01-01

    We describe a piezoelectric micropump constructed in polymers with conventional machining methods. The micropump is self-contained and can be built as an independent device or as an on-chip module within laminated microfluidic chips. We demonstrate on-chip integrability by the fabrication and tes...

  5. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    Science.gov (United States)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  6. Design optimization by numerical characterization of fluid flow through the valveless diffuser micropumps

    International Nuclear Information System (INIS)

    Ahmadian, M T; Mehrabian, Amin

    2006-01-01

    Valveless piezoelectric micropumps are in wide practical use due to their ability to conduct particles with absence of interior moving mechanical parts. In this paper, an extended numerical study on fluid flow through micropump chamber and diffuser valves is conducted to find out the optimum working conditions of micropump. In order to obtain maximum generality of the reported results, an analytical study along with a dimensional analysis is presented primarily, to investigate the main dimensionless groups of parameters affecting the micropump net flux. Consequently, the parameters appeared in the main dimensionless groups have been changed in order to understand how the pump rectification efficiency and optimum diffuser angle depend on these parameters. A set of characteristic curves are constructed which show these dependencies. The application of these curves would have far reaching implications for valveless micropumps design and selection purposes

  7. Design optimization by numerical characterization of fluid flow through the valveless diffuser micropumps

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadian, M T; Mehrabian, Amin [Center of Excellence in Design, Robotics and Automation, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2006-04-01

    Valveless piezoelectric micropumps are in wide practical use due to their ability to conduct particles with absence of interior moving mechanical parts. In this paper, an extended numerical study on fluid flow through micropump chamber and diffuser valves is conducted to find out the optimum working conditions of micropump. In order to obtain maximum generality of the reported results, an analytical study along with a dimensional analysis is presented primarily, to investigate the main dimensionless groups of parameters affecting the micropump net flux. Consequently, the parameters appeared in the main dimensionless groups have been changed in order to understand how the pump rectification efficiency and optimum diffuser angle depend on these parameters. A set of characteristic curves are constructed which show these dependencies. The application of these curves would have far reaching implications for valveless micropumps design and selection purposes.

  8. Engineering feasibility evaluation of a peristaltic pinch

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1977-04-01

    A recent proposal for reducing the end loss of a linear theta pinch is to produce moving magnetic mirrors at the coil ends. The concept entails the sequential pulsing of an axially arranged series of two-turn coaxial coils. The electrical design of such a system presents some unique problems. Ideally, the individual pulse circuits should be completely independent. This would facilitate the design by eliminating interactive effects. In practice, the circuits must be interconnected through isolating inductors to enable the production of a uniform biasing magnetic field. Moreover, the coils must be located physically close together. This produces strong magnetic coupling between the pulse circuits, which can seriously affect the shape and speed of the inward-moving magnetic-mirror field. Possible systems were modeled for the NET-2 circuit analysis code. The models took account of the inductive coupling between the individual circuits in the model. The results show that an increasing magnetic mirror can be produced provided the radius of the theta pinch is not too great compared to the intercoil spacing. The peristaltic field can be maintained for several cycles in the inner coils. The voltage hold-off requirements on the pulse circuit switches are found to be severe, but not impossible to meet

  9. Transient peristaltic transport of grains in a liquid

    Science.gov (United States)

    Marconati, Marco; Rault, Sharvari; Charkhi, Farshad; Burbidge, Adam; Engmann, Jan; Ramaioli, Marco

    2017-06-01

    Pumping suspensions and pastes has always been a significant technological challenge in a number of industrial applications ranging from food processing to mining. Peristaltic pumps have become popular to pump and/or dose complex fluids, due to their robustness. During the transport of suspensions with peristaltic pumps, clogging issues may arise, particularly during transient operations. That is a matter of particular concern whenever the pumping device is used intermittently to generate flow only on demand. Further understanding of the transient dynamics of such systems and of the conditions that can lead to jamming would result in more robust peristaltic pump design. To achieve these goals, an experimental setup that simplifies the statorrotor assembly of a peristaltic hose pump was used. In this setup, a roller transfers momentum to a liquid suspension, upon application of a constant load. The evolution of the velocity of the roller was recorded for different concentrations of mono-dispersed spheres of different diameters. The flow is found not to be strongly dependent on the dispersed particle volume fraction, if the size of the suspended phase is comparable with the hose diameter. Conversely, the flow is strongly slowed down when their size is small and the particle concentration is increased. These findings could help improving the design of peristaltic pumps by a more appropriate sizing, given the diameter of the hose and that of the particles to be transported.

  10. Transient peristaltic transport of grains in a liquid

    Directory of Open Access Journals (Sweden)

    Marconati Marco

    2017-01-01

    Full Text Available Pumping suspensions and pastes has always been a significant technological challenge in a number of industrial applications ranging from food processing to mining. Peristaltic pumps have become popular to pump and/or dose complex fluids, due to their robustness. During the transport of suspensions with peristaltic pumps, clogging issues may arise, particularly during transient operations. That is a matter of particular concern whenever the pumping device is used intermittently to generate flow only on demand. Further understanding of the transient dynamics of such systems and of the conditions that can lead to jamming would result in more robust peristaltic pump design. To achieve these goals, an experimental setup that simplifies the statorrotor assembly of a peristaltic hose pump was used. In this setup, a roller transfers momentum to a liquid suspension, upon application of a constant load. The evolution of the velocity of the roller was recorded for different concentrations of mono-dispersed spheres of different diameters. The flow is found not to be strongly dependent on the dispersed particle volume fraction, if the size of the suspended phase is comparable with the hose diameter. Conversely, the flow is strongly slowed down when their size is small and the particle concentration is increased. These findings could help improving the design of peristaltic pumps by a more appropriate sizing, given the diameter of the hose and that of the particles to be transported.

  11. A planar PDMS micropump using in-contact minimized-leakage check valves

    International Nuclear Information System (INIS)

    Ni, Junhui; Li, Beizhi; Huang, Fengliang; Wang, Bin; Lin, Qiao

    2010-01-01

    We present a micropump with a simple planar design featuring compliant in-contact check valves in a single layer, which allows for a simple structure and easy system integration. The micropump, based on poly(dimethylsiloxane) (PDMS), primarily consists of a pneumatically driven thin membrane, a pump chamber, and two in-plane check valves. The pair of check valves is based on an in-contact flap–stopper configuration and is able to minimize leakage flow, greatly enhancing the reliability and performance of the micropump. Systematic experimental characterization of the micropump has been performed in terms of the frequency response of the pumping flow rate with respect to factors including device geometry (e.g. chamber height) and operating parameters (e.g. pneumatic driving pressure and backpressure). The results demonstrate that this micropump is capable of reliably generating a maximum flow rate of 41 µL min −1 and operating against a high backpressure of up to 25 kPa. In addition, a lumped-parameter theoretical model for the planar micropump is also developed for accurate analysis of the device behavior. These results demonstrate the capability of this micropump for diverse applications in lab-on-a-chip systems.

  12. DESIGN AND OPTIMIZATION OF VALVELESS MICROPUMPS BY USING GENETIC ALGORITHMS APPROACH

    Directory of Open Access Journals (Sweden)

    AIDA F. M. SHUKUR

    2015-10-01

    Full Text Available This paper presents a design optimization of valveless micropump using Genetic Algorithms (GA. The micropump is designed with a diaphragm, pumping chamber and diffuser/nozzle element functions as inlet and outlet of micropump with outer dimension of (5×1.75×5 mm3. The main objectives of this research are to determine the optimum pressure to be applied at micropump’s diaphragm and to find the optimum coupling parameters of the micropump to achieve high flow rate with low power consumption. In order to determine the micropump design performance, the total deformation, strain energy density, equivalent stress for diaphragm, velocity and net flow rate of micropump are investigated. An optimal resonant frequency range for the diaphragm of valveless micropump is obtained through the result assessment. With the development of GA-ANSYS model, a maximum total displacement of diaphragm, 5.3635 µm, with 12 kPa actuation pressure and optimum net flowrate of 7.467 mL/min are achieved.

  13. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Sabourin, David; Dufva, Martin

    2009-01-01

    pumping system at lower flow rates. The small footprint, 40 mm by 80 mm, of the micropump renders it portable, and allows its use on microscope stages adjacent to microfluidic devices, thus reducing system dead volumes. The micropump's design allows potential use in remote and resource-limited locations...

  14. Esophageal peristaltic defects in adults with functional dysphagia.

    Science.gov (United States)

    Ratuapli, Shiva K; Hansel, Stephanie L; Umar, Sarah B; Burdick, George E; Ramirez, Francisco C; Fleischer, David E; Harris, Lucinda A; Lacy, Brian E; DiBaise, John K; Crowell, Michael D

    2014-08-01

    Functional dysphagia (FD) is characterized by the presence of dysphagia without evidence of mechanical esophageal obstruction, GERD, and histopathology-based esophageal motor disorders. Dysphagia is common in older patients; however, there is a paucity of information regarding the type and frequency of peristaltic abnormalities compared to younger patients. Based on recently validated criteria for classification of weak peristalsis using high-resolution manometry (HRM), we hypothesized that older patients with FD would have more peristaltic defects detected by HRM compared to younger FD patients. A retrospective review of our motility database yielded 65 patients that met inclusion criteria. Patients were divided into two groups based on age (younger: dysphagia, or quality of life. Dyspeptic symptoms, including nausea (p 5 cm) (p < 0.001). The mean contraction amplitude was also lower in the older group (p < 0.05). These data support the hypothesis that older patients with FD have a higher frequency of peristaltic abnormalities on HRM compared to younger patients. Older age was associated with increased frequency of weak peristalsis with small and large peristaltic defects.

  15. Simultaneous effects of Hall and convective conditions on peristaltic ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Vol. 85, No. 1. — journal of ... 2Department of Electrical and Computer Engineering, Faculty of Engineering, ... inclined magnetic field on peristaltic flow of couple-stress fluid in an inclined channel, secondly to ...

  16. Modeling and design of light powered biomimicry micropump utilizing transporter proteins

    Science.gov (United States)

    Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta

    2014-11-01

    The creation of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. We present a mathematical model for a micropump utilizing Bacteriorhodopsin and sugar transporter proteins. This micropump utilizes transporter proteins as method to drive fluid flow by converting light energy into chemical potential. The fluid flow through a microchannel is simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Numerical results show that the micropump is capable of generating usable pressure. Designing parameters influencing the performance of the micropump are investigated including membrane fraction, lipid proton permeability, illumination, and channel height. The results show that there is a substantial membrane fraction region at which fluid flow is maximized. The use of lipids with low membrane proton permeability allows illumination to be used as a method to turn the pump on and off. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. This modeling work provides new insights on mechanisms potentially useful for fluidic pumping in self-sustained bio-mimic microfluidic pumps. This work is supported in part by the National Science Fundation Grant CBET-1250107.

  17. Backward flow in a surface tension driven micropump

    International Nuclear Information System (INIS)

    Ju, Jongil; Park, Joong Yull; Lee, Sang-Hoon; Kim, Kyung Chun; Kim, Hyundong; Berthier, Erwin; Beebe, David J

    2008-01-01

    A surface tension driven micropump harnessing the pressure difference generated by drops of different curvature radii proves to be a simple and attractive passive method to drive fluid flow in microdevices. Here we observed the appearance of backward flow when the initial sizes of the droplets at the inlet and outlet ports are similar. To explain this phenomenon several hypotheses have been investigated. Consideration of the inertia of the fluid in the channel revealed that it alone is insufficient to explain the observed backward flow. We discovered that rotational flow inside the outlet droplet could be a source of inertia, explaining the generation of the backward flow. In addition, we have experimentally determined that the ratio of the volumes of the initial outlet drop and inlet drop correlates with the occurrence of the backward flow. (note)

  18. Theory of a peristaltic pump for fermionic quantum fluids

    Science.gov (United States)

    Romeo, F.; Citro, R.

    2018-05-01

    Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.

  19. Augmentation of peristaltic microflows through electro-osmotic mechanisms

    International Nuclear Information System (INIS)

    Chakraborty, Suman

    2006-01-01

    The present work aims to theoretically establish that the employment of an axial electric field can substantially augment the rate of microfluidic transport occurring in peristaltic microtubes. For theoretical analysis, shape evolution of the tube is taken to be arbitrary, except for the fact that the characteristic wavelength is assumed to be significantly greater than the average radius of cross section. First, expressions for the velocity profile within the tube are derived and are subsequently utilized to obtain variations in the net flow rate across the same, as a function of the pertinent system parameters. Subsequently, the modes of interaction between the electro-osmotic and peristaltic mechanisms are established through the variations in the time-averaged flow rates for zero pressure rise and the pressure rise for zero time-averaged flow rates, as expressed in terms of the occlusion number, characteristic electro-osmotic velocity and the peristaltic wave speed. From the simulation predictions, it is suggested that a judicious combination of peristalsis and an axial electrokinetic body force can drastically enhance the time-averaged flow rate, provided that the occlusion number is relatively small

  20. Modeling and flow analysis of piezoelectric based micropump with various shapes of microneedle

    Energy Technology Data Exchange (ETDEWEB)

    Haldkar, Rakesh Kumar; Gupta, Vijay Kumar; Sheorey, Tanuja [PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur, 482005 (India)

    2017-06-15

    Micropumps have been investigated as drug delivery and disease diagnostic devices. Many of these micropumps have been designed, considering primarily, available micro fabrication technologies rather than appropriate pump performance analysis. Piezoelectric and silicon based micro pumps are more popular as compared to other smart materials being explored. The microneedle is an integral part of these micropumps providing an interface between the drug reservoir and the patient’s body for extracting the blood for investigation. Blood collected in the pump chamber passes through the biosensor and gives the required investigation report. It is aimed to minimize the pain while the microneedle is inserted in the body without having any effect on the flow characteristics. Several factors affect the pain while inserting the needle, out of which shape and size of the microneedle are two important parameters. In this study we have investigated the effect of shape of the microneedle on the flow inside the micropump. A micropump design is based on the required flow at the biosensor point. All computations were carried out with water (Newtonian fluid) as the working fluid after carrying out a comparative analysis with human blood (non-Newtonian fluid). For the pentagonal shaped microneedle, the velocity at the top of the microneedle was minimum, which is beneficial in that fluid should remain in contact with the sensor for longer time.

  1. Modeling and flow analysis of piezoelectric based micropump with various shapes of microneedle

    International Nuclear Information System (INIS)

    Haldkar, Rakesh Kumar; Gupta, Vijay Kumar; Sheorey, Tanuja

    2017-01-01

    Micropumps have been investigated as drug delivery and disease diagnostic devices. Many of these micropumps have been designed, considering primarily, available micro fabrication technologies rather than appropriate pump performance analysis. Piezoelectric and silicon based micro pumps are more popular as compared to other smart materials being explored. The microneedle is an integral part of these micropumps providing an interface between the drug reservoir and the patient’s body for extracting the blood for investigation. Blood collected in the pump chamber passes through the biosensor and gives the required investigation report. It is aimed to minimize the pain while the microneedle is inserted in the body without having any effect on the flow characteristics. Several factors affect the pain while inserting the needle, out of which shape and size of the microneedle are two important parameters. In this study we have investigated the effect of shape of the microneedle on the flow inside the micropump. A micropump design is based on the required flow at the biosensor point. All computations were carried out with water (Newtonian fluid) as the working fluid after carrying out a comparative analysis with human blood (non-Newtonian fluid). For the pentagonal shaped microneedle, the velocity at the top of the microneedle was minimum, which is beneficial in that fluid should remain in contact with the sensor for longer time

  2. Design, fabrication, and characterization of a valveless magnetic travelling-wave micropump

    International Nuclear Information System (INIS)

    Yu, Huawei; Ye, Weixiang; Zhang, Wei; Yue, Zhao; Liu, Guohua

    2015-01-01

    In this paper, we propose a valveless magnetic micropump for lab-on-a-chip and microfluidic applications. The micropump, based on polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA), consists primarily of a saw-toothed microchannel, two substrates, and two integrated NdFeB permanent magnetic arrays. The travelling wave beneath the top wall of the elastic microchannel can be induced by the proper magnetic pole orientation arrangement of these magnetic arrays, and the liquid particles are then transported along with the travelling wave in the microchannel. Appropriate geometry of the saw-toothed microchannel was also studied for optimizing the performance of the micropump. Experimental characterization of the micropump has been performed in terms of the frequency response of the flow rate and backpressure. The results demonstrate that this micropump is capable of reliably generating a maximum flow rate of 342.4 μL min −1 and operating against a high backpressure of 1.67 kPa. (paper)

  3. Theoretical and experimental studies of a magnetically actuated valveless micropump

    International Nuclear Information System (INIS)

    Ashouri, Majid; Shafii, Mohammad Behshad; Moosavi, Ali

    2017-01-01

    This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 µ l min −1 while working at the piston actuation frequency of 4 and 5 Hz, respectively. 3D numerical simulations are also carried out to study the performance of the pump. The best experimental and numerical volumetric efficiency of the pump are about 7 and 8%, respectively, at the piston speed of 0.03 m s −1 . The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability. (paper)

  4. Simulations of Micropumps Based on Tilted Flexible Fibers

    Science.gov (United States)

    Hancock, Matthew; Elabbasi, Nagi; Demirel, Melik

    2015-11-01

    Pumping liquids at low Reynolds numbers is challenging because of the principle of reversibility. We report here a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla valves, check valves). We demonstrate proof-of-concept with 2D and 3D fluid-structure interaction (FSI) simulations in COMSOL Multiphysics®of micropumps consisting of a source for oscillatory fluidic motion, e.g. a piston, and a channel lined with tilted flexible rods or sheets to provide rectification. When flow is against the rod tilt direction, the rods bend backward, narrowing the channel and increasing flow resistance; when flow is in the direction of rod tilt, the rods bend forward, widening the channel and decreasing flow resistance. The 2D and 3D simulations involve moving meshes whose quality is maintained by prescribing the mesh displacement on guide surfaces positioned on either side of each flexible structure. The prescribed displacement depends on structure bending and maintains mesh quality even for large deformations. Simulations demonstrate effective pumping even at Reynolds numbers as low as 0.001. Because rod rigidity may be specified independently of Reynolds number, in principle, rod rigidity may be reduced to enable pumping at arbitrarily low Reynolds numbers.

  5. Experimental Research into Noise Emission of A Gear Micropump with Plastic Rotor

    Science.gov (United States)

    Rodionov, L. V.; Rekadze, P. D.

    2018-01-01

    The previous researches show that it’s possible to replace several parts of gear pump to plastic ones. This substitution leads to cost and noise reduction of the pump. Therefore, the series of acoustic experiments on a test bench were carry-out. Sound pressure levels were recorded with microphone, located in a pipe made of a vacuum rubber. Conducted experiment shows that acoustic characteristics of the micropump depend on the different material of driven rotor. Experimental result indicates that the proposed measures for replacing metal rotor to plastic one reduce micropump noise on the studied modes. The maximum achieved acoustic efficiency on equivalent level is 11 dB.

  6. Infusion of iloprost without a peristaltic pump: Safety and tolerability

    Directory of Open Access Journals (Sweden)

    Paola Faggioli

    2013-04-01

    Full Text Available Introduction: Iloprost is a potent prostacyclin (PGI2 analogue that is effective in the treatment of peripheral arterial disease, vasculitis, pulmonary hypertension, and secondary Raynaud’s phenomenon. Intravenous infusions are generally administered with the aid of a peristaltic pump to reduce the risk of adverse reactions caused by unintentional increases in the infusion rate. This increases the cost of care in terms of equipment and personnel and may limit the use of this drug. Materials and methods: We retrospectively analyzed 18,432 iloprost infusions administered between 1999 and 2009 to 272 patients with systemic sclerosis (n = 253 and 19 with peripheral arterial disease (n = 19. All infusions were administered in the day hospital over 6 h with a normal IV set-up with a roller flow regulator. Flow rates were set to deliver iloprost at 1-2 ng/kg/min. Rates were verified by direct drop counts during the first 15-20 minutes of the infusion and at each subsequent check. Results: There were no adverse events that were fatal, life-threatening, or associated with prolongation of hospitalization and very few events requiring intensive care or continuous monitoring. The latter included 4 cases of tachycardia/arrhythmia (extrasystoles in most cases, 3 cases of hypotension (systolic pressure < 80 mmHg, and 2 cases of hypertension (BP > 170/100 mmHg. All other adverse reactions were mild, reversible, and similar to those seen with iloprost infusion with peristaltic pump. Only one patient had to be switched to another prostanoid (due to intolerance. Discussion: Iloprost infusion administered with a normal IV flow regulator appears to be as safe, well tolerated, and effective as traditional infusion with a peristaltic pump.

  7. Peristaltic pumping in an elastic tube: feeding the hungry python

    Science.gov (United States)

    Takagi, Daisuke; Balmforth, Neil

    2010-11-01

    Biological ducts convey contents like food in the digestive system by peristaltic action, propagating waves of muscular contraction and relaxation. The motion is investigated theoretically by considering a radial force of sinusoidal or Gaussian form moving steadily down a fluid-filled axisymmetric tube. Effects of the prescribed force on the resultant fluid flow and elastic deformation of the tube wall are presented. The flow can induce a rigid object suspended in the fluid to propel in different ways, as demonstrated in numerous examples.

  8. Analysis of Peristaltic Waves & their Role in Migrating Physarum Plasmodia

    Science.gov (United States)

    Lewis, Owen; Guy, Robert

    2017-11-01

    The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using physarum plasmodia. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity.

  9. Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit

    International Nuclear Information System (INIS)

    Chee, Pei Song; Nafea, Marwan; Leow, Pei Ling; Ali, Mohamed Sultan Mohamed

    2016-01-01

    This paper studies the thermal behavior of a wireless powered micropump operated using thermo-pneumatic actuation. Numerical analysis was performed to investigate the temporal conduction of the planar inductor-capacitor (LC) wireless heater and the heating chamber. The result shows that the temperature at the heating chamber reaches steady state temperature of 46.7.deg.C within 40 seconds. The finding was further verified with experimental works through the fabrication of the planar LC heater (RF sensitive actuator) and micropump device using MEMS fabrication technique. The fabricated device delivers a minimum volume of 0.096 μL at the temperature of 29.deg.C after being thermally activated for 10 s. The volume dispensed from the micropump device can precisely controlled by an increase of the electrical heating power within the cut-off input power of 0.22 W. Beyond the power, the heat transfer to the heating chamber exhibits non-linear behavior. In addition, wireless operation of the fabricated device shows successful release of color dye when the micropump is immersed in DI-water containing dish and excited by tuning the RF power.

  10. Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Pei Song; Nafea, Marwan; Leow, Pei Ling; Ali, Mohamed Sultan Mohamed [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2016-06-15

    This paper studies the thermal behavior of a wireless powered micropump operated using thermo-pneumatic actuation. Numerical analysis was performed to investigate the temporal conduction of the planar inductor-capacitor (LC) wireless heater and the heating chamber. The result shows that the temperature at the heating chamber reaches steady state temperature of 46.7.deg.C within 40 seconds. The finding was further verified with experimental works through the fabrication of the planar LC heater (RF sensitive actuator) and micropump device using MEMS fabrication technique. The fabricated device delivers a minimum volume of 0.096 μL at the temperature of 29.deg.C after being thermally activated for 10 s. The volume dispensed from the micropump device can precisely controlled by an increase of the electrical heating power within the cut-off input power of 0.22 W. Beyond the power, the heat transfer to the heating chamber exhibits non-linear behavior. In addition, wireless operation of the fabricated device shows successful release of color dye when the micropump is immersed in DI-water containing dish and excited by tuning the RF power.

  11. Design and Numerical Study of Micropump Based on Induced Electroosmotic Flow

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2018-01-01

    Full Text Available Induced charge electroosmotic flow is a new electric driving mode. Based on the Navier–Stokes equations and the Poisson–Nernst–Planck (PNP ion transport equations, the finite volume method is adopted to calculate the equations and boundary conditions of the induced charge electroosmotic flow. In this paper, the formula of the induced zeta potential of the polarized solid surface is proposed, and a UDF program suitable for the simulation of the induced charge electroosmotic is prepared according to this theory. At the same time, on the basis of this theory, a cross micropump driven by induced charge electroosmotic flow is designed, and the voltage, electric potential, charge density, and streamline of the induced electroosmotic micropump are obtained. Studies have shown that when the cross-shaped micropump is energized, in the center of the induction electrode near the formation of a dense electric double layer, there exist four symmetrical vortices at the four corners, and they push the solution towards both outlets; it can be found that the average velocity of the solution in the cross-flow microfluidic pump is nonlinear with the applied electric field, which maybe helpful for the practical application of induced electroosmotic flow in the field of micropump.

  12. Metal additive manufacturing of a high-pressure micro-pump

    NARCIS (Netherlands)

    Wits, Wessel Willems; Weitkamp, Sander J.; van Es, J.; van Es, Johannes

    2013-01-01

    For the thermal control of future space applications pumped two-phase loops are an essential part to handle the increasing thermal power densities. This study investigates the design of a reliable, leak tight, low-weight and high-pressure micro-pump for small satellite applications. The developed

  13. CO2 Laser-Based Rapid Prototyping of Micropumps

    Directory of Open Access Journals (Sweden)

    Zachary Strike

    2018-05-01

    Full Text Available The fabrication of microdevices for fluidic control often requires the use of flexible diaphragms in a way that requires cleanroom equipment and compromises performance. We use a CO 2 laser to perform the standard ablative techniques of cutting and engraving materials, but we also apply a method that we call laser placement. This allows us to fabricate precisely-positioned and precisely-sized, isolated diaphragms. This in turn enables the rapid prototyping of integrated multilayer microfluidic devices to form complex structures without the need for manual positioning or cleanroom equipment. The fabrication process is also remarkably rapid and capable of being scaled to manufacturing levels of production. We explore the use of these devices to construct a compact system of peristaltic pumps that can form water in oil droplets without the use of the non-pulsatile pumping systems typically required. Many devices can be fabricated at a time on a sheet by sheet basis with a fabrication process that, to our knowledge, is the fastest reported to date for devices of this type (requiring only 3 h. Moreover, this system is unusually compact and self-contained.

  14. UV-LIGA technique for ECF micropumps using back UV exposure and self-alignment

    Science.gov (United States)

    Han, D.; Xia, Y.; Yokota, S.; Kim, J. W.

    2017-12-01

    This paper proposes and develops a novel UV-LIGA technique using back UV exposure and self-alignment to realize high aspect ratio micromachining (HARM) in high power density electro-conjugate fluid (ECF) micropumps. ECF is a functional fluid designed to be able to generate strong and active jet flow (ECF jetting) between anode and cathode in ECF when high DC voltage is applied. We have developed high power density ECF micropumps consisting of triangular prism and slit electrode pairs (TPSEs) fabricated by HARM. The traditional UV-LIGA technique for HARM is mainly divided into two approaches: (a) single thick layer and (b) multiple thin layers. Both methods have limitations—deformed molds in the former and misalignment between layers in the latter. Using the finite element method software COMSOL Multiphysics, we demonstrate that the deformed micro-molds critically impair the performance of ECF micropumps. In addition, we experimentally prove that the misalignment would easily trigger electric discharge in the ECF micropumps. To overcome these limitations, we conceive a new concept utilizing the seed electrode layer for electroforming as the UV shield and pattern photoresist (KMPR) by back UV exposure. The seed electrode layer should be composed of a non-transparent conductor (Au/Ti) for patterning and a transparent conductor (ITO) for wiring. Instead of ITO, we propose the concept of transparency-like electrodes comprised of thin metal line patterns. To verify this concept, KMPR layers with thicknesses of 70, 220, and 500 µm are experimentally investigated. In the case of 500 µm KMPR thickness, the concept of transparency-like electrode was partially proved. As a result, TPSEs with a height of 440 µm were successfully fabricated. Characteristic experiments demonstrated that ECF micropumps (367 mW cm-3) fabricated by back UV achieved almost the same output power density as ECF micropumps (391 mW cm-3) fabricated by front UV. This paper proves that the proposed

  15. UV-LIGA technique for ECF micropumps using back UV exposure and self-alignment

    International Nuclear Information System (INIS)

    Han, D; Xia, Y; Yokota, S; Kim, J W

    2017-01-01

    This paper proposes and develops a novel UV-LIGA technique using back UV exposure and self-alignment to realize high aspect ratio micromachining (HARM) in high power density electro-conjugate fluid (ECF) micropumps. ECF is a functional fluid designed to be able to generate strong and active jet flow (ECF jetting) between anode and cathode in ECF when high DC voltage is applied. We have developed high power density ECF micropumps consisting of triangular prism and slit electrode pairs (TPSEs) fabricated by HARM. The traditional UV-LIGA technique for HARM is mainly divided into two approaches: (a) single thick layer and (b) multiple thin layers. Both methods have limitations—deformed molds in the former and misalignment between layers in the latter. Using the finite element method software COMSOL Multiphysics, we demonstrate that the deformed micro-molds critically impair the performance of ECF micropumps. In addition, we experimentally prove that the misalignment would easily trigger electric discharge in the ECF micropumps. To overcome these limitations, we conceive a new concept utilizing the seed electrode layer for electroforming as the UV shield and pattern photoresist (KMPR) by back UV exposure. The seed electrode layer should be composed of a non-transparent conductor (Au/Ti) for patterning and a transparent conductor (ITO) for wiring. Instead of ITO, we propose the concept of transparency-like electrodes comprised of thin metal line patterns. To verify this concept, KMPR layers with thicknesses of 70, 220, and 500 µ m are experimentally investigated. In the case of 500 µ m KMPR thickness, the concept of transparency-like electrode was partially proved. As a result, TPSEs with a height of 440 µ m were successfully fabricated. Characteristic experiments demonstrated that ECF micropumps (367 mW cm −3 ) fabricated by back UV achieved almost the same output power density as ECF micropumps (391 mW cm −3 ) fabricated by front UV. This paper proves that the

  16. A numerical study on the flow and performance characteristics of a piezoelectric micropump with electromagnetic resistance for electrically conducting fluids

    International Nuclear Information System (INIS)

    An, Yong Jun; Choi, Chung Ryul; Kim, Chang Nyung

    2008-01-01

    A numerical analysis has been conducted for flow characteristics and performance of a micropump with piezodisk and MHD (MagnetoHydroDynamics) fluid. Various micro systems which could not be considered in the past have been recently growing with the development of MEMS (Micro Electro Mechanical System) and micro machining technology. Especially, micropumps, essential part of micro fluidic devices, are being lively studied by many researchers. In the present study, the piezo electric micropump with electromagnetic resistance for electrically conducting fluids is considered. The prescribed grid deformation method is used for the displacement of the membrane. The change of the performance of the micropump and flow characteristics of the electrically conducting fluid with the magnitude of the magnetic fields, duct size, the position of the inlet and outlet duct are investigated in the present study

  17. Catalytic micromotors and micropumps and their collective behavior

    Science.gov (United States)

    Ibele, Michael Edward

    The overarching goal which initiated this research was the desire to learn how to synthesize artificial micrometer- and nanometer-sized objects which have the ability to move autonomously in solution, and to be able to understand, predict, and control their movements. In the natural world, such motion is common. Bacteria, for instance, use flagella, cilia, or other mechanisms to chemotax to nutrient-rich regions of their environments. However, at the outset of this research, only a few simple examples of artificially powered motions on the microscale had been reported in the literature. This dissertation discusses the evolution of artificial catalytic micromotors and micropumps from the initial bimetallic-microrod design, which catalyzed the decomposition of hydrogen peroxide (H2O2), to the current state of the field, in which particle motion can also be powered by hydrazine-derived fuels or by ultraviolet light. Analyses of these new motors are presented, with particular emphasis given to the motormotor interactions which occur in solution and which give rise to collective behavior in dense populations of the motors. The first artificial autonomous micromotor ever synthesized consisted of a bimetallic microrod with spatially segregated gold and platinum segments. When placed in aqueous solutions containing H2O2, this microrod decomposed the H2O2 asymmetrically on its two metallic surfaces and powered its own motion through solution via self-electrophoresis. In this dissertation, it is shown that a similar self-electrophoretic mechanism is at play in a micropump system comprised of spatially segregated, lithographically patterned, palladium and gold features, which operates in solutions of either hydrazine (N2H4) or N,N-dimethylhydrazine [(CH 3)2N(NH3)]. While this new electrophoretic system is interesting from a theoretical standpoint, N2H4 is highly toxic, and the decision was made to move on to other more environmentally friendly systems. The bulk of this

  18. Computational modeling and simulation of electro-hydrodynamic (EHD) ion-drag micropump with planar emitter and micropillar collector electrodes

    International Nuclear Information System (INIS)

    Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henry

    2013-01-01

    Computational models can be used to simulate a prototype of electrohydrodynamic (EHD) ion-drag micropump with planar emitter and micropillar collector electrodes. In this study, a simple and inexpensive design of an ion-drag micropump was modeled and numerically simulated. A three-dimensional segment of the microchannel was simulated by using periodic boundary conditions at the inlet and outlet. The pressure and velocity distribution at the outlet and in the entire domain of the micropump was obtained numerically. The effect of the gap between the emitter and the collector electrode, width and the height of micropillar and flow channel height was analyzed for optimum pressure and output flow rate. The enhanced performance of micropump was compared with existing designs. It was found that the performance of micropump could be improved by decreasing the height of micropillar and the gap between both electrodes. The numerical results also show that a maximum pressure head of about 2350 Pa and maximum mass flow rate 0.4 g min −1 at an applied voltage 1000 V is achievable with the proposed design of micropump. These values of pressure and flow rate can meet the cryogenic cooling requirements for some specific electronic devices.

  19. Comparison of peristaltic and Venturi pumps in bimanual microincisional cataract surgery.

    Science.gov (United States)

    Karaguzel, Hande; Karalezli, Aylin; Aslan, Bekir Sitki

    2009-12-01

    Comparison of peristaltic and Venturi pumps in bimanual microincision phacoemulsification on the success of the cataract surgery by using sleeveless phaco tip. Bimanual microincision phacoemulsification was done in 49 eyes using a 1.4-mm temporal clear corneal incision. A peristaltic pump was used in 23 eyes, and a Venturi pump was used in 26 eyes for phacoemulsification. Intraoperative complications, anterior chamber stability, and mean duration of surgery were recorded. Duration of surgery was shorter in the Venturi pump group. Anterior chamber stability could not be established in 17 eyes in the peristaltic pump group; it was established in all eyes in the Venturi pump group. Corneal burns were observed in two eyes in the peristaltic pump group and no eyes in the Venturi pump group. Use of a Venturi pump system and a vented gas-forced infusion system can significantly shorten surgery time and reduce risk of thermal burns.

  20. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: jianyj@imu.edu.cn [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)

    2015-08-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.

  1. Analysis on and Optimization of a Circular Piezoelectric Composite Laminate for a Micro-Pump Driver

    International Nuclear Information System (INIS)

    Jia, Jianyuan; Wang, Weidong; Huang, Xinbo

    2002-01-01

    Among the various micro-pump actuation devices, piezoelectric composite laminate actuation has become an effective method. Due to lacking of analysis treatments, the design of this type micro-pump is in a great limitation. In this paper, an electromechanical-coupled mechanics model is established for the circle-flake micro-actuator. A kind of analysis and design method is presented that piezoelectric plate's radial strain induced by inverse piezoelectric effect is equivalently substituted with transverse stress on piezoelectric composite laminates. It is pointed out that the equivalent transverse load depends on the edge electric field distribution of parallel plate capacitor. The question has been solved that where the neutral plane in the piezoelectric composite laminates lies. Finally, an optimization design is developed on the radius ratio of piezoelectric-to-silicon plate radius by utilizing of FEA modeling

  2. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    International Nuclear Information System (INIS)

    Zhao, Guangpu; Jian, Yongjun; Chang, Long; Buren, Mandula

    2015-01-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed

  3. Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus

    OpenAIRE

    Misra, J. C.; Maiti, S.

    2011-01-01

    Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bo...

  4. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane

    KAUST Repository

    So, Hongyun; Pisano, Albert P.; Seo, Young Ho

    2014-01-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar's hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. © the Partner Organisations 2014.

  5. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane

    KAUST Repository

    So, Hongyun

    2014-01-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar\\'s hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. © the Partner Organisations 2014.

  6. Effect of flexure beam geometry and material on the displacement of piezo actuated diaphragm for micropump

    Science.gov (United States)

    Roopa, R.; Navin Karanth, P.; Kulkarni, S. M.

    2018-02-01

    In this paper, we present a COMSOL analysis of flexure diaphragm for piezo actuated valveless micropump. Diaphragms play an important role in micropumps, till now plane diaphragms are commonly used in micropumps. Use of compliant flexure hinges in diaphragm and other MEMS application is one of the new approach to achieving high deflection in diaphragm at low operating voltage. Flexures hinges in diaphragm acts as simply supported beam. Out-off plane compliance value and stiffness is considered for the selection of proper flexure for diaphragm. Diaphragm material also plays an important role in the diaphragm central deflection. Factor considered for diaphragm material selection is resilience; it is the ratio of yield stress to static modulus. Higher is the resilience will leads to higher deflection generated, it also imparts good compliance. Based on the resilience beryllium copper, stainless steel and brass materials are selected for diaphragm analysis. Simulations have been performed using COMSOL multiphysics. This study reports the effect of flexure hinge geometry and diaphragm material on the central deflection of diaphragms and compared with existing plane diaphragm. Simulation results illustrates that the deflection of three flexure diaphragm with 2mm width and 2mm length flexure is 6.75µm for stainless steel, 10.89 for beryllium copper and 12.10µm for brass, at 140V which is approximately twice that of plane diaphragm deflection. The maximum in both plane and three flexure diaphragm deflection is obtained for brass diaphragm compared to stainless steel and beryllium copper.

  7. Blood-mimicking delivery in polygonal structure of inner quadrupletip microneedle with valveless micro-pump

    Science.gov (United States)

    Ibrahim, M. D.; Yunos, Y. S.; Rigit, A. R. H.; Mohtadzar, N. A. A.; Watanabe, N.; Sunami, Y.; Rahman, M. R. A.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a titanium quadrupletip micro-needle integrated with a micro-pump with different inner designs, length and diameter of the micro-channels to measure and maximize the velocity flow in the micro-needle as blood delivered into human body. Titanium is used as the material of the micro-needle which are also the common material in manufacturing of micro-needle. The advancement of micro-needle technologies is improved in penetrating human outermost skin, stratum corneum and further to human blood vessels. The micro-needles with channel inner design of circular, square, hexagon, and dodecagon with quadruple tip designs are drawn with inner diameter parameter of 150μm and 100μm with two different channel length which are 10mm and 25mm. The characteristics of blood delivery in geometrically changed inner designs affect the output velocity in microneedle when the micropump is operating. The results showed that, when it is pumped at 0.04m/s, the blood velocity improved by 5.6% than when the pump is increased by 30% of its capacity. This is due to the backflow generated in the micropump.

  8. Deformation analysis of a film-overlapped micro-pump membrane structure

    International Nuclear Information System (INIS)

    Lee, Fu-Shin; Wang, Pi-Wen; Chen, Chih-Hsiung

    2008-01-01

    A novel approach is developed to study a film-overlapped membrane structure. Meanwhile, the established model is employed to design the micro-pump membrane structure and to evaluate its pumping efficiency. Two-dimensional coupling effects between the overlapping actuator films and the deformable membrane are thoroughly investigated, including the influences on the membrane from the overlapping films' elongation effects, Poisson's ratio effects and shear strain effects. Overall deformations and interactions for the three-layer membrane structures are accurately calculated through exercising the developed model, in contrast to what difficulties are usually encountered in carrying out FEM methods with very thin elements meshed for the actuator films. Furthermore, this study demonstrates that the high stiffness of the actuating metal films needs to be reflected in the equivalent stiffness of the membrane structures, especially when the sizes of the actuator films become compatible with the sizes of the membranes. Hence, the optimal micro-pumping efficiency of a membrane structure is acquired upon exercising the developed model, and larger sizes of the actuating films do not definitely obtain larger pumping efficiencies for the electromagnetically actuated micro-pumps

  9. Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip.

    Science.gov (United States)

    Li, Bowei; Jiang, Lei; Xie, Hua; Gao, Yan; Qin, Jianhua; Lin, Bingcheng

    2009-09-01

    A micropump-actuated negative pressure pinched injection method is developed for parallel electrophoresis on a multi-channel LIF detection system. The system has a home-made device that could individually control 16-port solenoid valves and a high-voltage power supply. The laser beam is excitated and distributes to the array separation channels for detection. The hybrid Glass-PDMS microfluidic chip comprises two common reservoirs, four separation channels coupled to their respective pneumatic micropumps and two reference channels. Due to use of pressure as a driving force, the proposed method has no sample bias effect for separation. There is only one high-voltage supply needed for separation without relying on the number of channels, which is significant for high-throughput analysis, and the time for sample loading is shortened to 1 s. In addition, the integrated micropumps can provide the versatile interface for coupling with other function units to satisfy the complicated demands. The performance is verified by separation of DNA marker and Hepatitis B virus DNA samples. And this method is also expected to show the potential throughput for the DNA analysis in the field of disease diagnosis.

  10. Effects of Chaos in Peristaltic Flows: Towards Biological Applications

    Science.gov (United States)

    Wakeley, Paul W.; Blake, John R.; Smith, David J.; Gaffney, Eamonn A.

    2006-11-01

    One in seven couples in the Western World will have problems conceiving naturally and with the cost of state provided fertility treatment in the United Kingdom being over USD 3Million per annum and a round of treatment paid for privately costing around USD 6000, the desire to understand the mechanisms of infertility is leading to a renewed interest in collaborations between mathematicians and reproductive biologists. Hydrosalpinx is a condition in which the oviduct becomes blocked, fluid filled and dilated. Many women with this condition are infertile and the primary method of treatment is in vitro fertilisation, however, it is found that despite the embryo being implanted into the uterus, the hydrosalpinx adversely affects the implantation rate. We shall consider a mathematical model for peristaltic flow with an emphasis towards modelling the fluid flow in the oviducts and the uterus of humans. We shall consider the effects of chaotic behavior on the system and demonstrate that under certain initial conditions trapping regions can be formed and discuss our results with a view towards understanding the effects of hydrosalpinx.

  11. Design and operation of a bio-inspired micropump based on blood-sucking mechanism of mosquitoes

    Science.gov (United States)

    Leu, Tzong-Shyng; Kao, Ruei-Hung

    2018-05-01

    The study is to develop a novel bionic micropump, mimicking blood-suck mechanism of mosquitos with a similar efficiency of 36%. The micropump is produced by using micro-electro-mechanical system (MEMS) technology, PDMS (polydimethylsiloxane) to fabricate the microchannel, and an actuator membrane made by Fe-PDMS. It employs an Nd-FeB permanent magnet and PZT to actuate the Fe-PDMS membrane for generating flow rate. A lumped model theory and the Taguchi method are used for numerical simulation of pulsating flow in the micropump. Also focused is to change the size of mosquito mouth for identifying the best waveform for the transient flow processes. Based on computational results of channel size and the Taguchi method, an optimization actuation waveform is identified. The maximum pumping flow rate is 23.5 μL/min and the efficiency is 86%. The power density of micropump is about 8 times of that produced by mosquito’s suction. In addition to using theoretical design of the channel size, also combine with Taguchi method and asymmetric actuation to find the optimization actuation waveform, the experimental result shows the maximum pumping flowrate is 23.5 μL/min and efficiency is 86%, moreover, the power density of micropump is 8 times higher than mosquito’s.

  12. Multifield analysis of a piezoelectric valveless micropump: effects of actuation frequency and electric potential

    International Nuclear Information System (INIS)

    Sayar, Ersin; Farouk, Bakhtier

    2012-01-01

    Coupled multifield analysis of a piezoelectrically actuated valveless micropump device is carried out for liquid (water) transport applications. The valveless micropump consists of two diffuser/nozzle elements; the pump chamber, a thin structural layer (silicon), and a piezoelectric layer, PZT-5A as the actuator. We consider two-way coupling of forces between solid and liquid domains in the systems where actuator deflection causes fluid flow and vice versa. Flow contraction and expansion (through the nozzle and the diffuser respectively) generate net fluid flow. Both structural and flow field analysis of the microfluidic device are considered. The effect of the driving power (voltage) and actuation frequency on silicon-PZT-5A bi-layer membrane deflection and flow rate is investigated. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. The governing equations for the flow fields and the silicon-PZT-5A bi-layer membrane motions are solved numerically. At frequencies below 5000 Hz, the predicted flow rate increases with actuation frequency. The fluid–solid system shows a resonance at 5000 Hz due to the combined effect of mechanical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above (5000 Hz). The velocity profile in the pump chamber becomes relatively flat or plug-like, if the frequency of pulsations is sufficiently large (high Womersley number). The pressure, velocity, and flow rate prediction models developed in the present study can be utilized to optimize the design of MEMS based micropumps. (paper)

  13. Multifield analysis of a piezoelectric valveless micropump: effects of actuation frequency and electric potential

    Science.gov (United States)

    Sayar, Ersin; Farouk, Bakhtier

    2012-07-01

    Coupled multifield analysis of a piezoelectrically actuated valveless micropump device is carried out for liquid (water) transport applications. The valveless micropump consists of two diffuser/nozzle elements; the pump chamber, a thin structural layer (silicon), and a piezoelectric layer, PZT-5A as the actuator. We consider two-way coupling of forces between solid and liquid domains in the systems where actuator deflection causes fluid flow and vice versa. Flow contraction and expansion (through the nozzle and the diffuser respectively) generate net fluid flow. Both structural and flow field analysis of the microfluidic device are considered. The effect of the driving power (voltage) and actuation frequency on silicon-PZT-5A bi-layer membrane deflection and flow rate is investigated. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. The governing equations for the flow fields and the silicon-PZT-5A bi-layer membrane motions are solved numerically. At frequencies below 5000 Hz, the predicted flow rate increases with actuation frequency. The fluid-solid system shows a resonance at 5000 Hz due to the combined effect of mechanical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above (5000 Hz). The velocity profile in the pump chamber becomes relatively flat or plug-like, if the frequency of pulsations is sufficiently large (high Womersley number). The pressure, velocity, and flow rate prediction models developed in the present study can be utilized to optimize the design of MEMS based micropumps.

  14. Valveless piezoelectric micropump for fuel delivery in direct methanol fuel cell (DMFC) devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Wang, Qing-Ming [Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, PA 15261 (United States)

    2005-01-10

    Fuel cells are being considered as an important technology that can be used for various power applications. For portable electronic devices such as laptops, digital cameras, cell phone, etc., the direct methanol fuel cell (DMFC) is a very promising candidate as a power source. Compared with conventional batteries, DMFC can provide a higher power density with a long-lasting life and recharging which is almost instant. However, many issues related to the design, fabrication and operation of miniaturized DMFC power systems still remain unsolved. Fuel delivery is one of the key issues that will determine the performance of the DMFC. To maintain a desired performance, an efficient fuel delivery system is required to provide an adequate amount of fuel for consumption and remove carbon dioxide generated from fuel cell devices at the same time. In this paper, a novel fuel delivery system combined with a miniaturized DMFC is presented. The core component of this system is a piezoelectric valveless micropump that can convert the reciprocating movement of a diaphragm activated by a piezoelectric actuator into a pumping effect. Nozzle/diffuser elements are used to direct the flow from inlet to outlet. As for DMFC devices, the micropump system needs to meet some specific requirements: low energy consumption but a sufficient fuel flow rate. Based on theoretical analysis, the effect of piezoelectric materials properties, driving voltage, driving frequency, nozzle/diffuser dimension, and other factors on the performance of the whole fuel cell system will be discussed. As a result, a viable design of a micropump system for fuel delivery can be achieved and some simulation results will be presented as well. (author)

  15. ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance

    DEFF Research Database (Denmark)

    Olesen, Laurits Højgaard; Bruus, Henrik; Ajdari, A.

    2006-01-01

    therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects......Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast pumping (velocities similar to mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We...

  16. A Comparative Study of Nozzle/Diffuser Micropumps with Novel Valves

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Shyu

    2012-02-01

    Full Text Available This study conducts an experimental study concerning the improvement of nozzle/diffuser micropump design using some novel no-moving-part valves. A total of three micropumps, including two enhancement structures having two-fin or obstacle structure and one conventional micro nozzle/diffuser design, are made and tested in this study. It is found that dramatic increase of the pressure drops across the designed micro nozzles/diffusers are seen when the obstacle or fin structure is added. The resultant maximum flow rates are 47.07 mm3/s and 53.39 mm3/s, respectively, for the conventional micro nozzle/diffuser and the added two-fin structure in micro nozzle/diffuser operated at a frequency of 400 Hz. Yet the mass flow rate for two-fin design surpasses that of conventional one when the frequency is below 425 Hz but the trend is reversed with a further increase of frequency. This is because the maximum efficiency ratio improvement for added two-fin is appreciably higher than the other design at a lower operating frequency. In the meantime, despite the efficiency ratio of the obstacle structure also reveals a similar trend as that of two-fin design, its significant pressure drop (flow resistance had offset its superiority at low operating frequency, thereby leading to a lesser flow rate throughout the test range.

  17. Study on an alternating current electrothermal micropump for microneedle-based fluid delivery systems

    Science.gov (United States)

    Zhang, Rumi; Jullien, Graham A.; Dalton, Colin

    2013-07-01

    In this paper, we report on a modeling study of an AC electrothermal (ACET) micropump with high operating pressures as well as fast flow rates. One specific application area is for fluid delivery using microneedle arrays which require higher pressures and faster flow rates than have been previously reported with ACET devices. ACET is very suitable for accurate actuation and control of fluid flow, since the technique has been shown to be very effective in high conductivity fluids and has the ability to create a pulsation free flow. However, AC electrokinetic pumps usually can only generate low operating pressures of 1 to 100 Pa, where flow reversal is likely to occur with an external load. In order to realize a high performance ACET micropump for continuous fluid delivery, applying relatively high AC operating voltages (20 to 36 Vrms) to silicon substrate ACET actuators and using long serpentine channel allows the boosting of operating pressure as well as increasing the flow rates. Fast pumping flow rates (102-103 nl/s) and high operating pressures (1-12 kPa) can be achieved by applying both methods, making them of significant importance for continuous fluid delivery applications using microneedle arrays and other such biomedical devices.

  18. Open source 3D-printed 1000 μL micropump

    Directory of Open Access Journals (Sweden)

    Jorge Bravo-Martinez

    2018-04-01

    Full Text Available Scientific innovation goes hand in hand with technological innovation, so scientific work depends to a great extent on the hardware available in the laboratory. The investment in developing countries is still far below that of OECD countries, which was about 2.4% of the gross domestic product (GDP in 2015. In stark contrast, Brazil made the highest investment of Latin American countries at just 1.2%. Today, the “open-source revolution” appears more than ever to be a powerful ally for the promotion of development and the narrowing of the economic gap between developed and developing countries. In this context, this article presents the design of a 1000 μl 3D printed micropump. It is a practical and simple design inspired by pipette pumps. The present design was printed with a 3D printer and assembled very easily with common tools. Upon comparison of the micropump’s performance, it exhibits a systematic error between 1.4 and 3.8% of the volume and a random error between 0.38 and 9.5% of the volumen. Keywords: Open source, 3D printed micropump, 3D printing, DIY labware

  19. An in vivo endoluminal ultrasonographic study of peristaltic activity in the distal porcine ureter

    NARCIS (Netherlands)

    Roshani, H.; Dabhoiwala, N. F.; Dijkhuis, T.; Kurth, K. H.; Lamers, W. H.

    2000-01-01

    PURPOSE: Experiments were performed to quantify the duration and frequency of ureteric peristaltic activity in the laparotomized and non-laparotomized pig in its virgin and postinstrumented states. MATERIALS AND METHODS: Pigs (n = 10) in a steady state of hydration were studied under halothane

  20. Application of a flow generated by IR laser and AC electric field in micropumping and micromixing

    International Nuclear Information System (INIS)

    Nakano, M; Mizuno, A

    2008-01-01

    In this paper, it is described that measurement of fluid flow generated by simultaneous operation of an infrared (IR) laser and AC electric field in a microfabricated channel. When an IR laser (1026 nm) was focused under an intense AC electric field, a circulating flow was generated around the laser focus. The IR laser and the electric field generate two flow patterns of the electrohydrodynamicss. When the laser focus is placed at the center of the gap between electrodes, the flow pattern is parallel to the AC electric field toward electrodes from the centre. On the other hand, when the laser focus is placed close to one of the electrodes, one directional flow is generated. First flow pattern can be used as a micromixer and the second one as a micropump. Flow velocity profiles of the two flow patterns were measured as a function of the laser power, intensity of the AC electric field and AC frequency.

  1. Simulation of fluid-structure interaction in micropumps by coupling of two commercial finite element programs

    Science.gov (United States)

    Klein, Andreas; Gerlach, Gerald

    1998-09-01

    This paper deals with the simulation of the fluid-structure interaction phenomena in micropumps. The proposed solution approach is based on external coupling of two different solvers, which are considered here as `black boxes'. Therefore, no specific intervention is necessary into the program code, and solvers can be exchanged arbitrarily. For the realization of the external iteration loop, two algorithms are considered: the relaxation-based Gauss-Seidel method and the computationally more extensive Newton method. It is demonstrated in terms of a simplified test case, that for rather weak coupling, the Gauss-Seidel method is sufficient. However, by simply changing the considered fluid from air to water, the two physical domains become strongly coupled, and the Gauss-Seidel method fails to converge in this case. The Newton iteration scheme must be used instead.

  2. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    International Nuclear Information System (INIS)

    Kim, S H; Hashi, S; Ishiyama, K

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  3. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    Science.gov (United States)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  4. Characteristics of electrostatic gas micro-pump with integrated polyimide passive valves

    International Nuclear Information System (INIS)

    Han, Jeahyeong; Yeom, Junghoon; Mensing, Glennys; Flachsbart, Bruce; Shannon, Mark A

    2012-01-01

    We report on the fabrication and characterization of electrostatic gas micro-pumps integrated with polyimide check valves. Touch-mode capacitance actuation, enabled by a fixed silicon electrode and a metal/polyimide diaphragm, creates the suction and push-out of the ambient gas; the gas flow is rectified by the check valves located at the inlet and outlet of the pump. The fabricated pumps were tested with various actuation voltages at different frequencies and duty cycles; an emphasis was placed on investigating the effect of valve flow conductance on the gas pumping characteristics. The pump with higher valve conductance could increase the operating frequency of the pump and affect the pumping characteristics from a pulsating flow to a continuous flow, leading to a higher gas flow rate. This electrostatic pump has a flow control resolution of 1 µL min −1 ; it could generate a gas flow up to 106 µL min −1 . (paper)

  5. Development of a Surface Micromachined On-Chip Flat Disk Micropump

    Directory of Open Access Journals (Sweden)

    M. I. KILANI

    2009-08-01

    Full Text Available The paper presents research progress in the development of a surface micromachined flat disk micropump which employs the viscous and centrifugal effects acting on a layer of fluid sandwiched between a rotating flat disk and a stationary plate. The pump is fabricated monolithically on-chip using Sandia’s Ultraplanar Multilevel MEMS Technology (SUMMiT™ where an electrostatic comb-drive Torsional Ratcheting Actuator (TRA drives the flat disk through a geared transmission. The paper reviews available analytical models for flow geometries similar to that of the described pump, and presents a set of experiments which depict its performance and possible failure modes. Those experiments highlight future research directions in the development of electrostatically-actuated, CMOS-compatible, surface micromachined pumps.

  6. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots

    International Nuclear Information System (INIS)

    Daltorio, Kathryn A; Horchler, Andrew D; Quinn, Roger D; Boxerbaum, Alexander S; Shaw, Kendrick M; Chiel, Hillel J

    2013-01-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress. (paper)

  7. Magnetic Field and Gravity Effects on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2014-01-01

    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.

  8. Computer controlled titration with piston burette or peristaltic pump - a comparison.

    Science.gov (United States)

    Hoffmann, W

    1996-09-01

    The advantages and problems of the use of piston burettes and peristaltic pumps for dosage of titrant solutions in automatic titrations are shown. For comparison, only the dosing devices were exchanged and all other components and conditions remained unchanged. The results of continuous acid base titration show good agreement and comparable reproducibility. Potentiometric sensors (glass electrodes) with different equilibration behaviour influence the results. The capability of such electrodes was tested. Conductometric measurements allow a much faster detection because there is no equilibration of electrodes. Piston burettes should be used for titration with very high precision, titration with organic solvents and slow titrations. Peristaltic pumps seem to be more suitable for continuous titrations and long time operation without service.

  9. Effect of wall compliance on peristaltic transport of a Newtonian fluid in an asymmetric channel

    Directory of Open Access Journals (Sweden)

    Mohamed H. Haroun

    2006-01-01

    Full Text Available Peristaltic transport of an incompressible viscous fluid in an asymmetric compliant channel is studied. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phases. The fluid-solid interaction problem is investigated by considering equations of motion of both the fluid and the deformable boundaries. The driving mechanism of the muscle is represented by assuming the channel walls to be compliant. The phenomenon of the “mean flow reversal” is discussed. The effect of wave amplitude ratio, width of the channel, phase difference, wall elastance, wall tension, and wall damping on mean-velocity and reversal flow has been investigated. The results reveal that the reversal flow occurs near the boundaries which is not possible in the elastic symmetric channel case.

  10. Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots.

    Science.gov (United States)

    Daltorio, Kathryn A; Boxerbaum, Alexander S; Horchler, Andrew D; Shaw, Kendrick M; Chiel, Hillel J; Quinn, Roger D

    2013-09-01

    In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress

  11. Peristaltic transport of Johnson-Segalman fluid under effect of a magnetic field

    Directory of Open Access Journals (Sweden)

    Moustafa Elshahed

    2005-01-01

    Full Text Available The peristaltic transport of Johnson-Segalman fluid by means of an infinite train of sinusoidal waves traveling along the walls of a two-dimensional flexible channel is investigated. The fluid is electrically conducted by a transverse magnetic field. A perturbation solution is obtained for the case in which amplitude ratio is small. Numerical results are reported for various values of the physical parameters of interest.

  12. Combined effects of channel curvature and rotor configuration on the performance of two-stage viscous micropumps

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dong Jin [Yeungnam University, Gyeongsan (Korea, Republic of)

    2017-06-15

    The combined effects of channel curvature and rotor configuration on the performance of two-stage viscous micropumps were studied numerically. The Navier-Stokes equations were simulated to investigate the performance of two-stage micropumps. The performance of two-stage micropumps was studied in terms of the dimensionless mass flow rate and dimensionless driving power. Four different rotor configurations were designed by changing placement of two rotors inside a microchannel: Two aligned and two staggered configurations. The aligned rotor configuration of type 1 is to place the two rotors along the convex wall, while type 2 is to place them along the concave wall. Numerical results show that the rotor configuration plays a significant role in the performance of two-stage micropumps. The chan-nel curvature acts in a different way according to the rotor configuration. The mass flow rate of aligned rotor configuration of type 1 is greatly improved by the channel curvature, while it diminishes the mass flow rate of type 2. The maximum mass flow rate for the aligned rotor configuration of type 1 is obtained when the two rotors are placed at the junction of the circular and straight sections of the channel. The performance of staggered configurations is negligibly affected by the channel curvature. This characteristics is found due to rotation direction of the rotors. As the two rotors rotate in the opposite direction for the staggered configurations, the flow characteristics in the circular section is little affected by the channel curvature. The circumferential distance between the two rotors can be optimized in terms of the mass flow rate. The optimal value of the circumferential distance is about L = 1.4 for the staggered rotor configurations, and it is almost independent of the channel curvature. As the channel height increases, the circumferential distance becomes less significant for the staggered rotor configurations while it becomes significant for the aligned

  13. Analysis of peristaltic waves and their role in migrating Physarum plasmodia

    Science.gov (United States)

    Lewis, Owen L.; Guy, Robert D.

    2017-07-01

    The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of Physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within Physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using Physarum plasmodia. The first is a PDE model based on a dimensional reduction of peristaltic pumping within a finite length chamber. The second is a more sophisticated computational model which accounts for more general shape changes, more complex cellular mechanics, and dynamically modulated adhesion to the underlying substrate. This model allows us to directly compute cell crawling speed. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity.

  14. Analysis of peristaltic waves and their role in migrating Physarum plasmodia

    International Nuclear Information System (INIS)

    Lewis, Owen L; Guy, Robert D

    2017-01-01

    The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of Physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within Physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using Physarum plasmodia. The first is a PDE model based on a dimensional reduction of peristaltic pumping within a finite length chamber. The second is a more sophisticated computational model which accounts for more general shape changes, more complex cellular mechanics, and dynamically modulated adhesion to the underlying substrate. This model allows us to directly compute cell crawling speed. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity. (paper)

  15. Effect of hydrodynamic action in peristaltic pump of blood gases analyzer ABL 555

    Directory of Open Access Journals (Sweden)

    Ali K. Mohammed

    2018-01-01

    Full Text Available In this research, we studied the effect of hydrodynamic action in peristaltic pump of blood gases analyzer ABL 555 which made by (Radiometer-Copenhagen, by using theories of tribology and Reynolds equation on performance of blood film convergence area, we analyzing the influence of theoretical model for peristaltic pump (consist of steeper motor and 4 cylindrical bearings distributed on circular disc rotating around capillary tube, by using (MATLAB R 2012b programing with numerical solution of finite difference method in 5 nodes element , we fined the blood film thickness and the pressure on contact area grid ( consist from annual and axial lines , then influence of viscosity of blood on pressure generated in limited temperature of ambient and velocity of motor , and flow rate of blood in tube. The important conclusions appear that the rotating sliding movement of motor cause low pressure (positive while the rolling cylindrical rollers of bearings cause high pressure (negative which lead to push the blood in tube, that mean the direction of rotating blood opposite the direction of rotating motor of peristaltic pump, also the viscosity of blood effect on velocity of flow and the speed of motor with bearings, and the effect of blood film thickness effect on pressure generated in tube. DOI: http://dx.doi.org/10.25130/tjes.24.2017.18

  16. Acquisition of earthworm-like movement patterns of many-segmented peristaltic crawling robots

    Directory of Open Access Journals (Sweden)

    Norihiko Saga

    2016-09-01

    Full Text Available In recent years, attention has been increasingly devoted to the development of rescue robots that can protect humans from the inherent risks of rescue work. Particularly, anticipated is the development of a robot that can move deeply through small spaces. We have devoted our attention to peristalsis, the movement mechanism used by earthworms. A reinforcement learning technique used for the derivation of the robot movement pattern, Q-learning, was used to develop a three-segmented peristaltic crawling robot with a motor drive. Characteristically, peristalsis can provide movement capability if at least three segments work, even if a segmented part does not function. Therefore, we had intended to derive the movement pattern of many-segmented peristaltic crawling robots using Q-learning. However, because of the necessary increase in calculations, in the case of many segments, Q-learning cannot be used because of insufficient memory. Therefore, we devoted our attention to a learning method called Actor–Critic, which can be implemented with low memory. Because Actor-Critic methods are TD methods that have a separate memory structure to explicitly represent the policy independent of the value function. Using it, we examined the movement patterns of six-segmented peristaltic crawling robots.

  17. Numerical analysis of thermal creep flow in curved channels for designing a prototype of Knudsen micropump

    International Nuclear Information System (INIS)

    Leontidis, V; Baldas, L; Colin, S; Brandner, J J

    2012-01-01

    The possibility to generate a gas flow inside a channel just by imposing a tangential temperature gradient along the walls without the existence of an initial pressure difference is well known. The gas must be under rarefied conditions, meaning that the system must operate between the slip and the free molecular flow regimes, either at low pressure or/and at micro/nano-scale dimensions. This phenomenon is at the basis of the operation principle of Knudsen pumps, which are actually compressors without any moving parts. Nowadays, gas flows in the slip flow regime through microchannels can be modeled using commercial Computational Fluid Dynamics softwares, because in this regime the compressible Navier-Stokes equations with appropriate boundary conditions are still valid. A simulation procedure has been developed for the modeling of thermal creep flow using ANSYS Fluent®. The implementation of the boundary conditions is achieved by developing User Defined Functions (UDFs) by means of C++ routines. The complete first order velocity slip boundary condition, including the thermal creep effects due to the axial temperature gradient and the effect of the wall curvature, and the temperature jump boundary condition are applied. The developed simulation tool is used for the preliminary design of Knudsen micropumps consisting of a sequence of curved and straight channels.

  18. Numerical Simulation of a Novel Electroosmotic Micropump for Bio-MEMS Applications

    Directory of Open Access Journals (Sweden)

    Alireza Alishahi

    2014-12-01

    Full Text Available High lamination in microchannel is one of the main challenges in Lab-On-a-Chip’s components like micro total analyzer systems and any miniaturization of fluid channels intensify the viscose effects. In chip-scale, the electroosmotic flow is more efficient. Therefore, this study presents a MEMS-based low-voltage micropump for low-conductive biological samples and solutions, where twelve narrow miniaturized microchannels designed in one unit to efficiently using the electroosmotic effects which generated near the walls. Four microelectrodes are mounted in lateral sides of the microchannel and excited by low-voltage potential to generate pumping process inside the channel. We sweep the voltage amplitude and a linear variation of fluid velocity achieved by Finite-Element-Method (FEM simulation. We obtain a net average velocity of 0.1 mm/s; by applying 2 V and -2 V to the electrodes. Therefore, the proposed low-voltage design is able to pumping the low-conductive biofluids for conventional lab-on-a-chip applications.

  19. An introduction to the Micrel Micropump MP Daily portable syringe driver.

    Science.gov (United States)

    Groves, Karen E

    2003-11-01

    In this article the author describes the Micrel Micropump MP Daily (MP Daily) portable syringe driver. This follows the author's experience of a 4-month pilot of the device by an inpatient palliative care unit. Portable syringe drivers are commonly used to deliver continuous subcutaneous infusions in palliative care situations. Those in current use are not without problems and serious adverse events have occasionally been reported, mainly resulting from confusion between models. The MP Daily syringe driver addresses some of these issues while remaining small, lightweight and inexpensive, with a long battery life and fitting into the pocket of a shirt of pyjama jacket. Improvements over current models include an on/off button, the absence of facilities to set a zero rate or change the rate once the syringe driver is running, and the absence of a boost button. In addition, there are improved alarms, a message display system and a configuration menu. Although confusion remains a problem, and the ideal has not yet been reached, the MP Daily goes some considerable way towards reducing risks and opportunities for human error.

  20. Modeling of a Piezoelectric MEMS Micropump Dedicated to Insulin Delivery and Experimental Validation Using Integrated Pressure Sensors: Application to Partial Occlusion Management

    Directory of Open Access Journals (Sweden)

    S. Fournier

    2017-01-01

    Full Text Available A numerical model based on equivalent electrical networks has been built to simulate the dynamic behavior of a positive-displacement MEMS micropump dedicated to insulin delivery. This device comprises a reservoir in direct communication with the inlet check valve, a pumping membrane actuated by a piezo actuator, two integrated piezoresistive pressure sensors, an anti-free-flow check valve at the outlet, and finally a fluidic pathway up to the patient cannula. The pressure profiles delivered by the sensors are continuously analyzed during the therapy in order to detect failures like occlusion. The numerical modeling is a reliable way to better understand the behavior of the micropump in case of failure. The experimental pressure profiles measured during the actuation phase have been used to validate the numerical modeling. The effect of partial occlusion on the pressure profiles has been also simulated. Based on this analysis, a new management of partial occlusion for MEMS micropump is finally proposed.

  1. Tolerability, safety and efficacy of Iloprost infusion without peristaltic pump in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    S. Tosi

    2011-09-01

    Full Text Available Objective. To evaluate safety, tolerability and efficacy on Raynaud’s phenomenon (Rp of iloprost infusion without peristaltic pump in patients with systemic sclerosis (SSc. Patients and methods. The inclusion criteria were diagnosis of SSc, age between 18 and 65 years, presence of Rp, and absence of any controindication to the use of iloprost. The treatment was carried out in a day hospital setting and consisted first of 5 consecutive days of iloprost infusion (from an initial dose of 1.0 ng/Kg/min up to 2 ng/kg/min, and then of 2 days of infusions at the maximum possible dose every 45 days for one year. All of the adverse events were carefully recorded and the changes in the Rp were measured by a 5 grade scale (worsened, unmodified, slightly improved, very improved, disappeared. Results. Thirty-eight SSc patients (all females, mean age 49 years (range 18.5-65, disease duration 1.5 years (range 0.5-10.8 were enrolled in the study. During the first cycle of therapy, 14 avderse events occurred in 11 (28.9% patients and during the next cycles, 3 adverse events were seen in 3 (7.9% patients. In all of the cases they were mild and transient. Rp was considered very improved in 15 (39.5% patients, slightly improved in 13 (34.2%, unmodified in 8 (21% and worse in 2 (5.2%. Discussion. In this study intravenous iloprost without peristaltic pump proved to be safe, well tolerated, and as effective as traditional infusion through peristaltic pump in improving Rp in patients with SSc.

  2. Peristaltic transport of a fractional Burgers' fluid with variable viscosity through an inclined tube

    Science.gov (United States)

    Rachid, Hassan

    2015-12-01

    In the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers' model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.

  3. Magnetohydrodynamic peristaltic motion of a Newtonian fluid through porous walls through suction and injection

    Science.gov (United States)

    Sivaiah, R.; Hemadri Reddy, R.

    2017-11-01

    In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.

  4. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary conditions

    Institute of Scientific and Technical Information of China (English)

    H YASMIN; T HAYAT; A ALSAEDI; HH ALSULAMI

    2014-01-01

    This work is concerned with the peristaltic transport of the Johnson-Segalman fluid in an asymmetric channel with convective boundary conditions. The mathematical modeling is based upon the conservation laws of mass, linear momentum, and energy. The resulting equations are solved after long wavelength and low Reynolds number are used. The results for the axial pressure gradient, velocity, and temperature profiles are obtained for small Weissenberg number. The expressions of the pressure gra-dient, velocity, and temperature are analyzed for various embedded parameters. Pumping and trapping phenomena are also explored.

  5. Peristaltic Flow of Carreau Fluid in a Rectangular Duct through a Porous Medium

    Directory of Open Access Journals (Sweden)

    R. Ellahi

    2012-01-01

    Full Text Available We have examined the peristaltic flow of Carreau fluid in a rectangular channel through a porous medium. The governing equations of motion are simplified by applying the long wavelength and low Reynolds number approximations. The reduced highly nonlinear partial differential equations are solved jointly by homotopy perturbation and Eigen function expansion methods. The expression for pressure rise is computed numerically by evaluating the numerical integration. The physical features of pertinent parameters have been discussed by plotting graphs of velocity, pressure rise, pressure gradient, and stream functions.

  6. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Science.gov (United States)

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  7. Peristaltic Wave Locomotion and Shape Morphing with a Millipede Inspired System

    Science.gov (United States)

    Spinello, Davide; Fattahi, Javad S.

    2017-08-01

    We present the mechanical model of a bio-inspired deformable system, modeled as a Timoshenko beam, which is coupled to a substrate by a system of distributed elements. The locomotion action is inspired by the coordinated motion of coupling elements that mimic the legs of millipedes and centipedes, whose leg-to-ground contact can be described as a peristaltic displacement wave. The multi-legged structure is crucial in providing redundancy and robustness in the interaction with unstructured environments and terrains. A Lagrangian approach is used to derive the governing equations of the system that couple locomotion and shape morphing. Features and limitations of the model are illustrated with numerical simulations.

  8. Peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available Current attempt addresses the peristaltic transport of Bingham plastic fluid under the influence of magnetic force. Space dependent viscosity is considered. Novel Soret and Dufour effects are retained in the mathematical model. Problem formulation is presented through the conventional lubrication approach. Series solutions of the arising non-linear problem are developed via regular perturbation approach. Special attention is given to the role of embedded parameters on the axial velocity, temperature, concentration and pressure distributions. Furthermore the numerical solution of pressure rise per wavelength is obtained through numerical integration because its analytical solution seems impossible. Keywords: Bingham fluid, Variable viscosity, MHD and Joule heating, Soret and Dufour effects

  9. Peristaltic transport of Bingham plastic fluid considering magnetic field, Soret and Dufour effects

    Science.gov (United States)

    Hayat, T.; Farooq, S.; Mustafa, M.; Ahmad, B.

    Current attempt addresses the peristaltic transport of Bingham plastic fluid under the influence of magnetic force. Space dependent viscosity is considered. Novel Soret and Dufour effects are retained in the mathematical model. Problem formulation is presented through the conventional lubrication approach. Series solutions of the arising non-linear problem are developed via regular perturbation approach. Special attention is given to the role of embedded parameters on the axial velocity, temperature, concentration and pressure distributions. Furthermore the numerical solution of pressure rise per wavelength is obtained through numerical integration because its analytical solution seems impossible.

  10. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  11. Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Safia, E-mail: safia_akram@yahoomail.com [Department of Basic Sciences, Military College of Signals, National University of Sciences and Technology (Pakistan); Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Hanif, M. [Department of Basic Sciences, Military College of Signals, National University of Sciences and Technology (Pakistan)

    2013-11-15

    In this paper the effects of induced magnetic field on the peristaltic transport of a Williamson fluid model in an asymmetric channel has been investigated. The problem is simplified by using long wave length and low Reynolds number approximations. The perturbation and numerical solutions have been presented. The expressions for pressure rise, pressure gradient, stream function, magnetic force function, current density distribution have been computed. The results of pertinent parameters have been discussed graphically. The trapping phenomena for different wave forms have been also discussed. - highlights: • The main motivation of this work is that we want to see the behavior of peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. In literature no attempt is taken to discuss the lateral Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. • We do not want to fill the gap in literature after studying this.

  12. Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field

    International Nuclear Information System (INIS)

    Akram, Safia; Nadeem, S.; Hanif, M.

    2013-01-01

    In this paper the effects of induced magnetic field on the peristaltic transport of a Williamson fluid model in an asymmetric channel has been investigated. The problem is simplified by using long wave length and low Reynolds number approximations. The perturbation and numerical solutions have been presented. The expressions for pressure rise, pressure gradient, stream function, magnetic force function, current density distribution have been computed. The results of pertinent parameters have been discussed graphically. The trapping phenomena for different wave forms have been also discussed. - highlights: • The main motivation of this work is that we want to see the behavior of peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. In literature no attempt is taken to discuss the lateral Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. • We do not want to fill the gap in literature after studying this

  13. MHD peristaltic transport of spherical and cylindrical magneto-nanoparticles suspended in water

    Directory of Open Access Journals (Sweden)

    F. M. Abbasi

    2015-07-01

    Full Text Available Advancements in the biomedical engineering have enhanced the usage of magnto-nanoparticles in improving the precision and efficiency of the magneto-drug delivery systems. Such systems make use of the externally applied magnetic fields to direct the drug towards a specific target in the human body. Peristalsis of magneto-nanofluids is of significant importance in such considerations. Hence peristaltic transport of Fe3O4-water nanofluid through a two-dimensional symmetric channel is analyzed in the presence of an externally applied constant magnetic field. Hamilton-Crosser’s model of the thermal conductivity is utilized in the problem development. The nanofluid saturates a non-uniform porous medium in which the porosity of the porous medium varies with the distance from the channel walls. Analysis is performed for the spherical and the cylindrical nanoparticles. Resulting system of equations is numerically solved. Impacts of sundry parameters on the axial velocity, temperature, pressure gradient and heat transfer rate at the boundary are examined. Comparison between the results for spherical and cylindrical nanoparticles is also presented. Results show that the nanoparticles volume fraction and the Hartman number have increasing effect on the pressure gradient throughout the peristaltic tract. Effective heat transfer rate at the boundary tends to enhance with an increase in the nanoparticles volume fraction. Use of spherical nanoparticles results in a higher value of axial velocity and the temperature at the center of channel when compared with the case of cylindrical nanoparticles.

  14. Particle shedding from peristaltic pump tubing in biopharmaceutical drug product manufacturing.

    Science.gov (United States)

    Saller, Verena; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-04-01

    In a typical manufacturing setup for biopharmaceutical drug products, the fill and dosing pump is placed after the final sterile filtration unit in order to ensure adequate dispensing accuracy and avoid backpressure peaks. Given the sensitivity of protein molecules, peristaltic pumps are often preferred over piston pumps. However, particles may be shed from the silicone tubing employed. In this study, particle shedding and a potential turbidity increase during peristaltic pumping of water and buffer were investigated using three types of commercially available silicone tubing. In the recirculates, mainly particles of around 200 nm next to a very small fraction of particles in the lower micrometer range were found. Using 3D laser scanning microscopy, surface roughness of the inner tubing surface was found to be a determining factor for particle shedding from silicone tubing. As the propensity toward particle shedding varied between tubing types and also cannot be concluded from manufacturer's specifications, individual testing with the presented methods is recommended during tubing qualification. Choosing low abrasive tubing can help to further minimize the very low particle counts to be expected in pharmaceutical drug products. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Peristaltic modes of a single vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Kojo, Toru; Suganuma, Hideo; Tsumura, Kyosuke

    2007-01-01

    Using the Abelian Higgs model, we study the radial excitations of single vortex and their propagation modes along the vortex line. We call such beyond-stringy modes peristaltic modes of single vortex. With the profile of the static vortex, we derive the vortex-induced potential, i.e., single-particle potential for the Higgs and the photon field fluctuations around the static vortex, and investigate the coherently propagating fluctuations which correspond to the vibration of the vortex. We derive, analyze, and numerically solve the field equations of the Higgs and the photon field fluctuations around the static vortex with various Ginzburg-Landau parameter κ and topological charge n. Around the Bogomol'nyi-Prasad-Sommerfield value or critical coupling κ 2 =1/2, there appears a significant correlation between the Higgs and the photon field fluctuations mediated by the static vortex. As a result, for κ 2 =1/2, we find the characteristic new-type discrete pole of the peristaltic mode corresponding to the quasibound state of coherently fluctuating fields and the static vortex. We investigate its excitation energy, correlation energy of coherent fluctuations, spatial distributions, and the resulting magnetic flux behavior in detail. Our investigation covers not only usual type-II vortices with n=1 but also type-I and type-II vortices with n set-membership sign Z for the application to various general systems where the vortexlike objects behave as the essential degrees of freedom

  16. Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel

    International Nuclear Information System (INIS)

    Abd-Alla, A.M.; Abo-Dahab, S.M.

    2015-01-01

    In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel is studied. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, streamlines, axial velocity and shear stress on the channel walls have been computed numerically. Effects of Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle on the pressure gradient, pressure rise, streamline, axial velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, rotation and the phase angle are very pronounced in the phenomena. Comparison was made with the results obtained in the asymmetric channel and symmetric channel. - Highlights: • The peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel with magnetic field. • Mathematical modeling for long wavelength and low Reynolds number assumptions. • Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity and shear stress

  17. Optimization of transversal phacoemulsification settings in peristaltic mode using a new transversal ultrasound machine.

    Science.gov (United States)

    Wright, Dannen D; Wright, Alex J; Boulter, Tyler D; Bernhisel, Ashlie A; Stagg, Brian C; Zaugg, Brian; Pettey, Jeff H; Ha, Larry; Ta, Brian T; Olson, Randall J

    2017-09-01

    To determine the optimum bottle height, vacuum, aspiration rate, and power settings in the peristaltic mode of the Whitestar Signature Pro machine with Ellips FX tip action (transversal). John A. Moran Eye Center Laboratories, University of Utah, Salt Lake City, Utah, USA. Experimental study. Porcine lens nuclei were hardened with formalin and cut into 2.0 mm cubes. Lens cubes were emulsified using transversal and fragment removal time (efficiency), and fragment bounces off the tip (chatter) were measured to determine optimum aspiration rate, bottle height, vacuum, and power settings in the peristaltic mode. Efficiency increased in a linear fashion with increasing bottle height and vacuum. The most efficient aspiration rate was 50 mL/min, with 60 mL/min statistically similar. Increasing power increased efficiency up to 90% with increased chatter at 100%. The most efficient values for the settings tested were bottle height at 100 cm, vacuum at 600 mm Hg, aspiration rate of 50 or 60 mL/min, and power at 90%. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine

    Directory of Open Access Journals (Sweden)

    Sohail Nadeem

    2012-01-01

    Full Text Available Mathematical model for the peristaltic flow of chyme in small intestine along with inserted endoscope is considered. Here, chyme is treated as Williamson fluid, and the flow is considered between the annular region formed by two concentric tubes (i.e., outer tube as small intestine and inner tube as endoscope. Flow is induced by two sinusoidal peristaltic waves of different wave lengths, traveling down the intestinal wall with the same speed. The governing equations of Williamson fluid in cylindrical coordinates have been modeled. The resulting nonlinear momentum equations are simplified using long wavelength and low Reynolds number approximations. The resulting problem is solved using regular perturbation method in terms of a variant of Weissenberg number We. The numerical solution of the problem is also computed by using shooting method, and comparison of results of both solutions for velocity field is presented. The expressions for axial velocity, frictional force, pressure rise, stream function, and axial pressure gradient are obtained, and the effects of various emerging parameters on the flow characteristics are illustrated graphically. Furthermore, the streamlines pattern is plotted, and it is observed that trapping occurs, and the size of the trapped bolus varies with varying embedded flow parameters.

  19. A micro-flow-batch analyzer with solenoid micro-pumps for the photometric determination of iodate in table salt.

    Science.gov (United States)

    Lima, Marcelo B; Barreto, Inakã S; Andrade, Stéfani Iury E; Almeida, Luciano F; Araújo, Mário C U

    2012-10-15

    In this study, a micro-flow-batch analyzer (μFBA) with solenoid micro-pumps for the photometric determination of iodate in table salt is described. The method is based on the reaction of iodate with iodide to form molecular iodine followed by the reaction with N,N-diethyl-p-phenylenediamine (DPD). The analytical signal was measured at 520 nm using a green LED integrated into the μFBA built in the urethane-acrylate resin. The analytical curve for iodate was linear in the range of 0.01-10.0 mg L(-1) with a correlation coefficient of 0.997. The limit of detection and relative standard deviation were estimated at 0.004 mg L(-1) and<1.5% (n=3), respectively. The accuracy was assessed through recovery test (97.6-103.5%) and independent analysis by a conventional titrimetric method. Comparing this technique with the conventional method, no statistically significant differences were observed when applying the paired t-test at a 95% confidence level. The proposed microsystem using solenoid micro-pumps presented satisfactory robustness and high sampling rate (170 h(-1)), with a low reagents consumption and a low cost to build the device. The proposed microsystem is a new alternative for automatic determination of iodate in table salt, comparing satisfactory to the recently flow system. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    Science.gov (United States)

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.

  1. Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system.

    Science.gov (United States)

    Tripathi, Dharmendra; Pandey, S K; Siddiqui, Abdul; Bég, O Anwar

    2014-01-01

    A theoretical study is presented for transient peristaltic flow of an incompressible fluid with variable viscosity in a finite length cylindrical tube as a simulation of transport in physiological vessels and biomimetic peristaltic pumps. The current axisymmetric analysis is qualitatively similar to two-dimensional analysis but exhibits quantitative variations. The current analysis is motivated towards further elucidating the physiological migration of gastric suspensions (food bolus) in the human digestive system. It also applies to variable viscosity industrial fluid (waste) peristaltic pumping systems. First, an axisymmetric model is analysed in the limit of large wavelength ([Formula: see text]) and low Reynolds number ([Formula: see text]) for axial velocity, radial velocity, pressure, hydromechanical efficiency and stream function in terms of radial vibration of the wall ([Formula: see text]), amplitude of the wave ([Formula: see text]), averaged flow rate ([Formula: see text]) and variable viscosity ([Formula: see text]). Subsequently, the peristaltic flow of a fluid with an exponential viscosity model is examined, which is based on the analytical solutions for pressure, wall shear stress, hydromechanical efficiency and streamline patterns in the finite length tube. The results are found to correlate well with earlier studies using a constant viscosity formulation. This study reveals some important features in the flow characteristics including the observation that pressure as well as both number and size of lower trapped bolus increases. Furthermore, the study indicates that hydromechanical efficiency reduces with increasing magnitude of viscosity parameter.

  2. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    Directory of Open Access Journals (Sweden)

    Zhaoying Zhou

    2009-04-01

    Full Text Available In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  3. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shafique, Maryam [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Tanveer, A., E-mail: anum@math.qau.edu.pk [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects. - Highlights: • Peristalsis in the presence of Jeffery nanofluid is formulated. • Compliant properties of channel walls are addressed. • Impact of Hall and ion slip effects is outlined. • Influence of Joule heating and radiation is investigated. • Mixed convection for both heat and mass transfer is present.

  4. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Nisar, Z. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Yasmin, H., E-mail: qau2011@gmail.com [Department of Mathematics, COMSATS Institute of Information Technology, G.T. Road, Wah Cantt 47040 (Pakistan)

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number.

  5. Biomagnetic techniques for evaluating gastric emptying, peristaltic contraction and transit time.

    Science.gov (United States)

    la Roca-Chiapas, Jose María De; Cordova-Fraga, Teodoro

    2011-10-15

    Biomagnetic techniques were used to measure motility in various parts of the gastrointestinal (GI) tract, particularly a new technique for detecting magnetic markers and tracers. A coil was used to enhance the signal from a magnetic tracer in the GI tract and the signal was detected using a fluxgate magnetometer or a magnetoresistor in an unshielded room. Estimates of esophageal transit time were affected by the position of the subject. The reproducibility of estimates derived using the new biomagnetic technique was greater than 85% and it yielded estimates similar to those obtained using scintigraphy. This technique is suitable for studying the effect of emotional state on GI physiology and for measuring GI transit time. The biomagnetic technique can be used to evaluate digesta transit time in the esophagus, stomach and colon, peristaltic frequency and gastric emptying and is easy to use in the hospital setting.

  6. Hydromagnetic effect on inclined peristaltic flow of a couple stress fluid

    Directory of Open Access Journals (Sweden)

    G.C. Shit

    2014-12-01

    Full Text Available In this paper, we have investigated the effect of channel inclination on the peristaltic transport of a couple stress fluid in the presence of externally applied magnetic field. The slip velocity at the channel wall has been taken into account. Under the long wave length and low-Reynolds number assumptions, the analytical solutions for axial velocity, stream function, pressure gradient and pressure rise are obtained. The computed results are presented graphically by taking valid numerical data for non-dimensional physical parameters available in the existing scientific literatures. The results revealed that the trapping fluid can be eliminated and the central line axial velocity can be reduced with a considerable extent by the application of magnetic field. The flow phenomena for the pumping characteristics, trapping and reflux are furthermore investigated. The study shows that the slip parameter and Froude number play an important role in controlling axial pressure gradient.

  7. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    International Nuclear Information System (INIS)

    Hayat, T.; Nisar, Z.; Ahmad, B.; Yasmin, H.

    2015-01-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number

  8. Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid

    Directory of Open Access Journals (Sweden)

    Sadia Ayub

    Full Text Available This paper models the peristaltic transport of magnetohydrodynamic (MHD third grade nanofluid in a curved channel with wall properties. Combined effects of heat and mass transfer are retained via mixed convection. The present analysis is made in the presence of thermal radiation and chemical reaction. No-slip effect is maintained at the boundary for the velocity, temperature and nanoparticle volume fraction. Resulting formulation is simplified by employing the assumptions of long wavelength and low Reynolds number approximations. Results of axial velocity, temperature, nanoparticle mass transfer and heat transfer are studied graphically. Results reveal increment in fluid velocity for larger values of heat transfer Grashof number. There is reduction in nanoparticle mass transfer with the increase in thermophoresis parameter. Keywords: Peristalsis, Third grade nanofluid, Curved channel, Mixed convection, Thermal radiation, Chemical reaction, Flexible walls, Numerical solutions

  9. Impact of induced magnetic field on synovial fluid with peristaltic flow in an asymmetric channel

    Science.gov (United States)

    Afsar Khan, Ambreen; Farooq, Arfa; Vafai, Kambiz

    2018-01-01

    In this paper, we have worked for the impact of induced magnetic field on peristaltic motion of a non-Newtonian, incompressible, synovial fluid in an asymmetric channel. We have solved the problem for two models, Model-1 which behaves as shear thinning fluid and Model-2 which behaves as shear thickening fluid. The problem is solved by using modified Adomian Decomposition method. It has seen that two models behave quite opposite to each other for some parameters. The impact of various parameters on u, dp/dx, Δp and induced magnetic field bx have been studied graphically. The significant findings of this study is that the size of the trapped bolus and the pressure gradient increases by increasing M for both models.

  10. Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids

    Science.gov (United States)

    Bhatti, M. M.; Zeeshan, A.; Tripathi, D.; Ellahi, R.

    2018-04-01

    In this article, effects of heat and mass transfer on MHD peristaltic motion of solid particles in a dusty fluid are investigated. The effects of nonlinear thermal radiation and Hall current are also taken into account. The relevant flow analysis is modelled for fluid phase and dust phase in wave frame by means of Casson fluid model. Computation of solutions is presented for velocity profile, temperature profile and concentration profile. The effects of all the physical parameters such as particle volume fraction, Hartmann number, Hall Effect, Prandtl number, Eckert number, Schmidt number and Soret number are discussed mathematically and graphically. It is noted that the influence of magnetic field and particle volume fraction opposes the flow. Also, the impact of particle volume fraction is quite opposite on temperature and concentration profile. This model is applicable in smart drug delivery systems and bacteria movement in urine flow through the ureter.

  11. Multiple Rapid Swallow Responses During Esophageal High-Resolution Manometry Reflect Esophageal Body Peristaltic Reserve

    Science.gov (United States)

    Shaker, Anisa; Stoikes, Nathaniel; Drapekin, Jesse; Kushnir, Vladimir; Brunt, L. Michael; Gyawali, C. Prakash

    2014-01-01

    OBJECTIVES Dysphagia may develop following antireflux surgery as a consequence of poor esophageal peristaltic reserve. We hypothesized that suboptimal contraction response following multiple rapid swallows (MRS) could be associated with chronic transit symptoms following antireflux surgery. METHODS Wet swallow and MRS responses on esophageal high-resolution manometry (HRM) were characterized collectively in the esophageal body (distal contractile integral (DCI)), and individually in each smooth muscle contraction segment (S2 and S3 amplitudes) in 63 patients undergoing antireflux surgery and in 18 healthy controls. Dysphagia was assessed using symptom questionnaires. The MRS/wet swallow ratios were calculated for S2 and S3 peak amplitudes and DCI. MRS responses were compared in patients with and without late postoperative dysphagia following antireflux surgery. RESULTS Augmentation of smooth muscle contraction (MRS/wet swallow ratios > 1.0) as measured collectively by DCI was seen in only 11.1% with late postoperative dysphagia, compared with 63.6% in those with no dysphagia and 78.1% in controls (P≤0.02 for each comparison). Similar results were seen with S3 but not S2 peak amplitude ratios. Receiver operating characteristics identified a DCI MRS/wet swallow ratio threshold of 0.85 in segregating patients with late postoperative dysphagia from those with no postoperative dysphagia with a sensitivity of 0.67 and specificity of 0.64. CONCLUSIONS Lack of augmentation of smooth muscle contraction following MRS is associated with late postoperative dysphagia following antireflux surgery, suggesting that MRS responses could assess esophageal smooth muscle peristaltic reserve. Further research is warranted to determine if antireflux surgery needs to be tailored to the MRS response. PMID:24019081

  12. Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field

    International Nuclear Information System (INIS)

    Akram, Safia; Nadeem, S.

    2014-01-01

    In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The analytical solution of the stream function and pressure gradient are carried out using perturbation technique. The graphical results of the problem under discussion are also being brought under consideration to see the behavior of various physical parameters. - Highlights: • The main motivation of this work is that we want to see the behavior of nanofluids in peristaltic flows. • In literature few articles are available on this, but no article is available in asymmetric channel on the new fluid model hyperbolic tangent fluid. • So we want to fill the gap in literature studying this

  13. Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Safia, E-mail: safia_akram@yahoo.com [Department of Basic Sciences, MCS, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan); Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan)

    2014-05-01

    In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The analytical solution of the stream function and pressure gradient are carried out using perturbation technique. The graphical results of the problem under discussion are also being brought under consideration to see the behavior of various physical parameters. - Highlights: • The main motivation of this work is that we want to see the behavior of nanofluids in peristaltic flows. • In literature few articles are available on this, but no article is available in asymmetric channel on the new fluid model hyperbolic tangent fluid. • So we want to fill the gap in literature studying this.

  14. An analytical and numerical study of peristaltic transport of a Johnson—Segalman fluid in an endoscope

    International Nuclear Information System (INIS)

    Akbar, Noreen Sher; Nadeem, S.

    2013-01-01

    In the present study, we discuss the peristaltic flow of a Johnson—Segalman fluid in an endoscope. Perturbation, homotopy, and numerical solutions are found for the non-linear differential equation. The comparative study is also made to check the validity of the solutions. The expressions for pressure rise frictional forces, pressure gradient, and stream lines are presented to interpret the behavior of various physical quantities of the Johnson—Segalman fluid. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Influence of radiation on MHD peristaltic blood flow through a tapered channel in presence of slip and joule heating

    Science.gov (United States)

    Ahamad, N. Ameer; Ravikumar, S.; Govindaraju, Kalimuthu

    2017-07-01

    The aim of the present attempt was to investigate an effect of slip and joule heating on MHD peristaltic Newtonian fluid through an asymmetric vertical tapered channel under influence of radiation. The Mathematical modeling is investigated by utilizing long wavelength and low Reynolds number assumptions. The effects of Hartmann number, porosity parameter, volumetric flow rate, radiation parameter, non uniform parameter, shift angle, Prandtl number, Brinkman number, heat source/sink parameter on temperature characteristics are presented graphically and discussed in detail.

  16. Study of the Behavior of a Bell-Shaped Colonic Self-Expandable NiTi Stent under Peristaltic Movements

    Directory of Open Access Journals (Sweden)

    Sergio Puértolas

    2013-01-01

    Full Text Available Managing bowel obstruction produced by colon cancer requires an emergency intervention to patients usually in poor conditions, and it requires creating an intestinal stoma in most cases. Regardless of that the tumor may be resectable, a two-stage surgery is mandatory. To avoid these disadvantages, endoscopic placement of self-expanding stents has been introduced more than 10 years ago, as an alternative to relieve colonic obstruction. It can be used as a bridge to elective single-stage surgery avoiding a stoma or as a definitive palliative solution in patients with irresectable tumor or poor estimated survival. Stents must be capable of exerting an adequate radial pressure on the stenosed wall, keeping in mind that stent must not move or be crushed, guaranteeing an adequate lumen when affected by peristaltic waves. A finite element simulation of bell-shaped nitinol stent functionality has been done. Catheter introduction, releasing at position, and the effect of peristaltic wave were simulated. To check the reliability of the simulation, a clinical experimentation with porcine specimens was carried out. The stent presented a good deployment and flexibility. Stent behavior was excellent, expanding from the very narrow lumen corresponding to the maximum peristaltic pressure to the complete recovery of operative lumen when the pressure disappears.

  17. Design and fabrication of an ac-electro-osmosis micropump with 3D high-aspect-ratio electrodes using only SU-8

    International Nuclear Information System (INIS)

    Rouabah, Hamza A; Morgan, Hywel; Green, Nicolas G; Park, Benjamin Y; Zaouk, Rabih B; Madou, Marc J

    2011-01-01

    Lab-on-a-chip devices require integrated pumping and fluid control in microchannels. A recently developed mechanism that can produce fluid flow is an integrated ac-electro-osmosis micropump. However, like most electrokinetic pumps, ac-electro-osmotic pumps are incapable of handling backpressure as the pumping force mechanism acts on the surface of the fluid rather than the bulk. This paper presents a novel 3D electrode structure designed to overcome this limitation. The electrodes are fabricated using carbon-MEMS technology based on the pyrolysis of the photo-patternable polymer SU-8. The novel ac-electro-osmosis micropump shows an increase in the flow velocity compared to planar electrodes.

  18. PERISTALTIC PUMPING NEAR POST-CORONAL MASS EJECTION SUPRA-ARCADE CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Roger B.; Longcope, Dana W.; McKenzie, David E., E-mail: rscott@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2013-10-10

    Temperature and density measurements near supra-arcade current sheets suggest that plasma on unreconnected field lines may experience some degree of 'pre-heating' and 'pre-densification' prior to reconnection. Models of patchy reconnection allow for heating and acceleration of plasma along reconnected field lines but do not offer a mechanism for transport of thermal energy across field lines. Here, we present a model in which a reconnected flux tube retracts, deforming the surrounding layer of unreconnected field. The deformation creates constrictions that act as peristaltic pumps, driving plasma flow along affected field lines. Under certain circumstances, these flows lead to shocks that can extend far out into the unreconnected field, altering the plasma properties in the affected region. These findings have direct implications for observations in the solar corona, particularly in regard to such phenomena as high temperatures near current sheets in eruptive solar flares and wakes seen in the form of descending regions of density depletion or supra-arcade downflows.

  19. Design and experimental characterization of a NiTi-based, high-frequency, centripetal peristaltic actuator

    International Nuclear Information System (INIS)

    Borlandelli, E; Scarselli, D; Bettini, P; Morandini, M; Sala, G; Quadrio, M; Nespoli, A; Rigamonti, D; Villa, E

    2015-01-01

    Development and experimental testing of a peristaltic device actuated by a single shape-memory NiTi wire are described. The actuator is designed to radially shrink a compliant silicone pipe, and must work on a sustained basis at an actuation frequency that is higher than those typical of NiTi actuators. Four rigid, aluminum-made circular sectors are sitting along the pipe circumference and provide the required NiTi wire housing. The aluminum assembly acts as geometrical amplifier of the wire contraction and as heat sink required to dissipate the thermal energy of the wire during the cooling phase. We present and discuss the full experimental investigation of the actuator performance, measured in terms of its ability to reduce the pipe diameter, at a sustained frequency of 1.5 Hz. Moreover, we investigate how the diameter contraction is affected by various design parameters as well as actuation frequencies up to 4 Hz. We manage to make the NiTi wire work at 3% in strain, cyclically providing the designed pipe wall displacement. The actuator performance is found to decay approximately linearly with actuation frequencies up to 4 Hz. Also, the interface between the wire and the aluminum parts is found to be essential in defining the functional performance of the actuator. (paper)

  20. Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls

    Directory of Open Access Journals (Sweden)

    M. Ali Abbas

    2016-03-01

    Full Text Available In this present analysis, three dimensional peristaltic flow of hyperbolic tangent fluid in a non-uniform channel has been investigated. We have considered that the pressure is uniform over the whole cross section and the interial effects have been neglected. For this purpose we consider laminar flow under the assumptions of long wavelength (λ→∞ and creeping flow (Re→0 approximations. The attained highly nonlinear equations are solved with the help of Homotopy perturbation method. The influence of various physical parameters of interest is demonstrated graphically for wall tension, mass characterization, damping nature of the wall, wall rigidity, wall elastance, aspect ratio and the Weissenberg number. In this present investigation we found that the magnitude of the velocity is maximum in the center of the channel whereas it is minimum near the walls. Stream lines are also drawn to discuss the trapping mechanism for all the physical parameters. Comparison has also been presented between Newtonian and non-Newtonian fluid.

  1. A Peristaltic Pump Integrated on a 100% Glass Microchip Using Computer Controlled Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Yo Tanaka

    2014-05-01

    Full Text Available Lab-on-a-chip technology is promising for the miniaturization of chemistry, biochemistry, and/or biology researchers looking to exploit the advantages of a microspace. To manipulate fluid on a microchip, on-chip pumps are indispensable. To date, there have been several types of on-chip pumps including pneumatic, electroactive, and magnetically driven. However these pumps introduce polymers, metals, and/or silicon to the microchip, and these materials have several disadvantages, including chemical or physical instability, or an inherent optical detection limit. To overcome/avoid these issues, glass has been one of the most commonly utilized materials for the production of multi-purpose integrated chemical systems. However, glass is very rigid, and it is difficult to incorporate pumps onto glass microchips. This paper reports the use of a very flexible, ultra-thin glass sheet (minimum thickness of a few micrometers to realize a pump installed on an entirely glass-based microchip. The pump is a peristaltic-type, composed of four serial valves sealing a cavity with two penetrate holes using ultra-thin glass sheet. By this pump, an on-chip circulating flow was demonstrated by directly observing fluid flow, visualized via polystyrene tracking particles. The flow rate was proportional to the pumping frequency, with a maximum flow rate of approximately 0.80 μL/min. This on-chip pump could likely be utilized in a wide range of applications which require the stability of a glass microchip.

  2. Could the peristaltic transition zone be caused by non-uniform esophageal muscle fiber architecture? A simulation study.

    Science.gov (United States)

    Kou, W; Pandolfino, J E; Kahrilas, P J; Patankar, N A

    2017-06-01

    Based on a fully coupled computational model of esophageal transport, we analyzed how varied esophageal muscle fiber architecture and/or dual contraction waves (CWs) affect bolus transport. Specifically, we studied the luminal pressure profile in those cases to better understand possible origins of the peristaltic transition zone. Two groups of studies were conducted using a computational model. The first studied esophageal transport with circumferential-longitudinal fiber architecture, helical fiber architecture and various combinations of the two. In the second group, cases with dual CWs and varied muscle fiber architecture were simulated. Overall transport characteristics were examined and the space-time profiles of luminal pressure were plotted and compared. Helical muscle fiber architecture featured reduced circumferential wall stress, greater esophageal distensibility, and greater axial shortening. Non-uniform fiber architecture featured a peristaltic pressure trough between two high-pressure segments. The distal pressure segment showed greater amplitude than the proximal segment, consistent with experimental data. Dual CWs also featured a pressure trough between two high-pressure segments. However, the minimum pressure in the region of overlap was much lower, and the amplitudes of the two high-pressure segments were similar. The efficacy of esophageal transport is greatly affected by muscle fiber architecture. The peristaltic transition zone may be attributable to non-uniform architecture of muscle fibers along the length of the esophagus and/or dual CWs. The difference in amplitude between the proximal and distal pressure segments may be attributable to non-uniform muscle fiber architecture. © 2017 John Wiley & Sons Ltd.

  3. Isolation of Individual Egg Cells and Zygotes in Alstroemeria Followed by Manual Selection with a Microcapillary-connected Micropump

    Science.gov (United States)

    HOSHINO, YOICHIRO; MURATA, NAHO; SHINODA, KOICHI

    2006-01-01

    • Aims To develop a procedure for isolating living egg cells and zygotes from Alstroemeria ovules. • Scope An attempt was made to isolate egg cells and zygotes from the ovules of Alstroemeria aurea. The ovules were histologically observed using a clearing procedure which revealed the localization and sizes of the embryo sacs and egg apparatus within the ovules. For the isolation of egg cells, ovules were cut into sections with a surgical blade and treated with an enzyme solution. Subsequently, these ovule sections were dissected using a glass needle under an inverted microscope. Egg cells successfully isolated by this procedure were collected using microcapillaries connected to a micropump. For zygote isolation, ovules were excised from ovaries 24 h after self-pollination. By treating excised ovules with an enzyme solution and subsequently dissecting them using a glass needle, zygotes were successfully isolated from the ovules and collected with a microcapillary. The isolated zygotes were associated with pollen tubes and one of the synergids. Egg cells and zygotes were viable for up to 2 h following isolation, as determined by fluorescein diacetate staining. • Conclusions The procedures for isolating egg cells and zygotes in Alstroemeria were established, and each egg cell and zygote was captured with a microcapillary. PMID:16621859

  4. A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms.

    Science.gov (United States)

    Okura, Naoaki; Nakashoji, Yuta; Koshirogane, Toshihiro; Kondo, Masaki; Tanaka, Yugo; Inoue, Kohei; Hashimoto, Masahiko

    2017-10-01

    We have exploited a compact and facile microfluidic droplet creation device consisting of a poly(dimethylsiloxane) microfluidic chip possessing T-junction channel geometry, two inlet reservoirs, and one outlet reservoir, and a piezoelectric (PZT) diaphragm micropump with controller. Air was evacuated from the outlet reservoir using the PZT pump, reducing the pressure inside. The reduced pressure within the outlet reservoir pulled oil and aqueous solution preloaded in the inlet reservoirs into the microchannels, which then merged at the T-junction, successfully forming water-in-oil emulsion droplets at a rate of ∼1000 per second with minimal sample loss. We confirmed that the onset of droplet formation occurred immediately after turning on the pump (<1 s). Over repeated runs, droplet formation was highly reproducible, with droplet size purity (polydispersity, <4%) comparable to that achieved using other microfluidic droplet preparation techniques. We also demonstrated single-molecule PCR amplification in the created droplets, suggesting that the device could be used for effective droplet digital PCR platforms in most laboratories without requiring great expense, space, or time for acquiring technical skills. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Esophagusplasty with bypass iso peristaltic gastric tube in the treatment of thoracic esophagus cancer: study of 13 cases

    International Nuclear Information System (INIS)

    Speranzini, M.B.; Fujimura, I.; Pires, P.W.A.; Mittelstaedt, W.E.M.; Deutsch, C.R.; Cunha Bourroul Filho, R. da; Quintas, M.L.; Rodrigues Junior, A.J.

    1989-01-01

    In order to relieve complete obstruction of the thoracic esophagus due to spinocellular carcinoma, thirteen patients, all of them in good or at least regular general conditions were submitted to a bypass using a iso peristaltic gastric tube. The disease itself was treated by radiotherapy after surgery. Only one patient died at the hospital due to an error in the radiotherapy schedule. The survival rate was nine months (running between five and sixteen) but is should be noted that swallow capacity was maintained until death. An evaluation of the radiotherapy treatment was also presented. (author)

  6. Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Peristaltic transport of Williamson fluid in a curved geometry is modeled. Problem formulation is completed by complaint walls of channel. Radial magnetic field in the analysis is taken into account. Resulting problem formulation is simplified using long wavelength and low Reynolds number approximations. Series solution is obtained for small Weissenberg number. Influences of different embedded parameters on the axial velocity and stream function are examined. As expected the velocity in curved channel is not symmetric. Axial velocity is noticed decreasing for Hartman number. Trapped bolus increases for Hartman and curvature parameters. Keywords: Williamson fluid, Curved channel, Radial magnetic field, Complaint walls

  7. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer.

    Science.gov (United States)

    Akbar, Noreen Sher; Raza, M; Ellahi, R

    2016-07-01

    The peristaltic flow of a copper oxide water fluid investigates the effects of heat generation and magnetic field in permeable tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. It is found that pressure gradient is reduce with enhancement of particle concentration and velocity profile is upturn, beside it is observed that temperature increases as more volume fraction of copper oxide. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon. Copyright © 2016. Published by Elsevier Ireland Ltd.

  8. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

    Directory of Open Access Journals (Sweden)

    Tiong Cheng Sia

    2013-08-01

    Full Text Available Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit ? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT. In control animals, peristaltic contractions were blocked temporarily by ondansetron (1-10µM and SDZ-205-557 (1-10µM in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.

  9. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    International Nuclear Information System (INIS)

    Abd-Alla, A.M.; Abo-Dahab, S.M.; Al-Simery, R.D.

    2013-01-01

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient

  10. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel

    Energy Technology Data Exchange (ETDEWEB)

    Kothandapani, M., E-mail: mkothandapani@gmail.com [Department of Mathematics, University College of Engineering Arni, (A Constituent College of Anna University Chennai), Arni 632326, Tamil Nadu (India); Prakash, J., E-mail: prakashjayavel@yahoo.co.in [Department of Mathematics, Arulmigu Meenakshi Amman College of Engineering, Vadamavandal 604410, Tamil Nadu (India)

    2015-03-15

    Theoretical analyses on the effect of radiation and MHD on the peristaltic flow of a nanofluid through a porous medium in a two dimensional tapered asymmetric channel has been made. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. The transport equation accounts the both Brownian motion and thermophoresis along with the radiation reaction. The problem has been further simplified with the authentic assumptions of long wavelength and small Reynolds number. The analytical expressions obtained for the axial velocity, stream function, temperature field, nanoparticle fraction field and pressure gradient provide satisfactory explanation. Influence of various parameters on the flow characteristics have been discussed with the help of graphical results. The trapping phenomenon has also been discussed in detail. - Highlights: • Combine effect of thermal radiation and MHD on the peristaltic flow of a Newtonian nanofluid are discussed. • This work may be first attempt dealing the study of Newtonian nanofluid flow in the porous tapered asymmetric channel. • The velocity, stream function, temperature field and nanoparticle fraction field provide satisfactory explanation with help of graphs.

  11. Numerical Study of Mixed Convective Peristaltic Flow through Vertical Tube with Heat Generation for Moderate Reynolds and Wave Numbers

    Science.gov (United States)

    Javed, Tariq; Ahmed, B.; Sajid, M.

    2018-04-01

    The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.

  12. Detection of Crohn's disease: Comparison of CT and MR enterography without anti-peristaltic agents performed on the same day

    International Nuclear Information System (INIS)

    Grand, David J.; Beland, Michael D.; Machan, Jason T.; Mayo-Smith, William W.

    2012-01-01

    Objective: To directly compare CT enterography (CTE) and MR enterography (MRE) without antiperistaltic agents. Materials/methods: 26 patients referred for CTE underwent CTE immediately followed by MRE without use of an anti-peristaltic agent. Each study was evaluated on a 10 point scale for exam quality, level of diagnostic confidence, and presence of Crohn's disease. Kappa analysis was performed to determine the degree of agreement between the CTE and MRE of each patient. Results: 25 patients completed the MRE. The quality of the CTEs was judged as excellent by both readers (reader 1 = average 9.5/10, reader 2 = average 9.1/10). The quality of the MREs was ranked lower than the CTEs by both readers (reader 1 = average 8.9/10, reader 2 = average 7.2/10), which was statistically significant (p < 0.05). The level of confidence in interpretation was not significantly different between CTE and MRE for reader 1 or 2 (p = 0.3). There was substantial agreement between readers for the presence or absence of Crohn's disease on both CTE (kappa = 0.75) and MRE (kappa = 0.67). Conclusion: MR enterography without anti-peristaltic agents results in high diagnostic confidence and excellent agreement for the presence of Crohn's disease.

  13. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)

    2013-12-15

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.

  14. First experience with the Synergy Micro-Pump in patients in INTERMACS class 1-2 as a bridge to transplantation: pushing the limits?

    Science.gov (United States)

    Sabashnikov, Anton; Popov, Aron-Frederik; Bowles, Christopher T; Weymann, Alexander; Mohite, Prashant N; Wahlers, Thorsten; Wittwer, Thorsten; Zych, Bartlomiej; Garcia-Saez, Diana; Patil, Nikhil P; Fatullayev, Javid; Amrani, Mohamed; Banner, Nicholas R; Seidler, Tim; Unsoeld, Bernhard; Bireta, Christian; Schoendube, Friedrich A; Simon, André R

    2015-02-01

    The Synergy Micro-pump is the smallest implantable left ventricular assist device (LVAD) and provides partial flow support up to 4.25 L/min. It was shown that early intervention with this device can provide substantial benefits to patients with severe heart failure not yet sick enough for a full-support LVAD. However, as it can be inserted via small incisions with no need for sternotomy or cardiopulmonary bypass, it might be beneficial for selected high-risk patients. The aim of this study was to evaluate the efficacy of the Synergy Micro-pump in patients in INTERMACS class 1-2. From February 2012 to August 2013, 13 patients with severe heart failure were supported with the Synergy Pocket Micro-pump. Patients were divided into two groups according to INTERMACS class: the high-risk group (INTERMACS class 1-2) and the low-risk group (INTERMACS class 3-4). There were seven patients in INTERMACS class 1-2 and six in INTERMACS class 3-4. Patient demographics, perioperative characteristics, and postoperative outcomes were compared. There were no statistically significant differences in patient demographics, and mean support time was 108 ± 114 days in the high-risk group and 238 ± 198 days in the low-risk group. Also, there were no significant differences in perioperative characteristics or in the rate of postoperative adverse events. The overall survival was comparable between the two groups (one late death in each group, log-rank P = 0.608). Two patients from the high-risk group were upgraded to a full-support LVAD (P = 0.462) after 65 ± 84.9 days of mean support. One patient from the high-risk group and two patients from the low-risk group were successfully transplanted (P = 0.559). The use of the Synergy Micro-pump in INTERMACS 1-2 patients is feasible and is associated with similar postoperative outcome as in patients in INTERMACS 3-4. Carefully selected patients with severe heart failure could benefit due to the small size of the pump

  15. A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Yi, Sun

    2011-01-01

    A microfluidic control system consisting of micropump/valves with a re-usable pneumatic actuator and a disposable polymer lab-on-a-slide is presented. The lab-on-a-slide was fabricated using low cost methods, such as injection moulding of TOPAS® cyclic olefin copolymer (COC) slide, lamination...... of different layers of polymer, and ultrasonic welding of TOPAS® lid to the slide. The re-usable pneumatic actuator not only simplifies the design of the lab-on-a-slide and reduces the fabrication cost, but also reduces the possibility of cross contamination during replacement of the disposable lab...

  16. A highly reproducible solenoid micropump system for the analysis of total inorganic carbon and ammonium using gas-diffusion with conductimetric detection.

    Science.gov (United States)

    Henríquez, Camelia; Horstkotte, Burkhard; Cerdà, Víctor

    2014-01-01

    In this work, a simple, economic, and miniaturized flow-based analyzer based on solenoid micropumps is presented. It was applied to determine two parameters of high environmental interest: ammonium and total inorganic carbon (TIC) in natural waters. The method is based on gas diffusion (GD) of CO₂ and NH3 through a hydrophobic gas permeable membrane from an acidic or alkaline donor stream, respectively. The analytes are trapped in an acceptor solution, being slightly alkaline for CO₂ and slightly acidic for NH₃. The analytes are quantified using a homemade stainless steel conductimetric cell. The proposed system required five solenoid micro-pumps, one for each reagent and sample. Two especially made air bubble traps were placed down-stream of the solendoid pumps, which provided the acceptor solutions, by this increasing the method's reproducibility. Values of RSD lower than 1% were obtained. Achieved limits of detection were 0.27 µmol L⁻¹ for NH₄⁺ and 50 µmol L⁻¹ for TIC. Add-recovery tests were used to prove the trueness of the method and recoveries of 99.5 ± 7.5% were obtained for both analytes. The proposed system proved to be adequate for monitoring purpose of TIC and NH₄⁺ due to its high sample throughput and repeatability. © 2013 Published by Elsevier B.V.

  17. Brownian motion and thermophoresis effects on Peristaltic slip flow of a MHD nanofluid in a symmetric/asymmetric channel

    Science.gov (United States)

    Sucharitha, G.; Sreenadh, S.; Lakshminarayana, P.; Sushma, K.

    2017-11-01

    The slip and heat transfer effects on MHD peristaltic transport of a nanofluid in a non-uniform symmetric/asymmetric channel have studied under the assumptions of elongated wave length and negligible Reynolds number. From the simplified governing equations, the closed form solutions for velocity, stream function, temperature and concentrations are obtained. Also dual solutions are discussed for symmetric and asymmetric channel cases. The effects of important physical parameters are explained graphically. The slip parameter decreases the fluid velocity in middle of the channel whereas it increases the velocity at the channel walls. Temperature and concentration are decreasing and increasing functions of radiation parameter respectively. Moreover, velocity, temperature and concentrations are high in symmetric channel when compared with asymmetric channel.

  18. Hall current and Joule heating effects on peristaltic flow of viscous fluid in a rotating channel with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties

  19. Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-06-01

    Full Text Available In this article, the simultaneous effects of slip and Magnetohydrodynamics (MHD on peristaltic blood flow of Jeffrey fluid model have been investigated in a non-uniform porous channel. The governing equation of blood flow for Jeffrey fluid model is solved with the help of long wavelength and creeping flow regime. The solution of the resulting differential equation is solved analytically and a closed form solution is presented. The impact of all the physical parameters is plotted for velocity profile and pressure rise. Nowadays, Magnetohydrodynamics is applicable in various magnetic drug targeting for cancer diseases and also very helpful to control the flow. The present analysis is also described for Newtonian fluid (λ1→0 as a special case of our study. It is observed that magnitude of the velocity is opposite near the walls due to slip effects whereas similar behavior has been observed for magnetic field.

  20. Effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the presence of inclined magnetic field and channel with different wave forms

    International Nuclear Information System (INIS)

    Akram, Safia; Nadeem, S.; Hussain, Anwar

    2014-01-01

    In the present analysis we discussed the influence of heat and mass transfer on the peristaltic flow of a Bingham in an inclined magnetic field and channel with different wave forms. The governing two dimensional equations of momentum, heat and mass transfer are simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions of momentum, heat and mass transfer are calculated. Finally, graphical behaviors of various physical parameters are also discussed through the graphical behavior of pressure rise, pressure gradient, temperature concentration and stream functions. - Highlights: • Combine effects of heat and mass transfer on peristaltic flow problem is discussed. • Effects of inclined magnetic field and channel on new fluid model are discussed. • Effects of different wave forms are also discussed in the present flow problem

  1. The endocannabinoid anandamide regulates the peristaltic reflex by reducing neuro-neuronal and neuro-muscular neurotransmission in ascending myenteric reflex pathways in rats.

    Science.gov (United States)

    Sibaev, Andrei; Yuece, Birol; Allescher, Hans Dieter; Saur, Dieter; Storr, Martin; Kurjak, Manfred

    2014-04-01

    Endocannabinoids (EC) and the cannabinoid-1 (CB1) receptor are involved in the regulation of motility in the gastrointestinal (GI) tract. However, the underlying physiological mechanisms are not completely resolved. The purpose of this work was to study the physiological influence of the endocannabinoid anandamide, the putative endogenous CB1 active cannabinoid, and of the CB1 receptor on ascending peristaltic activity and to identify the involved neuro-neuronal, neuro-muscular and electrophysiological mechanisms. The effects of anandamide and the CB1 receptor antagonist SR141716A were investigated on contractions of the circular smooth muscle of rat ileum and in longitudinal rat ileum segments where the ascending myenteric part of the peristaltic reflex was studied in a newly designed organ bath. Additionally intracellular recordings were performed in ileum and colon. Anandamide significantly reduced cholinergic twitch contractions of ileum smooth muscle whereas SR141716A caused an increase. Anandamide reduced the ascending peristaltic contraction by affecting neuro-neuronal and neuro-muscular neurotransmission. SR141716A showed opposite effects and all anandamide effects were antagonized by SR141716A (1 μM). Anandamide reduced excitatory junction potentials (EJP) and inhibitory junction potentials (IJP), whereas intestinal slow waves were not affected. CB1 receptors regulate force and timing of the intestinal peristaltic reflex and these actions involve interneurons and motor-neurons. The endogenous cannabinoid anandamide mediates these effects by activation of CB1 receptors. The endogenous cannabinoid system is permanently active, suggesting the CB1 receptor being a possible target for the treatment of motility related disorders. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Effect of bottle height and aspiration rate on postocclusion surge in Infiniti and Millennium peristaltic phacoemulsification machines.

    Science.gov (United States)

    Ward, Matthew S; Georgescu, Dan; Olson, Randall J

    2008-08-01

    To assess how flow and bottle height affect postocclusion surge in the Infiniti (Alcon, Inc.) and Millennium (Bausch & Lomb) peristaltic machines. John A. Moran Eye Center Clinical Laboratories, University of Utah, Salt Lake City, Utah. Postocclusion anterior chamber depth changes were measured in human eye-bank eyes using A-scan. Surge was simulated by clamping the aspiration tubing and releasing it at maximum vacuum. In both machines, surge was measured (1) with aspiration held constant at 12 mL/min and bottle heights at 60, 120, and 180 cm and (2) with bottle height held constant at 60 cm and aspiration rates at 12, 24, and 36 mL/min. Surge decreased approximately 40% with each 60 cm increase in bottle height in the Infiniti. It was constant at all bottle heights in the Millennium. At 12 and 24 mL/min aspiration rates, surge in the Millennium was less than half that in the Infiniti (PInfiniti system and was relatively constant with increasing bottle height in the Millennium system. The Millennium may offer a more stable phacoemulsification platform with respect to surge at a higher aspiration rate.

  3. Peristaltic flow of Powell-Eyring fluid in curved channel with heat transfer: A useful application in biomedicine.

    Science.gov (United States)

    Hina, S; Mustafa, M; Hayat, T; Alsaedi, A

    2016-10-01

    In this work, we explore the heat transfer characteristics in the peristaltic transport of Powell-Eyring fluid inside a curved channel with complaint walls. The study has motivation toward the understanding of blood flow in microcirculatory system. Formulation is developed in the existence of velocity slip and temperature jump conditions. Perturbation approach has been utilized to present series expressions of axial velocity and temperature distributions. Streamlines are prepared to analyze the interesting phenomenon of trapping. Moreover, the plots of heat transfer coefficient for a broad range of embedded parameters are presented and discussed. The results indicate that slip effects substantially influence the velocity and temperature distributions. Axial flow accelerates when slip parameter is incremented. Temperature rises and wall heat flux grows when viscous dissipation effect is strengthened. In contrast to the planar channels, here velocity and temperature functions do not exhibit symmetry with respect to the central line. In addition, bolus size and its shape are different in upper and lower portions of the channel. Heat transfer coefficient enlarges when the curvature effects are reduced. The behaviors of wall tension and wall mass parameters on the profiles are qualitatively similar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model.

    Science.gov (United States)

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2016-12-01

    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. A single 60-min bout of peristaltic pulse external pneumatic compression transiently upregulates phosphorylated ribosomal protein s6.

    Science.gov (United States)

    Martin, J S; Kephart, W C; Mobley, C B; Wilson, T J; Goodlett, M D; Roberts, M D

    2017-11-01

    We investigated whether a single 60-min bout of whole leg, peristaltic pulse external pneumatic compression (EPC) altered select growth factor-related mRNAs and/or various phospho(p)-proteins related to cell growth, proliferation, inflammation and apoptosis signalling (e.g. Akt-mTOR, Jak-Stat). Ten participants (8 males, 2 females; aged 22·2 ± 0·4 years) reported to the laboratory 4 h post-prandial, and vastus lateralis muscle biopsies were obtained prior to (PRE), 1 h and 4 h post-EPC treatment. mRNA expression was analysed using real-time RT-PCR and phosphophorylated and cleaved proteins were analysed using an antibody array. No changes in selected growth factor-related mRNAs were observed following EPC. All p-proteins significantly altered by EPC decreased, except for p-rps6 (Ser235/236) which increased 31% 1 h post-EPC compared to PRE levels (P = 0·016). Notable decreases also included p-BAD (Ser112; -28%, P = 0·004) at 4 h post-EPC compared to PRE levels. In summary, an acute bout of EPC transiently upregulates p-rps6 as well as affecting other markers in the Akt-mTOR signalling cascade. Future research should characterize whether chronic EPC application promotes alterations in lower-limb musculature and/or enhances exercise-induced training adaptations. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  6. Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2017-06-01

    Full Text Available Biologically-inspired propulsion systems are currently receiving significant interest in the aerospace sector. Since many spacecraft propulsion systems operate at high temperatures, thermal radiation is important as a mode of heat transfer. Motivated by these developments, in the present article, the influence of nonlinear thermal radiation (via the Rosseland diffusion flux model has been studied on the laminar, incompressible, dissipative EMHD (Electro-magneto-hydrodynamic peristaltic propulsive flow of a non-Newtonian (Jefferys viscoelastic dusty fluid containing solid particles through a porous planar channel. The fluid is electrically-conducting and a constant static magnetic field is applied transverse to the flow direction (channel walls. Slip effects are also included. Magnetic induction effects are neglected. The mathematical formulation is based on continuity, momentum and energy equations with appropriate boundary conditions, which are simplified by neglecting the inertial forces and taking the long wavelength and lubrication approximations. The boundary value problem is then rendered non-dimensional with appropriate variables and the resulting system of reduced ordinary differential equations is solved analytically. The impact of various emerging parameters dictating the non-Newtonian propulsive flow i.e. Prandtl number, radiation parameter, Hartmann number, permeability parameter, Eckert number, particle volume fraction, electric field and slip parameter are depicted graphically. Increasing particle volume fraction is observed to suppress temperature magnitudes. Furthermore the computations demonstrate that an increase in particle volume fraction reduces the pumping rate in retrograde pumping region whereas it causes the opposite effect in the co-pumping region. The trapping mechanism is also visualized with the aid of streamline contour plots. Increasing thermal radiation elevates temperatures. Increasing Hartmann (magnetic body

  7. Improvements in the technique of vascular perfusion-fixation employing a fluorocarbon-containing perfusate and a peristaltic pump controlled by pressure feedback

    DEFF Research Database (Denmark)

    Rostgaard, J; Qvortrup, Klaus; Poulsen, Steen Seier

    1993-01-01

    A new improved technique for whole-body perfusion-fixation of rats and other small animals is described. The driving force is a peristaltic pump which is feedback regulated by a pressure transducer that monitors the blood-perfusion pressure in the left ventricle of the heart. The primary perfusate...... to cannulate the heart; the outer and inner barrels of the cannula are connected to the peristaltic pump and to the pressure transducer, respectively. The tissue oxygen tension in the rat is monitored by a subcutaneous oxygen electrode. Measurements showed that tissue hypoxia/anoxia did not develop before......-fixative is composed of a blood substitute--13.3% oxygenated fluorocarbon FC-75--in 0.05 M cacodylate buffer (pH 7.4) with a 2% glutaraldehyde. The secondary perfusate-fixative is composed of 2% glutaraldehyde in 0.05 M cacodylate buffer (pH 7.4) with 20 mM CaCl2. A double-barrelled, self-holding cannula is used...

  8. Peristaltic propulsion of generalized Burgers' fluids through a non-uniform porous medium: a study of chyme dynamics through the diseased intestine.

    Science.gov (United States)

    Tripathi, D; Anwar Bég, O

    2014-02-01

    A mathematical study of the peristaltic flow of complex rheological viscoelastic fluids using the generalized fractional Burgers' model through a non-uniform channel is presented. This model is designed to study the movement of chyme and undigested chyme (biophysical waste materials) through the small intestine to the large intestine. To simulate blockages and impedance of debris generated by cell shedding, infections, adhesions on the wall and undigested material, a drag force porous media model is utilized. This effectively mimicks resistance to chyme percolation generated by solid matrix particles in the regime. The conduit geometry is mathematically simulated as a sinusoidal propagation with linear increment in shape of the bolus along the length of channel. A modified Darcy-Brinkman model is employed to simulate the generalized flows through isotropic, homogenous porous media, a simplified but physically robust approximation to actual clinical situations. To model the rheological properties of chyme, a viscoelastic Burgers' fluid formulation is adopted. The governing equations are simplified by assuming long wavelength and low Reynolds number approximations. Numerical and approximate analytical solutions are obtained with two semi-numerical techniques, namely the homotopy perturbation method and the variational iteration method. Visualization of the results is achieved with Mathematica software. The influence of the dominant hydromechanical and geometric parameters such as fractional viscoelastic parameters, wave number, non-uniformity constant, permeability parameter, and material constants on the peristaltic flow characteristics are depicted graphically. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Study of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD peristaltic blood flow under the influence of Hall effect

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2017-09-01

    Full Text Available In this article, heat and mass transfer with Joule heating on magnetohydrodynamic (MHD peristaltic blood under the influence of Hall effect is examined. Mathematical modelling is based on momentum, energy and concentration which are taken into account using ohms law. The governing partial differential equations are further simplified by neglecting the inertial forces and long wavelength approximations. Exact solutions have been presented for velocity, temperature and concentration profile. The influence of all the physical pertinent parameters is taken into account with the help graphs. It is found that Hartmann number and Hall parameter shows opposite behaviour on velocity, temperature and concentration profile. It is worth mentioning that pressure rise also depicts opposite behaviour for Hartmann number and Hall parameter. The present analysis is also presented for Newtonian fluid (α→0 as a special case for our study. It is observed that Hall Effect and magnetic field shows opposite behaviour on velocity and temperature profile. Temperature profile increases due to the increment in Prandtl number and Eckert number. Numerical comparison is also presented between the existing published results by taking α=0,M=0 as a special case of our study.

  10. The Relationship of the Post-reflux Swallow-induced Peristaltic Wave Index and Esophageal Baseline Impedance with Gastroesophageal Reflux Disease Symptoms

    Science.gov (United States)

    Cho, Young Kyu; Lee, Joon Seong; Lee, Tae Hee; Hong, Su Jin; Park, Sang Joon; Jeon, Seong Ran; Kim, Hyun Gun; Kim, Jin-Oh

    2017-01-01

    Background/Aims The post-reflux swallow-induced peristaltic wave (PSPW) index and esophageal baseline impedance (BI) are novel impedance parameters used to evaluate esophageal chemical clearance and mucosal integrity. However, their relationship with reflux symptoms is not known. We aim to evaluate the correlations of PSPW index and esophageal BI with gastroesophageal reflux disease (GERD) symptoms. Methods We performed a retrospective review of multichannel intraluminal impedance and pH (MII-pH) tracings in patients with suspected GERD. Reflux symptoms were also analyzed from checklists using ordinal scales. The PSPW index and esophageal BIs in 6 spots (z1–z6) were measured. Bivariate (Spearman) correlation was used to analyze the relationship between the PSPW index or esophageal BI, and the degree of GERD symptoms measured. Results The MII-pH records of 143 patients were analyzed. The PSPW index was significantly lower in patients who had heartburn and negatively correlated with the degree of heartburn (r = −0.186, P < 0.05). On the contrary, the PSPW index was not significantly correlated with the degree of dysphagia (r = −0.013, P = 0.874). Distal esophageal BI was not significantly correlated with heartburn, but negatively correlated with the degree of dysphagia (z3: r = −0.328, z4: r = −0.361, z5: r = −0.316, z6: r = −0.273; P < 0.05). Conclusions These findings suggest that delayed chemical clearance of the esophagus may induce heartburn, but that it is not related to dysphagia. However, a lack of esophageal mucosal integrity may be related to dysphagia. PMID:28044052

  11. Cineradiography of the liquid bolus swallow. A study of the speed ot the bolus and peristaltic wave and of movement of the hyoid bone, larynx, and epiglottis

    International Nuclear Information System (INIS)

    Sundgren, P.

    1991-01-01

    In the evaluation of the dysphagic patient, radiology is crucial as a technique for monitoring morphology and function. In particular, high-speed cineradiography can reveal a variety of pharyngeal dysfunctions. However, in the literature and in practice the difference between normal and abnormal function is not always clear. This monography is based on high-speed cineradiographies of swallowing in 75 non-dysphagic volunteers and in 189 dysphagic patients. The purpose was to study whether differences in bolus volumes, patient position, age and gender had any effects on the following parameters: the speed of the peristaltic wave and apex of the liquid barium bolus, the length of movement and the movement pattern of the hyoid bone and larynx, and epiglottic function. The study disclosed that the speed of the bolus, the anterior-superior movement and net movement of the hyoid bone increased significantly with larger bolus volumes. The position of the individual in relation to gravity significantly influenced the speed of peristalsis. In most of the measured parameters there were no differences between non-dysphagic and dysphagic individuals expect for differences in the intrapersonal variations and in the anterior-superior movement of the hyoid bone. In patients with pharyngeal dysfunction the initial stage of the elevation of the larynx was significantly lower than in patients without dysfunction. The approximation of the thyroid cartilage to the hyoid bone was significantly greater in individuals with normal epiglottic function than in those with epiglottic dysmobility. It is suggested that abnormal speed of peristalsis may be a mild form of dysfunction. Measurements of the aforementioned speed and movements can be done if bolus volume, age and position of the patient, film speed and magnifications factors are known. Hypotheses concerning epiglottic function and central control of swallowing are proposed. (au)

  12. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-07-01

    Full Text Available We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1 were used as a model system. Thin-film platinum (Pt sensors for respiration (amperometric oxygen electrode, acidification (potentiometric pH electrodes and cell adhesion (interdigitated-electrodes structures, IDES allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4. Thin Si3N4 layers (20 nm or 60 nm were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated. Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  13. Laser-induced cavitation based micropump

    NARCIS (Netherlands)

    Dijkink, R.J.; Ohl, C.D.

    2008-01-01

    Lab-on-a-chip devices are in strong demand as versatile and robust pumping techniques. Here, we present a cavitation based technique, which is able to pump a volume of 4000 m3 within 75 s against an estimated pressure head of 3 bar. The single cavitation event is created by focusing a laser pulse in

  14. A single bout of whole-leg, peristaltic pulse external pneumatic compression upregulates PGC-1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue.

    Science.gov (United States)

    Kephart, Wesley C; Mobley, C Brooks; Fox, Carlton D; Pascoe, David D; Sefton, JoEllen M; Wilson, Trent J; Goodlett, Michael D; Kavazis, Andreas N; Roberts, Michael D; Martin, Jeffrey S

    2015-07-01

    What is the central question of this study? Does 60 min of peristaltic pulse external pneumatic compression (EPC) alter gene and protein expression patterns related to metabolism, vascular biology, redox balance and inflammation in vastus lateralis biopsy samples? What is the main finding and its importance? A single bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating endothelial nitric oxide synthase protein and nitric oxide metabolite concentrations in vastus lateralis biopsy samples. We investigated whether a single 60 min bout of whole-leg, lower pressure external pneumatic compression (EPC) altered select vascular, metabolic, antioxidant and inflammation-related mRNAs. Ten participants (eight male, two female; aged 22.0 ± 0.4 years) reported to the laboratory 4 h postprandial, and vastus lateralis muscle biopsies were obtained before (PRE) and 1 and 4 h after EPC treatment. Messenger RNA expression was analysed using real-time RT-PCR, and significant mRNA findings were investigated further by Western blot analysis of respective protein concentrations. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA increased by 77% 1 h following EPC compared with PRE levels (P = 0.005), but no change in protein concentration 1 or 4 h post-EPC was observed. Increases in endothelial nitric oxide sythase (eNOS) mRNA (+44%) and superoxide dismutase 2 (SOD2) mRNA (+57%) 1 h post-EPC as well as an increase in interleukin-10 mRNA (+132%) 4 h post-EPC compared with PRE levels were observed, but only approached significance (P = 0.076, 0.077 and 0.074, respectively). Interestingly, eNOS protein (+40%, P = 0.025) and nitrate and nitrite (NOx) concentrations (+69%, P = 0.025) increased 1-4 h post-EPC. Moreover, SOD2 protein tended to increase from PRE to 4 h post-EPC (+43%, P = 0.074), although no changes in tissue 4-hydroxnonenal levels was observed. An acute bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating e

  15. Convective flow reversal in self-powered enzyme micropumps.

    Science.gov (United States)

    Ortiz-Rivera, Isamar; Shum, Henry; Agrawal, Arjun; Sen, Ayusman; Balazs, Anna C

    2016-03-08

    Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δself-powered fluidic devices.

  16. A microfluidic device based on an evaporation-driven micropump

    NARCIS (Netherlands)

    Nie, C.; Frijns, A.J.H.; Mandamparambil, R.; Toonder, J.M.J. den

    2015-01-01

    In this paper we introduce a microfluidic device ultimately to be applied as a wearable sweat sensor. We show proof-of-principle of the microfluidic functions of the device, namely fluid collection and continuous fluid flow pumping. A filter-paper based layer, that eventually will form the interface

  17. An automated fluid-transport device for a microfluidic system.

    Science.gov (United States)

    Feng, Jun; Yang, Xiu-Juan; Li, Xin-Chun; Yang, Hui; Chen, Zuan-Guang

    2011-01-01

    An automated fluid-transport device for a chip-based capillary electrophoresis system has been developed. The device mainly consists of six peristaltic micropumps, two vacuum micropumps, microvalves, multi-way joints, titanium tubes, and a macro-to-micro connector. Various solutions used for the cleaning and activation of chip channels, and electrophoresis separation, are allowed to automatically transport to chip reservoirs by the electric control module. The performance of the whole system was characterized by the analysis of fluorescein sodium using chip electrophoresis with LED-induced fluorescence detection. The peak-height variation (RSD) was 3.8% in six cycles of analyses. Additionally, compared with conventional manual operation, the developed device can spare 60% time for chip pretreatment. This microdevice offers high-efficiency pretreatment for microchips, thereby resulting in a remarkable improvement of analytical capacity for batch samples.

  18. A peristaltic pump driven 89Zr separation module

    DEFF Research Database (Denmark)

    Siikanen, J.; Peterson, M.; Tran, T.

    2012-01-01

    To facilitate the separation of 89Zr produced in yttrium foils, an automated separation module was designed and assembled. The module separates more than 85% of produced 89Zr - activity in 3 g foils in less than 90 min. About 10 % remains in the dissolving vial. The quality of the separated 89Zr...

  19. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Science.gov (United States)

    Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.

    2018-06-01

    The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.

  20. Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium

    Directory of Open Access Journals (Sweden)

    Q. Hussain

    2018-06-01

    Full Text Available The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study. Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters. Keywords: Nonlinear thermal radiation, Variable viscosity, Porous medium, Soret and Dufour effects, Peristalsis

  1. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    Science.gov (United States)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-03-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  2. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    International Nuclear Information System (INIS)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-01-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4–9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s −1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  3. Entropy generation impact on peristaltic motion in a rotating frame

    Directory of Open Access Journals (Sweden)

    H. Zahir

    Full Text Available Outcome of entropy generation in peristalsis of Casson fluid in a rotating frame is intended. Formulation is based upon thermal radiation, viscous dissipation and slip conditions of velocity and temperature. Lubrication approach is followed. The velocity components, temperature and trapping are examined. Specifically the outcomes of Taylor number, fluid parameter, slip parameters, Brinkman, radiation and compliant wall effects are focused. In addition entropy generation and Bejan numbers are examined. It is observed that entropy is controlled through slip effects. Keywords: Casson fluid, Radiative heat flux, Entropy generation, Rotating frame, Slip conditions, Wall properties

  4. Esophageal contractions in type 3 achalasia esophagus: simultaneous or peristaltic?

    Science.gov (United States)

    Kim, Tae Ho; Patel, Nirali; Ledgerwood-Lee, Melissa; Mittal, Ravinder K

    2016-05-01

    Absence of peristalsis and impaired relaxation of lower esophageal sphincter are the hallmarks of achalasia esophagus. Based on the pressurization patterns, achalasia has been subdivided into three subtypes. The goal of our study was to evaluate the esophageal contraction pattern and bolus clearance in type 3 achalasia esophagus. High-resolution manometry (HRM) recordings of all patients diagnosed with achalasia esophagus in our center between the years 2011 and 2013 were reviewed. Recordings of 36 patients with type 3 achalasia were analyzed for the characteristics of swallow-induced "simultaneous esophageal contraction." The HRM impedance recordings of 14 additional patients with type 3 achalasia were analyzed for bolus clearance from the impedance recording. Finally, the HRM impedance along with intraluminal ultrasound imaging was conducted in six patients to further characterize the simultaneous esophageal contractions. Among 187 achalasia patients, 30 were type 1, 121 type 2, and 36 type 3. A total of 434 swallows evaluated in type 3 achalasia patients revealed that 95% of the swallow-induced contractions met criteria for simultaneous esophageal contraction, based on the onset of contraction. Interestingly, the peak and termination of the majority of simultaneous esophageal contractions were sequential. The HRM impedance revealed that 94% of the "simultaneous contractions" were associated with complete bolus clearance. Ultrasound image analysis revealed that baseline muscle thickness of patients in type 3 achalasia is larger than normal but the pattern of axial shortening is similar to that in normal subjects. The majority of esophageal contractions in type 3 achalasia are not true simultaneous contractions because the peak and termination of contraction are sequential and they are associated with complete bolus clearance.

  5. A New Concept of a Drug Delivery System with Improved Precision and Patient Safety Features

    Directory of Open Access Journals (Sweden)

    Florian Thoma

    2014-12-01

    Full Text Available This paper presents a novel dosing concept for drug delivery based on a peristaltic piezo-electrically actuated micro membrane pump. The design of the silicon micropump itself is straight-forward, using two piezoelectrically actuated membrane valves as inlet and outlet, and a pump chamber with a piezoelectrically actuated pump membrane in-between. To achieve a precise dosing, this micropump is used to fill a metering unit placed at its outlet. In the final design this metering unit will be made from a piezoelectrically actuated inlet valve, a storage chamber with an elastic cover membrane and a piezoelectrically actuated outlet valve, which are connected in series. During a dosing cycle the metering unit is used to adjust the drug volume to be dispensed before delivery and to control the actually dispensed volume. To simulate the new drug delivery concept, a lumped parameter model has been developed to find the decisive design parameters. With the knowledge taken from the model a drug delivery system is designed that includes a silicon micro pump and, in a first step, a silicon chip with the storage chamber and two commercial microvalves as a metering unit. The lumped parameter model is capable to simulate the maximum flow, the frequency response created by the micropump, and also the delivered volume of the drug delivery system.

  6. EMHD micro-pumping of a non-conducting shear-thinning fluid under EDL phenomena

    International Nuclear Information System (INIS)

    Gaikwad, Harshad; Borole, Chetan; Basu, Dipankar N.; Mondal, Pranab K.

    2016-01-01

    The Electro-Magneto-Hydrodynamic (EMHD) pumping of a binary fluid system constituted by one non-conducting shear-thinning fluid (top layer) by exploiting the transverse momentum exchange through the interfacial viscous shearing effect from a conducting Newtonian fluid layer (bottom layer) in a microfluidic channel is investigated. An externally applied electric field drives the conducting fluid layer under the influence of an applied magnetic field as well. The study reveals that the volume transport of shear-thinning fluid gets augmented for low magnetic field strength, higher electrical double layer (EDL) effect, low viscosity ratio and moderate potential ratio. It is also established that the volumetric flow rate reduces significantly for the higher magnetic field strength. (author)

  7. Highly Capable Micropump-fed Propulsion System for Proximity Operations, Landing and Ascent, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its work in micro-gear-pumps for propulsion applications in order to provide a highly capable propulsion and attitude control...

  8. Microfluidic rectifier based on poly(dimethylsiloxane) membrane and its application to a micropump.

    Science.gov (United States)

    Wang, Yao-Nan; Tsai, Chien-Hsiung; Fu, Lung-Ming; Lin Liou, Lung-Kai

    2013-01-01

    A microfluidic rectifier incorporating an obstructed microchannel and a PDMS membrane is proposed. During forward flow, the membrane deflects in the upward direction; thereby allowing the fluid to pass over the obstacle. Conversely, during reverse flow, the membrane seals against the obstacle, thereby closing the channel and preventing flow. It is shown that the proposed device can operate over a wide pressure range by increasing or decreasing the membrane thickness as required. A microfluidic pump is realized by integrating the rectifier with a simple stepper motor mechanism. The experimental results show that the pump can achieve a vertical left height of more than 2 m. Moreover, it is shown that a maximum flow rate of 6.3 ml/min can be obtained given a membrane thickness of 200 μm and a motor velocity of 80 rpm. In other words, the proposed microfluidic rectifier not only provides an effective means of preventing reverse flow but also permits the realization of a highly efficient microfluidic pump.

  9. Topology and shape optimization of induced-charge electro-osmotic micropumps

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Okkels, Fridolin; Bazant, M. Z.

    2009-01-01

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing...... conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize...... the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology-optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial...

  10. Microscale solution manipulation using photopolymerized hydrogel membranes and induced charge electroosmosis micropumps

    Science.gov (United States)

    Paustian, Joel Scott

    Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these gradients is not well understood. An improved understanding would allow solvophoresis to be engineered (e.g. for coatings and thin film deposition) or reduced (e.g. in fouling processes during reactions and separations). Toward this end, I perform velocity measurements of colloidal particles at various ethanol-water concentrations and gradient strengths. The velocity was found to depend on the mole fraction via the equation u = DSP▿ln X, where u is the velocity, DSP is the mobility, and X is the ethanol mole fraction.

  11. Micropump Fuel Mix Control for Novel Miniature Direct Methanol Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Energies and Power Densities of Direct Methanol Fuel Cells (DMFCs) are limited by the size and weight associated with the liquid pump, which must circulate the...

  12. Effect of the induced magnetic field on peristaltic flow of a couple stress fluid

    International Nuclear Information System (INIS)

    Mekheimer, Kh.S.

    2008-01-01

    We have analyzed the MHD flow of a conducting couple stress fluid in a slit channel with rhythmically contracting walls. In this analysis we are taking into account the induced magnetic field. Analytical expressions for the stream function, the magnetic force function, the axial pressure gradient, the axial induced magnetic field and the distribution of the current density across the channel are obtained using long wavelength approximation. The results for the pressure rise, the frictional force per wave length, the axial induced magnetic field and distribution of the current density across the channel have been computed numerically and the results were studied for various values of the physical parameters of interest, such as the couple stress parameter γ, the Hartmann number M, the magnetic Reynolds number R m and the time averaged mean flow rate θ. Contour plots for the stream and magnetic force functions are obtained and the trapping phenomena for the flow field is discussed

  13. Endoscopy and homogeneous-heterogeneous reactions in MHD radiative peristaltic activity of Ree-Eyring fluid

    Science.gov (United States)

    Hayat, Tasawar; Akram, Javaria; Alsaedi, Ahmed; Zahir, Hina

    2018-03-01

    Endoscopic and homogeneous-heterogeneous reactions in MHD peristalsis of Ree-Eyring fluid are addressed. Mathematical modeling and analysis have been performed by utilizing cylindrical coordinates. Nonlinear thermal radiation is present. Impact of slip boundary conditions on temperature and velocity on outer tube are taken into consideration. Lubrication approach is employed. The nonlinear system is executed numerically for solutions of velocity, temperature and concentration. Graphical results are obtained to predict physical interpretation of various embedded parameters. It is noted that homogeneous and heterogeneous reactions affect the concentration alternatively. Moreover Brinkman number rises the temperature and heat transfer coefficient whereas thermal slip drops temperature and heat transfer rate.

  14. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  15. Peristaltic transport and mixing of cytosol through the whole body of Physarum plasmodium.

    Science.gov (United States)

    Iima, Makoto; Nakagaki, Toshiyuki

    2012-09-01

    We study how the net transport and mixing of chemicals occur in a relatively large amoeba, the true slime mold Physarum polycephalum. The shuttle streaming of the amoeba is characterized by a rhythmic flow of the order of 1 μm/s in which the protoplasm streams back and forth. To explain the experimentally observed transport of chemicals, we formulate a simplified model to consider the mechanism by which net transport can be induced by shuttle (or periodic) motion inside the amoeba. This model is independent from the details of fluid property as it is based on the mass conservation law only. Even in such a simplified model, we demonstrate that sectional oscillations play an important role in net transport and discuss the effects of the sectional boundary motion on net transport in the microorganism.

  16. MHD peristaltic motion of Johnson-Segalman fluid in a channel with compliant walls

    International Nuclear Information System (INIS)

    Hayat, T.; Javed, Maryiam; Asghar, S.

    2008-01-01

    A mathematical model for magnetohydrodynamic (MHD) flow of a Johnson-Segalman fluid in a channel with compliant walls is analyzed. The flow is engendered due to sinusoidal waves on the channel walls. A series solution is developed for the case in which the amplitude ratio is small. Our computations show that the mean axial velocity of a Johnson-Segalman fluid is smaller than that of a viscous fluid. The variations of various interesting dimensionless parameters are graphed and discussed

  17. Peristaltic motion of a Johnson-Segalman fluid in a planar channel

    Directory of Open Access Journals (Sweden)

    Hayat T.

    2003-01-01

    Full Text Available This paper is devoted to the study of the two-dimensional flow of a Johnson-Segalman fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic travelling wave of large wavelength. Both analytical and numerical solutions are presented. The analysis for the analytical solution is carried out for small Weissenberg numbers. (A Weissenberg number is the ratio of the relaxation time of the fluid to a characteristic time associated with the flow. Analytical solutions have been obtained for the stream function from which the relations of the velocity and the longitudinal pressure gradient have been derived. The expression of the pressure rise over a wavelength has also been determined. Numerical computations are performed and compared to the perturbation analysis. Several limiting situations with their implications can be examined from the presented analysis.

  18. Multipumping flow system for improving hydride generation atomic fluorescence spectrometric determinations

    International Nuclear Information System (INIS)

    Lopez-Garcia, Ignacio; Ruiz-Alcaraz, Irene; Hernandez-Cordoba, Manuel

    2006-01-01

    The advantages of using membrane micropumps rather than peristaltic pumps to introduce both sample and reagent solutions for hydride generation atomic fluorescence spectrometry are discussed. Arsenic was used as a test analyte to check the performance of the proposed manifold. Sample and reagent consumption was reduced 8-9 fold compared with continuous mode measurements made with peristaltic pumps, with no deterioration in sensitivity. The calibration graph was linear in the 0.05 to 2.5 μg l -1 As range using peak area as the analytical signal and maximum gain in the detector setting. A limit of detection (3σ) of 0.02 μg l -1 and relative standard deviation values close to 2% for 10 independent measurements of a 1 μg l -1 As solution were obtained. The sampling frequency increased from 45 to 102 h -1 with the subsequent saving in carrier gas used and reduction in wastes generated. The instrumental modification, which could be used for other elements currently determined by atomic fluorescence spectrometry, will permit hydride generators of more reduced dimensions to be constructed

  19. Integration of an Optical Ring Resonator Biosensor into a Self-Contained Microfluidic Cartridge with Active, Single-Shot Micropumps

    Directory of Open Access Journals (Sweden)

    Sascha Geidel

    2016-09-01

    Full Text Available While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system’s reproducibility.

  20. An all-polymer micropump based on the conductive polymer poly(3,4-ethylenedioxythiophene) and a polyurethane channel system

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2007-01-01

    An all-polymer micropunlp was realized using the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDT) as the active cODlponent. The pUlnping effect originated fronl an ac potential applied to an aSylnlnetric array of interdigitat.ed electrodes. The PEDT electrodes were fabricated using...... of t.he conducting polylner electrodes by an insulating polYlTIer layer prevented electrode break-down at the cost of puolping efficiency. Continuous punlping for 40 nlin at 20 fJ..,m s-l without detectable pump degradation was delTIOnstrated in this configuration....

  1. Electrohydrodynamic pumping in microsystems

    International Nuclear Information System (INIS)

    Ramos, Antonio

    2011-01-01

    The physical principles behind the electrohydrodynamic (EHD) actuation in microsystems is presented by reviewing five different EHD micropumps. These are classified into two groups: micropumps that exert electric forces in the liquid bulk and micropumps that exert forces in the diffuse double layer. This review of five EHD micropumps allows us to analyse the EHD actuation ranging from very insulating liquids to electrolytic solutions.

  2. Electrohydrodynamic pumping in microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Antonio, E-mail: ramos@us.es [Deptartamento de Electronica y Electromagnetismo, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012-Sevilla (Spain)

    2011-06-23

    The physical principles behind the electrohydrodynamic (EHD) actuation in microsystems is presented by reviewing five different EHD micropumps. These are classified into two groups: micropumps that exert electric forces in the liquid bulk and micropumps that exert forces in the diffuse double layer. This review of five EHD micropumps allows us to analyse the EHD actuation ranging from very insulating liquids to electrolytic solutions.

  3. Combination of a Sample Pretreatment Microfluidic Device with a Photoluminescent Graphene Oxide Quantum Dot Sensor for Trace Lead Detection.

    Science.gov (United States)

    Park, Minsu; Ha, Hyun Dong; Kim, Yong Tae; Jung, Jae Hwan; Kim, Shin-Hyun; Kim, Do Hyun; Seo, Tae Seok

    2015-11-03

    A novel trace lead ion (Pb(2+)) detection platform by combining a microfluidic sample pretreatment device with a DNA aptamer linked photoluminescent graphene oxide quantum dot (GOQD) sensor was proposed. The multilayered microdevice included a microchamber which was packed with cation exchange resins for preconcentrating metal ions. The sample loading and recovery were automatically actuated by a peristaltic polydimethylsiloxane micropump with a flow rate of 84 μL/min. Effects of the micropump actuation time, metal ion concentration, pH, and the volumes of the sample and eluent on the metal ion capture and preconcentration efficiency were investigated on a chip. The Pb(2+) samples whose concentrations ranged from 0.48 nM to 1.2 μM were successfully recovered with a preconcentration factor value between 4 and 5. Then, the preconcentrated metal ions were quantitatively analyzed with a DNA aptamer modified GOQD. The DNA aptamer on the GOQD specifically captured the target Pb(2+) which can induce electron transfer from GOQD to Pb(2+) upon UV irradiation, thereby resulting in the fluorescence quenching of the GOQD. The disturbing effect of foreign anions on the Pb(2+) detection and the spiked Pb(2+) real samples were also analyzed. The proposed GOQD metal ion sensor exhibited highly sensitive Pb(2+) detection with a detection limit of 0.64 nM and a dynamic range from 1 to 1000 nM. The on-chip preconcentration of the trace metal ions from a large-volume sample followed by the metal ion detection by the fluorescent GOQD sensor can provide an advanced platform for on-site water pollution screening.

  4. Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna

    2008-11-01

    Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model.

  5. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy

    Science.gov (United States)

    Mekheimer, Kh. S.; Hasona, W. M.; Abo-Elkhair, R. E.; Zaher, A. Z.

    2018-01-01

    Cancer is dangerous and deadly to most of its patients. Recent studies have shown that gold nanoparticles can cure and overcome it, because these particles have a high atomic number which produce the heat and leads to treatment of malignancy tumors. A motivation of this article is to study the effect of heat transfer with the blood flow (non-Newtonian model) containing gold nanoparticles in a gap between two coaxial tubes, the outer tube has a sinusoidal wave traveling down its wall and the inner tube is rigid. The governing equations of third-grade fluid along with total mass, thermal energy and nanoparticles are simplified by using the assumption of long wavelength. Exact solutions have been evaluated for temperature distribution and nanoparticles concentration, while approximate analytical solutions are found for the velocity distribution using the regular perturbation method with a small third grade parameter. Influence of the physical parameters such as third grade parameter, Brownian motion parameter and thermophoresis parameter on the velocity profile, temperature distribution and nanoparticles concentration are considered. The results pointed to that the gold nanoparticles are effective for drug carrying and drug delivery systems because they control the velocity through the Brownian motion parameter Nb and thermophoresis parameter Nt. Gold nanoparticles also increases the temperature distribution, making it able to destroy cancer cells.

  6. Effect of subcutaneous butylscopolamine administration in the reduction of peristaltic artifacts in 1.5-T MR fast abdominal examinations

    International Nuclear Information System (INIS)

    Dosda, Rosa; Marti-Bonmati, Luis; Molla, Enrique; Arana, Estanislao; Ronchera-Oms, Crisanto L.

    2003-01-01

    In abdominal MR imaging, ghost artifacts from noncyclic bowel movements can reduce the quality of the images. Although pharmacologic suppression of motion is effective, no study has being conducted to analyze the influence of drug motion suppression on fast breath-hold 1.5-T examinations of the upper abdomen. A prospective, randomized, double-blind trial was conducted in 50 patients. Patients were randomly distributed into two groups: The control group received only an oral solution, whereas the other group received the oral solution plus a subcutaneous injection of 20 mg of butylscopolamine 10 min before the MR examination. Breath-hold T1-weighted gradient-recalled-echo (GRE) MR images were obtained in a 1.5-T superconductive unit. Quantitative image analysis was performed with region-of-interest (ROI) measurements of the signal intensity of the liver and in background air anterior and lateral to the patient. A qualitative analysis of the subjective quality of the T1-weighted images was also done, and the adverse reactions were registered. The groups were homogeneous regarding age, gender, and weight distribution. No significant differences in the signal intensity of the liver and in the incoherent noise measurements were found between the two groups. Gastrointestinal noise showed significant differences between groups, with lower values for the butylscopolamine group compared with the control group. There was also a statistically significant difference in the image quality between groups, and optimal studies were only found in the butylscopolamine group, where most patients had a good-quality evaluation. Regarding adverse events, there were non-significant differences between groups. In conclusion, administration of an antiperistaltic agent to reduce the movements of the gastrointestinal tract diminishes the motion artifacts generated on MR imaging of the abdomen, even at high field strength and with fast imaging sequences. Images of the upper abdomen obtained after pharmacologic suppression of the gastrointestinal movement are of significantly superior quality. (orig.)

  7. Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and Peristaltic Pumps for Defense-Based Research

    Science.gov (United States)

    2016-05-05

    drinking water supplies. Studies on Developing a Acetylcholinesterase (AChE) Assay In this project two MCE-SPR platforms with multiple analysis...agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or... electrochemical separation. Using electric fields, molecules are separated based on their different charges and molecular masses. Instrumental design for CE

  8. Hall Currents and Heat Transfer Effects on Peristaltic Transport in a Vertical Asymmetric Channel through a Porous Medium

    Directory of Open Access Journals (Sweden)

    E. Abo-Eldahab

    2012-01-01

    a porous medium are investigated theoretically and graphically under assumptions of low Reynolds number and long wavelength. The flow is investigated in a wave frame of reference moving with the velocity of the wave. Analytical solutions have been obtained for temperature, axial velocity, stream function, pressure gradient, and shear stresses. The trapping phenomenon is discussed. Graphical results are sketched for various embedded parameters and interpreted.

  9. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip

    Science.gov (United States)

    Ranjit, N. K.; Shit, G. C.

    2017-09-01

    This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid-solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye-Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy).

  10. Combine effects of Magnetohydrodynamics (MHD and partial slip on peristaltic Blood flow of Ree–Eyring fluid with wall properties

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-09-01

    Full Text Available In this article, combine effects of Magnetohydrodynamics and partial slip on Blood flow of Ree–Eyring fluid through a porous medium have been investigated. The walls of the non-uniform porous channel are considered as compliant. The governing equation of Ree–Eyring fluid for blood flow are simplified using long wavelength and low Reynolds number approximation. The obtained resulting equation are solved analytically and exact solution has been obtained. The impact of different physical parameters such as Hartmann number, slip parameter, porous parameter, wall rigidity parameter, wall tension and mass characterization parameter are taken into account. It is found that velocity distribution increases due to slip effects while its behavior is opposite for Hartmann number. Trapping mechanism has also taken under consideration by drawing contour streamlines.

  11. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept

    Directory of Open Access Journals (Sweden)

    Adnane Kara

    2016-05-01

    Full Text Available In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an “intelligent” drug delivery system based on a feedback loop to monitor drug delivery.

  12. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept.

    Science.gov (United States)

    Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine

    2016-05-28

    In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.

  13. Set-up of a pump as turbine use in micro-pumped hydro energy storage: a case of study in Froyennes Belgium

    Science.gov (United States)

    Morabito, A.; Steimes, J.; Bontems, O.; Zohbi, G. Al; Hendrick, P.

    2017-04-01

    Its maturity makes pumped hydro energy storage (PHES) the most used technology in energy storage. Micro-hydro plants (electricity production such as wind and solar power. This paper presents the design of a micro-PHES developed in Froyennes, Belgium, using a pump as turbine (PaT) coupled with a variable frequency driver (VFD). The methods adopted for the selection of the most suitable pump for pumping and reverse mode are compared and discussed. Controlling and monitoring the PaT performances represent a compulsory design phase in the analysis feasibility of PaT coupled with VFD in micro PHES plant. This study aims at answering technical research aspects of µ-PHES site used with reversible pumps.

  14. Cilia walls influence on peristaltically induced motion of magneto-fluid through a porous medium at moderate Reynolds number: Numerical study

    Directory of Open Access Journals (Sweden)

    R.E. Abo-Elkhair

    2017-04-01

    Full Text Available This article addresses, effects of a magneto-fluid through a Darcy flow model with oscillatory wavy walled whose inner surface is ciliated. The equations that governing the flow are modeled without using any approximations. Adomian Decomposition Method (ADM is used to evaluate the solution of our system of nonlinear partial differential equations. Stream function, velocity and pressure gradient components are obtained by using the vorticity formula. The effects for our arbitrary physical parameters on flow characteristics are analyzed by plotting diagrams and discussed in details. With the help of stream lines the trapping mechanism has also been discussed. The major outcomes for the ciliated channel walls are: The axial velocity is higher without a ciliated walls than that for a ciliated walls and an opposite behaviour is shown near the ciliated channel walls. The pressure gradients in both directions are higher for a ciliated channel walls. More numbers of the trapped bolus in the absent of the eccentricity of the cilia elliptic path.

  15. Diffusion-weighted MR enterography for evaluating Crohn's disease: Effect of anti-peristaltic agent on the diagnosis of bowel inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Park, So Hyun [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Songpa-gu, Seoul (Korea, Republic of); Gachon University, Department of Radiology, Gil Medical Center, Incheon (Korea, Republic of); Huh, Jimi; Park, Seong Ho; Lee, Seung Soo; Kim, Ah Young [University of Ulsan College of Medicine, Asan Medical Center, Department of Radiology and Research Institute of Radiology, Songpa-gu, Seoul (Korea, Republic of); Yang, Suk-Kyun [University of Ulsan College of Medicine, Asan Medical Center, Department of Gastroenterology, Songpa-gu, Seoul (Korea, Republic of)

    2017-06-15

    To prospectively investigate how Buscopan affects the diagnosis of bowel inflammation by diffusion-weighted imaging MR enterography (DWI-MRE) in Crohn's disease (CD). Thirty CD patients without previous bowel surgery underwent DWI-MRE (b = 900 sec/mm{sup 2}) before and after intravenous Buscopan. The 30 patients were randomly divided into two groups; using a crossover design, interpretations were made regarding the presence of restricted mural diffusion (i.e., bowel inflammation) in nine bowel segments in two separate reading sessions by two readers. The readers also judged restricted mural diffusion extent in each bowel segment on two side-by-side DWI-MRE images with a random right-to-left order. Ileocolonoscopy and conventional MRE interpreted by an expert panel were reference standards. We analyzed 262 bowel segments. DWI-MRE without Buscopan significantly decreased sensitivity for both readers (58.8 % vs. 72.9 %, P = 0.046; 57.6 % vs. 85.9 %, P = 0.001) and did not significantly increase specificity (P = 0.085 and 0.396). Two readers noted that 28.6 % and 23.3 % of 262 bowel segments had greater diffusion restriction extent on DWI-MRE with Buscopan compared with DWI-MRE without Buscopan (P < 0.001) and 68.7 % and 74 %, respectively, had similar extent between them. Omitting Buscopan caused a greater loss in sensitivity of DWI-MRE than false-positive reduction for diagnosing bowel inflammation in CD. (orig.)

  16. Diffusion-weighted MR enterography for evaluating Crohn's disease: Effect of anti-peristaltic agent on the diagnosis of bowel inflammation

    International Nuclear Information System (INIS)

    Park, So Hyun; Huh, Jimi; Park, Seong Ho; Lee, Seung Soo; Kim, Ah Young; Yang, Suk-Kyun

    2017-01-01

    To prospectively investigate how Buscopan affects the diagnosis of bowel inflammation by diffusion-weighted imaging MR enterography (DWI-MRE) in Crohn's disease (CD). Thirty CD patients without previous bowel surgery underwent DWI-MRE (b = 900 sec/mm"2) before and after intravenous Buscopan. The 30 patients were randomly divided into two groups; using a crossover design, interpretations were made regarding the presence of restricted mural diffusion (i.e., bowel inflammation) in nine bowel segments in two separate reading sessions by two readers. The readers also judged restricted mural diffusion extent in each bowel segment on two side-by-side DWI-MRE images with a random right-to-left order. Ileocolonoscopy and conventional MRE interpreted by an expert panel were reference standards. We analyzed 262 bowel segments. DWI-MRE without Buscopan significantly decreased sensitivity for both readers (58.8 % vs. 72.9 %, P = 0.046; 57.6 % vs. 85.9 %, P = 0.001) and did not significantly increase specificity (P = 0.085 and 0.396). Two readers noted that 28.6 % and 23.3 % of 262 bowel segments had greater diffusion restriction extent on DWI-MRE with Buscopan compared with DWI-MRE without Buscopan (P < 0.001) and 68.7 % and 74 %, respectively, had similar extent between them. Omitting Buscopan caused a greater loss in sensitivity of DWI-MRE than false-positive reduction for diagnosing bowel inflammation in CD. (orig.)

  17. Biofluidic Transport and Molecular Recognition in Polymer Microdevices

    National Research Council Canada - National Science Library

    Davis, Robert H; Anseth, Kristi S; Bowman, Christopher N

    2005-01-01

    .... Key accomplishments include specific cell adhesion and cytocompatibility demonstrated with grafted surfaces, a fluid-responsive polymer micropump integrated on a device and characterized, a porous...

  18. Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection

    International Nuclear Information System (INIS)

    Sierakowski, Andrzej; Janus, Paweł; Dobrowolski, Rafał; Grabiec, Piotr; Kopiec, Daniel; Majstrzyk, Wojciech; Kunicki, Piotr; Gotszalk, Teodor; Rangelow, Ivo W

    2017-01-01

    In this paper the authors compare methods used for piezoresistive microcantilevers actuation for the atomic force microscopy (AFM) imaging in the dynamic shear force mode. The piezoresistive detection is an attractive technique comparing the optical beam detection of deflection. The principal advantage is that no external alignment of optical source and detector are needed. When the microcantilever is deflected, the stress is transferred into a change of resistivity of piezoresistors. The integration of piezoresistive read-out provides a promising solution in realizing a compact non-contact AFM. Resolution of piezoresistive read-out is limited by three main noise sources: Johnson, 1/ f and thermomechanical noise. In the dynamic shear force mode measurement the method used for cantilever actuation will also affect the recorded noise in the piezoresistive detection circuit. This is the result of a crosstalk between an aluminium path (current loop used for actuation) and piezoresistors located near the base of the beam. In this paper authors described an elaborated in ITE (Institute of Electron Technology) technology of fabrication cantilevers with piezoresistive detection of deflection and compared efficiency of two methods used for cantilever actuation. (paper)

  19. Lorentz force actuation of a heated atomic force microscope cantilever.

    Science.gov (United States)

    Lee, Byeonghee; Prater, Craig B; King, William P

    2012-02-10

    We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift.

  20. Getting Started with PEAs-Based Flapping-Wing Mechanisms for Micro Aerial Systems

    Directory of Open Access Journals (Sweden)

    José Carlos Durán Hernández

    2016-05-01

    Full Text Available This paper introduces recent advances on flapping-wing Micro and Nano Aerial Vehicles (MAVs and NAVs based on Piezoelectric Actuators (PEA. Therefore, this work provides essential information to address the development of such bio-inspired aerial robots. PEA are commonly used in micro-robotics and precise positioning applications (e.g., micro-positioning and micro-manipulation, whereas within the Unmanned Aerial Vehicles (UAVs domain, motors are the classical actuators used for rotary or fixed-wing configurations. Therefore, we consider it pertinent to provide essential information regarding the modeling and control of piezoelectric cantilever actuators to accelerate early design and development stages of aerial microrobots based on flapping-wing systems. In addition, the equations describing the aerodynamic behavior of a flapping-wing configuration are presented.

  1. Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage

    Directory of Open Access Journals (Sweden)

    Jamal Zare

    2015-01-01

    Full Text Available The present research attempts to explain dynamic pull-in instability of functionally graded micro-cantilevers actuated by step DC voltage while the fringing-field effect is taken into account in the vibrational equation of motion. By employing modern asymptotic approach namely Homotopy Perturbation Method with an auxiliary term, high-order frequency-amplitude relation is obtained, then the influences of material properties and actuation voltage on dynamic pull-in behavior are investigated. It is demonstrated that the auxiliary term in the homotopy perturbation method is extremely effective for higher order approximation and two terms in series expansions are sufficient to produce an acceptable solution. The strength of this analytical procedure is verified through comparison with numerical results.

  2. Novel Versatile Intelligent Drug Delivery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project will demonstrate and develop a novel micro-pump capable of controlled and selective chemical transport. Phase I will create, characterize, and...

  3. Nowoczesne mikropompy do obwodów mikrostrumieniowych

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Peszyński, K.

    2005-01-01

    Roč. 54, č. 5 (2005), s. 35-39 ISSN 1426-6644 Institutional research plan: CEZ:AV0Z20760514 Keywords : microfluidics * fluidics * pumps * micropumps * electroactive polymers Subject RIV: BK - Fluid Dynamics

  4. Low Cost, Pump-fed, Non-Catalytic Thruster for Secondary Payload Green Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its technology in micropump-fed propulsion, including 1U CubeSat green propulsion, to the development and demonstration of a low...

  5. Pump-Fed, Compact, High Performance Green Propulsion System for Secondary Payloads, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its micropump-fed propulsion technology to the development of a low cost, compact, low tank pressure, high performance LPM-103S...

  6. Effect of peristalsis in balance of intestinal microbial ecosystem

    Science.gov (United States)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2017-11-01

    A balance of microbiota density in gastrointestinal tracts is necessary for health of the host. Although peristaltic flow made by intestinal muscles is constantly evacuating the lumen, bacterial density stay balanced. Some of bacteria colonize in the secreted mucus where there is no flow, but the rest resist the peristaltic flow in lumen and maintain their population. Using a coupled two-dimensional model of flow induced by large amplitude peristaltic waves, bacterial motility, reproduction, and diffusion, we address how bacterial growth and motility combined with peristaltic flow affect the balance of the intestinal microbial ecosystem.

  7. Assessment of the anti-diarrhea function of compound Chinese ...

    African Journals Online (AJOL)

    Organ bath was used to investigate the effect of COL on peristaltic reflexes and peristaltic waves in vitro. And anti-diarrhea activity of COL was evaluated in clinical. Results: Thin layer chromatography (TLC) and HPLC analyses showed that the contents of Berberine hydrochloride, Magnolol and Honokiol in COL were ...

  8. System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.

    Science.gov (United States)

    Lee, Sung Pil

    2015-10-01

    Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display.

  9. Nano-optical conveyor belt, part I: Theory.

    Science.gov (United States)

    Hansen, Paul; Zheng, Yuxin; Ryan, Jason; Hesselink, Lambertus

    2014-06-11

    We propose a method for peristaltic transport of nanoparticles using the optical force field over a nanostructured surface. Nanostructures may be designed to produce strong near-field hot spots when illuminated. The hot spots function as optical traps, separately addressable by their resonant wavelengths and polarizations. By activating closely packed traps sequentially, nanoparticles may be handed off between adjacent traps in a peristaltic fashion. A linear repeating structure of three separately addressable traps forms a "nano-optical conveyor belt"; a unit cell with four separately addressable traps permits controlled peristaltic transport in the plane. Using specifically designed activation sequences allows particle sorting.

  10. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies : Proof of concept

    NARCIS (Netherlands)

    Zachiu, Cornel; de Senneville, Baudouin Denis; Moonen, Chrit; Ries, Mario

    Purpose: While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During

  11. Extracorporeal Life Support in Military Casualties

    National Research Council Canada - National Science Library

    Barlett, Robert

    1998-01-01

    .... During the first year of the contract the components for the prototype device have been assembled, the nonocclusive peristaltic pump has been tested in detail, and a non thrombogenic nitric oxide...

  12. Gut dysfunction in the critically ill − mechanisms and clinical ...

    African Journals Online (AJOL)

    Division of Human Nutrition, Department of Human Biology, University of Cape Town, South Africa (currently: Division of .... muscle peristaltic action typical of a healthy gut. .... reduces the inflammatory cytokine response and attenuates the.

  13. Modular microfluidic system as a model of cystic fibrosis airways

    DEFF Research Database (Denmark)

    Skolimowski, Maciej; Weiss Nielsen, Martin; Abeille, Fabien

    2012-01-01

    A modular microfluidic airways model system that can simulate the changes in oxygen tension in different compartments of the cystic fibrosis (CF) airways was designed, developed, and tested. The fully reconfigurable system composed of modules with different functionalities: multichannel peristalt...

  14. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy

    Science.gov (United States)

    Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.

    2017-01-01

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  15. Tents and tunnels on martensitic films

    International Nuclear Information System (INIS)

    Bhattacharya, K.; Hane, K.F.; James, R.D.; Palmstroem, C.J.

    1999-01-01

    In this paper we outline a strategy for producing certain deformable structures - tents and tunnels - on epitaxially grown martensitic single crystal films. These structures are intended to be the basic building blocks of micropumps and microactuators. We give specific predictions for the systems Ni 2 MnGa, PbTiO 3 and Cu-Zn-Al. (orig.)

  16. PAIN RELIEF MEDIATED BY IMPLANTABLE DRUG-DELIVERY DEVICES

    NARCIS (Netherlands)

    HOEKSTRA, A

    Various totally implantable drug delivery systems from single access ports to micropumps are now available for administration of repeated boluses, and continuous or programmable infusions. In this respect, emphasis is given to a relatively cheap, totally implantable system for self-administering

  17. Moving-part-free microfluidic systems for lab-on-a-chip

    International Nuclear Information System (INIS)

    Luo, J K; Fu, Y Q; Du, X Y; Flewitt, A J; Milne, W I; Li, Y; Walton, A J

    2009-01-01

    Microfluidic systems are part of an emerging technology which deals with minute amounts of liquids (biological samples and reagents) on a small scale. They are fast, compact and can be made into a highly integrated system to deliver sample purification, separation, reaction, immobilization, labelling, as well as detection, thus are promising for applications such as lab-on-a-chip and handheld healthcare devices. Miniaturized micropumps typically consist of a moving-part component, such as a membrane structure, to deliver liquids, and are often unreliable, complicated in structure and difficult to be integrated with other control electronics circuits. The trend of new-generation micropumps is moving-part-free micropumps operated by advanced techniques, such as electrokinetic force, surface tension/energy, acoustic waves. This paper reviews the development and advances of relevant technologies, and introduces electrowetting-on-dielectrics and acoustic wave-based microfluidics. The programmable electrowetting micropump has been realized to dispense and manipulate droplets in 2D with up to 1000 addressable electrodes and electronics built underneath. The acoustic wave-based microfluidics can be used not only for pumping, mixing and droplet generation but also for biosensors, suitable for single-mechanism-based lab-on-a-chip applications

  18. Flow Batteries for Microfluidic Networks – Configuring An Electroosmotic Pump for Non-Terminal Positions

    Science.gov (United States)

    He, Chiyang; Lu, Joann J.; Jia, Zhijian; Wang, Wei; Wang, Xiayan; Dasgupta, Purnendu K.; Liu, Shaorong

    2011-01-01

    A micropump provides flow and pressure for a lab-on-chip device, just as a battery supplies current and voltage for an electronic system. Numerous micropumps have been developed, but none is as versatile as a battery. One cannot easily insert a micropump into a nonterminal position of a fluidic line without affecting the rest of the fluidic system, one cannot simply connect several micropumps in series to enhance the pressure output, etc. In this work we develop a flow battery (or pressure power supply) to address this issue. A flow battery consists of a +EOP (in which the liquid flows in the same direction as the field gradient) and a −EOP (in which the liquid flows opposite to the electric field gradient), and the outlet of the +EOP is directly connected to the inlet of the −EOP. An external high voltage is applied to this outlet-inlet joint via a short gel-filled capillary that allows ions but not bulk liquid flow, while the +EOP’s inlet and the −EOP’s outlet (the flow battery’s inlet and outlet) are grounded. This flow battery can be deployed anywhere in a fluidic network without electrically affecting the rest of the system. Several flow batteries can be connected in series to enhance the pressure output to drive HPLC separations. In a fluidic system powered by flow batteries, a hydraulic Ohm’s law can be applied to analyze system pressures and flow rates. PMID:21375230

  19. An evaporation driven pump for microfluidics applications

    NARCIS (Netherlands)

    Nie, C.; Mandamparambil, R.; Frijns, A.J.H.; den Toonder, J.M.J.; Tadrist, L.; Graur, I.

    2014-01-01

    We present an evaporation driven micro-pump for micro fluidic applications on a foil. In such a device, the evaporation rate is controlled by the geometry of the channel outlet and its temperature. The evaporation is also influenced by environmental parameters such as air humidity and temperature.

  20. Experimental characterization of novel microdiffuser elements

    International Nuclear Information System (INIS)

    Ehrlich, L; Punch, J; Jeffers, N; Stafford, J

    2014-01-01

    Micropumps can play a significant role in thermal management applications, as a component of microfluidic cooling systems. For next-generation high density optical communication systems, in particular, heat flux levels are sufficiently high to require a microfluidic circuit for cooling. Valveless piezoelectrically-actuated micropumps are a particularly promising technology to be deployed for this application. These pumps exploit the asymmetric flow behaviour of microdiffusers to achieve net flow. They feature no rotating or contacting parts, which make them intrinsically reliable in comparison to micropumps with active valves. In this paper, two novel microdiffuser elements are reported and characterized. The micropumps were fabricated using a 3D Printer. Each single diffuser had a length of 1800 pm and a depth of 400 pm. An experimental characterization was conducted in which the flow rate and differential pressure were measured as a function of operating frequency. In comparison with standard diffuser, both elements showed an increase in differential pressure in the range of 40 – 280 %, but only one of the elements exhibited an improved flow rate, of about 85 %.

  1. Influence of particle shedding from silicone tubing on antibody stability.

    Science.gov (United States)

    Saller, Verena; Hediger, Constanze; Matilainen, Julia; Grauschopf, Ulla; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2018-05-01

    Peristaltic pumps are increasingly employed during fill & finish operations of a biopharmaceutical drug, due to sensitivity of many biological products to rotary piston pump-related stresses. Yet, possibly also unit operations using peristaltic pumps may shed particulates into the final product due to abrasion from the employed tubing. It was the aim of this study to elucidate the potential influence of particles shed from peristaltic pump tubing on the stability of a drug product. Spiking solutions containing shed silicone particles were prepared via peristaltic pumping of placebo under recirculating conditions and subsequently characterized. Two formulated antibodies were spiked with two realistic, but worst-case levels of particles and a 6-month accelerated stability study with storage at 2-8, 25 and 40°C were conducted. Regarding the formation of aggregates and fragments, both mAbs degraded at their typically expected rates and no additional impact of spiked particles was observed. No changes were discerned however in turbidity, subvisible and visible particle assessments. Flow imaging data for one of the mAb formulations with spiked particles suggested limited colloidal stability of shed particles as indicated by a similar increase in spiked placebo. Shed silicone particles from peristaltic pump tubing are assumed to not impair drug product stability. © 2016 Royal Pharmaceutical Society.

  2. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection

    International Nuclear Information System (INIS)

    Su Rongguo; Lin Jinming; Qu Feng; Chen Zhifeng; Gao Yunhua; Yamada, Masaaki

    2004-01-01

    In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis

  3. Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall

    Directory of Open Access Journals (Sweden)

    S. Nadeem

    2015-12-01

    Full Text Available This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.

  4. Control of a flexible beam actuated by macro-fiber composite patches: I. Modeling and feedforward trajectory control

    International Nuclear Information System (INIS)

    Schröck, Johannes; Meurer, Thomas; Kugi, Andreas

    2011-01-01

    This paper considers a systematic approach for motion planning and feedforward control design for a flexible cantilever actuated by piezoelectric macro-fiber composite (MFC) patches. For accurate feedforward tracking control, special attention has to be paid to the inherent nonlinear hysteresis and creep behavior of these actuators. In order to account for these effects an appropriate compensator is applied which allows us to perform the tracking controller design on the basis of a linear infinite-dimensional model. A detailed analysis of the nonlinear actuator behavior as well as the compensator design and the overall experimental validation is presented in the companion paper (Schröck et al 2011 Smart Mater. Struct. 20 015016). The governing equations of motion of the hysteresis and creep compensated cantilever are determined by means of the extended Hamilton's principle. This allows us to consider the influence of the bonded patch actuators on the mechanical properties of the underlying beam structure in a straightforward manner and results in a model with spatially varying system parameters. For the solution of the motion planning and feedforward control problem a flatness-based methodology is proposed. In a first step, the infinite-dimensional system of the MFC-actuated flexible cantilever is approximated by a finite-dimensional model, where all system variables, i.e. the states, input and output, can be parameterized in terms of a so-called flat output. In a second step, it is shown by numerical simulations that these parameterizations converge with increasing system order of the finite-dimensional model such that the feedforward control input can be directly calculated in order to realize prescribed output trajectories

  5. Vibration energy harvesting in railway tunnels with a wireless sensor node application

    Energy Technology Data Exchange (ETDEWEB)

    Wischke, Martin

    2012-07-01

    Vibration harvesting is a promising concept to prolong the lifetime of batterypowered stand-alone systems, or even to enable their energy-autonomy. This thesis focuses on ambient vibrations converted by electromechanical transducers into electricity. The final goal is energy scavenging from train-induced vibrations in railway tunnels. This is achieved via the development of a suitable harvester for this environment and the practical demonstration of a vibrationpowered wireless sensor node (WSN). At the beginning of this thesis, extensive vibration measurements were performed in several traffic tunnels. The obtained unique data set formed the basis for the design and test of several harvesters. The railway sleeper was chosen as usable harvester location. A shock-resistant double-side suspended piezoelectric cantilever was developed. Several cantilevers with different eigenfrequencies are combined in an array, creating a robust harvester with a broad bandwidth. A field test of 7 days in the Loetschbergbasis-tunnel verified that, on average the sufficient energy for powering a virtual wireless sensor node was scavenged. For application in a real WSN, the harvester array was scaled up to 10 cantilevers. The power management for the sensor node was developed concurrently. The central component is a power switch that monitors the energy level in the system's storage capacitor and only triggers the wireless interface when sufficient energy is available. Combined with a train detection circuit, the presented energy-autonomous WSN reliably reports every passing vehicle. In addition to the development of an energy-autonomous fully integrated WSN, this work investigates nonlinear properties of PZT ceramics. Consideration of the elastostriction and the electrostriction enables a more precises prediction of the tip displacement of a piezoelectric cantilever actuator. Further, the elastostriction is exploited to modify the resonance frequency of a bimorph cantilever. Basing

  6. A Transdermal Drug Delivery System Based on LIGA Technology and Soft Lithography

    Science.gov (United States)

    Matteucci, Marco; Perennes, Frederic; Marmiroli, Benedetta; Di Fabrizio, Enzo

    2007-01-01

    This report presents a transdermal drug delivery system based on LIGA fabricated microparts. It is a portable device combining a magnetically actuated micro gear pump with a microneedle array. The fluidic behaviour of the system is analyzed in order to predict its performance according to the dimension of the microparts and then compared to experimental data. The manufacturing process of both micropump and microneedle array are described.

  7. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    Science.gov (United States)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the

  8. Flow profiling of a surface acoustic wave nanopump

    OpenAIRE

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-01-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microsc...

  9. A Rotary Microactuator Supported on Encapsulated Microball Bearings using an Electro-Pneumatic Thrust Balance

    Science.gov (United States)

    2009-01-01

    Additionally, high-speed air bearings have been demonstrated in micromotors (55 000 rpm) and micro-turbomachinery (2 million rpm) [7, 8]. While...without thrust balances [11]. For applications requiring continuous rotation ( micromotors and micropumps) this hydrostatic balancing force can be...conditions for stable actuation of the micromotor leading to maximum speeds. In addition to increased speed, this device demonstrates a substantial

  10. A Low-wear Planar-contact Silicon Raceway for Microball Bearing Applications

    Science.gov (United States)

    2009-04-01

    of friction between stainless steel microballs and silicon grooves (18–20). Both linear and rotary micromotors for sensor platforms were developed...mechanism, like a micromotor , will enable devices to reach higher speeds. Previously, the radial surface wear track depth was >15 m for a device...can lead to significant whirl and axial misalignment, which is critical for micromotor and micropump applications. Small changes in the alignment

  11. Radionuclide imaging of ureteric peristalsis

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.A.; Coptcoat, M.J.; Carter, S.StC.; Hilson, A.W.J.; Wickham, J.E.A.; Shah, P.J.F. (Inst. of Urology and St. Peter' s Hospitals, London (UK))

    1989-02-01

    Dynamic renal scintigraphy is a successful and minimally invasive technique for evaluating renal function. An extension to the basic technique involving fast-frame acquisition and a modified analysis is described which enables ureteric function to be examined. Ureteric peristalsis was assessed in 32 patients using this technique. The results from 5 representative studies are described in detail. Normally functioning ureters exhibit peristaltic contractions at a frequency of up to 3/min. Hyperperistalsis that exceeds 4 contractions/min is associated with obstruction. Peristaltic behaviour in 9 patients examined before and after ESWL was not altered. (author).

  12. Radionuclide imaging of ureteric peristalsis

    International Nuclear Information System (INIS)

    Lewis, C.A.; Coptcoat, M.J.; Carter, S.StC.; Hilson, A.W.J.; Wickham, J.E.A.; Shah, P.J.F.

    1989-01-01

    Dynamic renal scintigraphy is a successful and minimally invasive technique for evaluating renal function. An extension to the basic technique involving fast-frame acquisition and a modified analysis is described which enables ureteric function to be examined. Ureteric peristalsis was assessed in 32 patients using this technique. The results from 5 representative studies are described in detail. Normally functioning ureters exhibit peristaltic contractions at a frequency of up to 3/min. Hyperperistalsis that exceeds 4 contractions/min is associated with obstruction. Peristaltic behaviour in 9 patients examined before and after ESWL was not altered. (author)

  13. Bioreactor process monitoring using an automated microfluidic platform for cell-based assays

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin

    2015-01-01

    We report on a novel microfluidic system designed to monitor in real-time the concentration of live and dead cells in industrial cell production. Custom-made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample-to-waste liquid management and image cytometry-based ...

  14. Protein interactions at the heart of cardiac chamber formation

    NARCIS (Netherlands)

    Boogerd, Cornelis J. J.; Moorman, Antoon F. M.; Barnett, Phil

    2009-01-01

    The vertebrate heart is a muscular pump that contracts in a rhythmic fashion to propel the blood through the body. During evolution, the morphologically complex four-chambered heart of birds and mammals has evolved from a single-layered tube with peristaltic contractility. The heart of Drosophila,

  15. Heat transfer with thermal radiation on MHD particle–fluid ...

    Indian Academy of Sciences (India)

    M M BHATTI

    2017-09-12

    Sep 12, 2017 ... ous effects of slip and endoscopy on blood flow of particle–fluid suspension induced by a peristaltic wave. Akbar and Khan [21] ..... effect on pressure rise and decreases in retrograde pump- ing region. It can be seen from ...

  16. Nutritional support of the hospitalized patIent

    African Journals Online (AJOL)

    1983-04-16

    Apr 16, 1983 ... ments, as well as the attempts ofothers to transfuse animal blood into human ..... incorporation ofan infusion pump (e.g. IVac and IMed models). The choice of pump ... IMed Model 922), while with the 3-litre container peristaltic.

  17. Biomechanics of the Gastrointestinal Tract in Health and Disease

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Gregersen, Hans

    2010-01-01

    . The biomechanical properties are crucial for GI motor function because peristaltic motion that propels the food through the GI tract is a result of interaction of the passive and active tissue forces and the hydrodynamic forces in the food bolus and remodeling of the mechanical properties reflects the changes...... of the efficacy and safety of new drugs on GI function....

  18. Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis

    NARCIS (Netherlands)

    Lamers, Wouter H.; Moorman, Antoon F. M.

    2002-01-01

    Heart morphogenesis comprises 2 major consecutive steps, viz. chamber formation followed by septation. Septation is the remodeling of the heart from a single-channel peristaltic pump to a dual-channel, synchronously contracting device with 1-way valves. In the human heart, septation occurs between 4

  19. Ultrastructure of the endolymphatic duct in the rat. Fixation and preservation

    DEFF Research Database (Denmark)

    Qvortrup, K; Rostgaard, J

    1993-01-01

    Ten rats were vascular-perfused at subphysiologic as well as physiologic pressures, 80 mmHg and 120 mmHg, respectively, employing a pressure feed-back controlled peristaltic pump and an isotonic perfusate/fixative with colloids (2% Dextran) and a hypertonic perfusate/fixative without colloids, 300...

  20. A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution

    DEFF Research Database (Denmark)

    Olsen, Johan Pelck; Kari, Jeppe; Borch, Kim

    2017-01-01

    of insoluble substrate. Perhaps for this reason, transient kinetics has rarely been reported for heterogeneous enzyme reactions. Here, we describe a quenched-flow system using peristaltic pumps and stirred substrate suspensions with a dead time below 100 ms. The general performance was verified by alkali...

  1. MR urography (MRU of non-dilated ureter with diuretic administration: Static fluid 2D FSE T2-weighted versus 3D gadolinium T1-weighted GE excretory MR

    Directory of Open Access Journals (Sweden)

    C. Roy

    2014-01-01

    Conclusion: T2-weighted MRU with multiple orientations and diuretic is sufficient to identify the non-dilated ureter. It offers information on ureteral peristaltism. It can be suggested that this sequence is able to detect an initial obstruction before hydronephrosis occurs.

  2. Physiology of heartbeat reversal in adult Drosophila melanogaster (Diptera: Drosophilidae)

    Czech Academy of Sciences Publication Activity Database

    Sláma, Karel

    2010-01-01

    Roč. 107, č. 1 (2010), s. 13-31 ISSN 1210-5759 Institutional research plan: CEZ:AV0Z50070508 Keywords : peristaltic heartbeat * synchronic heartbeat * pulse-light optocardiography Subject RIV: ED - Physiology Impact factor: 0.945, year: 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1504

  3. Root oxygen use determination of propagated cucumber on rockwool cubes

    NARCIS (Netherlands)

    Gérard, S.; Blok, C.

    2013-01-01

    Cucumbers were propagated in rockwool cubes in a climate cell for four weeks. The complete root system of each cucumber was enclosed in an airtight box. Each box was connected to an air bag, which acted as an air reservoir. A peristaltic pump ensured air circulation in the system. Treatments

  4. Non-destructive root oxygen use measurement III : cucumber propagation in rockwool in a climate chamber, July-August 2001

    NARCIS (Netherlands)

    Gérard, S.; Blok, C.

    2001-01-01

    Cucumbers were propagated in rockwool cubes in a climate cell for four weeks. The complete root system of each cucumber was enclosed in an airtight box. Each box was connected to an air bag, which acted as an air reservoir. A peristaltic pump ensured air circulation in the system. The goal of this

  5. Application of a dynamic in vitro gastrointestinal tract model to study the availability of food mutagens, using heterocyclic aromatic amines as model compounds

    NARCIS (Netherlands)

    Krul, C.A.M.; Luiten-Schuite, A.; Baan, R.; Verhagen, H.; Mohn, G.; Feron, V.; Havenaar, R.

    2000-01-01

    The TNO gastro-Intestinal tract Model (TIM) is a dynamic computer-controlled in vitro system that mimics the human physiological conditions in the stomach and small intestine. In the current TIM physiological parameters such as pH, temperature, peristaltic movements, secretion of digestion enzymes,

  6. Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders

    DEFF Research Database (Denmark)

    Huizinga, J D; Thuneberg, L; Vanderwinden, J M

    1997-01-01

    and colon. Slow waves also determine the direction and velocity of propagation of peristaltic activity, in concert with the enteric nervous system. Characterization of receptors and ion channels in the ICC membrane is under way, and manipulation of slow-wave activity markedly alters movement of contents...

  7. A Disposable Polymer Lab-On-A-Slide For Point-Of-Care Diagnostics Of Methicillin-Resistant Staphylococcus Aureus (Mrsa)

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Skov, Julia

    2013-01-01

    This paper reports the design, fabrication and experimental verification of a polymer microfluidic labon-a-slide for rapid detection of methicillin-resistant Staphylococcus aureus (MRSA). MRSA cells were captured in a lysis chamber using magnetic beads, followed by thermal lysis. The released DNA...... was transferred into a second chamber for polymerase chain reaction (PCR) amplification. Fluidic control in the device was accomplished by pneumatic actuation of a micropump and five microvalves integrated on the device. The mecA gene from MRSA was successfully amplified by real-time PCR within 35 min. Presence...

  8. Flow profiling of a surface-acoustic-wave nanopump

    Science.gov (United States)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  9. Architectural Synthesis of Flow-Based Microfluidic Large-Scale Integration Biochips

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2012-01-01

    ,we propose a top-down architectural synthesis methodology for the flow-based biochips. Starting from a given biochemical application and a microfluidic component library, we are interested in synthesizing a biochip architecture, i.e., performing component allocation from the library based on the biochemical....... By combining several microvalves, more complex units, such as micropumps, switches, mixers, and multiplexers, can be built. The manufacturing technology, soft lithography, used for the flow-based biochips is advancing faster than Moore's law, resulting in increased architectural complexity. However...... by synthesizing architectures for real-life applications as well as synthetic benchmarks....

  10. A smart pill for drug delivery with sensing capabilities.

    Science.gov (United States)

    Goffredo, R; Accoto, D; Santonico, M; Pennazza, G; Guglielmelli, E

    2015-08-01

    In this paper a novel system for local drug delivery is described. The actuation principle of the micropump used for drug delivery relies on the electrolysis of a water-based solution, which is separated from a drug reservoir by an elastic membrane. The electrolytically produced gases pressurize the electrolytic solution reservoir, causing the deflection of the elastic membrane. Such deflection, in turn, forces the drug out of its reservoir through a nozzle. The proposed system is integrated in a swallowable capsule, equipped with an impedance sensor useful to acquire information on the physiological conditions of the tissue. Such information can be used to control pump activation.

  11. Electroosmotic pumps for microflow analysis

    Science.gov (United States)

    Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong

    2009-01-01

    With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021

  12. Waste-aware fluid volume assignment for flow-based microfluidic biochips

    DEFF Research Database (Denmark)

    Schneider, Alexander Rüdiger; Pop, Paul; Madsen, Jan

    2017-01-01

    complex Fluidic Units (FUs) such as switches, micropumps, mixers and separators can be constructed. When running a biochemical application on a FBMB, fluid volumes are dispensed from input reservoirs and used by the FUs. Given a biochemical application and a biochip, we are interested in determining...... the fluid volume assignment for each operation of the application, such that the FUs volume requirements are satisfied, while over- and underflow are avoided and the total volume of fluid used is minimized. We propose an algorithm for this fluid assignment problem. Compared to previous work, our method...

  13. The action of sennosides and related compounds on human colon and rectum 1

    Science.gov (United States)

    Hardcastle, J. D.; Wilkins, J. L.

    1970-01-01

    The direct action of intraluminal senna and related compounds on the human colon and rectum has been investigated. Motility was recorded by balloon kymography with recording units inserted into well established transverse colostomies or into the rectum. The motility of the colon was not changed by intraluminal senna glycosides but the introduction of senna previously incubated with faeces or Esch. coli stimulated the colon to peristalt. The peristalsis was similar to that stimulated by rheinanthrone, an oxanthrone produced by chemical hydrolysis and reduction of senna. Both activated senna and rheinanthrone appeared to act in the colon by contact stimulation. No peristaltic response was stimulated in the rectum, either with activated senna or with rheinanthrone. PMID:4929273

  14. Analytical Solution of Electro-Osmotic Peristalsis of Fractional Jeffreys Fluid in a Micro-Channel

    Directory of Open Access Journals (Sweden)

    Xiaoyi Guo

    2017-11-01

    Full Text Available The electro-osmotic peristaltic flow of a viscoelastic fluid through a cylindrical micro-channel is studied in this paper. The fractional Jeffreys constitutive model, including the relaxation time and retardation time, is utilized to describe the viscoelasticity of the fluid. Under the assumptions of long wavelength, low Reynolds number, and Debye-Hückel linearization, the analytical solutions of pressure gradient, stream function and axial velocity are explored in terms of Mittag-Leffler function by Laplace transform method. The corresponding solutions of fractional Maxwell fluid and generalized second grade fluid are also obtained as special cases. The numerical analysis of the results are depicted graphically, and the effects of electro-osmotic parameter, external electric field, fractional parameters and viscoelastic parameters on the peristaltic flow are discussed.

  15. A kinematic study of pulsation in the dorsal blood vessel of the blackworm, Lumbriculus variegatus

    Directory of Open Access Journals (Sweden)

    Kameko Halfmann

    2011-01-01

    Full Text Available The aquatic oligochaete Lumbriculus variegatus has a segmented, dorsal blood vessel (DBV that acts as a peristaltic pump to move blood through the animal's closed circulatory system. We conducted a kinematic study using videography and computational modeling as a first step toward understanding the control of DBV pulsation. Results suggested that pulse rates were highest in the posterior segments, while interpulse intervals and intersegmental delays were longest in the midbody segments. Differences in the interpulse interval distributions across regions suggest that some peristaltic waves initiated in the posterior segments do not propagate all the way to the anterior segments. A simple model consisting of a chain of excitable neuromuscular units replicated these kinetics. This model may be useful in future research aimed at understanding the modulatory effect of biogenic amines on peristalsis of the DBV. Moreover, research into the mechanisms of peristalsis of the DBV may lead to insights into disorders of peristalsis in human and veterinary medicine

  16. Miniature solid-state gas compressor

    Science.gov (United States)

    Lawless, W.N.; Cross, L.E.; Steyert, W.A.

    1985-05-07

    A miniature apparatus for compressing gases is disclosed in which an elastomer disposed between two opposing electrostrictive or piezoelectric ceramic blocks, or between a single electrostrictive or piezoelectric ceramic block and a rigid surface, is caused to extrude into or recede from a channel defined adjacent to the elastomer in response to application or removal of an electric field from the blocks. Individual cells of blocks and elastomer are connected to effect a gas compression by peristaltic activation of the individual cells. The apparatus is self-valving in that the first and last cells operate as inlet and outlet valves, respectively. Preferred electrostrictive and piezoelectric ceramic materials are disclosed, and an alternative, non-peristaltic embodiment of the apparatus is described. 9 figs.

  17. Failure to respond to physiologic challenge characterizes esophageal motility in erosive gastro-esophageal reflux disease.

    Science.gov (United States)

    Daum, C; Sweis, R; Kaufman, E; Fuellemann, A; Anggiansah, A; Fried, M; Fox, M

    2011-06-01

    Non-specific esophageal dysmotility with impaired clearance is often present in patients with gastro-esophageal reflux disease (GERD), especially those with erosive disease; however the physio-mechanic basis of esophageal dysfunction is not well defined. Retrospective assessment of patients with erosive reflux disease (ERD; n=20) and endoscopy negative reflux disease (ENRD; n=20) with pathologic acid exposure on pH studies (>4.2% time/24 h) and also healthy controls (n=20) studied by high resolution manometry. Esophageal motility in response to liquid and solid bolus swallows and multiple water swallows (MWS) was analyzed. Peristaltic dysfunction was defined as failed peristalsis, spasm, weak or poorly coordinated esophageal contraction (>3cm break in 30 mmHg isocontour). Peristaltic dysfunction was present in 33% of water swallows in controls, 56% ENRD and 76% ERD respectively (Preflux events and increase exposure to gastric refluxate. © 2011 Blackwell Publishing Ltd.

  18. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  19. Physiology of Normal Esophageal Motility

    OpenAIRE

    Goyal, Raj K; Chaudhury, Arun

    2008-01-01

    The esophagus consists of two different parts. In humans, the cervical esophagus is composed of striated muscles and the thoracic esophagus is composed of phasic smooth muscles. The striated muscle esophagus is innervated by the lower motor neurons and peristalsis in this segment is due to sequential activation of the motor neurons in the nucleus ambiguus. Both primary and secondary peristaltic contractions are centrally mediated. The smooth muscle of esophagus is phasic in nature and is inne...

  20. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease

    OpenAIRE

    Mittal, Ravinder K.

    2016-01-01

    Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed c...

  1. Patterns of ureteral motion: Data compression and statistics

    International Nuclear Information System (INIS)

    Mueller-Schauenburg, W.

    1981-01-01

    Images of ureteral peristaltics (ureteral kinetography) have been recorded at Tuebingen University Hospital since 1978. These images give a synoptical picture of ureteral motion in highly compressed form. Possibilities of data compression are discussed on the basis of functional path-time images, the ROI series, the in the path-time matrix, and the background subtraction. Particular attention is paid to problems of urethral activity statistics. (WU) [de

  2. Evaluation of uterine peristalsis using cine MRI on the coronal plane in comparison with the sagittal plane.

    Science.gov (United States)

    Shitano, Fuki; Kido, Aki; Kataoka, Masako; Fujimoto, Koji; Kiguchi, Kayo; Fushimi, Yasutaka; Togashi, Kaori

    2016-01-01

    Uterine peristalsis is supposed to be closely related to the early stages of reproduction. Sperms are preferentially transported from the uterine cervix to the side of the tube with the dominant follicle. However, with respect to magnetic resonance imaging (MRI), uterine peristalsis has only been evaluated at the sagittal plane of cine MRI. To evaluate and compare uterine peristalsis both on sagittal and coronal planes using cine MRI. Internal ethics committee approval was obtained, and subjects provided informed written consent. Thirty-one women underwent MRI scans in the periovulatory phase of the menstrual cycle. Cine MR images obtained by fast advanced spin echo sequence at 3-T field strength magnet (Toshiba Medical Systems) were visually evaluated by two independent radiologists. The frequency and the direction of peristalsis, and the presence of outer myometrium conduction of signal intensities (OMC), were evaluated. The laterality of the dominant follicle was determined on axial images and compared with the peristaltic direction in fundus. The subjects in which peristaltic directions were more clearly recognized were significantly frequent in coronal planes than in sagittal planes (P < 0.05). There was no significant difference in the peristaltic frequency between the sagittal and the coronal plane. However, the OMC was more recognized in the coronal plane than in the sagittal plane (P < 0.05). Peristaltic waves conducted toward the possible ovulation side were observed in only three of the 10 subjects. OMC of uterine peristalsis was better demonstrated in the coronal plane compared to the sagittal plane. © The Foundation Acta Radiologica 2015.

  3. Analysis of Entropy Generation in Flow of Methanol-Based Nanofluid in a Sinusoidal Wavy Channel

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2017-10-01

    Full Text Available The entropy generation due to heat transfer and fluid friction in mixed convective peristaltic flow of methanol-Al2O3 nano fluid is examined. Maxwell’s thermal conductivity model is used in analysis. Velocity and temperature profiles are utilized in the computation of the entropy generation number. The effects of involved physical parameters on velocity, temperature, entropy generation number, and Bejan number are discussed and explained graphically.

  4. Safety and efficacy of prolonged epidural analgesia after oncologic colorectal surgery

    Directory of Open Access Journals (Sweden)

    R. V. Garyaev

    2012-01-01

    Full Text Available This study demonstrates effective thoracic epidural analgesia by ropivacain 0.2 %, phentanyl 2 mkg/ml, adrenaline 2 mkg/ml in single-use infusion pumps in 124 patients, who underwent surgery for colorectal cancer. Safe, effective and controllable analgesia was observed during surgery and postoperative period. Prolonged analgesia facilitates early rehabilitation and improves gastrointestinal peristaltic activity.  Prolonged epidural analgesia is the recommended method of analgesia in this group of patients.

  5. Effect of Itopride Hydrochloride on the Ileal and Colonic Motility in Guinea Pig In Vitro

    OpenAIRE

    Lim, Hyun Chul; Kim, Young Gyun; Lim, Jung Hyun; Kim, Hee Sun; Park, Hyojin

    2008-01-01

    Purpose Itopride hydrochloride (itopride) inhibits acetylcholinesterase (AChE) and antagonizes dopamine D2 receptor, and has been used as a gastroprokinetic agent. However, its prokinetic effect on the small bowel or colon has not yet been thoroughly investigated. The aim of this study was to investigate the effects of itopride on motor functions of the ileum and colon in guinea pigs. Materials and Methods The distal ileum was excised and the activity of peristaltic contraction was determined...

  6. Effect of itopride hydrochloride on the ileal and colonic motility in guinea pig in vitro.

    Science.gov (United States)

    Lim, Hyun Chul; Kim, Young Gyun; Lim, Jung Hyun; Kim, Hee Sun; Park, Hyojin

    2008-06-30

    Itopride hydrochloride (itopride) inhibits acetylcholinesterase (AChE) and antagonizes dopamine D(2) receptor, and has been used as a gastroprokinetic agent. However, its prokinetic effect on the small bowel or colon has not yet been thoroughly investigated. The aim of this study was to investigate the effects of itopride on motor functions of the ileum and colon in guinea pigs. The distal ileum was excised and the activity of peristaltic contraction was determined by measuring the amplitude and propagation velocity of peristaltic contraction. The distal colon was removed and connected to the chamber containing Krebs-Henseleit solution (K-H solution). Artificial fecal matter was inserted into the oral side of the lumen, and moved toward the anal side by intraluminal perfusion via peristaltic pump. Colonic transit times were measured by the time required for the artificial feces to move a total length of 10 cm with 2-cm intervals. In the ileum, itopride accelerated peristaltic velocity at higher dosage (10(-10)-10(-6) M) whereas neostigmine accelerated it only with a lower dosage (10(-10)-10(-9) M). Dopamine (10(-8) M) decelerated the velocity that was recovered by itopride infusion. Itopride and neostigmine significantly shortened colonic transit at a higher dosage (10(-10)-10(-6) M). Dopamine (10(-8) M) delayed colonic transit time that was also recovered after infusion of itopride. Itopride has prokinetic effects on both the ileum and colon, which are regulated through inhibitory effects on AChE and antagonistic effects on dopamine D(2) receptor.

  7. A model of Stokesian peristalsis and vesicle transport in a three-dimensional closed cavity.

    Science.gov (United States)

    Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa

    2015-06-25

    The complexity of the mechanics involved in the mammalian reproductive process is evident. Neither an ovum nor an embryo is self-propelled, but move through the oviduct or uterus due to the peristaltic action of the tube walls, imposed pressure gradients, and perhaps ciliary motion. Here we use the method of regularized Stokeslets to model the transport of an ovum or an embryo within a peristaltic tube. We represent the ovum or the embryo as a spherical vesicle of finite volume - not a massless point particle. The outer membrane of the neutrally buoyant vesicle is discretized by nodes that are joined by a network of springs. The elastic moduli of these springs are chosen large enough so that a spherical shape is maintained. For simplicity, here we choose an axisymmetric tube where the geometry of the two-dimensional cross-section along the tube axis reflects that of the sagittal cross-section of the uterine cavity. Although the tube motion is axisymmetric, the presence of the vesicle within the tube requires a fully three-dimensional model. As was found in Yaniv et al. (2009, 2012) for a 2D closed channel, we find that the flow dynamics in a 3D peristaltic tube are strongly influenced by the closed end and the manner in which the peristaltic wave damps out towards the closure. In addition, we demonstrate that the trajectory of a vesicle of finite volume can greatly differ from the trajectory of a massless fluid particle initially placed at the vesicle׳s centroid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available on various substrates: work done @ EaP - Compound semiconductor ? Conclusions ? CSIR 2011 www.csir.co.za Acknowledgements ? Dr. Tumaini Mkwizu, PhD work on ECALD ? Ms. Nikiwe Kunjuzwa, PhD student- ECALD and batteries ? Prof... Reservoirs Potentiostat Reference Electrode Substrate (Working Electrode) Gasket Counter Electrode Electrodeposition flow-cell Waste/ Recycling Pump Pump Pump Pump Pump Potentiostat Peristaltic Pumps Flow-cell Instrumental set-up ? Pumping...

  9. Hydro-osmotic Instabilities in Active Membrane Tubes

    Science.gov (United States)

    Al-Izzi, Sami C.; Rowlands, George; Sens, Pierre; Turner, Matthew S.

    2018-03-01

    We study a membrane tube with unidirectional ion pumps driving an osmotic pressure difference. A pressure-driven peristaltic instability is identified, qualitatively distinct from similar tension-driven Rayleigh-type instabilities on membrane tubes. We discuss how this instability could be related to the function and biogenesis of membrane bound organelles, in particular, the contractile vacuole complex. The unusually long natural wavelength of this instability is in agreement with that observed in cells.

  10. In Situ Bioremediation of Energetic Compounds In Groundwater

    Science.gov (United States)

    2012-03-01

    across bacterial genera (Fuller and Manning, 1997). The biological degradation of TNT by bacteria and fungi has been extensively studied (e.g., Alvarez...stainless steel screen to the formation in an 71 increment of approximately 2-ft. A peristaltic pump connected to polyethylene tubing was used to obtain...991. Bayman, P., and G. Radkar. 1997. Transformation and tolerance of TNT (2,4,6-trinitrotoluene) by fungi . International Biodeterioration and

  11. Biologically Based Undulatory Lamprey Auv Project.

    Science.gov (United States)

    1995-01-01

    flexibility of a fish body depends on the axial skeleton which in some fish con- sists of the bony vertebra column whereas in others it consists of notochord ...undulations and peristaltics to the almost hydrostatic notochord of amphioxus. The latter can change its stiffness by the activation of muscle fibers...paramyosine) lying inside the notochord . The notochord lies along the central axis of the body, contains no bone, and takes up approximately 7% - 10

  12. A Mathematical Model for Swallowing of Concentrated Fluids in Oesophagus

    OpenAIRE

    Pandey, S. K.; Tripathi, Dharmendra

    2011-01-01

    This model investigates particularly the impact of an integral and a non-integral number of waves on the swallowing of food stuff such as jelly, tomato puree, soup, concentrated fruits juices and honey transported peristaltically through the oesophagus. The fluid is considered as a Casson fluid. Emphasis is on the study of the dependence of local pressure distribution on space and time. Mechanical efficiency, reflux limit and trapping are also discussed. The effect of Casson fluid vis-à-vis N...

  13. Multi-column step-gradient chromatography system for automated ion exchange separations

    International Nuclear Information System (INIS)

    Rucker, T.L.

    1985-01-01

    A multi-column step-gradient chromatography system has been designed to perform automated sequential separations of radionuclides by ion exchange chromatography. The system consists of a digital programmer with automatic stream selection valve, two peristaltic pumps, ten columns, and a fraction collector. The automation allows complicated separations of radionuclides to be made with minimal analyst attention and allows for increased productivity and reduced cost of analyses. Results are reported for test separations on mixtures of radionuclides by the system

  14. Preconcentration for Improved Long-term Monitoring of Contaminants in Groundwater

    Science.gov (United States)

    2014-04-10

    facilities where waste from weapons manufacture, storage, and reclamation processes has leached into the soil and groundwater. Key contaminants...and current testing and training facilities where waste from weapons manufacture, storage, and reclamation processes has leached into the soil and...scale, bread -board level, prototype was assembled using a peristaltic pump with a 900:1 motor and 0.143” rollers (P625/900.143, Instech Laboratories

  15. On the Quantitative Analysis of Liquid Flow in Physiological Tubes.

    Science.gov (United States)

    1982-12-01

    cri- copharyngeal sphincter which is aided by skeletal muscle (Vantrap- pen and hellemans, 1980) relaxes to accept the bolus and the gastro - esophageal ...lower ( gastro -) esophageal junction during peristalsis resulting from the interaction of gastric, esophageal and thoracic pressures. PIP is a pressure...higher than the downstream pressure and a flow velocity profile with no reflux (syn.: retropulsion). The 5 Pumping in Biological Tubes a. Peristaltic

  16. Dual light-activated microfluidic pumps based on an optopiezoelectric composite

    International Nuclear Information System (INIS)

    Wang, Hsin-Hu; Lee, Chih-Kung; Hsu, Yu-Hsiang; Wu, Ting-Jui; Cheng, I-Chun; Lin, Shih-Jue; Gu, Jen-Tau

    2017-01-01

    In this paper, a new type of microfluidic pump that can be activated and controlled by a masked light source is presented. The actuation of this micropump is based on an optopiezoelectric composite. This composite is constructed by having one of the electrodes of a piezoelectric PVDF (polyvinylidene fluoride) polymer replaced by a layer of TiOPc (titanyl phthalocyanine) photoconductive coating and an ITO (indium-tin-oxide) transparent electrode. This layer of photoconductive electrode provides the capability to activate multiple locations of this optopiezoelectric composite independently using a masked light source and a single voltage source. To verify the feasibility of this concept, dual light-activated microfluidic pumps based on this optopiezoelectric composite are implemented and studied. Experimental results verify that two microfluidic pumps can be created by one optopiezoelectric composite and that each pump can be optically turned on and off independently or be turned on simultaneously. These results suggest that integrating an optopiezoelectric composite into a lab-on-a-chip system can reduce the size and the number of driving units significantly, since every operation can be done optically and only one driving source is needed. The equivalent circuit, design, and implementation of dual light-activated optopiezoelectric micropumps are discussed in this paper. (paper)

  17. Implementation of Synchronous Micromotor in Developing Integrated Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Ala'aldeen Al-Halhouli

    2014-07-01

    Full Text Available This paper introduces the synchronous micromotor concept and presents new investigations on its application as an integrated driving mechanism in microfluidic systems. A spiral channel viscous micropump and a microstirrer are considered and tested as examples to verify the concept. The fabrication technology of such integrated systems is based on UV depth lithography, electroplating and soft lithography. The synchronous micromotor consists of a stator including double layer coils, and a rotor disk containing alternate permanent magnets. The coils are distributed evenly around the stator and arranged in three phases. The phases are excited by sinusoidal currents with a corresponding phase shift resulting in a rotating magnetic field. Regarding the spiral channel viscous micropump, a spiral disk was fixed onto the rotor disk and run at different rotational speeds. Tests showed very promising results, with a flow rate up to 1023 µL·min−1 at a motor rotational speed of 4500 rpm. Furthermore, for the application of a microstirred-tank bioreactor, the rotor disk design was modified to work as a stirrer. The performance of the developed microbioreactor was tested over a time period of approximately 10 h under constant stirring. Tests demonstrated the successful cultivation of S. cerevisiae through the integration of the microstirrer in a microbioreactor system. These systems prove that synchronous micromotors are well suited to serve as integrated driving mechanisms of active microfluidic components.

  18. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control

    Directory of Open Access Journals (Sweden)

    Christoph Jenke

    2017-04-01

    Full Text Available With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  19. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  20. Deglutitive inhibition, latency between swallow and esophageal contractions and primary esophageal motor disorders.

    Science.gov (United States)

    Sifrim, Daniel; Jafari, Jafar

    2012-01-01

    Swallowing induces an inhibitory wave that is followed by a contractile wave along the esophageal body. Deglutitive inhibition in the skeletal muscle of the esophagus is controlled in the brain stem whilst in the smooth muscle, an intrinsic peripheral control mechanism is critical. The latency between swallow and contractions is determined by the pattern of activation of the inhibitory and excitatory vagal pathways, the regional gradients of inhibitory and excitatory myenteric nerves, and the intrinsic properties of the smooth muscle. A wave of inhibition precedes a swallow-induced peristaltic contraction in the smooth muscle part of the human oesophagus involving both circular and longitudinal muscles in a peristaltic fashion. Deglutitive inhibition is necessary for drinking liquids which requires multiple rapid swallows (MRS). During MRS the esophageal body remains inhibited until the last of the series of swallows and then a peristaltic contraction wave follows. A normal response to MRS requires indemnity of both inhibitory and excitatory mechanisms and esophageal muscle. MRS has recently been used to assess deglutitive inhibition in patients with esophageal motor disorders. Examples with impairment of deglutitive inhibition are achalasia of the LES and diffuse esophageal spasm.

  1. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis.

    Science.gov (United States)

    Dinning, Phil G; Wiklendt, Lukasz; Omari, Taher; Arkwright, John W; Spencer, Nick J; Brookes, Simon J H; Costa, Marcello

    2014-01-01

    Propulsive contractions of circular muscle are largely responsible for the movements of content along the digestive tract. Mechanical and electrophysiological recordings of isolated colonic circular muscle have demonstrated that localized distension activates ascending and descending interneuronal pathways, evoking contraction orally and relaxation anally. These polarized enteric reflex pathways can theoretically be sequentially activated by the mechanical stimulation of the advancing contents. Here, we test the hypothesis that initiation and propagation of peristaltic contractions involves a neuromechanical loop; that is an initial gut distension activates local and oral reflex contraction and anal reflex relaxation, the subsequent movement of content then acts as new mechanical stimulus triggering sequentially reflex contractions/relaxations at each point of the gut resulting in a propulsive peristaltic contraction. In fluid filled isolated rabbit distal colon, we combined spatiotemporal mapping of gut diameter and intraluminal pressure with a new analytical method, allowing us to identify when and where active (neurally-driven) contraction or relaxation occurs. Our data indicate that gut dilation is associated with propagating peristaltic contractions, and that the associated level of dilation is greater than that preceding non-propagating contractions (2.7 ± 1.4 mm vs. 1.6 ± 1.2 mm; P polarized enteric circuits. These produce propulsion of the bolus which activates further anally, polarized enteric circuits by distension, thus closing the neuromechanical loop.

  2. Soft-robotic esophageal swallowing as a clinically-inspired bolus rheometry technique

    International Nuclear Information System (INIS)

    Dirven, Steven; Allen, Jacqueline; Xu, Weiliang; Cheng, Leo K

    2017-01-01

    To investigate the impact of viscosity and peristaltic transport parameters on manometric pressure signatures, a reproducible swallowing process is required. Due to inter- and intra-subject variability from swallow to swallow, the human body does not represent an optimal mechanism for such an investigation. A smooth and continuous swallowing soft-robot has been developed to produce biomimetic swallowing trajectories, and is proposed to operate as a bench-top bolus rheometric investigation method. The method compares conventional viscometry and pressure signature findings from robotic swallowing experiments. The robotic aspect of experimentation involved 450 biomimetic swallows (10 repetitions of 45 unique experiments). The method examined swallowing transport in three dimensions: bolus formulation, peristaltic wavelength, and peristaltic velocity, each of which are known to contribute to safe and effective swallowing in vivo . It is found that the pressure gradients and magnitudes are commensurate with clinical reports on biological swallowing, on the order of 100 mmHg peak, however, the relationship between viscosity and pressure signatures is less clear. Bolus transport cannot be predicted as a function of bolus viscosity alone. Traditional viscometric data at 50 s −1 , as used in clinical practice, may not be a strong indicator of swallow effort, safety, or efficacy in vivo . (paper)

  3. A new look at the comparative physiology of insect and human hearts.

    Science.gov (United States)

    Sláma, Karel

    2012-08-01

    Recent electrocardiographic (ECG) studies of insect hearts revealed the presence of human-like, involuntary and purely myogenic hearts. Certain insects, like a small light-weight species of hoverfly (Episyrphus balteatus), have evolved a very efficient cardiac system comprised of a compact heart ventricle and a narrow tube of aorta, which evolved as an adaptation to sustained hovering flights. Application of thermocardiographic and optocardiographic ECG methods revealed that adult flies of this species use the compact muscular heart chamber (heart ventricle) for intensive pumping of insect "blood" (haemolymph) into the head and thorax which is ringed all over with indirect flight musculature. The recordings of these hearts revealed extremely high, record rates of forward-directed, anterograde heartbeat (up to 10Hz), associated with extremely enhanced synchronic (not peristaltic) propagation of systolic myocardial contractions (32.2mm/s at room temperature). The relatively slow, backward-directed or retrograde cardiac contractions occurred only sporadically in the form of individual or twinned pulses replacing occasionally the resting periods. The compact heart ventricle contained bi-directional lateral apertures, whose opening and closure diverted the intracardiac anterograde "blood" streams between the abdominal haemocoelic cavity and the aortan artery, respectively. The visceral organs of this flying machine (crop, midgut) exhibited myogenic, extracardiac peristaltic pulsations similar to heartbeat, including the periodically reversed forward and backward direction of the peristaltic waves. The tubular crop contracted with a periodicity of 1Hz, both forwards and backwards, with propagation of the peristaltic waves at 4.4mm/s. The air-inflated and blindly ended midgut contracted at 0.2Hz, with a 0.9mm/s propagation of the peristaltic contraction waves. The neurogenic system of extracardiac haemocoelic pulsations, widely engaged in the regulation of circulatory and

  4. Enzyme-Powered Pumps: From Fundamentals to Applications

    Science.gov (United States)

    Ortiz-Rivera, Isamar

    Non-mechanical nano and microfluidic devices that function without the aid of an external power source, and can be tailored to meet specific needs, represent the next generation of smart devices. Recently, we have shown that surface-bound enzymes can act as pumps driving large-scale fluid flows in the presence of any substance that triggers the enzymatic reaction (e.g. substrate, co-factor, or biomarker). The fluid velocities attained in such systems depend directly on the enzymatic reaction rate and the concentration of the substance that initiates enzymatic catalysis. The use of biochemical reactions to power a micropump offers the advantages of specificity, sensitivity, and selectively, eliminating at the same time the need of an external power source, while providing biocompatibility. More importantly, these self-powered pumps overcome a significant obstacle in nano- and micro-fluidics: the need to use external pressure-driven pumps to push fluids through devices. Certainly, the development of enzyme-powered devices opens up new venues in biochemical engineering, particularly in the biomedical field. The work highlighted in this dissertation covers all the studies performed with enzyme-powered pumps, from the development of the micropump design, to the efforts invested in understanding the enzyme pump concept as a whole. The data collected to date, aims to expand our knowledge about enzyme-powered micropumps from the inside out: not only by exploring the different applications of these devices at the macroscale, but also by investigating in depth the mechanism of pump activation behind these systems. Specifically, we have focused on: (1) The general features that characterize the pumping behavior observed in enzyme-powered pumps, as well as the optimization of the device, (2) the possible mechanisms behind fluid motion, including the role of enzyme coverage and/or activity on the transduction of chemical energy into mechanical fluid flow in these devices

  5. A system for cooling electronic elements with an EHD coolant flow

    International Nuclear Information System (INIS)

    Tanski, M; Kocik, M; Barbucha, R; Garasz, K; Mizeraczyk, J; Kraśniewski, J; Oleksy, M; Hapka, A; Janke, W

    2014-01-01

    A system for cooling electronic components where the liquid coolant flow is forced with ion-drag type EHD micropumps was tested. For tests we used isopropyl alcohol as the coolant and CSD02060 diodes in TO-220 packages as cooled electronic elements. We have studied thermal characteristics of diodes cooled with EHD flow in the function of a coolant flow rate. The transient thermal impedance of the CSD02060 diode cooled with 1.5 ml/min EHD flow was 7.8°C/W. Similar transient thermal impedance can be achieved by applying to the diode a large RAD-A6405A/150 heat sink. We found out that EHD pumps can be successfully applied for cooling electronic elements.

  6. Topology optimisation of natural convection problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations...... coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences...... in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach...

  7. Acoustically Generated Flows in Flexural Plate Wave Sensors: a Multifield Analysis

    Science.gov (United States)

    Sayar, Ersin; Farouk, Bakhtier

    2011-11-01

    Acoustically excited flows in a microchannel flexural plate wave device are explored numerically with a coupled solid-fluid mechanics model. The device can be exploited to integrate micropumps with microfluidic chips. A comprehensive understanding of the device requires the development of coupled two or three-dimensional fluid structure interactive (FSI) models. The channel walls are composed of layers of ZnO, Si3N4 and Al. An isothermal equation of state for the fluid (water) is employed. The flexural motions of the channel walls and the resulting flowfields are solved simultaneously. A parametric analysis is performed by varying the values of the driving frequency, voltage of the electrical signal and the channel height. The time averaged axial velocity is found to be proportional to the square of the wave amplitude. The present approach is superior to the method of successive approximations where the solid-liquid coupling is weak.

  8. Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device.

    Science.gov (United States)

    Esquivel, J P; Colomer-Farrarons, J; Castellarnau, M; Salleras, M; del Campo, F J; Samitier, J; Miribel-Català, P; Sabaté, N

    2012-11-07

    The present paper reports for the first time the integration of a microfluidic system, electronics modules, amperometric sensor and display, all powered by a single micro direct methanol fuel cell. In addition to activating the electronic circuitry, the integrated power source also acts as a tuneable micropump. The electronics fulfil several functions. First, they regulate the micro fuel cell output power, which off-gas controls the flow rate of different solutions toward an electrochemical sensor through microfluidic channels. Secondly, as the fuel cell powers a three-electrode electrochemical cell, the electronics compare the working electrode output signal with a set reference value. Thirdly, if the concentration measured by the sensor exceeds this threshold value, the electronics switch on an integrated organic display. This integrated approach pushes forward the development of truly autonomous point-of-care devices relying on electrochemical detection.

  9. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    Science.gov (United States)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  10. Application of magnetohydrodynamic actuation to continuous flow chemistry.

    Science.gov (United States)

    West, Jonathan; Karamata, Boris; Lillis, Brian; Gleeson, James P; Alderman, John; Collins, John K; Lane, William; Mathewson, Alan; Berney, Helen

    2002-11-01

    Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry.

  11. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    DEFF Research Database (Denmark)

    La Rocca, Rosanna; Tallerico, Rossana; Hassan, Almosawy Talib

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were...... treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells...... between 700–1800 cm-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased...

  12. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    International Nuclear Information System (INIS)

    Cho, N. H.; Jeong, W. Y.; Park, S. H.

    2008-01-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C

  13. Thermal performance of cooling system for a laptop computer using a boiling enhancement microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N. H.; Jeong, W. Y.; Park, S. H. [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2008-07-01

    The increasing heat generation rates in CPU of notebook computers motivate a research on cooling technologies with low thermal resistance. This paper develops a closed-loop two-phase cooling system using a micropump to circulate a dielectric liquid(PF5060). The cooling system consists of an evaporator containing a boiling enhancement microstructure connected to a condenser with mini fans providing external forced convection. The cooling system is characterized by a parametric study which determines the effects of volume fill ratio of coolant, existence of a boiling enhancement microstructure and pump flow rates on thermal performance of the closed loop. Experimental data shows the optimal parametric values which can dissipate 33.9W with a film heater maintained at 95 .deg. C.

  14. Nanofluid Technology: Current Status and Future Research

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Stephen U.-S. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Technology Division

    1998-10-20

    Downscaling or miniaturization has been a recent major trend in modern science and technology. Engineers now fabricate microscale devices such as microchannel heat exchangers, and micropumps that are the size of dust specks. Further major advances would be obtained if the coolant flowing in the microchannels were to contain nanoscale particles to enhance heat transfer. Nanofluid technology will thus be an emerging and exciting technology of the 21st century. This paper gives a brief history of the Advanced Fluids Program at Argonne National Laboratory (ANL), discusses the concept of nanofluids, and provides an overview of the R&D program at ANL on the production, property characterization, and performance of nanofluids. It also describes examples of potential applications and benefits of nanofluids. Finally, future research on the fundamentals and applications of nanofluids is addressed.

  15. A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves

    International Nuclear Information System (INIS)

    Il, Doh; Cho, Young-Ho

    2009-01-01

    We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of 6.09±0.32 μl/s over the inlet pressure range of 20∼50 kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems

  16. Modeling of Transient Nectar Flow in Hummingbird Tongues

    Science.gov (United States)

    Rico-Guevara, Alejandro; Fan, Tai-Hsi; Rubega, Margaret

    2015-11-01

    We demonstrate that hummingbirds do not pick up floral nectar via capillary action. The long believed capillary rise models were mistaken and unable to predict the dynamic nectar intake process. Instead, hummingbird's tongue acts as an elastic micropump. Nectar is drawn into the tongue grooves during elastic expansion after the grooves are squeezed flat by the beak. The new model is compared with experimental data from high-speed videos of 18 species and tens of individuals of wild hummingbirds. Self-similarity and transitions of short-to-long time behaviours have been resolved for the nectar flow driven by expansive filling. The transient dynamics is characterized by the relative contributions of negative excess pressure and the apparent area modulus of the tongue grooves.

  17. A miniature and field-applicable multipumping flow analyzer for ammonium monitoring in seawater with fluorescence detection.

    Science.gov (United States)

    Horstkotte, Burkhard; Duarte, Carlos M; Cerdà, Víctor

    2011-07-15

    In this article, a simple, economic, and miniature flow analyzer for ammonium in seawater based on the solenoid micropumps is presented. A single reagent of sodium tetraborate, ortho-phthaldialdehyde (OPA), and sodium sulfite was used and optimized applying the modified SIMPLEX method. A special-made detection cell for fluorescence detection of the reaction product isoindol-1-sulfonat was made and combined with a commercial photomultiplier tube, a long-pass optical filter, and an UV-LED as excitation light source. A LOD down to 13 nmol/L was achieved. The fabrication and application of a miniature reaction coil heating device for reaction rate enhancement is further described. The system featured an injection frequency of 32 h(-1) at average standard deviation of 3%. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Fabrication and Analysis of Tapered Tip Silicon Microneedles for MEMS based Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Muhammad Waseem Ashraf

    2010-11-01

    Full Text Available In this paper, a novel design of transdermal drug delivery (TDD system is presented. The proposed system consists of controlled electronic circuit and microelectromechanical system (MEMS based devices like microneedles, micropump, flow sensor, and blood pressure sensor. The aim of this project is to develop a system that can eliminate the limitations associated with oral therapy. In this phase tapered tip silicon microneedles have been fabricated using inductively coupled plasma (ICP etching technology. Using ANSYS, simulation of microneedles has been conducted before the fabrication process to test the design suitability for TDD. More over multifield analysis of reservoir integrated with microneedle array using piezoelectric actuator has also been performed. The effects of frequency and voltage on actuator and fluid flow rate through 6×6 microneedle array have been investigated. This work provides envisage data to design suitable devices for TDD.

  19. Nursing care of indwelling catheter thrombolysis for acute thrombosis in the arteriovenous fistula in hemodialysis patients

    International Nuclear Information System (INIS)

    Gao Peizhu; Ding Wenbin; Ming Zhibing; Sun Juyun

    2010-01-01

    Objective: To summarize the experience of the nursing care of indwelling catheter thrombolysis for acute thrombosis in the arteriovenous fistula in eight hemodialysis patients. Methods: After breaking thrombus through indwelling catheter, both bolus injection and micro-pump continuous infusion of urokinase was employed in eight hemodialysis patients with acute thrombosis in the arteriovenous fistula. The necessary nursing measures were carried out to assist the whole therapeutic procedure. Results: All the patients could well cooperate with the procedure of indwelling catheter thrombolysis and urokinase infusion. The reopening rate of the obstructed fistula was 100%. Conclusion: Indwelling catheter thrombolysis with urokinase infusion is a simple, effective and safe treatment for acute thrombosis in the arteriovenous fistula in hemodialysis patients. In order to obtain optimal results, necessary nursing measures must be carried out. (authors)

  20. Structural Optimization of Non-Newtonian Rectifiers

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg; Okkels, Fridolin

    When the size of fluidic devices is scaled down, inertial effects start to vanish such that the governing equation becomes linear. Some microfluidic devices rely on the non-linear term related to the inertia of the fluid, and one example is fluid rectifiers (diodes) e.g. related to some micropumps....... These rectifiers rely on the device geometry for their working mechanism, but on further downscaling the inertial effect vanishes and the governing equation starts to show symmetry properties. These symmetry properties reduce the geometry influence to the point where fluid rectifiers cease to function....... In this context it is natural to look for other sources of non-linearity and one possibility is to introduce a non-Newtonian working fluid. Non-Newtonian properties are due to stretching of large particles/molecules in the fluid and this is commonly seen for biological samples in “lab-on-a-chip” systems...

  1. A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

    Directory of Open Access Journals (Sweden)

    Jan Gimsa

    2014-11-01

    Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.

  2. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  3. Optical coherence tomography characterization of femtosecond laser manufactured microfluidic circuits

    Science.gov (United States)

    De Pretto, Lucas Ramos; Samad, Ricardo Elgul; de Rossi, Wagner; de Freitas, Anderson Zanardi

    2018-02-01

    Dimensional characterization of microfluidic circuits were performed using three-dimensional models constructed from OCT images of such circuits. Were fabricated microchannels on the same BK7 glass plate, under different laser ablation conditions and substrate displacement velocity in relation to laser beam. Were used the following combination of energy, from 30 μJ to 60 μJ and velocity from 588 mm/min to 1176 mm/min, at 1 kHz laser repetition rate and 40 fs of pulse duration (FWHM). For OCT imaging we used an OCP930SR (Thorlabs System Inc) with 930 nm central wavelength, 6 μm of lateral and axial resolution, and image of 500 x 512 pixel corresponding to 2.0 mm x 1.6 mm of lateral and axial scans respectively at 8 frames per second. We also characterized devices like, micropumps, microvalves and microreactors. It was possible register the micropumps and valves in action in real time. Using the OCT images analyses was possible to select the best combination of laser pulse energy and substrate velocity. All the devices were made in raster protocol, where laser beam pass through the same path in a controlled number of times, and with each iteration more material is removed and deeper the channels remain. We found a deformation at the edge of fabricated structures, due to velocity reduction of substrate in relation to laser beam, which causes more laser pulses superposition in these regions, and more material is ablated. The technique was thus evaluated as a potential tool to aid in the inspection of microchannels.

  4. Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jing [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    This work describes several research projects aimed towards developing new instruments and novel methods for high throughput chemical and biological analysis. Approaches are taken in two directions. The first direction takes advantage of well-established semiconductor fabrication techniques and applies them to miniaturize instruments that are workhorses in analytical laboratories. Specifically, the first part of this work focused on the development of micropumps and microvalves for controlled fluid delivery. The mechanism of these micropumps and microvalves relies on the electrochemically-induced surface tension change at a mercury/electrolyte interface. A miniaturized flow injection analysis device was integrated and flow injection analyses were demonstrated. In the second part of this work, microfluidic chips were also designed, fabricated, and tested. Separations of two fluorescent dyes were demonstrated in microfabricated channels, based on an open-tubular liquid chromatography (OT LC) or an electrochemically-modulated liquid chromatography (EMLC) format. A reduction in instrument size can potentially increase analysis speed, and allow exceedingly small amounts of sample to be analyzed under diverse separation conditions. The second direction explores the surface enhanced Raman spectroscopy (SERS) as a signal transduction method for immunoassay analysis. It takes advantage of the improved detection sensitivity as a result of surface enhancement on colloidal gold, the narrow width of Raman band, and the stability of Raman scattering signals to distinguish several different species simultaneously without exploiting spatially-separated addresses on a biochip. By labeling gold nanoparticles with different Raman reporters in conjunction with different detection antibodies, a simultaneous detection of a dual-analyte immunoassay was demonstrated. Using this scheme for quantitative analysis was also studied and preliminary dose-response curves from an immunoassay of a

  5. A novel automatic flow method with direct-injection photometric detector for determination of dissolved reactive phosphorus in wastewater and freshwater samples.

    Science.gov (United States)

    Koronkiewicz, Stanislawa; Trifescu, Mihaela; Smoczynski, Lech; Ratnaweera, Harsha; Kalinowski, Slawomir

    2018-02-12

    The novel automatic flow system, direct-injection detector (DID) integrated with multi-pumping flow system (MPFS), dedicated for the photometric determination of orthophosphates in wastewater and freshwater samples is for the first time described. All reagents and the sample were injected simultaneously, in counter-current into the reaction-detection chamber by the system of specially selected for this purpose solenoid micro-pumps. The micro-pumps provided good precision and accuracy of the injected volumes. For the determination of orthophosphates, the molybdenum blue method was employed. The developed method can be used to detect orthophosphate in the range 0.1-12 mg L -1 , with the repeatability (RSD) about 2.2% at 4 mg L -1 and a very high injection throughput of 120 injections h -1 . It was possible to achieve a very small consumption of reagents (10 μL of ammonium molybdate and 10 μL of ascorbic acid) and sample (20 μL). The volume of generated waste was only 440 μL per analysis. The method has been successfully applied, giving a good accuracy, to determination of orthophosphates in complex matrix samples: treated wastewater, lake water and reference sample of groundwater. The developed system is compact, small in both size and weight, requires 12 V in supply voltage, which are desirable for truly portable equipment used in routine analysis. The simplicity of the system should result in its greater long-time reliability comparing to other flow methods previously described.

  6. Uterine contractions evaluated on cine MR imaging in patients with uterine leiomyomas

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Togashi, Kaori; Nakai, Asako; Hayakawa, Katsumi; Kanao, Shotarou; Iwasaku, Kazuhiro; Fujii, Shingo

    2005-01-01

    Purpose: Submucosal leiomyoma is one of the most recognized causes of infertility and habitual abortion. The purpose of this study is to evaluate uterine peristalsis, a cycle-related inherent contractility of uterus probably responsible for sperm transport and conservation of pregnancy, in patients with uterine leiomyomas using cine magnetic resonance (MR) imaging. Materials and methods: Study population consisted of 26 female patients (age range: 19-51 years, mean: 41 years), in which 16 patients had submucosal leiomyomas and 10 patients had intramural or subserosal leiomyomas. We prospectively performed MR imaging of the midsagittal plane of uterus using 1.5 T magnet (Symphony, Siemens Medical Systems) with a body array coil, and obtained 60 half-Fourier acquisition single shot turbo spin echo (HASTE) images (Echo time=80 ms, FOV=300 mm, slice thickness 5 mm, matrix 256x256) within 2 min, and displayed them on cine mode at 12x faster than real speed. Evaluated were peristaltic movements at the endometral-myometrial junction and focal myometrial movements, adjacent to leiomyomas, regarding presence, direction, frequency, and conduction. Results: The peristaltic movements were identified in 12/16 patients with submucosal lesions and 10/10 with other leiomyomas. The frequency and direction were cycle-related. Loss of peristalsis was noted adjacent to submucosal myomas in 4/12 patients, but was not in others. Focal myometrial movements were noted in 9/16 patients with submucosal myomas, but not in others. Conclusions: Uterine peristaltic movements were partly interrupted by submucosal leiomoymas, but not by myometrial or subserosal leiomyomas. Loss of peristalsis and focal myometrial movements was noted only adjacent to submucosal leiomyomas. These findings are considered to represent dysfunctional contractility, and may be related with pregnancy loss

  7. Development of an elution device for ViroCap virus filters.

    Science.gov (United States)

    Fagnant, Christine Susan; Toles, Matthew; Zhou, Nicolette Angela; Powell, Jacob; Adolphsen, John; Guan, Yifei; Ockerman, Byron; Shirai, Jeffry Hiroshi; Boyle, David S; Novosselov, Igor; Meschke, John Scott

    2017-10-19

    Environmental surveillance of waterborne pathogens is vital for monitoring the spread of diseases, and electropositive filters are frequently used for sampling wastewater and wastewater-impacted surface water. Viruses adsorbed to electropositive filters require elution prior to detection or quantification. Elution is typically facilitated by a peristaltic pump, although this requires a significant startup cost and does not include biosafety or cross-contamination considerations. These factors may pose a barrier for low-resource laboratories that aim to conduct environmental surveillance of viruses. The objective of this study was to develop a biologically enclosed, manually powered, low-cost device for effectively eluting from electropositive ViroCap™ virus filters. The elution device described here utilizes a non-electric bilge pump, instead of an electric peristaltic pump or a positive pressure vessel. The elution device also fully encloses liquids and aerosols that could contain biological organisms, thereby increasing biosafety. Moreover, all elution device components that are used in the biosafety cabinet are autoclavable, reducing cross-contamination potential. This device reduces costs of materials while maintaining convenience in terms of size and weight. With this new device, there is little sample volume loss due to device inefficiency, similar virus yields were demonstrated during seeded studies with poliovirus type 1, and the time to elute filters is similar to that required with the peristaltic pump. The efforts described here resulted in a novel, low-cost, manually powered elution device that can facilitate environmental surveillance of pathogens through effective virus recovery from ViroCap filters while maintaining the potential for adaptability to other cartridge filters.

  8. Quantitative assessment of haemolysis secondary to modern infusion pumps.

    Science.gov (United States)

    Poder, T G; Boileau, J-C; Lafrenière, R; Thibault, L; Carrier, N; de Grandmont, M-J; Beauregard, P

    2017-04-01

    Although most studies have shown that little haemolysis is induced by infusion pumps, there are some notable exceptions. Only limited data are available on the actual infusion pumps that are most used in hospitals in Quebec and elsewhere, namely, the Infusomat ® Space (peristaltic), Plum A+™ (piston) and Colleague ® CXE (shuttle) pumps. Haemolysis and potassium levels were compared before and after the use of the three different infusion pumps. Using 135 units of packed red blood cells (RBCs) aged from 10 to 28 days, 27 measurements were taken for each pump at various flow rates (30, 60, 150, 300 and 450 ml/h) and were compared with measurements taken before using the pumps. The range of flow rates was chosen to cover those of paediatric and adult transfusions. The shuttle- and piston-type pumps resulted in low haemolysis levels. The peristaltic-type pump produced significantly more haemolysis, which worsened at low flow rates, but the absolute value of haemolysis remained within the range recommended by the regulatory agencies in North America and Europe. Approximately two-thirds of the haemolysis produced by the peristaltic-type pump seemed to be secondary to the use of an antisiphon valve (ASV) on the transfusion line recommended by the manufacturer. Potassium levels did not increase with the use of the pumps. Modern infusion pumps widely used in hospitals in Quebec and elsewhere produce non-threatening levels of haemolysis during the transfusion of packed RBCs aged from 10 to 28 days. ASVs appear to induce additional haemolysis, and we do not recommend using them for blood transfusion. © 2017 International Society of Blood Transfusion.

  9. Fluidics and heat generation of Alcon Infiniti and Legacy, Bausch & Lomb Millennium, and advanced medical optics sovereign phacoemulsification systems.

    Science.gov (United States)

    Floyd, Michael S; Valentine, Jeremy R; Olson, Randall J

    2006-09-01

    To study heat generation, vacuum, and flow characteristics of the Alcon Infiniti and Bausch & Lomb Millennium with results compared with the Alcon Legacy and advanced medical optics (AMO) Sovereign machines previously studied. Experimental study. Heat generation with continuous ultrasound was determined with and without a 200-g weight. Flow and vacuum were determined from 12 to 40-ml/min in 2-ml/min steps. The impact of a STAAR Cruise Control was also tested. Millennium created the most heat/20% of power (5.67 +/- 0.51 degrees C unweighted and 6.80 +/- 0.80 degrees C weighted), followed by Sovereign (4.59 +/- 0.70 degrees C unweighted and 5.65 +/- 0.72 degrees C weighted), Infiniti (2.79 +/- 0.62 degrees C unweighted and 3.96 +/- 0.31 degrees C weighted), and Legacy (1.99 +/- 0.49 degrees C unweighted and 4.27 +/- 0.76 degrees C weighted; P Infiniti vs Legacy, both weighted). Flow studies revealed that Millennium Peristaltic was 17% less than indicated (P < .0001 to all other machines), and all other machines were within 3.5% of indicated. Cruise Control decreased flow by 4.1% (P < .0001 for same machine without it). Millennium Venturi had the greatest vacuum (81% more than the least Sovereign; P < .0001), and Cruise Control increased vacuum in a peristaltic machine 35% more than the Venturi system (P < .0001). Percent power is not consistent in regard to heat generation, however, flow was accurate for all machines except Millennium Peristaltic. Restriction with Cruise Control elevates unoccluded vacuum to levels greater than the Venturi system tested.

  10. Uterine contractions evaluated on cine MR imaging in patients with uterine leiomyomas

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki E-mail: mizuki@mbox.kyoto-inet.or.jpnishinomizuki@hotmail.com; Togashi, Kaori; Nakai, Asako; Hayakawa, Katsumi; Kanao, Shotarou; Iwasaku, Kazuhiro; Fujii, Shingo

    2005-01-01

    Purpose: Submucosal leiomyoma is one of the most recognized causes of infertility and habitual abortion. The purpose of this study is to evaluate uterine peristalsis, a cycle-related inherent contractility of uterus probably responsible for sperm transport and conservation of pregnancy, in patients with uterine leiomyomas using cine magnetic resonance (MR) imaging. Materials and methods: Study population consisted of 26 female patients (age range: 19-51 years, mean: 41 years), in which 16 patients had submucosal leiomyomas and 10 patients had intramural or subserosal leiomyomas. We prospectively performed MR imaging of the midsagittal plane of uterus using 1.5 T magnet (Symphony, Siemens Medical Systems) with a body array coil, and obtained 60 half-Fourier acquisition single shot turbo spin echo (HASTE) images (Echo time=80 ms, FOV=300 mm, slice thickness 5 mm, matrix 256x256) within 2 min, and displayed them on cine mode at 12x faster than real speed. Evaluated were peristaltic movements at the endometral-myometrial junction and focal myometrial movements, adjacent to leiomyomas, regarding presence, direction, frequency, and conduction. Results: The peristaltic movements were identified in 12/16 patients with submucosal lesions and 10/10 with other leiomyomas. The frequency and direction were cycle-related. Loss of peristalsis was noted adjacent to submucosal myomas in 4/12 patients, but was not in others. Focal myometrial movements were noted in 9/16 patients with submucosal myomas, but not in others. Conclusions: Uterine peristaltic movements were partly interrupted by submucosal leiomoymas, but not by myometrial or subserosal leiomyomas. Loss of peristalsis and focal myometrial movements was noted only adjacent to submucosal leiomyomas. These findings are considered to represent dysfunctional contractility, and may be related with pregnancy loss.

  11. Right dorsal colon ultrasonography in normal adult ponies and miniature horses

    Science.gov (United States)

    Zak, Agnieszka; Baron, Monika; Cylna, Marta; Borowicz, Hieronim

    2017-01-01

    The aim of this study was to determine the normal location, wall thickness and motility of the right dorsal colon in adult ponies and miniature horses. The abdominal ultrasonography examination was performed in a study group consisting of 23 ponies and miniature horses and in a control group comprising ten Thoroughbred horses. The procedure was performed in unsedated standing animals. The location and the thickness of the right dorsal colonic wall was examined on the right side of the abdomen between the 10th and the 14th intercostal space. The contractility was recorded in the 12th intercostal space. A comparative analysis between the study group and control group was carried out using the Student’s t-test. Pearson’s linear correlation coefficient was used to calculate the correlation between the thickness of the colonic wall as well as the number of peristaltic movements and age, wither height and body mass of the animals. The right dorsal colon was identified in all the horses in the 12th intercostal space. In all the intercostal spaces the mean ± standard deviation (SD) wall thickness of the right dorsal colon was 0.27 ± 0.03 cm in the horses from the study group and 0.37 ± 0.03 cm in the control horses. The mean number of peristaltic contractions was 4.05 ± 1.07 per minute in the animals from the study group and 1.7 ± 0.46 contractions per minute in the control group. The values of the ultrasonographic wall thickness and peristaltic motility in small breed horses in the present study were different from the values obtained for large breed horses. The study also found that the right dorsal colon in small breed horses is physiologically located in the 12th intercostal space. This suggests that different reference values should be used in small horse breeds when performing an ultrasound examination. PMID:29065146

  12. Oesophageal food impaction in achalasia treated with Coca-Cola and nifedipine.

    Science.gov (United States)

    Koumi, Andriani; Panos, Marios Zenon

    2010-01-01

    Achalasia is characterised by the loss of peristaltic movement in the distal oesophagus and failure of the lower oesophageal sphincter relaxation, which results in impaired oesophageal emptying. We report a case of a 92-year-old frail woman with a history of achalasia, who presented with acute oesophageal obstruction due to impaction of a large amount of food material. She was treated successfully with nifedipine, in combination with Coca-Cola (original product, not sugar free), so avoiding the risks associated with repeated endoscopic intubation and piecemeal removal of the oesophageal content.

  13. On-line monitoring of Glucose and penicillin by sequential injection analysis

    DEFF Research Database (Denmark)

    Min, R.W.; Nielsen, Jens Bredal; Villadsen, John

    1996-01-01

    and a detector. The glucose analyzer is based on an enzymatic reaction using glucose oxidase, which converts glucose to glucono-lactone with formation of hydrogen peroxide and subsequent detection of H2O2 by a chemiluminescence reaction involving luminol. The penicillin analysis is based on formation......A sequential injection analysis (SIA) system has been developed for on-line monitoring of glucose and penicillin during cultivations of the filamentous fungus Penicillium chrysogenum. The SIA system consists of a peristaltic pump, an injection valve, two piston pumps, two multi-position valves...

  14. An on-line dilution system for spectrometry using an inductively coupled plasma source

    International Nuclear Information System (INIS)

    Moore, G.L.; Watson, A.E.; Humphries-Cuff, P.J.

    1982-01-01

    An on-line dilution system that uses a two-channel peristaltic pump to feed a GMK Babington type of nebulizer is described. By the use of a diluent containing the appropriate concentrations of acid, sodium, and internal standard element, which was fed at a constant rate to the nebulizer, the system produced analytical results that are not significantly different (less than 3 per cent relative) from those obtained with the normal dilution technique. However, a considerable saving in time is achieved, as well as a saving in the use of expensive reagents

  15. Phycoremediation of 137Cs and 60Co with selected species of aquatic microalgae

    International Nuclear Information System (INIS)

    Tatarova, D.; Galanda, D.; Strisovska, J.

    2016-01-01

    The presentation is focused on finding a suitable pH for phycoremediation of 137 Cs and 60 Co w ith microalgae Dunaliella salina and Chlorella vulgaris. To ensure a dynamic course of remediation the peristaltic pump was used, through which the solution was washed with radionuclides. During individual measurements the decrease in solution activity over time was monitored . Decline in activity in the samples was determined using a semiconductor HPGe gamma detector. The measured results showed that the best environment for phycoremediation for microalgae Dunaliella salina was at pH = 8 and less, for Chlorella vulgaris the best value was pH = 6. (authors)

  16. Bioengineering fluid mechanics

    CERN Document Server

    Hung, Tin-kan

    2013-01-01

    This book highlights the basic concepts and equations for bioengineering flow processes. Physical concepts and meanings are emphasized while rigorous derivations are simplified, making it easier for self learning on some biological and medical flow processes. The well known Bernoulli equation in hydraulics is extended for pulsating flows, peristaltic flows and cardiac pumping. The dimensional analysis, model law and dimensionless equations can be related to computational models and experimental observations. The velocity vector imaging stored in echocardiograms can be used to analyze the pumping characteristics of the ventricular contraction. New topics included oxygen transport in membrane oxygenator and micro mixing of blood flow in capillary channels.

  17. Role of cineoesophageal scintigraphy in primary and secondary oesophageal motility disorders. About a 12000 radionuclide transit study experience; Place de la cine-oesophagoscintigraphie dans les troubles moteurs oesophagiens primitifs et secondaires. A propos de 12000 explorations

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, J.; Role, C.; Imbert, Y.

    1996-12-31

    Cineoesophageal scintigraphy (COS) and evaluation of oesophageal motility disorders. A 12 000 COS experience with {sup 99m}TC-sulfur colloid radiolabeled liquids is detailed. Functional qualitative and quantitative isotopic imaging parameters describe the propulsion abnormalities: mainly achalasia, diffuse esophageal spasm, nutcracker esophagus, non-specific motor disorders, systemic sclerosis, diabetes. Respective advantages and drawbacks of manometry and scintigraphy are discussed. Manometry only can measure pressures, scintigraphy only can measure bolus propulsion by peristaltic waves. Physiological and comfortable conditions, sensitivity, quantitative functional imaging, evidence of lung aspiration when swallowing advantage. (authors). 117 refs., 14 figs., 3 tabs.

  18. Role of cineoesophageal scintigraphy in primary and secondary oesophageal motility disorders. About a 12000 radionuclide transit study experience

    International Nuclear Information System (INIS)

    Guillet, J.; Role, C.; Imbert, Y.

    1996-01-01

    Cineoesophageal scintigraphy (COS) and evaluation of oesophageal motility disorders. A 12 000 COS experience with 99m TC-sulfur colloid radiolabeled liquids is detailed. Functional qualitative and quantitative isotopic imaging parameters describe the propulsion abnormalities: mainly achalasia, diffuse esophageal spasm, nutcracker esophagus, non-specific motor disorders, systemic sclerosis, diabetes. Respective advantages and drawbacks of manometry and scintigraphy are discussed. Manometry only can measure pressures, scintigraphy only can measure bolus propulsion by peristaltic waves. Physiological and comfortable conditions, sensitivity, quantitative functional imaging, evidence of lung aspiration when swallowing advantage. (authors). 117 refs., 14 figs., 3 tabs

  19. EXPRESSION OF BREAST MILK AS THE WAY OF MAINTENANCE OF LACTATION

    Directory of Open Access Journals (Sweden)

    M. L. Travina

    2014-01-01

    Full Text Available The necessity of maintenance of breast feeding of a child in the first months of his life causes the need for development of preventive measures and plugged duct treatment. Results of use of electric breast pumps by mothers under impossibility of breast feeding by a physiological way are presented. It is shown that modern breast pumps, optimally imitating a peristaltic sucking of a child, allow to reduce time for expression, and also to make it painless and comfortable. It supports mothers' desire of long breast feeding, providing, thus, formation of a child health.

  20. Pattern formation in annular systems of repulsive particles

    DEFF Research Database (Denmark)

    Marschler, Christian; Starke, Jens; Sørensen, Mads Peter

    2016-01-01

    General particle models with symmetric and asymmetric repulsion are studied and investigated for finite-range and exponential interaction in an annulus. In the symmetric case transitions from one- to multi-lane behavior including multistability are observed for varying particle density and for a ...... and for a varying curvature with fixed density. Hence, the system cannot be approximated by a periodic channel. In the asymmetric case, which is important in pedestrian dynamics, we reveal an inhomogeneous new phase, a traveling wave reminiscent of peristaltic motion....

  1. Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity

    Science.gov (United States)

    Abbasi, F. M.; Gul, Maimoona; Shehzad, S. A.

    2018-05-01

    Current study provides a comprehensive numerical investigation of the peristaltic transport of boron nitride-ethylene glycol nanofluid through a symmetric channel in presence of magnetic field. Significant effects of Brownian motion and thermophoresis have been included in the energy equation. Hall and Ohmic heating effects are also taken into consideration. Resulting system of non-linear equations is solved numerically using NDSolve in Mathematica. Expressions for velocity, temperature, concentration and streamlines are derived and plotted under the assumption of long wavelength and low Reynolds number. Influence of various parameters on heat and mass transfer rates have been discussed with the help of bar charts.

  2. Development for equipment of the milk macromolecules content detection

    Science.gov (United States)

    Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen

    Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.

  3. Understanding Infusion Pumps.

    Science.gov (United States)

    Mandel, Jeff E

    2018-04-01

    Infusion systems are complicated electromechanical systems that are used to deliver anesthetic drugs with moderate precision. Four types of systems are described-gravity feed, in-line piston, peristaltic, and syringe. These systems are subject to a number of failure modes-occlusion, disconnection, siphoning, infiltration, and air bubbles. The relative advantages of the various systems and some of the monitoring capabilities are discussed. A brief example of the use of an infusion system during anesthetic induction is presented. With understanding of the functioning of these systems, users may develop greater comfort.

  4. Changes in mean plasma ACTH reflect changes in amplitude and frequency of secretory pulses

    International Nuclear Information System (INIS)

    Carnes, M.; Lent, S.J.; Erisman, S.; Feyzi, J.

    1988-01-01

    ACTH is secreted in an episodic manner from the anterior pituitary. Unanesthetized rats with indwelling jugular and femoral venous cannulae were continuously bled and simultaneously infused with isotonic fluid by peristaltic pump. Two-minute blood samples were collected for up to five hours in 8 male rats. ACTH was measured by radioimmunoassay. The resulting time series were analyzed for significant secretory pulses with the PULSAR program. Elevations or declines in mean plasma ACTH levels were associated with significant changes in amplitude and frequency of secretory pulses

  5. Study on the Automatic Detection Method and System of Multifunctional Hydrocephalus Shunt

    Science.gov (United States)

    Sun, Xuan; Wang, Guangzhen; Dong, Quancheng; Li, Yuzhong

    2017-07-01

    Aiming to the difficulty of micro pressure detection and the difficulty of micro flow control in the testing process of hydrocephalus shunt, the principle of the shunt performance detection was analyzed.In this study, the author analyzed the principle of several items of shunt performance detection,and used advanced micro pressure sensor and micro flow peristaltic pump to overcome the micro pressure detection and micro flow control technology.At the same time,This study also puted many common experimental projects integrated, and successfully developed the automatic detection system for a shunt performance detection function, to achieve a test with high precision, high efficiency and automation.

  6. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, David J. [IKOtech, LLC, 3130 Highland Avenue, 3rd Floor, Cincinnati, OH 45219-2374 (United States)]. E-mail: David.Kennedy@IKOtech.com; Todd, Paul [SHOT, Inc., Greenville, IN (United States); Logan, Sam [SHOT, Inc., Greenville, IN (United States); Becker, Matthew [SHOT, Inc., Greenville, IN (United States); Papas, Klearchos K. [Diabetes Institute for Immunology and Transplantation, University of Minnesota, Minneapolis, MN (United States); Moore, Lee R. [Biomedical Engineering Department, Cleveland Clinic Foundation, Cleveland, OH (United States)

    2007-04-15

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 {mu}m) to the isolation of pancreatic islets (150-350 {mu}m) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.

  7. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    International Nuclear Information System (INIS)

    Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.

    2007-01-01

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation

  8. Blood flow analysis with considering nanofluid effects in vertical channel

    Science.gov (United States)

    Noreen, S.; Rashidi, M. M.; Qasim, M.

    2017-06-01

    Manipulation of heat convection of copper particles in blood has been considered peristaltically. Two-phase flow model is used in a channel with insulating walls. Flow analysis has been approved by assuming small Reynold number and infinite length of wave. Coupled equations are solved. Numerical solution are computed for the pressure gradient, axial velocity function and temperature. Influence of attention-grabbing parameters on flow entities has been analyzed. This study can be considered as mathematical representation to the vibrance of physiological systems/tissues/organs provided with medicine.

  9. The MainSTREAM Component Platform: A Holistic Approach to Microfluidic System Design

    DEFF Research Database (Denmark)

    Sabourin, David; Skafte-Pedersen, Peder; Søe, Martin Jensen

    2013-01-01

    A microfluidic component library for building systems driving parallel or serial microfluidic-based assays is presented. The components are a miniaturized eight-channel peristaltic pump, an eight-channel valve, sample-to-waste liquid management, and interconnections. The library of components...... of reaction chips; (2) highly parallel pumping and routing/valving capability; (3) methods to interface pumps and chip-to-liquid management systems; (4) means to construct a portable system; (5) reconfigurability/flexibility in system design; (6) means to interface to microscopes; and (7) compatibility...

  10. Modelling and simulation of diffusive processes methods and applications

    CERN Document Server

    Basu, SK

    2014-01-01

    This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport

  11. Direct double-contrast examination of the small intestines

    International Nuclear Information System (INIS)

    Vadon, G.; Mako, E.; Toeroek, I.

    1981-01-01

    A special small intestinal sonde (Intest-Sonde, pfm) is conducted into the stomach and carried by the peristaltic waves to the desired place. Thereafter the contrast material is injected by constant velocity of approx. 100 ml/min until it reaches the coecum. Best results are obtained by the 40% mixture of Mixobar HD (Byk Gulden). Then the peristalsis is inhibited by i.v. glucagon and after blowing 500-800 ml air, the radiograms are taken in different positions. (L.E.)

  12. Polychlorinated biphenyls (PCB) analysis report for solid sample from 219S tank 104

    International Nuclear Information System (INIS)

    Ross, G.A.

    1998-01-01

    A sample of solids was obtained from tank 104 of 219S via a peristaltic pump equipped with a stainless steel tube and Norprenel tubing (Phthalate free). The sample obtained in a glass jar with Teflon 2 lid, was analyzed for PCBs as Aroclor mixtures. A soxhlet extraction procedure was used to extract the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). The extraction method closely follows SW-846 method 3540C and the analysis follows SW-846 method

  13. Polychlorinated biphenyls (PCB) analysis report for solid sample from 219S tank 101

    International Nuclear Information System (INIS)

    Diaz, L.A.

    1998-01-01

    One waste sample that was obtained with solids from tank 101 of 219S via a peristaltic pump equipped with a stainless steel tube and Norprene tubing (Phthalate free) was obtained in a glass jar with teflon lid was analyzed (with duplicate, matrix spike, and matrix spike duplicate) for PCBs as Aroclor mixtures by the Inorganic/Organic Chemistry Group. A soxhlet extraction procedure was used for extraction of the Aroclors from the sample. Analysis was performed using dual column confirmation gas chromatography/electron capture detection (GC/ECD). Results are presented

  14. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    Directory of Open Access Journals (Sweden)

    Alessandro Cosci

    2016-08-01

    Full Text Available This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate (PMMA box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

  15. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts: synchronous and peristaltic. Using extracellular techniques, we recorded, in 61 isolated nerve cords, the activity of motor neurons in conjunction with the phase reference premotor heart interneuron, HN(4), and another premotor interneuron that allowed us to assess the coordination mode. These data were then coupled with a previous description of the temporal pattern of premotor interneuron activity in the two coordination modes to synthesize a global phase diagram for the known elements of the CPG and the entire motor neuron ensemble. These average data reveal the stereotypical side-to-side asymmetric patterns of intersegmental coordination among the motor neurons and show how this pattern meshes with the activity pattern of premotor interneurons. Analysis of animal-to-animal variability in this coordination indicates that the intersegmental phase progression of motor neuron activity in the midbody in the peristaltic coordination mode is the most stereotypical feature of the fictive motor pattern. Bilateral recordings from motor neurons corroborate the main features of the asymmetric motor pattern.

  16. Hyperpolarised 3He gas production for magnetic resonance imaging of the human air ways

    International Nuclear Information System (INIS)

    Fichele, Stanislao

    2002-01-01

    This thesis describes the experimental techniques, and methods employed in hyperpolarised 3 He gas production and magnetic resonance imaging of the human air-ways, using spin-echo sequences and MR tagging techniques. An in-house polariser utilising the metastability optical pumping technique was constructed. The main results of this work are concerned with engineering difficulties involved in compressing HP 3 He and a large proportion of this PhD thesis details the design, construction, and performance of an in-house built peristaltic compressor. In preliminary imaging experiments using RARE, high signal to noise projection images of the lungs were acquired using less than 0.5 cm 3 (STP) of purely polarised HP gas. Later, increased HP gas quantities (typically 10 cm 3 ) were obtained by employing the peristaltic compressor. Consequently we could acquire 10 mm thick slices spanning the entire lung following a single 3 He gas bolus administration. Finally, the first results using MR tagging techniques in conjunction with 3 He imaging to track gas flow during an inspiratory and expiratory manoeuvre are presented. (author)

  17. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives.

    Science.gov (United States)

    Glass, Paul; Cheung, Eugene; Sitti, Metin

    2008-12-01

    This paper presents a new concept for an anchoring mechanism to enhance existing capsule endoscopes. The mechanism consists of three actuated legs with compliant feet lined with micropillar adhesives to be pressed into the intestine wall to anchor the device at a fixed location. These adhesive systems are inspired by gecko and beetle foot hairs. Single-leg and full capsule mathematical models of the forces generated by the legs are analyzed to understand capsule performance. Empirical friction models for the interaction of the adhesives with an intestinal substrate were experimentally determined in vitro using dry and oil-coated elastomer micropillar arrays with 140 microm pillar diameter, 105 microm spacing between pillars, and an aspect ratio of 1:1 on fresh porcine small intestine specimens. Capsule prototypes were also tested in a simulated intestine environment and compared with predicted peristaltic loads to assess the viability of the proposed design. The experimental results showed that a deployed 10 gr capsule robot can withstand axial peristaltic loads and anchor reliably when actuation forces are greater than 0.27 N using dry micropillars. Required actuation forces may be reduced significantly by using micropillars coated with a thin silicone oil layer.

  18. Automation of cells of radiopharmaceuticals production

    International Nuclear Information System (INIS)

    Negrini, Aguinaldo Donizete

    2010-01-01

    The 67 Ga is an important radiopharmaceutical used to identify inflammatory processes in chronic illnesses, diagnosis by image of tumors in soft tissues and the possibility to evaluate the result for therapeutic intervention. In the present work a module of 67 Ga processing was developed with the objective to reduce the interventions in the hot cell, in order to avoid oxidation caused by metallic materials, and consuming in hoses of the peristaltic pumps, that release residues that blocked the valves used in the process. With materials such as: acrylic, PVC, PEEK e teflon and they are used vacuum as method (way) of fluid transferences instead of peristaltic pump in the majority of the procedures, with this improvements the system can make shorter the lengths of transference hoses, increasing the yield in the process with less interventions for maintenance and time exposure of the workers, guaranteeing the quality and reducing the time of the processing. using a mobile system for displacement of the processing module making in the cleanness and maintenance of the cell that works with radioactive material. Reducing the time of exposure dose of the workers in compliance with RDC-17 of ANVISA, which ruling the Good Manufacturing Practice Procedures. (author)

  19. Couple stress fluid flow in a rotating channel with peristalsis

    Science.gov (United States)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  20. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease.

    Science.gov (United States)

    Mittal, Ravinder K

    2016-09-01

    Muscularis propria throughout the entire gastrointestinal tract including the esophagus is comprised of circular and longitudinal muscle layers. Based on the studies conducted in the colon and the small intestine, for more than a century, it has been debated whether the two muscle layers contract synchronously or reciprocally during the ascending contraction and descending relaxation of the peristaltic reflex. Recent studies in the esophagus and colon prove that the two muscle layers indeed contract and relax together in almost perfect synchrony during ascending contraction and descending relaxation of the peristaltic reflex, respectively. Studies in patients with various types of esophageal motor disorders reveal temporal disassociation between the circular and longitudinal muscle layers. We suggest that the discoordination between the two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain. Certain pathologies may selectively target one and not the other muscle layer, e.g., in eosinophilic esophagitis there is a selective dysfunction of the longitudinal muscle layer. In achalasia esophagus, swallows are accompanied by the strong contraction of the longitudinal muscle without circular muscle contraction. The possibility that the discoordination between two muscle layers plays a role in the genesis of esophageal symptoms, i.e., dysphagia and esophageal pain are discussed. The purpose of this review is to summarize the regulation and dysregulation of peristalsis by the coordinated and discoordinated function of circular and longitudinal muscle layers in health and diseased states.

  1. Objective measurement of postocclusion surge during phacoemulsification in human eye-bank eyes.

    Science.gov (United States)

    Georgescu, Dan; Payne, Marielle; Olson, Randall J

    2007-03-01

    To objectively compare the postocclusion vacuum surge among different phacoemulsification machines and devices. Experimental study. Infiniti, Legacy, Millennium, and Sovereign were tested in an eye-bank eye. All the machines were tested with 20-gauge non-ABS tips, 430 mm Hg vacuum pressure, 24 ml/minute aspiration rate, peristaltic pump, and 75 cm bottle height. In addition, Infiniti and Legacy were also tested with 20-gauge bypass tips (ABS), 125 cm bottle height, and 40 ml/minute flow rate. We also tested 19-gauge tips with Infiniti and Sovereign and the venturi pump for Millennium. Significant differences were found between all the machines tested with Millennium peristaltic generating the least and Millennium Venturi the most surge. ABS tips significantly decreased the surge for Legacy but not for Infiniti. Cruise Control (CC) had a significant effect on Sovereign but not on Millennium. Increasing the bottle height decreased surge while increasing the flow increased surge for both Infiniti and Legacy. The 19-gauge tips increased surge for both Infiniti and Sovereign. Surge varied over a range of 40 microm to more than 2 mm. ABS and CC decrease surge, especially when the machine is not functioning near the limits of surge prevention. Certain parameters, such as a 19-gauge tip and high flow, dramatically increased surge, whereas elevating the bottle ameliorates it. Understanding the impact of all these features will help in minimizing the problem.

  2. Automation of cells of radiopharmaceuticals production; Automacao de celulas de producao de radiofarmacos

    Energy Technology Data Exchange (ETDEWEB)

    Negrini, Aguinaldo Donizete

    2010-07-01

    The {sup 67}Ga is an important radiopharmaceutical used to identify inflammatory processes in chronic illnesses, diagnosis by image of tumors in soft tissues and the possibility to evaluate the result for therapeutic intervention. In the present work a module of {sup 67}Ga processing was developed with the objective to reduce the interventions in the hot cell, in order to avoid oxidation caused by metallic materials, and consuming in hoses of the peristaltic pumps, that release residues that blocked the valves used in the process. With materials such as: acrylic, PVC, PEEK e teflon and they are used vacuum as method (way) of fluid transferences instead of peristaltic pump in the majority of the procedures, with this improvements the system can make shorter the lengths of transference hoses, increasing the yield in the process with less interventions for maintenance and time exposure of the workers, guaranteeing the quality and reducing the time of the processing. using a mobile system for displacement of the processing module making in the cleanness and maintenance of the cell that works with radioactive material. Reducing the time of exposure dose of the workers in compliance with RDC-17 of ANVISA, which ruling the Good Manufacturing Practice Procedures. (author)

  3. ADAM, a hands-on patient simulator for teaching principles of drug disposition and compartmental pharmacokinetics.

    Science.gov (United States)

    Zuna, Ines; Holt, Andrew

    2017-11-01

    To design, construct and validate a pharmacokinetics simulator that offers students hands-on opportunities to participate in the design, administration and analysis of oral and intravenous dosing regimens. The Alberta Drug Administration Modeller (ADAM) is a mechanical patient in which peristaltic circulation of water through a network of silicone tubing and glass bottles creates a representation of the outcomes of drug absorption, distribution, metabolism and elimination. Changing peristaltic pump rates and volumes in bottles allows values for pharmacokinetic constants to be varied, thereby simulating differences in drug properties and in patient physiologies and pathologies. Following administration of methylene blue dye by oral or intravenous routes, plasma and/or urine samples are collected and drug concentrations are determined spectrophotometrically. The effectiveness of the simulator in enhancing student competence and confidence was assessed in two undergraduate laboratory classes. The simulator effectively models one- and two-compartment drug behaviour in a mathematically-robust and realistic manner. Data allow calculation of numerous pharmacokinetic constants, by traditional graphing methods or with curve-fitting software. Students' competence in solving pharmacokinetic problems involving calculations and graphing improved significantly, while an increase in confidence and understanding was reported. The ADAM is relatively inexpensive and straightforward to construct, and offers a realistic, hands-on pharmacokinetics learning opportunity for students that effectively complements didactic lectures. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  4. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution.

    Science.gov (United States)

    Nayak, Arpan; Colandene, James; Bradford, Victor; Perkins, Melissa

    2011-10-01

    Characterization and control of aggregate and subvisible particle formation during fill-finish process steps are important for biopharmaceutical products. The filling step is of key importance as there is no further filtration of the drug product beyond sterile filtration. Filling processes can impact product quality by introducing physical stresses such as shear, friction, and cavitation. Other detrimental factors include temperature generated in the process of filling, foaming, and contact with filling system materials, including processing aids such as silicone oil. Certain pumps may shed extrinsic particles that may lead to heterogeneous nucleation-induced aggregation. In this work, microflow imaging, size-exclusion chromatography (SEC), and turbidimetry were utilized to quantify subvisible particles, aggregation, and opalescence, respectively. The filling process was performed using several commonly used filling systems, including rotary piston pump, rolling diaphragm pump, peristaltic pump, and time-pressure filler. The rolling diaphragm pump, peristaltic pump, and time-pressure filler generated notably less protein subvisible particles than the rotary piston pump, although no change in aggregate content by SEC was observed by any pump. An extreme increase in subvisible particles was also reflected in an increase in turbidity. Copyright © 2011 Wiley-Liss, Inc.

  5. Nano-optical conveyor belt with waveguide-coupled excitation.

    Science.gov (United States)

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  6. The effects of itopride on oesophageal motility and lower oesophageal sphincter function in man.

    Science.gov (United States)

    Scarpellini, E; Vos, R; Blondeau, K; Boecxstaens, V; Farré, R; Gasbarrini, A; Tack, J

    2011-01-01

    Itopride is a new prokinetic agent that combines antidopaminergic and cholinesterase inhibitory actions. Previous studies suggested that itopride improves heartburn in functional dyspepsia, and decreases oesophageal acid exposure in gastro-oesophageal reflux disease. It remains unclear whether this effect is due to effects of itopride on the lower oesophageal sphincter (LES). To study the effects of itopride on fasting and postprandial LES function in healthy subjects. Twelve healthy volunteers (five men; 32.6 ± 2.0 years) underwent three oesophageal sleeve manometry studies after 3 days premedication with itopride 50 mg, itopride 100 mg or placebo t.d.s. Drug was administered after 30 min and a standardized meal was administered after 90 min, with measurements continuing to 120 min postprandially. Throughout the study, 10 wet swallows were administered at 30-min intervals, and gastrointestinal symptoms were scored on 100 mm visual analogue scales at 15-min intervals. Lower oesophageal sphincter resting pressures, swallow-induced relaxations and the amplitude or duration of peristaltic contractions were not altered by both doses of itopride, at all time points. Itopride pre-treatment inhibited the meal-induced rise of transient LES relaxations (TLESRs). Itopride inhibits TLESRs without significantly affecting oesophageal peristaltic function or LES pressure. These observations support further studies with itopride in gastro-oesophageal reflux disease. © 2010 Blackwell Publishing Ltd.

  7. Stimulatory action of itopride hydrochloride on colonic motor activity in vitro and in vivo.

    Science.gov (United States)

    Tsubouchi, Tadashi; Saito, Takaharu; Mizutani, Fujie; Yamauchi, Toshie; Iwanaga, Yuji

    2003-08-01

    We investigated the effects of itopride hydrochloride (itopride, N-[4-[2-(dimethylamino)ethoxy]benzyl]-3,4-dimethoxybenzamide hydrochloride), a gastroprokinetic agent, on the colonic motor activity in vitro and in vivo, in comparison with benzamides, cisapride hydrate (cisapride), and mosapride citrate (mosapride). Itopride stimulated both peristaltic and segmental motility induced by applying intraluminal pressure to the isolated guinea pig colon. Although cisapride and mosapride enhanced the segmental motility, they markedly reduced the peristaltic motility. In conscious dogs with implanted strain gauge force transducers, itopride stimulated contractile activity in the gastrointestinal tract from the stomach to the colon. Cisapride stimulated contractile activity in the gastric antrum, ileum, and ascending colon. Mosapride stimulated contractile activity only in the gastric antrum and ileum. In guinea pigs and rats, itopride accelerated colonic luminal transit. On the other hand, cisapride and mosapride failed to enhance colonic transit. These results demonstrate that itopride has a stimulatory action on colonic peristalsis, propelling colonic luminal contents, different from that of cisapride and mosapride. Therefore, itopride may be a useful drug for the treatment of functional bowel disorders such as functional constipation.

  8. Design of aquaponics water monitoring system using Arduino microcontroller

    Science.gov (United States)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  9. Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity

    Science.gov (United States)

    Yeom, Eunseop; Park, Jun Hong; Kang, Yang Jun; Lee, Sang Joon

    2016-01-01

    Platelet functions, including adhesion, activation, and aggregation have an influence on thrombosis and the progression of atherosclerosis. In the present study, a new microfluidic-based method is proposed to estimate platelet adhesion and blood viscosity simultaneously. Blood sample flows into an H-shaped microfluidic device with a peristaltic pump. Since platelet aggregation may be initiated by the compression of rotors inside the peristaltic pump, platelet aggregates may adhere to the H-shaped channel. Through correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) can be estimated without labeling platelets. The platelet function is estimated by determining the representative index IA·T based on APlatelet and contact time. Blood viscosity is measured by monitoring the flow conditions in the one side channel of the H-shaped device. Based on the relation between interfacial width (W) and pressure ratio of sample flows to the reference, blood sample viscosity (μ) can be estimated by measuring W. Biophysical parameters (IA·T, μ) are compared for normal and diabetic rats using an ex vivo extracorporeal model. This microfluidic-based method can be used for evaluating variations in the platelet adhesion and blood viscosity of animal models with cardiovascular diseases under ex vivo conditions. PMID:27118101

  10. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies

    Science.gov (United States)

    Rashidi, Saman; Esfahani, Javad Abolfazli; Maskaniyan, Mahla

    2017-10-01

    Magnetohydrodynamic (MHD) fluid flow in different geometries relevant to human body parts is an interesting and important scientific area due to its applications in medical sciences. This article performs a comprehensive review on the applications of MHD and their numerical modelling in biological systems. Applications of MHD in medical sciences are classified into four categories in this paper. Applications of MHD in simple flow, peristaltic flow, pulsatile flow, and drag delivery are these categories. The numerical researches performed for these categories are reviewed and summarized separately. Finally, some conclusions and suggestions for future works based on the literature review are presented. The results indicated that during a surgery when it is necessary to drop blood flow or reduce tissue temperature, it may be achieved by using a magnetic field. Moreover, the review showed that the trapping is an important phenomenon in peristaltic flows that causes the formation of thrombus in blood and the movement of food bolus in gastrointestinal tract. This phenomenon may be disappeared by using a proper magnetic field. Finally, the concentration of particles that are delivered to the target region increases with an increase in the magnetic field intensity.

  11. [Morphine self-administration by rats using a pneumatic syringe].

    Science.gov (United States)

    Akiyama, Y; Takayama, S

    1988-06-01

    An apparatus for drug self-administration by rats using a pneumatic syringe was developed by Weeks. A microliter syringe operated by a pneumatic cylinder supplies an accurate volume of drug solution within one second. When coefficient of variation of infusion volume was compared among pneumatic syringe, infusion pump, and peristaltic pump, pneumatic syringe showed higher accuracy in infusion volume than the other two pumps. Since the infusion speed by a pneumatic syringe is very rapid (less than one second per infusion), the effect of infusion speed on reinforcing property of morphine was investigated. When rats self-administered 0.1, 0.3, 1.0, and 3.0 mg/kg/infusion of morphine by pneumatic syringes, the patterns of self-infusion were more stable, the number of self-infusions and the amount self-administered were larger, and a dose-response relationship was clearer in comparison with those self-infused the same doses of morphine for 5.6 seconds by infusion pumps or peristaltic pumps.

  12. A simple preparative free-flow electrophoresis joined with gratis gravity: I. Gas cushion injector and self-balance collector instead of multiple channel pump.

    Science.gov (United States)

    Chen, Su; Palmer, James F; Zhang, Wei; Shao, Jing; Li, Si; Fan, Liu-Yin; Sun, Ren; Dong, Yu-Chao; Cao, Cheng-Xi

    2009-06-01

    This paper describes a novel free-flow electrophoresis (FFE), which is joined with gratis gravity, gas cushion injector (GCI) and self-balance collector instead of multiple channel pump, for the purpose of preparative purification. The FFE was evaluated by systemic experiments. The results manifest that (i) even though one-channel peristaltic pump is used for the driving of background buffer, there is still stable flow in the FFE chamber; (ii) the stable flow is induced by the gravity-induced pressure due to the difference of buffer surfaces in the GCI and self-balance collector; (iii) the pulse flow of background buffer induced by the peristaltic pump is greatly reduced by the GCI with good compressibility of included air; (iv) the FFE can be well used for zone electrophoretic separation of amino acids; (v) up to 20 inlets simultaneous sample injection and up to five to tenfold condensation of amino acid can be achieved by combining the FFE device with the method of moving reaction boundary. To the best of authors' knowledge, FFE has not been used for such separation and condensation of amino acids. The relevant results achieved in the paper have evident significance for the development of preparative FFE.

  13. Treatment of esophageal motility disorders based on the chicago classification.

    Science.gov (United States)

    Maradey-Romero, Carla; Gabbard, Scott; Fass, Ronnie

    2014-12-01

    The Chicago Classification divides esophageal motor disorders based on the recorded value of the integrated relaxation pressure (IRP). The first group includes those with an elevated mean IRP that is associated with peristaltic abnormalities such as achalasia and esophagogastric junction outflow obstruction. The second group includes those with a normal mean IRP that is associated with esophageal hypermotility disorders such as distal esophageal spasm, hypercontractile esophagus (jackhammer esophagus), and hypertensive peristalsis (nutcracker esophagus). The third group includes those with a normal mean IRP that is associated with esophageal hypomotility peristaltic abnormalities such as absent peristalsis, weak peristalsis with small or large breaks, and frequent failed peristalsis. The therapeutic options vary greatly between the different groups of esophageal motor disorders. In achalasia patients, potential treatment strategies comprise medical therapy (calcium channel blockers, nitrates, and phosphodiesterase 5 inhibitors), endoscopic procedures (botulinum toxin A injection, pneumatic dilation, or peroral endoscopic myotomy) or surgery (Heller myotomy). Patients with a normal IRP and esophageal hypermotility disorder are candidates for medical therapy (nitrates, calcium channel blockers, phosphodiesterase 5 inhibitors, cimetropium/ipratropium bromide, proton pump inhibitors, benzodiazepines, tricyclic antidepressants, trazodone, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors), endoscopic procedures (botulinum toxin A injection and peroral endoscopic myotomy), or surgery (Heller myotomy). Lastly, in patients with a normal IRP and esophageal hypomotility disorder, treatment is primarily focused on controlling the presence of gastroesophageal reflux with proton pump inhibitors and lifestyle modifications (soft and liquid diet and eating in the upright position) to address patient's dysphagia.

  14. Esophageal Motility and Rikkunshito Treatment for Proton Pump Inhibitor-Refractory Nonerosive Reflux Disease: A Prospective, Uncontrolled, Open-Label Pilot Study Trial.

    Science.gov (United States)

    Odaka, Takeo; Yamato, Shigeru; Yokosuka, Osamu

    2017-01-01

    Only a few reports focused on esophageal motility in patients with proton pump inhibitor (PPI)-refractory nonerosive reflux disease (NERD) and there has been no established strategy for treatment. To clarify the characteristics of esophageal motility in patients with PPI-refractory NERD, we evaluated esophageal function using combined multichannel intraluminal impedance and esophageal manometry (MII-EM). In addition, we evaluated the efficacy of rikkunshito (RKT), which is a gastrointestinal prokinetic agent. Thirty patients with NERD were enrolled and underwent MII-EM. After 8 weeks of RKT (7.5 g/d) treatment, MII-EM was repeated on patients with PPI-refractory NERD. Symptoms were assessed by the Gastrointestinal Symptom Rating Scale. In patients with PPI-refractory NERD, measures of complete bolus transit, peristaltic contractions, and residual pressure of the lower esophageal sphincter during swallowing deviated from the standard values and esophageal clearance was found to be deteriorated. RKT significantly improved the peristaltic contractions ( P esophageal sphincter ( P disorders of esophageal and lower esophageal sphincter motility that were improved by RKT. Further studies examining esophageal motor activity of RKT in PPI-refractory NERD are required. University hospital Medical Information Network (UMIN) Clinical Trial Registry identifier: UMIN000003092.

  15. Electroosmosis modulated biomechanical transport through asymmetric microfluidics channel

    Science.gov (United States)

    Jhorar, R.; Tripathi, D.; Bhatti, M. M.; Ellahi, R.

    2018-05-01

    This article addresses the electrokinetically modulated biomechanical transport through a two-dimensional asymmetric microchannel induced by peristaltic waves. Electrokinetic transport with peristaltic phenomena grabbed a significant attention due to its novel applications in engineering. Electrical fields also provide an excellent mode for regulating flows. The electrohydrodynamics problem is modified by means of Debye-Hückel linearization. Firstly, the governing flow problem is described by continuity and momentum equations in the presence of electrokinetic forces in Cartesian coordinates, then long wavelength and low/zero Reynolds ("neglecting the inertial forces") approximations are applied to modify the governing flow problem. The resulting differential equations are solved analytically in order to obtain exact solutions for velocity profile whereas the numerical integration is carried out to analyze the pumping characteristics. The physical behaviour of sundry parameters is discussed for velocity profile, pressure rise and volume flow rate. In particular, the behaviour of electro-osmotic parameter, phase difference, and Helmholtz-Smoluchowski velocity is examined and discussed. The trapping mechanism is also visualized by drawing streamlines against the governing parameters. The present study offers various interesting results that warrant further study on electrokinetic transport with peristalsis.

  16. Hydrodynamic Impacts on Dissolution, Transport and Absorption from Thousands of Drug Particles Moving within the Intestines

    Science.gov (United States)

    Behafarid, Farhad; Brasseur, James G.

    2017-11-01

    Following tablet disintegration, clouds of drug particles 5-200 μm in diameter pass through the intestines where drug molecules are absorbed into the blood. Release rate depends on particle size, drug solubility, local drug concentration and the hydrodynamic environment driven by patterned gut contractions. To analyze the dynamics underlying drug release and absorption, we use a 3D lattice Boltzmann model of the velocity and concentration fields driven by peristaltic contractions in vivo, combined with a mathematical model of dissolution-rate from each drug particle transported through the grid. The model is empirically extended for hydrodynamic enhancements to release rate by local convection and shear-rate, and incorporates heterogeneity in bulk concentration. Drug dosage and solubility are systematically varied along with peristaltic wave speed and volume. We predict large hydrodynamic enhancements (35-65%) from local shear-rate with minimal enhancement from convection. With high permeability boundary conditions, a quasi-equilibrium balance between release and absorption is established with volume and wave-speed dependent transport time scale, after an initial transient and before a final period of dissolution/absorption. Supported by FDA.

  17. A Study of Nonlinear Variable Viscosity in Finite-Length Tube with Peristalsis

    Directory of Open Access Journals (Sweden)

    Y. Abd Elmaboud

    2014-01-01

    Full Text Available Peristaltic motion of an incompressible Newtonian fluid with variable viscosity induced by periodic sinusoidal traveling wave propagating along the walls of a finite-length tube has been investigated. A perturbation method of solution is sought. The viscosity parameter α (α << 1 is chosen as a perturbation parameter and the governing equations are developed up to the first-order in the viscosity parameter (α. The analytical solution has been derived for the radial velocity at the tube wall, the axial pressure gradient across the length of the tube, and the wall shear stress under the assumption of low Reynolds number and long wavelength approximation. The impacts of physical parameters such as the viscosity and the parameter determining the shape of the constriction on the pressure distribution and on the wall shear stress for integral and non-integral number of waves are illustrated. The main conclusion that can be drawn out of this study is that the peaks of pressure fluctuate with time and attain different values with non-integral numbers of peristaltic waves. The considered problem is very applicable in study of biological flow and industrial flow.

  18. Irritable bowel syndrome and organic diseases: A comparative analysis of esophageal motility

    Science.gov (United States)

    Thomaidis, Thomas; Goetz, Martin; Gregor, Sebastian Paul; Hoffman, Arthur; Kouroumalis, Elias; Moehler, Markus; Galle, Peter Robert; Schwarting, Andreas; Kiesslich, Ralf

    2013-01-01

    AIM: To assess the esophageal motility in patients with irritable bowel syndrome (IBS) and to compare those with patients with autoimmune disorders. METHODS: 15 patients with IBS, 22 with systemic lupus erythematosus (SLE) and 19 with systemic sclerosis (SSc) were prospectively selected from a total of 115 patients at a single university centre and esophageal motility was analysed using standard manometry (Mui Scientific PIP-4-8SS). All patients underwent esophago-gastro-duodenoscopy before entering the study so that only patients with normal endoscopic findings were included in the current study. All patients underwent a complete physical, blood biochemistry and urinary examination. The grade of dysphagia was determined for each patient in accordance to the intensity and frequency of the presented esophageal symptoms. Furthermore, disease activity scores (SLEDAI and modified Rodnan score) were obtained for patients with autoimmune diseases. Outcome parameter: A correlation coefficient was calculated between amplitudes, velocity and duration of the peristaltic waves throughout esophagus and patients’ dysphagia for all three groups. RESULTS: There was no statistical difference in the standard blood biochemistry and urinary analysis in all three groups. Patients with IBS showed similar pathologic dysphagia scores compared to patients with SLE and SSc. The mean value of dysphagia score was in IBS group 7.3, in SLE group 6.73 and in SSc group 7.56 with a P-value > 0.05. However, the manometric patterns were different. IBS patients showed during esophageal manometry peristaltic amplitudes at the proximal part of esophagus greater than 60 mmHg in 46% of the patients, which was significant higher in comparison to the SLE (11.8%) and SSc-Group (0%, P = 0.003). Furthermore, IBS patients showed lower mean resting pressure of the distal esophagus sphincter (Lower esophageal sphincter, 22 mmHg) when compared with SLE (28 mmHg, P = 0.037) and SSc (26 mmHg, P = 0.052). 23

  19. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    Science.gov (United States)

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for

  20. Irradiation chamber for photoactivation patient treatment system

    International Nuclear Information System (INIS)

    Lee, K.H.; Troutner, V.H.; Goss, J.; King, M.J.

    1988-01-01

    A flat plate irradiation chamber is described for use in a patient treatment system for altering cells, including treating the cells with a photoactivatable agent and passing the cells and the agent through a field of photoactivating radiation whereby the agent is caused to be activated and to affect the cells. The agent and the cells are contained in the irradiation chamber during irradiation. The flat plate irradiation chamber comprises: a rigid top sheet matably joined with a rigid bottom sheet, forming therebetween a rigid serpentine pathway for conducting the cells through the field of radiation; and pump block means for holding tubing means in fluid communication with the serpentine pathway and adapted for engaging a peristaltic pump whereby rotation of the pump causes the cells to flow through the serpentine pathway, and wherein the chamber is removable from the system and disposable

  1. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren

    2011-01-01

    well-defined conditions(2,3). The system consists of a flow cell that serves as growth chamber for the biofilm. The flow cell is supplied with nutrients and oxygen from a medium flask via a peristaltic pump and spent medium is collected in a waste container. This construction of the flow system allows......Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions(1...... a continuous supply of nutrients and administration of e.g. antibiotics with minimal disturbance of the cells grown in the flow chamber. Moreover, the flow conditions within the flow cell allow studies of biofilm exposed to shear stress. A bubble trapping device confines air bubbles from the tubing which...

  2. Changes in dynamic embryonic heart wall motion in response to outflow tract banding measured using video densitometry

    Science.gov (United States)

    Stovall, Stephanie; Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2016-11-01

    Abnormal blood flow during early cardiovascular development has been identified as a key factor in the pathogenesis of congenital heart disease; however, the mechanisms by which altered hemodynamics induce cardiac malformations are poorly understood. This study used outflow tract (OFT) banding to model increased afterload, pressure, and blood flow velocities at tubular stages of heart development and characterized the immediate changes in cardiac wall motion due to banding in chicken embryo models with light microscopy-based video densitometry. Optical videos were used to acquire two-dimensional heart image sequences over the cardiac cycle, from which intensity data were extracted along the heart centerline at several locations in the heart ventricle and OFT. While no changes were observed in the synchronous contraction of the ventricle with banding, the peristaltic-like wall motion in the OFT was significantly affected. Our data provide valuable insight into early cardiac biomechanics and its characterization using a simple light microscopy-based imaging modality.

  3. Solid Test Meal to Measure the Gastric Emptying with Magnetogastrography

    International Nuclear Information System (INIS)

    Reynaga-Ornelas, M. G.; Roca-Chiapas, J. M. de ls; Cordova-Fraga, T.; Bernal, J. J.; Sosa, M.

    2008-01-01

    The gastric emptying is the time of evacuating the food ingested from the stomach to the duodenum in a controlled rate. Diverse studies express the results of the gastric emptying in form of half-time (t 1/2 ). The Magnetogastrography (MGG) is a biomagnetic technique that has the advantage of not being invasive, radiation free and does not interfere with the privacy of the subject. The objective was to analyze the magnetic signal of magnetic tracers mixed in a solid food to measure gastric emptying using Magnetogastrography. The ingested test meal displayed a magnetic signal, which served to obtain the signal registered by the fluxgate and the peristaltic contractions could be calculated while the stomach was emptying. The solid food product developed results to work satisfactorily in magnetogastrography

  4. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren

    2011-01-01

    or proteins compatible with CLSM analysis. This enables online visualization and allows investigation of niches in the developing biofilm. Microbial interrelationship, investigation of antimicrobial agents or the expression of specific genes, are of the many experimental setups that can be investigated......). Using a transparent substratum it is possible to device a system where simple biofilms can be examined in a non-destructive way in real-time: here we demonstrate the assembly and operation of a flow cell model system, for in vitro 3D studies of microbial biofilms generating high reproducibility under...... well-defined conditions(2,3). The system consists of a flow cell that serves as growth chamber for the biofilm. The flow cell is supplied with nutrients and oxygen from a medium flask via a peristaltic pump and spent medium is collected in a waste container. This construction of the flow system allows...

  5. Fluid mechanics in the perivascular space.

    Science.gov (United States)

    Wang, Peng; Olbricht, William L

    2011-04-07

    Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF) and solute transport. Fluid flowing in the PVS can affect these transport processes and has significant impacts on physiology. In this paper, we carry out a theoretical analysis to investigate the fluid mechanics in the PVS. With certain assumptions and approximations, we are able to find an analytical solution to the problem. We discuss the physical meanings of the solution and particularly examine the consequences of the induced fluid flow in the context of convection-enhanced delivery (CED). We conclude that peristaltic motions of the blood vessel walls can facilitate fluid and solute transport in the PVS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Development of a simple extraction cell with bi-directional continuous flow coupled on-line to ICP-MS for assessment of elemental associations in solid samples

    DEFF Research Database (Denmark)

    Buanuam, Janya; Tiptanasup, Kasipa; Shiowatana, Juwadee

    2006-01-01

    A continuous-flow system comprising a novel, custom-built extraction module and hyphenated with inductively coupled plasma-mass spectrometric (ICP-MS) detection is proposed for assessing metal mobilities and geochemical associations in soil compartments as based on using the three step BCR (now...... the Measurements and Testing Programme of the European Commission) sequential extraction scheme. Employing a peristaltic pump as liquid driver, alternate directional flows of the extractants are used to overcome compression of the solid particles within the extraction unit to ensure a steady partitioning flow rate...... and thus to maintain constant operationally defined extraction conditions. The proposed flow set-up is proven to allow for trouble-free handling of soil samples up to 1 g and flow rates ≤ 10 mL min–1. The miniaturized extraction system was coupled to ICP-MS through a flow injection interface in order...

  7. The value of dynamic esophageal scintigraphy (radionuclide transit) in the diagnosis of esophageal motor disorders

    International Nuclear Information System (INIS)

    Simon, Laszlo; Pasztarak, Erzsebet; Tornoczky, Janos

    1985-01-01

    Dynamic esophageal scintigraphy is a novel technique for the diagnosis of esophageal motor disorders. Determination of radionuclide transit time was performed in 180 cases using 'single-swallow' method of a semi-solid meal labelled with 20 MBq sup(99)Tc-DTPA. The investigations were evaluated by a home-made all-purpose gamma camera, on-line linked to a microprocessor. The transit time and the characteristics of esophageal peristaltic activity were investigated in healthy individuals, in esophageal motor disorders and in patients with diabetes mellitus. Based on the experiences, the introduction of the new technique into the routine gastroenterological practice might be proposed because it proved to be reproducible, repeatable, and harmless for the patients. Its sensitivity may achieve 100 per cent, and it is suitable for the evaluation of the effect of surgical and internal therapeutic interventions. (author)

  8. Value of dynamic esophageal scintigraphy (radionuclide transit) in the diagnosis of esophageal motor disorders

    Energy Technology Data Exchange (ETDEWEB)

    Simon, L.; Pasztarak, E.; Tornoczky, J.

    1985-04-07

    Dynamic esophageal scintigraphy is a novel technique for the diagnosis of esophageal motor disorders. Determination of radionuclide transit time was performed in 180 cases using 'single-swallow' method of a semi-solid meal labelled with 20 MBq sup(99)Tc-DTPA. The investigations were evaluated by a home-made all-purpose gamma camera, on-line linked to a microprocessor. The transit time and the characteristics of esophageal peristaltic activity were investigated in healthy individuals, in esophageal motor disorders and in patients with diabetes mellitus. Based on the experiences, the introduction of the new technique into the routine gastroenterological practice might be proposed because it proved to be reproducible, repeatable, and harmless for the patients. Its sensitivity may achieve 100 per cent, and it is suitable for the evaluation of the effect of surgical and internal therapeutic interventions. (author). 39 refs.; 6 figs.

  9. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2016-08-15

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  10. Precise position control of a helical magnetic robot in pulsatile flow using the rotating frequency of the external magnetic field

    Directory of Open Access Journals (Sweden)

    Jongyul Kim

    2017-05-01

    Full Text Available We propose a position control method for a helical magnetic robot (HMR that uses the rotating frequency of the external rotating magnetic field (ERMF to minimize the position fluctuation of the HMR caused by pulsatile flow in human blood vessels. We prototyped the HMR and conducted several experiments in pseudo blood vessel environments with a peristaltic pump. We experimentally obtained the relation between the flow rate and the rotating frequency of the ERMF required to make the HMR stationary in a given pulsatile flow. Then we approximated the pulsatile flow by Fourier series and applied the required ERMF rotating frequency to the HMR in real time. Our proposed position control method drastically reduced the position fluctuation of the HMR under pulsatile flow.

  11. Guidelines for determining inputs of inorganic contaminants into estuaries

    International Nuclear Information System (INIS)

    1987-01-01

    This publication describes sampling and sample preparation procedures suitable to obtain unpolluted samples for the purpose of determining river inputs of inorganic pollutants into estuaries. Emphasis is placed on heavy metal pollutants but procedures are suitable, with appropriate modifications for other inorganic pollutants. For example, the collection of samples for mercury may require modifications of handling procedures. River water samples are collected at the most down-river point where no estuarine influences effect results. Samples are collected using a peristaltic pump and separated into aqueous and particulate phases for pollutant analysis. As is the case of all trace pollutant analyses, meticulous care is required to prevent pollution of the sample and in addition to the precautions described in this method, great personal attention is required to minimize sample handling, pollution by smoke, hands, hair, dust, talc from gloves, etc., and to avoid all contact of the samples and reagents with skin and metallic objects. 1 ref., 3 figs, 1 tab

  12. Achalasia 5 years following Roux-en-y gastric bypass

    Directory of Open Access Journals (Sweden)

    Mehyar Hefazi Torghabeh

    2015-01-01

    Full Text Available Oesophageal achalasia is a rare, but serious condition in which the motility of the lower oesophageal sphincter (LES is inhibited. This disorder of idiopathic aetiology complicates the peristaltic function and relaxation of the LES that may cause symptoms such as dysphagia, epigastric pain, and regurgitation of an obstructed food. The following case describes achalasia in a patient 5 years following a laparoscopic Roux-en-Y gastric bypass (RYGB. The patient underwent a laparoscopic Heller myotomy without a fundoplication. Although achalasia seems to be a rare occurrence in obese patients, this is the third case documented in a patient who previously had an RYGB. The role of performing a fundoplication in these patients remains to be elucidated.

  13. Homogeneous-heterogeneous reactions in curved channel with porous medium

    Science.gov (United States)

    Hayat, T.; Ayub, Sadia; Alsaedi, A.

    2018-06-01

    Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.

  14. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    Microfluidic applications hold promise for many different end‐users both within and outside, and across many different research communities. Despite the benefits of microfluidic approaches, adoption and implementation thereof is often hindered by practical issues. Microfluidic components which......‐integrated interconnection and miniaturized peristaltic pump solutions were then combined into modular microfluidic systems. One system provides high interconnection numbers/density and allows many possible configurations. Additionally, and apart from many other accounts of modular microfluidic solutions, methods...... for control and actuation of microfluidic networks built from the modular components is described. Prototypes of the microfluidic system have begun to be distributed to external collaborators and researcher parties. These end‐users will assist in the validation of the approach and ultimately fulfil the key...

  15. A Continuous Flow System for the Measurement of Ambient Nitrogen Oxides [NO + NO] Using Rhodamine B Hydrazide as a Chemosensor

    Directory of Open Access Journals (Sweden)

    Pandurangappa Malingappa

    2014-01-01

    Full Text Available A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO 2 ] at parts per billion (ppb level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The proposed method has been successfully applied to monitor the ambient nitrogen dioxide levels at traffic junction points within the city limits and the results obtained are compared with the standard Griess-Ilosvay method.

  16. PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method

    International Nuclear Information System (INIS)

    Hong, Hyeon Ji; Ji, Ho Seong; Kim, Kyung Chun

    2016-01-01

    Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent 10° from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

  17. Scintigraphic study on the motility of stomach and gallbladder in non-ulceric dyspepsia patients

    International Nuclear Information System (INIS)

    Fu Min; Xu Guomin; Xu Denren

    1992-01-01

    Cholecystography with 99m Tc-EHIDA was performed to assess the preprandial empty function of gallbladder and then solid meal labelled with 99m Tc-DTPA was given to assess the postprandial empty function of stomach in 25 patients with NUD. The examinations were repeated in 15 patients with hypomotilitic stomach and gallbladder following administration of Domperidone 20 mg t.i.d for four weeks. The results showed that the empty function of stomach was closely related to the amplitude and frequency of antrum contractile peristaltic waves, all NUD patients who had delayed gastric empty also had hypomotilitic gallbladder. This may be one of the pathophysiologic bases of NUD. The movements of stomach and gallbladder both preprandial and postprandial were synchronous. Domperidone can restore hypomotility of stomach and gallbladder in NUD patients to normal, and the movements of stomach and gallbladder still remained synchronous

  18. Propulsor pneumático versátil e isento de pulsação para sistemas de análise em fluxo

    Directory of Open Access Journals (Sweden)

    Matos Renato C.

    2001-01-01

    Full Text Available Aquarium air pumps are proposed and evaluated as pneumatic liquid propulsion devices for flow injection and continuos flow analysis (FIA and CFA systems. This kind of pump is widely available at a very low cost and it can sustain a pressure around of 4 psi (0.28 bar indefinitely. By applying this air pressure onto a solution contained in a reservoir flask, it is possible to reach flow rates of up to 12.5 mL min-1 for circuits comprising reactors, made from 0.8 i.d. tubing with a length of 100 cm. The precise adjustment of flow rate below the maximum one can be made with a simplified needle valve or inserting in series a short length of capillary tube. The absence of flow pulsation is a definite advantage in comparison with peristaltic pumps, especially when amperometric detection is elected, as confirmed experimentally in FIA and CF applications.

  19. Study of imidaclopride removal from aqueous solution by adsorption onto granular activated carbon using an on-line spectrophotometric analysis system

    International Nuclear Information System (INIS)

    Daneshvar, N.; Aber, S.; Khani, A.; Khataee, A.R.

    2007-01-01

    The removal of imidaclopride as a pesticide by granular activated carbon (GAC) and its adsorption kinetics were studied at different pH values and temperatures. In all experiments, the amount of GAC and initial concentration of imidaclopride were 2 g and 25 ppm, respectively. The adsorption process was followed by an on-line spectrophotometric analysis system, which consisted of UV-spectrophotometer, a designed absorption cell, peristaltic pump and special glassy reactor. The effect of pH and temperature on adsorption was studied over 90 min adsorption periods. The obtained data were treated according to various kinetic models. The results showed that second order model was the most suitable one on the overall. The our results also showed that the adsorption rate constants for first order, second order and intraparticle diffusion models followed decreasing order: pH = 7 > 4 > 10 > 1, T = 25 > 35 > 45 > 55 deg. C

  20. Study of imidaclopride removal from aqueous solution by adsorption onto granular activated carbon using an on-line spectrophotometric analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: nezam_daneshvar@yahoo.com; Aber, S. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: soheil_aber@yahoo.com; Khani, A. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: alikhani_chemwt@yahoo.com; Khataee, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: ar_khataee@yahoo.com

    2007-06-01

    The removal of imidaclopride as a pesticide by granular activated carbon (GAC) and its adsorption kinetics were studied at different pH values and temperatures. In all experiments, the amount of GAC and initial concentration of imidaclopride were 2 g and 25 ppm, respectively. The adsorption process was followed by an on-line spectrophotometric analysis system, which consisted of UV-spectrophotometer, a designed absorption cell, peristaltic pump and special glassy reactor. The effect of pH and temperature on adsorption was studied over 90 min adsorption periods. The obtained data were treated according to various kinetic models. The results showed that second order model was the most suitable one on the overall. The our results also showed that the adsorption rate constants for first order, second order and intraparticle diffusion models followed decreasing order: pH = 7 > 4 > 10 > 1, T = 25 > 35 > 45 > 55 deg. C.

  1. Continuous venovenous haemodialysis

    DEFF Research Database (Denmark)

    Jensen, Dorte Møller; Bistrup, C; Pedersen, R S

    1996-01-01

    A simple three-pump-based system for the performance of continuous venovenous haemodialysis is described. The method employs access to the circulation via a double-lumen catheter, and by means of a standard extracorporeal peristaltic pump the blood is circulated through a haemofiltration filter....... Standard solutions for peritoneal dialysis are administered in a single-pass manner countercurrent to the blood flow. To control the dialysate flow through the filter, two separate pumps designed for intravenous infusion are used. Anticoagulation is achieved by means of continuous heparin infusion....... This three-pump system is effective in controlling the fluid balance and the level of azotemia. Furthermore, this system makes haemodialysis possible in spite of severe haemodynamic instability. The system is easy to use and inexpensive. 3 patients participated in the study....

  2. Shape and shear guide sperm cells spiraling upstream

    Science.gov (United States)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  3. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Science.gov (United States)

    Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

    2015-01-01

    Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  4. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Directory of Open Access Journals (Sweden)

    Jorge Arrieta

    Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  5. Effects of bioirrigation on the spatial and temporal dynamics of oxygen above the sediment-water interface

    DEFF Research Database (Denmark)

    Murniati, E.; Gross, D.; Herlina, H.

    2017-01-01

    Burrow ventilation by tube-dwelling benthic animals affects solute exchange between sediments and water by 2 means. Drawing of O2-rich water into the burrow increases O2 availability in the sediment and stimulates biogeochemical and microbial processes, whereas flushing of the burrow creates a 3......-dimensional flow field above the burrow, which induces mixing. Previous studies have revealed the role of the diffusive boundary layer (DBL) thickness on the exchange of solutes between the sediment and overlying water. Mapping the O2 gradient within the DBL is a challenging task in the presence of benthic...... the outlet of the burrows and drawdown of O2-rich water above the inlet caused by peristaltic pumping of C. plumosus larvae. Vertical O2 gradients changed dynamically during burrow ventilation relative to in a control tank without animals. The advective transport of O2 above the opening caused by burrow...

  6. Standard test method for analysis of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of total uranium (U) and thorium (Th) concentrations in soils, as well as the determination of the isotopic weight percentages of 234U, 235U, 236U, and 238U, thereby allowing for the calculation of individual isotopic uranium activity or total uranium activity. This inductively coupled plasma-mass spectroscopy (ICP-MS) method is intended as an alternative analysis to methods such as alpha spectroscopy or thermal ionization mass spectroscopy (TIMS). Also, while this test method covers only those isotopes listed above, the instrumental technique may be expanded to cover other long-lived radioisotopes since the preparation technique includes the preconcentration of the actinide series of elements. The resultant sample volume can be further reduced for introduction into the ICP-MS via an electrothermal vaporization (ETV) unit or other sample introduction device, even though the standard peristaltic pump introduction is applied for this test method. The sample preparatio...

  7. Improved Precision and Efficiency of a Modified ORG0020 Dynamic Respiration Test Setup for Compost Stability Assessment

    Directory of Open Access Journals (Sweden)

    Diana Guillen Ferrari

    2017-12-01

    Full Text Available The ORG0020 dynamic respiration test is effective at distinguishing source segregated organic waste derived composts across a wide range of stabilities when compared to other standard tests; however, using the original diaphragm pump and manifold setup, the test is affected by variability in flow rate with time and across sample replicate vessels. Here, we demonstrate the use of a multichannel peristaltic pump to deliver a more consistent air flow to individual vessels. Using finished and unfinished industry compost samples from different sites with varying stabilities, we provide evidence of greater precision of the modified setup compared to the original. Furthermore, the reduced need for air flow adjustment resulted in improved running cost efficiency with less labour demand. Analysis of compost sample oxygen demand supports the current test air flow rate of 25–75 mL min−1, although the improved air flow control will enable future narrowing of the acceptable range for better inter-laboratory performance.

  8. The neuropathic oesophagus. A radiographic and manometric study on the evolution of megaoesophagus in dogs with developing axonal neuropathy

    International Nuclear Information System (INIS)

    Satchell, P.M.

    1990-01-01

    Dogs given the neurotoxin acrylamide develop peripheral neuropathy and megaoesophagus. Sequential radiographic and manometric studies on the oesophagus demonstrated that the initial abnormalities consisted of a progressive decrease in the proportion of swallows that initiated peristalsis and a gradual increase in oesophageal calibre. Regurgitation, peristaltic failure and oesophageal dilatation all appeared within three days. The eating behaviour and gait abnormalities quickly resolved on stopping the neurotoxin, but the oesophagus remained dilated for longer. Previous studies have suggested that the abnormalities present in dogs which are developing a distal axonal neuropathy or in some dogs with idiopathic megaoesophagus may be limited to the proprioceptive elements of the oesophageal innervation. The present study suggests that the progressive inefficiency in the transmission of swallows and changes in oesophageal calibre in dogs with evolving megaoesophagus may be a consequence of damage to these proprioceptive elements

  9. Occurrence of hypospadias in a 2 month old male Holstein calf along with cryptorchidism and umbilical hernia

    Directory of Open Access Journals (Sweden)

    akbar arfaei akhoole

    2017-04-01

    Full Text Available Hypospadias is a congenital problem reported in dogs, sheep and goats and occurrence of this anomaly in calves is rare. In fact, hypospadias is congenital absence of the urethra. In October 2015, a client attended the veterinary clinic for treatment of a 2 month old calf. Physical examination was performed following anamnesis. Vital signs including heart and respiratory rates, body temperature and peristaltic movements of the gastrointestinal system were normal. Examination of the urinary system revealed aplasia of the urethra at the perineum from beneath the rectum to the end of the penis and the calf was diagnosed with hypospadias. Physical examination also revealed the presence of an umbilical hernia with diameter of 6 cm and cryptorchidism. After diagnosis, the defect was corrected by surgical method to alleviate its side effects. Six months after surgical correction, the calf had satisfactory growth rate.

  10. The enteric nervous system promotes intestinal health by constraining microbiota composition.

    Directory of Open Access Journals (Sweden)

    Annah S Rolig

    2017-02-01

    Full Text Available Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS, a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health.

  11. Synthesis of hydroxyapatite nanoparticles by Sonochemistry Method

    International Nuclear Information System (INIS)

    Cota, L.F.; Pereira, L.C.; Licona, K.P.M.; Lunz, J.N.; Ribeiro, A.A.; Morejon, L.

    2014-01-01

    bone implant substitute due to a great chemical similarity with the biological calcified tissues. Among synthesis conventional methods, the acoustic cavitation, induced by the sonochemical method, allows formation of nano powders. This work aimed to synthesize HAp nano-sized powders by using CaCl2. 2H2O and Na3PO4. 12H2O as precursors, along with pH and temperature control. The sonochemical method was accomplished by using different amplitudes (20%, 60% e 100%). To optimize the process, another synthesis at 60% ultrasound amplitude was performed, with the use of a peristaltic pump for dripping control. The HAp nano powders achieved were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET analysis, Scanning Electron Microscope/Field Emission Gun (SEM/FEG) combined with EDS. The results indicated the influence of the sonochemical methodology and drip controlling, on the chemical composition, crystallinity and nanoparticles morphology. (author)

  12. PREREQUISITES OF ENTERIC FAILURE MEDICATED CORRECTION IN PATIENTS WITH ACUTE PANCREATITIS

    Directory of Open Access Journals (Sweden)

    Kunovsky V.V.

    2013-10-01

    Full Text Available On the example of the 62 patients treatment with acutepancreatitis were studied and considered the background tothe development of enteric failure syndrome (EFS. Byresults of research it was argued that in 67,74 % of thepatients on the background of peristaltic gastric contractionscontractile capacity duodenal ulcer was acute reduced orsignificantly delayed, up to its complete absence in 59,68 %of patients. On the basis of morphological researches biopsyof the small intestine mucous membrane shown that on thebasis of the EFS in 76% of patients with acute pancreatitisdeveloping structural disorders in the anatomical structureof enterocytes. The ways of these violations drug correctionby inclusion in a complex of drug therapy prokinetics andprobiotic Saccharomyces boulardii according to thedeveloped and approved regimens.

  13. Investigations of the inductively coupled plasma source for analyzing NURE water samples at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Apel, C.T.; Bieniewski, T.M.; Cox, L.E.; Steinhaus, D.W.

    1977-03-01

    A 3.4-meter direct-reading spectrograph is being used with an inductively coupled plasma source for the simultaneous determination of Ag, Bi, Cd, Cu, Nb, Ni, Pb, Sn, and W in water samples. We have attached a small digital computer to the system in order to obtain intensity data on each element once a second. After the intensities during a run on a sample have stabilized, the computer records the intensity data and outputs the average concentration for each element. To approach the published detection limits, a peristaltic pump must be used to force the water sample into the usual cross-flow nebulizer. We have studied several different nebulizer designs with the goal of improving efficiency and hence sensitivity. One design, the fritted-disk nebulizer, has an efficiency over 60 percent, as compared with the 5 percent efficiency of the original nebulizer

  14. Oral cadmium chloride intoxication in mice: Effects of penicillamine, dimercaptosuccinic acid and related compounds

    International Nuclear Information System (INIS)

    Andersen, O.; Nielsen, J.B.

    1988-01-01

    The antidotal efficacies of chelators during acute cadmium intoxication has previously been examined in experiments where both a soluble cadmium salt and the chelator were administered parenterally. In the present study, PA, DMSA and related compounds were studied as oral antidotes during oral CdCl 2 intoxication. According to the antagonistic effects noted on mortality, peristaltic toxicity and intestinal cadmium uptake, the relative efficacies of the compounds tested were: DMSA>PAD>DMPS>MSA>PA>NAPA. None of the chelators induced major changes in the organ distribution of absorbed cadmium, in particular no increased cerebral deposition of cadmium. This study indicates that, in oral cadmium intoxication in humans, orally administered DMSA would be likely to offer protection against the local toxicity of cadmium in the gastrointestinal tract as well as to reduce the risk of systemic toxicity of absorbed cadmium. (author)

  15. Synthesis of hydroxyapatite nanoparticles by Sonochemistry Method

    Energy Technology Data Exchange (ETDEWEB)

    Cota, L.F.; Pereira, L.C. [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Licona, K.P.M.; Lunz, J.N.; Ribeiro, A.A. [Instituto Nacional de Tecnologia (DPCM/INT), Rio de Janeiro, RJ (Brazil); Morejon, L. [Universidad de La Habana (UH/BIOMAT), Habana (Cuba). Centro de Biomateriales

    2014-07-01

    bone implant substitute due to a great chemical similarity with the biological calcified tissues. Among synthesis conventional methods, the acoustic cavitation, induced by the sonochemical method, allows formation of nano powders. This work aimed to synthesize HAp nano-sized powders by using CaCl2. 2H2O and Na3PO4. 12H2O as precursors, along with pH and temperature control. The sonochemical method was accomplished by using different amplitudes (20%, 60% e 100%). To optimize the process, another synthesis at 60% ultrasound amplitude was performed, with the use of a peristaltic pump for dripping control. The HAp nano powders achieved were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET analysis, Scanning Electron Microscope/Field Emission Gun (SEM/FEG) combined with EDS. The results indicated the influence of the sonochemical methodology and drip controlling, on the chemical composition, crystallinity and nanoparticles morphology. (author)

  16. Sonographic diagnosis of intestinal obstruction in the dog.

    Science.gov (United States)

    Manczur, F; Vörös, K; Vrabély, T; Wladár, S; Németh, T; Fenyves, B

    1998-01-01

    Ultrasonography was performed on 44 dogs to decide whether small bowel obstruction was present. The sonographic criteria for small bowel obstruction were (1) the presence of pendulous movement of the ingesta inside the dilated bowel, (2) observation of invaginated intestines or an ingested intraluminal foreign body, (3) observation of non-uniform peristaltic activity of the dilated intestines, or (4) observation of akinetic intestinal loops together with abdominal fluid accumulation. By using these criteria, obstruction was correctly diagnosed by ultrasonography in 11 of the 13 dogs with mechanical ileus, and obstruction was correctly excluded in 29 of the 31 non-obstructive cases. Thus, the above-mentioned sonographic criteria had 85% sensitivity and positive predictive value, and 94% specificity and negative predictive value. The present study suggests that ultrasonography is a valuable tool for diagnosing small intestinal obstruction in the dog.

  17. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Cine-oesophago-gastroscintigraphy: assessment of digestive function in paediatrics

    Energy Technology Data Exchange (ETDEWEB)

    Guillet, J. (Hopital Pellegrin, 33 - Bordeaux (France))

    1984-05-15

    Cine-oesophago-gastroscintigraphy (COGS) can assess structure and function of the oesophagogastrointestinal tract. With this non-invasive method, the dosimetry is very low and quantification is easy. Milk or water labelled by sup(99m)Tc sulfocolloids are drunk by the patient. The transit is continuously monitored by a gamma camera and a computer. The esophageal transit time is useful in studying impairment of peristaltic motion. Fistula, diverticula and stenosis are easily detected. The sensitivity of this technique for the search of gastroesophageal reflux is as great as pH-metry. The quantification is of great interest to assess the severity of the reflux and to measure treatment efficacity. Slow rates of gastric emptying are associated with some of the reflux, and pyloric stenosis. Pulmonary contamination can be discovered in patients with gastro oesophageal reflux.

  19. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pezeshki, Alan M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sacci, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delnick, Frank M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, Douglas S. [Univ. of Tennessee, Knoxville, TN (United States); Mench, Matthew M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-16

    Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V2+/V3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmic resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.

  20. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries

    International Nuclear Information System (INIS)

    Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.; Aaron, Douglas S.; Mench, Matthew M.

    2017-01-01

    An improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+ /V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmic resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.

  1. A self-contained, programmable microfluidic cell culture system with real-time microscopy access

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Hemmingsen, Mette; Sabourin, David

    2011-01-01

    Utilizing microfluidics is a promising way for increasing the throughput and automation of cell biology research. We present a complete self-contained system for automated cell culture and experiments with real-time optical read-out. The system offers a high degree of user-friendliness, stability...... enables the system to perform parallel, programmable and multiconditional assays on a single chip. A modular approach provides system versatility and allows many different chips to be used dependent upon application. We validate the system's performance by demonstrating on-chip passive switching...... and mixing by peristaltically driven flows. Applicability for biological assays is demonstrated by on-chip cell culture including on-chip transfection and temporally programmable gene expression....

  2. Design and Evolution of the Asporto Heart Preservation Device.

    Science.gov (United States)

    Rivard, Andrew L

    2015-06-01

    The Asporto Heart Preservation Device is a system providing perfusion of cardioplegia to the donor heart using a computer-controlled peristaltic pump in a thermoelectrically cooled and insulated container. In 1998, a user interface was developed at the University of Minnesota consisting of a touch screen and battery-backed microcontroller. Power was supplied by a 120 VAC to 12 VDC converter. An upgrade to the insulated cooler and microcontroller occurred in 2002, which was followed by proof of concept experimental pre-clinical transplants and tests demonstrating the efficacy of the device with isolated donor hearts. During the period between 2002 and 2006, a variety of donor organ containers were developed, modified, and tested to provide an optimal sterile environment and fluid path. Parallel development paths encompass formalized design specifications for final prototypes of the touch screen/microcontroller, organ container, and thermoelectric cooler.

  3. Pattern formation in annular systems of repulsive particles

    International Nuclear Information System (INIS)

    Marschler, Christian; Starke, Jens; Sørensen, Mads P.; Gaididei, Yuri B.; Christiansen, Peter L.

    2016-01-01

    General particle models with symmetric and asymmetric repulsion are studied and investigated for finite-range and exponential interaction in an annulus. In the symmetric case transitions from one- to multi-lane behavior including multistability are observed for varying particle density and for a varying curvature with fixed density. Hence, the system cannot be approximated by a periodic channel. In the asymmetric case, which is important in pedestrian dynamics, we reveal an inhomogeneous new phase, a traveling wave reminiscent of peristaltic motion. - Highlights: • An asymmetrically interacting repulsive particle model is introduced. • Multi-stability is found in a pedestrian dynamics model. • Transitions from one- to multi-lane behavior are studied numerically.

  4. Achalasia: A Review of Etiology, Pathophysiology, and Treatment

    Directory of Open Access Journals (Sweden)

    Nor Hedayanti

    2016-05-01

    Full Text Available Achalasia was a condition marked by peristaltic movement absent in lower esophageal sphincter and segment that hypertonic result in imperfect relaxation during food ingestion. Achalasia incidence did not differ between men and women, account for 1 in 100.000 people every year with prevalence of 10 in 100.000 people, unrelated specifically with ethnic, and has its highest incidence on 30-60 age group. Based on its etiology, it was divided into primary and secondary Achalasia, while based on its motility, it was into hypermotil, hypomotil, and amotil Achalasia. Until present, several therapeutic modalities were available to treat Achalasia, among them was pharmacology therapy, botulinum toxin injection via endoscopy, pneumatic dilatation, Heller myotomy surgery, and Per Oral Endoscopy Myotomy (POEM.

  5. Analysis of tecniques for measurement of the size distribution of solid particles

    Directory of Open Access Journals (Sweden)

    F. O. Arouca

    2005-03-01

    Full Text Available Determination of the size distribution of solid particles is fundamental for analysis of the performance several pieces of equipment used for solid-fluid separation. The main objective of this work is to compare the results obtained with two traditional methods for determination of the size grade distribution of powdery solids: the gamma-ray attenuation technique (GRAT and the LADEQ test tube technique. The effect of draining the suspension in the two techniques used was also analyzed. The GRAT can supply the particle size distribution of solids through the monitoring of solid concentration in experiments on batch settling of diluted suspensions. The results show that use of the peristaltic pump in the GRAT and the LADEQ methods produced a significant difference between the values obtained for the parameters of the particle size model.

  6. The cine-oesophago-gastroscintigraphy: assessment of digestive function in paediatrics

    International Nuclear Information System (INIS)

    Guillet, J.

    1984-01-01

    Cine-oesophago-gastroscintigraphy (COGS) can assess structure and function of the oesophagogastrointestinal tract. With this non-invasive method, the dosimetry is very low and quantification is easy. Milk or water labelled by sup(99m)Tc sulfocolloids are drunk by the patient. The transit is continuously monitored by a gamma camera and a computer. The esophageal transit time is usefull in studying impairment of peristaltic motion. Fistula, diverticula and stenosis are easily detected. The sensitivity of this technique for the search of gastroesophageal reflux is as great as pHmetry. The quantification is of great interest to assess the severity of the reflux and to measure treatment efficacity. Slow rates of gastric emptying are associated with some of the reflux, and pyloric stenosis. Pulmonary contamination can be discovered in patients with gastro oesophageal reflux [fr

  7. Determination of uranium in organic phase by flow injection spectrophotometric analysis

    International Nuclear Information System (INIS)

    Yu Yiyun

    1998-01-01

    Based on the use of merging zone circuit and simulating a series of standard solution of uranium in organic phase, uranium in unknown organic phase sample was determined by flow injection spectrophotometry. A linear calibration graph was obtained with correlation coefficient of 0.999 for uranium concentration in organic phase over 10∼200 mg/L. Isopropyl alcohol was used as carrier solution. Mixing colour solution contains isopropyl alcohol, triethanolamine, masking reagent and Br-PADAP. The relative standard deviation of the method was better than +-5%. Determination of each sample can be completed in one minute. The method characteristic is: (1) using merging zone and simulating standard solution of uranium in organic phase, the method is sensitive and reliable; (2) even if the determined solution was in turbid condition, it can be quantitatively determined; (3) by means of solution replace technique, the tube of peristaltic pump can be used over a long period of time

  8. Technical procedures for water resources: Volume 3, Environmental Field Program, Deaf Smith County Site, Texas: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    To ensure that the environmental field program comprehensively addresses the issues and requirements of the project, a site study plan (SSP) has been prepared for Water Resources (ONWI, 1987). This technical procedure (TP) has been developed to implement the field program described in the Water Resources Site Study Plan. This procedure provides the general method for the field collection of water and sediment samples from playa lakes using an Alpha horizontal type sampler or equivalent or a peristaltic pump for water and a KB-coring devise or ponar grab for sediments. The samples will be preserved and then shipped to a laboratory for analysis. The water quality and sediment samples will be collected as part of the surface-water quality field study described in the Site Plan for Water Resources. 15 refs., 5 figs., 3 tabs

  9. Spectrophotometric determination of uranium and thorium with arsenazo III in the flow injection system

    International Nuclear Information System (INIS)

    Andrade, M. das G.M. de.

    1986-12-01

    A simple system for flow injection analysis (FIA) with double confluence was built using a filter photocolorimeter, an analogic potentiometer, 'plexiglass' flow cuvettes, polyethylene colls and tubes, 'plexiglass' commuter and peristaltic pump to introduce solutions and gravity as flow source. The system was dimensioned and studied using only Arsenazo III solutions. Spectrophotometric methods for uranium and thorium using Arsenazo III were studied using a scanning spectrophotometer and after chosing adequate red filter, adapted to photocolorimetry using flow cuvettes and FIA. Synthetic samples, phosphate rock, and process samples from uranium recovery of dolomites were analysed. Rocks of Morro do Ferro (MG, Brazil), Caldasite (Baddeleyte + Zirconite), Zirconite, Monazite from a program for certification and certified rocks (Dunite DC-1, CANMET) were analysed without chemical separation of Th (IV) and with ion exchange separation in semi-micro columns of cation exchange resin (Dowex 50). (Author) [pt

  10. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    Directory of Open Access Journals (Sweden)

    Juhyun Lee

    Full Text Available Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS and pressure gradients (∇P across the atrioventricular (AV canal. Zebrafish (Danio rerio are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP (y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV across the atrioventricular (AV canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf, simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6, whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  11. Evolution of colloidal dispersions in novel time-varying optical potentials

    Science.gov (United States)

    Koss, Brian Alan

    Optical traps use forces exerted by a tightly focused light beam to trap objects from tens of nanometers to tens of micrometers in size. Since their introduction in 1986, optical tweezers have become very useful to biology, chemistry, and soft condensed-matter physics. Work presented here, promises to advance optical tweezers not only in fundamental scientific research, but also in applications outside of the laboratory and into the mainstream of miniaturized manufacturing and diagnostics. By providing unprecedented access to the mesoscopic world, a new generation of optical traps, called Dynamic Holographic Optical Tweezers (HOTs) offers revolutionary new opportunities for fundamental and applied research. To demonstrate this technique, HOTs will be used to pump particles via a new method of transport called Optical Peristalsis (OP). OP is efficient method for transporting mesoscopic objects in three dimensions using short repetitive sequences of holographic optical trapping patterns. Transport in this process is analogous to peristaltic pumping, with the configurations of optical traps mimicking states of a peristaltic pump. While not limited to the deterministic particle transport, OP, can also be a platform to investigate the stochastic limit of particle transport. Advances in recent years have demonstrated that a variety of time-varying perturbations can induce drift in a diffusive system without exerting an overall force. Among these, are thermal ratchet models in which the system is subjected to time-varying energy landscapes that break spatiotemporal symmetry and thereby induce drift. Typically, the potential energy landscape is chosen to be the sawtooth potential. This work describes an alternate class of symmetric thermal ratchet models, that are not sawtooth, and demonstrates their efficacy in biasing the diffusion of colloidal spheres in both the stochastic and deterministic limits. Unlike previous models, each state in this thermal ratchet consists of

  12. Anorectal stimulation causes increased colonic motor activity in subjects with spinal cord injury.

    Science.gov (United States)

    Korsten, Mark A; Singal, Ashwani K; Monga, Amit; Chaparala, Geeta; Khan, Amir M; Palmon, Ron; Mendoza, John Reagan D; Lirio, Juan P; Rosman, Alan S; Spungen, Ann; Bauman, William A

    2007-01-01

    Difficulty with evacuation (DWE) is a major problem after spinal cord injury (SCI). Stimulation of the anal canal and lower rectum, accomplished using a gloved finger (so-called digital rectal stimulation or DRS) is often used as an adjunct to laxatives and enemas to facilitate bowel evacuation. However, the basis for the efficacy of DRS is not known. This study assessed the effect of DRS on colonic motility. Six subjects with SCI were studied several hours after a bowel care session. Colonic motility was assessed using a manometric catheter (affixed endoscopically to the splenic flexure) at baseline, during DRS, and after DRS. In addition, evacuation of barium oatmeal paste (with the consistency of stool and introduced into the rectum and descending colon) was assessed simultaneously using fluoroscopic techniques. The mean number (+/- SEM) of peristaltic waves per minute increased from 0 at baseline to 1.9 (+/- 0.5/min) during DRS and 1.5 (+/- 0.3/min) during the period immediately after cessation of DRS (P < 0.05). The mean amplitude (+/- SEM) of the peristaltic contractions was 43.4 (+/- 2.2) mmHg. The frequency of contractions, as well as amplitude of contractions, during or immediately after DRS was not significantly different. These manometric changes in response to DRS were accompanied by expulsion of barium oatmeal paste in every subject by the fifth DRS. DRS causes left-sided colonic activity in subjects with SCI. At least in part, an anorectal colonic reflex that results in enhanced contractions of the descending colon and rectum may contribute to bowel evacuation in individuals with SCI.

  13. Does Chicago Classification address Symptom Correlation with High-resolution Esophageal Manometry?

    Science.gov (United States)

    Jain, Mayank; Srinivas, Melpakkam; Bawane, Piyush; Venkataraman, Jayanthi

    2017-01-01

    To assess the correlation of symptoms with findings on esophageal high-resolution manometry (HRM) in Indian patients. Prospective data collection of all patients undergoing esophageal manometry was done at two centers in India-Indore and Chennai-over a period of 18 months. Symptom profile of the study group was divided into four: Motor dysphagia, noncardiac chest pain (NCCP), gastroesophageal reflux (GER), and esophageal belchers. The symptoms were correlated with manometric findings. Of the study group (154), 35.71% patients had a normal study, while major and minor peristaltic disorders were noted in 31.16 and 33.76% respectively. In patients with symptoms of dysphagia, achalasia cardia was the commonest cause (45.1%), followed by ineffective esophageal motility (IEM) (22.53%) and normal study (19.71%). In patients with NCCP, normal peristalsis (50%) and ineffective motility (31.25%) formed the major diagnosis. Of the 56 patients with GER symptoms, 26 (46.4%) had normal manometry. An equal number had ineffective motility. Of the 11 esophageal belchers, 7 (63.6%) of these had a normal study and 3 had major motility disorder. Dysphagia was the only symptom to have a high likelihood ratio and positive predictive value to pick up major motility disorder. Dysphagia correlates with high chance to pick up a major peristaltic abnormality in motor dysphagia. The role of manometry in other symptoms in Indian setting needs to be ascertained by larger studies. The present study highlights lack of symptom correlation with manometry findings in Indian patients. How to cite this article: Jain M, Srinivas M, Bawane P, Venkataraman J. Does Chicago Classification address Symptom Correlation with High-resolution Esophageal Manometry? Euroasian J Hepato-Gastroenterol 2017;7(2):122-125.

  14. Esophageal Dysmotility in Patients following Total Laryngectomy.

    Science.gov (United States)

    Zhang, Teng; Maclean, Julia; Szczesniak, Michal; Bertrand, Paul P; Quon, Harry; Tsang, Raymond K; Wu, Peter I; Graham, Peter; Cook, Ian J

    2018-02-01

    Objectives Dysphagia is common in total laryngectomees, with some symptoms suggesting esophageal dysmotility. Tracheoesophageal (TE) phonation requires effective esophagopharyngeal air passage. Hence, esophageal dysmotility may affect deglutition or TE phonation. This study aimed to determine (1) the characteristics of esophageal dysmotility in laryngectomees, (2) whether clinical history is sensitive in detecting esophageal dysmotility, and (3) the relationship between esophageal dysmotility and TE prosthesis dysfunction. Study Design Multidisciplinary cross-sectional study. Setting Tertiary academic hospital. Subjects and Methods For 31 participants undergone total laryngectomy 1 to 12 years prior, clinical histories were taken by a gastroenterologist and a speech pathologist experienced in managing dysphagia. Esophageal high-resolution manometry was performed and analyzed using Chicago Classification v3.0. Results Interpretable manometric studies were obtained in 23 (1 normal manometry). Esophageal dysmotility patterns included achalasia, esophagogastric junction outflow obstruction, diffuse esophageal spasm, and other major (30%) and minor (50%) peristaltic disorders. The sensitivity of predicting any esophageal dysmotility was 28%, but it is noteworthy that patients with achalasia and diffuse esophageal spasm (DES) were predicted. Two of 4 participants with TE puncture leakage had poor esophageal clearance. Of 20 TE speakers, 12 had voice problems, no correlation between poor voice, and any dysmotility pattern. Conclusions Peristaltic and lower esophageal sphincter dysfunction are common in laryngectomees. Clinical history, while not predictive of minor motor abnormalities, predicted correctly cases with treatable spastic motor disorders. Dysmotility was not associated with poor phonation, although TE puncture leakage might be linked to poor esophageal clearance. Esophageal dysmotility should be considered in the laryngectomees with persisting dysphagia or

  15. "Do-It-Yourself" reliable pH-stat device by using open-source software, inexpensive hardware and available laboratory equipment

    Science.gov (United States)

    Kragic, Rastislav; Kostic, Mirjana

    2018-01-01

    In this paper, we present the construction of a reliable and inexpensive pH stat device, by using open-source “OpenPhControl” software, inexpensive hardware (a peristaltic and a syringe pump, Arduino, a step motor…), readily available laboratory devices: a pH meter, a computer, a webcam, and some 3D printed parts. We provide a methodology for the design, development and test results of each part of the device, as well as of the entire system. In addition to dosing reagents by means of a low-cost peristaltic pump, we also present carefully controlled dosing of reagents by an open-source syringe pump. The upgrading of the basic open-source syringe pump is given in terms of pump control and application of a larger syringe. In addition to the basic functions of pH stat, i.e. pH value measurement and maintenance, an improvement allowing the device to be used for potentiometric titration has been made as well. We have demonstrated the device’s utility when applied for cellulose fibers oxidation with 2,2,6,6-tetramethylpiperidine-1-oxyl radical, i.e. for TEMPO-mediated oxidation. In support of this, we present the results obtained for the oxidation kinetics, the consumption of added reagent and experimental repeatability. Considering that the open-source scientific tools are available to everyone, and that researchers can construct and adjust the device according to their needs, as well as, that the total cost of the open-source pH stat device, excluding the existing laboratory equipment (pH meter, computer and glossary) was less than 150 EUR, we believe that, at a small fraction of the cost of available commercial offers, our open-source pH stat can significantly improve experimental work where the use of pH stat is necessary. PMID:29509793

  16. The OPEnSampler: A Low-Cost, Low-Weight, Customizable and Modular Open Source 24-Unit Automatic Water Sampler

    Science.gov (United States)

    Nelke, M.; Selker, J. S.; Udell, C.

    2017-12-01

    Reliable automatic water samplers allow repetitive sampling of various water sources over long periods of time without requiring a researcher on site, reducing human error as well as the monetary and time costs of traveling to the field, particularly when the scale of the sample period is hours or days. The high fixed cost of buying a commercial sampler with little customizability can be a barrier to research requiring repetitive samples, such as the analysis of septic water pre- and post-treatment. DIY automatic samplers proposed in the past sacrifice maximum volume, customizability, or scope of applications, among other features, in exchange for a lower net cost. The purpose of this project was to develop a low-cost, highly customizable, robust water sampler that is capable of sampling many sources of water for various analytes. A lightweight aluminum-extrusion frame was designed and assembled, chosen for its mounting system, strength, and low cost. Water is drawn from two peristaltic pumps through silicone tubing and directed into 24 foil-lined 250mL bags using solenoid valves. A programmable Arduino Uno microcontroller connected to a circuit board communicates with a battery operated real-time clock, initiating sampling stages. Period and volume settings are programmable in-field by the user via serial commands. The OPEnSampler is an open design, allowing the user to decide what components to use and the modular theme of the frame allows fast mounting of new manufactured or 3D printed components. The 24-bag system weighs less than 10kg and the material cost is under $450. Up to 6L of sample water can be drawn at a rate of 100mL/minute in either direction. Faster flowrates are achieved by using more powerful peristaltic pumps. Future design changes could allow a greater maximum volume by filling the unused space with more containers and adding GSM communications to send real time status information.

  17. A new concept of endometriosis and adenomyosis: tissue injury and repair (TIAR).

    Science.gov (United States)

    Leyendecker, Gerhard; Wildt, Ludwig

    2011-03-01

    Pelvic endometriosis, deeply infiltrating endometriosis and uterine adenomyosis share a common pathophysiology and may be integrated into the physiological mechanism and new nosological concept of 'tissue injury and repair' (TIAR) and may, in this context, just represent the extreme of a basically physiological, estrogen-related mechanism that is pathologically exaggerated in an extremely estrogen-sensitive reproductive organ. The acronym TIAR describes a fundamental and apparently ubiquitous biological system that becomes operative in mesenchymal tissues following tissue injury and, upon activation, results in the local production of estradiol. Endometriosis and adenomyosis are caused by trauma. In the spontaneously developing disease, chronic uterine peristaltic activity or phases of hyperperistalsis induce, at the endometrial-myometrial interface near the fundo-cornual raphe, microtraumatisations, with activation of the TIAR mechanism. With ongoing traumatisations, such sites of inflammation might accumulate and the increasingly produced estrogens interfere in a paracrine fashion with ovarian control over uterine peristaltic activity, resulting in permanent hyperperistalsis and a self-perpetuation of the disease process. Overt autotraumatisation of the uterus with dislocation of fragments of basal endometrium into the peritoneal cavity and infiltration of basal endometrium into the depth of the myometrial wall ensues. In most cases of endometriosis/adenomyosis a causal event early in the reproductive period of life must be postulated, rapidly leading to archimetral hyperestrogenism and uterine hyperperistalsis. In late premenopausal adenomyosis such an event might not have occurred. However, as indicated by the high prevalence of the disease, it appears to be unavoidable that, with time, chronic normoperistalsis throughout the reproductive period of life accumulates to the same extent of microtraumatisation. With activation of the TIAR mechanism followed by

  18. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities. Copyright © 2012 Wiley Periodicals, Inc.

  19. "Do-It-Yourself" reliable pH-stat device by using open-source software, inexpensive hardware and available laboratory equipment.

    Science.gov (United States)

    Milanovic, Jovana Z; Milanovic, Predrag; Kragic, Rastislav; Kostic, Mirjana

    2018-01-01

    In this paper, we present the construction of a reliable and inexpensive pH stat device, by using open-source "OpenPhControl" software, inexpensive hardware (a peristaltic and a syringe pump, Arduino, a step motor…), readily available laboratory devices: a pH meter, a computer, a webcam, and some 3D printed parts. We provide a methodology for the design, development and test results of each part of the device, as well as of the entire system. In addition to dosing reagents by means of a low-cost peristaltic pump, we also present carefully controlled dosing of reagents by an open-source syringe pump. The upgrading of the basic open-source syringe pump is given in terms of pump control and application of a larger syringe. In addition to the basic functions of pH stat, i.e. pH value measurement and maintenance, an improvement allowing the device to be used for potentiometric titration has been made as well. We have demonstrated the device's utility when applied for cellulose fibers oxidation with 2,2,6,6-tetramethylpiperidine-1-oxyl radical, i.e. for TEMPO-mediated oxidation. In support of this, we present the results obtained for the oxidation kinetics, the consumption of added reagent and experimental repeatability. Considering that the open-source scientific tools are available to everyone, and that researchers can construct and adjust the device according to their needs, as well as, that the total cost of the open-source pH stat device, excluding the existing laboratory equipment (pH meter, computer and glossary) was less than 150 EUR, we believe that, at a small fraction of the cost of available commercial offers, our open-source pH stat can significantly improve experimental work where the use of pH stat is necessary.

  20. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  1. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    International Nuclear Information System (INIS)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-01-01

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells

  2. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    Science.gov (United States)

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  3. A study of pathophysiological factors associated with gastro-esophageal reflux disease in twins discordant for gastro-esophageal reflux symptoms.

    Science.gov (United States)

    Iovino, P; Mohammed, I; Anggiansah, A; Anggiansah, R; Cherkas, L F; Spector, T D; Trudgill, N J

    2013-08-01

    Differences in lower esophageal sphincter (LES) and peristaltic function and in transient LES relaxations (TLESR) have been described in patients with gastro-esophageal reflux disease (GERD). However, some of these differences may be the result of chronic GERD rather than being an underlying contributory factor. Twins discordant for GERD symptoms, i.e., only one twin had GERD symptoms, underwent standard LES and esophageal body manometry, and then using a sleeve sensor prolonged LES and pH monitoring, 30 min before and 60 min after a 250 mL 1200 kcal lipid meal. Eight monozygotic and 24 dizygotic female twins were studied. Although there was no difference in preprandial LES pressure (symptomatic 13.2 ± 7.1 mmHg vs asymptomatic 15.1 ± 6.2 mmHg, P = 0.4), LES pressure fell further postprandially in symptomatic twins (LES pressure area under the curve 465 ± 126 vs 331 ± 141 mmHg h, P reflux episodes in symptomatic twins occurred due to low LES pressure or deep inspiration/strain and 0/17 in asymptomatic twins (P = 0.01). There was no difference between symptomatic and asymptomatic twins in: peristaltic amplitude, ineffective esophageal body motility, hiatus hernia prevalence, or LES length. There was also no difference in TLESR frequency preprandially (symptomatic median 1(range 0-2) vs asymptomatic 0(0-2), P = 0.08) or postprandially (2.5(1-8) vs 3(1-6), P = 0.81). Twins with GERD symptoms had lower postprandial LES pressure and given the close genetic link between the twins, it is possible that such differences are caused by GERD. Acid reflux episodes associated with a hypotensive LES were seen in symptomatic, but not in asymptomatic twins. © 2013 John Wiley & Sons Ltd.

  4. Esophageal chemical clearance is impaired in gastro-esophageal reflux disease--a 24-h impedance-pH monitoring assessment.

    Science.gov (United States)

    Frazzoni, M; Manta, R; Mirante, V G; Conigliaro, R; Frazzoni, L; Melotti, G

    2013-05-01

    Impedance-pH monitoring allows assessment of retrograde and antegrade intra-esophageal movement of fluids and gas. Reflux is followed by volume clearance and chemical clearance, elicited by secondary and swallow-induced peristalsis, respectively. We aimed to assess whether chemical clearance is impaired in gastro-esophageal reflux disease (GERD). Blinded retrospective review of impedance-pH tracings from patients with erosive reflux disease (ERD) and non-erosive reflux disease (NERD), and from proton pump inhibitor (PPI)-refractory patients before and after laparoscopic fundoplication. The number of refluxes followed within 30 s by swallow-induced peristaltic waves was divided by the number of total refluxes to obtain a parameter representing chemical clearance namely the postreflux swallow-induced peristaltic wave (PSPW) index. The PSPW index was significantly lower in 31 ERD (15%) and in 44 NERD (33%) off-PPI patients than in 30 controls (75%), as well as in 18 ERD (16%) and in 48 NERD (31%) on-PPI patients than in 26 on-PPI functional heartburn (FH) cases (67%) (P < 0.05 for all comparisons). In 29 PPI-refractory patients, the median PSPW index was unaltered by otherwise effective antireflux surgery (20% postoperatively, 21% preoperatively). The overall sensitivity, specificity, positive, and negative predictive values of the PSPW index in identifying GERD patients were 97%, 89%, 96%, and 93%. Impairment of chemical clearance is a primary pathophysiological mechanism specific to GERD: it is unaffected by medical/surgical therapy, is not found in FH, and is more pronounced in ERD than in NERD. Using the PSPW index could improve the diagnostic efficacy of impedance-pH monitoring. © 2013 Blackwell Publishing Ltd.

  5. Pre-stressed piezoelectric bimorph micro-actuators based on machined 40 µm PZT thick films: batch scale fabrication and integration with MEMS

    International Nuclear Information System (INIS)

    Wilson, S A; Jourdain, R P; Owens, S

    2010-01-01

    The projected force–displacement capability of piezoelectric ceramic films in the 20–50 µm thickness range suggests that they are well suited to many micro-fluidic and micro-pneumatic applications. Furthermore when they are configured as bending actuators and operated at ∼ 1 V µm −1 they do not necessarily conform to the high-voltage, very low-displacement piezoelectric stereotype. Even so they are rarely found today in commercial micro-electromechanical devices, such as micro-pumps and micro-valves, and the main barriers to making them much more widely available would appear to be processing incompatibilities rather than commercial desirability. In particular, the issues associated with integration of these devices into MEMS at the production level are highly significant and they have perhaps received less attention in the mainstream than they deserve. This paper describes a fabrication route based on ultra-precision ceramic machining and full-wafer bonding for cost-effective batch scale production of thick film PZT bimorph micro-actuators and their integration with MEMS. The resulting actuators are pre-stressed (ceramic in compression) which gives them added performance, they are true bimorphs with bi-directional capability and they exhibit full bulk piezoelectric ceramic properties. The devices are designed to integrate with ancillary systems components using transfer-bonding techniques. The work forms part of the European Framework 6 Project 'Q2M—Quality to Micro'

  6. Key parameters controlling the performance of catalytic motors

    Energy Technology Data Exchange (ETDEWEB)

    Esplandiu, Maria J.; Afshar Farniya, Ali [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); Reguera, David, E-mail: dreguera@ub.edu [Departament de Física Fonamental, Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona (Spain)

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  7. LOW COST ANALYZER FOR THE DETERMINATION OF PHOSPHORUS BASED ON OPEN-SOURCE HARDWARE AND PULSED FLOWS

    Directory of Open Access Journals (Sweden)

    Pablo González

    2016-04-01

    Full Text Available The need for automated analyzers for industrial and environmental samples has triggered the research for new and cost-effective strategies of automation and control of analytical systems. The widespread availability of open-source hardware together with novel analytical methods based on pulsed flows have opened the possibility of implementing standalone automated analytical systems at low cost. Among the areas that can benefit from this approach are the analysis of industrial products and effluents and environmental analysis. In this work, a multi-pumping flow system is proposed for the determination of phosphorus in effluents and polluted water samples. The system employs photometric detection based on the formation of molybdovanadophosphoric acid, and the fluidic circuit is built using three solenoid micropumps. The detection is implemented with a low cost LED-photodiode photometric detection system and the whole system is controlled by an open-source Arduino Uno microcontroller board. The optimization of the timing to ensure the color development and the pumping cycle is discussed for the proposed implementation. Experimental results to evaluate the system behavior are presented verifying a linear relationship between the relative absorbance and the phosphorus concentrations for levels as high as 50 mg L-1.

  8. Development and evaluation of an ultrasonic personal aerosol sampler.

    Science.gov (United States)

    Volckens, J; Quinn, C; Leith, D; Mehaffy, J; Henry, C S; Miller-Lionberg, D

    2017-03-01

    Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time-integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5-3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low-cost electronics, open-source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM 2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM 2.5 across a broad range of concentrations. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  9. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih

    2013-01-01

    We present a novel design of micropumps and valves driven by osmotic force for point-of-care applications. Although there have been significant progresses in microfluidic components and control devices such as fluidic diodes, switches, resonators and digital-to-analog converters, the ultimate power source still depends on bulky off-chip components, which are expensive and cannot be easily miniaturized. For point-of-care applications, it is critical to integrate all the components in a compact size at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations under 125 kPa back pressure. We have also implemented an osmotic pump, which can pump a high flow rate over 30 μL/min for longer than 30 minutes. The experimental data demonstrates the possibility and potential of applying osmotic actuation in point-of-care disposable microfluidics. © 2013 IEEE.

  10. Effect of insulin pump and continuous intravenous insulin on ketone body metabolism, blood gas indexes and stress state in patients with diabetic ketoacidosis

    Directory of Open Access Journals (Sweden)

    Hui-Jin Shi

    2017-09-01

    Full Text Available Objective: To study the effect of insulin pump and continuous intravenous insulin on ketone body metabolism, blood gas indexes and stress state in patients with diabetic ketoacidosis. Methods: Patients with diabetic ketoacidosis who were treated in Meizhou Maternal and Child Heath Hospital between May 2014 and March 2017 were selected as the research subjects and randomly divided into the group A who received subcutaneous insulin infusion by insulin pump and the group B who received intravenous small-dose insulin injection by micropump. The indexes of ketone body, blood gas and stress were measured before and after treatment. Results: 12 h and 24 h after treatment, serum β-hydroxybutyrate, MDA, NE, ACTH and Cor contents of both groups of patients were significantly lower than those before treatment while pH, HCO3 - and base excess levels as well as serum SOD, GSH-Px, CAT and TAC contents were significantly higher than those before treatment, and serum β-hydroxybutyrate, MDA, NE, ACTH and Cor contents of group A were significantly lower than those of group B while pH, HCO3 - and base excess levels as well as serum SOD, GSH-Px, CAT and TAC contents were significantly higher than those of group B. Conclusion: Subcutaneous insulin infusion by insulin pump can improve ketone body metabolism, acidosis status and stress state in patients with diabetic ketoacidosis.

  11. Study of different cross-shaped microchannels affecting thermal-bubble-actuated microparticle manipulation

    Science.gov (United States)

    Li, Weichen; Tsou, Chingfu

    2015-10-01

    This paper presents a thermal-bubble-actuated microfluidic chip with cross-shaped microchannels for evaluating the effect of different microchannel designs on microparticle manipulation. Four cross-shaped microchannel designs, with orthogonal, misaligned, skewed, and antiskewed types, were proposed in this study. The thermal bubble micropump, which is based on a resistive bulk microheater, was used to drive fluid transportation, and it can be realized using a simple microfabrication process with a silicon-on-isolator wafer. Using commercial COMSOL software, the flow profiles of microfluidics in various cross-shaped microchannels were simulated qualitatively under different pumping pressures. Microbeads, with a diameter of 20 μm, manipulated in four cross-shaped microchannels, were also implemented in this experiment. The results showed that a skewed microchannel design has a higher sorting rate compared with orthogonal, misaligned, and antiskewed microchannels because its flow velocity in the main microchannel is significantly reduced by pumping pressure. Typically, the successful sorting rate for this type of skewed microchannel can reach 30% at a pumping frequency of 100 Hz.

  12. The mechanism of exogenous adiponectin in the prevention of no-reflow phenomenon in type 2 diabetic patients with acute myocardial infarction during PCI treatment.

    Science.gov (United States)

    Zhang, C-J; Deng, Y-Z; Lei, Y-H; Zhao, J-B; Wei, W; Li, Y-H

    2018-04-01

    To investigate the mechanism of exogenous adiponectin in the prevention of no-reflow phenomenon in type 2 diabetic (T2DM) patients with acute myocardial infarction (AMI) during percutaneous coronary intervention (PCI) treatment. 66 patients were randomly divided into control group and observation group, 33 cases in each group. According to the percutaneous coronary intervention (PCI) emergency treatment principle, patients from the control group were treated with an intracoronary injection of adenosine combined with a micro-pump intravenous infusion of tirofiban. Patients from the observation group were injected with exogenous adiponectin in addition to the adenosine and tirofiban treatments. There were no significant differences in gender, age, location of the target lesion, degree of stenosis, stent implantation number, length and the inner diameter between control and observation group (p > 0.05). Lower frequent of slow blood flow and no-reflow and shorter interventional procedures were observed in observation group compared with those of control group (p Exogenous adiponectin further reduced the no-reflow phenomenon during PCI treatment of the patients with T2DM combined with AMI. The function of exogenous adiponectin is associated with the reduced myocardial and endothelial cell injury and the inhibited inflammation and apoptosis. The application of exogenous adiponectin can significantly improve the clinical outcomes.

  13. Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation

    Science.gov (United States)

    Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab

    2015-05-01

    3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.

  14. Analysis of fluid flow around a beating artificial cilium

    Directory of Open Access Journals (Sweden)

    Mojca Vilfan

    2012-02-01

    Full Text Available Biological cilia are found on surfaces of some microorganisms and on surfaces of many eukaryotic cells where they interact with the surrounding fluid. The periodic beating of the cilia is asymmetric, resulting in directed swimming of unicellular organisms or in generation of a fluid flow above a ciliated surface in multicellular ones. Following the biological example, externally driven artificial cilia have recently been successfully implemented as micropumps and mixers. However, biomimetic systems are useful not only in microfluidic applications, but can also serve as model systems for the study of fundamental hydrodynamic phenomena in biological samples. To gain insight into the basic principles governing propulsion and fluid pumping on a micron level, we investigated hydrodynamics around one beating artificial cilium. The cilium was composed of superparamagnetic particles and driven along a tilted cone by a varying external magnetic field. Nonmagnetic tracer particles were used for monitoring the fluid flow generated by the cilium. The average flow velocity in the pumping direction was obtained as a function of different parameters, such as the rotation frequency, the asymmetry of the beat pattern, and the cilium length. We also calculated the velocity field around the beating cilium by using the analytical far-field expansion. The measured average flow velocity and the theoretical prediction show an excellent agreement.

  15. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system

    International Nuclear Information System (INIS)

    Weng, Chen-Hsun; Lee, Gwo-Bin; Huang, Chih-Chia; Yeh, Chen-Sheng; Lei, Huan-Yao

    2008-01-01

    A new microfluidic reaction system capable of mixing, transporting and reacting is developed for the synthesis of gold nanoparticles. It allows for a rapid and a cost-effective approach to accelerate the synthesis of gold nanoparticles. The microfluidic reaction chip is made from micro-electro-mechanical-system technologies which integrate a micro-mixer, micro-pumps, a micro-valve, micro-heaters and a micro temperature sensor on a single chip. Successful synthesis of dispersed gold nanoparticles has been demonstrated within a shorter period of time, as compared to traditional methods. It is experimentally found that precise control of the mixing/heating time for gold salts and reducing agents plays an essential role in the synthesis of gold nanoparticles. The growth process of hexagonal gold nanoparticles by a thermal aqueous approach is also systematically studied by using the same microfluidic reaction system. The development of the microfluidic reaction system could be promising for the synthesis of functional nanoparticles for future biomedical applications

  16. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors.

    Science.gov (United States)

    Lee, Jieun; Wipf, Mathias; Mu, Luye; Adams, Chris; Hannant, Jennifer; Reed, Mark A

    2017-01-15

    We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode. Noise analysis of the SiNW array with and without the Ag coating in the fluidic channel shows that noise frequency peaks, resulting from the operation of a piezoelectric micropump, are eliminated using the Ag layer with two reference electrodes located at inlet and outlet. This strategy presents a simple platform to eliminate the streaming potential and can become a powerful tool for nanoscale potentiometric biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Sequential spectrofluorimetric determination of free and total glycerol in biodiesel in a multicommuted flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Universidade de Sao Paulo, Instituto de Quimica, Sao Paulo (Brazil); Morales-Rubio, Angel; Guardia, Miguel de la [Universidad de Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain); Rocha, Fabio R.P. [Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    2011-07-15

    A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L{sup -1} with a detection limit of 0.5 mg L{sup -1}, which corresponds to 2 mg kg{sup -1} in biodiesel. The coefficient of variation was 0.9% (20 mg L{sup -1}, n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L{sup -1}. The detection limit was 1.4 mg L{sup -1} (2.8 mg kg{sup -1} in biodiesel) with a coefficient of variation of 1.4% (200 mg L{sup -1}, n = 10). The sampling rate was ca. 35 samples h{sup -1} and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans. (orig.)

  18. Generation of microfluidic flow using an optically assembled and magnetically driven microrotor

    International Nuclear Information System (INIS)

    Köhler, J; Ghadiri, R; Ksouri, S I; Guo, Q; Gurevich, E L; Ostendorf, A

    2014-01-01

    The key components in microfluidic systems are micropumps, valves and mixers. Depending on the chosen technology, the realization of these microsystems often requires rotational and translational control of subcomponents. The manufacturing of such active components as well as the driving principle are still challenging tasks. A promising all-optical approach could be the combination of laser direct writing and actuation based on optical forces. However, when higher actuation velocities are required, optical driving might be too slow. Hence, a novel approach based on optical assembling of microfluidic structures and subsequent magnetic actuation is proposed. By applying the optical assembly of microspherical building blocks as the manufacturing method and magnetic actuation, a microrotor was successfully fabricated and tested within a microfluidic channel. The resulting fluid flow was characterized by introducing an optically levitated measuring probe particle. Finally, a freely moving tracer particle visualizes the generated flow. The tracer particle analysis shows average velocities of 0.4–0.5 µm s −1 achieved with the presented technology. (paper)

  19. Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming

    Directory of Open Access Journals (Sweden)

    Carlos Cambra

    2018-04-01

    Full Text Available Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical costs. This article presents an auto-calibrated pH sensor able to detect and adjust the imbalances in the pH levels of the nutrient solution used in hydroponic agriculture. The sensor is composed by a pH probe and a set of micropumps that sequentially pour the different liquid solutions to maintain the sensor calibration and the water samples from the channels that contain the nutrient solution. To implement our architecture, we use an auto-calibrated pH sensor connected to a wireless node. Several nodes compose our wireless sensor networks (WSN to control our greenhouse. The sensors periodically measure the pH level of each hydroponic support and send the information to a data base (DB which stores and analyzes the data to warn farmers about the measures. The data can then be accessed through a user-friendly, web-based interface that can be accessed through the Internet by using desktop or mobile devices. This paper also shows the design and test bench for both the auto-calibrated pH sensor and the wireless network to check their correct operation.

  20. Continuous Flow Controlled Synthesis of Gold Nanoparticles Using Pulsed Mixing Microfluidic System

    Directory of Open Access Journals (Sweden)

    Guojun Liu

    2015-01-01

    Full Text Available To prepare the gold nanoparticles (AuNPs with uniform sizes, fine morphology, and good monodispersity, a pulsed mixing microfluidic system based on PZT actuation was presented. The system includes PZT micropump and Y type micromixer. By adjusting voltage (entrance flow rate, pulsed frequency, phase, and other parameters, a variety of mixing modes can be achieved, so as to realize the controllable synthesis of nanoparticles in a certain range. By numerical simulation and analysis, the channel section size, entrance angle, and pulse frequency were optimized. Based on the optimized structure and working parameters, the test prototype has been manufactured in lab, and the related synthesis tests of AuNPs were carried out. The test results indicate that AuNPs with uniform morphology and good monodispersity can be synthesized using the system with the section size (0.4 mm × 0.4 mm, the entrance channel angle (60° under condition of the pulsed frequency (300 Hz, and the entrance flow rate (4 mL/min. The average diameter and its standard deviation of AuNPs synthesized were 21.6 nm, 4.83 nm, respectively. The research work above can be applied to the fields such as the controlled synthesis of noble metal nanoparticles, biomedicine, and microchemical system.

  1. Artificial intelligence: Collective behaviors of synthetic micromachines

    Science.gov (United States)

    Duan, Wentao

    oscillation initiates, and triggers periodic change of the associated self-diffusiophoretic effects as well as interactions between particles. As a result, dispersion and clustering of particles take place alternatively, and sizes of colloidal clusters vary periodically together with local colloid concentration, formulating a namely "colloidal clock". In the system, oscillation can propagate from individual clusters to nearby clusters, and there can exist more than one oscillation frequencies in one system, possibly due to different local particle concentrations or cluster size. Chapter 4 quantitatively investigates the influence of pairwise interaction between motors on their diffusional behaviors by analyzing motion of light-powered silver chloride particles. Powered by UV light, nano/micrometer-sized silver chloride (AgCl) particles exhibit autonomous movement and form "schools" in aqueous solution. Motion of these AgCl particles are tracked and analyzed. AgCl particles exhibit ballistic motion at short time intervals that transition to enhanced diffusive motion as the time interval is increased. The onset of this transition was found to occur more quickly for particles with more neighbors. If the active particles became "trapped" in a formed "school", the diffusive behavior further changes to subdiffusion. The correlation between these transitions and the number of neighboring particles was verified by simulation, and confirms the influence of pairwise interaction between motors. Chapter 5 aims at quantitative understanding on the self-diffusiophoresis propulsion mechanism through numerical simulation with COMSOL Multiphysics. A self-powered micropump based on ion-exchange is chosen as the experimental model system. Weakly acidicform ion-exchange resin can function as self-powered micropumps in aqueous solution, manipulating fluid flow at vicinity and transporting inert tracer colloids. Pumping direction in the system can be dynamically altered in response to pH change

  2. Performance Optimization of a Conical Dielectric Elastomer Actuator

    Directory of Open Access Journals (Sweden)

    Chongjing Cao

    2018-06-01

    Full Text Available Dielectric elastomer actuators (DEAs are known as ‘artificial muscles’ due to their large actuation strain, high energy density and self-sensing capability. The conical configuration has been widely adopted in DEA applications such as bio-inspired locomotion and micropumps for its good compactness, ease for fabrication and large actuation stroke. However, the conical protrusion of the DEA membrane is characterized by inhomogeneous stresses, which complicate their design. In this work, we present an analytical model-based optimization for conical DEAs with the three biasing elements: (I linear compression spring; (II biasing mass; and (III antagonistic double-cone DEA. The optimization is to find the maximum stroke and work output of a conical DEA by tuning its geometry (inner disk to outer frame radius ratio a/b and pre-stretch ratio. The results show that (a for all three cases, stroke and work output are maximum for a pre-stretch ratio of 1 × 1 for the Parker silicone elastomer, which suggests the stretch caused by out-of-plane deformation is sufficient for this specific elastomer. (b Stroke maximization is obtained for a lower a/b ratio while a larger a/b ratio is required to maximize work output, but the optimal a/b ratio is less than 0.3 in all three cases. (c The double-cone configuration has the largest stroke while single cone with a biasing mass has the highest work output.

  3. Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation

    Science.gov (United States)

    Aboutalebi, Mohammad; Bijarchi, Mohamad Ali; Shafii, Mohammad Behshad; Kazemzadeh Hannani, Siamak

    2018-02-01

    The studies surrounding the concept of microdroplets have seen a dramatic increase in recent years. Microdroplets have applications in different fields such as chemical synthesis, biology, separation processes and micro-pumps. This study numerically investigates the effect of different parameters such as Capillary number, Length of droplets, and Magnetic Bond number on the splitting process of ferrofluid microdroplets in symmetric T-junctions using an asymmetric magnetic field. The use of said field that is applied asymmetrically to the T-junction center helps us control the splitting of ferrofluid microdroplets. During the process of numerical simulation, a magnetic field with various strengths from a dipole located at a constant distance from the center of the T-junction was applied. The main advantage of this design is its control over the splitting ratio of daughter droplets and reaching various microdroplet sizes in a T-junction by adjusting the magnetic field strength. The results showed that by increasing the strength of the magnetic field, the possibility of asymmetric splitting of microdroplets increases in a way that for high values of field strength, high splitting ratios can be reached. Also, by using the obtained results at various Magnetic Bond numbers and performing curve fitting, a correlation is derived that can be used to accurately predict the borderline between splitting and non-splitting zones of microdroplets flow in micro T-junctions.

  4. Integrated aeroelastic vibrator for fluid mixing in open microwells

    Science.gov (United States)

    Xia, H. M.; Jin, X.; Zhang, Y. Y.; Wu, J. W.; Zhang, J.; Wang, Z. P.

    2018-01-01

    Fluid mixing in micro-wells/chambers is required in a variety of biological and biochemical processes. However, mixing fluids of small volumes is usually difficult due to increased viscous effects. In this study, we propose a new method for mixing enhancement in microliter-scale open wells. A thin elastic diaphragm is used to seal the bottom of the mixing microwell, underneath which an air chamber connects an aeroelastic vibrator. Driven by an air flow, the vibrator produces self-excited vibrations and causes pressure oscillations in the air chamber. Then the elastic diaphragm is actuated to mix the fluids in the microwell. Two designs that respectively have one single well and 2  ×  2 wells were prototyped. Testing results show that for liquids with a volume ranging from 10-60 µl and viscosity ranging from 1-5 cP, complete mixing can be obtained within 5-20 s. Furthermore, the device is operable with an air micropump, and hence facilitating the miniaturization and integration of lab-on-a-chip and microbioreactor systems.

  5. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    KAUST Repository

    La Rocca, Rosanna

    2014-12-26

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  6. Paper-Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine.

    Science.gov (United States)

    Jalal, Uddin M; Jin, Gyeong Jun; Shim, Joon S

    2017-12-19

    In this work, a disposable paper-plastic hybrid microfluidic lab-on-a-chip (LOC) has been developed and successfully applied for the colorimetric measurement of urine by the smartphone-based optical platform using a "UrineAnalysis" Android app. The developed device was cost-effectively implemented as a stand-alone hybrid LOC by incorporating the paper-based conventional reagent test strip inside the plastic-based LOC microchannel. The LOC device quantitatively investigated the small volume (40 μL) of urine analytes for the colorimetric reaction of glucose, protein, pH, and red blood cell (RBC) in integration with the finger-actuating micropump. On the basis of our experiments, the conventional urine strip showed large deviation as the reaction time goes by, because dipping the strip sensor in a bottle of urine could not control the reaction volume. By integrating the strip sensor in the LOC device for urine analysis, our device significantly improves the time-dependent inconstancy of the conventional dipstick-based urine strip, and the smartphone app used for image analysis enhances the visual assessment of the test strip, which is a major user concern for the colorimetric analysis in point-of-care (POC) applications. As a result, the user-friendly LOC, which is successfully implemented in a disposable format with the smartphone-based optical platform, may be applicable as an effective tool for rapid and qualitative POC urinalysis.

  7. Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems

    Science.gov (United States)

    Helwig, Andreas; Hackner, Angelika; Zappa, Dario; Sberveglieri, Giorgio

    2018-01-01

    Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R0, and under gas exposure, Rgas, to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response Resp=(R0−Rgas)/R0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors. PMID:29401673

  8. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Directory of Open Access Journals (Sweden)

    Rosanna La Rocca

    Full Text Available In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal, depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK cells cytotoxic recognition.

  9. Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems.

    Science.gov (United States)

    Helwig, Andreas; Hackner, Angelika; Müller, Gerhard; Zappa, Dario; Sberveglieri, Giorgio

    2018-02-03

    Metal oxide (MOX) gas sensors sensitively respond to a wide variety of combustible, explosive and poisonous gases. However, due to the lack of a built-in self-test capability, MOX gas sensors have not yet been able to penetrate safety-critical applications. In the present work we report on gas sensing experiments performed on MOX gas sensors embedded in ceramic micro-reaction chambers. With the help of an external micro-pump, such systems can be operated in a periodic manner alternating between flow and no-flow conditions, thus allowing repetitive measurements of the sensor resistances under clean air, R 0 , and under gas exposure, R g a s , to be obtained, even under field conditions. With these pairs of resistance values, eventual drifts in the sensor baseline resistance can be detected and drift-corrected values of the relative resistance response R e s p = ( R 0 - R g a s ) / R 0 can be determined. Residual poisoning-induced changes in the relative resistance response can be detected by reference to humidity measurements taken with room-temperature-operated capacitive humidity sensors which are insensitive to the poisoning processes operative on heated MOX gas sensors.

  10. Digital microfluidics platform for interfacing solid-liquid extraction column with portable capillary electropherograph for analysis of soil amino acids.

    Science.gov (United States)

    Gorbatsova, Jelena; Jaanus, Martin; Vaher, Merike; Kaljurand, Mihkel

    2016-02-01

    In this work, the concept of a field-portable analyzer is proposed that operates with milliliter amounts of solvents and samples. The need to develop such an analyzer is not only driven by specific extraterrestrial analysis but also, for example, by forensics applications where the amount of liquid that can be taken to the field is severely limited. The prototype of the proposed analyzer consists of a solid-liquid extractor, the output of which is connected to the micropump, which delivers droplets of extracts to digital microfluidic platform (DMFP). In this way, world-to-chip interfacing is established. Further, the sample droplets are transported to CE capillary inlet port, separated and detected via a contactless conductivity detector. Working buffers and other solvents needed to perform CE analysis are also delivered as droplets to the DMFP and transported through the CE capillary. The performance of the analyzer is demonstrated by analysis of amino acids in sand matrices. The recovery of the spiked amino acids from the inert sand sample was from 34 to 51% with analysis LOD from 0.2 to 0.6 ppm and migration time RSD from 0.2 to 6.0%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    Science.gov (United States)

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  12. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    Science.gov (United States)

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Investigation of the interaction dynamics of a pair of laser-induced bubbles generated at the same time through double-exposure strobe method and numerical simulations

    Science.gov (United States)

    Han, Bing; Liu, Liu; Ni, Xiao-Wu

    2017-08-01

    In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.

  14. Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Guillermo [Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutierrez, Chiapas 29000 (Mexico); Cuevas, Sergio [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico A.P. 34, Temixco, Mor. 62580 (Mexico)

    2010-10-15

    The dissipative processes that arise in a microchannel flow subjected to electromagnetic interactions, as occurs in a MHD (magnetohydrodynamic) micropump, are analyzed. The entropy generation rate is used as a tool for the assessment of the intrinsic irreversibilities present in the microchannel owing to viscous friction, heat flow and electric conduction. The flow in a parallel plate microchannel produced by a Lorentz force created by a transverse magnetic field and an injected electric current is considered assuming a thermally fully developed flow and conducting walls of finite thickness. The conjugate heat transfer problem in the fluid and solid walls is solved analytically using thermal boundary conditions of the third kind at the outer surfaces of the walls and continuity of temperature and heat flux across the fluid-wall interfaces. Velocity, temperature and current density fields in the fluid and walls are used to calculate the global entropy generation rate. Conditions under which this quantity is minimized are determined for specific values of the geometrical and physical parameters of the system. The Nusselt number is also calculated and explored for different conditions. Results can be used to determine optimized conditions that lead to a minimum dissipation consistent with the physical constraints demanded by the microdevice. (author)

  15. Applications of Shock Wave Research to Developments of Therapeutic Devices.

    Science.gov (United States)

    Takayama, Kazuyoshi

    2007-06-01

    Underwater shock wave research applied to medicine started in 1980 by exploding micro lead azide pellets in water. Collaboration with urologists in the School of Medicine, Tohoku University at the same time was directed to disintegration of kidney stones by controlling shock waves. We initially proposed a miniature truncated ellipsoidal cavity for generating high-pressures enough to disintegrate the stone but gave up the idea, when encountering the Dornie Systems' invention of an extracorporeal shock wave lithotripter (ESWL). Then we confirmed its effectiveness by using 10 mg silver azide pellets and constructed our own lithotripter, which was officially approved for a clinical use in 1987. Tissue damage during ESWL was attributable to bubble collapse and we convinced it could be done in a controlled fashion. In 1996, we used 160 mJ pulsed Ho:YAG laser beam focusing inside a catheter for shock generation and applied it to the revascularization of cerebral embolism, which is recently expanded to the treatment of pulmonary infarction. Micro water jets discharged in air were so effective to dissect soft tissues preserving small blood vessels. Animal experiments are successfully performed with high frequency water jets driven by an actuator-assisted micro-pump. A metal foil is deformed at high speed by a Q-switched Nd:YAG laser beam loading. We used this technique to project micro-particles or dry drugs attached on its reverse side and extended it to a laser ablation assisted dry drug delivery or DNA introductory system.

  16. Achievement report for fiscal 1996 on the research and development of micromachine technology. Development of microfactory technology; 1996 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Microfactory gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The goal is to save energy and minimize the working space by constructing a manufacturing system comprising various micromachines with their dimensions fit for parts and products they handle. Development continues relative to microprocessing (electrolysis, and optical processing) and microscopic liquid operation (micropump, and part holding device). Under research in relation to the assembly process are a micro-arm to handle tiny parts and precision techniques for interfitting within a very small microfactory, a piezoelectric actuator for microscopic position adjusting, and ultraprecise microprocessing techniques indispensable for their manufacture. Also under research are the incorporation of optically driven microdevices developed before the preceding fiscal year into a microfactory and the study of microservo actuators capable of sophisticated positioning and velocity control. Concerning the microscopic transport system to deal with microscopic parts and products, studies are under way so as to embody systems driven by actuators of the electromagnetic type and electrostatic type. In this paper, reference is made to inspection techniques and comprehensive investigations. (NEDO)

  17. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    Science.gov (United States)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  18. A novel continuous subcutaneous lactate monitoring system.

    Science.gov (United States)

    Poscia, A; Messeri, D; Moscone, D; Ricci, F; Valgimigli, F

    2005-05-15

    A novel continuous lactate monitoring system has been developed modifying the GlucoDay portable medical device (A. Menarini Diagnostics), already present in the European market, and used to continuously measure glucose levels. Lactate oxidase based biosensors have been developed immobilising the enzyme on nylon net and placing it on a Pt electrode. The biosensor was connected to the portable device provided with a micro-pump and coupled to a microdialysis system. It is capable to record subcutaneous lactate every 3 min. In vitro analytical results confirmed that the sensors respond linearly in the interval of concentration between 0.1 and 10 mmol/L, covering the whole physiological range. During prolonged monitoring periods, the response of the biosensors remained stable, showing a limited drift of 8%, within 60 h. Stability tests are still on route. However, preliminary results have shown a shelf life of about 10 months. In vivo experiments performed on healthy rabbits have demonstrated the good accuracy and reproducibility of the system. A correlation coefficient equal to 0.9547 (N=80) was found, which represents a good correlation between the GlucoDay and the laboratory reference analyser. A 16 h in vivo monitoring on a healthy volunteer has been also performed.

  19. An improved approach for flow-based cloud point extraction.

    Science.gov (United States)

    Frizzarin, Rejane M; Rocha, Fábio R P

    2014-04-11

    Novel strategies are proposed to circumvent the main drawbacks of flow-based cloud point extraction (CPE). The surfactant-rich phase (SRP) was directly retained into the optical path of the spectrophotometric cell, thus avoiding its dilution previously to the measurement and yielding higher sensitivity. Solenoid micro-pumps were exploited to improve mixing by the pulsed flow and also to modulate the flow-rate for retention and removal of the SRP, thus avoiding the elution step, often carried out with organic solvents. The heat released and the increase of the salt concentration provided by an on-line neutralization reaction were exploited to induce the cloud point without an external heating device. These innovations were demonstrated by the spectrophotometric determination of iron, yielding a linear response from 10 to 200 μg L(-1) with a coefficient of variation of 2.3% (n=7). Detection limit and sampling rate were estimated at 5 μg L(-1) (95% confidence level) and 26 samples per hour, respectively. The enrichment factor was 8.9 and the procedure consumed only 6 μg of TAN and 390 μg of Triton X-114 per determination. At the 95% confidence level, the results obtained for freshwater samples agreed with the reference procedure and those obtained for digests of bovine muscle, rice flour, brown bread and tort lobster agreed with the certified reference values. The proposed procedure thus shows advantages in relation to previously proposed approaches for flow-based CPE, being a fast and environmental friendly alternative for on-line separation and pre-concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    Science.gov (United States)

    Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar

    2018-03-01

    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.

  1. Computer Controlled Chemical Micro-Reactor

    International Nuclear Information System (INIS)

    Mechtilde, Schaefer; Eduard, Stach; Adreas, Foitzik

    2006-01-01

    Chemical reactions or chemical equilibria can be influenced and controlled by several parameters. The ratio of two liquid ingredients, the so called reactants or educts, plays an important role in determining the end product and its yield. The reactants must be weighed and accordingly mixed with the conventional batch mode. If the reaction is done in a microreactor or in several parallel working micro-reactors, units for allotting the educts in appropriate quantities are required. In this report we present a novel micro-reactor that allows the constant monitoring of the chemical reaction via Raman spectroscopy. Such monitoring enables an appropriate feedback on the steering parameters for the PC controlled micro-pumps for the appropriate educt flow rate of both liquids to get optimised ratios of ingredients at an optimised total flow rate. The micro-reactors are the core pieces of the design and are easily removable and can therefore be changed at any time to adapt the requirements of the chemical reaction. One type of reactor consists of a stainless steel base containing small scale milled channels covered with anodically bonded Pyrex glass. Another type of reactor has a base of anisotropically etched silicon, and is also covered with anodically bonded Pyrex glass. The glass window allows visual observation of the initial phase interface of the two educts in the reaction channels by optical microscopy and does not affect, in contrast to infrared spectroscopy, the Raman spectroscopic signal for detection of the reaction kinetics. On the basis of a test reaction, we present non-invasive and spatially highly resolved in-situ reaction analysis using Raman spectroscopy measured along the reaction channel at different locations

  2. Linear electrostatic micromotors for nano- and micro-positioning

    Science.gov (United States)

    Baginsky, I. L.; Kostsov, Edvard G.

    2004-05-01

    The functioning of the linear step electrostatic film micromotors with the short controlling pulse (less then 100-200 ´s) is studied to create nano- and micro-positioners. The theoretical study of the step movement of the given mass in this time frame is carried out. The results of the experimental studies of the multipetal reciprocal micromotors created on the basis of La modified Ba0.5Sr0.5Nb2O6 ferroelectric films with 1-3 μm thickness are shown. The petals were made of beryllium bronze. It is shown that the electrostatic rolling can last less than 50 μs, and the process of separating two surfaces (the metal and the ferroelectric) can last less than 1 μs. These parameters allow one to operate the micromotor at 1-10 kHz frequency, and the propulsion force in the beginning (the first 20-100 μs) of the electrostatic rolling can be as high as 1-10 N per 1 mm2 of the rolling surface with the voltage pulse amplitude of 40-50 V. The possibility of obtaining moving plate (MP) step in the nanometer range is studied, as well as the precision of these steps during the continuous MP movement with the different clock frequencies and durations of the voltage pulses. The recommendations are given to improve the accuracy and the speed of the positioning in the nano- and micro-movement range. Possible fields of micromotor application are micromechanics, including precision micromechanics, microelectronics, microrobots, microoptics, microscanners, micropumps (e.g. in the jet printers), micro flying vehicles etc.

  3. Benzocyclobutene-based electric micromachines supported on microball bearings: Design, fabrication, and characterization

    Science.gov (United States)

    Modafe, Alireza

    development of more reliable, efficient electrostatic micromachines with variety of applications such as micropropulsion, high-speed micropumping, microfluid delivery, and microsystem power generation.

  4. Analytical approach to entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    Science.gov (United States)

    Akbar, Noreen Sher; Shoaib, M.; Tripathi, Dharmendra; Bhushan, Shashi; Bég, O. Anwar

    2018-04-01

    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e., high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT-nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT-nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pumps.

  5. 3D packaging of a microfluidic system with sensory applications

    Science.gov (United States)

    Morrissey, Anthony; Kelly, Gerard; Alderman, John C.

    1997-09-01

    Among the main benefits of microsystem technology are its contributions to cost reductio, reliability and improved performance. however, the packaging of microsystems, and particularly microsensor, has proven to be one of the biggest limitations to their commercialization and the packaging of silicon sensor devices can be the most costly part of their fabrication. This paper describes the integration of 3D packaging of a microsystem. Central to the operation of the 3D demonstrator is a micromachined silicon membrane pump to supply fluids to a sensing chamber constructed about the active area of a sensor chip. This chip carries ISFET based chemical sensors, pressure sensors and thermal sensors. The electronics required for controlling and regulating the activity of the various sensors ar also available on this chip and as other chips in the 3D assembly. The demonstrator also contains a power supply module with optical fiber interconnections. All of these modules are integrated into a single plastic- encapsulated 3D vertical multichip module. The reliability of such a structure, initially proposed by Val was demonstrated by Barrett et al. An additional module available for inclusion in some of our assemblies is a test chip capable of measuring the packaging-induced stress experienced during and after assembly. The packaging process described produces a module with very high density and utilizes standard off-the-shelf components to minimize costs. As the sensor chip and micropump include micromachined silicon membranes and microvalves, the packaging of such structures has to allow consideration for the minimization of the packaging-induced stresses. With this in mind, low stress techniques, including the use of soft glob-top materials, were employed.

  6. Design of point-of-care (POC) microfluidic medical diagnostic devices

    Science.gov (United States)

    Leary, James F.

    2018-02-01

    Design of inexpensive and portable hand-held microfluidic flow/image cytometry devices for initial medical diagnostics at the point of initial patient contact by emergency medical personnel in the field requires careful design in terms of power/weight requirements to allow for realistic portability as a hand-held, point-of-care medical diagnostics device. True portability also requires small micro-pumps for high-throughput capability. Weight/power requirements dictate use of super-bright LEDs and very small silicon photodiodes or nanophotonic sensors that can be powered by batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. The requirements for basic computing, imaging, GPS and basic telecommunications can be simultaneously met by use of smartphone technologies, which become part of the overall device. Software for a user-interface system, limited real-time computing, real-time imaging, and offline data analysis can be accomplished through multi-platform software development systems that are well-suited to a variety of currently available cellphone technologies which already contain all of these capabilities. Microfluidic cytometry requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically medical decisions for patients at the physician's office or real-time decision making in the field. One or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the field.

  7. Design and simulation of advanced charge recovery piezoactuator drivers

    International Nuclear Information System (INIS)

    Biancuzzi, G; Lemke, T; Woias, P; Goldschmidtboeing, F; Ruthmann, O; Schrag, H J; Vodermayer, B; Schmid, T

    2010-01-01

    The German Artificial Sphincter System project aims at the development of an implantable sphincter prosthesis driven by a piezoelectrically actuated micropump. The system has been designed to be fully implantable, i.e. the power supply is provided by a rechargeable lithium polymer battery. In order to provide sufficient battery duration and to limit battery dimensions, special effort has to be made to minimize power consumption of the whole system and, in particular, of the piezoactuator driver circuitry. Inductive charge recovery can be used to recover part of the charge stored within the actuator. We are going to present a simplified inductor-based circuit capable of voltage inversion across the actuator without the need of an additional negative voltage source. The dimension of the inductors required for such a concept is nevertheless significant. We therefore present a novel alternative concept, called direct switching, where the equivalent capacitance of the actuator is charged directly by a step-up converter and discharged by a step-down converter. We achieved superior performance compared to a simple inductor-based driver with the advantage of using small-size chip inductors. As a term of comparison, the performance of the aforementioned drivers is compared to a conventional driver that does not implement any charge recovery technique. With our design we have been able to achieve more than 50% reduction in power consumption compared to the simplest conventional driver. The new direct switching driver performs 15% better than an inductor-based driver. A novel, whole-system SPICE simulation is presented, where both the driving circuit and the piezoactuator are modeled making use of advanced nonlinear models. Such a simulation is a precious tool to design and optimize piezoactuator drivers

  8. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.

    Science.gov (United States)

    Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen

    2010-10-15

    In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. Copyright 2010 Wiley Periodicals, Inc.

  9. Automated, Ultra-Sterile Solid Sample Handling and Analysis on a Chip

    Science.gov (United States)

    Mora, Maria F.; Stockton, Amanda M.; Willis, Peter A.

    2013-01-01

    There are no existing ultra-sterile lab-on-a-chip systems that can accept solid samples and perform complete chemical analyses without human intervention. The proposed solution is to demonstrate completely automated lab-on-a-chip manipulation of powdered solid samples, followed by on-chip liquid extraction and chemical analysis. This technology utilizes a newly invented glass micro-device for solid manipulation, which mates with existing lab-on-a-chip instrumentation. Devices are fabricated in a Class 10 cleanroom at the JPL MicroDevices Lab, and are plasma-cleaned before and after assembly. Solid samples enter the device through a drilled hole in the top. Existing micro-pumping technology is used to transfer milligrams of powdered sample into an extraction chamber where it is mixed with liquids to extract organic material. Subsequent chemical analysis is performed using portable microchip capillary electrophoresis systems (CE). These instruments have been used for ultra-highly sensitive (parts-per-trillion, pptr) analysis of organic compounds including amines, amino acids, aldehydes, ketones, carboxylic acids, and thiols. Fully autonomous amino acid analyses in liquids were demonstrated; however, to date there have been no reports of completely automated analysis of solid samples on chip. This approach utilizes an existing portable instrument that houses optics, high-voltage power supplies, and solenoids for fully autonomous microfluidic sample processing and CE analysis with laser-induced fluorescence (LIF) detection. Furthermore, the entire system can be sterilized and placed in a cleanroom environment for analyzing samples returned from extraterrestrial targets, if desired. This is an entirely new capability never demonstrated before. The ability to manipulate solid samples, coupled with lab-on-a-chip analysis technology, will enable ultraclean and ultrasensitive end-to-end analysis of samples that is orders of magnitude more sensitive than the ppb goal given

  10. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    Science.gov (United States)

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. Copyright © 2015 Elsevier Ltd

  11. Hemocoagulase Combined with Microbubble-Enhanced Ultrasound Cavitation for Augmented Ablation of Microvasculature in Rabbit VX2 Liver Tumors.

    Science.gov (United States)

    Yang, Qian; Tang, Peng; He, Guangbin; Ge, Shuping; Liu, Liwen; Zhou, Xiaodong

    2017-08-01

    We investigated a new method for combining microbubble-enhanced ultrasound cavitation (MEUC) with hemocoagulase (HC) atrox. Our goal was to induce embolic effects in the vasculature and combine these with an anti-angiogenic treatment strategy. Fourteen days after being implanted with a single slice of the liver VX2 tumor, rabbits were randomly divided into five groups: (i) a control group injected intra-venously with saline using a micropump; (ii) a group given only an injection of HC; (iii) a group treated only with ultrasound cavitation; (iv) a group treated with MEUC; (v) a group treated with MEUC + HC. Contrast-enhanced ultrasound was performed before treatment and 1 h and 7 d post-treatment to measure tumor size, enhancement and necrosis range. QontraXt software was used to determine the time-intensity curve of tumor blood perfusion and microvascular changes. At 1 h and 7 d after treatment with MEUC + HC, the parameters of the time-intensity curve, which included peak value, regional blood volume, regional blood flow and area under the curve value and which were measured using contrast-enhanced ultrasound, were significantly lower than those of the other treatment groups. The MEUC + HC treatment group exhibited significant growth inhibition relative to the ultrasound cavitation only, HC and MEUC treatment groups. No damage was observed in the surrounding normal tissues. These results support the feasibility of reducing the blood perfusion of rabbit VX2 liver tumors using a new method that combines MEUC and HC. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. All rights reserved.

  12. Automated production of no carrier added holmium-166

    International Nuclear Information System (INIS)

    Izard, M.E.; Dadchova, E.

    1996-01-01

    Full text: An automated system has been developed to produce no carrier added 166 Ho from the decay of 166 Dy produced by neutron activation of 164 Dy 2 O 3 . Targets consisting of 5-10 mg of 164 Dy 2 O 3 are irradiated in HIFAR at 5 x 10 13 n.s -1 .cm -2 for 12h then allowed to cool for 2 days. The irradiation can is then transferred to the automated system located in a 'hot' cell in the radiopharmaceutical research building. A two dimension robotic arm encompassing a grab and motorized screwdriver is used to open the irradiation can. A second arm carrying a teflon tube introduces 9M HCI into the can to dissolve the target. A second tube carries the dissolved target via a peristaltic pump to a heated vial where it is evaporated to dryness under a flow of N 2 . A Peltier cooled trap is used to prevent release of HCl fumes into the cell. A motorized syringe pump dispenses 1 mL of 0.1 M HNO 3 to redissolve the digest which is then transferred by peristaltic pump via a hollow fibre filter and auto injector into an Aminex- A5 HPLC column. 166 Dy is eluted from the column in 0.132 M α-HIBA into a heated cyclone flask and evaporated to dryness under a stream of N 2 heated to about 50 deg C. After two days the evaporated Dy/ 166 Ho digest is dissolved in another 1 mL of 0.1 M HNO 3 and injected onto the HPLC column. 166 Ho is collected in 20-25 mL of α-HIBA and evaporated to dryness as before at about 400 C to ensure complete decomposition of the α-HIBA. The product is finally dissolved in about I mL of 0.1 M HCI and pumped through a 0.22 μM filter to a product vial

  13. Ineffective esophageal motility and the vagus: current challenges and future prospects

    Directory of Open Access Journals (Sweden)

    Chen JH

    2016-09-01

    Full Text Available Ji-Hong Chen1,2 1Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, People’s Republic of China; 2Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada Abstract: Ineffective esophageal motility (IEM is characterized by low to very low amplitude propulsive contractions in the distal esophagus, hence primarily affecting the smooth muscle part of the esophagus. IEM is often found in patients with dysphagia or heartburn and is commonly associated with gastroesophageal reflux disease. IEM is assumed to be associated with ineffective bolus transport; however, this can be verified using impedance measurements or evaluation of a barium coated marshmallow swallow. Furthermore, water swallows may not assess accurately the motor capabilities of the esophagus, since contraction amplitude is strongly determined by the size and consistency of the bolus.The “peristaltic reserve” of the esophagus can be evaluated by multiple rapid swallows that, after a period of diglutative inhibition, normally give a powerful peristaltic contraction suggestive of the integrity of neural orchestration and smooth muscle action. The amplitude of contraction is determined by a balance between intrinsic excitatory cholinergic, inhibitory nitrergic, as well as postinhibition rebound excitatory output to the musculature. This is strongly influenced by vagal efferent motor neurons and this in turn is influenced by vagal afferent neurons that send bolus information to the solitary nucleus where programmed activation of the vagal motor neurons to the smooth muscle esophagus is initiated. Solitary nucleus activity is influenced by sensory activity from a large number of organs and various areas of the brain, including the hypothalamus and the cerebral cortex. This allows interaction between swallowing activities and respiratory and cardiac activities and allows the

  14. Association between baseline impedance values and response proton pump inhibitors in patients with heartburn.

    Science.gov (United States)

    de Bortoli, Nicola; Martinucci, Irene; Savarino, Edoardo; Tutuian, Radu; Frazzoni, Marzio; Piaggi, Paolo; Bertani, Lorenzo; Furnari, Manuele; Franchi, Riccardo; Russo, Salvatore; Bellini, Massimo; Savarino, Vincenzo; Marchi, Santino

    2015-06-01

    Esophageal impedance measurements have been proposed to indicate the status of the esophageal mucosa, and might be used to study the roles of the impaired mucosal integrity and increased acid sensitivity in patients with heartburn. We compared baseline impedance levels among patients with heartburn who did and did not respond to proton pump inhibitor (PPI) therapy, along with the pathophysiological characteristics of functional heartburn (FH). In a case-control study, we collected data from January to December 2013 on patients with heartburn and normal findings from endoscopy who were not receiving PPI therapy and underwent impedance pH testing at hospitals in Italy. Patients with negative test results were placed on an 8-week course of PPI therapy (84 patients received esomeprazole and 36 patients received pantoprazole). Patients with more than 50% symptom improvement were classified as FH/PPI responders and patients with less than 50% symptom improvement were classified as FH/PPI nonresponders. Patients with hypersensitive esophagus and healthy volunteers served as controls. In all patients and controls, we measured acid exposure time, number of reflux events, baseline impedance, and swallow-induced peristaltic wave indices. FH/PPI responders had higher acid exposure times, numbers of reflux events, and acid refluxes compared with FH/PPI nonresponders (P < .05). Patients with hypersensitive esophagus had mean acid exposure times and numbers of reflux events similar to those of FH/PPI responders. Baseline impedance levels were lower in FH/PPI responders and patients with hypersensitive esophagus, compared with FH/PPI nonresponders and healthy volunteers (P < .001). Swallow-induced peristaltic wave indices were similar between FH/PPI responders and patients with hypersensitive esophagus. Patients with FH who respond to PPI therapy have impedance pH features similar to those of patients with hypersensitive esophagus. Baseline impedance measurements might allow for

  15. A system for accurate and automated injection of hyperpolarized substrate with minimal dead time and scalable volumes over a large range

    Science.gov (United States)

    Reynolds, Steven; Bucur, Adriana; Port, Michael; Alizadeh, Tooba; Kazan, Samira M.; Tozer, Gillian M.; Paley, Martyn N. J.

    2014-02-01

    Over recent years hyperpolarization by dissolution dynamic nuclear polarization has become an established technique for studying metabolism in vivo in animal models. Temporal signal plots obtained from the injected metabolite and daughter products, e.g. pyruvate and lactate, can be fitted to compartmental models to estimate kinetic rate constants. Modeling and physiological parameter estimation can be made more robust by consistent and reproducible injections through automation. An injection system previously developed by us was limited in the injectable volume to between 0.6 and 2.4 ml and injection was delayed due to a required syringe filling step. An improved MR-compatible injector system has been developed that measures the pH of injected substrate, uses flow control to reduce dead volume within the injection cannula and can be operated over a larger volume range. The delay time to injection has been minimized by removing the syringe filling step by use of a peristaltic pump. For 100 μl to 10.000 ml, the volume range typically used for mice to rabbits, the average delivered volume was 97.8% of the demand volume. The standard deviation of delivered volumes was 7 μl for 100 μl and 20 μl for 10.000 ml demand volumes (mean S.D. was 9 ul in this range). In three repeat injections through a fixed 0.96 mm O.D. tube the coefficient of variation for the area under the curve was 2%. For in vivo injections of hyperpolarized pyruvate in tumor-bearing rats, signal was first detected in the input femoral vein cannula at 3-4 s post-injection trigger signal and at 9-12 s in tumor tissue. The pH of the injected pyruvate was 7.1 ± 0.3 (mean ± S.D., n = 10). For small injection volumes, e.g. less than 100 μl, the internal diameter of the tubing contained within the peristaltic pump could be reduced to improve accuracy. Larger injection volumes are limited only by the size of the receiving vessel connected to the pump.

  16. Computer-operated analytical platform for the determination of nutrients in hydroponic systems.

    Science.gov (United States)

    Rius-Ruiz, F Xavier; Andrade, Francisco J; Riu, Jordi; Rius, F Xavier

    2014-03-15

    Hydroponics is a water, energy, space, and cost efficient system for growing plants in constrained spaces or land exhausted areas. Precise control of hydroponic nutrients is essential for growing healthy plants and producing high yields. In this article we report for the first time on a new computer-operated analytical platform which can be readily used for the determination of essential nutrients in hydroponic growing systems. The liquid-handling system uses inexpensive components (i.e., peristaltic pump and solenoid valves), which are discretely computer-operated to automatically condition, calibrate and clean a multi-probe of solid-contact ion-selective electrodes (ISEs). These ISEs, which are based on carbon nanotubes, offer high portability, robustness and easy maintenance and storage. With this new computer-operated analytical platform we performed automatic measurements of K(+), Ca(2+), NO3(-) and Cl(-) during tomato plants growth in order to assure optimal nutritional uptake and tomato production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Особенности маточной перистальтики у женщин с гиперпластическими процессами матки = Peculiarities of uterine vermicular movement in the women with hyperplasic processes

    Directory of Open Access Journals (Sweden)

    I. Z. Gladchuk

    2016-10-01

    klepa-si@i.ua   Summary Background. At the present time the role of uterine pump in physiology of impregnation is recognized as important. Its main diagnostic methods are ultrasonography and hysterosalpingoscintigraphy.   Results. The study of uterine vermicular movements has been made in 188 afetal women with hyperplastic processes of uterine. Significant increase of disperistaltic waves frequency has been revealed in adenomiosis patients (р<0,001. D-waves have been revealed in all patients older than 39 y.o. There was a significant decrease of A and B waves in the patients with adenomiosis and uterine myoma (p<0,02. Disperistaltic waves are met significantly often (р<0,05 in the patients with adenomiosis and infertility of more than 5 years. Conclusions. The patients with adenomiosis and disturbances of uterine peristaltic aged 30-35 y.o. should undergo one of in vitro fertilization procedures, omitting intrauterine insemination. Кeywords: adenomiosis, uterine myoma, infertility, uterine vermicular movement.

  18. The effect of Berberine preparation on diarrheal symptoms due to Linac irradiation

    International Nuclear Information System (INIS)

    Hiasa, Tsuyoshi; Mitao, Satoshi; Tanaka, Motofumi; Matsubayashi, Shigeru; Kato, Koji

    1979-01-01

    Kyoberine, a preparation made from berberine, was administered in 20 cases of malignant tumors (16 cases of cervical carcinoma, 2 cases of corpus uteri carcinoma, and 2 cases of ovarian carcinoma) in which diarrhea was an acute symptom resulting from Linac irradiation. Diarrhea occurred frequently in the patients who received 1600 - 2000 rad. In regard to the characteristics of the feces, this drug was remarkably effective in 25% of the patients and effective in 65% total effectiveness, 90%. In regard to the frequency of diarrhea, it was remarkably effective in 30% of the patients and effective in 60% total effectiveness, 90%. A comprehensive assessment of the effect on the characteristics of the feces and the frequency of diarrhea revealed the drug to be remarkably effective in 7 cases (35%) and effective in 11 (55%). After serial administration of the drug, recurrence of diarrhea was noted only in one case out of 18 in which the drug was effective. Examinations of body weight, peripheral blood, the liver, the kidneys, and electrolytes revealed no side effects. This drug had an excellent effect on diarrhea due to Linac irradiation. Because of its depressant action on peristaltic reflexes and its anti-inflammatory and anti-ulcerative actions, it is hoped that it can be used to prevent radiation injuries. (Ueda, J.)

  19. Artificial muscle: the human chimera is the future.

    Science.gov (United States)

    Tozzi, P

    2011-12-14

    Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

  20. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.

    Science.gov (United States)

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity.