WorldWideScience

Sample records for cantilever-actuated peristaltic micropump

  1. Development of a Peristaltic Micropump for Bio-Medical Applications Based on Mini LIPCA

    Institute of Scientific and Technical Information of China (English)

    Thanh Tung Nguyen; My Pham; Nam Seo Goo

    2008-01-01

    This paper presents the design, fabrication, and experimental characterization of a peristaltic micropump. The micropump is composed of two layers fabricated from Polydimethylsiloxane (PDMS) material. The first layer has a rectangular channel and two valve seals. Three rectangular mini lightweight piezo-composite actuators are integrated in the second layer, and used as actuation parts.Two layers are bonded, and covered by two Polymethyl Methacrylate (PMMA) plates, which help increase the stiffness of the micropump.A maximum flow rate of 900 uL·min-1 and a maximum backpressure of 1.8 kPa are recorded when water is used as pump liquid. We measured the power consumption of the micropump. The micropump is found to be a prom- ising candidate for bio-medical application due to its bio-compatibility, portability, bidirectionality, and simple effective design.

  2. PDMS气动微泵的研制%Development of a PDMS Pneumatic Peristaltic Micropump

    Institute of Scientific and Technical Information of China (English)

    关艳霞; 凌宇

    2012-01-01

    聚二甲聚硅氧烷(PDMS)气动微泵具有结构简单、易于制作、造价低和易于集成的特点.对微泵的结构进行了分析、设计与制作,较详细地讨论了关键制作工艺,并对影响流速的主要因素进行了分析,通过对结构参数的优化,使微泵的最大流速达到0.55μL/min,较相关文献中的微泵的流速提高4倍,使微泵更具有实用性.%A PDMS pneumatic peristaltic micropump has features of simplicity in structures and fabricating technique,fast in replication,low in cost,easy in integrating with other microfluidic component. In this paper,the development of a PDMS pneumatic peristaltic micropump has been done by analyzing the structure of a PDMS pneumatic peristaltic micropump, and the key process and the main factors affecting velocity have been discussed. By optimizing the structural parameters of the pump,the flow rate has been to 0. 55 μL/min,5 times of the flow rate of the micopump reported in the related literature,and that make it more practical.

  3. 一种负压驱动的蠕动微型泵设计%Design of a Peristaltic Micropump Driven by Pneumatic Pressure

    Institute of Scientific and Technical Information of China (English)

    崔建国; 王洪

    2012-01-01

    微型泵作为集成微流体中不可或缺的元素,在过去20年间取得了很大的进展.基于真空负压驱动原理,研制了一种结构简单的蠕动式微型泵.微型泵由三层聚二甲基硅氧烷(PDMS)材料构成(气路层,流路层,驱动薄膜层),并通过表面等离子体氧化处理技术实现了PDMS层之间的键合封装,其全部结构均采用激光器加工制作而成.蠕动驱动模式的关键在于利用气路周期性地传递负压力波,进而实现弹性薄膜的顺序变形,其中负压源通过电磁阀(EMV)进行通断控制.这种结构简化了常规蠕动泵模型中的复杂逻辑控制.实验结果表明在50kPa负压和30Hz驱动频率的条件下,获得的最佳流速为170 μL/min.%As an indispensable element in integrated microfluidics, micropumps have gradually evolved over the past two decades. Based on vacuum-driven principle, a simple peristaltic micropump is developed. The micropump fabricated by laser mi-cromachining and plasma bonding of three polydimethylsiloxane (PDMS) layers, includes a pneumatic channel layer, actuation membrane layer, and microfluidic channel layer. As the key to peristaltic motion, the sequential deflection of the elastic membranes is achieved by periodic pressure waveforms ( negative) traveling through the pneumatic channel, provided by a vacuum source regulated by an electromagnetic valve ( EMV). This configuration eliminates the complicated control logic typically required in peristaltic motion. Experiment results show that a maximal flow rate of 170 μL min-1 has been optimized at the pulsed vacuum frequency of 30 Hz with a vacuum pressure of 50 kPa.

  4. 聚二甲基硅氧烷气动微型蠕动泵制作工艺的研究%Study on Process of Polydimethyl Siloxane Pneumatic Peristaltic Micropump

    Institute of Scientific and Technical Information of China (English)

    关艳霞; 王宏; 徐章润

    2009-01-01

    聚二甲基硅氧烷(PDMS)气动微型泵由3个PDMS气动微阀构成,依靠3个微阀的蠕动作用实现输运液体的作用.PDMS气动微泵的关键制作工艺是液体通道的弧形化和PDMS层之间、PDMS层与玻璃基片之间的封接.实验证明AZ4620正性光刻胶所制作的阳模能形成剖面形状呈弧形的液体通道.采用等离子体氧化处理法封接技术实现了PDMS层之间、PDMS层与玻璃基片之间的封接,该工艺易操作,封接速度快,而且封接效果好.%A polydimethyl siloxane (PDMS) pneumatic micropump is constituted of three active pneumatic micro-valves , and the transport of liquid is realized by Peristaltic working of three valves.Major factors in the fabrication of PDMS pneumatic micropumps are the formation of arc-shaped channel profiles of the liquid channel and bonding PDMS layers as well as bonding between the PDMS layer and the glass slide.AZ4620 positive photoresist was demonstrated the best performance as a positive master for producing a liquid channel with an ideal cross sectional profile.The bonding following plasma cleaning showed the best result was used as the bonding means for fabricating PDMS pneumatic micropumps.This process was demonstrated easy to operate,fast to bond.

  5. Rotary Peristaltic Micro-Pump Based on the Nano-Magnetic Fluid%基于纳米磁性液体的旋转式蠕动微泵

    Institute of Scientific and Technical Information of China (English)

    吴健; 刘同冈; 张亮

    2013-01-01

    A rotary peristaltic micro-pump based on the nano-magnetic fluid was designed,which was composed of an upper substrate,a lower substrate and an elastic film positioned between the two substrates.A micro-channel was machined on each substrate,the magnetic fluid in the upper micro-channel was gathered by a permanent magnet to deform the elastic film in order to push the sample liquid in the lower micro-channel.Both micro-channels were designed with the ring structure to pump the liquid continuously.The operational result indicates that the flow rate and output pressure are the combination result of the positive pressure generated by the gradient magnetic field and the driving force produced by the moving magnetic field.When the rotational speed of the magnetic field is 6 r/min,the maximum output pressure and flow rate of the micro-pump are 1 600 Pa and 1.8 mL/min,respectively.%设计了一种基于纳米磁性液体的旋转式蠕动微泵.泵体由上、下基板和弹性薄膜组成,弹性薄膜位于上、下基板的中间位置.在上、下基板上分别加工出微型管道,上管道中的纳米磁性液体在磁场作用下压迫弹性薄膜变形,从而推动下管道中的液体流动,并且采用环形结构,实现连续泵送的目的.运行结果显示:泵送流量和泵送压力是梯度磁场产生的正压力与移动磁场产生的驱动力共同作用的结果.当磁场旋转速度达到6 r/min时,微泵产生的最大泵送压力达1 600 Pa,此时的流量为1.8 mL/min.

  6. A novel microgripper hybrid driven by a piezoelectric stack actuator and piezoelectric cantilever actuators

    Science.gov (United States)

    Chen, Weilin; Zhang, Xianmin; Fatikow, Sergej

    2016-11-01

    For the piezo-driven microgripper, one issue is to enlarge the grasping stroke and realize parallel grasping movement in the compact design. Piezoelectric stack actuator (PSA) and piezoelectric cantilever actuator (PCA) are two kinds of typical piezoelectric actuators. In this study, a novel microgripper hybrid driven by a PSA and two PCAs is proposed, which can be a better solution for the issue, compared with the previous microgripper using PSA-driven multi-stages displacement amplification mechanism (DAM) or using longer and narrower PCAs. A compact one-stage orthogonal DAM is proposed for the PSA in the microgripper, which can enlarge the grasping stroke and realize parallel grasping movement. The proposed orthogonal DAM is a triangulation amplification-based mechanism with undetermined structural parameters. Bidirectional symmetric input forces/displacements are not required in the proposed design. The number of the undetermined parameters and the solution principle are analyzed. Finite element analysis is used to verify the proposed DAM. The gripper arms are designed as two PCAs, for which the grasping and parasitic movements of the free end are modeled. Piezoelectric-static coupling finite element analysis is used to verify the models. The PCAs-driven grasping with considerable parasitic movement can be used in the coarse positioning. The integration of the hybrid-driven microgripper is presented, and its performances are presented and verified by experiments.

  7. Deformation Analysis of a Pneumatically-Activated Polydimethylsiloxane (PDMS Membrane and Potential Micro-Pump Applications

    Directory of Open Access Journals (Sweden)

    Chi-Han Chiou

    2015-01-01

    Full Text Available This study presents a double-side diaphragm peristaltic pump for efficient medium transport without the unwanted backflow and the lagging effect of a diaphragm. A theoretical model was derived to predict the important parameter of the micropump, i.e., the motion of the valves at large deformations, for a variety of air pressures. Accordingly, we proposed an easy and robust design to fabricate a Polydimethylsiloxane (PDMS-based micropump. The theoretical model agrees with a numerical model and experimental data for the deformations of the PDMS membrane. Furthermore, variations of the generated flow rate, including pneumatic frequencies, actuated air pressures, and operation modes were evaluated experimentally for the proposed micropumps. In future, the theoretical equation could provide the optimal parameters for the scientists working on the fabrication of the diaphragm peristaltic pump for applications of cell-culture.

  8. Modeling peristaltic micropump with electro-mechanical analogies

    OpenAIRE

    Alexey Marques Espindola

    2006-01-01

    Resumo: Os sistemas microfluidicos estão evoluindo rapidamente, encontrando vastas aplicações na mais diversas áreas do conhecimento. Os Lab-on-Chips, LOCs, são dispositivos capazes de realizar análises químicas e bioquímicas em um único chip. Este dispositivo pode causar grande impacto no mercado de análises laboratoriais, por este motivo vem ganhando grande atenção Para realizar estas análises os LOCs necessitam de microbombas capazes de transportar quantidades ínfimas de fluidos em seus ca...

  9. Design of an implantable micropump

    OpenAIRE

    Smal, Olivier; Merken, Patrick; Croquet, Vincent; Raucent, Benoît; Debongnie, Jean-François; Delchambre, Alain

    2004-01-01

    The implantable programmable micropump is an interesting solution to treat chronic diseases such as diabetes with regular micro-injections of medicine. However, current applications of micropumps are limited by their rather expensive cost. The challenge is therefore to develop a low cost alternative by reducing the number of parts and by simplifying the assembly. As the pump and its tank will be placed under the skin in order to increase comfort, such a system should be small and reliable. In...

  10. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen

    2008-01-01

    (ACEO) micropump. The ACEO pump consists of an array of interdigitated small and large PEDOTjPMMA encapsulated in a polyurethane (PUR) channel system. The pumping velocity was detected using fluorescent microspheres and a confocal microscope. The pump characteristics resembled those of pumps based...... polymer was developed by mixing polyurethane in to the solution from which the PEDOT was cast. The resulting PEDOTjPUR material showed good conductivity. The film was elongated 50 % ten times and apart from a small irreversible increase in resistance during the first elongation, the film resistance was...... a new short chained polyurethane. The resolution of the inkjet printer was in the order of 200 J-tm. The inkjet printed pattern is compared with the agarose stamping technique in a setup where the conductivity perpendicular to the stretching direction is measured on two electrodes fabricated by the two...

  11. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Sabourin, David; Dufva, Martin

    2009-01-01

    The design, fabrication and characterization of a miniaturized, mechanically-actuated 12-channel peristaltic pump for microfluidic applications and built from simple, low-cost materials and fabrication methods is presented. Two pump configurations are tested, including one which reduces pulsating...... flow. Both use a monolithic PDMS pumping inlay featuring three-dimensional geometries favourable to pumping applications and 12 wholly integrated circular channels. Flow rates in the sub-µL min-1 to µL min-1 range were obtained. Channel-to-channel flow rate variability was comparable to a commercial...... pumping system at lower flow rates. The small footprint, 40 mm by 80 mm, of the micropump renders it portable, and allows its use on microscope stages adjacent to microfluidic devices, thus reducing system dead volumes. The micropump's design allows potential use in remote and resource-limited locations...

  12. Peristaltic ion source

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1995-08-01

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they`ve produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results.

  13. Towards an Implantable, Low Flow Micropump That Uses No Power in the Blocked-Flow State

    Directory of Open Access Journals (Sweden)

    Dean G. Johnson

    2016-06-01

    Full Text Available Low flow rate micropumps play an increasingly important role in drug therapy research. Infusions to small biological structures and lab-on-a-chip applications require ultra-low flow rates and will benefit from the ability to expend no power in the blocked-flow state. Here we present a planar micropump based on gallium phase-change actuation that leverages expansion during solidification to occlude the flow channel in the off-power state. The presented four chamber peristaltic micropump was fabricated with a combination of Micro Electro Mechanical System (MEMS techniques and additive manufacturing direct write technologies. The device is 7 mm × 13 mm × 1 mm (<100 mm3 with the flow channel and exterior coated with biocompatible Parylene-C, critical for implantable applications. Controllable pump rates from 18 to 104 nL/min were demonstrated, with 11.1 ± 0.35 nL pumped per actuation at an efficiency of 11 mJ/nL. The normally-closed state of the gallium actuator prevents flow and diffusion between the pump and the biological system or lab-on-a-chip, without consuming power. This is especially important for implanted applications with periodic drug delivery regimens.

  14. Experimental investigation on phase transformation type micropump

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The phase transformation type micropump without moving parts was experimentally studied in this note.To analyze the pumping mechanism of the micropump, a simplified physical model was presented. The experimental results indicate that the pump characteristic is mainly dependent on the heating and cooling conditions. For a given system, there exist an optimal combination of heating current and switch time with which the flow rate reaches maximum. Comparing with the natural cooling, the forced convective cooling needs larger heating current to obtain the same flow rate. In our experiments, the maximum flow rate is 33 μL/min when the inner diameter of the micropump is 200 μm, and the maximum pumping pressure reaches over 20 kPa. The theoretical analysis shows that the pumping mechanism of the micropump mainly lies in the large density difference between liquid and gas phases and the effect of gas chocking.

  15. An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R

    1999-03-01

    An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.

  16. A plastic micropump constructed with conventional techniques and materials

    NARCIS (Netherlands)

    Bohm, Sebastian; Olthuis, Wouter; Bergveld, P.

    1999-01-01

    A plastic micropump which can be produced using conventional production techniques and materials is presented. By applying well-known techniques and materials, economic fabrication of micropumps for various applications is feasible even at low production volumes. The micropump is capable of pumping

  17. Design,fabrication and experimental research for an electrohydrodynamic micropump

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presented a novel electrohydrodynamic (EHD) micropump based on MEMS technology. The working mechanisms and classification of EHD micropump were introduced. The fabrication process of EHD micropump was presented with the material selection,optimal design of microelectrode and assembly process. Static pressure experiments and flow experiments were carried out using different fluid and the channel depth. The results indicated that the micropump could achieve a maximum static pressure head of 268 Pa at an applied voltage of 90 V. The maximum flow rate of the micropump-driven fluid could reach 106 μL/min. This paper analyzed the future of combining micropump with heat pipe to deal with heat dissipation of high power electronic chips. The maximum heat dissipation capacity of 87 W/cm2 can be realized by vaporizing the micropump-driven liquid on vaporizing section of the heat pipe.

  18. Bubble-Driven Inertial Micropump

    CERN Document Server

    Torniainen, Erik D; Markel, David P; Kornilovitch, Pavel E

    2012-01-01

    The fundamental action of the bubble-driven inertial micropump is investigated. The pump has no moving parts and consists of a thermal resistor placed asymmetrically within a straight channel connecting two reservoirs. Using numerical simulations, the net flow is studied as a function of channel geometry, resistor location, vapor bubble strength, fluid viscosity, and surface tension. Two major regimes of behavior are identified: axial and non-axial. In the axial regime, the drive bubble either remains inside the channel or continues to grow axially when it reaches the reservoir. In the non-axial regime the bubble grows out of the channel and in all three dimensions while inside the reservoir. The net flow in the axial regime is parabolic with respect to the hydraulic diameter of the channel cross-section but in the non-axial regime it is not. From numerical modeling, it is determined that the net flow is maximal when the axial regime crosses over to the non-axial regime. To elucidate the basic physical princi...

  19. High precision innovative micropump for artificial pancreas

    Science.gov (United States)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  20. A Novel Integrated PZT-Driven Micropump and Microvalve

    Institute of Scientific and Technical Information of China (English)

    Zhaoxin Geng; Dafu Cui; Haining Wang; Changchun Liu; Bo Su

    2006-01-01

    According to the 'elastic buffer mechanism' and the'variable gap mechanism', a new device, which is both micropump and active microvalve actuated by PZT bimorph cantilever, was fabricated with polydimethylsiloxane (PDMS) and silicon chip. The thickness of the micropump membrance is about 180 μm. The diameter and the depth of micropump chamber cavity are 6 mm and 40 μm, respectively. The performances of the micropump, such as pump rate and backpressure, were characterized. As a flow-rectifying element, the diffusers and active valve were used instead of passive check valves. The flow rate and the backpressure of the micropump are about 420 μL/min and 2 kPa when applying a 100 V square wave driving voltage at frequency of 35 Hz.

  1. A Peristaltic Meso-Scale Mixer

    Science.gov (United States)

    Bau, Haim; Yi, Mingqiang; Hu, Howard H.

    2000-11-01

    In recent years, there has been a growing interest in developing minute laboratories on a "chip". Often, in order to facilitate chemical and biological reactions, one needs to mix various reagents and chemicals. Although the characteristic lengths associated with micro-devices are small, typically on the order of 100mm, in the case of large molecules, diffusion alone does not provide a sufficiently rapid means for mixing. Recent experimental[1] and theoretical[2] studies suggested the use of surface waves to induce peristaltic motion and enhance fluid stirring. We considered incompressible, viscous fluid confined in a rectangular cavity. One or two of the cavity walls were made of a thin membrane. Electric conductors were printed on the membrane. By passing appropriately phased alternating electric currents through these conductors in the presence of a magnetic field, relatively large amplitude travelling waves could be transmitted in cavity's walls and induce peristaltic motion. We describe the results of a theoretical study. We extended Selverov and Stone[2] theory to account for the presence of lateral boundaries. The induced velocity profiles were determined analytically for small amplitude waves (e) and numerically for waves of arbitrary amplitude. The effect of the peristaltic motion on the stretching and deformation of material lines were quantified. The work was supported, in part, by DARPA through grant N66001-97-1-8911 to the University of Pennsylvania. [1] Moroney, R. M., White, R., M., Howe, R., T., 1991, Ultrasonically Induced Microtransport, Proceedings IEEE Workshop Micro Electro Mechanical Systems, MEMS 95 Amsterdam, 277-282. [2] Selverov, K., and Stone, H., A., 2000, Peristaltically Driven Flows for Micro Mixers, to appear in Physics of Fluids.

  2. Development and Application of One-Sided Piezoelectric Actuating Micropump

    Directory of Open Access Journals (Sweden)

    H. K. Ma

    2013-01-01

    Full Text Available Three types of one-sided actuating piezoelectric micropumps are studied in this paper. In the first type, one-sided actuating micropump with two check valves can enhance the flow rate and prevent the back flow in suction mode to keep the flow in one direction. Furthermore, the frequency modulator is applied in the micropump to adjust and promote the maximum flow rate higher than 5.0 mL/s. In the second type, valveless micropump with secondary chamber shows that the secondary chamber plays a key role in the application of the valveless micropump. It not only keeps the flow in one direction but also makes the flow rate of the pump reach 0.989 mL/s. In addition, when a nozzle/diffuser element is used in valveless micropump, the flow rate can be further improved to 1.183 mL/s at a frequency of 150 Hz. In the third type, piezoelectric actuating pump is regarded as an air pump in the application of a microfuel cell system, which can increase more air inlet to improve the fuel/air reaction and further increase the performance of fuel cell.

  3. Compact and Thermosensitive Nature-inspired Micropump

    Science.gov (United States)

    Kim, Hyejeong; Kim, Kiwoong; Lee, Sang Joon

    2016-10-01

    Liquid transportation without employing a bulky power source, often observed in nature, has been an essential prerequisite for smart applications of microfluidic devices. In this report, a leaf-inspired micropump (LIM) which is composed of thermo-responsive stomata-inspired membrane (SIM) and mesophyll-inspired agarose cryogel (MAC) is proposed. The LIM provides a durable flow rate of 30 μl/h · cm2 for more than 30 h at room temperature without external mechanical power source. By adapting a thermo-responsive polymer, the LIM can smartly adjust the delivery rate of a therapeutic liquid in response to temperature changes. In addition, as the LIM is compact, portable, and easily integrated into any liquid, it might be utilized as an essential component in advanced hand-held drug delivery devices.

  4. Piezoelectric diffuser/nozzle micropump with double pump chambers

    Institute of Scientific and Technical Information of China (English)

    Wei WANG; Ying ZHANG; Li TIAN; Xiaojie CHEN; Xiaowei LIU

    2008-01-01

    To eliminate check valve fatigue and valve clogging, diffuser/nozzle elements are used for flow rec-tification in a valveless diffuser/nozzle micropump instead of valves. However, the application of this type of micro-pump is restricted because of its pulsating or periodic flow and low pump flux. In this paper, a diffuser/nozzle Si/ Glass micropump with two pump chambers by IC and MEMS technology is designed. The fabrication process requires only one mask and one etch step, so that the fabrication has the advantages of low cost, short proces-sing period, and facilitation of miniaturization. The pump is equipped with a glass cover board so as to conveniently observe the flow status. Pump-chambers and diffuser ele-ments are fabricated by the anisotropic KOH-etch tech-nique on the silicone substrate, and the convex corner is designed to compensate for an anisotropic etch. The driv-ing force of the micropump is produced by the PZT piezo-electric actuator, The pump performance with both actuators actuated in anti- or same-phase mode is also researched. The result indicates that the micropump achieves great performance with the actuators working at anti-phase. This may be because the liquid flows stead-ily, pulse phenomenon is very weak, and the optimal working frequency, pump back pressure, and flow rate are both double that of the pump driven in same-phase.

  5. Microbionic and peristaltic robots in a pipe

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A microbionic and peristaltic robot that simulates the motion of an earthworm to move within a micropipe is proposed. The robot consists of three flexible units. Each unit is composed of two plates connected with three shape memory alloys (SMA) 120°apart, the rubber gasbag around the SMA wires inflated with air inside. Each unit corresponds to a segment of an earthworm, and the SMA and rubber gasbag have the same functions as the cricoid and longitudinal muscles of the earthworm. A control system is designed to fulfill the control of the three flexible units motions, such as stretching, shrinking and bending, so the microrobot can walk forward and backward, and choose the direction.

  6. Simulation of valveless micropump and mode analysis

    CERN Document Server

    Lan, W P; Wu, K C; Shih, Y C

    2008-01-01

    In this work, a 3-D simulation is performed to study for the solid-fluid coupling effect driven by piezoelectric materials and utilizes asymmetric obstacles to control the flow direction. The result of simulation is also verified. For a micropump, it is crucial to find the optimal working frequency which produce maximum net flow rate. The PZT plate vibrates under the first mode, which is symmetric. Adjusting the working frequency, the maximum flow rate can be obtained. For the micrpump we studied, the optimal working frequency is 3.2K Hz. At higher working frequency, say 20K Hz, the fluid-solid membrane may come out a intermediate mode, which is different from the first mode and the second mode. It is observed that the center of the mode drifts. Meanwhile, the result shows that a phase shift lagging when the excitation force exists in the vibration response. Finally, at even higher working frequency, say 30K Hz, a second vibration mode is observed.

  7. Valveless Thermally-Driven Phase-Change Micropump

    Institute of Scientific and Technical Information of China (English)

    王沫然; 李志信

    2004-01-01

    A dynamic model with moving heat sources was developed to analyze the pumping mechanism of a valveless thermally-driven phase-change micropump. The coupled equations were solved to determine the pumping characteristics. The numerical results agree with experimental data from micropumps with different diameter microtubes. The maximum flow rate reached 33 μL / min and the maximum pump pressure was over 20 kPa for a 200-μm diameter microtube. Analysis of the pumping mechanism shows that the main factors affecting the flow come from the large density difference between the liquid and vapor phases and the choking effect of the vapor region.

  8. Modular Architecture of a Non-Contact Pinch Actuation Micropump

    Directory of Open Access Journals (Sweden)

    Ruzairi Abdul Rahim

    2012-09-01

    Full Text Available This paper demonstrates a modular architecture of a non-contact actuation micropump setup. Rapid hot embossing prototyping was employed in micropump fabrication by using printed circuit board (PCB as a mold material in polymer casting. Actuator-membrane gap separation was studied, with experimental investigation of three separation distances: 2.0 mm, 2.5 mm and 3.5 mm. To enhance the micropump performance, interaction surface area between plunger and membrane was modeled via finite element analysis (FEA. The micropump was evaluated against two frequency ranges, which comprised a low driving frequency range (0–5 Hz, with 0.5 Hz step increments and a nominal frequency range (0–80 Hz, with 10 Hz per step increments. The low range frequency features a linear relationship of flow rate with the operating frequency function, while two magnitude peaks were captured in the flow rate and back pressure characteristic in the nominal frequency range. Repeatability and reliability tests conducted suggest the pump performed at a maximum flow rate of 5.78 mL/min at 65 Hz and a backpressure of 1.35 kPa at 60 Hz.

  9. Motility and peristaltic flow in maintaining microbiome populations

    Science.gov (United States)

    Mirbagheri, Seyed Amir; Fu, Henry C.

    2016-11-01

    Bacteria are an important component of the microbiome in the digestive tract, and must be able to maintain their population despite the fact that the contents of the intestines are constantly flowing towards evacuation. Many bacteria accomplish this by colonizing the surfaces of the intestines where flows diminish, but some species live in the lumen. We attempt to address whether swimming motility of these species plays an important role in maintaining bacterial population in the face of peristaltic pumping out of the intestine. Using a two-dimensional model of peristaltic flows induced by small-amplitude traveling waves we examine the Lagrangian trajectories of passive bacteria as well as motile bacteria, which are treated as Brownian particles undergoing enhanced diffusion due to the bacteria's run-and-tumble motility. We examine how the densities of growing populations of bacteria depend on the combination of motility and peristaltic flow.

  10. Endoscopic Effects on Peristaltic Flow of a Nanofluid

    Institute of Scientific and Technical Information of China (English)

    Noreen Sher Akbart; S. Nadeem

    2011-01-01

    In the present investigation we have studied the peristaltic flow of a nanofluid in an endoscope. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Analytical solutions have been calculated using Homotopy perturbation method (HPM) for temperature and nanoparticle equation while exact solutions have been calculated for velocity and pressure gradient. Numerical integration have been used to obtain the graphical results for pressure rise and frictional forces. The effects of various emerging parameters are investigated for five different peristaltic waves. Streamlines have been plotted at the end of the article.

  11. Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; F.M.Abbasi; Awatif A.Hendi

    2011-01-01

    An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold. Perturbation solution is discussed and a comparative study between the cases of constant and variable viscosities is presented and analyzed.%@@ An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold.Perturbation solution is discussed and a comparative stuity between the cases of constant and variable viscosities is presented and analyzed.

  12. Peristaltic pump-based low range pressure sensor calibration system.

    Science.gov (United States)

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  13. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    Science.gov (United States)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  14. A polymer chip-integrable piezoelectric micropump with low backpressure dependence

    DEFF Research Database (Denmark)

    Conde, A. J.; Bianchetti, A.; Veiras, F. E.;

    2015-01-01

    We describe a piezoelectric micropump constructed in polymers with conventional machining methods. The micropump is self-contained and can be built as an independent device or as an on-chip module within laminated microfluidic chips. We demonstrate on-chip integrability by the fabrication and tes...

  15. A Numerical Investigation of Peristaltic Waves in Circular Tubes

    Science.gov (United States)

    Xiao, Q.; Damodaran, M.

    Peristaltic pumping is a process of fluid transport arising from the progressive waves, which travel along the walls of a flexible channel. It is a primary physiological transport mechanism that is inherent in many tubular organs of the human body such as the ureter, the gastro-intestinal tract, the urethra, and so on. Many studies exist in literature with the aim of understanding the characteristics of peristaltic flow under the assumption of low Reynolds number and infinitely long wavelength in a two-dimensional channel. However, peristaltic pumping is also the mechanism used in other industrial applications such as the blood pump for which the Reynolds number has a moderately high value. As studies concerning moderate to high Reynolds number flow in the circular tube are rare in literature, in the present study, the peristaltic flow of an incompressible fluid is numerically simulated using the finite volume method for solving the incompressible Navier-Stokes equations in primitive variable formulation by means of an infinite train of sinusoidal waves traveling along the wall of an axi-symmetric tube. The computational model presented in this work covers a wider range of Reynolds number (0.01-100), wave amplitude (0-0.8), and wavelength (0.01-0.4) than the those attempted in previous studies reported in literature and some new results pertaining to the distribution of velocity, pressure, wall shear stress for different peristaltic flow conditions characterizing flow at moderately higher Reynolds number have been obtained. The effect of the wave amplitude, wavelength, and Reynolds number on the "flow trapping" mechanism induced by peristalsis has also been investigated here for higher ranges of values of the parameters characterizing peristalsis.

  16. Vibration analysis of magnetostrictive thin-film composite cantilever actuator

    Science.gov (United States)

    Xu, Yan; Shang, Xinchun

    2016-09-01

    The transverse vibration of a composed cantilever beam with magnetostrictive layer is analyzed, which is employed to simulate dynamic response of an actuator. The high-order shear deformation theory of beam and the coupling magnetoelastic constitutive relationship are introduced to construct the governing equations, all interface conditions between magnetostrictive film and elastic substrate as well as the free stress condition on the top and bottom surfaces of the beam can be satisfied. In order to demonstrate validity of the presented mathematical modeling, the verification examples are also given. Furthermore, the effect of geometry and material parameters on dynamic characteristics of magnetostrictive cantilever beam, such as the nature frequency and amplitude, is discussed. Moreover, through computing the magneto-mechanical coupling factor of the beam structure, the variation tendency curves of the factor along with different parameters and frequencies of magnetostrictive cantilever beam actuator have been presented. These numerical results should be useful for the design of beam-type with magnetostrictive thin-film actuators.

  17. DESIGN AND OPTIMIZATION OF VALVELESS MICROPUMPS BY USING GENETIC ALGORITHMS APPROACH

    Directory of Open Access Journals (Sweden)

    AIDA F. M. SHUKUR

    2015-10-01

    Full Text Available This paper presents a design optimization of valveless micropump using Genetic Algorithms (GA. The micropump is designed with a diaphragm, pumping chamber and diffuser/nozzle element functions as inlet and outlet of micropump with outer dimension of (5×1.75×5 mm3. The main objectives of this research are to determine the optimum pressure to be applied at micropump’s diaphragm and to find the optimum coupling parameters of the micropump to achieve high flow rate with low power consumption. In order to determine the micropump design performance, the total deformation, strain energy density, equivalent stress for diaphragm, velocity and net flow rate of micropump are investigated. An optimal resonant frequency range for the diaphragm of valveless micropump is obtained through the result assessment. With the development of GA-ANSYS model, a maximum total displacement of diaphragm, 5.3635 µm, with 12 kPa actuation pressure and optimum net flowrate of 7.467 mL/min are achieved.

  18. Peristaltic particle transport using the Lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Connington, Kevin William [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr [Los Alamos National Laboratory; Chen, Shiyi [JOHNS HOPKINS UNIV.

    2009-01-01

    Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.

  19. Effects of Magnetic Field and an Endoscope on Peristaltic Motion

    Directory of Open Access Journals (Sweden)

    V. P. Rathod

    2011-01-01

    Full Text Available The Problem of peristaltic transport of a magnetic fluid with variable viscosity through the gap between coaxial tubes where the outer tube is nonuniform with sinusoidal wave traveling down its wall and the inner tube is rigid. The relation between the pressure gradient and friction force on the inner and outer tubes is obtained in terms of magnetic and viscosity parameter. The numerical solutions of pressure gradient, outer friction and inner friction force, and flow rate are shown graphically.

  20. The value of simple tests for peristaltic activity in hiatus hernia

    Science.gov (United States)

    Powis, S. J. A.; Collis, J. Leigh

    1970-01-01

    A study has been made of oesophageal peristaltic activity as viewed at barium swallows, in an effort to see whether this is helpful in assessing the type and degree of oesophageal lesions associated with hiatus hernia. It has not been possible to establish a clinical usefulness from such testing as the frequency with which peristaltic upset occurs is too marginal. PMID:5485006

  1. Performance of a serial-connection multi-chamber piezoelectric micropump

    Institute of Scientific and Technical Information of China (English)

    KAN Jun-wu; XUAN Ming; LIU Guo-jun; YANG Zhi-gang; WU Yi-hui

    2005-01-01

    The concept and structure of serial-connection multi-chamber (SCMC) micropumps with cantilever valves is introduced. The SCMC micropump, which can be manufactured using conventional production techniques and materials, has a multi-layer circular planar structure. The border-upon piezoelectric actuators of a SCMC micropump work in anti-phase, as a result the pumping performance is similar to that of several single-chamber pumps running in series. The theoretical analysis shows that the pumping performance of a SCMC micropump depends not only on the characteristic and geometrical parameters of the piezoelectric actuators, but also on the number of pump chambers. Both flowrate and pressure of a SCMC pump can be enhanced to a certain extent. Four piezoelectric micropumps with different chambers were fabricated and tested. The testing results show that the enhancing extents of the flowrate and pressure of a SCMC piezoelectric micropump are different. The maximum flowrate and pressure of the four-chamber pump achieved are 2.5 times and 3.6 times those of the single-chamber pump achieved.

  2. Peristaltic pumping in an elastic tube: feeding the hungry python

    Science.gov (United States)

    Takagi, Daisuke; Balmforth, Neil

    2010-11-01

    Biological ducts convey contents like food in the digestive system by peristaltic action, propagating waves of muscular contraction and relaxation. The motion is investigated theoretically by considering a radial force of sinusoidal or Gaussian form moving steadily down a fluid-filled axisymmetric tube. Effects of the prescribed force on the resultant fluid flow and elastic deformation of the tube wall are presented. The flow can induce a rigid object suspended in the fluid to propel in different ways, as demonstrated in numerous examples.

  3. Actuation method and apparatus, micropump, and PCR enhancement method

    Energy Technology Data Exchange (ETDEWEB)

    Ullakko, Kari; Mullner, Peter; Hampikian, Greg; Smith, Aaron

    2015-07-28

    An actuation apparatus includes at least one magnetic shape memory (MSM) element containing a material configured to expand and/or contract in response to exposure to a magnetic field. Among other things, the MSM element may be configured to pump fluid through a micropump by expanding and/or contracting in response to the magnetic field. The magnetic field may rotate about an axis of rotation and exhibit a distribution having a component substantially perpendicular to the axis of rotation. Further, the magnetic field distribution may include at least two components substantially orthogonal to one another lying in one or more planes perpendicular to the axis of rotation. The at least one MSM element may contain nickel, manganese, and gallium. A polymerase chain reaction (PCR) may be enhanced by contacting a PCR reagent and DNA material with the MSM element.

  4. Optically driven Archimedes micro-screws for micropump application.

    Science.gov (United States)

    Lin, Chih-Lang; Vitrant, Guy; Bouriau, Michel; Casalegno, Roger; Baldeck, Patrice L

    2011-04-25

    Archimedes micro-screws have been fabricated by three-dimensional two-photon polymerization using a Nd:YAG Q-switched microchip laser at 532nm. Due to their small sizes they can be easily manipulated, and made to rotate using low power optical tweezers. Rotation rates up to 40 Hz are obtained with a laser power of 200 mW, i.e. 0.2 Hz/mW. A photo-driven micropump action in a microfluidic channel is demonstrated with a non-optimized flow rate of 6 pL/min. The optofluidic properties of such type of Archimedes micro-screws are quantitatively described by the conservation of momentum that occurs when the laser photons are reflected on the helical micro-screw surface.

  5. The performance of bioinspired valveless piezoelectric micropump with respect to viscosity change.

    Science.gov (United States)

    Lee, Seung Chul; Hur, Sunghoon; Kang, Dooho; Kim, Bo Heum; Lee, Sang Joon

    2016-04-29

    This study investigated the effect of the serial connection of two pumping chambers on transport of liquid with increased viscosity. A serially connected valveless piezoelectric micropump was fabricated inspired by the liquid-feeding strategy of a female mosquito drinking liquid with a wide range of viscosities, from nectar to blood. The performance of the micropump was investigated by varying the viscosity of working liquid. Results showed that the optimal phase difference between the two chambers was 180° out-of-phase for all viscosity conditions. The two chambers operating at 180° out-of-phase exhibited higher pumping performance compared with the sum of each single chamber solely actuated, when viscosity increased. The flow patterns in the micropump showed that the rectification efficiency improved with the increase in viscosity. Results indicated that the serially connected valveless piezoelectric micropump is more robust to the increase of viscosity than a single-chamber piezoelectric micropump. This study would be helpful in the design of microfluidic devices for transporting liquids with a wide range of viscosities.

  6. Peristaltic Transport of a Couple Stress Fluid : Some Physiological Applications

    CERN Document Server

    Maiti, S

    2010-01-01

    The present paper deals with a theoretical investigation of the peristaltic transport of a couple stress fluid in a porous channel. The study is motivated towards the physiological flow of blood in the micro-circulatory system, by taking account of the particle size effect. The velocity, pressure gradient, stream function and frictional force of blood are investigated, when the Reynolds number is small and the wavelength is large, by using appropriate analytical and numerical methods. Effects of different physical parameters reflecting porosity, Darcy number, couple stress parameter as well as amplitude ratio on velocity profiles, pumping action and frictional force, streamlines pattern and trapping of blood are studied with particular emphasis. The computational results are presented in graphical form. The results are found to be in good agreement with those of Shapiro et. al \\cite{r25} that was carried out for a non-porous channel in the absence of couple stress effect. The present study puts forward an imp...

  7. Numerical study for MHD peristaltic flow in a rotating frame.

    Science.gov (United States)

    Hayat, T; Zahir, Hina; Tanveer, Anum; Alsaedi, A

    2016-12-01

    The aim of present investigation is to model and analyze the magnetohydrodynamic (MHD) peristaltic transport of Prandtl fluid in a channel with flexible walls. The whole system consisting of fluid and channel are in a rotating frame of reference with uniform angular velocity. Viscous dissipation in thermal equation is not ignored. The channel boundaries satisfy the convective conditions in terms of temperature. The arising complicated problems are reduced in solvable form using large wavelength and small Reynolds number assumptions. Numerical solution for axial and secondary velocities, temperature and heat transfer coefficient are presented. Main emphasis is given to the outcome of rotation and material parameters of Prandtl fluid on the physical quantities of interest.

  8. Streamline topologies and their bifurcations for mixed convective peristaltic flow

    Directory of Open Access Journals (Sweden)

    Z. Asghar

    2015-09-01

    Full Text Available In this work our focus is on streamlines patterns and their bifurcations for mixed convective peristaltic flow of Newtonian fluid with heat transfer. The flow is considered in a two dimensional symmetric channel and the governing equations are simplified under widely taken assumptions of large wavelength and low Reynolds number in a wave frame of reference. In order to study the streamlines patterns, a system of nonlinear autonomous differential equations are established and dynamical systems approach is used to discuss the local bifurcations and their topological changes. We have discussed all types of bifurcations and their topological changes are presented graphically. We found that the vortices contract along the vertical direction whereas they expand along horizontal direction. A global bifurcations diagram is used to summarize the bifurcations. The trapping and backward flow regions are mainly affected by increasing Grashof number and constant heat source parameter in such a way that trapping region increases whereas backward flow region shrinks.

  9. Theoretical and experimental studies of a magnetically actuated valveless micropump

    Science.gov (United States)

    Ashouri, Majid; Behshad Shafii, Mohammad; Moosavi, Ali

    2017-01-01

    This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 µl min-1 while working at the piston actuation frequency of 4 and 5 Hz, respectively. 3D numerical simulations are also carried out to study the performance of the pump. The best experimental and numerical volumetric efficiency of the pump are about 7 and 8%, respectively, at the piston speed of 0.03 m s-1. The contactless external actuation feature of the design enables integration of the pump with other PMMA-based microfluidic systems with low cost and disposability.

  10. Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit

    Energy Technology Data Exchange (ETDEWEB)

    Chee, Pei Song; Nafea, Marwan; Leow, Pei Ling; Ali, Mohamed Sultan Mohamed [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2016-06-15

    This paper studies the thermal behavior of a wireless powered micropump operated using thermo-pneumatic actuation. Numerical analysis was performed to investigate the temporal conduction of the planar inductor-capacitor (LC) wireless heater and the heating chamber. The result shows that the temperature at the heating chamber reaches steady state temperature of 46.7.deg.C within 40 seconds. The finding was further verified with experimental works through the fabrication of the planar LC heater (RF sensitive actuator) and micropump device using MEMS fabrication technique. The fabricated device delivers a minimum volume of 0.096 μL at the temperature of 29.deg.C after being thermally activated for 10 s. The volume dispensed from the micropump device can precisely controlled by an increase of the electrical heating power within the cut-off input power of 0.22 W. Beyond the power, the heat transfer to the heating chamber exhibits non-linear behavior. In addition, wireless operation of the fabricated device shows successful release of color dye when the micropump is immersed in DI-water containing dish and excited by tuning the RF power.

  11. Influence of chamber dimensions on the performance of a conduction micropump

    Science.gov (United States)

    Feng, Junyuan; Wan, Zhenping; Wen, Wanyu; Li, Yaochao; Tang, Yong

    2016-05-01

    An electrohydrodynamic (EHD) conduction micropump with symmetric planar electrodes is developed to investigate the effect of micropump chamber dimensions on static pressure and flow rate. The interdigitated electrodes are created on an FR-4 CCL (copper clad laminate) using photolithography. The micropump consists of an electrode plate, chamber plate, top and bottom end cover. A 2D numerical simulation study is conducted to provide details about the ion distribution and fluid flow behaviors within a local domain of micropumps with different chamber height. Experimental results show that, by increasing chamber height, the static pressure and flow rate rise with a big slope under a chamber height of 0.2 mm, and henceforth decrease dramatically. The variation trends of static pressure and flow rate with an increase in chamber height are determined by the combination of ion concentration distribution and fluidic circulation formed between the two electrodes. Additionally, the effect of the chamber width and length is experimentally analyzed for optimum pressure and output flow rate.

  12. Metal additive manufacturing of a high-pressure micro-pump

    NARCIS (Netherlands)

    Wits, Wessel W.; Weitkamp, Sander J.; Es, van J.

    2013-01-01

    For the thermal control of future space applications pumped two-phase loops are an essential part to handle the increasing thermal power densities. This study investigates the design of a reliable, leak tight, low-weight and high-pressure micro-pump for small satellite applications. The developed mi

  13. Peristaltic motion of third grade fluid in curved channel

    Institute of Scientific and Technical Information of China (English)

    S.HINA; M.MUSTAFA; T.HAYAT; F.E.ALSAADI

    2014-01-01

    Analysis is performed to study the slip effects on the peristaltic flow of non-Newtonian fluid in a curved channel with wall properties. The resulting nonlinear partial differential equations are transformed to a single ordinary differential equation in a stream function by using the assumptions of long wavelength and low Reynolds number. This differential equation is solved numerically by employing the built-in routine for solving nonlinear boundary value problems (BVPs) through the software Mathematica. In addition, the analytic solutions for small Deborah number are computed with a regular perturbation technique. It is noticed that the symmetry of bolus is destroyed in a curved channel. An intensification in the slip effect results in a larger magnitude of axial velocity. Further, the size and circulation of the trapped boluses increase with an increase in the slip parameter. Different from the case of planar channel, the axial velocity profiles are tilted towards the lower part of the channel. A comparative study between analytic and numerical solutions shows excellent agreement.

  14. Endoscopy analysis for the peristaltic flow of nanofluids containing carbon nanotubes with heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Noreen Sher [National University of Sciences and Technology, Islamabad (Pakistan)

    2015-07-01

    Cu-water nanofluid with carbon nanotubes is considered for the peristaltic flow in an endoscope. The peristaltic flow for nanofluid is modelled considering that the peristaltic rush wave is a sinusoidal wave that propagates along the walls of the tube. The governing equations for the proposed model are simplified by using the assumptions of long-wavelength and low Reynolds number. Exact solutions have been evaluated for velocity, temperature, and pressure gradient. Graphical results for the numerical values of the flow parameters, i.e. Hartmann number M, the solid volume fraction φ of the nanoparticles, Grashof number Gr, heat absorption parameter β, and radius of the inner tube ε, have been presented for the pressure difference, frictional forces, velocity profile, and temperature profile, and trapping phenomena have been discussed at the end of the article.

  15. Peristaltic transport of Carreau-Yasuda fluid in a curved channel with slip effects.

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The wide occurrence of peristaltic pumping should not be surprising at all since it results physiologically from neuro-muscular properties of any tubular smooth muscle. Of special concern here is to predict the rheological effects on the peristaltic motion in a curved channel. Attention is focused to develop and simulate a nonlinear mathematical model for Carreau-Yasuda fluid. The progressive wave front of peristaltic flow is taken sinusoidal (expansion/contraction type. The governing problem is challenge since it has nonlinear differential equation and nonlinear boundary conditions even in the long wavelength and low Reynolds number regime. Numerical solutions for various flow quantities of interest are presented. Comparison for different flow situations is also made. Results of physical quantities are interpreted with particular emphasis to rheological characteristics.

  16. Peristaltic Pumping of Blood in micro-vessels of Non-uniform Cross-section

    CERN Document Server

    Misra, J C

    2010-01-01

    The paper is devoted to a study of the peristaltic motion of blood in the micro-circulatory system. The vessel is considered of non-uniform cross-section. The progressive peristaltic waves are taken to be of sinusoidal nature. The Reynolds number is considered to be small. Blood is considered to be a Herschel-Bulkley fluid. Of particular concern here is to investigate the effects of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, streamline pattern and wall shear stress. Basing upon the study, extensive numerical calculations has been made. The study reveals that peristaltic pumping as well as velocity and wall shear stress are appreciably affected due to the non-uniform geometry of blood vessels. They are also highly sensitive to the magnitude of the amplitude of the amplitude ratio and the value of the fluid index.

  17. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: jianyj@imu.edu.cn [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)

    2015-08-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.

  18. Controlled assembly of single colloidal crystals using electro-osmotic micro-pumps

    OpenAIRE

    Niu, Ran; Oğuz, Erdal C.; Müller, Hannah; Reinmüller, Alexander; Botin, Denis; Löwen, Hartmut; Palberg, Thomas

    2016-01-01

    We assemble charged colloidal spheres at deliberately chosen locations on a charged unstructured glass substrate utilizing ion exchange based electro-osmotic micro-pumps. Using microscopy, a simple scaling theory and Brownian Dynamics simulations, we systematically explore the control parameters of crystal assembly and the mechanisms through which they depend on the experimental boundary conditions. We demonstrate that crystal quality depends crucially on the assembly distance of the colloids...

  19. Insect-Inspired Micropump: Flow in a Tube with Local Contractions

    OpenAIRE

    2015-01-01

    A biologically-inspired micropumping model in a three-dimensional tube subjected to localized wall constrictions is given in this article. The present study extends our previous pumping model where a 3D channel with a square cross-section is considered. The proposed pumping approach herein applies to tubular geometries and is given to mimic an insect respiration mode, where the tracheal tube rhythmic wall contractions are used/hypothesized to enhance the internal flow transport within the ent...

  20. Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip.

    Science.gov (United States)

    Li, Bowei; Jiang, Lei; Xie, Hua; Gao, Yan; Qin, Jianhua; Lin, Bingcheng

    2009-09-01

    A micropump-actuated negative pressure pinched injection method is developed for parallel electrophoresis on a multi-channel LIF detection system. The system has a home-made device that could individually control 16-port solenoid valves and a high-voltage power supply. The laser beam is excitated and distributes to the array separation channels for detection. The hybrid Glass-PDMS microfluidic chip comprises two common reservoirs, four separation channels coupled to their respective pneumatic micropumps and two reference channels. Due to use of pressure as a driving force, the proposed method has no sample bias effect for separation. There is only one high-voltage supply needed for separation without relying on the number of channels, which is significant for high-throughput analysis, and the time for sample loading is shortened to 1 s. In addition, the integrated micropumps can provide the versatile interface for coupling with other function units to satisfy the complicated demands. The performance is verified by separation of DNA marker and Hepatitis B virus DNA samples. And this method is also expected to show the potential throughput for the DNA analysis in the field of disease diagnosis.

  1. Caterpillar locomotion-inspired valveless pneumatic micropump using a single teardrop-shaped elastomeric membrane

    KAUST Repository

    So, Hongyun

    2014-01-01

    This paper presents a microfluidic pump operated by an asymmetrically deformed membrane, which was inspired by caterpillar locomotion. Almost all mechanical micropumps consist of two major components of fluid halting and fluid pushing parts, whereas the proposed caterpillar locomotion-inspired micropump has only a single, bilaterally symmetric membrane-like teardrop shape. A teardrop-shaped elastomeric membrane was asymmetrically deformed and then consecutively touched down to the bottom of the chamber in response to pneumatic pressure, thus achieving fluid pushing. Consecutive touchdown motions of the teardrop-shaped membrane mimicked the propagation of a caterpillar\\'s hump during its locomotory gait. The initial touchdown motion of the teardrop-shaped membrane at the centroid worked as a valve that blocked the inlet channel, and then, the consecutive touchdown motions pushed fluid in the chamber toward the tail of the chamber connected to the outlet channel. The propagation of the touchdown motion of the teardrop-shaped membrane was investigated using computational analysis as well as experimental studies. This caterpillar locomotion-inspired micropump composed of only a single membrane can provide new opportunities for simple integration of microfluidic systems. © the Partner Organisations 2014.

  2. The NeuroMedicator—a micropump integrated with silicon microprobes for drug delivery in neural research

    Science.gov (United States)

    Spieth, S.; Schumacher, A.; Kallenbach, C.; Messner, S.; Zengerle, R.

    2012-06-01

    The NeuroMedicator is a micropump integrated with application-specific silicon microprobes aimed for drug delivery in neural research with small animals. The micropump has outer dimensions of 11 × 15 × 3 mm3 and contains 16 reservoirs each having a capacity of 0.25 µL. Thereby, the reservoirs are interconnected in a pearl-chain-like manner and are connected to two 8 mm long silicon microprobes. Each microprobe has a cross-sectional area of 250 × 250 µm2 and features an integrated drug delivery channel of 50 × 50 µm2 with an outlet of 25 µm in diameter. The drug is loaded to the micropump prior to implantation. After implantation, individual 0.25 µL portions of drug can be sequentially released by short heating pulses applied to a polydimethylsiloxane (PDMS) layer containing Expancel® microspheres. Due to local, irreversible thermal expansion of the elastic composite material, the drug is displaced from the reservoirs and released through the microprobe outlet directly to the neural tissue. While implanted, leakage of drug by diffusion occurs due to the open microprobe outlets. The maximum leakage within the first three days after implantation is calculated to be equivalent to 0.06 µL of drug solution.

  3. Peristaltic Flow of Phan-Thien-Tanner Fluid in an Asymmetric Channel with Porous Medium

    Directory of Open Access Journals (Sweden)

    Kuppalapalle Vajravelu

    2016-01-01

    Full Text Available This paper deals with peristaltic transport of Phan-Thien-Tanner fluid in an asymmetric channel induced by sinusoidal peristaltic waves traveling down the flexible walls of the channel. The flow is investigated in a wave frame of reference moving with the velocity of the waveby using the long wavelength and low Reynolds number approximations.The nonlinear governing equations are solved employing a perturbation method by choosing as the perturbation parameter. The expressions for velocity, stream function and pressure gradient are obtained. The features of the flow characteristics are analyzed through graphs and the obtained results are discussed in detail. It is noticed that the peristaltic pumping gets reduced due to an increase in the phase difference of the traveling waves. It is also observed that the size of the trapping bolus is a decreasing function of the permeability parameter and the Weissenberg number. Furthermore, the results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid phenomena, especially the Peristaltic flow phenomena.

  4. Development of automated postoperative enteral nutrition: restricting feeding site inflow to match peristaltic outflow

    OpenAIRE

    Moss, Gerald

    2015-01-01

    Background Surgical stress accelerates postoperative metabolism, while simultaneously compromising gut activity. The dysfunction may be worsened by early feeding. These patients are not expected to fully meet their optimum metabolic requirements using current nutritional regimens. For optimum postoperative enteral nutrition, we must automatically match the patients’ feeding site inflows to their impaired peristaltic outflows. An essential adjunct is virtually complete exclusion of swallowed a...

  5. Acquisition of a Surface Plasmon Resonance Imager, Digital Microscope, and Peristaltic Pumps for Defense-Based Research

    Science.gov (United States)

    2016-05-05

    System, Keyence Corporation of America Digital Microscope Controller System, and two Fisher Scientific FH100 Multichannel peristaltic pumps. The cadre...REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER...System, Keyence Corporation of America Digital Microscope Controller System, and two Fisher Scientific FH100 Multichannel peristaltic pumps. The

  6. A composite fibre optic catheter for monitoring peristaltic transit of an intra-luminal bead.

    Science.gov (United States)

    Arkwright, John W; Underhill, Ian D; Dodds, Kelsi N; Brookes, Simon J H; Costa, Marcello; Spencer, Nick J; Dinning, Phil G

    2016-03-01

    A fibre optic motion sensor has been developed for monitoring the proximity and direction of motion of a ferrous bead travelling axial to the sensor. By integrating an array of these sensors into our previously developed fibre optic manometry catheters we demonstrate simultaneous detection of peristaltic muscular activity and the associated motion of ferrous beads through a colonic lumen. This allows the motion of solid content to be temporally and spatially related to pressure variations generated by peristaltic contractions without resorting to videoflouroscopy to track the motion of a radio opaque bolus. The composite catheter has been tested in an in-vitro animal preparation consisting of excised sections of rabbit colon. Cut-away image of the fibre optic motion sensor showing the location of the fibre Bragg gratings and the rare earth magnet.

  7. Flow of a Burger’s Fluid in a Channel Induced by Peristaltic Compliant Walls

    Directory of Open Access Journals (Sweden)

    I. Ahmad

    2014-01-01

    Full Text Available A theoretical analysis is presented for the peristaltic motion of a magneto-hydrodynamic (MHD non-Newtonian fluid in channel with complaint walls. The fluid obeys viscoelastic non-Newtonian model with Burger’s constitutive equation. The relevant equations are first developed and then solved using perturbation technique. Expressions of stream function and velocity components are constructed under the assumption that δ (characteristic ratio of transversal and axial scales of peristaltic motion is small. The results indicate the strong effects of Burger’s fluid parameter, Hartman number, Reynolds number, and complaint wall parameters on the velocity field and stream function. The obtained solutions are shown graphically for the different values of involved parameters.

  8. Magnetic Field and Gravity Effects on Peristaltic Transport of a Jeffrey Fluid in an Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. M. Abd-Alla

    2014-01-01

    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric channel has been investigated. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity, and shear stress on the channel walls have been computed numerically. Effects of the Hartmann number, the ratio of relaxation to retardation times, time-mean flow, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity, and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartmann number, ratio of relaxation to retardation times, time-mean flow, phase angle, and gravity field are very pronounced in the peristaltic transport phenomena. Comparison was made with the results obtained in the presence and absence of magnetic field and gravity field.

  9. Microfabricated infuse-withdraw micropump component for an integrated inner-ear drug-delivery platform.

    Science.gov (United States)

    Tandon, Vishal; Kang, Woo Seok; Spencer, Abigail J; Kim, Ernest S; Pararas, Erin E L; McKenna, Michael J; Kujawa, Sharon G; Mescher, Mark J; Fiering, Jason; Sewell, William F; Borenstein, Jeffrey T

    2015-04-01

    One of the major challenges in treatment of auditory disorders is that many therapeutic compounds are toxic when delivered systemically. Local intracochlear delivery methods are becoming critical in emerging treatments and in drug discovery. Direct infusion via cochleostomy, in particular, is attractive from a pharmacokinetics standpoint, as there is potential for the kinetics of delivery to be well-controlled. Direct infusion is compatible with a large number of drug types, including large, complex molecules such as proteins and unstable molecules such as siRNA. In addition, hair-cell regeneration therapy will likely require long-term delivery of a timed series of agents. This presents unknown risks associated with increasing the volume of fluid within the cochlea and mechanical damage caused during delivery. There are three key requirements for an intracochlear drug delivery system: (1) a high degree of miniaturization (2) a method for pumping precise and small volumes of fluid into the cochlea in a highly controlled manner, and (3) a method for removing excess fluid from the limited cochlear fluid space. To that end, our group is developing a head-mounted microfluidics-based system for long-term intracochlear drug delivery. We utilize guinea pig animal models for development and demonstration of the device. Central to the system is an infuse-withdraw micropump component that, unlike previous micropump-based systems, has fully integrated drug and fluid storage compartments. Here we characterize the infuse-withdraw capabilities of our micropump, and show experimental results that demonstrate direct drug infusion via cochleostomy in animal models. We utilized DNQX, a glutamate receptor antagonist that suppresses CAPs, as a test drug. We monitored the frequency-dependent changes in auditory nerve CAPs during drug infusion, and observed CAP suppression consistent with the expected drug transport path based on the geometry and tonotopic organization of the cochlea.

  10. A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    Tasawar Hayat; Najma Saleem; Awatif A. Hendi

    2011-01-01

    A mathematical model is presented with an interest to examine the peristaltic motion in an asymmetric channel by taking into account the slip, heat and mass transfer. Constitutive relationships for a micropolar fluid are used. The solution procedure for nonlinear analysis is given under long wavelength and low Reynolds number approximations. The effects of sundry parameters entering into the expressions of axial velocity,temperature and concentration are explored. Pumping and trapping phenomena are discussed.

  11. Mixed Convection Peristaltic Flow of Third Order Nanofluid with an Induced Magnetic Field

    OpenAIRE

    Saima Noreen

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quant...

  12. Endoscope effects on MHD peristaltic flow of a power-law fluid

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2006-01-01

    Full Text Available To understand the influence of an inserted endoscope and magnetohydrodynamic (MHD power-law fluid on peristaltic motion, an attempt has been made for flow through tubes. The magnetic field of uniform strength is applied in the transverse direction to the flow. The analysis has been performed under long wavelength at low-Reynolds number assumption. The velocity fields and axial pressure gradient have been evaluated analytically. Numerical results are also presented and discussed.

  13. ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance

    DEFF Research Database (Denmark)

    Olesen, Laurits Højgaard; Bruus, Henrik; Ajdari, A.

    2006-01-01

    Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast pumping (velocities similar to mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We...... therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects...... indeed affect the pump performance in a way that we can rationalize by physical arguments....

  14. Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects

    Science.gov (United States)

    Sher Akbar, Noreen; Bintul Huda, A.; Tripathi, D.

    2016-09-01

    We investigate the velocity slip and thermal slip effects on peristaltically driven thermal transport of nanofluids through the vertical parallel plates under the influence of transverse magnetic field. The wall surface is propagating with sinusoidal wave velocity c. The flow characteristics are governed by the mass, momentum and energy conservation principle. Low Reynolds number and large wavelength approximations are taken into consideration to simplify the non-linear terms. Analytical solutions for axial velocity, temperature field, pressure gradient and stream function are obtained under certain physical boundary conditions. Two types of nanoparticles, SiO2 and Ag, are considered for analysis with water as base fluid. This is the first article in the literature that discusses the SiO2 and Ag nanoparticles for a peristaltic flow with variable viscosity. The effects of physical parameters on velocity, temperature, pressure and trapping are discussed. A comparative study of SiO2 nanofluid, Ag nanofluid and pure water is also presented. This model is applicable in biomedical engineering to make thermal peristaltic pumps and other pumping devices like syringe pumps, etc. It is observed that pressure for pure water is maximum and pressure for Ag nanofluid is minimum.

  15. Peristaltic flow in non-uniform vessels of the micro-circulatory system

    CERN Document Server

    Maiti, S

    2013-01-01

    Of concern in the paper is generalized a theoretical study concerning the peristaltic flow of blood in the micro-circulatory system. The vessel is considered to be of non-uniform cross-section and blood to be a non-Newtonian fluid. The progressive wave front of the peristaltic flow is supposed sinusoidal/straight section dominated (SSD) (expansion/contraction type); Reynolds number is considered to be small with reference to the flow of physiological fluids. The non-Newtonian behaviour of blood is illustrated by considering the Herschel-Bulkley fluid model. The objective of the study has been to examine the effect of the effects of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, wall shear stress, streamline pattern and trapping. Considerable quantitative differences between the results obtained for transport in two dimensional channel and an axisymmetric circular tube are noticed. The study shows that peristaltic pumping, flow velocity and wall shea...

  16. Simulation of the fluidic features for diffuser/nozzle involved in a PZT-based valveless micropump

    Institute of Scientific and Technical Information of China (English)

    HouWensheng; Zheng Xiaolin; Biswajit Das; Jiang Yingtao; Qian Shizhi; Wu Xiaoying; Zheng Zhigao

    2008-01-01

    PZT-based valveless micropump is a microactuator that can be used for controlling and delivering tiny amounts of fluids, and diffuser/nozzle plays an important role when this type of micropump drives the fluid flowing along a specific direction. In this paper, a numerical model of micropump has been proposed, and the fluidic properties of diffuser/nozzle have been simulated with ANSYS. With the method of finite-element analysis, the increased pressure drop between inlet and outlet of diffuser/nozzle induces the increment of flow rate in both diffuser and nozzle simultaneously, but the increasing rate of diffuser is faster than that of nozzle. The L/R, ratio of L (length of cone pipe) and R (radius of minimal cross section of cone pipe) plays an important role in fluidic performance of diffuser and nozzle as well, and the mean flow rate will decrease with increment of L/R. The mean flow rate reaches its peak value when L/R with the value of 10 regardless the divergence angle of diffuser or nozzle. The simulation results indicate that the fluidic properties of diffuser/nozzle can be defined by its geometric structure, and accordingly determine the efficiency of micropump.

  17. Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump.

    Science.gov (United States)

    Chatterjee, Dipankar; Amiroudine, Sakir

    2011-02-01

    A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.

  18. Insect-Inspired Micropump: Flow in a Tube with Local Contractions

    Directory of Open Access Journals (Sweden)

    Yasser Aboelkassem

    2015-08-01

    Full Text Available A biologically-inspired micropumping model in a three-dimensional tube subjected to localized wall constrictions is given in this article. The present study extends our previous pumping model where a 3D channel with a square cross-section is considered. The proposed pumping approach herein applies to tubular geometries and is given to mimic an insect respiration mode, where the tracheal tube rhythmic wall contractions are used/hypothesized to enhance the internal flow transport within the entire respiration network. The method of regularized Stokeslets-mesh-free computations is used to reconstruct the flow motions induced by the wall movements and to calculate the time-averaged net flow rate. The time-averaged net flow rates from both the tube and channel models are compared. Results have shown that an inelastic tube with at least two contractions forced to move with a specific time lag protocol can work as a micropump. The system is simple and expected to be useful in many biomedical applications.

  19. Study on an alternating current electrothermal micropump for microneedle-based fluid delivery systems

    Science.gov (United States)

    Zhang, Rumi; Jullien, Graham A.; Dalton, Colin

    2013-07-01

    In this paper, we report on a modeling study of an AC electrothermal (ACET) micropump with high operating pressures as well as fast flow rates. One specific application area is for fluid delivery using microneedle arrays which require higher pressures and faster flow rates than have been previously reported with ACET devices. ACET is very suitable for accurate actuation and control of fluid flow, since the technique has been shown to be very effective in high conductivity fluids and has the ability to create a pulsation free flow. However, AC electrokinetic pumps usually can only generate low operating pressures of 1 to 100 Pa, where flow reversal is likely to occur with an external load. In order to realize a high performance ACET micropump for continuous fluid delivery, applying relatively high AC operating voltages (20 to 36 Vrms) to silicon substrate ACET actuators and using long serpentine channel allows the boosting of operating pressure as well as increasing the flow rates. Fast pumping flow rates (102-103 nl/s) and high operating pressures (1-12 kPa) can be achieved by applying both methods, making them of significant importance for continuous fluid delivery applications using microneedle arrays and other such biomedical devices.

  20. A Comparative Study of Nozzle/Diffuser Micropumps with Novel Valves

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Shyu

    2012-02-01

    Full Text Available This study conducts an experimental study concerning the improvement of nozzle/diffuser micropump design using some novel no-moving-part valves. A total of three micropumps, including two enhancement structures having two-fin or obstacle structure and one conventional micro nozzle/diffuser design, are made and tested in this study. It is found that dramatic increase of the pressure drops across the designed micro nozzles/diffusers are seen when the obstacle or fin structure is added. The resultant maximum flow rates are 47.07 mm3/s and 53.39 mm3/s, respectively, for the conventional micro nozzle/diffuser and the added two-fin structure in micro nozzle/diffuser operated at a frequency of 400 Hz. Yet the mass flow rate for two-fin design surpasses that of conventional one when the frequency is below 425 Hz but the trend is reversed with a further increase of frequency. This is because the maximum efficiency ratio improvement for added two-fin is appreciably higher than the other design at a lower operating frequency. In the meantime, despite the efficiency ratio of the obstacle structure also reveals a similar trend as that of two-fin design, its significant pressure drop (flow resistance had offset its superiority at low operating frequency, thereby leading to a lesser flow rate throughout the test range.

  1. Tolerability, safety and efficacy of Iloprost infusion without peristaltic pump in systemic sclerosis

    Directory of Open Access Journals (Sweden)

    S. Tosi

    2011-09-01

    Full Text Available Objective. To evaluate safety, tolerability and efficacy on Raynaud’s phenomenon (Rp of iloprost infusion without peristaltic pump in patients with systemic sclerosis (SSc. Patients and methods. The inclusion criteria were diagnosis of SSc, age between 18 and 65 years, presence of Rp, and absence of any controindication to the use of iloprost. The treatment was carried out in a day hospital setting and consisted first of 5 consecutive days of iloprost infusion (from an initial dose of 1.0 ng/Kg/min up to 2 ng/kg/min, and then of 2 days of infusions at the maximum possible dose every 45 days for one year. All of the adverse events were carefully recorded and the changes in the Rp were measured by a 5 grade scale (worsened, unmodified, slightly improved, very improved, disappeared. Results. Thirty-eight SSc patients (all females, mean age 49 years (range 18.5-65, disease duration 1.5 years (range 0.5-10.8 were enrolled in the study. During the first cycle of therapy, 14 avderse events occurred in 11 (28.9% patients and during the next cycles, 3 adverse events were seen in 3 (7.9% patients. In all of the cases they were mild and transient. Rp was considered very improved in 15 (39.5% patients, slightly improved in 13 (34.2%, unmodified in 8 (21% and worse in 2 (5.2%. Discussion. In this study intravenous iloprost without peristaltic pump proved to be safe, well tolerated, and as effective as traditional infusion through peristaltic pump in improving Rp in patients with SSc.

  2. A High-Performance, Low-Cost Laser Shutter using a Piezoelectric Cantilever Actuator

    CERN Document Server

    Bowden, W; Baird, P E G; Gill, P

    2016-01-01

    We report the design and characterization of an optical shutter based on a piezoelectric cantilever. Compared to conventional electro-magnetic shutters, the device is intrinsically low power and acoustically quiet. The cantilever position is controlled by a high-voltage op-amp circuit for easy tuning of the range of travel, and mechanical slew rate, which enables a factor of 30 reduction in mechanical noise compared to a rapidly switched device. We achieve shuttering rise and fall times of 11 $\\mu$s, corresponding to mechanical slew rates of 1.3 $\\textrm{ ms}^{-1}$, with an timing jitter of less than 1 $\\mu$s. When used to create optical pulses, we achieve minimum pulse durations of 250 $\\mu$s. The reliability of the shutter was investigated by operating continuously for one week at 10 Hz switching rate. After this period, neither the shutter delay or actuation speed had changed by a notable amount. We also show that the high-voltage electronics can be easily configured as a versatile low-noise, high-bandwidt...

  3. Note: A high-performance, low-cost laser shutter using a piezoelectric cantilever actuator

    Science.gov (United States)

    Bowden, W.; Hill, I. R.; Baird, P. E. G.; Gill, P.

    2017-01-01

    We report the design and characterization of an optical shutter based on a piezoelectric cantilever. Compared to conventional electro-magnetic shutters, the device has intrinsically low power and is acoustically quiet. The cantilever position is controlled by a high-voltage op-amp circuit for easy tuning of the range of travel, and mechanical slew rate, which enables a factor of 30 reduction in mechanical noise compared to a rapidly switched device. We achieve shuttering rise and fall times of 11 μs, corresponding to mechanical slew rates of 1.3 ms-1, with a timing jitter of less than 1 μs. When used to create optical pulses, we achieve minimum pulse durations of 250 μs. The reliability of the shutter was investigated by operating continuously for one week at 10 Hz switching rate. After this period, neither the shutter delay or actuation speed had changed by a measurable amount.

  4. Influences of Hall current and chemical reaction in mixed convective peristaltic flow of Prandtl fluid

    Science.gov (United States)

    Hayat, T.; Zahir, Hina; Tanveer, Anum; Alsaedi, A.

    2016-06-01

    The objective of present analysis is to address the mixed convective peristaltic flow of Prandtl fluid in a planar channel with compliant walls. Effects of applied magnetic field and Hall current are retained. Heat transfer in fluid flow is characterized through convective boundary conditions. Impact of first order chemical reaction together with Soret effect is examined. Problems formulation in view of long wavelength and low Reynolds number consideration is developed. The graphs are obtained numerically for the velocity, temperature, concentration and heat transfer coefficient. Results for Hall parameter and Hartman number on velocity have opposite characteristics.

  5. Peristaltic flow in an asymmetric channel with convective boundary conditions and Joule heating

    Institute of Scientific and Technical Information of China (English)

    Abbasi Fahad Munir; Hayat Tasawar; Ahmad Bashir

    2014-01-01

    The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic (MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.

  6. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  7. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Science.gov (United States)

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  8. Magnetohydrodynamic peristaltic flow of a hyperbolic tangent fluid in a vertical asymmetric channel with heat transfer

    Institute of Scientific and Technical Information of China (English)

    Sohail Nadeem; Safia Akram

    2011-01-01

    In the present paper we discuss the magnetohydrodynamic (MHD) peristaltic flow of a hyperbolic tangent fluid model in a vertical asymmetric channel under a zero Reynolds number and long wavelength approximation. Exact solution of the temperature equation in the absence of dissipation term has been computed and the analytical expression for stream function and axial pressure gradient are established. The flow is analyzed in a wave frame of reference moving with the velocity of wave. The expression for pressure rise has been computed numerically. The physical features of pertinent parameters are analyzed by plotting graphs and discussed in detail.

  9. Peristaltic transport of Conducting Bingham fluid in contact with a Newtonian fluid in a channel

    Directory of Open Access Journals (Sweden)

    M.Arun kumar

    2013-04-01

    Full Text Available Peristaltic pumping by a sinusoidal traveling wave in the walls of a two dimensional channel filled with two immiscible fluids with magnetic effect is investigated. The core region of the channel is occupied by a Bingham fluid where as the peripheral region is occupied by a Newtonian fluid. The flow is examined in a wave frame of reference moving with the velocity of the wave. The expressions for the stream function, the velocity and the pressure rise are obtained. The equation for the interface separating the two fluids is obtained. Numerical results are reported for several of the physical parameters of interest. We observed that the lower values of

  10. Numerical simulation of peristaltic flow of a Carreau nanofluid in an asymmetric channel

    Directory of Open Access Journals (Sweden)

    Noreen Sher Akbar

    2014-03-01

    Full Text Available In this article, we studied MHD peristaltic flow of a Carreau nanofluid in an asymmetric channel. The flow development is carried out in a wave frame of reference moving with velocity of the wave c1. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then tackled numerically using the fourth and fifth order Runge–Kutta–Fehlberg. Numerical results are obtained for dimensionless velocity, stream function, pressure rise, temperature and nanoparticle volume fraction. It is found that the pressure rise increases with increase in Hartmann Number and thermophoresis parameter.

  11. Peristaltic flow of a Johnson-Segalman fluid through a deformable tube

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongqi [Darmstadt University of Technology, Department of Mechanical Engineering, Darmstadt (Germany); Universitaet fuer Bodenkultur, Institute of Geotechnical Engineering, Vienna (Austria); Hayat, Tasawar [Quaid-i-Azam University, Mathematics Department, Islamabad (Pakistan); Hutter, Kolumban [ETH Zuerich, VAW, Zuerich (Switzerland)

    2007-09-15

    To understand theoretically the flow properties of physiological fluids we have considered as a model the peristaltic motion of a Johnson-Segalman fluid in a tube with a sinusoidal wave traveling down its wall. The perturbation solution for the stream function is obtained for large wavelength and small Weissenberg number. The expressions for the axial velocity, pressure gradient, and pressure rise per wavelength are also constructed. The general solution of the governing nonlinear partial differential equation is given using a transformation method. The numerical solution is also obtained and is compared with the perturbation solution. Numerical results are demonstrated for various values of the physical parameters of interest. (orig.)

  12. Mathematical Analysis for Peristaltic Flow of Two Phase Nanofluid in a Curved Channel

    Science.gov (United States)

    Nadeem, S.; Iqra, Shahzadi

    2015-11-01

    This paper describes the theoretical analysis for peristaltic motion of water base nanofluid containing distinct types of the nanoparticles like Cu, TiO2, and Al2O3. Equations of nano fluid are modelled and simplified by constructing the suppositions of low Reynolds number as well as long wave length. The reduced equations are solved exactly. Solutions are represented through graphs. Outcomes for the velocity, temperature, pressure rise and stream lines are analyzed graphically. The work presented here is based on the fictitious values, however some other values can be tested experimentally.

  13. The Mathematical Analysis for Peristaltic Flow of Hyperbolic Tangent Fluid in a Curved Channel

    Institute of Scientific and Technical Information of China (English)

    S.Nadeem; E.N.Maraj

    2013-01-01

    In the present paper,we have investigated the peristaltic flow of hyperbolic tangent fluid in a curved channel.The governing equations of hyperbolic tangent fluid model for curved channel are derived including the effects of curvature.The highly nonlinear partial differential equations are simplified by using the wave frame transformation,long wave length and low Reynolds number assumptions.The reduced nonlinear partial differential equation is solved analytically with the help of homotopy perturbation method (HPM).The physical features of pertinent parameters have been discussed by plotting the graphs of pressure rise and stream functions.

  14. Radiative Peristaltic Flow of Jeffrey Nanofluid with Slip Conditions and Joule Heating.

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Mixed convection peristaltic flow of Jeffrey nanofluid in a channel with compliant walls is addressed here. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Whole analysis is performed for velocity, thermal and concentration slip conditions. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating and slip parameters are explored in detail. Clearly temperature is a decreasing function of Hartman number and radiation parameter.

  15. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Science.gov (United States)

    Hayat, T.; Shafique, Maryam; Tanveer, A.; Alsaedi, A.

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects.

  16. Peristaltic flow of Johnson-Segalman fluid in asymmetric channel with convective boundary conditions

    Institute of Scientific and Technical Information of China (English)

    H YASMIN; T HAYAT; A ALSAEDI; HH ALSULAMI

    2014-01-01

    This work is concerned with the peristaltic transport of the Johnson-Segalman fluid in an asymmetric channel with convective boundary conditions. The mathematical modeling is based upon the conservation laws of mass, linear momentum, and energy. The resulting equations are solved after long wavelength and low Reynolds number are used. The results for the axial pressure gradient, velocity, and temperature profiles are obtained for small Weissenberg number. The expressions of the pressure gra-dient, velocity, and temperature are analyzed for various embedded parameters. Pumping and trapping phenomena are also explored.

  17. Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium

    Science.gov (United States)

    Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir

    2016-01-01

    The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland’s approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems. PMID:26808387

  18. Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium.

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland's approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems.

  19. A magnetic shape memory micropump: contact-free, and compatible with PCR and human DNA profiling

    Science.gov (United States)

    Ullakko, K.; Wendell, L.; Smith, A.; Müllner, P.; Hampikian, G.

    2012-11-01

    Magnetic shape memory (MSM) Ni-Mn-Ga elements are relatively new materials with a variety of remarkable properties. They respond to changes in magnetic fields by elongating and shortening up to 6%. We have constructed a micropump which consists principally of a single component, the MSM element. The pump can be driven by the rotation of a diametrically magnetized cylindrical magnet or by an electrical rotation of the magnetic field; it is reversible, and can be effectively operated by hand without any electrical power. The MSM element does not inhibit the polymerase chain reaction. We demonstrate that it is compatible with forensic applications and show that it does not inhibit human DNA profiling. This novel pump is suitable for lab-on-a-chip applications that require microfluidics.

  20. Experimental study of thermally-driven micro-pump using stepped laser

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong; HUAI Xiulan; LI Huazhi; LIU Dengying; MENG Qun

    2004-01-01

    The stepped pulse-laser is used to heat the fluid in a micro-tube with the diameter less than 1 mm, and a phase change and a directional flow of the fluid are induced. Based on many experimental observations, the mechanism of thermally-driven MEMS is studied and the technical approaches of the efficient and steady thermally-driven flow is given. The experimental results show that the hypostasis of the thermally-driven micro-pump is a kind of erratic liquid-vapor two-phase flow, and the liquid movement and the change rate of the pressure is closely related to the bubbles' behavior in the micro-tube.

  1. NUMERICAL STUDY OF PERIODICAL FLOWS OF PIEZOELECTRIC VALVELESS MICROPUMP FOR BIOCHIPS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-li; WU Jian-kang

    2005-01-01

    Shallow water model was employed to approximate the three-dimensional flows of a thin micropump to a two-dimensional thickness-averaged flows. The finite element method and pressure correction algorithm were used to solve the twodimensional flows of the pump and calculate the pump flow rate. The numerical results indicate that: 1 ) Phase differences in time of flow velocities and backflows occur across section of diffuser connecting to pump chamber; 2 ) A pair of symmetric vortexes appear inside the pump chamber at the end of suction flow phase; 3) The directional flow rate of the pump is dominated by nonlinearity of Navier-Stokes equations.Quantitative relations of the pump flow rate versus the ratio of diffuser length to width,the ratio of diffuser thickness to width, fluid viscosity and backpressure were also given. Possibly maximal flow rate can be achieved by optimizing the pump parameters.

  2. Implantable MicroPump for Drug Delivery in Patients with Diabetic Macular Edema

    Science.gov (United States)

    Humayun, Mark; Santos, Arturo; Altamirano, Juan Carlos; Ribeiro, Ramiro; Gonzalez, Roberto; de la Rosa, Alejandro; Shih, Jason; Pang, Changling; Jiang, Fukang; Calvillo, Philip; Huculak, John; Zimmerman, Jenna; Caffey, Sean

    2014-01-01

    Purpose To demonstrate the safety and surgical feasibility of the first-in-man ocular implant of a novel Posterior MicroPump Drug Delivery System (PMP) in patients with diabetic macular edema (DME) and to report on the device capabilities for delivering a programmable microdose. Methods This was a single center, single arm, open-label, prospective study. Eleven patients with DME and visual acuity equal to or worse than 20/40 were included. The PMP prefilled with ranibizumab was implanted into the subconjunctival space. After implantation, the PMP was wirelessly controlled to deliver a programmed microdose. Comprehensive ophthalmic exams and optical coherence tomography were performed biweekly for 90 days. At the end of the study, the PMP was explanted and the subjects thereafter received standard of care for DME (i.e., laser or intravitreal injections). Results All 11 surgical implantations were without complications and within the skill sets of a retinal surgeon. No serious adverse events occurred during the follow-up period. At no point were visual acuity and central foveal thickness worse than baseline in the implanted eye. The PMP delivered the programmed ranibizumab dosage in seven subjects. The remaining four patients received a lower than target dose, and the treatment was complemented with standard intravitreal injection. Conclusions This study demonstrates the first-in-man safety of the Replenish MicroPump implant for a period of 90 days and its capability to deliver a microdose into the vitreous cavity. Further studies to enable longer-term safety and to demonstrate the feasibility of multiple programmable drug delivery are necessary. PMID:25653883

  3. MHD peristaltic transport of spherical and cylindrical magneto-nanoparticles suspended in water

    Directory of Open Access Journals (Sweden)

    F. M. Abbasi

    2015-07-01

    Full Text Available Advancements in the biomedical engineering have enhanced the usage of magnto-nanoparticles in improving the precision and efficiency of the magneto-drug delivery systems. Such systems make use of the externally applied magnetic fields to direct the drug towards a specific target in the human body. Peristalsis of magneto-nanofluids is of significant importance in such considerations. Hence peristaltic transport of Fe3O4-water nanofluid through a two-dimensional symmetric channel is analyzed in the presence of an externally applied constant magnetic field. Hamilton-Crosser’s model of the thermal conductivity is utilized in the problem development. The nanofluid saturates a non-uniform porous medium in which the porosity of the porous medium varies with the distance from the channel walls. Analysis is performed for the spherical and the cylindrical nanoparticles. Resulting system of equations is numerically solved. Impacts of sundry parameters on the axial velocity, temperature, pressure gradient and heat transfer rate at the boundary are examined. Comparison between the results for spherical and cylindrical nanoparticles is also presented. Results show that the nanoparticles volume fraction and the Hartman number have increasing effect on the pressure gradient throughout the peristaltic tract. Effective heat transfer rate at the boundary tends to enhance with an increase in the nanoparticles volume fraction. Use of spherical nanoparticles results in a higher value of axial velocity and the temperature at the center of channel when compared with the case of cylindrical nanoparticles.

  4. Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine

    Directory of Open Access Journals (Sweden)

    Sohail Nadeem

    2012-01-01

    Full Text Available Mathematical model for the peristaltic flow of chyme in small intestine along with inserted endoscope is considered. Here, chyme is treated as Williamson fluid, and the flow is considered between the annular region formed by two concentric tubes (i.e., outer tube as small intestine and inner tube as endoscope. Flow is induced by two sinusoidal peristaltic waves of different wave lengths, traveling down the intestinal wall with the same speed. The governing equations of Williamson fluid in cylindrical coordinates have been modeled. The resulting nonlinear momentum equations are simplified using long wavelength and low Reynolds number approximations. The resulting problem is solved using regular perturbation method in terms of a variant of Weissenberg number We. The numerical solution of the problem is also computed by using shooting method, and comparison of results of both solutions for velocity field is presented. The expressions for axial velocity, frictional force, pressure rise, stream function, and axial pressure gradient are obtained, and the effects of various emerging parameters on the flow characteristics are illustrated graphically. Furthermore, the streamlines pattern is plotted, and it is observed that trapping occurs, and the size of the trapped bolus varies with varying embedded flow parameters.

  5. Effect of Longitudinal Motion of Boundary Material Points on Peristaltic Transport

    Science.gov (United States)

    Pal, Anupam; Brasseur, James

    1998-11-01

    During peristaltic transport of food through the esophagus, material points on the esophageal wall move axially as well as radially. These motions are a consequence of shortening of the longitudinal muscle. Here we evaluate the effect of these axial motions on the transport, forces and power associated with peristalsis. METHODS: The geometries of axisymmetric esophageal peristaltic waves are approximated as ``tear drop'' shaped. The trajectories of material points on the boundary are defined mathematically to resemble closely measurements in the esophagus. We apply the lubrication theory approximations, for low Reynolds number and gentle wall curvature. RESULTS: The longitudinal motions of the boundary material points do not significantly affect the flow rate. However, pressure and shear stress in the contraction zone can be lowered significantly by axial motion, leading to lower energy requirements. The magnitude of reduction in the stresses is greatest when the points of maximal axial strain and occlusion pressure are nearly aligned. DISCUSSION: The axial motion of the muscle wall has been hypothesized to play a physiological role by increasing muscle fiber density and thereby reducing average muscle fiber tension. This study shows that longitudinal motion also reduces the pressure and shear stress, implying even lower tension. The consequent lower energy requirement increases efficiency of transport.

  6. The Relation between Peristaltic and Segmental Contraction, Mixing, and Absorption in the Small Intestine

    Science.gov (United States)

    Banco, Gino; Brasseur, James; Wang, Yanxing; Ailiani, Amit; Neuberger, Thomas; Webb, Andrew

    2009-11-01

    The physiology and mechanics of the small intestine originates with lumen-scale fluid motions generated by enterically controlled muscle wall contractions. Although complex in appearance, we have shown with principle component decomposition of gut motion from a rat model that simpler component structure may integrate to produce basic peristaltic and segmental motions. To couple these measured modes with fluid mixing and nutrient absorption we have developed 2-D and axisymmetric models of the gut using the lattice-Boltzmann framework with scalar and second order moving boundary conditions. Previous models indicated that peristalsis is detrimental to absorption and therefore that gut motility is likely bimodal, transitioning between peristalsis and segmental modes to optimize the transport of chyme vs. nutrient absorption. However we have since discovered that more complex control is possible due to potential transitions between ``trapped'' vs. ``nontrapped'' peristaltic fluid motions, depending on occlusion ratio. These transitions lead to an important distinction between 2-D and axisymmetric models and indicate that gut motility may be more finely controlled than previously thought. [Supported by NSF

  7. Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus

    CERN Document Server

    Misra, J C

    2011-01-01

    Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bolus through the esophagus. The analysis has been carried out by using lubrication theory. The study is particularly suitable for cases where the Reynolds number is small. The esophagus is treated as a circular tube through which the transport of food bolus takes places by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocity, particle trajectory and reflux are investigated for a single wave as well as for a train of periodic per...

  8. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    Science.gov (United States)

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.

  9. Analysis of Peristaltic Motion of a Nanofluid with Wall Shear Stress, Microrotation, and Thermal Radiation Effects

    Science.gov (United States)

    Dhanapal, C.; Kamalakkannan, J.; Prakash, J.

    2016-01-01

    This paper analyzes the peristaltic flow of an incompressible micropolar nanofluid in a tapered asymmetric channel in the presence of thermal radiation and heat sources parameters. The rotation of the nanoparticles is incorporated in the flow model. The equations governing the nanofluid flow are modeled and exact solutions are managed under long wavelength and flow Reynolds number and long wavelength approximations. Explicit expressions of axial velocity, stream function, microrotation, nanoparticle temperature, and concentration have been derived. The phenomena of shear stress and trapping have also been discussed. Finally, the influences of various parameters of interest on flow variables have been discussed numerically and explained graphically. Besides, the results obtained in this paper will be helpful to those who are working on the development of various realms like fluid mechanics, the rotation, Brownian motion, thermophoresis, coupling number, micropolar parameter, and the nondimensional geometry parameters. PMID:27688703

  10. Peristaltic flow of a reactive viscous fluid through a porous saturated channel and convective cooling conditions

    Science.gov (United States)

    Asghar, S.; Hussain, Q.; Hayat, T.; Alsaedi, A.

    2015-07-01

    This article addresses the heat transfer in a peristaltic flow of a reactive combustible viscous fluid through a porous saturated medium. The flow here is induced because of travelling waves along the channel walls. It is assumed that exothermic chemical reactions take place within the channel under the Arrhenius kinetics and the convective heat exchange with the ambient medium at the surfaces of the channel walls follows Newton's law of cooling. The analysis is carried out in the presence of viscous dissipation and without consumption of the material. The governing equations are formulated by employing the long-wavelength approximation. Closed-form solutions for the stream function, axial velocity, and axial pressure gradient are obtained. It is found that the temperature decreases at high Biot numbers, and the Nusselt number increases with increasing reaction parameter. The Biot number and reaction parameter produce the opposite effects on the Nusselt number.

  11. Peristaltic flow of a micropolar fluid with nano particles in small intestine

    Science.gov (United States)

    Akbar, Noreen Sher; Nadeem, S.

    2013-12-01

    The present article analyzed the peristaltic flow of a nanofluid in a uniform tube for micropolar fluid. The governing equations for proposed model are developed in cylindrical coordinates system. The flow is discussed in a wave frame of reference moving with velocity of the wave c. Under the assumptions of longwave length the reduced coupled nonlinear differential equations of momentum, energy, and concentrations are solved by Homotopy perturbation method is used to get the solutions for velocity, temperature, nano particle, microrotation component. The solutions consists Brownian motion number N b, thermophoresis number N t, local temperature Grashof number B r and local nano particle Grashof number G r . The effects of various parameters involved in the problem are investigated for pressure rise, pressure gradient, temperature and concentration profile. Five different waves are taken into account for analysis. Streamlines have been plotted at the end of the article.

  12. Characteristics of Jeffrey fluid model for peristaltic flow of chyme in small intestine with magnetic field

    Science.gov (United States)

    Akbar, Noreen Sher; Nadeem, S.; Lee, Changhoon

    In the present article we have analyzed the Jeffrey fluid model for the peristaltic flow of chyme in the small intestine. We have formulated the problem using two non-periodic sinusoidal waves of different wavelengths propagating with same speed c along the outer wall of the tube. Governing equations for the problem under consideration have been simplified under the assumptions of long wavelength and low Reynolds number approximation (such assumptions are consistent since Re (Reynolds number) is very small and long wavelength approximation also exists in the small intestine). Exact solutions have been calculated for velocity and pressure rise. Physical behavior of different parameters of Jeffrey fluid has been presented graphically for velocity, pressure rise, pressure gradient and frictional forces. The trapping phenomenon is also discussed at the end of the article.

  13. Peristaltic Pumping near Post-CME Supra-Arcade Current Sheets

    CERN Document Server

    Scott, Roger B; McKenzie, David E

    2013-01-01

    Measurements of temperature and density near supra-arcade current sheets suggest that plasma on unreconnected field lines may experience some degree of "pre-heating" and "pre-densification" prior to their reconnection. Models of patchy reconnection allow for heating and acceleration of plasma along reconnected field lines but do not offer a mechanism for transport of thermal energy across field lines. Here we present a model in which a reconnected flux tube retracts, deforming the surrounding layer of unreconnected field. The deformation creates constrictions that act as peristaltic pumps, driving plasma flow along affected field lines. Under certain circumstances these flows lead to shocks that can extend far out into the unreconnected field, altering the plasma properties in the affected region. These findings have direct implications for observations in the solar corona, particularly in regard to such phenomena as high temperatures near current sheets in eruptive solar flares and wakes seen in the form of ...

  14. Numerical simulation for peristaltic activity of Sutterby fluid with modified Darcy's law

    Science.gov (United States)

    Hayat, T.; Ayub, S.; Alsaedi, A.; Tanveer, A.; Ahmad, B.

    The current work examines the peristaltic flow of Sutterby fluid in a planar symmetric channel. Electrically conducting fluid is considered via imposed magnetic field. An incompressible Sutterby fluid saturates the porous medium. Modified Darcy's law has been employed for the porous medium effect. The channel walls are compliant. Convective conditions of heat and mass transfer are imposed. Viscous dissipation and Joule heating are retained. Problem for large wavelength are numerically solved. The graphs are obtained for the velocity, temperature, concentration and heat transfer rate. Velocity and concentration profiles are observed to have opposite behavior for increasing Darcy number. It is found that the effect of Hartman number on the velocity and temperature profiles is similar. Further heat transfer coefficient strengthened when heat transfer Biot number is increased.

  15. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Nisar, Z. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Yasmin, H., E-mail: qau2011@gmail.com [Department of Mathematics, COMSATS Institute of Information Technology, G.T. Road, Wah Cantt 47040 (Pakistan)

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number.

  16. Peristaltic motion of Johnson-Segalman fluid in a curved channel with slip conditions.

    Directory of Open Access Journals (Sweden)

    Sadia Hina

    Full Text Available Slip effects on the peristaltic transport of Johnson-Segalman fluid through a curved channel have been addressed. The influence of wall properties is also analyzed. Long wavelength and low Reynolds number assumptions have been utilized in the mathematical formulation of the problem. The equations so formed have been solved numerically by shooting method through computational software Mathematica 8. In addition the analytic solution for small Weissenberg number (elastic parameter is computed through a regular perturbation method. An excellent agreement is noticed between the two solutions. The results indicate an increase in the magnitude of velocity with an intensification in the slip effect. Moreover the size and circulation of the trapped boluses increase with an increase in the slip parameter. Unlike the planar channel, the profiles of axial velocity are not symmetric about the central line of the channel.

  17. Peristaltic motion of Johnson-Segalman fluid in a curved channel with slip conditions.

    Science.gov (United States)

    Hina, Sadia; Mustafa, Meraj; Hayat, Tasawar

    2014-01-01

    Slip effects on the peristaltic transport of Johnson-Segalman fluid through a curved channel have been addressed. The influence of wall properties is also analyzed. Long wavelength and low Reynolds number assumptions have been utilized in the mathematical formulation of the problem. The equations so formed have been solved numerically by shooting method through computational software Mathematica 8. In addition the analytic solution for small Weissenberg number (elastic parameter) is computed through a regular perturbation method. An excellent agreement is noticed between the two solutions. The results indicate an increase in the magnitude of velocity with an intensification in the slip effect. Moreover the size and circulation of the trapped boluses increase with an increase in the slip parameter. Unlike the planar channel, the profiles of axial velocity are not symmetric about the central line of the channel.

  18. Rotation effect on peristaltic transport of a Jeffrey fluid in an asymmetric channel with gravity field

    Directory of Open Access Journals (Sweden)

    A.M. Abd-Alla

    2016-06-01

    Full Text Available In this paper, the peristaltic flow of a Jeffrey fluid in an asymmetric rotating channel is studied under long wavelength and low Reynolds number assumptions are investigated. Closed form expressions for the pressure gradient, pressure rise, stream function, axial velocity and shear stress on the channel walls have been computed numerically. The effects of the ratio of relaxation to retardation times, time-mean flow, rotation, the phase angle and the gravity field on the pressure gradient, pressure rise, streamline, axial velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of the ratio of relaxation to retardation times, time-mean flow, rotation, the phase angle and the gravitational field are very pronounced in the phenomena. Comparison was made with the results obtained in the asymmetric channel and symmetric channel.

  19. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Science.gov (United States)

    Hayat, T.; Nisar, Z.; Ahmad, B.; Yasmin, H.

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters.

  20. Analysis of Peristaltic Motion of a Nanofluid with Wall Shear Stress, Microrotation, and Thermal Radiation Effects

    Directory of Open Access Journals (Sweden)

    C. Dhanapal

    2016-01-01

    Full Text Available This paper analyzes the peristaltic flow of an incompressible micropolar nanofluid in a tapered asymmetric channel in the presence of thermal radiation and heat sources parameters. The rotation of the nanoparticles is incorporated in the flow model. The equations governing the nanofluid flow are modeled and exact solutions are managed under long wavelength and flow Reynolds number and long wavelength approximations. Explicit expressions of axial velocity, stream function, microrotation, nanoparticle temperature, and concentration have been derived. The phenomena of shear stress and trapping have also been discussed. Finally, the influences of various parameters of interest on flow variables have been discussed numerically and explained graphically. Besides, the results obtained in this paper will be helpful to those who are working on the development of various realms like fluid mechanics, the rotation, Brownian motion, thermophoresis, coupling number, micropolar parameter, and the nondimensional geometry parameters.

  1. MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects.

    Science.gov (United States)

    Shehzad, Sabir Ali; Abbasi, Fahad Munir; Hayat, Tasawar; Alsaadi, Fuad

    2014-01-01

    The primary objective of present investigation is to introduce the novel aspect of thermophoresis in the mixed convective peristaltic transport of viscous nanofluid. Viscous dissipation and Joule heating are also taken into account. Problem is modeled using the lubrication approach. Resulting system of equations is solved numerically. Effects of sundry parameters on the velocity, temperature, concentration of nanoparticles and heat and mass transfer rates at the wall are studied through graphs. It is noted that the concentration of nanoparticles near the boundaries is enhanced for larger thermophoresis parameter. However reverse situation is observed for an increase in the value of Brownian motion parameter. Further, the mass transfer rate at the wall significantly decreases when Brownian motion parameter is assigned higher values.

  2. Effects of nanoparticles on the peristaltic motion of tangent hyperbolic fluid model in an annulus

    Directory of Open Access Journals (Sweden)

    S. Nadeem

    2015-12-01

    Full Text Available In the present article, effects of nanoparticles on the peristaltic flow of tangent hyperbolic fluid in an annulus are described. The two-dimensional equations of tangent hyperbolic fluid are solved by using the assumptions of low Reynolds number and long wavelength. Analytical solution is obtained with the help of homotopy perturbation and Adomian decomposition method for velocity, temperature and nanoparticles concentration. Solutions are discussed through graphs. Solutions for pressure rise, temperature, nanoparticles concentration, pressure gradient and streamlines are plotted for various emerging parameters. It is found that the temperature profile increases with increase in Brownian motion and thermophoresis parameter. It is also found that the size of the trapped bolus in triangular wave is smaller as compared to other waves. Further, the comparison of both analytical solutions is presented.

  3. Electrohydrodynamic peristaltic flow of a viscoelastic Oldroyd fluid with a mild stenosis: Application of an endoscope

    Science.gov (United States)

    El-dabe, N. T. M.; Moatimid, G. M.; Hassan, M. A.; Mostapha, D. R.

    2016-01-01

    The effect of a vertical alternating current, electric field, and heat transfer on a peristaltic flow of a dielectric viscoelastic Oldroyd fluid is studied. This analysis involves uniform and nonuniform annuli having a mild stenosis. The analytical solutions of equations of motion are based on the perturbation technique. This technique depends on two parameters: amplitude ratio and small wave number. Numerical calculations are performed to obtain the effects of several parameters, such as the electrical Rayleigh number, temperature gradient, Reynolds number, wave number, maximum height of stenosis, and Weissenberg numbers, on the distributions of velocity, temperature, electric potential, and wall shear stress. It is found that the above-mentioned distributions in the case of a convergent tapered tube are larger than those in the case of a non-tapered one as well as a diverging tapered tube.

  4. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    Directory of Open Access Journals (Sweden)

    Zhaoying Zhou

    2009-04-01

    Full Text Available In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  5. A peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls.

    Science.gov (United States)

    Du, Min; Ye, Xiongying; Wu, Kang; Zhou, Zhaoying

    2009-01-01

    In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ∼490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  6. Stokesian peristaltic pumping in a three-dimensional tube with a phase-shifted asymmetry

    Science.gov (United States)

    Aranda, Vivian; Cortez, Ricardo; Fauci, Lisa

    2011-08-01

    Many physiological flows are driven by waves of muscular contractions passed along a tubular structure. This peristaltic pumping plays a role in ovum transport in the oviduct and in rapid sperm transport through the uterus. As such, flow due to peristalsis has been a central theme in classical biological fluid dynamics. Analytical approaches and numerical methods have been used to study flow in two-dimensional channels and three-dimensional tubes. In two dimensions, the effect of asymmetry due to a phase shift between the channel walls has been examined. However, in three dimensions, peristalsis in a non-axisymmetric tube has received little attention. Here, we present a computational model of peristaltic pumping of a viscous fluid in three dimensions based upon the method of regularized Stokeslets. In particular, we study the flow structure and mean flow in a three-dimensional tube whose asymmetry is governed by a single phase-shift parameter. We view this as a three-dimensional analog of the phase-shifted two-dimensional channel. We find that the maximum mean flow rate is achieved for the parameter that results in an axisymmetric tube. We also validate this approach by comparing our computational results with classical long-wavelength theory for the three-dimensional axisymmetric tube. This computational framework is easily implemented and may be adapted to more comprehensive physiological models where the kinematics of the tube walls are not specified a priori, but emerge due to the coupling of its passive elastic properties, force generating mechanisms, and the surrounding viscous fluid.

  7. 微量注射泵的质量检测及误差探究%Quality Inspection and Error Inquiry of the Injection Micro-pump

    Institute of Scientific and Technical Information of China (English)

    杨康为; 胡世辉; 龚婷婷

    2016-01-01

    The research explores the relative and absolute error under the instantaneous velocity and the average velocity based on the quality control testing of different models of injection micro-pump. The research aims to help with the process of quality control of the injection micro-pump so as to enhance the reliability of the injection micro-pump in clinical practice.%通过对不同型号的微量注射泵进行质量控制检测,研究它们的瞬时流速、平均流速的相对误差和绝对误差,以期为日后质量控制工作的开展提供些许帮助,为临床在注射泵上的使用提供安全保障。

  8. Multi-Phase Flow and Heat Transfer of a Micro-Pump Thermally Driven by a Multi-Output Pulse Laser

    Institute of Scientific and Technical Information of China (English)

    HUAI Xiu-Lan; TANG Zhi-Wei; WANG Guo-Xiang; WANG Wei-Wei

    2005-01-01

    @@ We present an experimental study of multi-phase flow and heat transfer in a micro-tube induced by a multi-output pulse laser. Extensive flow and heat transfer measurements and visualization experiments have been carried out to characterize the micro-pump behaviour under various conditions. The experiments reveal extremely unsteady and complex flow patterns in the micro tube with the flow closely related with generation and collapse of bubbles.It is found that the flow rates are controlled by the heating and condensation conditions within the tube. The laser pulse duration, pulse interval and output-power as well as the tube diameter all show a strong influence on the flow rate of the micro-pump. This study provides a basis for the design of thermally-driven micro-pump induced by a pulsed laser beam.

  9. Shaker-type Kv1 channel blockers increase the peristaltic activity of guinea-pig ileum by stimulating acetylcholine and tachykinins release by the enteric nervous system.

    Science.gov (United States)

    Vianna-Jorge, Rosane; Oliveira, Cyntia F; Garcia, Maria L; Kaczorowski, Gregory J; Suarez-Kurtz, Guilherme

    2003-01-01

    1 A constant intraluminal pressure system was used to evaluate the effects of Kv1 channel blockers on the peristaltic activity of guinea-pig ileum. 2 The nortriterpene correolide, a non-selective inhibitor of all Kv1 sub-types, causes progressive and sustained reduction of the pressure threshold for eliciting peristaltic contractions. 3 Margatoxin (MgTX), alpha-dendrotoxin (alpha-DTX) and dendrotoxin-K (DTX-K), highly selective peptidyl inhibitors of certain Kv1 sub-types, cause immediate reduction of the pressure threshold. This effect subsides with time, irrespective of the peptides' concentration in the bath. In preparations pretreated with saturating concentrations of MgTX, correolide further stimulates the peristaltic activity. 4 Iberiotoxin (IbTX), a selective inhibitor of the high-conductance Ca(2+)-activated K(+) (BK) channels, and charybdotoxin (ChTX), which inhibits Kv1.2 and Kv1.3 as well as BK channels, fail to stimulate the peristaltic activity. 5 Blockade of muscarinic receptors by atropine reduces, and occasionally suppresses the peristaltic activity of guinea-pig ileum. In atropine-treated preparations, correolide and MgTX retain their abilities to reduce the pressure threshold and are able to restore the peristaltic reflex in the preparations where this reflex was suppressed by atropine. 6 The stimulatory effect of correolide and MgTX in atropine-treated preparations is abolished by subsequent addition of selective antagonists of both NK1 and NK2 receptors. 7 In conclusion, blockade of Kv1, particularly Kv1.1 channels, increases the peristaltic activity of guinea-pig ileum by enhancing the release of neurotransmitters at the enteric nervous system. In contrast, stimulation of the myogenic motility by blockade of BK channels does not affect the threshold for the peristaltic reflex.

  10. Differential peristaltic motor effects of prostanoid (DP, EP, IP, TP) and leukotriene receptor agonists in the guinea-pig isolated small intestine

    OpenAIRE

    Shahbazian, Anaid; Heinemann, Akos; Peskar, Bernhard A; Holzer, Peter

    2002-01-01

    Since the role of prostanoid receptors in intestinal peristalsis is largely unknown, the peristaltic motor effects of some prostaglandin (DP, EP, IP), thromboxane (TP) and leukotriene (LT) receptor agonists and antagonists were investigated.Propulsive peristalsis in fluid-perfused segments from the guinea-pig small intestine was triggered by a rise of the intraluminal pressure and recorded via the intraluminal pressure changes associated with the peristaltic waves. Alterations of distension s...

  11. PV-Li-ion-micropump membrane systems for portable personal desalination

    Directory of Open Access Journals (Sweden)

    Mark P. McHenry

    2016-03-01

    Full Text Available This research presents a technical simulation of theoretically portable desalination systems utilising low-energy and lightweight components that are either commercially available or currently in development. The commercially available components are small-scale flexible and portable photovoltaic (PV modules, Li-ion battery-converter units, and high pressure low voltage brushless DC motor-powered micropumps. The theoretical and conventional small-scale desalination membranes are compared against each other: low-pressure reverse osmosis (RO, nanofilters, graphene, graphene oxide, and graphyne technology. The systems were designed with the identical PV-Li-ion specifications and simulation data to quantify the energy available to power the theoretical energy demand for desalinating a saline water at 30,000–40,000 ppm total dissolved solid (TDS to reliably supply the minimum target of 3.5 L d−1 of freshwater for one theoretical year. The results demonstrate that modern portable commercially available PV-battery systems and new generations of energy-efficient membranes under development have the potential to enable users to sustainably procure daily drinking water needs from saline/contaminated water resources, with the system exhibiting a net reduction in weight than carrying water itself.

  12. Topology and shape optimization of induced-charge electro-osmotic micropumps

    Energy Technology Data Exchange (ETDEWEB)

    Gregersen, M M; Okkels, F; Bruus, H [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Bazant, M Z [Departments of Chemical Engineering and Mathematics, MIT, Cambridge, MA 02139 (United States)], E-mail: Henrik.Bruus@nanotech.dtu.dk

    2009-07-15

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology-optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance.

  13. Insulin Micropump with Embedded Pressure Sensors for Failure Detection and Delivery of Accurate Monitoring

    Directory of Open Access Journals (Sweden)

    Dimitry Dumont-Fillon

    2014-11-01

    Full Text Available Improved glycemic control with insulin pump therapy in patients with type 1 diabetes mellitus has shown gradual reductions in nephropathy and retinopathy. More recently, the emerging concept of the artificial pancreas, comprising an insulin pump coupled to a continuous glucose meter and a control algorithm, would become the next major breakthrough in diabetes care. The patient safety and the efficiency of the therapy are directly derived from the delivery accuracy of rapid-acting insulin. For this purpose, a specific precision-oriented design of micropump has been built. The device, made of a stack of three silicon wafers, comprises two check valves and a pumping membrane that is actuated against stop limiters by a piezo actuator. Two membranes comprising piezoresistive strain gauges have been implemented to measure the pressure in the pumping chamber and at the outlet of the pump. Their high sensitivity makes possible the monitoring of the pumping accuracy with a tolerance of ±5% for each individual stroke of 200 nL. The capability of these sensors to monitor priming, reservoir overpressure, reservoir emptying, outlet occlusion and valve leakage has also been studied.

  14. Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Afsar Khan, A. [Department of Mathematics and Statistics, FBAS, IIUI, Islamabad (Pakistan); Ellahi, R., E-mail: rahmatellahi@yahoo.com [Department of Mathematics and Statistics, FBAS, IIUI, Islamabad (Pakistan); Department of Mechanical Engineering, Bourns Hall, University of California Riverside, CA 92521 (United States); Mudassar Gulzar, M. [National University of Sciences and Technology, College of Electrical and Mechanical Engineering Islamabad (Pakistan); Sheikholeslami, Mohsen [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2014-12-15

    In this study the peristaltic motion of Oldroyd fluid in an asymmetric channel is investigated. Mathematical analysis has been carried out in the presence of an inclined magnetic field. Heat transfer is also taken into account. The physical problem is first modeled and then the analytical solutions of coupled equations are developed by regular perturbation method. Assumptions of long wavelength approximation are used. Effects of inclined magnetic field on the axial velocity and temperature are presented. Physical features of pertinent parameters such as wave number δ, Reynolds number Re, Weissenberg number Wi, Prandtl number Pr and Hartmann number M are also discussed graphically at the end of the paper. - Highlights: • This paper analyses heat transfer and inclined magnetic effects in peristaltic motion of Oldroyd fluid. • An asymmetric channel under long wavelength approximation is considered. • Regular perturbation method is used to find analytical solutions. • Effects of sundry parameters are presented through graphs.

  15. Finite Element Analysis of voltage effect in the MechanicalBehavior of Diaphragm of Electrostatic Micro-pumps

    Directory of Open Access Journals (Sweden)

    Hamid masoudi sadaghiani

    2016-06-01

    Full Text Available Micro-pumps are one of the most important devices in the field of micro-fluids which have many applications in biomedical engineering. Electrostatic stimulation is one of the mechanisms of stimulation in the micro-pumps that due to low power consumption and comfortable control have very much application in this field. Various phenomena occurs in micro-pumps, electrostatic induction that influence the efficiency and efficacy of this devices. One of these phenomena have been Pull-in instability which is a static phenomenon and occurs when the applied voltage exceeds a critical level. In this case, the diaphragm of micro pump get absorbed into opposite fixed electrode and instability occurs in the system. Therefore, understanding the relationship between pull-in voltage by external factors (for example, the physical characteristics of the device help designers to customize these factors in order to take their required output from device. To estimate the pull-in voltage, for an electrostatic diaphragm computer simulation of finite elements were used. According to the results obtained from the Software, the voltage in steps of 0.025, V = 313/925 which is best answer to unstable Static voltage.The amount of voltage for dynamic mode is approximately 0.91 of static value that is v = 284.41v obtained by software. Comparing the results it can be observed that in the case of unstable Static voltage there is little difference between results. So with this software Mechanical Behavior of Micro Analytical review pages that is difficult and time-consuming can be studied.And the results are used in the design of MEMS that these elements are used in the micro-plates.

  16. Simultaneous effects of Hall and convective conditions on peristaltic flow of couple-stress fluid in an inclined asymmetric channel

    Indian Academy of Sciences (India)

    T Hayat; Maryam Iqbal; Humaira Yasmin; Fuad E Alsaadi; Huijun Gao

    2015-07-01

    A mathematical model is developed to analyse the peristaltic flow of couple-stress fluid in an inclined asymmetric channel with convective conditions. Soret and Dufour and Hall effects are taken into account. Analysis has been carried out in a wave frame of reference. Expressions for velocity, pressure gradient, temperature and concentration are constructed. Pumping and trapping phenomena are examined. Impact of sundry parameters on the velocity, temperature and concentration is discussed.

  17. Transient magneto-peristaltic flow of couple stress biofluids: a magneto-hydro-dynamical study on digestive transport phenomena.

    Science.gov (United States)

    Tripathi, Dharmendra; Anwar Bég, O

    2013-11-01

    Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.

  18. Study of the Behavior of a Bell-Shaped Colonic Self-Expandable NiTi Stent under Peristaltic Movements

    Directory of Open Access Journals (Sweden)

    Sergio Puértolas

    2013-01-01

    Full Text Available Managing bowel obstruction produced by colon cancer requires an emergency intervention to patients usually in poor conditions, and it requires creating an intestinal stoma in most cases. Regardless of that the tumor may be resectable, a two-stage surgery is mandatory. To avoid these disadvantages, endoscopic placement of self-expanding stents has been introduced more than 10 years ago, as an alternative to relieve colonic obstruction. It can be used as a bridge to elective single-stage surgery avoiding a stoma or as a definitive palliative solution in patients with irresectable tumor or poor estimated survival. Stents must be capable of exerting an adequate radial pressure on the stenosed wall, keeping in mind that stent must not move or be crushed, guaranteeing an adequate lumen when affected by peristaltic waves. A finite element simulation of bell-shaped nitinol stent functionality has been done. Catheter introduction, releasing at position, and the effect of peristaltic wave were simulated. To check the reliability of the simulation, a clinical experimentation with porcine specimens was carried out. The stent presented a good deployment and flexibility. Stent behavior was excellent, expanding from the very narrow lumen corresponding to the maximum peristaltic pressure to the complete recovery of operative lumen when the pressure disappears.

  19. The uterine peristaltic pump. Normal and impeded sperm transport within the female genital tract.

    Science.gov (United States)

    Kunz, G; Beil, D; Deiniger, H; Einspanier, A; Mall, G; Leyendecker, G

    1997-01-01

    Rapid as well as sustained sperm transport from the cervical canal to the isthmical part of the fallopian tube is provided by cervico-fundal uterine peristaltic contractions that can be visualized by vaginal sonography. The peristaltic contractions increase in frequency and presumably also in intensity as the proliferative phase progresses. As shown by placement of labeled albumin macrospheres of sperm size at the external cervical os and serial hysterosalpingoscintigraphy (HSSG) sperm reach, following their vaginal deposition, the uterine cavity within minutes. In the early follicular phase a large proportion of the macrospheres remains at the site of application, while a smaller proportion enters the uterine cavity with even a smaller one reaching the isthmical part of the tubes. In the mid-follicular phase of the cycle with increased frequency and intensity of the uterine contractions the proportion of macrospheres entering the uterine cavity as well as the tubes has significantly increased. In the late follicular phase with maximum frequency and intensity of uterine peristalsis the proportion of macrospheres entering the tube increases further at the expense of those at the site of application as well as within the uterine cavity. The transport of the macrospheres into the tube is preferentially directed into the tube ipsilateral to the dominant follicle, which becomes apparent in the mid-follicular phase as soon as a dominant follicle can be identified by ultrasound. Since the macrosphere are inert particles the directed sperm transport into the tube ipsilateral to the dominant follicle is not functionally related to a mechanism such as chemotaxis but is rather provided by uterine contraction of which the direction may be controlled by a specific myometrial architecture in combination with an asymmetric distribution of myometrial oestradiol receptors. Women with infertility and mostly mild endometriosis display on VSUP a uterine hyperperistalsis with nearly

  20. Mixed convection peristaltic flow of Eyring-Powell nanofluid in a curved channel with compliant walls.

    Science.gov (United States)

    Tanveer, Anum; Hayat, T; Alsaadi, Fuad; Alsaedi, A

    2017-03-01

    The novel features of nanofluids made them potentially significant in heat transfer mechanism occurring in medical and industrial processes like microelectronics, pharmaceutical processes, hybrid engines, thermal management of vehicles, refrigerator, chiller, gas temperature reduction and so forth. These processes bear tendency to enhance thermal conductivity and the convective heat transfer more efficiently than base fluid. This unique aspect made nanofluids the topic of interest in recent time via different fluid flow models. The problem in hand is one such application of nanofluids in peristaltic flow through curved channel. Thus peristalsis of Eyring-Powell nanofluid followed through conservation principles of mass, momentum, energy and concentration has been modeled. The whole system is made coupled via viscous dissipation, mixed convection, thermophoresis and Brownian motion. The complexity of system has been executed through a numerical approach after utilizing small Reynolds number and large wavelength concepts. A striking feature of this study is the activation of velocity and temperature with larger Brownian diffusion, whereas reduction is noticed with advancement in thermophoresis. Moreover the numerically obtained results for compliant walls are compatible with those obtained through other techniques.

  1. Motion generation of peristaltic mobile robot with particle swarm optimization algorithm

    Science.gov (United States)

    Homma, Takahiro; Kamamichi, Norihiro

    2015-03-01

    In developments of robots, bio-mimetics is attracting attention, which is a technology for the design of the structure and function inspired from biological system. There are a lot of examples of bio-mimetics in robotics such as legged robots, flapping robots, insect-type robots, fish-type robots. In this study, we focus on the motion of earthworm and aim to develop a peristaltic mobile robot. The earthworm is a slender animal moving in soil. It has a segmented body, and each segment can be shorted and lengthened by muscular actions. It can move forward by traveling expanding motions of each segment backward. By mimicking the structure and motion of the earthworm, we can construct a robot with high locomotive performance against an irregular ground or a narrow space. In this paper, to investigate the motion analytically, a dynamical model is introduced, which consist of a series-connected multi-mass model. Simple periodic patterns which mimic the motions of earthworms are applied in an open-loop fashion, and the moving patterns are verified through numerical simulations. Furthermore, to generate efficient motion of the robot, a particle swarm optimization algorithm, one of the meta-heuristic optimization, is applied. The optimized results are investigated by comparing to simple periodic patterns.

  2. Peristaltic transport of a generalized Burgers’ fluid: Application to the movement of chyme in small intestine

    Science.gov (United States)

    Tripathi, Dharmendra; Pandey, S. K.; Das, S.

    2011-07-01

    The present investigation deals with the peristaltic transport of generalized Burgers' fluid with fractional element model in a channel. The analysis is carried out under long wavelength and low Reynolds number assumptions. An efficient mathematical tool, namely, Adomian decomposition method, is used to obtain the analytical approximate solutions of the fractional differential equation. The channel is governed by the propagation of sinusoidal waves that help the walls contract and relax but not expand beyond the natural boundary. The expressions of axial velocity, volume flow rate and pressure gradient are obtained. The effects of the fractional parameters and the material constants are discussed on pressure difference and the friction force across one wavelength. The comparative studies for various models of viscoelastic fluids such as fractional generalized Burgers' model, generalized Burgers' model, fractional Burgers' model and Burgers' model are performed. It is inferred that the movement of viscoelastic chyme with generalized Burgers' model through the small intestine is favorable in comparison to the movement of viscoelastic chyme with fractional generalized Burgers' model.

  3. A Peristaltic Pump Integrated on a 100% Glass Microchip Using Computer Controlled Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Yo Tanaka

    2014-05-01

    Full Text Available Lab-on-a-chip technology is promising for the miniaturization of chemistry, biochemistry, and/or biology researchers looking to exploit the advantages of a microspace. To manipulate fluid on a microchip, on-chip pumps are indispensable. To date, there have been several types of on-chip pumps including pneumatic, electroactive, and magnetically driven. However these pumps introduce polymers, metals, and/or silicon to the microchip, and these materials have several disadvantages, including chemical or physical instability, or an inherent optical detection limit. To overcome/avoid these issues, glass has been one of the most commonly utilized materials for the production of multi-purpose integrated chemical systems. However, glass is very rigid, and it is difficult to incorporate pumps onto glass microchips. This paper reports the use of a very flexible, ultra-thin glass sheet (minimum thickness of a few micrometers to realize a pump installed on an entirely glass-based microchip. The pump is a peristaltic-type, composed of four serial valves sealing a cavity with two penetrate holes using ultra-thin glass sheet. By this pump, an on-chip circulating flow was demonstrated by directly observing fluid flow, visualized via polystyrene tracking particles. The flow rate was proportional to the pumping frequency, with a maximum flow rate of approximately 0.80 μL/min. This on-chip pump could likely be utilized in a wide range of applications which require the stability of a glass microchip.

  4. Three dimensional peristaltic flow of hyperbolic tangent fluid in non-uniform channel having flexible walls

    Directory of Open Access Journals (Sweden)

    M. Ali Abbas

    2016-03-01

    Full Text Available In this present analysis, three dimensional peristaltic flow of hyperbolic tangent fluid in a non-uniform channel has been investigated. We have considered that the pressure is uniform over the whole cross section and the interial effects have been neglected. For this purpose we consider laminar flow under the assumptions of long wavelength (λ→∞ and creeping flow (Re→0 approximations. The attained highly nonlinear equations are solved with the help of Homotopy perturbation method. The influence of various physical parameters of interest is demonstrated graphically for wall tension, mass characterization, damping nature of the wall, wall rigidity, wall elastance, aspect ratio and the Weissenberg number. In this present investigation we found that the magnitude of the velocity is maximum in the center of the channel whereas it is minimum near the walls. Stream lines are also drawn to discuss the trapping mechanism for all the physical parameters. Comparison has also been presented between Newtonian and non-Newtonian fluid.

  5. Analytical and numerical simulations of the flow performance of a ferrofluidic magnetic micropump for particle-laden applications

    Energy Technology Data Exchange (ETDEWEB)

    Kilani, M.I. [King Faisal Univ., Al-Ahsa (Saudi Arabia); Jordan Univ., Amman (Jordan). Dept. of Mechatronics Engineering; Al Halhouli, A.T.; Buttgenbach, S. [Inst. for Microtechnology, Braunschweig (Germany)

    2009-07-01

    New developments in micro-electro-mechanical systems (MEMS) are generating interest in micropump designs for the transport of small quantities of fluid samples. In this study, flow performance in a ferrofluidic magnetic micropump was investigated using analytical and numerical computational fluid dynamics (CFD) simulations. The aim of the study was to provide a method of estimating the stress distribution in the flow field in relation to pump speed and geometry in terms of dimensionless parameters. The pump was valveless, self-priming, bubble-tolerant, and capable of handling particle-laden fluids. Solutions were derived for the shear stress generated at the upper and lower boundaries of the pump's channel by solving the Navier-Stokes equation in cylindrical coordinates. A 3-D computational model of the pump's channel was constructed with different channel heights. The study demonstrated that shear stress is small in the majority of the pump's channel, and develops significant values only in narrow strips near the pump walls. Predictions obtained in the study showed good agreement with results obtained during the CFD simulations. However, CFD predictions were lower than analytical predictions for larger aspect ratios. It was concluded that the estimates provide an upper limit on shear stresses, and can be used to provide conservative estimates of shear stress. 10 refs., 7 figs.

  6. Neural circuits for peristaltic wave propagation in crawling Drosophila larvae: analysis and modeling.

    Science.gov (United States)

    Gjorgjieva, Julijana; Berni, Jimena; Evers, Jan Felix; Eglen, Stephen J

    2013-01-01

    Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central pattern generator (CPG). We characterized crawling behavior of newly hatched Drosophila larvae by quantifying timing and duration of segmental boundary contractions. We developed a CPG network model that recapitulates these patterns based on segmentally repeated units of excitatory and inhibitory (EI) neuronal populations coupled with immediate neighboring segments. A single network with symmetric coupling between neighboring segments succeeded in generating both forward and backward propagation of activity. The CPG network was robust to changes in amplitude and variability of connectivity strength. Introducing sensory feedback via "stretch-sensitive" neurons improved wave propagation properties such as speed of propagation and segmental contraction duration as observed experimentally. Sensory feedback also restored propagating activity patterns when an inappropriately tuned CPG network failed to generate waves. Finally, in a two-sided CPG model we demonstrated that two types of connectivity could synchronize the activity of two independent networks: connections from excitatory neurons on one side to excitatory contralateral neurons (E to E), and connections from inhibitory neurons on one side to excitatory contralateral neurons (I to E). To our knowledge, such I to E connectivity has not yet been found in any experimental system; however, it provides the most robust mechanism to synchronize activity between contralateral CPGs in our model. Our model provides a general framework for studying the conditions under which a single locally coupled network generates bilaterally synchronized and longitudinally propagating waves in either direction.

  7. Neural Circuits for Peristaltic Wave Propagation in Crawling Drosophila Larvae: Analysis and Modeling

    Directory of Open Access Journals (Sweden)

    Julijana eGjorgjieva

    2013-04-01

    Full Text Available Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central pattern generator (CPG. We characterized crawling behavior of newly hatched Drosophila larvae by quantifying timing and duration of segmental boundary contractions. We developed a CPG network model that recapitulates these patterns based on segmentally repeated units of excitatory and inhibitory neuronal populations coupled with immediate neighboring segments. A single network with symmetric coupling between neighboring segments succeeded in generating both forward and backward propagation of activity. The CPG network was robust to changes in amplitude and variability of connectivity strength. Introducing sensory feedback via `stretch-sensitive' neurons improved wave propagation properties such as speed of propagation and segmental contraction duration as observed experimentally. Sensory feedback also restored propagating activity patterns when an inappropriately tuned CPG network failed to generate waves. Finally, in a two-sided CPG model we demonstrated that two types of connectivity could synchronize the activity of two independent networks: connections from excitatory neurons on one side to excitatory contralateral neurons (E to E, and connections from inhibitory neurons on one side to excitatory contralateral neurons (I to E. To our knowledge, such I to E connectivity has not yet been found in any experimental system; however, it provides the most robust mechanism to synchronize activity between contralateral CPGs in our model. Our model provides a general framework for studying the conditions under which a single locally coupled network generates bilaterally synchronized and longitudinally propagating waves in either direction.

  8. A self-priming, roller-free, miniature, peristaltic pump operable with a single, reciprocating actuator

    Science.gov (United States)

    Shkolnikov, Viktor; Ramunas, John; Santiago, Juan G.

    2013-01-01

    We present a design for a miniature self-priming peristaltic pump actuated with a single linear actuator, and which can be manufactured using conventional materials and methods. The pump is tolerant of bubbles and particles and can pump liquids, foams, and gases. We explore designs actuated by a motor (in depth) and a shape memory alloy (briefly); and briefly present a manually actuated version. The pump consists of a Delrin acetal plastic body with two integrated valves, a flexible silicone tube, and an actuator. Pumping is achieved as the forward motion of the actuator first closes the upstream valve, and then compresses a section of the tube. The increased internal pressure opens a downstream burst valve to expel the fluid. Reduced pressure in the pump tube allows the downstream valve to close, and removal of actuator force allows the upstream valve and pump tube to open, refilling the pump. The motor actuated design offers a linear dependence of flow rate on voltage in the range of 1.75–3 V. Flow rate decreases from 780 μl/min with increasing back pressure up to the maximum back pressure of 48 kPa. At 3 V and minimum back pressure, the pump consumes 90 mW. The shape memory alloy actuated design offers a 5-fold size and 4-fold weight reduction over the motor design, higher maximum back pressure, and substantial insensitivity of flow rate to back pressure at the cost of lower power efficiency and flow rate. The manually actuated version is simpler and appropriate for applications unconstrained by actuation distance. PMID:24672145

  9. Hall and Joule heating effects on peristaltic flow of Powell-Eyring liquid in an inclined symmetric channel

    Science.gov (United States)

    Hayat, T.; Aslam, Naseema; Rafiq, M.; Alsaadi, Fuad E.

    This article is intended to investigate the influence of Hall current on peristaltic transport of conducting Eyring-Powell fluid in an inclined symmetric channel. Energy equation is modeled by taking Joule heating effect into consideration. Velocity and thermal slip conditions are imposed. Lubrication approximation is considered for the analysis. Fundamental equations are non-linear due to fluid parameter A. Regular perturbation technique is employed to find the solution of systems of equations. The key roles of different embedded parameters on velocity, temperature and heat transfer coefficient in the problem are discussed graphically. Trapping phenomenon is analyzed carefully.

  10. Convective heat and mass transfer on MHD peristaltic flow of Williamson fluid with the effect of inclined magnetic field

    Science.gov (United States)

    Veera Krishna, M.; Swarnalathamma, B. V.

    2016-05-01

    In this paper, we discussed the peristaltic MHD flow of an incompressible and electrically conducting Williamson fluid in a symmetric planar channel with heat and mass transfer under the effect of inclined magnetic field. Viscous dissipation and Joule heating are also taken into consideration. Mathematical model is presented by using the long wavelength and low Reynolds number approximations. The differential equations governing the flow are highly nonlinear and thus perturbation solution for small Weissenberg number (We Effects of the heat and mass transfer on the longitudinal velocity, temperature and concentration are studied in detail. Main observations are presented in the concluding section. The streamlines pattern is also given due attention.

  11. Peristaltic flow of a couple stress fluid under the effect of induced magnetic field in an asymmetric channel

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Sohail; Akram, Safia [Quaid-i-Azam University, Department of Mathematics, Islamabad (Pakistan)

    2011-01-15

    The present paper investigates the peristaltic transport of a couple stress fluid in an asymmetric channel with the effect of the induced magnetic field. The exact solutions of momentum and the magnetic field equations have been calculated under the assumptions of long wave length and low but finite Reynolds number. The expression for pressure rise has been computed numerically using mathematics software Mathematica. The graphical results have been presented to discuss the physical behavior of various physical parameters of interest. Finally, the trapping phenomena have been discussed for various physical parameters. (orig.)

  12. Mixed convective heat and mass transfer analysis for peristaltic transport in an asymmetric channel with Soret and Dufour effects

    Institute of Scientific and Technical Information of China (English)

    F M Abbasi; A Alsaedi; T Hayat

    2014-01-01

    The present investigation addresses the simultaneous effects of heat and mass transfer in the mixed convection peristaltic flow of viscous fluid in an asymmetric channel. The channel walls exhibit the convective boundary conditions. In addition, the effects due to Soret and Dufour are taken into consideration. Resulting problems are solved for the series solutions. Numerical values of heat and mass transfer rates are displayed and studied. Results indicate that the concentration and temperature of the fluid increase whereas the mass transfer rate at the wall decreases with increase of the mass transfer Biot number. Furthermore, it is observed that the temperature decreases with the increase of the heat transfer Biot number.

  13. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube.

    Science.gov (United States)

    Sobh, Ayman M

    2013-10-01

    In this article, the influence of heat and mass transfer on peristaltic transport of a couple stress fluid in a uniform tube with slip conditions on the wall is studied. The problem can model the blood flow in living creatures. Under long wavelength approximation and zero Reynolds number, exact solutions for the axial velocity component, pressure gradient, and both temperature and concentration fields are derived. The pressure rise is computed numerically and explained graphically. Moreover, effects of various physical parameters of the problem on temperature distribution, concentration field, and trapping are studied and discussed graphically.

  14. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer.

    Science.gov (United States)

    Akbar, Noreen Sher; Raza, M; Ellahi, R

    2016-07-01

    The peristaltic flow of a copper oxide water fluid investigates the effects of heat generation and magnetic field in permeable tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. It is found that pressure gradient is reduce with enhancement of particle concentration and velocity profile is upturn, beside it is observed that temperature increases as more volume fraction of copper oxide. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon.

  15. Consequence of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the occurrence of apt (tending) magnetic field

    Science.gov (United States)

    Akram, Safia; Nadeem, S.

    2014-05-01

    In the current study, sway of nanofluid on peristaltic transport of a hyperbolic tangent fluid model in the incidence of tending magnetic field has been argued. The governing equations of a nanofluid are first modeled and then simplified under lubrication approach. The coupled nonlinear equations of temperature and nano particle volume fraction are solved analytically using a homotopy perturbation technique. The analytical solution of the stream function and pressure gradient are carried out using perturbation technique. The graphical results of the problem under discussion are also being brought under consideration to see the behavior of various physical parameters.

  16. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

    Directory of Open Access Journals (Sweden)

    Tiong Cheng Sia

    2013-08-01

    Full Text Available Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit ? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT. In control animals, peristaltic contractions were blocked temporarily by ondansetron (1-10µM and SDZ-205-557 (1-10µM in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.

  17. Effects of rotation and initial stress on peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Mathematics Department, Faculty of Science, Taif University (Saudi Arabia); Mathematics Department, Faculty of Science, Sohag (Egypt); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Mathematics Department, Faculty of Science, Taif University (Saudi Arabia); Mathematics Department, Faculty of Science, SVU, Qena 83523 (Egypt); El-Shahrany, H.D. [Mathematics Department, Faculty of Science, Taif University (Saudi Arabia)

    2014-01-15

    This paper investigates the effect of rotation and initial stress on the peristaltic flow of an incompressible fourth grade fluid in asymmetric channel with magnetic field and heat transfer. Constitutive equations obeying the fourth grade fluid model are employed. Assumptions of long wavelength and low Reynolds number are used in deriving solution for the flow. Closed form expressions for the stream function, pressure gradient, temperature, magnetic force function, induced magnetic field and current density are developed. Pressure rise per wavelength and frictional forces on the channel walls have been computed numerically. Effects of rotation, initial stress and inclination of magnetic field on the axial velocity and pressure gradient are discussed in detail and shown graphically. Several limiting results can be obtained as the special cases of the problem under consideration. Numerical illustrations that show the physical effects and the pertinent features are investigated at the end of the paper. - Highlights: • Effect of rotation, magnetic field, heat transfer and initial stress on the peristaltic flow of an incompressible fourth grade fluid. • Assumptions of long wavelength and low Reynolds number are used in deriving solution for the flow. • Closed form expressions for the stream function, pressure gradient, temperature, magnetic force function, induced magnetic field and current density.

  18. Effect of rotation on peristaltic flow of a micropolar fluid through a porous medium with an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)

    2013-12-15

    In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.

  19. Peristaltic transport of MHD Williamson fluid in an inclined asymmetric channel through porous medium with heat transfer

    Institute of Scientific and Technical Information of China (English)

    K. Ramesh; M. Devakar

    2015-01-01

    The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-dimensional equations are simplified under the assumption of long wavelength approximation. The simplified equations are solved for the stream function, temperature, and axial pressure gradient by using a regular perturbation method. The expression for pressure rise is computed numerically. The profiles of velocity, pressure gradient, temperature, heat transfer coefficient and stream function are sketched and interpreted for various embedded parameters and also the behavior of stream function for various wave forms is discussed through graphs. It is observed that the peristaltic velocity increases from porous medium to non-porous medium, the magnetic effects have increasing effect on the temperature, and the size of the trapped bolus decreases with the increasing of magnetic effects while the trend is reversed with the increasing of Darcy number. Moreover, limiting solutions of our problem are in close agreement with the corresponding results of the Newtonian fluid model.

  20. Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel

    Energy Technology Data Exchange (ETDEWEB)

    Kothandapani, M., E-mail: mkothandapani@gmail.com [Department of Mathematics, University College of Engineering Arni, (A Constituent College of Anna University Chennai), Arni 632326, Tamil Nadu (India); Prakash, J., E-mail: prakashjayavel@yahoo.co.in [Department of Mathematics, Arulmigu Meenakshi Amman College of Engineering, Vadamavandal 604410, Tamil Nadu (India)

    2015-03-15

    Theoretical analyses on the effect of radiation and MHD on the peristaltic flow of a nanofluid through a porous medium in a two dimensional tapered asymmetric channel has been made. The nanofluid is assumed to be electrically conducting in the presence of a uniform magnetic field. The transport equation accounts the both Brownian motion and thermophoresis along with the radiation reaction. The problem has been further simplified with the authentic assumptions of long wavelength and small Reynolds number. The analytical expressions obtained for the axial velocity, stream function, temperature field, nanoparticle fraction field and pressure gradient provide satisfactory explanation. Influence of various parameters on the flow characteristics have been discussed with the help of graphical results. The trapping phenomenon has also been discussed in detail. - Highlights: • Combine effect of thermal radiation and MHD on the peristaltic flow of a Newtonian nanofluid are discussed. • This work may be first attempt dealing the study of Newtonian nanofluid flow in the porous tapered asymmetric channel. • The velocity, stream function, temperature field and nanoparticle fraction field provide satisfactory explanation with help of graphs.

  1. Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel.

    Science.gov (United States)

    Ali, N; Javid, K; Sajid, M; Anwar Bég, O

    2016-01-01

    Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-slip wall boundary conditions. A well-tested finite difference method based on an iterative scheme is employed for the solution of the boundary value problem. The important phenomena of pumping and trapping associated with the peristaltic motion are investigated for various values of rheological parameters of Carreau fluid and curvature of the channel. An increase in Weissenberg number is found to generate a small eddy in the vicinity of the lower wall of the channel, which is enhanced with further increase in Weissenberg number. For shear-thinning bio-fluids (power-law rheological index, n Weissenberg number displaces the maximum velocity toward the upper wall. For shear-thickening bio-fluids, the velocity amplitude is enhanced markedly with increasing Weissenberg number.

  2. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products

    NARCIS (Netherlands)

    Minekus, M.; Smeets-Peeters, M.; Havenaar, R.; Bernalier, A.; Fonty, G.; Marol-Bonnin, S.; Alric, M.; Marteau, P.; Huis Veld, J.H.J. in 't

    1999-01-01

    This paper introduces a new type of system to simulate conditions in the large intestine. This system combines removal of metabolites and water with peristaltic mixing to obtain and handle physiological concentrations of microorganisms, dry matter and microbial metabolites. The system has been desig

  3. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    Science.gov (United States)

    Graf, Neil J; Bowser, Michael T

    2013-10-07

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.

  4. RESEARCH ON PULL-IN AND RELEASE PHENOMENON OF ELECTROSTATIC MICROPUMPS%静电微泵吸合与释放特性研究

    Institute of Scientific and Technical Information of China (English)

    应济; 李俊; 王硕; 徐亮

    2011-01-01

    为避免静电微泵因驱动电压过高而出现吸合现象,建立描述静电泵膜吸合与释放现象的一维集中质量模型、二维分布式模型和三维有限元模型,对比研究静电致动泵膜在准静态下吸合与释放的循环过程,获得整个循环过程的泵膜挠曲线变化、泵腔体积变形、电容变化等大量的数据与曲线.比较结果表明,二维分布式模型求解效果最好,并利用三维有限元模型和宏模型的计算结果,验证该模型在泵膜大变形下计算吸合过程的准确性,获得的吸合电压为确定静电微泵驱动电压的上限值提供有效依据.%Electrostatically actuated circular microplates are widely used in MEMS( micro-electro-mechanical systems) devices such as micropumps and optical switches. All these devices exhibit an instability phenomenon known as pull-in instability, short circuit caused by pull-in with contact is destructive to micropump operation. To avoid pull-in instability caused by high driving voltage, pull-in voltage should be calculated accurately. 1D lumped model, 2D distributed model and 3D finite element model were proposed to simulate the deflection of micropump membrane subjected to nonlinear distributed electrostatic force. Hysteresis loop of micropump membrane, pull-in with contact and release were investigated comparatively by three models. Volume deformation of pump chamber, variation of pump membrane deflection and plate capacitance were also obtained. The 2D distributed model that is an ideally simplified model is more effective, pull-in voltage calculated by this model is in harmony with the results of 3D finite element model and macromodel, even when the membrane deformation is in the nonlinear elastic regime. The calculated pull-in voltage provides reference for setting the upper limit value of electrostatic micropump driving voltage.

  5. Analytical solution for peristaltic flow of conducting nanofluids in an asymmetric channel with slip effect of velocity, temperature and concentration

    Directory of Open Access Journals (Sweden)

    S. Sreenadh

    2016-06-01

    Full Text Available The Peristaltic transport of conducting nanofluids under the effect of slip condition in an asymmetric channel is reported in the present work. The mathematical modelling has been carried out under long wavelength and low Reynolds number approximations. The analytical solutions are obtained for pressure rise, nanoparticle concentration, temperature distribution, velocity profiles and stream function. Influence of various parameters on the flow characteristics has been discussed with the help of graphs. The results showed that the pressure rise increases with increasing magnetic effect and decreases with increasing slip parameter. The effects of thermophoresis parameter and Brownian motion parameter on the nanoparticle concentration and temperature distribution are studied. It is observed that the pressure gradient increases with increasing slip parameter and magnetic effect. The trapping phenomenon for different parameters is presented.

  6. The Influence of a Micropolar Fluid on Peristaltic Transport in an Annulus: Application of the Clot Model

    Directory of Open Access Journals (Sweden)

    Kh. S. Mekheimer

    2008-01-01

    Full Text Available A serious pathological condition is encountered when some blood constituents deposited on the blood vessels get detached from the wall, join the blood stream again and form a clot. Study of the peristaltic transport of a micropolar fluid in an annular region is investigated under low Reynolds number and long wavelength approximations. We model a small artery as a tube having a sinusoidal wave travelling down its wall and a clot model inside it. Closed form solutions are obtained for the velocity and the microrotation components, as well as the stream function, and they contain new additional parameters, namely, δ, the height of the clot, N, the coupling number and m, the micropolar parameter. The pressure rise and friction force on the inner and the outer tubes have been discussed for various values of the physical parameters of interest.

  7. Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-06-01

    Full Text Available In this article, the simultaneous effects of slip and Magnetohydrodynamics (MHD on peristaltic blood flow of Jeffrey fluid model have been investigated in a non-uniform porous channel. The governing equation of blood flow for Jeffrey fluid model is solved with the help of long wavelength and creeping flow regime. The solution of the resulting differential equation is solved analytically and a closed form solution is presented. The impact of all the physical parameters is plotted for velocity profile and pressure rise. Nowadays, Magnetohydrodynamics is applicable in various magnetic drug targeting for cancer diseases and also very helpful to control the flow. The present analysis is also described for Newtonian fluid (λ1→0 as a special case of our study. It is observed that magnitude of the velocity is opposite near the walls due to slip effects whereas similar behavior has been observed for magnetic field.

  8. Soret and Dufour effects on MHD peristaltic transport of Jeffrey fluid in a curved channel with convective boundary conditions

    Science.gov (United States)

    Alsaedi, Ahmad

    2017-01-01

    The purpose of present article is to examine the peristaltic flow of Jeffrey fluid in a curved channel. An electrically conducting fluid in the presence of radial applied magnetic field is considered. Analysis of heat and mass transfer is carried out. More generalized realistic constraints namely the convective conditions are utilized. Soret and Dufour effects are retained. Problems formulation is given for long wavelength and low Reynolds number assumptions. The expressions of velocity, temperature, heat transfer coefficient, concentration and stream function are computed. Effects of emerging parameters arising in solutions are analyzed in detail. It is found that velocity is not symmetric about centreline for curvature parameter. Also maximum velocity decreases with an increase in the strength of magnetic field. Further it is noticed that Soret and Dufour numbers have opposite behavior for temperature and concentration. PMID:28222160

  9. Effects of rotation and initial stress on peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field

    Science.gov (United States)

    Abd-Alla, A. M.; Abo-Dahab, S. M.; El-Shahrany, H. D.

    2014-01-01

    This paper investigates the effect of rotation and initial stress on the peristaltic flow of an incompressible fourth grade fluid in asymmetric channel with magnetic field and heat transfer. Constitutive equations obeying the fourth grade fluid model are employed. Assumptions of long wavelength and low Reynolds number are used in deriving solution for the flow. Closed form expressions for the stream function, pressure gradient, temperature, magnetic force function, induced magnetic field and current density are developed. Pressure rise per wavelength and frictional forces on the channel walls have been computed numerically. Effects of rotation, initial stress and inclination of magnetic field on the axial velocity and pressure gradient are discussed in detail and shown graphically. Several limiting results can be obtained as the special cases of the problem under consideration. Numerical illustrations that show the physical effects and the pertinent features are investigated at the end of the paper.

  10. Influences of rotation and thermophoresis on MHD peristaltic transport of Jeffrey fluid with convective conditions and wall properties

    Science.gov (United States)

    Hayat, T.; Rafiq, M.; Ahmad, B.

    2016-07-01

    This article aims to predict the effects of convective condition and particle deposition on peristaltic transport of Jeffrey fluid in a channel. The whole system is in a rotating frame of reference. The walls of channel are taken flexible. The fluid is electrically conducting in the presence of uniform magnetic field. Non-uniform heat source/sink parameter is also considered. Mass transfer with chemical reaction is considered. Relevant equations for the problems under consideration are first modeled and then simplified using lubrication approach. Resulting equations for stream function and temperature are solved exactly whereas mass transfer equation is solved numerically. Impacts of various involved parameters appearing in the solutions are carefully analyzed.

  11. Soret and Dufour effects on peristaltic transport in curved channel with radial magnetic field and convective conditions

    Science.gov (United States)

    Hayat, T.; Quratulain; Rafiq, M.; Alsaadi, Fuad; Ayub, M.

    2016-05-01

    This study addresses the impact of convective heat and mass conditions in the peristaltic transport of fluid in a complaint wall curved channel. Formulation for flow of third grade fluid is made. Soret and Dufour effects are considered. Fluid is conducting through applied magnetic field in radial direction. Lubrication approach is employed. Solutions for stream function, temperature and concentration fields are derived. The effects of pertinent parameters in the solutions are analyzed graphically. It is found that the velocity profile is not symmetric about the central line in curved channel. The velocity and temperature are reduced by increasing magnetic field strength. The number and size of streamlines are decreased in the presence of magnetic field effect.

  12. Effects of heat and mass transfer on peristaltic flow of a Bingham fluid in the presence of inclined magnetic field and channel with different wave forms

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Safia, E-mail: safia_akram@yahoo.com [Department of Basic Sciences, MCS, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan); Nadeem, S.; Hussain, Anwar [Department of Mathematics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2014-08-01

    In the present analysis we discussed the influence of heat and mass transfer on the peristaltic flow of a Bingham in an inclined magnetic field and channel with different wave forms. The governing two dimensional equations of momentum, heat and mass transfer are simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions of momentum, heat and mass transfer are calculated. Finally, graphical behaviors of various physical parameters are also discussed through the graphical behavior of pressure rise, pressure gradient, temperature concentration and stream functions. - Highlights: • Combine effects of heat and mass transfer on peristaltic flow problem is discussed. • Effects of inclined magnetic field and channel on new fluid model are discussed. • Effects of different wave forms are also discussed in the present flow problem.

  13. Numerical solutions of peristaltic flow of a Newtonian fluid under the effects of magnetic field and heat transfer in a porous concentric tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Sohail; Akbar, Noreen Sher; Malik, Muhammad Yousaf [Dept. of Mathematics, Quaid-i-Azam Univ., Islamabad (Pakistan)

    2010-05-15

    In the present article, we have studied the effects of heat transfer on a peristaltic flow of a magnetohydrodynamic (MHD) Newtonian fluid in a porous concentric horizontal tube (an application of an endoscope). The problem under consideration is formulated under the assumptions of long wave-length and neglecting the wave number. A closed form of Adomian solutions and numerical solutions are presented which show a complete agreement with each other. The influence of pertinent parameters is analyzed through graphs. (orig.)

  14. Exact Analytical Solution of the Peristaltic Nanofluids Flow in an Asymmetric Channel with Flexible Walls and Slip Condition: Application to the Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Abdelhalim Ebaid

    2013-01-01

    Full Text Available In the cancer treatment, magnetic nanoparticles are injected into the blood vessel nearest to the cancer’s tissues. The dynamic of these nanoparticles occurs under the action of the peristaltic waves generated on the flexible walls of the blood vessel. Studying such nanofluid flow under this action is therefore useful in treating tissues of the cancer. In this paper, the mathematical model describing the slip peristaltic flow of nanofluid was analytically investigated. Exact expressions were deduced for the temperature distribution and nano-particle concentration. In addition, the effects of the slip, thermophoresis, and Brownian motion parameters on the temperature and nano-particle concentration profiles were discussed and further compared with other approximate results in the literatures. In particular, these results have been obtained at the same values of the physical examined parameters that was considered in Akbar et al., “Peristaltic flow of a nanofluid with slip effects,” 2012. The results reveal that remarkable differences are detected between the exact current results and those approximately obtained in the literatures for behaviour of the temperature profile and nano-particles concentration. Accordingly, the current analysis and results are considered as optimal and therefore may be taken as a base for any future comparisons.

  15. First experience with the Synergy Micro-Pump in patients in INTERMACS class 1-2 as a bridge to transplantation: pushing the limits?

    Science.gov (United States)

    Sabashnikov, Anton; Popov, Aron-Frederik; Bowles, Christopher T; Weymann, Alexander; Mohite, Prashant N; Wahlers, Thorsten; Wittwer, Thorsten; Zych, Bartlomiej; Garcia-Saez, Diana; Patil, Nikhil P; Fatullayev, Javid; Amrani, Mohamed; Banner, Nicholas R; Seidler, Tim; Unsoeld, Bernhard; Bireta, Christian; Schoendube, Friedrich A; Simon, André R

    2015-02-01

    The Synergy Micro-pump is the smallest implantable left ventricular assist device (LVAD) and provides partial flow support up to 4.25 L/min. It was shown that early intervention with this device can provide substantial benefits to patients with severe heart failure not yet sick enough for a full-support LVAD. However, as it can be inserted via small incisions with no need for sternotomy or cardiopulmonary bypass, it might be beneficial for selected high-risk patients. The aim of this study was to evaluate the efficacy of the Synergy Micro-pump in patients in INTERMACS class 1-2. From February 2012 to August 2013, 13 patients with severe heart failure were supported with the Synergy Pocket Micro-pump. Patients were divided into two groups according to INTERMACS class: the high-risk group (INTERMACS class 1-2) and the low-risk group (INTERMACS class 3-4). There were seven patients in INTERMACS class 1-2 and six in INTERMACS class 3-4. Patient demographics, perioperative characteristics, and postoperative outcomes were compared. There were no statistically significant differences in patient demographics, and mean support time was 108 ± 114 days in the high-risk group and 238 ± 198 days in the low-risk group. Also, there were no significant differences in perioperative characteristics or in the rate of postoperative adverse events. The overall survival was comparable between the two groups (one late death in each group, log-rank P = 0.608). Two patients from the high-risk group were upgraded to a full-support LVAD (P = 0.462) after 65 ± 84.9 days of mean support. One patient from the high-risk group and two patients from the low-risk group were successfully transplanted (P = 0.559). The use of the Synergy Micro-pump in INTERMACS 1-2 patients is feasible and is associated with similar postoperative outcome as in patients in INTERMACS 3-4. Carefully selected patients with severe heart failure could benefit due to the small size of the pump

  16. A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Yi, Sun

    2011-01-01

    of different layers of polymer, and ultrasonic welding of TOPAS® lid to the slide. The re-usable pneumatic actuator not only simplifies the design of the lab-on-a-slide and reduces the fabrication cost, but also reduces the possibility of cross contamination during replacement of the disposable lab......A microfluidic control system consisting of micropump/valves with a re-usable pneumatic actuator and a disposable polymer lab-on-a-slide is presented. The lab-on-a-slide was fabricated using low cost methods, such as injection moulding of TOPAS® cyclic olefin copolymer (COC) slide, lamination...

  17. Low-Power, Low-Voltage Electroosmotic Actuator for an Implantable Micropumping System Intended for Drug Delivery Applications

    Science.gov (United States)

    Getpreecharsawas, Jirachai

    An electroosmotic (EO) actuator offers a low-power, low-voltage alternative in a diaphragm-based periodic displacement micropump intended for an implantable drug delivery system. The actuator utilizes an electroosmosis mechanism to transport liquid across a membrane to deflect the pumping diaphragms in a reciprocating manner. In the study, the membrane made of porous nanocrystalline silicon (pnc-Si) tens of nanometers in thickness was used as the promising EO generator with low power consumption and small package size. This ultrathin membrane provides the opportunity for electrode integration such that the very high electric field can be generated across the membrane with the applied potential under 1 volt for low flow rate applications like drug delivery. Due to such a low applied voltage, the challenge, however, imposes on the capability of generating the pumping pressure high enough to deflect the pumping diaphragms and overcome the back pressure normally encountered in the biological tissue and organ. This research identified the cause of weak pumping pressure that the electric field inside the orifice-like nanopores of the ultrathin membrane is weaker than conventional theory would predict. It no longer scales uniformly with the thickness of membrane, but with the pore length-to-diameter aspect ratio for each nanopore. To enhance the pumping performance, the pnc-Si membrane was coated with an ultrathin Nafion film. As a result, the induced concentration difference across the Nafion film generates the osmotic pressure against the back pressure allowing the EO actuator to maintain the target pumping flow rate under 1 volt.

  18. Simultaneous effects of single wall carbon nanotube and effective variable viscosity for peristaltic flow through annulus having permeable walls

    Science.gov (United States)

    Shahzadi, Iqra; Nadeem, S.; Rabiei, Faranak

    The current article deals with the combine effects of single wall carbon nanotubes and effective viscosity for the peristaltic flow of nanofluid through annulus. The nature of the walls is assumed to be permeable. The present theoretical model can be considered as mathematical representation to the motion of conductive physiological fluids in the existence of the endoscope tube which has many biomedical applications such as drug delivery system. The outer tube has a wave of sinusoidal nature that is travelling along its walls while the inner tube is rigid and uniform. Lubrication approach is used for the considered analysis. An empirical relation for the effective variable viscosity of nanofluid is proposed here interestingly. The viscosity of nanofluid is the function of radial distance and the concentration of nanoparticles. Exact solution for the resulting system of equations is displayed for various quantities of interest. The outcomes show that the maximum velocity of SWCNT-blood nanofluid enhances for larger values of viscosity parameter. The pressure gradient in the more extensive part of the annulus is likewise found to increase as a function of variable viscosity parameter. The size of the trapped bolus is also influenced by variable viscosity parameter. The present examination also revealed that the carbon nanotubes have many applications related to biomedicine.

  19. An active membrane model for peristaltic pumping: Part I--Periodic activation waves in an infinite tube.

    Science.gov (United States)

    Carew, E O; Pedley, T J

    1997-02-01

    A model for the coupled problem of wall deformation and fluid flow, based on thin-shell and lubrication theories, and driven by a propagating wave of smooth muscle activation, is proposed for peristaltic pumping in the ureter. The model makes use of the available experimental data on the mechanical properties of smooth muscle and accounts for the soft material between the muscle layer and the vessel lumen. The main input is the activation wave of muscular contraction. Equations for the time-dependent problem in tubes of arbitrary length are derived and applied to the particular case of periodic activation waves in an infinite tube. Mathematical (small amplitude) and numerical analyses of this case are presented. Predictions on phase-lag in wall constriction with respect to peak activation wave, lumen occlusion due to thickening lumen material with contracting smooth muscle, and the general bolus shape are in qualitative agreement with observation. Some modifications to the mechanical, elastic, and hydrodynamic properties of the ureter that will make peristalsis less efficient, due for example to disease, are identified. In particular, the flow rate-pressure rise relationship in linear for weak to moderate activation waves, but as the lumen is squeezed shut, it is seen to be nonlinear in a way that increases pumping efficiency. In every case a ureter whose lumen can theoretically be squeezed shut is the one for which pumping is most efficient.

  20. Development of Magnetically Excited Flexural Plate Wave Devices for Implementation as Physical, Chemical, and Acoustic Sensors, and as Integrated Micro-Pumps for Sensored Systems

    Science.gov (United States)

    Schubert, W. K.; Mitchell, M. A.; Graf, D. C.; Shul, R. J.

    2002-05-01

    The magnetically excited flexural plate wave (mag-FPW) device has great promise as a versatile sensor platform. FPW's can have better sensitivity at lower operating frequencies than surface acoustic wave (SAW) devices. Lower operating frequency simplifies the control electronics and makes integration of sensor with electronics easier. Magnetic rather than piezoelectric excitation of the FPW greatly simplifies the device structure and processing by eliminating the need for piezoelectric thin films, also simplifying integration issues. The versatile mag-FPW resonator structure can potentially be configured to fulfill a number of critical functions in an autonomous sensored system. As a physical sensor, the device can be extremely sensitive to temperature, fluid flow, strain, acceleration and vibration. By coating the membrane with self-assembled monolayers (SAMs), or polymer films with selective absorption properties (originally developed for SAW sensors), the mass sensitivity of the FPW allows it to be used as biological or chemical sensors. Yet another critical need in autonomous sensor systems is the ability to pump fluid. FPW structures can be configured as micro-pumps. This report describes work done to develop mag-FPW devices as physical, chemical, and acoustic sensors, and as micro-pumps for both liquid and gas-phase analytes to enable new integrated sensing platform.

  1. 磁流体微泵研究进展及其关键问题%Research Progress on MHD Micro-Pump and its Key Problems

    Institute of Scientific and Technical Information of China (English)

    赵凌志; 李建; 彭燕

    2011-01-01

    Magnetohydrodynamics (MHD) micro-pump offers an elegant means to drive and control bio-micro-fluid flow without a need for mechanical components. In this paper, we present the theory, describe typical prototypes of AC MHD and DC MHD micro-pumps, and discuss the key problems, such as electrochemical reaction, magnetohydrodynamics under micro-and nano-scale, micro-processing technology and materials of MHD micro-pumps.%磁流体(magnetohydrodynamics,MHD)微泵没有机械部件,但能够产生连续的流动,是当前电磁生物的研究热点之一.本文在详细阐述MHD微泵的工作原理、介绍交流磁流体(AC MHD)微泵和直流磁流体(DC MHD)微泵典型样机的基础上,着重分析了MHD微泵的电化学反应、微尺度下的电磁流体动力学以及微加工技术和材料等关键科学技术问题.

  2. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model.

    Science.gov (United States)

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2016-12-01

    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞.

  3. Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer

    Science.gov (United States)

    Hayat, T.; Farooq, S.; Alsaedi, A.; Ahmad, B.

    2016-08-01

    The purpose of present investigation is to study the Hall and MHD effects on peristaltic flow of Carreau-Yasuda fluid in a convectively curved configuration. Thermal radiation, Soret and Dufour effects are also accounted. The channel walls comprised the no slip and compliant properties. Constitutive equations for mass, momentum, energy and concentration are first modeled in view of considered assumptions and then simplified under long wavelength and low Reynolds number approximation. Solution of the resulting system of equations is carried out via a regular perturbation technique. Physical behaviors of velocity, temperature, concentration and streamlines are discussed with the help of graphical representation.

  4. Simultaneous effects of radial magnetic field and wall properties on peristaltic flow of Carreau-Yasuda fluid in curved flow configuration

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2015-12-01

    Full Text Available The objective of present article is to address the magnetohydrodynamic (MHD peristaltic flow of Carreau-Yasuda fluid in a curved geometry. The channel boundaries satisfy wall slip and compliant properties. The fluid is electrically conducting through an applied magnetic field in the radial direction. Heat transfer is also studied. Governing equation comprised the viscous dissipation effects. The non-linear expressions are first obtained and then approximated using long wavelength and low Reynolds number considerations. The resulting systems are solved for the series solutions. The expressions of velocity, temperature, heat transfer coefficient and stream function are obtained and analyzed via graphical illustrations.

  5. Simultaneous effects of radial magnetic field and wall properties on peristaltic flow of Carreau-Yasuda fluid in curved flow configuration

    Science.gov (United States)

    Hayat, T.; Tanveer, A.; Alsaadi, F.

    2015-12-01

    The objective of present article is to address the magnetohydrodynamic (MHD) peristaltic flow of Carreau-Yasuda fluid in a curved geometry. The channel boundaries satisfy wall slip and compliant properties. The fluid is electrically conducting through an applied magnetic field in the radial direction. Heat transfer is also studied. Governing equation comprised the viscous dissipation effects. The non-linear expressions are first obtained and then approximated using long wavelength and low Reynolds number considerations. The resulting systems are solved for the series solutions. The expressions of velocity, temperature, heat transfer coefficient and stream function are obtained and analyzed via graphical illustrations.

  6. Peristaltic Motion of Non-Newtonian Fluid with Heat and Mass Transfer through a Porous Medium in Channel under Uniform Magnetic Field

    Directory of Open Access Journals (Sweden)

    Nabil T. M. Eldabe

    2014-01-01

    Full Text Available This paper is devoted to the study of the peristaltic motion of non-Newtonian fluid with heat and mass transfer through a porous medium in the channel under the effect of magnetic field. A modified Casson non-Newtonian constitutive model is employed for the transport fluid. A perturbation series’ method of solution of the stream function is discussed. The effects of various parameters of interest such as the magnetic parameter, Casson parameter, and permeability parameter on the velocity, pressure rise, temperature, and concentration are discussed and illustrated graphically through a set of figures.

  7. Effects of Slip Condition, Variable Viscosity and Inclined Magnetic Field on the Peristaltic Motion of a Non-Newtonian Fluid in an Inclined Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. Afsar Khan

    2016-01-01

    Full Text Available The peristaltic motion of a third order fluid due to asymmetric waves propagating on the sidewalls of a inclined asymmetric channel is discussed. The key features of the problem includes longwavelength and low-Reynolds number assumptions. A mathematical analysis has been carried out to investigate the effect of slip condition, variable viscosity and magnetohydrodynamics (MHD. Followed by the nondimensionalization of the nonlinear governing equations along with the nonlinear boundary conditions, a perturbation analysis is made. For the validity of the approximate solution, a numerical solution is obtained using the iterative collocation technique.

  8. Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: Closed form solutions

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Safia, E-mail: safia_akram@yahoo.com [Department of Humanities and Basic Sciences, Military College of Signals, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan); Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan)

    2013-02-15

    We discuss the peristaltic motion of a two dimensional Jeffrey fluid in an asymmetric channel under the effects of induced magnetic field and heat transfer. The problem is simplified by using long wave length and low Reynolds approximations. Exact and closed form Adomian solutions are presented. Expressions for the velocity, stream function, magnetic force function, temperature, pressure gradient and pressure rise are computed. The results of pertinent parameters are discussed. Finally, the trapping phenomena for different wave shapes are discussed. It is observed that the pressure rise for sinusoidal wave is less than trapezoidal wave and greater than triangular in a Jeffrey fluid. - Highlights: Black-Right-Pointing-Pointer The effects of induced magnetic field and heat transfer in peristaltic motion of a two dimensional Jeffrey fluid are discussed. Black-Right-Pointing-Pointer In this paper exact and closed form Adomian solutions are presented. Black-Right-Pointing-Pointer Different wave shapes are considered to observe the behavior of pressure rise and trapping phenomena.

  9. Detection of Crohn's disease: Comparison of CT and MR enterography without anti-peristaltic agents performed on the same day

    Energy Technology Data Exchange (ETDEWEB)

    Grand, David J., E-mail: dgrand@lifespan.org [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, 593 Eddy St., Providence, RI 02903 (United States); Beland, Michael D. [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, 593 Eddy St., Providence, RI 02903 (United States); Machan, Jason T. [Department of Orthopaedics and Surgery, Warren Alpert School of Medicine, Brown University, 593 Eddy St., Providence, RI 02903 (United States); Mayo-Smith, William W. [Department of Diagnostic Imaging, Warren Alpert School of Medicine, Brown University, 593 Eddy St., Providence, RI 02903 (United States)

    2012-08-15

    Objective: To directly compare CT enterography (CTE) and MR enterography (MRE) without antiperistaltic agents. Materials/methods: 26 patients referred for CTE underwent CTE immediately followed by MRE without use of an anti-peristaltic agent. Each study was evaluated on a 10 point scale for exam quality, level of diagnostic confidence, and presence of Crohn's disease. Kappa analysis was performed to determine the degree of agreement between the CTE and MRE of each patient. Results: 25 patients completed the MRE. The quality of the CTEs was judged as excellent by both readers (reader 1 = average 9.5/10, reader 2 = average 9.1/10). The quality of the MREs was ranked lower than the CTEs by both readers (reader 1 = average 8.9/10, reader 2 = average 7.2/10), which was statistically significant (p < 0.05). The level of confidence in interpretation was not significantly different between CTE and MRE for reader 1 or 2 (p = 0.3). There was substantial agreement between readers for the presence or absence of Crohn's disease on both CTE (kappa = 0.75) and MRE (kappa = 0.67). Conclusion: MR enterography without anti-peristaltic agents results in high diagnostic confidence and excellent agreement for the presence of Crohn's disease.

  10. Peristaltic Flow and Heat Transfer of a Conducting Phan-Thien-Tanner Fluid in an Asymmetric Channel - Application to Chyme Movement in Small Intestine

    Science.gov (United States)

    Vajravelu, K.; Sreenadh, S.; Dhananjaya, S.; Lakshminarayana, P.

    2016-08-01

    In this paper, the influence of heat transfer on the peristaltic flow of a conducting Phan-Thien-Tanner fluid in an asymmetric channel with porous medium is studied. The coupled nonlinear governing differential equations are solved by a perturbation technique. The expressions for the temperature field, the stream function, the axial velocity, and the pressure gradient are obtained. The effects of the various physical parameters such as the magnetic parameter M, the permeability parameter σ, the Brinkman number Br and the Weissenberg number We on the pumping phenomenon are analyzed through graphs and the results are discussed in detail. It is observed that the velocity and the pressure are decreased with increasing the magnetic parameter M whereas the effect of the parameter M on the temperature field is quite the opposite.

  11. Piezoelectric Analysis and Testing of Valve-less Micropump%无阀微泵压电特性分析及性能测试

    Institute of Scientific and Technical Information of China (English)

    关炎芳; 耿铁; 韩莉莉; 刘春波; 凌行

    2013-01-01

    A piezoelectric micropump model was proposed for microanalytical reagent by using a piezoelectric transducer as the driving force,a silicon substrate pump and polydinethylsiloxane polymeric membrane material.In order to achieve the maximum driving energy,the modals and driving frequency of the piezoelectric transducer was analyzed using finite element analysis(FEA).It was found out that the pump volumetric efficiency reached the maximum on the first order modal.The best frequency range was between 0 and 1 kHz according to piezoelectric-stress coupling analysis.Finally,the micropump models were fabricated with the micro-system fabrication technology,and a performance testing was conducted.The result show that the flow rates reach the maximum value at 60 Hz and 200 Hz under sine driving signal,and the pressure head reaches the maximum value at 60 to 600 Hz,which conforms to the numerical analysis result.The maximum flow rate and pressure head is 34.5 μL/min and 657 Pa according to the experiment.%提出了一种用于微量试剂分析的压电驱动微泵模型.该微泵模型采用压电阵子驱动、硅基泵体以及聚二甲基硅氧烷(polydimethylsiloxane,PDMS)封装而成.对压电阵子振动模态进行有限元分析,得出1~4阶模态及驱动频率,使微泵容积效率为最大的应为1阶模态.通过对微泵压电-应力耦合场进行数值分析,得出微泵最佳驱动频率范围应小于1 kHz.最后,采用微系统加工方法制作出微泵模型,并对其性能进行测试.结果表明:电压为100 V(p-p)的正弦波驱动下,频率为60和200 Hz时,微泵流量最大达到34.5 μL/min,而当频率在60~600 Hz时微泵压力最大达到657 Pa,与数值分析结果相吻合.

  12. Experimental verification of an equivalent circuit for the characterization of electrothermal micropumps: high pumping velocities induced by the external inductance at driving voltages below 5 V.

    Science.gov (United States)

    Stubbe, Marco; Gyurova, Anna; Gimsa, Jan

    2013-02-01

    Electrothermal micropumps (ETμPs) use local heating to create conductivity and permittivity gradients in the pump medium. In the presence of such gradients, an external AC electric field influences smeared spatial charges in the bulk of the medium. When there is also a symmetry break, the field-charge interaction results in an effective volumetric force resulting in medium pumping. The advantages of the ETμP principle are the absence of moving parts, the opportunity to passivate all the pump structures, homogeneous pump-channel cross-sections, as well as force plateaus in broad frequency ranges. The ETμPs consisted of a DC-heating element and AC field electrodes arranged in a 1000 μm × 250 μm × 60 μm (length × width × height) channel. They were processed as platinum structures on glass carriers. An equivalent-circuit diagram allowed us to model the frequency-dependent pumping velocities of passivated and nonpassivated ETμPs, which were measured at medium conductivities up to 1.0 S/m in the 300 kHz to 52 MHz frequency range. The temperature distributions within the pumps were controlled by thermochromic beads. Under resonance conditions, an additional inductance induced a tenfold pump-velocity increase to more than 50 μm/s at driving voltages of 5 V(rms). A further miniaturization of the pumps is viewed as quite feasible.

  13. Optimal Design and Operation for a No-Moving-Parts-Valve (NMPV Micro-Pump with a Diffuser Width of 500 µm

    Directory of Open Access Journals (Sweden)

    Jia-Ming Sun

    2009-05-01

    Full Text Available A no-moving-parts-valve (NMPV with a diffuser width of D = 500 microns was investigated in this study by numerical simulations at Reynolds numbers, ReD, ranging from 20 to 75, and expansion valve angles ranging from 30° < θ1 < 57° and 110° < θ2 < 120°. The D p,i value, 1.02 < D p,i < 1.14, is larger within the proposed range of the expansion valve angles. A flow channel structure with a depth of 500 micron is manufactured using yellow light lithography in this study. From prior analyses and experiments, it is found that piezoelectric films work better at a buzz driving frequency of f < 30Hz and the best operating frequency is at a driving frequency of f = 10Hz because it produces the largest net flow. In addition, the expansion angles θ1 = 30° and θ2 = 120° are the best expansion angles because they produce the largest net flow. These related results are very helpful for the actual design of no-moving-parts-valve micro-pump.

  14. Microvalves and Micropumps for BioMEMS—Introduction to BioMEMS By Albert Folch, University of Washington, Seattle, USA CRC Press: Boca Raton, FL, USA; Price: $89.95 ISBN: 9781439818398; ISBN 10: 1439818398 Publication Date: 26 March 2012; Number of Pages: 400 Binding(s: Hardback

    Directory of Open Access Journals (Sweden)

    Anthony K. Au

    2011-05-01

    Full Text Available This review presents an extensive overview of a large number of microvalve and micropump designs with great variability in performance and operation. The performance of a given design varies greatly depending on the particular assembly procedure and there is no standardized performance test against which all microvalves and micropumps can be compared. We present the designs with a historical perspective and provide insight into their advantages and limitations for biomedical uses. (Note: This review has been adapted from a chapter from the upcoming textbook by Albert Folch, Introduction to BioMEMS, published by CRC Press.

  15. The clinical monitoring and nursing of micro-pump potassium after surgery operation%外科术后微量泵经静脉补钾的临床监测及护理

    Institute of Scientific and Technical Information of China (English)

    李娟; 李勇兰; 党翠云; 曾小平

    2008-01-01

    To summarize the experience of clinical monitoring and nursing in patients who used the micro-pump potassium to rectify the hypokalemia after operation in ICU,heart surgery and common surgery department of our hospital.76 cases of hypokalemia were selected and used micro-pump to rectify the hypokalemia after surgery operation by intravenous infusion 10% liquids with original potassium chloride,the process was monitored and nursed closely.This prevented the occurrence of hypokalemia after operation effectively.During pumping potassium period,there was no phlebitis,no arrhythmia or other adverse effect occurred.Using micro-pump to supply potassium by vein to correct hypokalemia under tight clinical monitoring and nursing is effective and safe.%总结我院ICU、心脏外科、普外科病人术后使用微量泵泵钾纠正低钾血症的临床监测及护理体会.76例外科术后低钾血症患者使用微量注射泵经静脉输注浓度为10%氯化钾原液,以纠正低钾血症,补钾过程中进行严密监测和护理.有效预防了术后低血钾的发生.患者在泵钾期间无1例高钾血症发生,无静脉炎、心律失常等不良反应发生.严密的临床监测和护理下使用微量泵经静脉补钾纠正低钾血症的方法 是有效、安全的.

  16. Design and research of micro-pump based on photo-induced bending material%基于光致弯曲材料的微泵设计研究

    Institute of Scientific and Technical Information of China (English)

    朱玉田; 许溱; 陈茂林; 刘钊; 俞燕蕾

    2011-01-01

    Based on a photo-induced bending material which has two-way shape memory function,a novel micro-pump with valves was designed and made.Combined with material deformation principle,the micro-pump's finite element model was built by using the finite element software ANSYS,and the pumping capacity calculated by ANSYS was gained and compared with the one came from the pump prototype's experimental results,then the consistency of which validates this micro-pump design's rationality.The material application on micro-pump has some reference values for relative engineering application and the photo-induced bending effect equivalent also provides research methods for similar problems.%基于一种具有双向形状记忆功能的光致弯曲材料,设计了新型有阀微泵结构并制作了样机。结合材料的光致弯曲效应等效理论,采用ANSYS软件建立了微泵空腔结构的几何模型,并对所建模型的泵水体积进行了计算求解。对样机进行实验得到了微泵的实际泵水性能,将其与理论计算结果进行对比,得出两者基本一致的结论,从而验证了微泵结构设计的合理性。光致弯曲材料在微泵上的应用形式,对相关工程应用有一定的参考价值,光致效应的等效也为解决相关问题提供了研究方法。

  17. Efficacy of intravenous injection of urapidil by micro-pump in treatment of hypertensive emergency patients%经微量泵静脉注射乌拉地尔治疗高血压急症疗效观察

    Institute of Scientific and Technical Information of China (English)

    庄小静; 周朝虹

    2009-01-01

    目的 探讨乌拉地尔微量泵静脉注射治疗高血压急症的疗效和安全性.方法 对78例高血压急症患者用乌拉地尔50mg加入40ml液体中静脉微泵输注,监测并记录用药前及用药后5、10、30、60、120min血压(BP)、心率(HR)、伴随症状及不良反应.结果 应用乌拉地尔后各时段BP较用药前均明显下降,差异有统计学意义(P<0.05),而HR则无明显变化.结论 乌拉地尔微量泵静脉注射治疗高血压急症,疗效确切,不良反应少.%Objective To investigate the efficacy and safety of urapidil intravenous injected by micro-pump in treatment of hypertensive emergency patients. Methods There 78 cases with hypertensive, emergency werereated wih 50rag urapidil by intravenous micro-pump. The blood pressure (BP),heart rate (HR),adverse reactions were monitored and recorded before administration and 5min,10min,30min,60min,120min after administration. Results Compared to that before administration,blood pressure were significantly decreased after administration, showing a significant difference. While there was no significant difference in the heart rate. Conclusion Urapidil intravenous injected by micro-pump is effective for treatment of hypertensive emergency with fewer adverse reactions.

  18. Effects of rotation and magnetic field on the nonlinear peristaltic flow of a second-order fluid in an asymmetric channel through a porous medium

    Institute of Scientific and Technical Information of China (English)

    A.M.Abd-Alla; S.M.Abo-Dahab; H.D.El-Shahrany

    2013-01-01

    In this paper,the effects of both rotation and magnetic field of the peristaltic transport of a second-order fluid through a porous medium in a channel are studied analytically and computed numerically.The material is represented by the constitutive equations for a second-order fluid.Closed-form solutions under the consideration of long wavelength and low Reynolds number is presented.The analytical expressions for the pressure gradient,pressure rise,friction force,stream function,shear stress,and velocity are obtained in the physical domain.The effects of the non-dimensional wave amplitude,porosity,magnetic field,rotation,and the dimensionless time-mean flow in the wave frame are analyzed theoretically and computed numerically.Numerical results are given and illustrated graphically in each case considered.Comparison was made with the results obtained in the presence and absence of rotation,magnetic field,and porosity.The results indicate that the effects of the non-dimensional wave amplitude,porosity,magnetic field,rotation,and the dimensionless time-mean flow are very pronounced in the phenomena.

  19. Effects of Micropump Driving Parameters on Traveling Wave Driving Force%行波微泵驱动参数对驱动效果的影响

    Institute of Scientific and Technical Information of China (English)

    张冲; 魏守水; 魏长智

    2012-01-01

    提出一种新型的无阀机械微泵,它依靠微泵管道顶部铺设的压电薄膜阵列产生的超声行波来驱动微管道中的流体。根据超声行波驱动微流体的原理对微泵进行ANSYS有限元建模和CFX流固耦合计算,得到了选定模态下内边长为200μm的方形微泵管道中流体的动力黏度与微泵驱动能力的关系,以及驱动电压幅值和频率对管口流速的影响曲线。结果表明:驱动电压的幅值大小与管口流速成正比,且当驱动频率等于共振频率时驱动效果最明显;当流体动力黏度小于0.001Pa.s时微流体流速随黏度增大而线性增大,之后则缓慢减小。此外,通过CFX后处理得到了微管道中的截面流速矢量图,由矢量图可以看出,在行波驱动作用显著的部分流速分布呈现自微管顶部向下逐渐减慢的特点,而在行波驱动作用极微弱的部分则流速分布近似呈抛物线形状。%A novel type of valveless mechanical micro--pump was proposed herein. It transported the liquid depending on the driving force of traveling wave which was produced by piezoelectric films fabricated on the top surface of the channel. Using finite element software, according to the principle of ultrasonic traveling wave driving,a model was structured and solved. The relationships among the ve- locity of microfluidic and driving factors such as the dynamic viscosity of liquid, the driving voltage amplitude and frequency were obtained for the first time under condition of the selected modal of square micro--pipe with a caliber of 200μm. The results show that the voltage amplitude is propor- tional to the flow velocity and the best driving efficiency is obtained on the resonance frequency;When the dynamic viscosity is below 0. 001Pa · s, the flow velocity will increase along with the rising viscos- ity while decrease above that value. In addition, the section velocity vector diagrams have been ob- tained, which illustrate that the flow

  20. 流变学流体的蠕动传输:食道中食物块的运动模型%Peristaltic Transport of a Rheological Fluid:Model for Movement of Food Bolus Through Esophagus

    Institute of Scientific and Technical Information of China (English)

    J·C·密斯拉; S·麦蒂; 海治

    2012-01-01

    研究食道中蠕动传输的流体力学.对任意的波形和任意的管道长度,建立起流变学流体蠕动传输的数学模型.用粘性流体的Ostwald-de Waele幂定律,描述非Newton流体的流动特性.解析公式化模型,详细且精确地给出食物块在食道中蠕动传输相关的一些重要性质.分析中应用了润滑理论,本研究特别适合于Reynolds数不大的情况.将食道看作环形的管道,通过食道壁周期性的收缩来传输食物块.就单个波和周期性收缩一组波的传播,研究与传输过程有关变量的变化,如压力、流速、食物颗粒轨迹以及流量等.局部压力的变化,对流变指数n有着高度的敏感性.研究结果清晰地表明,食物块在食道中蠕动传输时,Newton流体或流变学流体构成的连续流体,以组合波传播比大间隔单波传播,传输效率要高得多.%Fluid mechanical peristaltic transport through esophagus had been of concern. A mathematical model had been developed with an aim to study the peristaltic transport of a rheo-logical fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid was considered here to depict the non-Newtonian behaviour of the fluid. The model was formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bolus through the esophagus. The analysis had been carried out by using lubrication theory. The study was particularly suitable for cases where the Reynolds number was small. The esophagus was treated as a circular tube through which the transport of food bolus takes places by periodic contraction of the esophageal wall. Variation of different variables concerned with the transport phenomena such as pressure, flow velocity, particle trajectory and reflux were investigated for a single wave as well as for a train of periodic peristaltic waves. Locally variable pressure was seen to be highly sensitive to the flow index n

  1. 一种低成本压电无阀微泵的研制%Research and fabrication of a low-cost valveless micropump based on piezoelectric actuation*

    Institute of Scientific and Technical Information of China (English)

    徐亮; 应济; 李俊

    2011-01-01

    提出了一种低成本的由压电材料驱动的平面扩张/收缩管无阀微泵的制作工艺.通过数值模拟确定了扩张/收缩管扩张角的最优值,在此基础上,采用光刻和湿法刻蚀工艺,刻蚀了300μm深的泵腔基片和100 μm深的盖片;使用等离子体清洗技术将其与PDMS薄膜键合,完成了可以实现单向泵送的压电无阀微泵样机制作.研究了该压电无阀微泵样机的性能,分别分析了压电振子的激励频率、电压和微泵背压对其流量的影响.实验结果表明:在100V,110Hz交流方波电压信号的作用下,微泵有最大输出流量为436μL/min,最大背压为620 Pa.%A low-cost valveless micropump based on piezoelectric actuation is presented. The optimized value of opening angle is obtained by numerical simulation, which is the reference of design parameters of the diffuser/ nozzle element. A 300 μm depth of pump chamber substrate and a 100 μm depth of cover are fabricated on pyrex glass using photographic and wet chemical etching processes. Then, by using plasma cleaning technology, they are bonded to PDMS membrane to accomplish the fabrication of the micropump. The maximum flow rate and baekpressure of the pump are about 436 μL/min and 620 Pa when applying a 100V square wave driving voltage at 110 Hz across the piezoelectric-disc.

  2. Effects of auricular acupressure on postoperative complications of laparoscopic surgery and its function of improving the gastrointestinal peristaltic function%耳穴按压对腹腔镜术后胃肠功能恢复的影响

    Institute of Scientific and Technical Information of China (English)

    张阳德; 林伶; 陈紫煜

    2011-01-01

    目的 应用耳穴按压于腹腔镜围手术期治疗,探讨耳穴按压对腹腔镜术后胃肠功能恢复的影响,研究其预防腹腔镜围手术并发症或不良反应的作用.方法 选择2009年7月~2010年6月100例行腹腔镜手术患者并随机分为两组,即耳穴按压组(A组,50例)和对照组(C组,50例),A组患者在自术前24 h至术后3d行耳穴按压,而C组患者不行任何干预,观察两组患者肠呜音恢复时间及肛门首次排气时间;术后并发症如腹胀、呕吐的发生率;术后补救治疗药物使用情况,来评价两组胃肠功能恢复情况.结果 两组患者在年龄,体重,身高,或麻醉时间差异无显着性.耳穴组患者术后肠2音恢复时间,肛门首次排气时间均较对照组显著提前(P<0.05).耳穴按压组患者术后并发症发生率较对照组小,术后止呕药物使用较对照组少(P<0.05).未观察到耳穴按压有明显副作用.结论 耳穴按压可促进术后胃肠功能恢复,并有效预防腹腔镜术后并发症,值得临床推广和进一步研究.%[ Objectives ] To evaluate auricular acupressure's function of improving the gastrointestinal peristaltic function and investigate its influence on postoperative complications of laparoscopic surgery. [Methods] From July 2009 to June 2010,100 patients after laparoscopic operation were enrolled in and randomly divided into two groups, auricular acupressure group (Group A, 50 cases) and control group (Group C, 50 cases). In Group A, the patients were treated with auricular acupressure preoperatively and postoperatively. In Group C, the patients were treated by non nonintervention. The effects of auricular acupressure on postoperative complications and its function of improving the gastrointestinal peristaltic function in each group were analyzed and evaluated. [ Results ] The bowel sound recovery time and the postoperative exhaust time in Group A was statistically earlier than that in Group C (P <0.05). The

  3. 微极流体蠕动泵经由滑移边界管道输送的Stokes流动%Study on Stokes Flow of Micro-Polar Fluids by Peristaltic Pumping Through a Tube With Slip Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    D·特里帕蒂; M·K·乔伯; P·K·古泊塔; 吴承平

    2011-01-01

    The Stokes flow of micro-polar fluids by peristaltic pumping through the cylindrical tube under the effect of slip boundary condition was studied. The motion of wall was governed by the sinusoidal wave equation. Analytical and numerical solutions for axial velocity, micro-polar vector, stream function, pressure gradient, friction force and mechanical efficiency were obtained by using the lubrication theory. The impacts of emerging parameters such as coupling number, micro-polar parameter and slip parameter on pumping characteristic, friction force and trapping phenomena were depicted graphically. Numerical computation infers that more pressure requires for peristaltic pumping when coupling number is large while opposite behavior is found for micro-polar parameter and the slip parameter. The size of trapped bolus reduces with coupling number and micro-polar parameter whereas it blows up with slip parameter.%计及管道边界条件滑移的影响,研究微极流体蠕动泵,经由圆柱形管道输运的Stokes流动.壁面运动的控制方程为正弦波方程.使用润滑理论,得到了轴向速度、微转动向量、流函数、压力梯度、摩擦力和机械效率的解析数值解.用图形表示出构成参数,如像耦合参数、微极参数和表征蠕流泵特性的滑移参数、摩擦力和俘获现象的影响.数值计算表明,当耦合参数较大时,需要蠕动泵的压力更大,而微极参数和滑移参数正相反.俘获团块的大小随耦合参数和微极参数的减小而缩小,而随滑移参数的增大而缩小.

  4. Analysis of flow characteristics in thermal-bubble actuated diffuser-nozzle valveless micropump%热汽泡驱动无阀微泵流动特性分析

    Institute of Scientific and Technical Information of China (English)

    潘良明; 岳万凤; 魏敬华; 陈德奇

    2013-01-01

    Based on the different flow resistance characteristic of diffuser/nozzle at the bubble growth and condensation stage, the flow characteristics of thermal-bubble actuated valveless micropump under different ratio of heating, driving frequency and diverging angle and different heating power are numerically investigated. Evaporation and condensation processes are accomplished by Volume of Fluid (VOF) multiphase flow model and User Defined Functions (UDF) interface. The results reveal that with the same ratio of heating time, the volume flow rate increases at first and then decreases with the increasing driving frequency. The micropump has a maximum flow rate of 5. 87 μL/min when the driving pulse is 250 Hz at 10% heating ratio. The volume flow rate increases at first then decreases with the enlarging diverging angle when keeping the aspect ratio constant, and it will reach the maximum when the diverging angle is 14°, and it has a higher pressure difference between the diffuser and the nozzle. The average velocity at the diffuser neck is always greater than the nozzle during the entire driving period, the pumping flow rate presents a trend of increasing at first and then flatting with the increasing heating power.%基于热汽泡生长和冷凝为微泵提供泵送压力源以及扩张管/收缩管流动阻力特性不同而实现差量流动的原理,对不同加热时间比例、驱动频率以及不同扩张角度及功率下热汽泡驱动无阀微泵流动特性进行了研究.蒸发和凝结过程通过流体体积函数(VOF)两相流模型及用户自定义函数(UDF)接口实现.结果表明:相同加热时间比例下,随着驱动频率增加,微泵泵送流量呈先增加后降低趋势;加热时间比例为10%,驱动频率为250 Hz时泵送流量达到最大值5.87 μL/min;在保持微泵扩张管/收缩管长宽比不变的情况下,泵送流量随扩张角也有先增后减的趋势,并在扩张角为14°时泵送流量达到最大,扩张管/收

  5. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-07-01

    Full Text Available We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1 were used as a model system. Thin-film platinum (Pt sensors for respiration (amperometric oxygen electrode, acidification (potentiometric pH electrodes and cell adhesion (interdigitated-electrodes structures, IDES allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4. Thin Si3N4 layers (20 nm or 60 nm were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm2. Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated. Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.

  6. Numerical study of the accessorial loop with a micro-pump and ejector for the capillary pumped loop%CPL微泵引射辅助回路的数值研究

    Institute of Scientific and Technical Information of China (English)

    涂正凯; 刘超; 刘志春; 刘伟

    2009-01-01

    An accessorial loop with a micro-pump and ejector was applied into the capillary pumped loop(CPL) to enhance the heat transfer capability of CPL. A 3D model was developed to investigate the operation performance of the ejector. The numerical results show that the primary loop will not only can operate normally but the mass flux can be enhanced with an accessorial loop. However, vapor can be found in the outlet of the ejector and it can flow into the evaporator, which is a big disad- vantage for system, hence, a sub-cooler is necessary to locate between the outlet of the ejector and the inlet of the evaporator to condense the mixed fluid into liquid.%在毛细相变流体回路(CPL)系统中加入微泵引射辅助回路,以提高其传热能力,并建立一个三维模型来分析引射器的工作性能.数值结果表明:主回路不但能正常运行,而且辅助冋路能够提高主回路流体的质量流量;但在引射器的出口中包含气相,这些气体能够流入蒸发器,对整个系统都会造成不利影响.因此在引人微泵引射辅助回路的同时必须在引射器出口和蒸发器入口段之间加入过冷器.使得引射器出口中的气相冷凝成液体进入蒸发器,保证蒸发器的正常工作.

  7. 一种可越过凸凹障碍的仿医蛭管内微型机器人%Research on a New Kind of Micro Peristaltic Robot in Pipeline Simulating a Medicinal Leech

    Institute of Scientific and Technical Information of China (English)

    刘方湖; 马培荪

    2000-01-01

    基于医蛭的内部结构和运动机理,提出了一种新型的、可越过管内凸凹障碍的仿医蛭管内 蠕动微型机器人,解决了管内微型机器人的通过性问题.该微型机器人由两个爬行部件、一个收缩 部件和控制系统组成,具有可沿任意方向转弯和可通过锥形、直线型及弧形管接头的能力.%Based on the structure and the locomotion principle of a medicinal leech, a new kind of micro peristaltic robot in pipeline simulating a medicinal leech was presented, which is suitable for going across protruding or concave impediment. The presentation of the micro robot mainly solves the problem for a micro robot in pipeline to go across impediments. The robot is made up of two crawling parts, an extending and contracting part and a control system. The micro robot has many advantages, such as moving in all directions and crossing a cone or linear or arc connection of a pipeline.

  8. 耳穴贴压促进术后胃肠功能恢复干预性试验的Meta分析%Trails about auricular acupressure in improving the postoperative gastrointestinal peristaltic function:a Meta-analysis

    Institute of Scientific and Technical Information of China (English)

    王晓庆; 段培蓓; 张晓琴; 诸建华; 梅思娟; 杨丽华; 孙龙

    2014-01-01

    Objective To systematically review the effect of auricular acupressure on the recovery of gastrointestinal peristaltic functioning after the surgery .Methods The randomized controlled trials ( RCT) and controlled clinical trail on auricular acupressure after the surgery were collected using the databases of Cochrane Library, JBI Library,PubMed,EMbase,CBMdisc,China National Knowledge Infrastructure (CNKI) and Chinese BioMedical Literature Database ( CBM ) . After selection and critical appraisal of the retrieved studies , a quantitative systemic review(Meta-analysis)was conducted by RevMan 5.0 software.Results Four RCTs and ten CCTs were included with the literature quality of B .Meta-analysis showed that auricular acupressure after the surgery could significantly shorten the time to first flatus (WMD=-14.16,95%CI=-18.40 -9.93,P<0.01),time to first bowel motion(WMD =-10.33,95%CI =-12.98 -7.69,P <0.01),time to first passage of feces(WMD=-19.19,95%CI=-27.56 -10.81,P<0.01),and reduced the rate of abdominal distension (OR=0.17,95%CI:0.10-0.29,P<0.01).Conclusions Auricular acupressure after surgery is beneficial in promoting the recovery of gastrointestinal peristaltic function .However ,more high quality RCTs on the basic research of action mechanism , and standardized clinical research are still required to verify the effects .%目的:评价耳穴贴压对患者术后胃肠功能恢复的影响。方法检索Cochrane及JBI图书馆、PubMed (1966-2013年)、EMbase (1989-2013年)、CBMdisc (1978-2013年)和 CNKI (1994-2013年)数据库中符合纳入排除标准的中英文文献,由3名研究者对文献进行质量评价,使用RevMan 5.0软件对符合标准的研究结局指标进行分析和描述。结果共纳入14项临床干预性研究,文献质量等级均为B级。 Meta分析结果显示,在常规治疗护理的基础上结合耳穴贴压疗法,可明显缩短患者术后排气的时间(WMD=-14.16,95%CI:-18.40~-9

  9. Design and research of peristaltic pump control system based on the Modbus RTU%基于ModbusRTU的蠕动泵测控系统的设计与研究

    Institute of Scientific and Technical Information of China (English)

    罗玮; 余淑荣; 张乾军

    2016-01-01

    Based on the existing domestic manufacturer production common peristaltic pump BT100 M as the research object, according to the pump body meet Modbus RTU serial port communication proto-col, the pump head drive and motion control is analyzed and the research, and by using PLC of Siemens 224XP system to the overall operation of the equipment for automatic control system design, test and hu-man-machine interface development, to the value of its application and popularization, on its program de-sign method of the Modbus free port communication protocol. According to the research design content on the basis of the original equipment on the upper human-machine interface automatic control, to make it a targeted application in related industrial automatic control field.%以现有国内厂家生产的常见蠕动泵 BT100 M 为研究对象,根据泵体满足串口 Modbus RTU通信协议,对其泵头驱动装置及泵头的运动控制进行分析与研究,并利用西门子224 XP系列PLC对其设备的整体运行情况进行自动控制系统设计、测试及人机界面开发,挖掘其应用及推广价值,研讨其Modbus自由口通信协议的程序设计方法。根据研究设计内容在原有设备的基础上对其进行上位人机界面自动控制改造,使其有针对性地推广应用于相关的工业自动控制领域。

  10. 双压电驱动微泵泵膜的ANSYS仿真和结构优化分析%ANSYS Simulation and Structure Optimization of Double Piezoelectric Layers Driven Micro-Pump Membrane Structure

    Institute of Scientific and Technical Information of China (English)

    邓凯; 陈可娟

    2013-01-01

    A new kind of double piezoelectric layers driven pump membrane structure is introduced and the small deflection bending deformation theory pump membrane is analyzed.Using ANSYS software to establish the finite element model of the pump membrane,the static analysis and modal analysis is done.The pump membrane structure is optimized by using orthogonal test method.The results show that piezoelectric layer thickness influenced the deformation of pump membrane the most,and the driving voltage,pump membrane radius, electrode layer thickness,and basic level thickness followed.Pump membrane radius influenced the frequency of pump membrane the most,and the piezoelectric layer thickness, electrode layer thickness and basic level thickness followed.To optimize pump membrane structure can improve the efficiency of micro-pump, and the results provide the basis for the optimal design of micro-pump.%提出了一种新型的双压电泵膜结构,分析了泵膜小挠度弯曲形变理论.运用ANSYS软件建立了泵膜的有限元模型,并对泵膜进行了电压驱动静态分析和模态分析,通过正交试验法对泵膜结构进行了优化.分析表明,压电层厚度对膜片形变影响最大,其次依次是驱动电压、泵膜半径、电极层厚度、基层厚度;泵膜半径对膜片频率影响最大,其次依次是压电层厚度、电极层厚度、基层厚度;对泵膜结构进行优化,可以提高微泵的工作效率,研究结果为微泵的优化设计提供了依据.

  11. 微泵注入与肌注氯解磷定对急性有机磷中毒的疗效比较%The Effect Compare of Patients with Acute Organophosphate Poisoning Treated by Pralidoxime Chloride Using Intramuscularly and Micro-pump

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      目的:比较氯解磷定微泵与肌注二种不同的给药方式在救治急性有机磷中毒中的治疗效果。方法:将42例急性有机磷农药中毒患者在常规对抗毒蕈碱样症状治疗基础上按就诊顺序单号和双号分为观察组和对照组各21例,观察组采用微泵注入氯解磷定的方式,对照组应用肌注氯解磷定的方式,比较两组患者的治疗效果和胆碱酯酶(ChE)的恢复情况。结果:观察组中胆碱酯酶的恢复时间、氯解磷定的总量、从昏迷到清醒时间和住院的平均时间均明显小于对照组(P <0.05)。结论:微泵注入氯解磷定治疗急性有机磷中毒的效果明显优于肌注氯解磷定。%Objective: To compare the clinical effect of patient with acute organophosphate treated poisoning by pralidoxime chloride using intramuscularly and micro-pump. Method: 42 patients with acute organophosphate poisoning in conventional treatment against muscarinic symptoms based on the sequence by a single number and two-doctor Number were divided into observation group and control group, and each group was 21 cases. The observation group was accepted pralidoxime chloride by micro-pump, while the control group was accepted pralidoxime chloride by intramuscular. The clinical effect and the recovery of cholinesterase were compared between the two groups. Results:The recovery time and the amount of pralidoxime chloride,from coma to awake and the average hospitalization time in the observation group were significantly less than those in the control group (P < 0.05). Conclusion:The clinical effect of patients with organophosphorus poisoning treated by pralidoxime chloride using micro-pump is better than using intramuscular.

  12. Application of RAGAZZINI Peristaltic Pump in the Production of New-process Mixiang Baijiu(Liquor)%RAGAZZINI蠕动泵在新工艺米香型白酒生产中的应用

    Institute of Scientific and Technical Information of China (English)

    朱旭平

    2015-01-01

    新工艺米香型白酒生产线属长乐烧企业的创新项目,该项目获广东轻工科技二等奖、获国家轻工科技优秀奖。新工艺与传统工艺最大的区别在于,前者是将熟化后的原料直接加水、加曲输入发酵罐糖化、发酵同罐进行,后者是先将熟化的原料在糖化槽中糖化后加水再输入发酵罐。前者物料为液固松散分离状态,后者为糊化状态,因此常用的气动隔膜泵输送液固松散分离状态物料时就常常将液体抽走,造成管道阻塞。长乐烧酒业在新工艺生产线上利用蠕动泵实现了将熟化原料加水混合物料轻松输入发酵罐的目标,解决了管道阻塞问题,达到了连续生产目的,彻底改变了蒸饭机至发酵罐间物料自动输送的难题。%New-process Mixiang Baijiu(liquor) is the innovative program in Changle Distillery which won the 2nd Prize of Guangdong Light Industry Science and Technology and State Light Industry Science&Technology Excellent Prize. The difference between new-process produc-tion and traditional production were as follows:in the new process (raw materials in liquid&solid separation loose state), water was added di-rectly in cooked raw materials, then caky starter was added for saccharfication and fermentation in the same fermenter;in traditional process (raw materials in gelatinized state), cooked raw materials were saccharified in saccharifying tank at first, then water was added for fermentation in the fermenter. The use of new-process often induced pipe obstruction because the commonly-used pneumatic drive membrane pump drained liquid during the transportation of liquid&solid separation loose raw materials. Changle Distillery used peristaltic pump to settle such prob-lem, which could achieve continuous production and completely solve pipeline blocking from steam machine to fermenter.

  13. PDCA循环对微量泵注射多巴胺预防连续性血液净化过程中低血压的影响%Effect of PDCA cycle in the prevention of hypotension during continuous blood purification by micro-pump injection of dopamine

    Institute of Scientific and Technical Information of China (English)

    顾永梅

    2016-01-01

    目的::探讨PDCA循环在微量泵注射多巴胺预防连续性血液净化过程中低血压的应用效果。方法:选择2015年1~6月接受微量泵注射多巴胺治疗的42例血液净化低血压患者作为对照组,治疗期间应用常规性护理;选择2015年7~12月接受微量泵注射多巴胺治疗的42例血液净化低血压患者作为观察组,治疗期间应用PDCA循环护理模式,对比分析两组患者治疗效果、不良反应、护理满意度及血压变化情况。结果:观察组低血压、微量泵阻塞、多巴胺渗漏、肢体肿胀、内瘘血栓发生率及护理纠纷发生率均低于对照组(P<0.05)。观察组患者净化后1,2,3 d收缩压、舒张压均高于对照组(P<0.05)。观察组在健康教育、医疗环境、心理护理、服务态度及操作性护理方面满意度评分高于对照组(P<0.05)。结论:PDCA循环能有效预防血液透析低血压的发生,降低微量泵临床应用风险事件及意外事件的发生,提高患者治疗满意度。%Objective:To explore the application effect of PDCA cycle in the prevention of hypotension during continuous blood purification by micro-pump injection of dopamine. Methods:Selected 42 cases of patients with hypotension during blood purification dated from January 2015 to June 2015 who received treatment of micro-pump injection of dopamine as control group. During the treatment,they were treated with routine nursing. Selected 42 cases of patients with hypotension during blood purification dated from July 2015 to December 2015 who received treatment of micro-pump injection of dopamine as observa-tion group. During the treatment,they were treated with PDCA cycle nursing. The therapeutic effect, adverse reaction,nursing satisfaction and blood pres-sure were compared between the two groups. Results:The incidence of hypotension,micro-pump obstruction,dopamine leakage,limb swelling,internal fis-tula thrombosis and nursing disputes of the observation

  14. Clinical curative effect observation of continuous transfusion of heparin sodium combined with urokinase and warfarin by micropump in the treatment of deep venous thrombosis%微量泵持续输注肝素钠联合尿激酶、华法林治疗下肢深静脉血栓形成的临床效果观察

    Institute of Scientific and Technical Information of China (English)

    赵晓玲; 王明; 陈建明

    2016-01-01

    Objective:To investigate the clinical curative effect of continuous transfusion of heparin sodium combined with urokinase and warfarin by micropump in the treatment of deep venous thrombosis.Methods:86 cases of patients with deep venous thrombosis were divided into two groups randomly.The treatment group was treated with continuous transfusion of heparin sodium combined with urokinase and warfarin by micropump on the basis of conventional treatment,the control group was treated with urokinase,warfarin and low molecular heparin calcium on the basis of conventional treatment,the cure rate and effective rate of the two groups were compared.Results:The cure rate of the treatment group was 72.5%,and the total effective rate was 89.7%.The cure rate of the control group was 60.2%,and the total effective rate was 78.9%.The difference of clinical curative effect between the two groups was statistically significant(P<0.05).No serious bleeding events occurred in the two groups.Conclusion:The clinical curative effect of continuous transfusion of heparin sodium combined with urokinase and warfarin by micropump in the treatment of deep venous thrombosis was significantly better than that of low molecular heparin calcium combined with urokinase and warfarin,and the bleeding events were not significantly increased.%目的:探讨微量泵持续输注肝素钠联合尿激酶、华法林治疗下肢深静脉血栓形成的临床效果.方法:收治下肢深静脉血栓形成患者86例,随机分为两组.治疗组在常规治疗基础上,以微量泵持续输注肝素钠联合尿激酶、华法林,对照组在常规治疗基础上给予尿激酶、华法林、低分子肝素钙,比较两组治愈率及有效率.结果:治疗组治愈率 72.5%,总有效率 89.7%.对照组治愈率 60.2%,总有效率 78.9%.两组临床疗效比较,差异具有统计学意义(P<0.05).两组均未出现严重出血事件.结论:微量泵持续输注肝素钠联合尿激酶、华法林治疗下肢深静

  15. Clinical efficacy of micro-pump injection of nitroglycerin and sodium nitroprusside in the treatment of hypertensive crisis%静脉微泵注射硝酸甘油与硝普钠治疗高血压危象的效果观察

    Institute of Scientific and Technical Information of China (English)

    朱海龙; 王军; 王英; 梁夷; 张毅

    2012-01-01

    Objective To observe the clinical efficacy of micro-pump injection of nitroglycerin and sodium nitroprusside in the treatment of hypertensive crisis. Methods Sixty-eight patients were randomly divided into two groups, and recieved micro-pump injection of nitroglycerin (group A) or sodium nitroprusside (group B). The clinical efficacy were observed. Results The total effective rate of lowering blood pressure 94.12% in group A and 94.12% in group B, with no statistically significant difference between the two groups (P>0.05). But the duration of the lowering blood pressure was significantly shorter in group B than group A (P<0.05). The effective rate within 30 minutes was 67.65% in group B, but only 26.47% in group A. Conclusion For patients with hypertensive crisis, the clinical effect of sodium nitroglycerin and sodium nitroprusside is similar in lowering blood pressure, but sodium nitroprusside needs significantly shorter duration.%目的 观察静脉微泵注射硝酸甘油与硝普钠在高血压危象患者治疗中的降压效果.方法 68例高血压危象患者随机分成两组,分别行静脉微泵注射硝酸甘油与硝普钠行降压治疗,观察疗效.结果 硝酸甘油组与硝普钠组的降压总有效率相似(94.12%与94.12%,P>0.05),但降压达标时间硝普钠组短于硝酸甘油组(30 min显效率分别为67.65%与26.47%,P<0.05).结论 对于高血压危象患者,两种药物降压效果相似,均可选择.如果需要更快速地控制血压则首选硝普钠.

  16. An automatic solution-sample-changing peristaltic device at biological small angle X-ray scattering beamline%一种生物X射线小角散射光束线站自动换样溶液蠕动装置

    Institute of Scientific and Technical Information of China (English)

    洪春霞; 周平; 李怡雯; 曾建荣; 边风刚; 王劼

    2016-01-01

    Background: Protein structure in solution can be studied by small-angle X-ray scattering techniques at synchrotron radiation facilities. However, the structure of protein is prone to vary as the radiation damage induced by the intense X-ray beam during the experiments. Purpose:This study aims to develop an automatic solution-sample-changing peristaltic device for biological small angle X-ray scattering experiment. Methods: The injection pump PSD/4 of Hamilton is applied to eliminate the radiation damage of protein by minimizing the X-ray irradiation time of unit volume. In addition, automatic sample-changing, retrieving and cleaning was realized by the coordinated control of PSD/4, the alignment control stage and the sample/buffer control stage. Thus the experiment efficiency is improved. Results: The scattering curves and gyration radius of lysozyme under stationary collection mode and peristaltic collection mode were measured by experiments carried out at biological small angle X-ray scattering beamline of Shanghai Synchrotron Radiation Facility (SSRF). And results show that this device can prevent radiation damage of sample efficiently. Conclusion:The designed functionalities have been achieved as expected.%利用同步辐射X射线小角散射技术可以研究溶液中蛋白质的结构信息。但是在实验过程中,高通量的X 射线易造成蛋白质的辐射损伤,发生结构变化。本文介绍了一种自动换样溶液样品蠕动装置,在实验过程中利用Hamilton的PSD/4注射泵控制样品上下运动,减小单位体积照射时间以降低X射线对蛋白质的辐射损伤。此外,通过对注射泵、准直调节台和样品/缓冲液支撑台的协调控制实现了自动换样、回样和清洗功能,提高了实验效率。在上海光源生物X射线小角散射实验站进行了实验,通过对静止模式和蠕动模式下溶菌酶的散射曲线及回旋半径的测量,表明该装置可达到很好的防辐射

  17. Unsteady Peristaltic Transport of Maxwell Fluid Through a Finite Length Tube: Application to Oesophageal Swallowing%Maxwell流体在有限长管道中作不稳定的蠕动传输:食道吞咽进程分析

    Institute of Scientific and Technical Information of China (English)

    S·K·潘迪; D·特里帕蒂; 黄雅意

    2012-01-01

    Unsteady peristaltic transport of Maxwell fluid in a finite tube was investigated. The walls of the tube were subjected to contraction waves that do not cross the stationary boundaries. The analysis was carried out by using long wavelength approximation in non-dimensional form. The expressions for axial and radial velocities were derived and pressures across a wavelength and also across the tube-length were also estimated. The reflux phenomenon was discussed that culminates into determination of the reflux limit. Mathematical formulations were physically interpreted for the flow of masticated food materials such as bread, white eggs etc. In the oesophagus. It is revealed that Maxwell fluids are favorable to flow in the oesophagus in comparison with Newtonian fluids. This endorses the experimental finding of Tomoko Taka-hashi et al. [Rheology, 1999, 27: 169-172]. It is further revealed that relaxation time affects neither shear stress nor reflux limit. It is found that the peaks of pressure are identical in the integral case while the peaks are different in the non-integral case.%解析地研究了有限长管道中Maxwell流体的不稳定蠕动传输.管壁受到不超过静止边界的收缩波作用.对无量纲形式的方程,应用长波长近似进行分析.导出了轴向速度和径向速度的表达式,评估了沿波长和管道长度方向的压力.讨论了回流现象,确定了回流极限区域.对食道中咀嚼食物(如面包、蛋白等)传输的数学公式给出了物理上的解释.可以看出,与Newton流体相比,Max-well流体有利于在食道中的流动.与Takahashi等[Rheology,1999,27:169-172]的实验结果相符合,进一步揭示了松弛时间既不影响剪应力,也不影响回流极限.发现了压力的峰值,对整数值波列是相同的,而对非整数值波列是不同的.

  18. Single-pulse dynamics and flow rates of inertial micropumps

    CERN Document Server

    Govyadinov, A N; Markel, D P; Torniainen, E D

    2015-01-01

    Bubble-driven inertial pumps are a novel method of moving liquids through microchannels. We combine high-speed imaging, computational fluid dynamics (CFD) simulations and an effective one-dimensional model to study the fundamentals of inertial pumping. Single-pulse flow through 22 x 17 um2 U-shaped channels containing 4-um polystyrene tracer beads has been imaged with a high-speed camera. The results are used to calibrate the CFD and one-dimensional models to extract an effective bubble strength. Then the frequency dependence of inertial pumping is studied both experimentally and numerically. The pump efficiency is found to gradually decrease once the successive pulses start to overlap in time.

  19. A microfluidic device based on an evaporation-driven micropump

    NARCIS (Netherlands)

    Nie, C.; Frijns, A.J.H.; Mandamparambil, R.; Toonder, J.M.J. den

    2015-01-01

    In this paper we introduce a microfluidic device ultimately to be applied as a wearable sweat sensor. We show proof-of-principle of the microfluidic functions of the device, namely fluid collection and continuous fluid flow pumping. A filter-paper based layer, that eventually will form the interface

  20. Rotational Efficiency of Photo-Driven Archimedes Screws for Micropumps

    Directory of Open Access Journals (Sweden)

    Chih-Lang Lin

    2015-06-01

    Full Text Available In this study, we characterized the rotational efficiency of the photo-driven Archimedes screw. The micron-sized Archimedes screws were fabricated using the two-photon polymerization technique. Free-floating screws trapped by optical tweezers align in the laser irradiation direction and rotate spontaneously. The influences of the screw pitch and the number of screw blades have been investigated in our previous studies. In this paper, the blade thickness and the central rod of the screw were further investigated. The experimental results indicate that the blade thickness contributes to rotational stability, but not to rotational speed, and that the central rod stabilizes the rotating screw but is not conducive to rotational speed. Finally, the effect of the numerical aperture (NA of the optical tweezers was investigated through a demonstration. The NA is inversely proportional to the rotational speed.

  1. A peristaltic pump driven 89Zr separation module

    DEFF Research Database (Denmark)

    Siikanen, J.; Peterson, M.; Tran, T.

    2012-01-01

    To facilitate the separation of 89Zr produced in yttrium foils, an automated separation module was designed and assembled. The module separates more than 85% of produced 89Zr - activity in 3 g foils in less than 90 min. About 10 % remains in the dissolving vial. The quality of the separated 89Zr ...... activity was investigated for labeling of the HER2-binding monoclonal antibody fragment, trastuzumab-Fab....

  2. Esophageal contractions in type 3 achalasia esophagus: simultaneous or peristaltic?

    Science.gov (United States)

    Kim, Tae Ho; Patel, Nirali; Ledgerwood-Lee, Melissa; Mittal, Ravinder K

    2016-05-01

    Absence of peristalsis and impaired relaxation of lower esophageal sphincter are the hallmarks of achalasia esophagus. Based on the pressurization patterns, achalasia has been subdivided into three subtypes. The goal of our study was to evaluate the esophageal contraction pattern and bolus clearance in type 3 achalasia esophagus. High-resolution manometry (HRM) recordings of all patients diagnosed with achalasia esophagus in our center between the years 2011 and 2013 were reviewed. Recordings of 36 patients with type 3 achalasia were analyzed for the characteristics of swallow-induced "simultaneous esophageal contraction." The HRM impedance recordings of 14 additional patients with type 3 achalasia were analyzed for bolus clearance from the impedance recording. Finally, the HRM impedance along with intraluminal ultrasound imaging was conducted in six patients to further characterize the simultaneous esophageal contractions. Among 187 achalasia patients, 30 were type 1, 121 type 2, and 36 type 3. A total of 434 swallows evaluated in type 3 achalasia patients revealed that 95% of the swallow-induced contractions met criteria for simultaneous esophageal contraction, based on the onset of contraction. Interestingly, the peak and termination of the majority of simultaneous esophageal contractions were sequential. The HRM impedance revealed that 94% of the "simultaneous contractions" were associated with complete bolus clearance. Ultrasound image analysis revealed that baseline muscle thickness of patients in type 3 achalasia is larger than normal but the pattern of axial shortening is similar to that in normal subjects. The majority of esophageal contractions in type 3 achalasia are not true simultaneous contractions because the peak and termination of contraction are sequential and they are associated with complete bolus clearance.

  3. Electrokinetic transport in unsteady flow through peristaltic microchannel

    Science.gov (United States)

    Tripathi, Dharmendra; Mulchandani, Janak; Jhalani, Shubham

    2016-04-01

    We analyze the electrokinetic transport of aqueous electrolyte fluids with Newtonian model in presence of peristalsis through microchannel. Debye-Hückel linearization is employed to simplify the problem. Low Reynolds number and large wavelength approximations are taken into account subjected to microfluidics applications. Electrical double layer (EDL) is considered very thin and electroosmotic slip velocity (i.e. Helmholtz-Smoluchowski velocity) at the wall is subjected to study the effect of applied electrical field. The solutions for axial velocity and pressure difference along the channel length are obtained analytically and the effects of adding and opposing the flow by applied electric field have been discussed. It is revealed that the axial velocity and pressure gradient enhances with adding electric field and an opposite behavior is found in the flow direction on opposing the electric field. These results may also help towards designing organ-on-a-chip like devices for better drug design.

  4. A New Concept of a Drug Delivery System with Improved Precision and Patient Safety Features

    Directory of Open Access Journals (Sweden)

    Florian Thoma

    2014-12-01

    Full Text Available This paper presents a novel dosing concept for drug delivery based on a peristaltic piezo-electrically actuated micro membrane pump. The design of the silicon micropump itself is straight-forward, using two piezoelectrically actuated membrane valves as inlet and outlet, and a pump chamber with a piezoelectrically actuated pump membrane in-between. To achieve a precise dosing, this micropump is used to fill a metering unit placed at its outlet. In the final design this metering unit will be made from a piezoelectrically actuated inlet valve, a storage chamber with an elastic cover membrane and a piezoelectrically actuated outlet valve, which are connected in series. During a dosing cycle the metering unit is used to adjust the drug volume to be dispensed before delivery and to control the actually dispensed volume. To simulate the new drug delivery concept, a lumped parameter model has been developed to find the decisive design parameters. With the knowledge taken from the model a drug delivery system is designed that includes a silicon micro pump and, in a first step, a silicon chip with the storage chamber and two commercial microvalves as a metering unit. The lumped parameter model is capable to simulate the maximum flow, the frequency response created by the micropump, and also the delivered volume of the drug delivery system.

  5. Highly Efficient and Robust Micropump for Small Spacecraft Thermal Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With the introduction of low-cost, small, rapidly configurable spacecraft, the need for robust, versatile, readily deployable, and easily ground-testable thermal...

  6. Development of highly integrated magetically and electrostatically actuated micropumps : LDRD 64709 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Sosnowchik, Brian D. (Pennsylvania State University, University Park, PA); Galambos, Paul C.; Hendrix, Jason R. (Florida State University, Tallahassee, FL); Zwolinski, Andrew (Florida State University, Tallahassee, FL)

    2003-12-01

    The pump and actuator systems designed and built in the SUMMiT{trademark} process, Sandia's surface micromachining polysilicon MEMS (Micro-Electro-Mechanical Systems) fabrication technology, on the previous campus executive program LDRD (SAND2002-0704P) with FSU/FAMU (Florida State University/Florida Agricultural and Mechanical University) were characterized in this LDRD. These results demonstrated that the device would pump liquid against the flow resistance of a microfabricated channel, but the devices were determined to be underpowered for reliable pumping. As a result a new set of SUMMiT{trademark} pumps with actuators that generate greater torque will be designed and submitted for fabrication. In this document we will report details of dry actuator/pump assembly testing, wet actuator/pump testing, channel resistance characterization, and new pump/actuator design recommendations.

  7. Micropump Fuel Mix Control for Novel Miniature Direct Methanol Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Energies and Power Densities of Direct Methanol Fuel Cells (DMFCs) are limited by the size and weight associated with the liquid pump, which must circulate the...

  8. Highly Capable Micropump-fed Propulsion System for Proximity Operations, Landing and Ascent Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Works is proposing to expand its work in micro-gear-pumps for propulsion applications in order to provide a highly capable propulsion and attitude control...

  9. Characterization of flowreversal in anodically bonded glass-based AC electrokinetic micropumps

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Olesen, Laurits Højgaard; Brask, Anders

    2007-01-01

    Microfluidic chips have been fabricated to study electrokinetic pumping generated by a low voltage AC signal applied to an asymmetric electrode array. A measurement procedure has been established and followed carefully resulting in a high degree of reproducibility of the measurements. Depending...

  10. A NEW TYPE OF MICROPUMP DRIVEN BY A LOW ELECTRIC VOLTAGE

    Institute of Scientific and Technical Information of China (English)

    Guo Shuxiang; ASAKA Kinji

    2004-01-01

    In this paper, we propose a new prototype model of a micro pump using ICPF (Ionic Conducting Polymer Film) actuator as the servo actuator. This micro pump consists of two active oneway valves that make use of the same ICPF actuator. The overall size of this micro pump prototype is 12mm in diameter and 20 mm in length. The actuating mechanism is as follows: (1) The ICPF actuator as the diaphragm is bent into anode side by application of electricity. Then the volume of the pump chamber increases, resulting in the inflow of liquid from the inlet to the chamber. (2) By changing the current direction, the volume of the pump chamber decreases, resulting in the liquid flow from the chamber to the outlet. (3) The ICPF actuator is put on a sine voltage, the micro pump provides liquid flow from the inlet to the outlet continuously. Characteristic of the micro pump is measured. The experimental results indicate that the micro pump has the satisfactory responses.

  11. Concept Studies of Micro-Pump for Chemical Concentration in Handheld Micro Sensors

    Science.gov (United States)

    2007-11-02

    This report summarizes the preliminary results of a short-term innovative research project on the concept study of micro pumps for chemical...main objective of the work is to study the feasibility of certain micro pumping concepts and their potential integration with the sensing material and... micro pumps is demonstrated, although the quantitative assessment of the pumping system is still elusive, partly because of lack of specifications. The

  12. Topology and shape optimization of induced-charge electro-osmotic micropumps

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Okkels, Fridolin; Bazant, M. Z.;

    2009-01-01

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing...

  13. Peristaltic motion of a Johnson-Segalman fluid in a planar channel

    Directory of Open Access Journals (Sweden)

    Hayat T.

    2003-01-01

    Full Text Available This paper is devoted to the study of the two-dimensional flow of a Johnson-Segalman fluid in a planar channel having walls that are transversely displaced by an infinite, harmonic travelling wave of large wavelength. Both analytical and numerical solutions are presented. The analysis for the analytical solution is carried out for small Weissenberg numbers. (A Weissenberg number is the ratio of the relaxation time of the fluid to a characteristic time associated with the flow. Analytical solutions have been obtained for the stream function from which the relations of the velocity and the longitudinal pressure gradient have been derived. The expression of the pressure rise over a wavelength has also been determined. Numerical computations are performed and compared to the perturbation analysis. Several limiting situations with their implications can be examined from the presented analysis.

  14. Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; S.Hina; Awatif A.Hendi

    2011-01-01

    @@ The effects of wall properties and heat and mass transfer on the peristalsis in a power-law fluid are investigated.The solutions for the stream function, temperature, concentration and heat transfer coefficient are obtained.The axial velocity, temperature and mass concentration are studied for different emerging parameters.

  15. Electrohydrodynamic pumping in microsystems

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Antonio, E-mail: ramos@us.es [Deptartamento de Electronica y Electromagnetismo, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012-Sevilla (Spain)

    2011-06-23

    The physical principles behind the electrohydrodynamic (EHD) actuation in microsystems is presented by reviewing five different EHD micropumps. These are classified into two groups: micropumps that exert electric forces in the liquid bulk and micropumps that exert forces in the diffuse double layer. This review of five EHD micropumps allows us to analyse the EHD actuation ranging from very insulating liquids to electrolytic solutions.

  16. Design and Analysis of a High Force, Low Voltage and High Flow Rate Electro-Thermal Micropump

    Directory of Open Access Journals (Sweden)

    Ghader Yosefi

    2014-12-01

    Full Text Available This paper presents the design and simulation of an improved electro-thermal micromachined pump for drug delivery applications. Thermal actuators, which are a type of Micro Electro Mechanical system (MEMS device, are highly useful because of their ability to deliver with great force and displacement. Thus, our structure is based on a thermal actuator that exploits the Joule heating effect and has been improved using the springy length properties of MEMS chevron beams. The Joule heating effect results in a difference in temperature and therefore displacement in the beams (actuators. Simulation results show that a maximum force of 4.4 mN and a maximum flow rate of 16 μL/min can be obtained by applying an AC voltage as low as 8 V at different frequencies ranging from 1 to 32 Hz. The maximum temperature was a problem at the chevron beams and the center shaft. Thus, to locally increase the temperature of the chevron beams alone and not that of the pumping diaphragm: (1 The air gaps 2 μm underneath and above the device layer were optimized for heat transfer. (2 Release holes and providing fins were created at the center shaft and actuator, respectively, to decrease the temperature by approximately 10 °C. (3 We inserted and used a polymer tube to serve as an insulator and eliminate leakage problems in the fluidic channel.

  17. A feasibility study on using inkjet technology, micropumps, and MEMs as fuel injectors for bipropellant rocket engines

    Science.gov (United States)

    Glynne-Jones, Peter; Coletti, M.; White, N. M.; Gabriel, S. B.; Bramanti, C.

    2010-07-01

    Control over drop size distributions, injection rates, and geometrical distribution of fuel and oxidizer sprays in bi-propellant rocket engines has the potential to produce more efficient, more stable, less polluting rocket engines. This control also offers the potential of an engine that can be throttled, working efficiently over a wide range of output thrusts. Inkjet printing technologies, MEMS fuel atomizers, and piezoelectric injectors similar in concept to those used in diesel engines are considered for their potential to yield a new, more active injection scheme for a rocket engine. Inkjets are found to be unable to pump at sufficient pressures, and have possibly dangerous failure modes. Active injection is found to be feasible if high pressure drop along the injector plate is used. A conceptual design is presented and its basic behavior assessed.

  18. A feasibility study on using inkjet technology, micropumps, and MEMs as fuel injectors for bipropellant rocket engines

    OpenAIRE

    Glynne-Jones, Peter; Coletti, Michele; White, Neil M.; Gabriel, Stephen; Bramanti, Cristina

    2010-01-01

    Control over drop size distributions, injection rates, and geometrical distribution of fuel and oxidizer sprays in bi-propellant rocket engines has the potential to produce more efficient, more stable, less polluting rocket engines. This control also offers the potential of an engine that can be throttled, working efficiently over a wide range of output thrusts. Inkjet printing technologies, MEMS fuel atomizers, and piezoelectric injectors similar in concept to those used in diesel engines ar...

  19. An all-polymer micropump based on the conductive polymer poly(3,4-ethylenedioxythiophene) and a polyurethane channel system

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2007-01-01

    optical lithography and reactive ion etching, and dimensions down to 2 jtD) could be successfully realize·d. The channel systeDl wasm.ade froln a flexible thennoplastic polyurethane. The chosen polyurethane exhibited good sealing without the possible contanlination issues of silicones, adequate wetting...

  20. A surface acoustic wave-driven micropump for particle uptake investigation under physiological flow conditions in very small volumes

    Directory of Open Access Journals (Sweden)

    Florian G. Strobl

    2015-02-01

    Full Text Available Static conditions represent an important shortcoming of many in vitro experiments on the cellular uptake of nanoparticles. Here, we present a versatile microfluidic device based on acoustic streaming induced by surface acoustic waves (SAWs. The device offers a convenient method for introducing fluid motion in standard cell culture chambers and for mimicking capillary blood flow. We show that shear rates over the whole physiological range in sample volumes as small as 200 μL can be achieved. A precise characterization method for the induced flow profile is presented and the influence of flow on the uptake of Pt-decorated CeO2 particles by endothelial cells (HMEC-1 is demonstrated. Under physiological flow conditions the particle uptake rates for this system are significantly lower than at low shear conditions. This underlines the vital importance of the fluidic environment for cellular uptake mechanisms.

  1. Integration of an Optical Ring Resonator Biosensor into a Self-Contained Microfluidic Cartridge with Active, Single-Shot Micropumps

    Directory of Open Access Journals (Sweden)

    Sascha Geidel

    2016-09-01

    Full Text Available While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system’s reproducibility.

  2. Design and experimental gait analysis of a multi-segment in-pipe robot inspired by earthworm's peristaltic locomotion

    Science.gov (United States)

    Fang, Hongbin; Wang, Chenghao; Li, Suyi; Xu, Jian; Wang, K. W.

    2014-03-01

    This paper reports the experimental progress towards developing a multi-segment in-pipe robot inspired by earthworm's body structure and locomotion mechanism. To mimic the alternating contraction and elongation of a single earthworm's segment, a robust, servomotor based actuation mechanism is developed. In each robot segment, servomotor-driven cords and spring steel belts are utilized to imitate the earthworm's longitudinal and circular muscles, respectively. It is shown that the designed segment can contract and relax just like an earthworm's body segment. The axial and radial deformation of a single segment is measured experimentally, which agrees with the theoretical predictions. Then a multisegment earthworm-like robot is fabricated by assembling eight identical segments in series. The locomotion performance of this robot prototype is then extensively tested in order to investigate the correlation between gait design and dynamic locomotion characteristics. Based on the principle of retrograde peristalsis wave, a gait generator is developed for the multi-segment earthworm-like robot, following which gaits of the robot can be constructed. Employing the generated gaits, the 8-segment earthworm-like robot can successfully perform both horizontal locomotion and vertical climb in pipes. By changing gait parameters, i.e., with different gaits, locomotion characteristics including average speed and anchor slippage can be significantly tailored. The proposed actuation method and prototype of the multi-segment in-pipe robot as well as the gait generator provide a bionic realization of earthworm's locomotion with promising potentials in various applications such as pipeline inspection and cleaning.

  3. Combine effects of Magnetohydrodynamics (MHD and partial slip on peristaltic Blood flow of Ree–Eyring fluid with wall properties

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-09-01

    Full Text Available In this article, combine effects of Magnetohydrodynamics and partial slip on Blood flow of Ree–Eyring fluid through a porous medium have been investigated. The walls of the non-uniform porous channel are considered as compliant. The governing equation of Ree–Eyring fluid for blood flow are simplified using long wavelength and low Reynolds number approximation. The obtained resulting equation are solved analytically and exact solution has been obtained. The impact of different physical parameters such as Hartmann number, slip parameter, porous parameter, wall rigidity parameter, wall tension and mass characterization parameter are taken into account. It is found that velocity distribution increases due to slip effects while its behavior is opposite for Hartmann number. Trapping mechanism has also taken under consideration by drawing contour streamlines.

  4. Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants.

    Science.gov (United States)

    Schittny, J C; Miserocchi, G; Sparrow, M P

    2000-07-01

    Spontaneous contractions of the fetal airways are a well recognized but poorly characterized phenomenon. In the present study spontaneous narrowing of the airways was analyzed in freshly isolated lungs from early to late gestation in fetal pigs and rabbits and in cultured fetal mouse lungs. Propagating waves of contraction traveling proximal to distal were observed in fresh lungs throughout gestation which displaced the lung liquid along the lumen. In the pseudoglandular and canalicular stages (fetal pigs) the frequency ranged from 2.3 to 3.3 contractions/min with a 39 to 46% maximum reduction of lumen diameter. In the saccular stage (rabbit) the frequency was 10 to 12/min with a narrowing of approximately 30%. In the organ cultures the waves of narrowing started at the trachea in whole lungs, or at the main bronchus in lobes (5.2 +/- 1.5 contractions/min, 22 +/- 8% reduction of lumen diameter), and as they proceeded distally along the epithelial tubes the luminal liquid was shifted toward the terminal tubules, which expanded the endbuds. As the tubules relaxed the flow of liquid was reversed. Thus the behavior of airway smooth muscle in the fetal lung is phasic in type (like gastrointestinal muscle) in contrast to that in postnatal lung, where it is tonic. An intraluminal positive pressure of 2.33 +/- 0.77 cm H(2)O was recorded in rabbit fetal trachea. It is proposed that the active tone of the smooth muscle maintains the positive intraluminal pressure and acts as a stimulus to lung growth via the force exerted across the airway wall and adjacent parenchyma. The expansion of the compliant endbuds by the fluid shifts at the airway tip may promote their growth into the surrounding mesenchyme.

  5. Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna

    2008-11-01

    Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model.

  6. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept

    Directory of Open Access Journals (Sweden)

    Adnane Kara

    2016-05-01

    Full Text Available In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an “intelligent” drug delivery system based on a feedback loop to monitor drug delivery.

  7. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept.

    Science.gov (United States)

    Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine

    2016-05-28

    In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.

  8. Micro pumping methods based on AC electrokinetics and Electrorheologically actuated PDMS valves

    Science.gov (United States)

    Soni, Gaurav; Squires, Todd; Meinhart, Carl

    2006-11-01

    We have developed 2 different micropumping methods for transporting ionic fluids through microchannels. The first method is based on Induced Charge Electroosmosis (ICEO) and AC flow field-effect. We used an AC electric field to produce a symmetric ICEO flow on a planar electrode, called `gate'. In order to break the symmetry of ICEO, we applied an additional AC voltage to the gate electrode. Such modulation of the gate potential is called field effect and produces a unidirectional pumping over the gate surface. We used micro PIV to measure pumping velocities for a range of ionic concentration, AC frequency and gate voltage. We have also conducted numerical simulations to understand the deteriorating effect of lateral conduction of surface charge on the pumping velocities. The second method is based on vibration of a flexible PDMS diaphragm actuated by an electrorheological (ER) fluid. ER fluid is a colloidal suspension exhibiting a reversible liquid-to-solid transition under an electric field. This liquid-to-solid transition can yield very high shear stress and can be used to open and close a PDMS valve. Three such valves were fabricated and actuated in a peristaltic fashion in order to achieve positive displacement pumping of fluids.

  9. Experimental study on strain distribution of ionic polymer-metal composite actuator using digital image correlation

    Science.gov (United States)

    Liu, Hongguang; Xiong, Ke; Wang, Man; Bian, Kan; Zhu, Kongjun

    2017-02-01

    Ionic polymer-metal composite (IPMC) cantilever actuators demonstrate significant bending deformation upon application of excitation voltage across the electrodes. In this paper a cantilever beam shaped IPMC actuator with platinum (Pt) electrodes is fabricated to investigate the micro-scale lateral deformation behavior under DC voltages using a digital microscope to measure the deformation. The digital image correlation (DIC) method is utilized to analyze the displacement and strain fields of the sample. The experimental results indicate that the longitudinal normal strain is linearly distributed along the thickness direction and the strain gradient is approximately exponential with excitation voltage. The amplitude of the transverse strain is bigger than the longitudinal strain, and the strains are also found to decrease along the length direction of the IPMC cantilever actuator. The longitudinal and transverse normal strains of the IPMC actuator under DC voltages are compressive strains due to water loss effect in the air.

  10. Modeling and optimal design of multilayer thermal cantilever microactuators

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A model of curvature and tip deflection of multilayer thermal cantilever actuators is derived.The sim-plified expression received from the model avoids inverting complex matrices enhances understanding and makes it easier to optimize the structure parameters.Experiment is performed,the modeled and experimental results demonstrate the validity of the model,and it also indicates that Young’s module makes great contribution to the deflection;therefore,thin layers cannot be ignored arbitrarily.

  11. Valve-less Micropump Development of the Polymer PMMA Material%聚合物PMMA材料的无阀微泵研制

    Institute of Scientific and Technical Information of China (English)

    蒋希赟

    2015-01-01

    The valve-less micro pump is often used to directly control micro pump flow, and it avoids the micro pump failure caused by the instability of the valve. This paper described the method of making a microfluidic devices micro pump with polymer PMMA material, put forward some methods of microfluidic manufacturing process and chose the suitable PMMA micro pump manufacturing method, then conducted the valve-less micro pump production and testing, and made flow rate and back pressure test of the micro pump produced with PMMA material, finally combined the developed valve-less micro pump and the integrated free-flow electrophoresis chip to test the its function effect.%无阀微泵经常被使用是为了直接控制微泵的流量,它避免了阀片的不稳定性引起的微泵失效。文章叙述了以聚合物PMMA为材料来制作微流体器件微泵,给出微流体制作工艺的几种方法并从中选出适合于PMMA微泵制作方法,然后进行无阀微泵制作与测试,并对用PMMA材料制作的微泵进行了流量和背压的测试,最后把所研制的无阀微泵与集成化自由流电泳芯片结合测试其功能效果。

  12. Improvements in the technique of vascular perfusion-fixation employing a fluorocarbon-containing perfusate and a peristaltic pump controlled by pressure feedback

    DEFF Research Database (Denmark)

    Rostgaard, J; Qvortrup, K; Poulsen, Steen Seier

    1993-01-01

    oxygenated fluorocarbon to glutaraldehyde perfusate-fixatives, enough oxygen is made accessible for cellular respiration as well as for the oxygen-consuming chemical reactions of glutaraldehyde with the tissue. Data on anaesthesia, operative manoeuvres, mechanical components of the system, preparation...

  13. Peristaltic flow of a fluid in a porous channel: A study having relevance to flow of bile within ducts in a pathological state

    CERN Document Server

    Maiti, S; 10.1016/j.ijengsci.2011.05.006

    2011-01-01

    The paper deals with a theoretical study of the transport of a fluid in a channel, which takes place by the phenomenon of peristalsis. A mathematical analysis of the said problem has been presented. The analysis involves the application of a suitable perturbation technique. The velocity profile and the critical pressure for the occurrence of reflux are investigated with particular emphasis by using appropriate numerical methods. The effects of various parameters, such as Reynolds number, pressure gradient, porosity parameter, Darcy number, slip parameter, amplitude ratio and wave number on velocity and critical pressure for reflux are investigated in detail. The computed results are compared with a previous analytical work and an experimental investigation reported earlier in existing scientific literatures. The results of the present study are in conformity to both of them. The study has got some relevance to the physiological flow of bile in the common bile duct in a pathological state. It reveals that in t...

  14. Significance of peristaltic squeezing of sperm bundles in the silkworm, Bombyx mori: elimination of irregular eupyrene sperm nuclei of the triploid

    OpenAIRE

    Sahara, Ken; Kawamura, Naoko; Yamashiki, Naoko; Saitoh, Hiroshi

    2001-01-01

    Silkworm (Lepidoptera) males produce dimorphic sperm: nucleate eupyrene sperm and anucleate apyrene sperm. The eupyrene sperm are ordinary sperm to fertilise the eggs, while the function of apyrene sperm remains uncertain. After meiosis, 256 sperm cells are enclosed by a layer of cyst cells, forming a sperm bundle. We have previously documented that the nucleus of eupyrene sperm anchors to the head cyst cell, which locates at the anterior apex of the bundle, by an acrosome tubule-basal body a...

  15. Peristaltic closure of a safety pin--an unusual fate of a safety pin seen as a foreign body in the gastrointestinal tract.

    Science.gov (United States)

    Andréasson, L; Ingelstedt, S; Tjernström, O

    1986-04-01

    This report presents a case where an open safety pin passed through the Esophagus and where Nature herself finally solved the problem by closing the pin, which was afterwards carried in the faecal stream and discharged from the body without any harm to the patient.

  16. Cilia walls influence on peristaltically induced motion of magneto-fluid through a porous medium at moderate Reynolds number: Numerical study

    Directory of Open Access Journals (Sweden)

    R.E. Abo-Elkhair

    2017-04-01

    Full Text Available This article addresses, effects of a magneto-fluid through a Darcy flow model with oscillatory wavy walled whose inner surface is ciliated. The equations that governing the flow are modeled without using any approximations. Adomian Decomposition Method (ADM is used to evaluate the solution of our system of nonlinear partial differential equations. Stream function, velocity and pressure gradient components are obtained by using the vorticity formula. The effects for our arbitrary physical parameters on flow characteristics are analyzed by plotting diagrams and discussed in details. With the help of stream lines the trapping mechanism has also been discussed. The major outcomes for the ciliated channel walls are: The axial velocity is higher without a ciliated walls than that for a ciliated walls and an opposite behaviour is shown near the ciliated channel walls. The pressure gradients in both directions are higher for a ciliated channel walls. More numbers of the trapped bolus in the absent of the eccentricity of the cilia elliptic path.

  17. An integrated microfluidic sensor for real-time detection of RNA in seawater using preserved reagents

    Science.gov (United States)

    Tsaloglou, M.-N.; Loukas, C. M.; Ruano-López, J. M.; Morgan, H.; Mowlem, M. C.

    2012-04-01

    Quantitation of RNA sequences coding either for key metabolic proteins or highly conserved ribosomal subunits can provide insight on cell abundance, speciation and viability. Nucleic sequence-based amplification (NASBA) is an isothermal alternative to traditional nucleic acid amplification methods, such as quantitative PCR. We present here an integrated microfluidic sensor for cell concentration and lysis, RNA extraction/purification and quantitative RNA detection for environmental applications. The portable system uses pre-loaded reagents, stored as a gel on a disposable microfluidic cartridge, which is manufactured using low-cost injection moulding. The NASBA reaction is monitored real-time using a bespoke control unit which includes: an external fluorescence detector, three peristaltic micro-pumps, two heaters and temperature sensors, a battery, seven pin actuated micro-motors (or valve actuators), and an automatic cartridge insertion mechanism. The system has USB connectivity and none of the expensive components require replacing between reactions. Long-term storage of reagents is critically important for any diagnostic tool that will be used in the field, whether for medical or environmental analysis and has not been previously demonstrated for NASBA reagents on-chip. We have shown effective amplification, for as little as 500 cells of the toxic microalga Karenia brevis using reagents which had been preserved as a gel for 45 days. This is the first reported real-time isothermal RNA amplification using with on-chip preservation. Annealing of primers, amplification at 41 °C and real-time fluorescence detection using, also for the first time, an internal control and sequence-specific molecular beacons was all performed on our microfluidic sensor. Our results show excellent promise as a future quantitative tool of in situ phytoplankton analysis and other environmental applications, where long-term reagent storage and low power consumption is essential.

  18. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents.

    Science.gov (United States)

    Maschmeyer, Ilka; Lorenz, Alexandra K; Schimek, Katharina; Hasenberg, Tobias; Ramme, Anja P; Hübner, Juliane; Lindner, Marcus; Drewell, Christopher; Bauer, Sophie; Thomas, Alexander; Sambo, Naomia Sisoli; Sonntag, Frank; Lauster, Roland; Marx, Uwe

    2015-06-21

    Systemic absorption and metabolism of drugs in the small intestine, metabolism by the liver as well as excretion by the kidney are key determinants of efficacy and safety for therapeutic candidates. However, these systemic responses of applied substances lack in most in vitro assays. In this study, a microphysiological system maintaining the functionality of four organs over 28 days in co-culture has been established at a minute but standardized microsystem scale. Preformed human intestine and skin models have been integrated into the four-organ-chip on standard cell culture inserts at a size 100,000-fold smaller than their human counterpart organs. A 3D-based spheroid, equivalent to ten liver lobules, mimics liver function. Finally, a barrier segregating the media flow through the organs from fluids excreted by the kidney has been generated by a polymeric membrane covered by a monolayer of human proximal tubule epithelial cells. A peristaltic on-chip micropump ensures pulsatile media flow interconnecting the four tissue culture compartments through microfluidic channels. A second microfluidic circuit ensures drainage of the fluid excreted through the kidney epithelial cell layer. This four-organ-chip system assures near to physiological fluid-to-tissue ratios. In-depth metabolic and gene analysis revealed the establishment of reproducible homeostasis among the co-cultures within two to four days, sustainable over at least 28 days independent of the individual human cell line or tissue donor background used for each organ equivalent. Lastly, 3D imaging two-photon microscopy visualised details of spatiotemporal segregation of the two microfluidic flows by proximal tubule epithelia. To our knowledge, this study is the first approach to establish a system for in vitro microfluidic ADME profiling and repeated dose systemic toxicity testing of drug candidates over 28 days.

  19. 不对称柔性壁管道内幂律流体蠕动传输的精确解%Exact Solution for Peristaltic Transport of Power-Law Fluid in an Asymmetric Channel With Compliant Walls

    Institute of Scientific and Technical Information of China (English)

    T·哈亚特; M·贾佛德1; 黄绍红

    2010-01-01

    在不对称管道内,研究了壁面柔曲性对非Newton流体蠕动流的影响.流变学性质由幂律流体本构方程表征.在数学表达中,采用了长波和低Reynolds数近似.得到了流函数和速度的精确解.给出了流线图及其俘获现象.对所讨论的流动,陈列了关键参数的显著特征,并最后给出了主要结论.

  20. Assessment and in vitro Experiment of a Novel Implantable Artificial Anal Sphincter Prototype%新型原位植入式人工肛门括约肌样机及离体肠道实验研究

    Institute of Scientific and Technical Information of China (English)

    克磊; 颜国正; 翁晓靖; 刘华; 许茜茜

    2012-01-01

    In this paper an intelligent and remote-controlled artificial anal sphincter based on biological signal feedback mechanism for a novel artificial anal sphincter system ( AASS) was designed and integrated. The peristaltic mechanical medical micropump transported fluid bidirectional with a maximum flow rate of 8. 5 mL/min and built up backpressure up to 170 kPa. The design of the prosthesis reduced the occlusion pressure and allowed low inflation volumes (9 ~ 10.5 mL). The operating pressures between 3.34 and 7. 26 kPa indicated a minor risk of ischemic injury to the bowel. Furthermore, the operation time was estimated at about 2 days with rechargeable battery based on transcutaneous energy transfer technology. The results of in vitro experiments indicated that the system could control the fecal and build the sense of defecation successfully. This AASS is promising in application for the patients with severe anal dysfunction caused by fecal incontinence or colostomy.%设计一款基于生物信号反馈机制的智能化可遥控式人工肛门括约肌系统.所设计的蠕动式微型医用泵在3.3V驱动电压下,最大流量为8.5 mL/min,最大封闭压可达170 kPa.新型括约肌假体在较小注水量(9~10.5 mL)的情况下,可实现对肠壁作用压的均匀分布(3.34~7.26 kPa),符合人体肠道生理结构和安全压力阈值的要求,避免由于局部高压导致的缺血性坏死.人工括约肌系统采用体内充电电池、体外无线经皮能量充电的供电方式,实现系统的完全植入式移植.离体实验结果表明,该系统可以有效地抑制肠道内容物渗漏,成功建立排便感知信号,从而为严重肛门失禁、结肠造口等肛门功能严重缺失的患者提供一种人性化的治疗方案.

  1. Micromachined magnetohydrodynamic actuators and sensors

    Science.gov (United States)

    Lee, Abraham P.; Lemoff, Asuncion V.

    2000-01-01

    A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.

  2. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    Energy Technology Data Exchange (ETDEWEB)

    Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R. [Centre de Développement des Technologies Avancées (CDTA). BP n°17 Baba Hassen, Alger (Algeria)

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  3. Getting Started with PEAs-Based Flapping-Wing Mechanisms for Micro Aerial Systems

    Directory of Open Access Journals (Sweden)

    José Carlos Durán Hernández

    2016-05-01

    Full Text Available This paper introduces recent advances on flapping-wing Micro and Nano Aerial Vehicles (MAVs and NAVs based on Piezoelectric Actuators (PEA. Therefore, this work provides essential information to address the development of such bio-inspired aerial robots. PEA are commonly used in micro-robotics and precise positioning applications (e.g., micro-positioning and micro-manipulation, whereas within the Unmanned Aerial Vehicles (UAVs domain, motors are the classical actuators used for rotary or fixed-wing configurations. Therefore, we consider it pertinent to provide essential information regarding the modeling and control of piezoelectric cantilever actuators to accelerate early design and development stages of aerial microrobots based on flapping-wing systems. In addition, the equations describing the aerodynamic behavior of a flapping-wing configuration are presented.

  4. Pull-in behavior analysis of vibrating functionally graded micro-cantilevers under suddenly DC voltage

    Directory of Open Access Journals (Sweden)

    Jamal Zare

    2015-01-01

    Full Text Available The present research attempts to explain dynamic pull-in instability of functionally graded micro-cantilevers actuated by step DC voltage while the fringing-field effect is taken into account in the vibrational equation of motion. By employing modern asymptotic approach namely Homotopy Perturbation Method with an auxiliary term, high-order frequency-amplitude relation is obtained, then the influences of material properties and actuation voltage on dynamic pull-in behavior are investigated. It is demonstrated that the auxiliary term in the homotopy perturbation method is extremely effective for higher order approximation and two terms in series expansions are sufficient to produce an acceptable solution. The strength of this analytical procedure is verified through comparison with numerical results.

  5. Towards integrated microliquid handling systems

    NARCIS (Netherlands)

    Elwenspoek, M.; Lammerink, T.S.J.; Miyake, R.; Fluitman, J.H.J.

    1994-01-01

    In this paper we describe components for integrated microliquid handling systems such as fluid injection analysis, and first results of planar integration of components. The components discussed are channels, passive and active valves, actuators for micropumps, micromixers, microflow sensors, optica

  6. Novel Versatile Intelligent Drug Delivery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project will demonstrate and develop a novel micro-pump capable of controlled and selective chemical transport. Phase I will create, characterize, and...

  7. An Enrichment Method for Bio-samples Based on Circular Injection on a Microfluidic Chip%一种基于微流控芯片的生物样品循环给样富集方法

    Institute of Scientific and Technical Information of China (English)

    杜敏; 叶雄英; 冯金扬; 马增帅; 周兆英

    2012-01-01

    A microfluidic chip based circular injection method for bio-samples was presented. The microfluidic chip with an annular peristaltic micropump and electromagnetic microvalves was fabricated using PDMS (polydimethylsiloxane) soft lithography process. The chip was then integrated with an immune probe chip immobilized with rabbit IgG, and realized the circular injection of Goat-anti-rabbit IgG (FITC labeled) solution and sample enrichment. Higher fluorescence intensity was obtained using circular injection than that using static adsorption, under different sample concentrations and 3 min binding time. By increasing the pumping speed from 130 μL/min to 300 u.L/min, the immune binding speed with 50 mg/L sample concentration was accelerated evidently, which meant the detection limit at a given time could be lower, but for 200 mg/L sample concentration, the effect was weaker. Compared to the continuous injection mode with about 1. 8 mL of sample consumption, only 7 μL sample was needed to realize the coincident results with the circular injection mode.%提出了一种基于微流控芯片的生物样品循环给样方法,利用聚二甲基硅氧烷(PDMS)软光刻工艺制作了包括环形蠕动微泵和电磁微阀的微流控芯片,通过与免疫探针芯片的集成,实现了对探针芯片的循环给样及在其上的免疫样品富集.采用不同浓度的羊抗兔IgG(FITC标记)样品与兔IgG探针免疫结合3 min,得到循环流动比静态吸附的荧光光强值更高,可使检出限降低.对于50 mg/L羊抗兔IgG样品,流速从130 μL/min增至300 μL/min时,免疫结合的速度明显加快,可使同一时刻的检出限降低;而样品浓度提高到200 mg/L时,增大流速对免疫反应的促进效果弱于低浓度时的变化.在样品浓度50 mg/L和循环流速300 μL/min的条件下,循环给样方式仅需7μL样品溶液就得到了与持续进样约1.8 mL样品溶液基本一致的结果.

  8. A self-priming microfluidic diaphragm pump capable of recirculation fabricated by combining soft lithography and traditional machining.

    Science.gov (United States)

    Sin, Aaron; Reardon, Christopher F; Shuler, Michael L

    2004-02-05

    Fluid transport is crucial in the development of microanalytical devices. While there are many micropump designs available, most are incapable of sustaining recirculation of fluid at microL/min to mL/min levels. We have designed and fabricated a positive displacement micropump by combining soft lithography with traditional bulk machining. The micropump is actuated through pneumatic pressure. The pump is self-priming and is suitable for recirculating fluid through a microfluidic device containing mammalian cell culture. By custom designing the volume of the pumping chamber, tight control of the output flow rate can be obtained by changing the actuation frequency. It can also be fabricated easily on plastic substrates without access to expensive microfabrication equipment.

  9. Three-dimensional study of a one-way, flexible magnetorheological elastomer-based micro fluid transport system

    Science.gov (United States)

    Behrooz, Majid; Gordaninejad, Faramarz

    2016-09-01

    This paper presents a three-dimensional study of a controllable flexible magnetically-activated micropump. The tubular micropump employs magnetically induced deformation of magnetorheological elastomer and one-way flexible conical valves for fluid transport. Three-dimensional magneto-fluid-solid interaction analysis is employed to investigate the performance of the system. The effects of key material, geometric, and magnetic parameters on the effectiveness of the system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.

  10. MEMS ion-sorption high vacuum pump

    Science.gov (United States)

    Grzebyk, T.; Knapkiewicz, P.; Szyszka, P.; Gorecka-Drzazga, A.; Dziuban, J. A.

    2016-11-01

    In the article a miniature MEMS-type ion-sorption vacuum pump has been presented. The influence of electric and magnetic field, as well as horizontal and vertical dimensions of the micropump and type of material used for electrodes on the pump properties has been investigated. It has been found that the micropump works efficiently as long as the magnetic field is higher than 0.3 T, and pumping cell is larger than 1x1x1 mm3. The pump allows generating vacuum at the level of 10-7-10-9 hPa in 100 mm3 volume.

  11. System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.

    Science.gov (United States)

    Lee, Sung Pil

    2015-10-01

    Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display.

  12. Stroboscopic interferometry for characterization and improvement of flexural plate-wave transducers

    Science.gov (United States)

    Rembe, Christian; Caton, Pamela; White, Richard M.; Muller, Richard S.

    2001-10-01

    We describe an improved stroboscopic interferometer system making possible static-deformation measurements of MEMS structures as well as motion measurements at frequencies up to 1MHz. The time resolution of the system is determined by the width of the strobed laser pulse. To demonstrate high-frequency measurement capabilities, we investigate acoustic waves on a flexural plate-wave micropump developed at the Berkeley Sensor & Actuator Center. We also characterize the micropump with a commercial micro scanning vibrometer (Polytec). The results are compared and different features of the two systems are discussed.

  13. Topology optimisation of natural convection problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe;

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations...... for designing heat sink geometries cooled by natural convection and micropumps powered by natural convection. Copyright © 2013 John Wiley & Sons, Ltd....... coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences...

  14. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy

    Science.gov (United States)

    Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.

    2017-01-01

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  15. Biocompatible circuit-breaker chip for thermal management of biomedical microsystems

    Science.gov (United States)

    Luo, Yi; Dahmardeh, Masoud; Takahata, Kenichi

    2015-05-01

    This paper presents a thermoresponsive micro circuit breaker for biomedical applications specifically targeted at electronic intelligent implants. The circuit breaker is micromachined to have a shape-memory-alloy cantilever actuator as a normally closed temperature-sensitive switch to protect the device of interest from overheating, a critical safety feature for smart implants including those that are electrothermally driven with wireless micro heaters. The device is fabricated in a size of 1.5  ×  2.0  ×  0.46 mm3 using biocompatible materials and a chip-based titanium package, exhibiting a nominal cold-state resistance of 14 Ω. The breaker rapidly enters the full open condition when the chip temperature exceeds 63 °C, temporarily breaking the circuit of interest to lower its temperature until chip temperature drops to 51 °C, at which the breaker closes the circuit to allow current to flow through it again, physically limiting the maximum temperature of the circuit. This functionality is tested in combination with a wireless resonant heater powered by radio-frequency electromagnetic radiation, demonstrating self-regulation of heater temperature. The developed circuit-breaker chip operates in a fully passive manner that removes the need for active sensor and circuitry to achieve temperature regulation in a target device, contributing to the miniaturization of biomedical microsystems including electronic smart implants where thermal management is essential.

  16. Design, modeling, and fabrication of piezoelectric polymer actuators

    Science.gov (United States)

    Fu, Yao; Harvey, Erol C.; Ghantasala, Muralidhar K.; Spinks, Geoff

    2004-04-01

    Piezoelectric polymers are a class of materials with great potential and promise for many applications. Because of their ideally suitable characteristics, they make good candidates for actuators. However, the difficulty of forming structures and shapes has limited the range of mechanical design. In this work, the design and fabrication of a unimorph piezoelectric cantilever actuator using piezoelectric polymer PVDF with an electroplated layer of nickel alloy has been described. The modeling and simulation of the composite cantilever with planar and microstructured surfaces has been performed by CoventorWare to optimize the design parameters in order to achieve large tip deflections. These simulation results indicated that a microstructured cantilever could produce 25 percent higher deflection compared to a simple planar cantilever surface. The tip deflection of the composite cantilever with a length of 6mm and a width of 1mm can reach up to 100μm. A PVDF polymer with a specifically designed shape was punched out along the elongation direction on the embossing machine at room temperature. The nickel alloy layer was electroplated on one side of the PVDF to form a composite cantilever. The tip deflection of the cantilever was observed and measured under an optical microscope. The experimental result is in agreement with the theoretical analysis.

  17. PAIN RELIEF MEDIATED BY IMPLANTABLE DRUG-DELIVERY DEVICES

    NARCIS (Netherlands)

    HOEKSTRA, A

    1994-01-01

    Various totally implantable drug delivery systems from single access ports to micropumps are now available for administration of repeated boluses, and continuous or programmable infusions. In this respect, emphasis is given to a relatively cheap, totally implantable system for self-administering int

  18. A Disposable Polymer Lab-On-A-Slide For Point-Of-Care Diagnostics Of Methicillin-Resistant Staphylococcus Aureus (Mrsa)

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Skov, Julia;

    2013-01-01

    was transferred into a second chamber for polymerase chain reaction (PCR) amplification. Fluidic control in the device was accomplished by pneumatic actuation of a micropump and five microvalves integrated on the device. The mecA gene from MRSA was successfully amplified by real-time PCR within 35 min. Presence...

  19. Synthesis of Biochemical Applications on Flow-Based Microfluidic Biochips using Constraint Programming

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2012-01-01

    . By combining several microvalves, more complex units, such as micropumps, switches, mixers, and multiplexers, can be built. We propose a constraint programming (CP) based approach for the synthesis of biochemical applications on flow-based microfluidic biochips. We use a sequencing graph to model...

  20. Microfluidic "blinking" bubble pump

    NARCIS (Netherlands)

    Yin, Zhizhong; Prosperetti, Andrea

    2005-01-01

    The paper reports data obtained on a simple micropump, suitable for electrolytes, based on the periodic growth and collapse of a single vapor bubble in a microchannel. With a channel diameter of the order of 100 µm, pumping rates of several tens of µl/min and pressure differences of several kPa are

  1. The maximum life expectancy for a micro-fabricated diaphragm

    Science.gov (United States)

    Cǎlimǎnescu, Ioan; Stan, Liviu-Constantin; Popa, Viorica

    2015-02-01

    Micro-fabricated diaphragms can be used to provide pumping action in microvalve and microfluidic applications. The functionality of the microdiaphragm in a wirelessly actuated micropump plays a major role in low-powered device actuation. In developing micropumps and their components, it is becoming an increasing trend to predict the performance before the prototype is fabricated. Because performance prediction allows for an accurate estimation of yield and lifetime, in addition to developing better understanding of the device while taking into account the details of the device structure and second order effects. Hence avoid potential pitfalls in the device operation in a practical environment. The goal of this research is to determine via FEA the life expectancy for a corrugated circular diaphragm made out of an aluminum alloy. The geometry of the diaphragm is given below being generated within SolidWorks 2010, all the calculations were made using Ansys 13TM . The sound design of a micropump is heavily depending on the lifetime expectancy of the working part of the device which is the diaphragm. This will be subjected on cyclic loading and the fatigue will limit the life of this part. Once the diaphragm is breaking, the micropump is no more able to fulfill its scope. Any micropump manufacturer will then be very concerned on the life expectancy from the fatigue point of view of the diaphragms. The diaphragm circular and corrugated and made of Al alloy, showed a very good behavior from the fatigue point of view, the maximum life expectancy being 1.9 years of continuous functioning with 100 cycles per second. This work showed an simple and forward application of FEA analysis methods in order to estimate the fatigue behavior of corrugated circular microdiaphragms.

  2. Automated liquid operation method for microfluidic heterogeneous immunoassay.

    Science.gov (United States)

    Yi, Hui; Pan, Jian-Zhang; Shi, Xiao-Tong; Fang, Qun

    2013-02-15

    In this work, an automated liquid operation method for multistep heterogeneous immunoassay toward point of care testing (POCT) was proposed. A miniaturized peristaltic pump was developed to control the flow direction, flow time and flow rate in the microliter range according to a program. The peristaltic pump has the advantages of simple structure, small size, low cost, and easy to build and use. By coupling the peristaltic pump with an antibody-coated capillary and a reagent-preloaded cartridge, the complicated liquid handling operation for heterogeneous immunoassay, including sample metering and introduction, multistep reagent introduction and rinsing, could be triggered by an action and accomplished automatically in 12 min. The analytical performance of the present immunoassay system was demonstrated in the measurement of human IgG with fluorescence detection. A detection limit of 0.68 μg/mL IgG and a dynamic range of 2-300 μg/mL were obtained.

  3. Stimuli-responsive cylindrical hydrogels mimic intestinal peristalsis to propel a solid object.

    Science.gov (United States)

    Nistor, V; Cannell, J; Gregory, J; Yeghiazarian, L

    2016-04-21

    The emerging field of soft robotics relies on soft, stimuli-responsive materials to enable load transport, manipulation, and mobility in complex unconstrained environments. These materials often need to replicate biological functionality such as muscle contractions and flexibility. Here we demonstrate a soft actuator prototype based on thermosensitive PNIPAAM hydrogels that can transport and manipulate objects. A hollow cylindrical hydrogel was selectively heated and cooled with Peltier devices to yield a traveling wave of shrinking and swelling akin to intestinal peristalsis. A 4 mm diameter bead was placed inside the cylinder and propelled 19.5 mm, equal to distance traveled by the peristaltic wave. We derived conditions that enable peristaltic transport as a function of transporter-cargo design parameters. We conclude that hydrogel-based peristaltic manipulators covering 2 orders of magnitude in stiffness (1-10(2) kPa) could transport cargo spanning 4 orders of magnitude in size (μm-m).

  4. Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall

    Directory of Open Access Journals (Sweden)

    S. Nadeem

    2015-12-01

    Full Text Available This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.

  5. Tissue engineering for neuromuscular disorders of the gastrointestinal tract

    Institute of Scientific and Technical Information of China (English)

    Kenneth L Koch; Khalil N Bitar; John E Fortunato

    2012-01-01

    The digestive tract is designed for the optimal processing of food that nourishes all organ systems.The esophagus,stomach,small bowel,and colon are sophisticated neuromuscular tubes with specialized sphincters that transport ingested food-stuffs from one region to another.Peristaltic contractions move ingested solids and liquids from the esophagus into the stomach; the stomach mixes the ingested nutrients into chyme and empties chyme from the stomach into the duodenum.The to-and-fro movement of the small bowel maximizes absorption of fat,protein,and carbohydrates.Peristaltic contractions are necessary for colon function and defecation.

  6. Inspiration of induced magnetic field on nano hyperbolic tangent fluid in a curved channel

    Science.gov (United States)

    Nadeem, S.; Shahzadi, Iqra

    2016-01-01

    In this research, peristaltic flow of nano hyperbolic tangent fluid is investigated in a curved channel. The model used for the nanofluid includes the effects of thermophoresis and Brownian motion. The resulting equations are assembled in wave frame of reference under the effects of curvature. Influence of induced magnetic field is studied. Long wavelength and low Reynolds number supposition are treated. The travelling wave front of peristaltic flow is chosen sinusoidal (extension /reduction). Analytical solutions are computed by homotopy perturbation method. Results of substantial quantities are explained with particular attention to rheological aspects.

  7. Inspiration of induced magnetic field on nano hyperbolic tangent fluid in a curved channel

    Directory of Open Access Journals (Sweden)

    S. Nadeem

    2016-01-01

    Full Text Available In this research, peristaltic flow of nano hyperbolic tangent fluid is investigated in a curved channel. The model used for the nanofluid includes the effects of thermophoresis and Brownian motion. The resulting equations are assembled in wave frame of reference under the effects of curvature. Influence of induced magnetic field is studied. Long wavelength and low Reynolds number supposition are treated. The travelling wave front of peristaltic flow is chosen sinusoidal (extension /reduction. Analytical solutions are computed by homotopy perturbation method. Results of substantial quantities are explained with particular attention to rheological aspects.

  8. Polymeric microdevices for transdermal and subcutaneous drug delivery.

    Science.gov (United States)

    Ochoa, Manuel; Mousoulis, Charilaos; Ziaie, Babak

    2012-11-01

    Low cost manufacturing of polymeric microdevices for transdermal and subcutaneous drug delivery is slated to have a major impact on next generation devices for administration of biopharmaceuticals and other emerging new formulations. These devices range in complexity from simple microneedle arrays to more complicated systems incorporating micropumps, micro-reservoirs, on-board sensors, and electronic intelligence. In this paper, we review devices currently in the market and those in the earlier stages of research and development. We also present two examples of the research in our laboratory towards using phase change liquids in polymeric structures to create disposable micropumps and the development of an elastomeric reservoir for MEMS-based transdermal drug delivery systems.

  9. Three-dimensional simulation of a microplasma pump

    Science.gov (United States)

    Wang, Chin-Cheng; Roy, Subrata

    2009-09-01

    We present a three-dimensional simulation of dielectric barrier discharge (DBD) using the finite element based multiscale ionized gas (MIG) flow code. The two-species hydrodynamic plasma model coupled Poisson equation and Navier-Stokes equation are solved using MIG flow code to predict complicated flow structure inside a plasma induced micropump. The advantage of such a micropump is rapid on/off switching without any moving parts. Results show a reasonable distribution for ion and electron densities as well as an electric field. The key factors of microplasma pump design are the location of actuators and input voltage. The flow rate of the microplasma pump is on the order of ml min-1. Such a flow rate may be beneficial for micropropulsion in space.

  10. Topology optimisation for natural convection problems

    CERN Document Server

    Alexandersen, Joe; Andreasen, Casper Schousboe; Sigmund, Ole

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach for designing heat sink geometries cooled by natural convection and micropumps powered by natural convection.

  11. The first self-sustainable microbial fuel cell stack.

    Science.gov (United States)

    Ledezma, Pablo; Stinchcombe, Andrew; Greenman, John; Ieropoulos, Ioannis

    2013-02-21

    This study reports for the first time on the development of a self-sustainable microbial fuel cell stack capable of self-maintenance (feeding, hydration, sensing & reporting). Furthermore, the stack system is producing excess energy, which can be used for improved functionality. The self-maintenance is performed by the stack powering single and multi-channel peristaltic pumps.

  12. Application of a dynamic in vitro gastrointestinal tract model to study the availability of food mutagens, using heterocyclic aromatic amines as model compounds

    NARCIS (Netherlands)

    Krul, C.A.M.; Luiten-Schuite, A.; Baan, R.; Verhagen, H.; Mohn, G.; Feron, V.; Havenaar, R.

    2000-01-01

    The TNO gastro-Intestinal tract Model (TIM) is a dynamic computer-controlled in vitro system that mimics the human physiological conditions in the stomach and small intestine. In the current TIM physiological parameters such as pH, temperature, peristaltic movements, secretion of digestion enzymes,

  13. A framework for the correction of slow physiological drifts during MR-guided HIFU therapies : Proof of concept

    NARCIS (Netherlands)

    Zachiu, Cornel; de Senneville, Baudouin Denis; Moonen, Chrit; Ries, Mario

    2015-01-01

    Purpose: While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During lengt

  14. Myoelectric activity of the stomach : gastroelectromyography and electrogastrography

    NARCIS (Netherlands)

    A.J.P.M. Smout

    1980-01-01

    textabstractThe musculature of the distal two-thirds of the stomach generates electrical signals that are related, in a complex manner, to the (peristaltic) contractions of these muscles. These electrical signals originate in ion shifts from the intracellular to the extracellular space and vice-vers

  15. A System Approach to Navy Medical Education and Training. Appendix 29. Competency Curriculum for Advanced General Duty Corpsman.

    Science.gov (United States)

    1974-08-31

    kidneys, spleen , bladder for: dullness, distension, shifting dullness Auscultation for: peristaltic sounds, bruits Palpation of liver, spleen , kidneys for...venipuncture sites Proper preservation procedures, e.g., immediate cooling for ammonia or acid phosphatase Principles and use of anticoagulants Use of

  16. Bioreactor process monitoring using an automated microfluidic platform for cell-based assays

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin

    2015-01-01

    We report on a novel microfluidic system designed to monitor in real-time the concentration of live and dead cells in industrial cell production. Custom-made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample-to-waste liquid management and image cytometry...

  17. 40 CFR Appendix A to Part 136 - Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater

    Science.gov (United States)

    2010-07-01

    ... during compositing. If the sampler uses a peristaltic pump, a minimum length of compressible silicone....5Snyder column, Kuderna-Danish—Two-ball micro (Kontes K-569001-0219 or equivalent). 5.2.6Vials—10 to 15-mL... each fraction and attach a two-ball micro-Snyder column. Prewet the Snyder column by adding about 0.5...

  18. Real-time direct cell concentration and viability determination using a fully automated microfluidic platform for standalone process monitoring

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin

    2015-01-01

    , and determining the total cell and dead cells concentrations, within a time frame of 10.3 min. The platform consists of custom made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample to waste liquid management and image cytometry-based detection. The total concentration of cells...

  19. Biomechanics of the Gastrointestinal Tract in Health and Disease

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Gregersen, Hans

    2010-01-01

    . The biomechanical properties are crucial for GI motor function because peristaltic motion that propels the food through the GI tract is a result of interaction of the passive and active tissue forces and the hydrodynamic forces in the food bolus and remodeling of the mechanical properties reflects the changes...

  20. MR urography (MRU of non-dilated ureter with diuretic administration: Static fluid 2D FSE T2-weighted versus 3D gadolinium T1-weighted GE excretory MR

    Directory of Open Access Journals (Sweden)

    C. Roy

    2014-01-01

    Conclusion: T2-weighted MRU with multiple orientations and diuretic is sufficient to identify the non-dilated ureter. It offers information on ureteral peristaltism. It can be suggested that this sequence is able to detect an initial obstruction before hydronephrosis occurs.

  1. Gastric pH distribution and mixing of soft and rigid food particles in the stomach using a dual-marker technique

    Science.gov (United States)

    Mixing of a particle-laden material during peristaltic flow in the stomach has not been quantified in vivo. Gastric mixing plays a key role in the overall gastric digestion process; it determines the availability of acid and enzymes to individual solid food particles and controls the length of time ...

  2. Protein interactions at the heart of cardiac chamber formation

    NARCIS (Netherlands)

    C.J.J. Boogerd; A.F.M. Moorman; P. Barnett

    2009-01-01

    The vertebrate heart is a muscular pump that contracts in a rhythmic fashion to propel the blood through the body. During evolution, the morphologically complex four-chambered heart of birds and mammals has evolved from a single-layered tube with peristaltic contractility. The heart of Drosophila, r

  3. Pharmacologic Agents for Chronic Diarrhea

    OpenAIRE

    Lee, Kwang Jae

    2015-01-01

    Chronic diarrhea is usually associated with a number of non-infectious causes. When definitive treatment is unavailable, symptomatic drug therapy is indicated. Pharmacologic agents for chronic diarrhea include loperamide, 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists, diosmectite, cholestyramine, probiotics, antispasmodics, rifaximin, and anti-inflammatory agents. Loperamide, a synthetic opiate agonist, decreases peristaltic activity and inhibits secretion, resulting in the reductio...

  4. A Transdermal Drug Delivery System Based on LIGA Technology and Soft Lithography

    Science.gov (United States)

    Matteucci, Marco; Perennes, Frederic; Marmiroli, Benedetta; Di Fabrizio, Enzo

    2007-01-01

    This report presents a transdermal drug delivery system based on LIGA fabricated microparts. It is a portable device combining a magnetically actuated micro gear pump with a microneedle array. The fluidic behaviour of the system is analyzed in order to predict its performance according to the dimension of the microparts and then compared to experimental data. The manufacturing process of both micropump and microneedle array are described.

  5. SU-8 as Hydrophobic and Dielectric Thin Film in Electrowetting-on-Dielectric Based Microfluidics Device

    OpenAIRE

    Vijay Kumar; N. N. Sharma

    2012-01-01

    Electrowetting-on-dielectric (EWOD) based droplet actuation in microfluidic chip is designed and fabricated. EWOD is used as on-chip micro-pumping scheme for moving fluid digitally in Lab-on-a-chip devices. For enabling this scheme, stacked deposition of thin dielectric and hydrophobic layer in that order between microchannel and electrodes is done. The present paper investigates the potential use of SU-8 as hydrophobic layer in conjunction of acting as dielectric in the device. The objective...

  6. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood

    OpenAIRE

    Cheng, Yinuo; Ye, Xiongying; Ma, Zengshuai; Xie, Shuai; Wang, Wenhui

    2016-01-01

    Rapid separation of white blood cells from whole blood sample is often required for their subsequent analyses of functions and phenotypes, and many advances have been made in this field. However, most current microfiltration-based cell separation microfluidic chips still suffer from low-throughput and membrane clogging. This paper reports on a high-throughput and clogging-free microfluidic filtration platform, which features with an integrated bidirectional micropump and commercially availabl...

  7. Self-Moving Catalytic Nanomotors

    Science.gov (United States)

    2013-12-11

    fleeting. Nanotechnology, nanomotors, micropumps, self-powered, catalysis , crack detection, crack repair UU UU UU UU 11 Ayusman Sen (814) 863-2460 1...for 45 min.) 2. Motility from Non-Redox Reactions. We have also demonstrated that motion can be powered by catalysis of non-redox reactions...Nano, 2011, 5, 5838 4. “Controlled Synthesis of Heterogeneous Metal-Titania Nanostructures and Their Applications,” Ran Liu and Ayusman Sen, J

  8. Water Powered Bioassay System

    Science.gov (United States)

    2004-06-01

    capillary micropump 27 Figure 30: Slow dripping/separation of a droplet from a capillary 4.1.5 Micro Osmotic Pumping Nano Droplet...stored and delivered fluidic pressure and, with a combination of pumps and valves, formed the basic micro fluidic processing unit. The addition of...System, Microvalve, Micro -Accumulator, Micro Dialysis Needle, Bioassay System, Water Activated, Micro Osmotic Pump 16. PRICE CODE 17. SECURITY

  9. A Strip-Type Microthrottle Pump: Modeling, Design and Fabrication

    Directory of Open Access Journals (Sweden)

    Dejan Križaj

    2013-03-01

    Full Text Available A novel design for a strip-type microthrottle pump with a rectangular actuator geometry is proposed, with more efficient chip surface consumption compared to existing micropumps with circular actuators. Due to the complex structure and operation of the proposed device, determination of detailed structural parameters is essential. Therefore, we developed an advanced, fully coupled 3D electro-fluid-solid mechanics simulation model in COMSOL that includes fluid inertial effects and a hyperelastic model for PDMS and no-slip boundary condition in fluid-wall interface. Numerical simulation resulted in accurate virtual prototyping of the proposed device only after inclusion of all mentioned effects. Here, we provide analysis of device operation at various frequencies which describes the basic pumping effects, role of excitation amplitude and backpressure and provides optimization of critical design parameters such as optimal position and height of the microthrottles. Micropump prototypes were then fabricated and characterized. Measured characteristics proved expected micropump operation, achieving maximal flow-rate 0.43 mL·min−1 and maximal backpressure 12.4 kPa at 300 V excitation. Good agreement between simulation and measurements on fabricated devices confirmed the correctness of the developed simulation model.

  10. A microfluidic pump/valve inspired by xylem embolism and transpiration in plants.

    Directory of Open Access Journals (Sweden)

    Li Jingmin

    Full Text Available In plants, transpiration draws the water upward from the roots to the leaves. However, this flow can be blocked by air bubbles in the xylem conduits, which is called xylem embolism. In this research, we present the design of a biomimetic microfluidic pump/valve based on water transpiration and xylem embolism. This micropump/valve is mainly composed of three parts: the first is a silicon sheet with an array of slit-like micropores to mimic the stomata in a plant leaf; the second is a piece of agarose gel to mimic the mesophyll cells in the sub-cavities of a stoma; the third is a micro-heater which is used to mimic the xylem embolism and its self-repairing. The solution in the microchannels of a microfluidic chip can be driven by the biomimetic "leaf" composed of the silicon sheet and the agarose gel. The halting and flowing of the solution is controlled by the micro-heater. Results have shown that a steady flow rate of 1.12 µl/min can be obtained by using this micropump/valve. The time interval between the turning on/off of the micro-heater and the halt (or flow of the fluid is only 2∼3 s. This micropump/valve can be used as a "plug and play" fluid-driven unit. It has the potential to be used in many application fields.

  11. The role of prostaglandines in peristalsis of the human colon.

    Science.gov (United States)

    Bruch, H P; Schmidt, E; Laven, R; Kehrer, G; Wasner, K H

    1978-08-01

    Prostaglandines (PG) of the E and F series cause peristaltic activity in isolated longitudinal muscle strips of the human colon. As this phasic motor reaction can be varied by acetyl choline and adrenaline it was supposed, that prostaglandines contribute to peristalsis. The role of PG E and F in the human colon was studied by inhibiting the prostaglandine synthesis and by antagonizing the prostaglandine-effects. Indomethacin proved to be a suitable inhibitor. HR 546 was found a powerful antagonist. The effect of Pentagastrin and Cholecystokinin (CCK) on peristaltic activity were suppressed by Indomethacin and HR 546. The inhibition of peristalsis by Indomethacin and HR 546 was removed by high doses of PG E and F. On the basis of these results the role of PG for the motility of the gut is discussed.

  12. Effect of mixing on reaction-diffusion kinetics for protein hydrogel-based microchips.

    Science.gov (United States)

    Zubtsov, D A; Ivanov, S M; Rubina, A Yu; Dementieva, E I; Chechetkin, V R; Zasedatelev, A S

    2006-03-09

    Protein hydrogel-based microchips are being developed for high-throughput evaluation of the concentrations and activities of various proteins. To shorten the time of analysis, the reaction-diffusion kinetics on gel microchips should be accelerated. Here we present the results of the experimental and theoretical analysis of the reaction-diffusion kinetics enforced by mixing with peristaltic pump. The experiments were carried out on gel-based protein microchips with immobilized antibodies under the conditions utilized for on-chip immunoassay. The dependence of fluorescence signals at saturation and corresponding saturation times on the concentrations of immobilized antibodies and antigen in solution proved to be in good agreement with theoretical predictions. It is shown that the enhancement of transport with peristaltic pump results in more than five-fold acceleration of binding kinetics. Our results suggest useful criteria for the optimal conditions for assays on gel microchips to balance high sensitivity and rapid fluorescence saturation kinetics.

  13. Novel Robotic Tools for Piping Inspection and Repair

    Science.gov (United States)

    2015-01-14

    motion. This in-pipe motion is accomplished by the use of inflatable pneumatic annular grippers in concert with a novel flexible pneumatic linear ...actuator capable. This linear actuator is capable of actuation while bent to conform to the contours of a piping system. The flexible linear actuator...robotic tool is based on pneumatically actuated peristaltic motion. This in-pipe motion is accomplished by the use of inflatable pneumatic annular

  14. The mixing of solid propellant by an artificial muscle actuator

    OpenAIRE

    岩崎, 祥大; 伴, 遼介; 吉浜, 舜; 中村, 太郎; 羽生, 宏人; Iwasaki, Akihiro; Ban, Ryosuke; Yoshihama, Shun; Nakamura, Taro; Habu, Hiroto

    2015-01-01

    This research aims to reduce the cost of the solid rocket motor production, mainly solid propellant. The production process of the solid rocket propellant are usually employed the multi-batch mixing. However, this study using a peristaltic pump as a mixer will lead to the continuous process. The pump system can mix the powder materials for propellant and we consider that it will make the slurry of the solid propellant efficiently by the mechanism of the fluid dynamics in the pump.

  15. Efficient Atomization and Combustion of Emulsified Crude Oil

    Science.gov (United States)

    2014-09-18

    data acquisition system. The venturis and regulators are mounted on the side and the peristaltic pump is at the bottom of the rack...liquid flows out of the first orifice , the air cross streams o fragment the liquid surface and then entrain and carry the atomized liquid out of the...been used with jet fuel and crude oil in commercial spray burner applications [3,6], but the pressure drop across the nozzle orifice resulted in an

  16. Effects of anti-hypertensive drugs on esophageal body contraction

    Institute of Scientific and Technical Information of China (English)

    Koichi; Yoshida; Kenji; Furuta; Kyoichi; Adachi; Shunji; Ohara; Terumi; Morita; Takashi; Tanimura; Shuji; Nakata; Masaharu; Miki; Kenji; Koshino; Yoshikazu; Kinoshita

    2010-01-01

    AIM:To clarify the effects of anti-hypertensive drugs on esophageal contraction and determine their possi-ble relationship with gastro-esophageal reflux disease.METHODS:Thirteen healthy male volunteers were enrolled. Esophageal body peristaltic contractions and lower esophageal sphincter (LES) pressure were measured using high resolution manometry. All subjects were randomly examined on four separate occasions following administrations of nifedipine,losartan,and atenolol,as well as without any drug administ...

  17. Convective Heat Transfer Analysis on Prandtl Fluid Model with Peristalsis

    Directory of Open Access Journals (Sweden)

    A. Alsaedi

    2013-01-01

    Full Text Available The effects of magnetohydrodynamic (MHD on peristaltic transport of Prandtl fluid in a symmetric channel have been studied under the assumptions of long wave length and low-Reynolds number. Channel walls are considered compliant in nature. Series solutions of axial velocity, stream function and temperature are given by using regular perturbation technique for small values of Prandtl fluid parameter. The effects of physical parameters on the velocity, streamlines and temperature are examined by plotting graphs.

  18. Diagnosis of esophageal motility disorders: esophageal pressure topography vs. conventional line tracing

    OpenAIRE

    2015-01-01

    OBJECTIVES: Enhanced characterization of esophageal peristaltic and sphincter function provided by esophageal pressure topography (EPT) offers a potential diagnostic advantage over conventional line tracings (CLT). However, high-resolution manometry (HRM) and EPT require increased equipment costs over conventional systems and evidence demonstrating a significant diagnostic advantage of EPT over CLT is limited. Our aim was to investigate whether the inter-rater agreement and/or accuracy of eso...

  19. Detection of Bioaerosols using Single Particle Thermal Emission Spectroscopy

    Science.gov (United States)

    2013-03-01

    droplets was accomplished by using a peristaltic pump to inject a set flow-rate of liquid mineral oil into a heated hypodermic needle . Heated mineral...heated to temperatures in excess of a 100 °C. Prevailing theory suggests a strong link between thermal emission and absorption spectra for bulk...iv 1. Background 1 2. Theory 1 3. Experiment 5 4. Results 13 5. Conclusion 16 6. References 18 List of Symbols, Abbreviations, and Acronyms 20

  20. A Fully Automated Sequential-Injection Analyser for Dual Electrogenerated Chemiluminescence/Amperometric Detection

    OpenAIRE

    Economou, Anastasios; Nika, Maria

    2006-01-01

    This work describes the development of a dedicated, fully automated sequential-injection analysis (SIA) apparatus suitable for simultaneous electrogenerated chemiluminescence (ECL) and amperometric detection. The instrument is composed of a peristaltic pump, a multiposition selection valve, a home-made potentiostat, a thin-layer electrochemical/optical flow-through cell, and a light detector. Control of the experimental sequence and simultaneous data acquisition of the light and the current i...

  1. Endoscopic Effects with Entropy Generation Analysis in Peristalsis for the Thermal Conductivity of Nanofluid

    Directory of Open Access Journals (Sweden)

    N.S Akbar

    2016-01-01

    Full Text Available The peristaltic flow of a copper water fluid investigate the effects of entropy and magnetic field in an endoscope is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity phenomenon entropy generation number and Bejan number are described through graphs for various pertinent parameters. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon.

  2. Animal Models of Jet Lag

    Science.gov (United States)

    2012-01-20

    surgically inserted into the pineal gland and connected to a peristaltic pump that delivers saline solution at low rate and to a outlet tubing that delivers...Journal of Pineal Research. 48(3):290- 6,2010. 2. "Orcadian Regulation of Pineal Gland Rhythmicity", Jimo Borjigin, L. Samantha Zhang, Anda-Alexandra...specializes in the longitudinal monitoring of pineal melatonin secretion for weeks at a time to decipher mechanisms of circadian pacemaker entrainment

  3. Variable properties of MHD third order fluid with peristalsis

    Science.gov (United States)

    Latif, T.; Alvi, N.; Hussain, Q.; Asghar, S.

    This article addresses the impact of temperature dependent variable properties on peristaltic flow of third order fluid in a symmetric channel. The MHD fluid and viscous dissipation effects are taken into account. Assumptions of long wavelength and low Reynolds number are employed to model the problem. The governing nonlinear coupled equations are solved using perturbation method. Approximate solutions are obtained for the stream function, temperature and pressure gradient. The results are graphically analyzed with respect to various pertinent parameters.

  4. Interstitial cells of Cajal, the Maestro in health and disease

    Institute of Scientific and Technical Information of China (English)

    Randa; M; Mostafa; Yasser; M; Moustafa; Hosam; Hamdy

    2010-01-01

    Interstitial cells of Cajal (ICC) are important players in the symphony of gut motility. They have a very signif icant physiological role orchestrating the normal peristaltic activity of the digestive system. They are the pacemaker cells in gastrointestinal (GI) muscles. Absence, reduction in number or altered integrity of the ICC network may have a dramatic effect on GI system motility. More understanding of ICC physiology will foster advances in physiology of gut motility which will help in a future break...

  5. Remedial Investigation Badger Army Ammunition Plant, Baraboo, Wisconsin. Volume 3. Appendices G Through J

    Science.gov (United States)

    1991-01-01

    UNITS OpH PAPER i7, TURBID SPECFIC ONDUTIVIY urbas /m DOR PUMP RATE, GPM _______"_L__OTHER (SEE NOTES) EQUIPMEN’T DOCUMENTATION PERISTALTIC PUMP ISCO...12.000 -0.006 Q ~-w (n_ _ V)__ _- 6 000 0) 0) 0D 0 0 C? 9 C) (D WELL SPN-8&-:IC WELL 2I.AME.v.3125F, 92R..M LENGT0: !V, BORI , VAME:-1 .... TEST I ?•lE3 2

  6. Soft-robotic esophageal swallowing as a clinically-inspired bolus rheometry technique

    Science.gov (United States)

    Dirven, Steven; Allen, Jacqueline; (Peter Xu, Weiliang; Cheng, Leo K.

    2017-03-01

    To investigate the impact of viscosity and peristaltic transport parameters on manometric pressure signatures, a reproducible swallowing process is required. Due to inter- and intra-subject variability from swallow to swallow, the human body does not represent an optimal mechanism for such an investigation. A smooth and continuous swallowing soft-robot has been developed to produce biomimetic swallowing trajectories, and is proposed to operate as a bench-top bolus rheometric investigation method. The method compares conventional viscometry and pressure signature findings from robotic swallowing experiments. The robotic aspect of experimentation involved 450 biomimetic swallows (10 repetitions of 45 unique experiments). The method examined swallowing transport in three dimensions: bolus formulation, peristaltic wavelength, and peristaltic velocity, each of which are known to contribute to safe and effective swallowing in vivo. It is found that the pressure gradients and magnitudes are commensurate with clinical reports on biological swallowing, on the order of 100 mmHg peak, however, the relationship between viscosity and pressure signatures is less clear. Bolus transport cannot be predicted as a function of bolus viscosity alone. Traditional viscometric data at 50 s-1, as used in clinical practice, may not be a strong indicator of swallow effort, safety, or efficacy in vivo.

  7. Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling

    Institute of Scientific and Technical Information of China (English)

    James G Brasseur; Mark A Nicosia; Anupam Pal; Larr S Miller

    2007-01-01

    We summarize from previous works the functions of circular vs. longitudinal muscle in esophageal peristaltic bolus transport using a mix of experimental data, the conservation laws of mechanics and mathematical modeling. Whereas circular muscle tone generates radial closure pressure to create a local peristaltic closure wave, longitudinal muscle tone has two functions, one physiological with mechanical implications, and one purely mechanical. Each of these functions independently reduces the tension of individual circular muscle fibers to maintain closure as a consequence of shortening of longitudinal muscle locally coordinated with increasing circular muscle tone. The physiological function is deduced by combining basic laws of mechanics with concurrent measurements of intraluminal pressure from manometry, and changes in cross sectional muscle area from endoluminal ultrasound from which local longitudinal shortening (LLS) can be accurately obtained. The purely mechanical function of LLS was discovered from mathematical modeling of peristaltic esophageal transport with the axial wall motion generated by LLS. Physiologically, LLS concentrates circular muscle fibers where closure pressure is highest.However, the mechanical function of LLS is to reduce the level of pressure required to maintain closure. The combined physiological and mechanical consequences of LLS are to reduce circular muscle fiber tension and power by as much as 1/10 what would be required for peristalsis without the longitudinal muscle layer, a tremendous benefit that may explain the existence of longitudinal muscle fiber in the gut. We also review what is understood of the role of longitudinal muscle in esophageal emptying, reflux and pathology.

  8. Finite element simulation of food transport through the esophageal body

    Institute of Scientific and Technical Information of China (English)

    Wei Yang; Tat Ching Fung; Kerm Sim Chian; Chuh Khiun Chong

    2007-01-01

    The peristaltic transport of swallowed material in the esophagus is a neuro-muscular function involving the nerve control, bolus-structure interaction, and structuremechanics relationship of the tissue. In this study, a finite element model (FEM) was developed to simulate food transport through the esophagus. The FEM consists of three components, i.e., tissue, food bolus and peristaltic wave, as well as the interactions between them. The transport process was simulated as three stages, i.e., the filling of fluid, contraction of circular muscle and traveling of peristaltic wave. It was found that the maximal passive intraluminal pressure due to bolus expansion was in the range of 0.8-10 kPa and it increased with bolus volume and fluid viscosity. It was found that the highest normal and shear stresses were at the inner surface of muscle layer. In addition, the peak pressure required for the fluid flow was predicted to be 1-15 kPa at the bolus tail. The diseases of systemic sclerosis or osteogenesis imperfecta, with the remodeled microstructures and mechanical properties, might induce the malfunction of esophageal transport. In conclusion, the current simulation was demonstrated to be able to capture the main characteristics in the intraluminal pressure and bolus geometry as measured experimentally. Therefore,the finite element model established in this study could be used to further explore the mechanism of esophageal transport in various clinical applications.

  9. Development of a surface micromachined spiral-channel viscous pump

    Science.gov (United States)

    Kilani, Mohammad Ibrahim

    This work introduces a new pump, called the spiral pump, which targets the surface micromachining technology. We demonstrate the possibility of realizing the spiral pump geometry in standard surface micromachining, lay out the theoretical foundation for its operation, and conduct an objective assessment for its practicality. The spiral pump is a shear-driven viscous pump, which works by rotating a disk with a spiral groove at a close proximity over a stationary plate. Fluid contained in the spiral groove between the stationary plate and the rotating disk, is subject to a net tangential viscous stress, which allows it to be transported against an imposed pressure difference. A number of spiral pumps were fabricated in 5 levels of polysilicon using Sandia's Ultraplanar Multilevel Surface Micromachining Technology, SUMMiT, and the fabricated micropump were tested in dry-run mode using electrostatic probing and optical microscopy. To achieve a more comprehensive understanding of the spiral micropump operation, an analytical model was developed for the flow field in the spiral channel of the pump using an approximation which replaces the spiral channel with an equivalent straight channel with appropriate dimensions and boundary conditions. An analytical solution for this model at the lubrication limit relates the flow rate, torque and power consumption of the spiral pump to the pressure difference and rotation rate. The model was validated using macroscale experiments conducted on a scaled up spiral pump model, which involved a quantitative characterization of the spiral pump performance. Those experiments validate the developed theory and help assess the practicality of the spiral pump concept. In addition to the spiral pump, two positive-displacement ring-gear pumps were designed and fabricated in this work. The feasibility of surface micromachined ring-gear pumps is briefly investigated in this work, and compare to that of the spiral micropump.

  10. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    DEFF Research Database (Denmark)

    La Rocca, Rosanna; Tallerico, Rossana; Hassan, Almosawy Talib;

    2014-01-01

    treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells...... between 700–1800 cm-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased...

  11. Pin count-aware biochemical application compilation for mVLSI biochips

    DEFF Research Database (Denmark)

    Lander Raagaard, Michael; Pop, Paul

    2015-01-01

    are controlled from external pressure sources, connected to “control pins”. By combining several microvalves, more complex units, such as micropumps, switches, mixers, and multiplexers, can be built. The current practice is to design these biochips by hand in drawing tools such as AutoCAD, and to program them...... that the number of ports used to drive the valves (control pins) is unlimited, which has resulted in very expensive, bulky and energy consuming off-chip control and infeasible control routes in the biochip control layer. In this paper, we propose a methodology to reduce the number of control pins required to run...

  12. Analysis of Asymmetric Piezoelectric Composite Beam

    CERN Document Server

    Chen, J -S; Wu, K -C

    2008-01-01

    This paper deals with the vibration analysis of an asymmetric composite beam composed of glass a piezoelectric material. The Bernoulli's beam theory is adopted for mechanical deformations, and the electric potential field of the piezoelectric material is assumed such that the divergence-free requirement of the electrical displacements is satisfied. The accuracy of the analytic model is assessed by comparing the resonance frequencies obtained by the analytic model with those obtained by the finite element method. The model developed can be used as a tool for designing piezoelectric actuators such as micro-pumps.

  13. SU-8 as Hydrophobic and Dielectric Thin Film in Electrowetting-on-Dielectric Based Microfluidics Device

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2012-01-01

    Full Text Available Electrowetting-on-dielectric (EWOD based droplet actuation in microfluidic chip is designed and fabricated. EWOD is used as on-chip micro-pumping scheme for moving fluid digitally in Lab-on-a-chip devices. For enabling this scheme, stacked deposition of thin dielectric and hydrophobic layer in that order between microchannel and electrodes is done. The present paper investigates the potential use of SU-8 as hydrophobic layer in conjunction of acting as dielectric in the device. The objective for the investigation is to lower the cost and a thin simplification in fabrication process of EWOD-based devices. We have done design and optimization of dimensions of electrode array including gap between arrays for EWOD micropump. Design and optimization are carried out in CoventorWare. The designing is followed by fabrication of device and analysis for droplet motion. The fabrication of the device includes array of electrodes over the silicon surface and embedding them in hydrophobic SU-8 layer. Water droplet movement in the order of microliter of spherical shape is demonstrated. It has been shown that an SU-8 microchannel in the current design allows microfluidic flow at tens of voltages comparable with costlier and more complicated to fabricate designs reported in the literature.

  14. Automated microfluidic DNA/RNA extraction with both disposable and reusable components

    Science.gov (United States)

    Kim, Jungkyu; Johnson, Michael; Hill, Parker; Sonkul, Rahul S.; Kim, Jongwon; Gale, Bruce K.

    2012-01-01

    An automated microfluidic nucleic extraction system was fabricated with a multilayer polydimethylsiloxane (PDMS) structure that consists of sample wells, microvalves, a micropump and a disposable microfluidic silica cartridge. Both the microvalves and micropump structures were fabricated in a single layer and are operated pneumatically using a 100 µm PDMS membrane. To fabricate the disposable microfluidic silica cartridge, two-cavity structures were made in a PDMS replica to fit the stacked silica membranes. A handheld controller for the microvalves and pumps was developed to enable system automation. With purified ribonucleic acid (RNA), whole blood and E. coli samples, the automated microfluidic nucleic acid extraction system was validated with a guanidine-based solid phase extraction procedure. An extraction efficiency of ~90% for deoxyribonucleic acid (DNA) and ~54% for RNA was obtained in 12 min from whole blood and E. coli samples, respectively. In addition, the same quantity and quality of extracted DNA was confirmed by polymerase chain reaction (PCR) amplification. The PCR also presented the appropriate amplification and melting profiles. Automated, programmable fluid control and physical separation of the reusable components and the disposable components significantly decrease the assay time and manufacturing cost and increase the flexibility and compatibility of the system with downstream components.

  15. A bubble- and clogging-free microfluidic particle separation platform with multi-filtration.

    Science.gov (United States)

    Cheng, Yinuo; Wang, Yue; Ma, Zengshuai; Wang, Wenhui; Ye, Xiongying

    2016-11-15

    Microfiltration is a compelling method to separate particles based on their distinct size and deformability. However, this approach is prone to clogging after processing a certain number of particles and forming bubbles in the separation procedure, which often leads to malfunctioning of devices. In this work, we report a bubble-free and clogging-free microfluidic particle separation platform with high throughput. The platform features an integrated bidirectional micropump, a hydrophilic microporous filtration membrane and a hydrophobic porous degassing membrane. The bidirectional micropump enables the fluid to flow back and forth repeatedly, which flushes the filtration membrane and clears the filtration micropores for further filtration, and to flow forward to implement multi-filtration. The hydrophobic porous membrane on top of the separation channel removes air bubbles forming in the separation channel, improving the separation efficiency and operational reliability. The microbead mixture and undiluted whole blood were separated using the microfluidic chip. After 5 cycles of reverse flushing and forward re-filtration, a 2857-fold enrichment ratio and an 89.8% recovery rate of 10 μm microbeads were achieved for microbead separation with 99.9% removal efficiency of 2 μm microbeads. After 8 cycles, white blood cells were effectively separated from whole blood with a 396-fold enrichment ratio and a 70.6% recovery rate at a throughput of 39.1 μl min(-1), demonstrating that the platform can potentially be used in biomedical applications.

  16. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood.

    Science.gov (United States)

    Cheng, Yinuo; Ye, Xiongying; Ma, Zengshuai; Xie, Shuai; Wang, Wenhui

    2016-01-01

    Rapid separation of white blood cells from whole blood sample is often required for their subsequent analyses of functions and phenotypes, and many advances have been made in this field. However, most current microfiltration-based cell separation microfluidic chips still suffer from low-throughput and membrane clogging. This paper reports on a high-throughput and clogging-free microfluidic filtration platform, which features with an integrated bidirectional micropump and commercially available polycarbonate microporous membranes. The integrated bidirectional micropump enables the fluid to flush micropores back and forth, effectively avoiding membrane clogging. The microporous membrane allows red blood cells passing through high-density pores in a cross-flow mixed with dead-end filtration mode. All the separation processes, including blood and buffer loading, separation, and sample collection, are automatically controlled for easy operation and high throughput. Both microbead mixture and undiluted whole blood sample are separated by the platform effectively. In particular, for white blood cell separation, the chip recovered 72.1% white blood cells with an over 232-fold enrichment ratio at a throughput as high as 37.5 μl/min. This high-throughput, clogging-free, and highly integrated platform holds great promise for point-of-care blood pretreatment, analysis, and diagnosis applications.

  17. ac-Field-induced fluid pumping in microsystems with asymmetric temperature gradients.

    Science.gov (United States)

    Holtappels, Moritz; Stubbe, Marco; Gimsa, Jan

    2009-02-01

    We present two different designs of electrohydrodynamic micropumps for microfluidic systems. The micropumps have no movable parts, and their simple design allows for fabrication by microsystems technology. The pumps are operated by ac voltages from 1 to 60 V and were tested with aqueous solutions in the conductivity range of 1-112 mS m(-1). The pump effect is induced by an ac electric field across a fluid medium with an inhomogeneous temperature distribution. It is constant over a wide range of the ac field frequency with a conductivity-dependent drop-off at high frequencies. The temperature-dependent conductivity and permittivity distributions in the fluid induce space charges that interact with the electric field and induce fluid motion. The temperature distribution can be generated either by Joule heating in the medium or by external heating. We present experimental results obtained with two prototypes featuring Joule heating and external heating by a heating filament. Experimental and numerical results are compared with an analytical model.

  18. Micro space power system using MEMS fuel cell for nano-satellites

    Science.gov (United States)

    Lee, Jongkwang; Kim, Taegyu

    2014-08-01

    A micro space power system using micro fuel cell was developed for nano-satellites. The power system was fabricated using microelectromechanical system (MEMS) fabrication technologies. Polymer electrolyte membrane (PEM) fuel cell was selected in consideration of space environment. Sodium borohydride (NaBH4) was selected as a hydrogen source while hydrogen peroxide (H2O2) was selected as an oxygen source. The power system consists of a micro fuel cell, micro-reactor, micro-pump, and fuel cartridges. The micro fuel cell was fabricated on a light-weight and corrosion-resistant glass plates. The micro-reactor was used to generate hydrogen from NaBH4 alkaline solution via a catalytic hydrolysis reaction. All components such as micro-pump, fuel cartridges, and auxiliary battery were integrated for a complete power system. The storability of NaBH4 solution was evaluated at -25 °C and the performance of the micro power system was measured at various operating conditions. The power output of micro power system reasonably followed up the given electric load conditions.

  19. Implementation of Synchronous Micromotor in Developing Integrated Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Ala'aldeen Al-Halhouli

    2014-07-01

    Full Text Available This paper introduces the synchronous micromotor concept and presents new investigations on its application as an integrated driving mechanism in microfluidic systems. A spiral channel viscous micropump and a microstirrer are considered and tested as examples to verify the concept. The fabrication technology of such integrated systems is based on UV depth lithography, electroplating and soft lithography. The synchronous micromotor consists of a stator including double layer coils, and a rotor disk containing alternate permanent magnets. The coils are distributed evenly around the stator and arranged in three phases. The phases are excited by sinusoidal currents with a corresponding phase shift resulting in a rotating magnetic field. Regarding the spiral channel viscous micropump, a spiral disk was fixed onto the rotor disk and run at different rotational speeds. Tests showed very promising results, with a flow rate up to 1023 µL·min−1 at a motor rotational speed of 4500 rpm. Furthermore, for the application of a microstirred-tank bioreactor, the rotor disk design was modified to work as a stirrer. The performance of the developed microbioreactor was tested over a time period of approximately 10 h under constant stirring. Tests demonstrated the successful cultivation of S. cerevisiae through the integration of the microstirrer in a microbioreactor system. These systems prove that synchronous micromotors are well suited to serve as integrated driving mechanisms of active microfluidic components.

  20. The Combination of Micro Diaphragm Pumps and Flow Sensors for Single Stroke Based Liquid Flow Control.

    Science.gov (United States)

    Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph

    2017-04-03

    With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout-differential pressure based flow sensors and thermal calorimetric flow sensors-are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved.

  1. Micro Flow Cytometer Chip Integrated with Micro-Pumps/Micro-Valves for Multi-Wavelength Cell Counting and Sorting

    Science.gov (United States)

    Chang, Chen-Min; Hsiung, Suz-Kai; Lee, Gwo-Bin

    2007-05-01

    Flow cytometry is a popular technique for counting and sorting of individual cells. This study presents a new chip-based flow cytometer capable of cell injection, counting and switching in an automatic format. The new microfluidic system is also capable of multi-wavelength detection of fluorescence-labeled cells by integrating multiple buried optical fibers within the chip. Instead of using large-scale syringe pumps, this study integrates micro-pumps and micro-valves to automate the entire cell injection and sorting process. By using pneumatic serpentine-shape (S-shape) micro-pumps to drive sample and sheath flows, the developed chip can generate hydrodynamic focusing to allow cells to pass detection regions in sequence. Two pairs of optical fibers are buried and aligned with the microchannels, which can transmit laser light sources with different wavelengths and can collect induced fluorescence signals. The cells labeled with different fluorescent dyes can be excited by the corresponding light source at different wavelengths. The fluorescence signals are then collected by avalanche photodiode (APD) sensors. Finally, a flow switching device composed of three pneumatic micro-valves is used for cell sorting function. Experimental data show that the developed flow cytometer can distinguish specific cells with different dye-labeling from mixed cell samples in one single process. The target cell samples can be also switched into appropriate outlet channels utilizing the proposed microvalve device. The developed microfluidic system is promising for miniature cell-based biomedical applications.

  2. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS).

    Science.gov (United States)

    Xu, Linfeng; Lee, Hun; Jetta, Deekshitha; Oh, Kwang W

    2015-10-21

    Suitable pumping methods for flow control remain a major technical hurdle in the path of biomedical microfluidic systems for point-of-care (POC) diagnostics. A vacuum-driven power-free micropumping method provides a promising solution to such a challenge. In this review, we focus on vacuum-driven power-free microfluidics based on the gas solubility or permeability of polydimethylsiloxane (PDMS); degassed PDMS can restore air inside itself due to its high gas solubility or gas permeable nature. PDMS allows the transfer of air into a vacuum through it due to its high gas permeability. Therefore, it is possible to store or transfer air into or through the gas soluble or permeable PDMS in order to withdraw liquids into the embedded dead-end microfluidic channels. This article provides a comprehensive look at the physics of the gas solubility and permeability of PDMS, a systematic review of different types of vacuum-driven power-free microfluidics, and guidelines for designing solubility-based or permeability-based PDMS devices, alongside existing applications. Advanced topics and the outlook in using micropumping that utilizes the gas solubility or permeability of PDMS will be also discussed. We strongly recommend that microfluidics and lab-on-chip (LOC) communities harness vacuum energy to develop smart vacuum-driven microfluidic systems.

  3. A study of ureteric peristalsis using a single catheter to record EMG, impedance, and pressure changes.

    Science.gov (United States)

    Roshani, H; Dabhoiwala, N F; Tee, S; Dijkhuis, T; Kurth, K H; Ongerboer de Visser, B W; de Jong, J M; Lamers, W H

    1999-03-01

    Ureteric peristalsis transports a urinary bolus from the renal pelvis to the bladder. We developed an intraluminal catheter with a pressure transducer on it to study intraluminal pressure changes and a twin bipolar electrode to record the ureteric EMG and impedance (Z) changes during a peristaltic wave. Five female New Yorkshire pigs (50-60 kg) were studied under light halothane anesthesia (5% at induction/1% for maintenance). A steady state of hydration was maintained using intravenous saline infusion. EMG spike burst activity was studied at a 10-cm interval using low (0-30) Hz filters. Impedance between the same electrodes is measured simultaneously in higher frequencies (1-5 KHz) as a function of ureteric motor activity. Pressure generation in the ureteric lumen was also measured simultaneously by a transducer on the same catheter. A digital signal processing program (Poly 4.9) was used for analysis. Parenteral furosemide was used to induce diuresis. Resting ureteric impedance (Z(R)) decreases to Z(B) (Z bolus) during the passage of the urinary bolus. Passage of a contractile zone during a peristaltic wave increases impedance from Z(B) to its Z(R) level and initiates a pressure rise. Bolus length (the length Z(B)) is not constant and decreases distally. EMG corresponds well in time to impedance. Z(R) disappears after infusion of furosemide because of increased urine load and changes of intraluminal ionic environment. The contractile segment of a ureteric peristaltic wave appears to be represented by an elevated Z segment (Z(C)). Pressure rise is recorded only at the beginning of a contractile zone. A specially adapted intraluminal catheter can be used to study peristalsis in the upper urinary tract. One can study all the three components of ureteric peristalsis (excitation, contraction, and intraluminal pressure rise) using such a catheter.

  4. Nanofluid transport in a living soft microtube

    Science.gov (United States)

    Sung, Baeckkyoung; Kim, Se Hoon; Lee, Sungwoo; Lim, Jaekwan; Lee, Jin-Kyu; Soh, Kwang-Sup

    2015-09-01

    The mechanism of hydrodynamic transport of nanoparticles in living tissues by intrinsic lymphatic pumping remains one of the fundamental questions in the field of nanomedicine. However, despite its importance, direct visualization of the nanofluid transport mechanism has not been achieved. In this article, we report a novel in situ fluorescence bioimaging method for observing real-time microflow patterns of nanofluids confined in a contracting and expanding soft microtube. This method allows for physiological monitoring of spatiotemporally resolved microfluidic behaviour and channel undulation during the peristaltic transport of fluorescent nanoparticle suspensions by lymph vessels embedded in bulky tissues at the location of the hindlimb. The fluorescent nanofluid conferred a high optical contrast for the visualization of the lymphatic microtube, with which the concentration and viscosity of the nanofluid could be determined. The nanofluid and microtube mechanics of the hindlimb lymph vessels exhibited similar behaviours as the previously described base fluid flow of peristaltic mesenteric lymph vessels. Specifically, the microtube contraction and expansion induced increased forward flows, and a reverse flow developed at the maximum contraction, all of which corresponded to Poiseuille flow and implied that higher tube wall shear stress was related to increased axial flow velocity. On the other hand, our study identified a highly heterogeneous flow pattern that could appear during the microtube expansion phase, whose axial velocity profile remarkably deviated from the Hagen-Poiseuille equation. In addition, the peristaltic pumping power was estimated to be on the nanowatt order of magnitude. Finally, we discuss the possible applications of this nanofluidic model system in the context of nanobiotechnology.

  5. Uterine contractions evaluated on cine MR imaging in patients with uterine leiomyomas

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Mizuki E-mail: mizuki@mbox.kyoto-inet.or.jpnishinomizuki@hotmail.com; Togashi, Kaori; Nakai, Asako; Hayakawa, Katsumi; Kanao, Shotarou; Iwasaku, Kazuhiro; Fujii, Shingo

    2005-01-01

    Purpose: Submucosal leiomyoma is one of the most recognized causes of infertility and habitual abortion. The purpose of this study is to evaluate uterine peristalsis, a cycle-related inherent contractility of uterus probably responsible for sperm transport and conservation of pregnancy, in patients with uterine leiomyomas using cine magnetic resonance (MR) imaging. Materials and methods: Study population consisted of 26 female patients (age range: 19-51 years, mean: 41 years), in which 16 patients had submucosal leiomyomas and 10 patients had intramural or subserosal leiomyomas. We prospectively performed MR imaging of the midsagittal plane of uterus using 1.5 T magnet (Symphony, Siemens Medical Systems) with a body array coil, and obtained 60 half-Fourier acquisition single shot turbo spin echo (HASTE) images (Echo time=80 ms, FOV=300 mm, slice thickness 5 mm, matrix 256x256) within 2 min, and displayed them on cine mode at 12x faster than real speed. Evaluated were peristaltic movements at the endometral-myometrial junction and focal myometrial movements, adjacent to leiomyomas, regarding presence, direction, frequency, and conduction. Results: The peristaltic movements were identified in 12/16 patients with submucosal lesions and 10/10 with other leiomyomas. The frequency and direction were cycle-related. Loss of peristalsis was noted adjacent to submucosal myomas in 4/12 patients, but was not in others. Focal myometrial movements were noted in 9/16 patients with submucosal myomas, but not in others. Conclusions: Uterine peristaltic movements were partly interrupted by submucosal leiomoymas, but not by myometrial or subserosal leiomyomas. Loss of peristalsis and focal myometrial movements was noted only adjacent to submucosal leiomyomas. These findings are considered to represent dysfunctional contractility, and may be related with pregnancy loss.

  6. Interpreting manometric signals for propulsion in the gut

    Science.gov (United States)

    Sinnott, M. D.; Cleary, P. W.; Dinning, P. G.; Arkwright, J. W.; Costa, M.

    2015-09-01

    Propulsion of intestinal contents involves coordinated contractions and relaxations of the muscle controlled by polarised enteric neural reflex pathways. Due to the inaccessibility of the small and large bowel, obtaining detailed manometric measurements in the gut or visualizing the movement of digesta is difficult in vivo. Computational modelling that incorporates the complex interactions between gut content and wall contractility has the potential to explain the mechanisms behind propulsive motor patterns and aid the interpretation of manometric measurements. We present here a biomechanical computational model of coupled wall flexure and flow dynamics in a virtual segment of intestine. The model uses the smoothed particle hydrodynamics method which permits coupling of the fluid/solid motion and wall deformation in a natural way. Peristaltic waves of contraction and relaxation, similar to those observed in physiological experiments, were applied to the gut wall of the model. A catheter containing manometric sensors was also incorporated into the model to derive representative pressure readings. The sensitivity of the model to input parameters including wall stiffness, viscosity of content and degree of muscular contraction is also presented. The results show that there is a rapid rise in pressure of fluid content trapped between the catheter and the contracting wall. The peristaltic wave travels along the length of the virtual segment of intestine passing over each sensor. The bolus, formed by the peristaltic contraction, grows in size and longitudinal extent until the bolus size reaches steady state. The wall force and the peak fluid pressure both scale proportionally with the change in muscle length, indicating that manometric data provide a reliable means for measuring the strength of contractions. Changes in stiffness of the wall and viscosity of contents result in predictable changes in the parameters of peristalsis. The model can be thus applied to manometry

  7. アドレナリンの静脈内注入がめん羊の反芻行動に及ぼす影響

    OpenAIRE

    春本, 直; 溝端, 文則; 松井, 徹; 藤原, 勉

    1989-01-01

    Rumination activity was measured in three sheep intravenously infused with adrenalin. In the first Expt, adrenalin was administered for 4 hr., that is, 9:00-13:00 or 13:00-17:00, in dose of 10μg/hr・kg body-weight. In the second Expt, adrenalin were infused during every 2 hr. of 13:00-15 00, 21:00-23:00 and 3:00-5:00, at a dose of either 20 or 10μg/hr・kg body-weight. Adrenalin infusion was made with an peristaltic pump at 50ml of fluid volume per hour through the jugular vein catheter. In bot...

  8. Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders

    DEFF Research Database (Denmark)

    Huizinga, J D; Thuneberg, L; Vanderwinden, J M

    1997-01-01

    and colon. Slow waves also determine the direction and velocity of propagation of peristaltic activity, in concert with the enteric nervous system. Characterization of receptors and ion channels in the ICC membrane is under way, and manipulation of slow-wave activity markedly alters movement of contents...... through the gut organs. Here Jan Huizinga, Lars Thuneberg, Jean-Marie Vanderwinden and Jüri Rumessen, suggest that, as ICCs are unique to the gut, they might be ideal targets for pharmacological intervention in gastrointestinal motility disorders, which are very common and costly....

  9. Microfluidic Control Using Colloidal Devices

    Science.gov (United States)

    Terray, Alex; Oakey, John; Marr, David W. M.

    2002-06-01

    By manipulating colloidal microspheres within customized channels, we have created micrometer-scale fluid pumps and particulate valves. We describe two positive-displacement designs, a gear and a peristaltic pump, both of which are about the size of a human red blood cell. Two colloidal valve designs are also demonstrated, one actuated and one passive, for the direction of cells or small particles. The use of colloids as both valves and pumps will allow device integration at a density far beyond what is currently achievable by other approaches and may provide a link between fluid manipulation at the macro- and nanoscale.

  10. On the flow of a non-Newtonian liquid induced by intestine-like contractions.

    Science.gov (United States)

    Phan-Thien, N; Low, H T

    1989-02-01

    This paper considers the flow of an inelastic liquid which is generated by contractions like those of the intestine. Unlike regular peristaltic motion, these contractions occur locally over a finite length and have a finite amplitude. We adopt a contraction model due to Macagno and Christensen and repeat their analysis for an inelastic liquid. Our analysis, which is based on a Boundary Element Method, indicates that the net flow rate depends very weakly on the power-law index. The pumping action is therefore similar to that of a positive displacement pump.

  11. [Plastic repair of the isolated bladder in exstrophy in children].

    Science.gov (United States)

    Derzhavin, V M; Kazachkov, S A; Bannikov, V M; Berulava, Z O

    1989-01-01

    Sigmoid colon segment was used to pass the urine through the intestine in 14 children with exstrophy of the bladder. Preoperative management of large intestine helped to reduce the number of operative stages from two to one. 12 patients were followed up from 1 to 3 yrs. Right ureterohydronephrosis of the upper urinary tract was observed in 1 patient. Urodynamic investigation of isolated sigmoid colon segment evidenced of its adequate contractile and peristaltic activity preventing the contact of feces with entero-ureteral anastomoses. To improve the closing ability of rectal sphincter in the above patients anal electrostimulation with diadynamic current can be recommended.

  12. A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations.

    Science.gov (United States)

    Vahidi, Bahman; Fatouraee, Nasser; Imanparast, Ali; Moghadam, Abbas Nasiraei

    2011-03-01

    Ureteral peristaltic mechanism facilitates urine transport from the kidney to the bladder. Numerical analysis of the peristaltic flow in the ureter aims to further our understanding of the reflux phenomenon and other ureteral abnormalities. Fluid-structure interaction (FSI) plays an important role in accuracy of this approach and the arbitrary Lagrangian-Eulerian (ALE) formulation is a strong method to analyze the coupled fluid-structure interaction between the compliant wall and the surrounding fluid. This formulation, however, was not used in previous studies of peristalsis in living organisms. In the present investigation, a numerical simulation is introduced and solved through ALE formulation to perform the ureteral flow and stress analysis. The incompressible Navier-Stokes equations are used as the governing equations for the fluid, and a linear elastic model is utilized for the compliant wall. The wall stimulation is modeled by nonlinear contact analysis using a rigid contact surface since an appropriate model for simulation of ureteral peristalsis needs to contain cell-to-cell wall stimulation. In contrast to previous studies, the wall displacements are not predetermined in the presented model of this finite-length compliant tube, neither the peristalsis needs to be periodic. Moreover, the temporal changes of ureteral wall intraluminal shear stress during peristalsis are included in our study. Iterative computing of two-way coupling is used to solve the governing equations. Two phases of nonperistaltic and peristaltic transport of urine in the ureter are discussed. Results are obtained following an analysis of the effects of the ureteral wall compliance, the pressure difference between the ureteral inlet and outlet, the maximum height of the contraction wave, the contraction wave velocity, and the number of contraction waves on the ureteral outlet flow. The results indicate that the proximal part of the ureter is prone to a higher shear stress during

  13. Space Station Environmental Control and Life Support System Purge Control Pump Assembly Modeling and Analysis

    Science.gov (United States)

    Schunk, R. Gregory; Hunt, Patrick L. (Technical Monitor)

    2001-01-01

    Preliminary results from a thermal/flow analysis of the Purge Control Pump Assembly (PCPA) indicate that pump performance (mass flow rate) is enhanced via cooling of the housing and lowering of the inlet vapor quality. Under a nominal operational profile (25% duty cycle or less), at the maximum motor dissipation, it appears that the peristaltic tubing temperature will still remain significantly below the expected UPA condenser temperature (78 F max versus approximately 105 F in the condenser) permitting condensation in the pump head.

  14. Modelling and simulation of diffusive processes methods and applications

    CERN Document Server

    Basu, SK

    2014-01-01

    This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport

  15. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    Science.gov (United States)

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-01-01

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system. PMID:27589761

  16. Chitosan chemical hydrogel electrode binder for direct borohydride fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Nurul A.; Sahai, Yogeshwar; Buchheit, Rudolph G. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH (United States)

    2011-01-15

    A novel and cost-effective electrode binder consisting of chitosan chemical hydrogel (CCH) is reported for direct borohydride fuel cells (DBFCs). The DBFCs have been assembled with Misch-metal-based AB{sub 5} alloy as anode, carbon-supported palladium (Pd/C) as cathode and polyvinyl alcohol (PVA) hydrogel membrane electrolyte (PHME) as well as Nafion {sup registered} -117 membrane electrolyte (NME) as separators. Operating in passive mode without using peristaltic pump and under ambient conditions of temperature as well as pressure, the DBFC exhibited a maximum peak power density of about 81 mW cm{sup -2}. (author)

  17. The MainSTREAM Component Platform: A Holistic Approach to Microfluidic System Design

    DEFF Research Database (Denmark)

    Sabourin, David; Skafte-Pedersen, Peder; Søe, Martin Jensen

    2013-01-01

    A microfluidic component library for building systems driving parallel or serial microfluidic-based assays is presented. The components are a miniaturized eight-channel peristaltic pump, an eight-channel valve, sample-to-waste liquid management, and interconnections. The library of components...... of reaction chips; (2) highly parallel pumping and routing/valving capability; (3) methods to interface pumps and chip-to-liquid management systems; (4) means to construct a portable system; (5) reconfigurability/flexibility in system design; (6) means to interface to microscopes; and (7) compatibility...

  18. Oesophageal food impaction in achalasia treated with Coca-Cola and nifedipine.

    Science.gov (United States)

    Koumi, Andriani; Panos, Marios Zenon

    2010-01-01

    Achalasia is characterised by the loss of peristaltic movement in the distal oesophagus and failure of the lower oesophageal sphincter relaxation, which results in impaired oesophageal emptying. We report a case of a 92-year-old frail woman with a history of achalasia, who presented with acute oesophageal obstruction due to impaction of a large amount of food material. She was treated successfully with nifedipine, in combination with Coca-Cola (original product, not sugar free), so avoiding the risks associated with repeated endoscopic intubation and piecemeal removal of the oesophageal content.

  19. Bioengineering fluid mechanics

    CERN Document Server

    Hung, Tin-kan

    2013-01-01

    This book highlights the basic concepts and equations for bioengineering flow processes. Physical concepts and meanings are emphasized while rigorous derivations are simplified, making it easier for self learning on some biological and medical flow processes. The well known Bernoulli equation in hydraulics is extended for pulsating flows, peristaltic flows and cardiac pumping. The dimensional analysis, model law and dimensionless equations can be related to computational models and experimental observations. The velocity vector imaging stored in echocardiograms can be used to analyze the pumping characteristics of the ventricular contraction. New topics included oxygen transport in membrane oxygenator and micro mixing of blood flow in capillary channels.

  20. Fluid mechanics in the perivascular space.

    Science.gov (United States)

    Wang, Peng; Olbricht, William L

    2011-04-07

    Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF) and solute transport. Fluid flowing in the PVS can affect these transport processes and has significant impacts on physiology. In this paper, we carry out a theoretical analysis to investigate the fluid mechanics in the PVS. With certain assumptions and approximations, we are able to find an analytical solution to the problem. We discuss the physical meanings of the solution and particularly examine the consequences of the induced fluid flow in the context of convection-enhanced delivery (CED). We conclude that peristaltic motions of the blood vessel walls can facilitate fluid and solute transport in the PVS.

  1. Quantitative Infrared Spectroscopy in Challenging Environments: Applications to Passive Remote Sensing and Process Monitoring

    Science.gov (United States)

    2012-12-01

    controlled peristaltic pumps. The first set of sample solutions contained glucose (≥99 %, Sigma-Aldrich Co., St. Louis, MO), sodium L- lactate (99%, Sigma...consisted of glucose (Sigma), sodium L- lactate (Sigma), urea (Sigma) and creatinine (Sigma). All samples were prepared in a pH 7.4, 0.1 M phosphate...The results of this calculation are shown in Table 7.6. Observing the correlation plots and SEP values, an effective job was done overall tracking the

  2. Dual-channel capillary electrophoresis for simultaneous determination of cations and anions.

    Science.gov (United States)

    Opekar, František; Tůma, Petr

    2016-05-13

    An original electrophoresis apparatus for simultaneous rapid determination of cations and anions has been designed and tested. The separation part of the apparatus consists of two identical fused-silica capillaries, each with a length of 10.5cm and inner diameter of 25μm. The injection space is formed by the crossing of four channels in a plexiglass cross-piece. The capillaries pass through two opposing channels and their injection ends are located opposite one another at a distance of approx. 0.5mm in the centre of the crossing point. The exit ends of the capillaries are placed in vessels containing the background electrolyte in which are immersed the electrodes of a high-voltage source. Contactless conductivity detectors with semi-cylindrical electrodes are located 2cm from the exit ends of the capillaries. The injection part of the apparatus consists of two piezoelectric micro-pumps bringing the solution through another channel in the cross-piece to the injection ends of the capillary. During the injection, the sample is brought through one of them and is injected electrokinetically for a defined time. Then the sample zone is forced out of the injection space by a stream of background electrolyte from the second micro-pump. The timing of the injection process is computer-controlled. Thus the equipment can be considered to constitute electrophoresis in one capillary with injection into its centre. The use of short capillaries and miniature micro-pumps without other mechanical components enabled the construction of the apparatus on a board with dimensions of 20×25cm. The proposed equipment was used to test simultaneous separation of a mixture of cations and anions, NH4(+), K(+), Ca(2+), Mg(2+), Sr(2+), Ba(2+), Cl(-), NO3(-), SO4(2-), ClO3(-) and F(-), in BGE with composition 500mM HAc+20mM Tris+2mM 18-crown-6 (pH 3.3). Baseline separation of all the components was achieved in time less than 1min. Quantification of the content of nitrate nitrogen (determined as

  3. 阿托品不同给药方式治疗有机磷中毒的疗效分析%Comparison of Different Methods of Administering Atropine in the Treatment of Organophosphate Poisoning

    Institute of Scientific and Technical Information of China (English)

    李志; 何伟峰; 邹海军

    2012-01-01

    目的:探讨临床救治有机磷中毒的患者使用阿托品时采用不同给药方式的疗效差异.方法:将我院在2007年6月~2010年10月收治的101例急性有机磷中毒的患者随机分为三组,I组患者给予阿托品人工静脉推注;II组患者先给予阿托品人工静脉推注,患者达到阿托品化后采用微量泵给药;III组患者直接使用用微量泵给药,比较三组患者的疗效和并发症.结果:II组患者和III组患者的疗效优于I组患者,并发症低于I组患者,p<0.05;III组患者阿托品化时间最长,与I组和II组比较,p<0.05.结论:采用阿托品人工静脉推注,待患者阿托品化再给予微量泵给药,其疗效较好,不良反应少,患者阿托品化更稳定,值得在临床推广使用.%Objective:Clinical treatment of patients with organophosphate poisoning atropine administered in different ways when the difference in efficacy.Methods:In our hospital in June 2007~October 2010 treated 101 cases of acute organophosphate poisoning were randomly divided into three groups, I group were treated with intravenous injection of atropine and artificial; Ⅱ patients are atropine artificial intravenous injection, the patient achieved using micro-pump after atropine administration; Ⅲ patients directly with micro-pump delivery, three groups of patients compared the efficacy and complications.Results:Group Ⅱ and Ⅲ patients were more effective than group I patients, complications than group I patients, p <0.05; Ⅲ longest of atropine in patients with Group Ⅰ and Ⅱ group, p <0.05. Conclusion:The use of artificial intravenous injection of atropine, atropine and then be given to patients with micro-pump delivery, the better effect, adverse reactions, patients with atropine is more stable, it is in clinical use.

  4. Autophoretic self-propulsion of homogeneous particles

    Science.gov (United States)

    Michelin, Sebastien; Lauga, Eric; de Canio, Gabriele

    2014-11-01

    Phoretic mechanisms such as diffusiophoresis exploit short-ranged interactions between solute molecules in the fluid and a rigid wall to generate local slip velocities in the presence of solute gradients along the solid boundary. This boundary flow can result in macroscopic fluid motion or phoretic migration of inert particles. These mechanisms have recently received a renewed interest to design self-propelled ``autophoretic'' systems able to generate the required solute gradients through chemical reaction at their surface. Most existing designs rely on the asymmetric chemical treatment of the particle's surface to guarantee symmetry-breaking and the generation of a net flow. We show here, however, that chemical asymmetry is not necessary for flow generation and that homogeneous particles with asymmetric geometry may lead to self-propulsion in Stokes flow. Similarly, this principle can be used to manufacture micro-pumps using channel walls with uniform chemical properties.

  5. Applications of Acoustics and Cavitation to Noninvasive Therapy and Drug Delivery

    Science.gov (United States)

    Coussios, Constantin C.; Roy, Ronald A.

    2008-01-01

    Biomedical acoustics is rapidly evolving from a diagnostic modality into a therapeutic tool, and acoustic cavitation is often the common denominator in a wide range of new therapeutic applications. High-intensity focused ultrasound (HIFU) waves generated outside the body can be used to deposit heat deep within the body. Through a quantitative analysis of heat deposition by ultrasound, it is shown that inertial cavitation can help address some of the major challenges of HIFU therapy by providing a means of enhancing and monitoring treatment noninvasively. In the context of drug delivery, both inertial and stable cavitation play roles in enhancing drug activity and uptake. In particular, shape oscillations arising during stable cavitation provide an effective micropumping mechanism for enhanced mass transport across inaccessible interfaces.

  6. SmartBuild-a truly plug-n-play modular microfluidic system.

    Science.gov (United States)

    Yuen, Po Ki

    2008-08-01

    In this Technical Note, for the first time, a truly "plug-n-play" modular microfluidic system (SmartBuild Plug-n-Play Modular Microfluidic System) is presented for designing and building integrated modular microfluidic systems for biological and chemical applications. The modular microfluidic system can be built by connecting multiple microfluidic components together to form a larger integrated system. The SmartBuild System comprises of a motherboard with interconnect channels/grooves, fitting components, microchannel inserts with different configurations and microchips/modules with different functionalities. Also, heaters, micropumps and valving systems can be designed and used in the system. Examples of an integrated mixing system and reaction systems are presented here to demonstrate the versatility of the SmartBuild System.

  7. Covalently immobilized gelatin gradients within three-dimensional porous scaffolds

    Institute of Scientific and Technical Information of China (English)

    WU JinDan; TAN HuaPing; LI LinHui; GAO ChangYou

    2009-01-01

    A stable gelatin gradient providing continuous increment of signaling for cell adhesion and proliferation was fabricated within 3D poly(L-lactic acid) (PLLA) scaffolds. The porous PLLA scaffold fabricated by NaCI particle leaching was vertically fixed on a glass vial. 1,6-Hexanediamine/propanol solution was continuously injected into the vial by a micropump to aminolyze the PLLA scaffold. As a result of reaction time difference,the introduced-NH2 groups increased continuously along with the longitude of the PLLA scaffold in the z-direction. After covalent immobilization of gelatin by glutaraldehyde coupling,the gelatin gradient scaffold was thus obtained. In vitro chondrocyte culture showed that the cells had higher viability and more extending morphology in the gelatin gradient scaffold than that in the uniform gelatin control.

  8. Clinical microdialysis in neuro-oncology: principles and applications

    Institute of Scientific and Technical Information of China (English)

    J. Clay Goodman

    2011-01-01

    Clinical microdialysis allows a discrete volume of the brain to be sampled for neurochemical analysis of neurotransmitters, metabolites, biomarkers, and drugs. The technique can be safely used in humans intraoperatively, in the intensive care unit, and in ambulatory settings. Microdialysis probes, micropumps, and analytical equipment are commercially available and have been used extensively for neurochemical monitoring in traumatic brain injury, stroke, and subarachnoid hemorrhage. There has been very limited use of micredialysis in neuro-oncology, but this technique has groat promise in the study of the basic neurochemistry of brain tumors, alterations in neurochemistry in response to therapy, and the pharmacokinetics of chemotherapeutic agents. Microdialysis probes may also be used to deliver drugs while simultaneously permitting monitoring of neurochemical changes induced by this therapy.

  9. Self-Driven Droplet Powered By Active Nematics

    Science.gov (United States)

    Gao, Tong; Li, Zhaorui; Shelley, Michael

    2016-11-01

    Active matter defines a class of emerging bio-inspired materials composed of self-driven micro-particles and far away from equilibrium. Their anormalous physical properties and the means to control them, suggest novel methods in mixing/separation, micro-pumps and motors, self-healing materials etc. The possibility of realizing these applications hinges on a through understanding of the physical mechanisms as well as developing means to manipulate various active systems. By using of a coarse-grained active liquid crystal model, we design and investigate self-driven droplets encapsulating a dense suspension of active particles. We show that a single droplet can be set into motion due to the internal collective motions that are featured by active flows and motile disclination defects. We illustrate that the interplays between the induced directional flows, liquid crystalline structures, and the deformable interface with surface tension can result in tunable mobilities of motile droplets that undergo novel locomotion and rotation.

  10. Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection.

    Science.gov (United States)

    Lee, Hiang Kwee; Lee, Yih Hong; Phang, In Yee; Wei, Jiaqi; Miao, Yue-E; Liu, Tianxi; Ling, Xing Yi

    2014-05-12

    Inspired by aphids, liquid marbles have been studied extensively and have found application as isolated microreactors, as micropumps, and in sensing. However, current liquid-marble-based sensing methodologies are limited to qualitative colorimetry-based detection. Herein we describe the fabrication of a plasmonic liquid marble as a substrate-less analytical platform which, when coupled with ultrasensitive SERS, enables simultaneous multiplex quantification and the identification of ultratrace analytes across separate phases. Our plasmonic liquid marble demonstrates excellent mechanical stability and is suitable for the quantitative examination of ultratrace analytes, with detection limits as low as 0.3 fmol, which corresponds to an analytical enhancement factor of 5×10(8). The results of our simultaneous detection scheme based on plasmonic liquid marbles and an aqueous-solid-organic interface quantitatively tally with those found for the individual detection of methylene blue and coumarin.

  11. Nanofluid technology : current status and future research.

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. U.-S.

    1998-10-20

    Downscaling or miniaturization has been a recent major trend in modern science and technology. Engineers now fabricate microscale devices such as microchannel heat exchangers, and micropumps that are the size of dust specks. Further major advances would be obtained if the coolant flowing in the microchannels were to contain nanoscale particles to enhance heat transfer. Nanofluid technology will thus be an emerging and exciting technology of the 21st century. This paper gives a brief history of the Advanced Fluids Program at Argonne National Laboratory (ANL), discusses the concept of nanofluids, and provides an overview of the R and D program at ANL on the production, property characterization, and performance of nanofluids. It also describes examples of potential applications and benefits of nanofluids. Finally, future research on the fundamentals and applications of nanofluids is addressed.

  12. Development of solid supports for electrochemical study of biomimetic membrane systems

    DEFF Research Database (Denmark)

    Mech-Dorosz, Agnieszka

    recording of a steady-state photocurrent while only a transient photocurrent peak was recorded on the polyelectrolyte cushion without a PES membrane. This PhD thesis also comprises the design and fabrication process of a modular microfluidic system with automated fluid delivery (micropumps and valves...... with reconstituted membrane spanning proteins, are attractive tools. However, BLMs suffer from intrinsic fragility, therefore, requiring techniques to increase their robustness and stability. This PhD thesis presents strategies to construct solid supports for electrochemical studies of two biomimetic membrane...... transporter valinomycin. The presented work also includes a comprehensive EIS analysis and cryological scanning electron microscopic (cryo-SEM) imaging of hydrogels formulated in various molar ratios (1:100; 1:200; 1:400) of the cross-linker poly(ethylene glycol)dimethacrylate (PEGDMA) and 2-hydroxyethylene...

  13. Photothermal generation of microbubbles on plasmonic nanostructures inside microfluidic channels

    Science.gov (United States)

    Li, Jingting; Li, Ming; Santos, Greggy M.; Zhao, Fusheng; Shih, Wei-Chuan

    2016-03-01

    Microbubbles have been utilized as micro-pumps, micro-mixers, micro-valves, micro-robots and surface cleaners. Various generation techniques can be found in the literature, including resistive heating, hydrodynamic methods, illuminating patterned metal films and noble metal nanoparticles of Au or Ag. We present photothermal microbubble generation by irradiating nanoporous gold disk covered microfluidic channels. The size of the microbubble can be controlled by adjusting the laser power. The dynamics of both bubble growth and shrinkage are studied. The advantages of this technique are flexible bubble generation locations, long bubble lifetimes, no need for light-adsorbing dyes, high controllability over bubble size, low power consumption, etc. This technique has the potential to provide new flow control functions in microfluidic devices.

  14. Web-Based Synthetic Optimization Design System of Micro-Components

    Institute of Scientific and Technical Information of China (English)

    GONG Xiao-yan; JIANG Ping-yu

    2005-01-01

    In order to meet the requirement of network synthesis optimization design for a micro component, a three-level information frame and functional module based on web was proposed. Firstly, the finite element method (FEM) was used to analyze the dynamic property of coupled-energy-domain of virtual prototype instances and to obtain some optimal information data. Secondly, the rough set theory (RST) and the genetic algorithm (GA) were used to work out the reduction of attributes and the acquisition of principle of optimality and to confirm key variable and restriction condition in the synthesis optimization design. Finally, the regression analysis (RA) and GA were used to establish the synthesis optimization design model and carry on the optimization design. A corresponding prototype system was also developed and the synthesis optimization design of a thermal actuated micro-pump was carried out as a demonstration in this paper.

  15. 不同输注法治疗急性胰腺炎的临床效果%Effect of different phleboclysis on acute pancreatitis patients

    Institute of Scientific and Technical Information of China (English)

    张志达; 张茂; 刘春玲; 胡江; 李明章; 侯瑞生

    2010-01-01

    目的 探讨不同输入方法治疗急性胰腺炎的综合疗效.方法 110例急性胰腺炎患者随机分为传统输液组(50例)、微量泵24 h持续泵入组(30例)和微量泵12 h持续泵入组(30例).观察统计临床治疗效果、不良反应、满意度、平均住院日等.结果 泵入组与传统组比较其临床治疗效果无差异性;药物不良反应泵入组明显低于传统组(P<0.01);满意度泵入组明显高于传统组(P<0.05).12 h泵入组与24 h泵入组比较其临床治疗效果、药物不良反应均无差异性;满意度12 h泵入组高于24 h泵入组(P<0.05).三组平均住院日传统组18 d、24 h泵入组16 d、12 h泵入组12 d.结论 12 h泵入组各项指标优于其它组,住院天数缩短,减少了病人的经济负担,扩大了社会效益.%Objective To explore the effect of different phleboclysis on acute pancreatitis patients. Methods One hundred and ten acute pancreatitis patients were randomly divided into traditional infusion group, micro-pump 24 hours continuous infusion group and 12hours continuous infusion group. The therapeutic effect, adverse reactions, the degree of satisfaction, average length of stay were observed. Results ① The therapeutic effect had no significant difference between micro-pump group and traditional group ( P > 0. 05 ) .Adverse drug reaction in micro-pump groups were significantly lower than that in traditional group ( P <0. 01 ) . The degree of satisfaction in micro-pump groups were significantly higher than that in traditional group ( P < 0. 05 ) . ②The therapeutic effect and adverse drug reactions had no significant different between the 12 hours pump group and 24 hours pump group (P > 0. 05 ) . The degree of satisfaction in 12hours pump group was higher than that of 24 hours pump group (P <0. 05) . ③The average length of stay were 18 d, 16 d, 12 d in traditional group, 24 hours pump group and 12 hours pump group respectively. Conclusions 12 hours pump group

  16. Generation of Nanoliter Droplets on Demand at Hundred-Hz Frequencies

    Directory of Open Access Journals (Sweden)

    Slawomir Jakiela

    2014-11-01

    Full Text Available We describe a precision micropump for generation of precisely metered micro-aliquots of liquid at high rates. The use of custom designed piezoelectric valves positioned externally to the microfluidic chip allows for on-demand formation of micro-droplets with online control of their individual volumes from nLs to μLs at frequencies up to 400 Hz. The system offers precision of administering volumes of 1% and of time of emission of <0.5 ms. The use of a piezoelectric actuator provides two distinct vistas for controlling the volume of the droplets—either by digital control of the “open” interval or by analogue tuning of the lumen of the valve. Fast and precise generation of droplets make this system a perfect constituent module for microfluidic high-speed combinatorial screening schemes.

  17. System-Level Modeling and Synthesis of Flow-Based Microfluidic Biochips

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips are replacing the conventional biochemical analyzers and are able to integrate the necessary functions for biochemical analysis on-chip. There are several types of microfluidic biochips, each having its advantages and limitations. In this paper we are interested in flow......-based biochips, in which the flow of liquid is manipulated using integrated microvalves. By combining several microvalves, more complex units, such as micropumps, switches, mixers, and multiplexers, can be built. Although researchers have proposed significant work on the system-level synthesis of droplet......-based biochips, which manipulate droplets on a two-dimensional array of electrodes, no research on system-level synthesis of flow-based biochips has been reported so far. The focus has been on application modeling and component-level simulation. Therefore, for the first time to our knowledge, we propose a system...

  18. Design of Fault-Tolerant and Dynamically-Reconfigurable Microfluidic Biochips

    CERN Document Server

    Su, Fei

    2011-01-01

    Microfluidics-based biochips are soon expected to revolutionize clinical diagnosis, DNA sequencing, and other laboratory procedures involving molecular biology. Most microfluidic biochips are based on the principle of continuous fluid flow and they rely on permanently-etched microchannels, micropumps, and microvalves. We focus here on the automated design of "digital" droplet-based microfluidic biochips. In contrast to continuous-flow systems, digital microfluidics offers dynamic reconfigurability; groups of cells in a microfluidics array can be reconfigured to change their functionality during the concurrent execution of a set of bioassays. We present a simulated annealing-based technique for module placement in such biochips. The placement procedure not only addresses chip area, but it also considers fault tolerance, which allows a microfluidic module to be relocated elsewhere in the system when a single cell is detected to be faulty. Simulation results are presented for a case study involving the polymeras...

  19. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Andreasen, Casper Schousboe; Aage, Niels;

    The work focuses on applying topology optimisation to forced and natural convection problems in fluid dynamics and conjugate (fluid-structure) heat transfer. To the authors' knowledge, topology optimisation has not yet been applied to natural convection flow problems in the published literature...... in the solid are [3-6]. The developed methodology is applied to several two-dimensional solid-fluid thermal interaction problems, such as cooling of electronic components and heat exchangers, as well as to the design of micropumping devices based on natural convection effects. The implementation utilises...... conduction governs in the solid parts of the design domain and couples to convection-dominated heat transfer to a surrounding fluid. Both loosely coupled and tightly coupled problems are considered. The loosely coupled problems are convection-diffusion problems, based on an advective velocity field from...

  20. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    Science.gov (United States)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  1. Distributed Cooling in Cryogenics with Miniaturized Fluid Circuits

    CERN Document Server

    Grohmann, Steffen

    This work presents the development of miniaturized cryogenic fluid circuits for cooling of low temperature tracking detectors in High Energy Physics (HEPI. The system development comprises the circuit layout and control, and the design of major circuit components. It includes the development of a prototype cryogenic micropump compatible with cooling powers of about l0 W to l00 W, and capable of producing pressure heads of several bars. Focus is given to the design of microtube heat exchangers for direct evaporative cooling of sensors and electronic devices. Extensive experimental investigations on heat transfer in microtubes of 250 $\\mu m$ and 500 $\\mu m$ diameter are presented, carried out with argon at about 120 K. A new relative roughness parameter is introduced to model the effect of macroscopic surface roughness on convective heat transfer. An extension of the diameter function in the VDI Heat Atlas correlation for nucleate boiling in vertical tubes is proposed. Besides HEP, potential applications are es...

  2. Dumb-bell swimmers

    Science.gov (United States)

    Alexander, G. P.; Yeomans, J. M.

    2008-08-01

    We investigate the way in which oscillating dumb-bells, a simple microscopic model of apolar swimmers, move at low Reynold's number. In accordance with Purcell's Scallop Theorem a single dumb-bell cannot swim because its stroke is reciprocal in time. However the motion of two or more dumb-bells, with mutual phase differences, is not time reversal invariant, and hence swimming is possible. We use analytical and numerical solutions of the Stokes equations to calculate the hydrodynamic interaction between two dumb-bell swimmers and to discuss their relative motion. The cooperative effect of interactions between swimmers is explored by considering first regular, and then random arrays of dumb-bells. We find that a square array acts as a micropump. The long-time behaviour of suspensions of dumb-bells is investigated and compared to that of model polar swimmers.

  3. Solution of Two-Dimensional Viscous Flow Driven by Motion of Flexible Walls

    Directory of Open Access Journals (Sweden)

    Mohamed Gad-el-Hak

    2010-03-01

    Full Text Available An exact solution of the Navier–Stokes equations for a flow driven by motion of flexible wall is developed. A simple two-dimensional channel with deforming walls is considered as domain. The governing equations are linearized for low Reynolds number and large Womersley number Newtonian flows. Appropriate boundary conditions for general deformation are decomposed into harmonic excitations in space by Fourier series decomposition. A model of harmonic boundary deformation is considered and results are compared with computational fluid dynamics predictions. The results of velocity profiles across the channel and the centerline velocities of the channel are in good agreement with CFD solution. The analytical model developed provides quantitative descriptions of the flow field for a wide spectrum of actuating frequnecy and boundary conditions. The presented model can be used as an effective framework for preliminary design and optimization of displacement micropumps and other miniature applications.

  4. Mixing and Transport in the Small Intestine: A Lattice-Boltzmann Model

    Science.gov (United States)

    Banco, Gino; Brasseur, James; Wang, Yanxing; Aliani, Amit; Webb, Andrew

    2007-11-01

    The two primary functions of the small intestine are absorption of nutrients into the blood stream and transport of material along the gut for eventual evacuation. The primary transport mechanism is peristalsis. The time scales for absorption, however, rely on mixing and transport of molecules between the bulk flow and epithelial surface. Two basic motions contribute to mixing: peristalsis and repetitive segmental contraction of short segments of the gut. In this study we evaluate the relative roles of peristalsis vs. segmental contraction on the degree of mixing and time scales of nutrient transport to the epithelium using a two-dimensional model of flow and mixing in the small intestine. The model uses the lattice-Boltzmann framework with second-order moving boundary conditions and passive scalar (Sc = 10). Segmental and peristaltic contractions were parameterized using magnetic resonance imaging data from rat models. The Reynolds numbers (1.9), segment lengths (33 mm), max radii (2.75 mm) and occlusion ratios (0.33) were matched for direct comparison. Mixing is quantified by the rate of dispersion of scalar from an initial concentration in the center of the segment. We find that radial mixing is more rapid with segmental than peristaltic motion, that radial dispersion is much more rapid than axial, and that axial is comparable between the motions.

  5. Hyperpolarised sup 3 He gas production for magnetic resonance imaging of the human air ways

    CERN Document Server

    Fichele, S

    2002-01-01

    This thesis describes the experimental techniques, and methods employed in hyperpolarised sup 3 He gas production and magnetic resonance imaging of the human air-ways, using spin-echo sequences and MR tagging techniques. An in-house polariser utilising the metastability optical pumping technique was constructed. The main results of this work are concerned with engineering difficulties involved in compressing HP sup 3 He and a large proportion of this PhD thesis details the design, construction, and performance of an in-house built peristaltic compressor. In preliminary imaging experiments using RARE, high signal to noise projection images of the lungs were acquired using less than 0.5 cm sup 3 (STP) of purely polarised HP gas. Later, increased HP gas quantities (typically 10 cm sup 3) were obtained by employing the peristaltic compressor. Consequently we could acquire 10 mm thick slices spanning the entire lung following a single sup 3 He gas bolus administration. Finally, the first results using MR tagging t...

  6. Nervous structure of Meckel's diverticulum in children.

    Science.gov (United States)

    Negrea, V; Gheban, D

    2012-01-01

    Meckel's diverticulum, being considered as the most frequent malformation of the digestive tract, has been largely presented in scientific papers, but a complete physiopathological mechanism for its natural history has not been yet described. We have studied the nervous system and the differences observed in eight Meckel's diverticulums with enteric or ectopic gastric mucosa, using specific immunohistochemical markers. It has been noted a significantly higher density of myenteric nerve fibers in areas with enteric mucosa compared with the areas with gastric heterotopias, while the transition zone had intermediate nerve fibers density. The ileal wall near the diverticulum had a myenteric plexus density similar to gastric mucosa intradiverticular area. The density of Meckel's diverticulum myenteric plexuses determines the local peristalsis. The enteric type mucosa diverticulums has more intense peristaltic activity which leads more frequent to intussusception or, in case of intraluminal obstruction, might be also involved in germ spreading and progression of infectious process. The lower density of Auerbach's plexus nerve fibers in cases with gastric heterotopia Meckel's diverticulum determines less effective drainage of diverticular content, favoring the contact of intradiverticular mucosa with acid secretion of gastric mucosa area. The gastric mucosa's defense mechanisms and the intense peristaltic activity in the zone with enteric mucosa offer a certain protection against the apparition of intradiverticular ulcerative lesions, which usually are observed on the ileum, near the diverticulum. The age related decreasing number of myenteric nerve fibers density explains the higher frequency of Meckel's diverticulum complications in children.

  7. Nano-optical conveyor belt with waveguide-coupled excitation.

    Science.gov (United States)

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  8. An approach to the capsule endoscopic robot with active drive motion

    Institute of Scientific and Technical Information of China (English)

    Da-qiang GU; Yong ZHOU

    2011-01-01

    Commercialized capsule-type endoscopes move passively by peristaltic waves (and gravity), which makes it difficult for doctors to diagnose the areas of interest more thoroughly and actively. To resolve this problem of passivity, it is necessary to find a special locomotion principle, which fits the gastrointestinal (GI) tract. In this paper, a legged locomotive mechanism with shape memory alloy (SMA) actuation based on the peristaltic principle is proposed, and then the structure of the locomotion mechanism is introduced. Based on the preliminary results, the design, modeling, and fabrication of an SMA microactuation concept for application in an endoscopic capsule are given, as well as the SMA spring and legged component design, which is the core section of the system design. We used the pseudo-rigid-body model (PRBM) to analyze nonlinear and large deflections of the SMA legged component. Thus, a prototype endoscope with an SMA spring and six legged components was designed and fabricated. It is 15 mm in diameter and 33 mm in total length, with a hollow space to house other parts needed for endoscopy such as a camera, a radio frequency (RF) module, and sensors. During testing, the locomotive mechanism was effective in a plastic tube environment.

  9. A Study of Nonlinear Variable Viscosity in Finite-Length Tube with Peristalsis

    Directory of Open Access Journals (Sweden)

    Y. Abd Elmaboud

    2014-01-01

    Full Text Available Peristaltic motion of an incompressible Newtonian fluid with variable viscosity induced by periodic sinusoidal traveling wave propagating along the walls of a finite-length tube has been investigated. A perturbation method of solution is sought. The viscosity parameter α (α << 1 is chosen as a perturbation parameter and the governing equations are developed up to the first-order in the viscosity parameter (α. The analytical solution has been derived for the radial velocity at the tube wall, the axial pressure gradient across the length of the tube, and the wall shear stress under the assumption of low Reynolds number and long wavelength approximation. The impacts of physical parameters such as the viscosity and the parameter determining the shape of the constriction on the pressure distribution and on the wall shear stress for integral and non-integral number of waves are illustrated. The main conclusion that can be drawn out of this study is that the peaks of pressure fluctuate with time and attain different values with non-integral numbers of peristaltic waves. The considered problem is very applicable in study of biological flow and industrial flow.

  10. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution.

    Science.gov (United States)

    Nayak, Arpan; Colandene, James; Bradford, Victor; Perkins, Melissa

    2011-10-01

    Characterization and control of aggregate and subvisible particle formation during fill-finish process steps are important for biopharmaceutical products. The filling step is of key importance as there is no further filtration of the drug product beyond sterile filtration. Filling processes can impact product quality by introducing physical stresses such as shear, friction, and cavitation. Other detrimental factors include temperature generated in the process of filling, foaming, and contact with filling system materials, including processing aids such as silicone oil. Certain pumps may shed extrinsic particles that may lead to heterogeneous nucleation-induced aggregation. In this work, microflow imaging, size-exclusion chromatography (SEC), and turbidimetry were utilized to quantify subvisible particles, aggregation, and opalescence, respectively. The filling process was performed using several commonly used filling systems, including rotary piston pump, rolling diaphragm pump, peristaltic pump, and time-pressure filler. The rolling diaphragm pump, peristaltic pump, and time-pressure filler generated notably less protein subvisible particles than the rotary piston pump, although no change in aggregate content by SEC was observed by any pump. An extreme increase in subvisible particles was also reflected in an increase in turbidity.

  11. A nanoliter-scale open chemical reactor.

    Science.gov (United States)

    Galas, Jean-Christophe; Haghiri-Gosnet, Anne-Marie; Estévez-Torres, André

    2013-02-01

    An open chemical reactor is a container that exchanges matter with the exterior. Well-mixed open chemical reactors, called continuous stirred tank reactors (CSTR), have been instrumental for investigating the dynamics of out-of-equilibrium chemical processes, such as oscillations, bistability, and chaos. Here, we introduce a microfluidic CSTR, called μCSTR, that reduces reagent consumption by six orders of magnitude. It consists of an annular reactor with four inlets and one outlet fabricated in PDMS using multi-layer soft lithography. A monolithic peristaltic pump feeds fresh reagents into the reactor through the inlets. After each injection the content of the reactor is continuously mixed with a second peristaltic pump. The efficiency of the μCSTR is experimentally characterized using a bromate, sulfite, ferrocyanide pH oscillator. Simulations accounting for the digital injection process are in agreement with experimental results. The low consumption of the μCSTR will be advantageous for investigating out-of-equilibrium dynamics of chemical processes involving biomolecules. These studies have been scarce so far because a miniaturized version of a CSTR was not available.

  12. A metering rotary nanopump for microfluidic systems.

    Science.gov (United States)

    Darby, Scott G; Moore, Matthew R; Friedlander, Troy A; Schaffer, David K; Reiserer, Ron S; Wikswo, John P; Seale, Kevin T

    2010-12-07

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central camshaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanolitres of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL min(-1) to above 1.0 µL min(-1). At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices.

  13. Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms

    Science.gov (United States)

    Laramie, Matthew B.; Pilliod, David S.; Goldberg, Caren S.; Strickler, Katherine M.

    2015-09-29

    Environmental DNA (eDNA) analysis is an effective method of determining the presence of aquatic organisms such as fish, amphibians, and other taxa. This publication is meant to guide researchers and managers in the collection, concentration, and preservation of eDNA samples from lentic and lotic systems. A sampling workflow diagram and three sampling protocols are included as well as a list of suggested supplies. Protocols include filter and pump assembly using: (1) a hand-driven vacuum pump, ideal for sample collection in remote sampling locations where no electricity is available and when equipment weight is a primary concern; (2) a peristaltic pump powered by a rechargeable battery-operated driver/drill, suitable for remote sampling locations when weight consideration is less of a concern; (3) a 120-volt alternating current (AC) powered peristaltic pump suitable for any location where 120-volt AC power is accessible, or for roadside sampling locations. Images and detailed descriptions are provided for each step in the sampling and preservation process.

  14. A new microfluidic concept for parallel operated milliliter-scale stirred tank bioreactors.

    Science.gov (United States)

    Gebhardt, Gabi; Hortsch, Ralf; Kaufmann, Klaus; Arnold, Matthias; Weuster-Botz, Dirk

    2011-01-01

    Parallel miniaturized stirred tank bioreactors are an efficient tool for "high-throughput bioprocess design." As most industrial bioprocesses are pH-controlled and/or are operated in a fed-batch mode, an exact scale-down of these reactions with continuous dosing of fluids into the miniaturized bioreactors is highly desirable. Here, we present the development, characterization, and application of a novel concept for a highly integrated microfluidic device for a bioreaction block with 48 parallel milliliter-scale stirred tank reactors (V = 12 mL). The device consists of an autoclavable fluidic section to dispense up to three liquids individually per reactor. The fluidic section contains 144 membrane pumps, which are magnetically driven by a clamped-on actuator section. The micropumps are designed to dose 1.6 μL per pump lift. Each micropump enables a continuous addition of liquid with a flow rate of up to 3 mL h(-1) . Viscous liquids up to a viscosity of 8.2 mPa s (corresponds to a 60% v/v glycerine solution) can be pumped without changes in the flow rates. Thus, nearly all feeding solutions can be delivered, which are commonly used in bioprocesses. The functionality of the first prototype of this microfluidic device was demonstrated by double-sided pH-controlled cultivations of Saccharomyces cerevisiae based on signals of fluorimetric sensors embedded at the bottom of the bioreactors. Furthermore, fed-batch cultivations with constant and exponential feeding profiles were successfully performed. Thus, the presented novel microfluidic device will be a useful tool for parallel and, thus, efficient optimization of controlled fed-batch bioprocesses in small-scale stirred tank bioreactors. This can help to reduce bioprocess development times drastically.

  15. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  16. Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jing [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    This work describes several research projects aimed towards developing new instruments and novel methods for high throughput chemical and biological analysis. Approaches are taken in two directions. The first direction takes advantage of well-established semiconductor fabrication techniques and applies them to miniaturize instruments that are workhorses in analytical laboratories. Specifically, the first part of this work focused on the development of micropumps and microvalves for controlled fluid delivery. The mechanism of these micropumps and microvalves relies on the electrochemically-induced surface tension change at a mercury/electrolyte interface. A miniaturized flow injection analysis device was integrated and flow injection analyses were demonstrated. In the second part of this work, microfluidic chips were also designed, fabricated, and tested. Separations of two fluorescent dyes were demonstrated in microfabricated channels, based on an open-tubular liquid chromatography (OT LC) or an electrochemically-modulated liquid chromatography (EMLC) format. A reduction in instrument size can potentially increase analysis speed, and allow exceedingly small amounts of sample to be analyzed under diverse separation conditions. The second direction explores the surface enhanced Raman spectroscopy (SERS) as a signal transduction method for immunoassay analysis. It takes advantage of the improved detection sensitivity as a result of surface enhancement on colloidal gold, the narrow width of Raman band, and the stability of Raman scattering signals to distinguish several different species simultaneously without exploiting spatially-separated addresses on a biochip. By labeling gold nanoparticles with different Raman reporters in conjunction with different detection antibodies, a simultaneous detection of a dual-analyte immunoassay was demonstrated. Using this scheme for quantitative analysis was also studied and preliminary dose-response curves from an immunoassay of a

  17. A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

    Directory of Open Access Journals (Sweden)

    Jan Gimsa

    2014-11-01

    Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.

  18. Numerical simulation of a thermal-bubble actuated diffuser-nozzle valveless pump

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A valveless micropump actuated by thermal bubbles which are generated by an electrode heater mounted with a pair of diffuser nozzles has been numerically studied by commercial CFD software FLUENT. The relationships between the net flow rate and the superheating and heat supplying frequency have been investigated. The depth of the diffuser-nozzle micropump is 200 μm, the diameter of the actuating chamber is 1 mm, and a pair of diffuser nozzles whose gap has been expanded from 30 μm to 274 μm with an open angle of 7° are connected to the actuating chamber. The working fluid is methanol. In the numerical simulation, the flow pattern is laminar. The results show that the pump has different optimal driving frequencies at different superheating. A cycle resulting from bubble growth and shrinking costs more time at higher superheating temperature; different superheating has different optimal driving frequency; when the superheating increases, the maximum volume flow rate and the maximum pump pressure will increase simultaneously, and the optimal driving frequency decreases as well, the maximum volume flow rate and pump pressure also have the same tendency; in the condition of uncontrolled condensing, the bubble shrinking process is longer than the growth process, thus it is the determining factor to affect the pump performance. The maximum volume flow rate is 9.02 μL/min at △T = 15℃, and the maximum pump pressure is 680 Pa. With the increase of wall superheat, cycle including the bubble growth and condensation will become longer, resulting in a significant impact on the pumping flow; different wall superheat has different optimized frequency, increasing superheat will bring increased pumping flow and pump pressure, the optimized driving frequency will be reduced; liquid supply phase is longer than pumping phase.

  19. A theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradient

    Science.gov (United States)

    Liu, Weiyu; Ren, Yukun; Shao, Jinyou; Jiang, Hongyuan; Ding, Yucheng

    2014-02-01

    The phenomenon of induction electrohydrodynamics (EHD) has recently received great attention as a promising driving mechanism for microfluidic pumping due to its miniaturization capability. To obtain a high working efficiency of induction micropumps, a vertical temperature gradient can be imposed along the depth of a pump channel. A travelling wave (TW) potential signal propagating along an electrode array at the channel substrate interacts with this conductive heat flux, resulting in a local free charge distribution inside the bulk fluid. The induced charge wave lags behind the voltage wave in the spatial phase, and this out-of-phase polarization based pumping effect exhibits a single structural dispersion at charge relaxation frequency of the dielectric system. The classical model of electrothermal flow has always been used to numerically obtain the flow field of TW pumps, but the effect of its small temperature gradient approximation has rarely been investigated. In this study, an enhanced treatment for induction EHD modelling is developed, in which the deflection of potential contour lines caused by large temperature gradients is successfully characterized by an advection-diffusion equation, and a more accurate expression of electrothermal body force is derived and introduced to fluid dynamics as a source term of electrical origin. For the calculation of a repulsion-type induction micropump, although both models present similar results in a small thermal gradient, the enhanced one can provide more exact frequency-dependence of the pump performance and spatial distribution of electrostatic force as well as the resulting velocity profile in an excessive heat flux. Furthermore, a model extension for Joule heating induced TW pumping is also presented, and surprisingly matches the unexpected nonlinear fluid flow behaviour at higher conductivities as reported in a pioneering literature. These results can provide valuable insights into induction pumping of lab

  20. Shape and shear guide sperm cells spiraling upstream

    Science.gov (United States)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  1. In vivo and in situ measurement and modelling of intra-body effective complex permittivity

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil S; Blanes-Vidal, Victoria; Harslund, Jakob L F

    2015-01-01

    Radio frequency tracking of medical micro-robots in minimally invasive medicine is usually investigated upon the assumption that the human body is a homogeneous propagation medium. In this Letter, the authors conducted various trial programs to measure and model the effective complex permittivity ε...... contractions and simulated peristaltic movements of the GI tract organs inside the abdominal cavity and in the presence of the abdominal wall on the measurements and variations of ε' and ε''. They advanced the previous models of effective complex permittivity of a multilayer inhomogeneous medium, by estimating...... an analytical model that accounts for reflections between the layers and calculates the attenuation that the wave encounters as it traverses the GI tract and the abdominal wall. They observed that deviation from the specified nominal layer thicknesses due to non-geometric boundaries of GI tract morphometric...

  2. Determination of metals in used lubricating oils by AAS using emulsified samples.

    Science.gov (United States)

    Goncalves, I M; Murillo, M; González, A M

    1998-11-01

    An efficient method was developed for the determination of metals in used lubricating oils, by atomic absorption spectrometry. Oil samples were treated with an acid mixture and then emulsified in water (10% w/w) using ethoxy nonylphenol (6% w/w) as surfactant. Emulsion characteristics (oil, surfactant content and acid mixture) were optimized to obtain the best AAS signal. Good agreement was found between calibration curves of aqueous and emulsified standard solutions when a peristaltic pump was used to introduce the solutions into the flame. The emulsion methodology was comparable, within 95% of confidence, to traditional ashing methodologies when a standard reference oil and a used lubricating oil were analyzed. Precision between 0.4 and 5% RSD was obtained when real sample was analyzed using emulsions.

  3. Computer-operated analytical platform for the determination of nutrients in hydroponic systems.

    Science.gov (United States)

    Rius-Ruiz, F Xavier; Andrade, Francisco J; Riu, Jordi; Rius, F Xavier

    2014-03-15

    Hydroponics is a water, energy, space, and cost efficient system for growing plants in constrained spaces or land exhausted areas. Precise control of hydroponic nutrients is essential for growing healthy plants and producing high yields. In this article we report for the first time on a new computer-operated analytical platform which can be readily used for the determination of essential nutrients in hydroponic growing systems. The liquid-handling system uses inexpensive components (i.e., peristaltic pump and solenoid valves), which are discretely computer-operated to automatically condition, calibrate and clean a multi-probe of solid-contact ion-selective electrodes (ISEs). These ISEs, which are based on carbon nanotubes, offer high portability, robustness and easy maintenance and storage. With this new computer-operated analytical platform we performed automatic measurements of K(+), Ca(2+), NO3(-) and Cl(-) during tomato plants growth in order to assure optimal nutritional uptake and tomato production.

  4. [Possible significance of prostaglandins in the pathogenesis of Crohn's disease].

    Science.gov (United States)

    Schmidt, E; Bruch, H P; Walter, K

    1977-04-01

    Prostaglandins (E1, E2, F2alpha) produce and intensify peristaltic contractions in the healthy human intestinal muscle system according to dosage (threshold I-10(-4) microng/ml--maximum effective concentration 1 microng/ml). By subsequent introduction of adrenaline, the intestinal muscle system activated by prostaglandines can be completely relaxed again. Intestinal muscles from patients with Crohn's disease show a marked deviation from this behaviour: 1. The intestinal muscle system is extremely sensitive to prostagladins: maximum concentrations are already reached by about a thousand times smaller concentration than in the intestines. 2. The dose of adrenaline does not lead to dialtion, which is usual, but to contraction of the muscle system. These changes in the contractility of the intestine can explain some components of the clinical symptomatology of Crohn's disease.

  5. In-vitro myoglobin clearance by a novel sorbent system.

    Science.gov (United States)

    Kuntsevich, Viktoriya I; Feinfeld, Donald A; Audia, Pat F; Young, Wendell; Capponi, Vincent; Markella, Marianna; Winchester, James F

    2009-01-01

    Rhabdomyolysis may lead to acute kidney injury following deposition of myoglobin in renal tubules. Although high-flux dialysis membranes may remove a substantial amount of myoglobin from plasma, this may still not be sufficient to prevent renal damage. We tested a new polymer sorbent, X-Sorb, in vitro to determine its potential to clear myoglobin from solutions. Normal saline or human serum in which myoglobin was dissolved was perfused by a peristaltic pump through a column packed with the sorbent. After a 4-hour perfusion, the myoglobin level in normal saline fell from 200,000 ng/ml to virtually undetectable ( 90% over 4 hours. X-Sorb appears to be an effective sorbent for myoglobin and warrants a trial in vivo to determine whether it is equally effective and safe.

  6. Achalasia: A Review of Etiology, Pathophysiology, and Treatment

    Directory of Open Access Journals (Sweden)

    Nor Hedayanti

    2016-05-01

    Full Text Available Achalasia was a condition marked by peristaltic movement absent in lower esophageal sphincter and segment that hypertonic result in imperfect relaxation during food ingestion. Achalasia incidence did not differ between men and women, account for 1 in 100.000 people every year with prevalence of 10 in 100.000 people, unrelated specifically with ethnic, and has its highest incidence on 30-60 age group. Based on its etiology, it was divided into primary and secondary Achalasia, while based on its motility, it was into hypermotil, hypomotil, and amotil Achalasia. Until present, several therapeutic modalities were available to treat Achalasia, among them was pharmacology therapy, botulinum toxin injection via endoscopy, pneumatic dilatation, Heller myotomy surgery, and Per Oral Endoscopy Myotomy (POEM.

  7. Deviation of Carbon Dioxide-Water Gas-Liquid Balance from Thermodynamic Equilibrium in Turbulence I:Experiment and Correlation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhenzhen; QIAN Zhi; XU Lianbin; WU Caiyan; GUO Kai

    2013-01-01

    The carbon dioxide-water system was used to investigate the flowing gas-liquid metastable state.The experiment was carried out in a constant volume vessel with a horizontal circulation pipe and a peristaltic pump forced CO2 saturated water to flow.The temperature and pressure were recorded.The results showed that some CO2 escaped from the water in the flow process and the pressure increased,indicating that the gas-liquid equilibrium was broken.The amount of escaped CO2 varied with flow speed and reached a limit in a few minutes,entitled dynamic equilibrium.Temperature and liquid movement played the same important role in breaking the phase equilibrium.Under the experimental conditions,the ratio of the excessive carbon dioxide in the gas phase to its thermodynamic equilibrium amount in the liquid could achieve 15%.

  8. Gastric digestion in vivo and in vitro: how the structural aspects of food influence the digestion process.

    Science.gov (United States)

    Bornhorst, Gail M; Paul Singh, R

    2014-01-01

    Food digestion is crucial for sustaining life. Although it has been examined for more than 300 years, the basic principles are not entirely understood. Antral motility is well characterized, and current research is seeking to determine flow patterns generated by the stomach's peristaltic contractions. The rate of gastric emptying for solid and liquid meals has been determined according to variations in meal composition, energy content, and subject characteristics. The glycemic response has been measured for many carbohydrate foods and is altered by factors such as amount of processing, particle size, and starch structure. Similarly, ileal starch digestibility is altered by food and starch properties. Even though many foods have been studied according to their glycemic response, starch digestibility, and in vitro digestion kinetics, the rate-determining processes and underlying mechanisms remain to be established. The link between food properties, digestion processes, and final health outcomes must be strengthened for functional food optimization.

  9. A fully resolved active musculo-mechanical model for esophageal transport

    CERN Document Server

    Kou, Wenjun; Griffith, Boyce E; Pandolfino, John E; Kahrilas, Peter J; Patankar, Neelesh A

    2015-01-01

    Esophageal transport is a physiological process that mechanically transports an ingested food bolus from the pharynx to the stomach via the esophagus, a multi-layered muscular tube. This process involves interactions between the bolus, the esophagus, and the neurally coordinated activation of the esophageal muscles. In this work, we use an immersed boundary (IB) approach to simulate peristaltic transport in the esophagus. The bolus is treated as a viscous fluid that is actively transported by the muscular esophagus, which is modeled as an actively contracting, fiber-reinforced tube. A simplified version of our model is verified by comparison to an analytic solution to the tube dilation problem. Three different complex models of the multi-layered esophagus, which differ in their activation patterns and the layouts of the mucosal layers, are then extensively tested. To our knowledge, these simulations are the first of their kind to incorporate the bolus, the multi-layered esophagus tube, and muscle activation i...

  10. Propulsor pneumático versátil e isento de pulsação para sistemas de análise em fluxo

    Directory of Open Access Journals (Sweden)

    Matos Renato C.

    2001-01-01

    Full Text Available Aquarium air pumps are proposed and evaluated as pneumatic liquid propulsion devices for flow injection and continuos flow analysis (FIA and CFA systems. This kind of pump is widely available at a very low cost and it can sustain a pressure around of 4 psi (0.28 bar indefinitely. By applying this air pressure onto a solution contained in a reservoir flask, it is possible to reach flow rates of up to 12.5 mL min-1 for circuits comprising reactors, made from 0.8 i.d. tubing with a length of 100 cm. The precise adjustment of flow rate below the maximum one can be made with a simplified needle valve or inserting in series a short length of capillary tube. The absence of flow pulsation is a definite advantage in comparison with peristaltic pumps, especially when amperometric detection is elected, as confirmed experimentally in FIA and CF applications.

  11. A simple physiologic pulsatile perfusion system for the study of intact vascular tissue.

    Science.gov (United States)

    Conklin, B S; Surowiec, S M; Lin, P H; Chen, C

    2000-07-01

    Perfusion vascular culture models may provide a useful link between cell culture models and animal culture models by allowing a high level of control over important parameters while maintaining physiologic structure. The purpose of this study was to develop and test a new vascular culture system for pulsatile perfusion culture of intact vascular tissue. The system generates a pulsatile component of flow by means of a cam-driven syringe and a peristaltic pump and compliance chamber. Cams were designed, constructed and tested to simulate canine femoral and common carotid artery flows. The mean pressure was adjusted between 60 and 200 mmHg without significantly affecting flow rate, flow waveform, or the pressure waveform. Porcine common carotid artery segments were cultured in this pulsatile perfusion system. The viability of vascular segments was tested after various culture times with a functional assay that demonstrated both smooth muscle cell and endothelial cell response to vasomotor challenge.

  12. High-resolution NMR spectroscopy under the fume hood.

    Science.gov (United States)

    Küster, Simon K; Danieli, Ernesto; Blümich, Bernhard; Casanova, Federico

    2011-08-07

    This work reports the possibility to acquire high-resolution (1)H NMR spectra with a fist-sized NMR magnet directly installed under the fume hood. The small NMR sensor based on permanent magnets was used to monitor the trimerization of propionaldehyde catalyzed by indium trichloride in real time by continuously circulating the reaction mixture through the magnet bore in a closed loop with the help of a peristaltic pump. Thanks to the chemical selectivity of NMR spectroscopy the progress of the reaction can be monitored on-line by determining the concentrations of both reactant and product from the area under their respective lines in the NMR spectra as a function of time. This in situ measurement demonstrates that NMR probes can be used in chemistry laboratories, e.g. for reaction optimization, or installed at specific points of interest along industrial process lines. Therefore, it will open the door for the implementation of feedback control based on spectroscopic NMR data.

  13. Optimal reservoir conditions for fluid extraction through permeable walls in the viscous limit

    CERN Document Server

    Herschlag, Gregory; Layton, Anita T

    2015-01-01

    In biological transport mechanisms such as insect respiration and renal filtration, fluid travels along a leaky channel allowing exchange with systems exterior the the channel. The channels in these systems may undergo peristaltic pumping which is thought to enhance the material exchange. To date, little analytic work has been done to study the effect of pumping on material extraction across the channel walls. In this paper, we examine a fluid extraction model in which fluid flowing through a leaky channel is exchanged with fluid in a reservoir. The channel walls are allowed to contract and expand uniformly, simulating a pumping mechanism. In order to efficiently determine solutions of the model, we derive a formal power series solution for the Stokes equations in a finite channel with uniformly contracting/expanding permeable walls. This flow has been well studied in the case of weakly permeable channel walls in which the normal velocity at the channel walls is proportional to the wall velocity. In contrast ...

  14. Standard test method for analysis of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the measurement of total uranium (U) and thorium (Th) concentrations in soils, as well as the determination of the isotopic weight percentages of 234U, 235U, 236U, and 238U, thereby allowing for the calculation of individual isotopic uranium activity or total uranium activity. This inductively coupled plasma-mass spectroscopy (ICP-MS) method is intended as an alternative analysis to methods such as alpha spectroscopy or thermal ionization mass spectroscopy (TIMS). Also, while this test method covers only those isotopes listed above, the instrumental technique may be expanded to cover other long-lived radioisotopes since the preparation technique includes the preconcentration of the actinide series of elements. The resultant sample volume can be further reduced for introduction into the ICP-MS via an electrothermal vaporization (ETV) unit or other sample introduction device, even though the standard peristaltic pump introduction is applied for this test method. The sample preparatio...

  15. Straight ileo-anal anastomosis with myectomy as an alternative to ileal pouch-anal anastomosis in restorative proctocolectomy.

    Science.gov (United States)

    Landi, E; Landa, L; Fianchini, A; Marmorale, C; Piloni, V

    1994-04-01

    Restorative proctocolectomy with various types of reservoir is widely used in the elective surgery of ulcerative colitis and familial adenomatous polyposis. Both, advantages and disadvantages of this procedure are well known and documented. Straight ileo-anal anastomosis (IAA) yields unsatisfactory clinical results due to the lack of storage capacity of the distal ileum and the frequency of bowel movements related to high pressure ileal waves. In an attempt to create an alternative to the above procedures, we have performed a straight ileo-anal anastomosis with two rectangular (10 cm x 1 cm) myectomies down to 2 cm, above the anastomotic line. The two myectomies are spaced at 120 degrees to each other and to the mesenteric border of the ileal loop. The rationale of this approach is to reduce the peristaltic drive of the ileum by weakening the muscular wall. This study presents the results in three patients operated on with this new method in the last year.

  16. Antispasmodic effect of hydroalcoholic extract of Thymus vulgaris on the guinea-pig ileum.

    Science.gov (United States)

    Babaei, Mehdi; Abarghoei, Mitra Emmami; Ansari, Reza; Vafaei, Abbas Ali; Taherian, Abbas Ali; Akhavan, Maziar Mohammad; Toussy, Gafar; Mousavi, Shahrokh

    2008-01-01

    The effects of Thymus vulgaris hydroalcoholic extract on the contractile responses of the isolated guinea-pig ileum were investigated. Contraction changes in the terminal ileum of guinea pigs were monitored using a force displacement transducer amplifier connected to a physiograph. Thymus vulgaris extract inhibited the contractile responses in a dose-dependent manner and also decreased the amplitude of peristaltic waves. It is concluded that T. vulgaris has an antispasmodic action on guinea pig ileum by decreasing the amplitudes of the muscle contractions during peristalsis. The EC50 was calculated as 1.7 mg mL(-1). In guinea-pig ileum the extract led to an antispasmodic effect, possibly by affecting the anticholinergic and serotoninergic pathways.

  17. A biomechanical model of swallowing for understanding the influence of saliva and food bolus viscosity on flavour release

    CERN Document Server

    De Loubens, Clément; Doyennette, Marion; Tréléa, Ioan Cristian; Souchon, Isabelle

    2013-01-01

    After swallowing a liquid or a semi-liquid food product, a thin film responsible for the dynamic profile of aroma release coats the pharyngeal mucosa. The objective of the present article was to understand and quantify physical mechanisms explaining pharyngeal mucosa coating. An elastohydrodynamic model of swallowing was developed for Newtonian liquids that focused on the most occluded region of the pharyngeal peristaltic wave. The model took lubrication by a saliva film and mucosa deformability into account. Food bolus flow rate and generated load were predicted as functions of three dimensionless variables: the dimensionless saliva flow rate, the viscosity ratio between saliva and the food bolus, and the elasticity number. Considering physiological conditions, the results were applied to predict aroma release kinetics. Two sets of conditions were distinguished. The first one was obtained when the saliva film is thin, in which case food bolus viscosity has a strong impact on mucosa coating and on flavour rel...

  18. The enteric nervous system promotes intestinal health by constraining microbiota composition.

    Science.gov (United States)

    Rolig, Annah S; Mittge, Erika K; Ganz, Julia; Troll, Josh V; Melancon, Ellie; Wiles, Travis J; Alligood, Kristin; Stephens, W Zac; Eisen, Judith S; Guillemin, Karen

    2017-02-01

    Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS), a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health.

  19. Microprocessor-controlled colonic peristalsis: dynamic parametric modeling in dogs.

    Science.gov (United States)

    Rashev, Peter Z; Amaris, Manuel; Bowes, Kenneth L; Mintchev, Martin P

    2002-05-01

    The study aimed at completing a model of functional colonic electric stimulation and testing it for artificial recreation of peristalsis in dogs. Dynamic measurements of invoked single contractions obtained from two unconscious dogs as well as previously reported static contraction properties were utilized to suggest the optimal stimulation parameters of: (1) length of the stimulating electrodes, (2) separation between the successive electrode sets, (3) duration, and (4) phase lag between the stimuli sequentially applied to the electrode sets. The derived electrode configuration and stimulation pattern were adjusted for different anatomical dimensions and tested in distended colon full of viscous content. Forward and backward propagating peristaltic waves were invoked in two other unconscious dogs, indicating that the recreation of colonic peristalsis under microprocessor control is feasible.

  20. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    . A second practical challenge users face stems from the peripheral equipment, e.g. pumps, required to drive microfluidic devices. This equipment is often costly and bulky and results in limitations and restrictions on microfluidic device operation, such as the number of channels or devices which can...... be actuated or microscopic observation. To address the above issues interconnection and pumping solutions were developed. Methods for creating multiple, aligned, parallel and planar interconnections well suited to microscopy are described. Both reusable, non‐integrated, and permanent, integrated...... interconnection solutions are presented. The construction of twelve and eight channel miniaturized, mechanically actuated peristaltic pumps is also described. The small footprint of the pumps allows their placement adjacent to microfluidic devices and on microscope stages. The reusable, non...

  1. Dietary fiber and satiety: the effects of oats on satiety.

    Science.gov (United States)

    Rebello, Candida J; O'Neil, Carol E; Greenway, Frank L

    2016-02-01

    This review examines the effect of β-glucan, the viscous soluble fiber in oats, on satiety. A literature search for studies that examined delivery of the fiber in whole foods or as an extract was conducted. Viscosity interferes with the peristaltic mixing process in the small intestine to impede digestion and absorption of nutrients, which precipitates satiety signals. From measurements of the physicochemical and rheological properties of β-glucan, it appears that viscosity plays a key role in modulating satiety. However, the lack of standardized methods to measure viscosity and the inherent nature of appetite make it difficult to pinpoint the reasons for inconsistent results of the effects of oats on satiety. Nevertheless, the majority of the evidence suggests that oat β-glucan has a positive effect on perceptions of satiety.

  2. A Porcine Liver Model for Validation of Registration Accuracy in Image-Guided Surgery

    Science.gov (United States)

    Peterhans, Matthias; Dagon, Benoît; Berg, Anne Vom; Inderbitzin, Daniel; Baur, Charles; Weber, Stefan

    Correct registration between pre-operative high-resolution images and intra-operative data of lower detail is a fundamental requirement in image-guided liver surgery. We propose a multi modality liver model for measuring the accuracy of such registration methods. A freshly explanted porcine liver is artificially perfused by a peristaltic pump and liver motion is simulated by means of inflatable objects positioned around the liver. Co-registered ultrasound and CT data sets are acquired in different deformation scenarios and allow compar-ing registration outcomes with a CT data set serving as ground truth. The pre-sent work describes the experimental setup and summarizes the results from ultrasound and CT imaging.

  3. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.

    Science.gov (United States)

    Schmideder, Andreas; Severin, Timm Steffen; Cremer, Johannes Heinrich; Weuster-Botz, Dirk

    2015-09-20

    A pH-controlled parallel stirred-tank bioreactor system was modified for parallel continuous cultivation on a 10 mL-scale by connecting multichannel peristaltic pumps for feeding and medium removal with micro-pipes (250 μm inner diameter). Parallel chemostat processes with Escherichia coli as an example showed high reproducibility with regard to culture volume and flow rates as well as dry cell weight, dissolved oxygen concentration and pH control at steady states (n=8, coefficient of variation bioreactor on a liter-scale. Thus, parallel and continuously operated stirred-tank bioreactors on a milliliter-scale facilitate timesaving and cost reducing steady state studies with microorganisms. The applied continuous bioreactor system overcomes the drawbacks of existing miniaturized bioreactors, like poor mass transfer and insufficient process control.

  4. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  5. Characteristics of convective heat transfer in the MHD peristalsis of Carreau fluid with Joule heating

    Science.gov (United States)

    Hayat, T.; Farooq, S.; Ahmad, B.; Alsaedi, A.

    2016-04-01

    This article addresses the characteristics of convective heat transfer and radially imposed magnetic field on peristaltic flow of an incompressible Carreau fluid in a curved channel. Joule heating is also present. Mathematical analysis has been carried out under long wavelength and low Reynolds number considerations. Solutions of the resulting non-linear system for small values of Weissenberg number are constructed. The salient features of flow quantities are pointed out with particular focus to pumping, velocity, temperature and trapping. It is observed pressure gradient enhances for larger values of power law index parameter. The velocity and temperature are decreasing functions of radial magnetic field parameter. Further the impact of Weissenberg and Biot numbers on the temperature are opposite.

  6. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles

    Science.gov (United States)

    Alvi, N.; Latif, T.; Hussain, Q.; Asghar, S.

    Mixed convective peristaltic activity of variable viscosity nanofluids is addressed. Unlike the conventional consideration of constant viscosity; the viscosity is taken as temperature dependent. Constitutive relations for linear viscoelastic Jeffrey fluid are employed and uniform magnetic field is applied in the transverse direction. For nanofluids, the formulation is completed in presence of Brownian motion, thermophoresis, viscous dissipation and Joule heating. Consideration of temperature dependence of viscosity is not a choice but the realistic requirement of the wall temperature and the heat generated due to the viscous dissipation. Well established large wavelength and small Reynolds number approximations are invoked. Non-linear coupled system is analytically solved for the convergent series solutions identifying the interval of convergence explicitly. A comparative study between analytical and numerical solution is made for certainty. Influence of the parameters undertaken for the description of the problem is pointed out and its physics explained.

  7. Acute appendicitis in a femoral hernia

    Directory of Open Access Journals (Sweden)

    Zdravković Darko

    2007-01-01

    Full Text Available INTRODUCTION Acute appendicitis in a femoral hernia is an uncommon condition that can be serious. Complications are more frequent if the diagnosis is delayed and surgery is not performed on time. CASE REPORT We present a 71-year-old man with a painful swollen mass. The patient presented with fatigue and loss of appetite, while body temperature was normal. The abdomen was not painful, and peristaltic was normal. All laboratory findings were normal. After anamnesis and physical examination, the presumed diagnosis was incarcerated femoral hernia and the patient was sent to the operating room. Intraoperative findings revealed an incarcerated femoral hernia within a phlegmonous inflammated appendix. Appendectomy and McVay hernioplastics were done. The postoperative course was without complications. CONCLUSION It is very important to bear in mind that right femoral hernia with signs of incarceration and inflammation may contain an acutely inflamed appendix. Delayed diagnosis and misdiagnosis cause greater morbidity and mortality.

  8. On the dynamic suction pumping of blood cells in tubular hearts

    CERN Document Server

    Battista, Nicholas A; Miller, Laura A

    2016-01-01

    Around the third week after gestation in embryonic development, the human heart consists only of a valvless tube, unlike a fully developed adult heart, which is multi-chambered. At this stage in development, the heart valves have not formed and so net flow of blood through the heart must be driven by a different mechanism. It is hypothesized that there are two possible mechanisms that drive blood flow at this stage - Liebau pumping (dynamic suction pumping or valveless pumping) and peristaltic pumping. We implement the immersed boundary method with adaptive mesh refinement (IBAMR) to numerically study the effect of hematocrit on the circulation around a valveless. Both peristalsis and dynamic suction pumping are considered. In the case of dynamic suction pumping, the heart and circulatory system is simplified as a flexible tube attached to a relatively rigid racetrack. For some Womersley number (Wo) regimes, there is significant net flow around the racetrack. We find that the addition of flexible blood cells ...

  9. Power augmentation of cheap, sail-type, horizontal-axis wind-turbines

    Science.gov (United States)

    Fleming, P. D.; Probert, S. D.

    1982-09-01

    A history of the development of windpowered machinery is presented, and the installation of tipvanes and centerbodies to enhance the performance of low cost WECS for developing countries are examined experimentally. Particular attention is given to sail wing rotors equipped with tip fins, peristaltic pumps reparable by semiskilled labor, and various configurations of tip fins and center bodies, which deflect the wind outward from the hub to the sails. Cheap, flat-plate tip fins were found to effective in augmenting rotor performance by as much as 1.6 when facing only downwind. Best results were obtained with one tip vane per sail, with the fins downwind a distance at least equal to the pitch of a wind-filled sail. Further experimentation with stationary deflectors which redirect wind into the buckets of a Savonius rotor or the sails of a horizontal axis WECS are suggested.

  10. ANTIDIARRHOEL ACTIVITY OF METHANOLIC EXTRACT OF VERNONIA CINEREA (L. LESS ON FEMALE ALBINO RATS

    Directory of Open Access Journals (Sweden)

    Panday Ganesh

    2011-05-01

    Full Text Available The present study was conducted with the objectives of investigating antidiarrhoel activity of Vernonia cinerea whole plant (Family-Compositae, collected from tarai region of Uttarakhand. The plant extracts were obtained via cold extraction method. For the purpose of evaluating antidiarrhoel efficacy of methanolic extract of the plant, rats were used as test animal. The time of onset of first wet faeces increased significantly and dose dependently by the extract. It was excellent at higher doses (100 & 200 mg/kg body wt., orally. It indicated reduction in peristaltic movement of gastro intestinal tract of animals. The antidiarrhoel activity was further confirmed by its significant and dose dependent decrease in number of wet faeces and number of total faeces in comparison to rats used as control.

  11. Systolic Pressure in Different Percents of Stenosis at Major Arteries

    CERN Document Server

    Mirzaee, Mohammad Reza; Firoozabadi, Bahar; Dandaneband, Meitham

    2016-01-01

    - Modeling Human cardiovascular system is always an important issue. One of the most effective methods is using lumped model to reach to a complete model of human cardiovascular system. Such modeling with advanced considerations is used in this paper. Some of these considerations are as follow: Exact simulating of ventricles as pressure suppliers, peristaltic motion of descending arteries as additional suppliers, and dividing each vessel into more than one compartment to reach more accurate answers. Finally a circuit with more than 150 RLC segments and different elements is made. Then the verification of our complex circuit is done and at the end, obstruction as an important abnormality is investigated. For this aim different percents of obstruction in vital arteries are considered and the results are brought as different graphs at the end. According to physiological texts the citation of our simulation and its results are obvious. To earn productive information about arteries characteristics a 36-vessels mod...

  12. [Pain management for cancer patients with critical pathway on computer].

    Science.gov (United States)

    Hori, Natsuki; Konishi, Toshiro

    2005-02-01

    For relief from cancer pain, we developed critical pathway (CP) as an effective strategy for the medical staff treating cancer patients. This CP was made out of Microsoft Excel, and was used on personal computers. "Good sleeping" was set as the first goal and the second was "No pain in rest position." To achieve this, physicians and nurses evaluate medical efficacy and complications including nausea/vomiting, constipation, somnolence and hallucination everyday using controlled release oxycodone in addition to NSAIDs and prochlorperazine, stool softener and peristaltic stimulant for adverse effects. These outcomes lead to the medication change the next day by calculation using visual basic function due to opioid titration theory. In twelve patients this CP was acceptable, and all of them achieved the second goal within a week without severe adverse effects except constipation.

  13. Generalized megaviscera of lupus: Refractory intestinal pseudo-obstruction, ureterohydronephrosis and megacholedochus

    Institute of Scientific and Technical Information of China (English)

    Frederick D Park; Jeffrey K Lee; Ganga D Madduri; Pradipta Ghosh

    2009-01-01

    Dilated dysfunction involving multiple visceral organs has been reported in patients with systemic lupus erythematosus (SLE). Chronic intestinal pseudoobstruction (CIPO) resulting from intestinal smooth muscle damage has presented in conjunction with ureterohydronephrosis and, more rarely, biliary dilatation (megacholedochus). While the molecular pathogenesis is largely unknown, observed histopathologic features include widespread myositis, myocyte necrosis in the intestinal muscularis propria with subsequent atrophy and fibrosis, preserved myenteric innervations and little vasculitis. High dose immunosuppression usually results in resolution of symptoms with recovery of smooth muscle function, indicative of an autoimmune etiology. We report a patient with SLE who presented with intestinal pseudo-obstruction, ureterohydronephrosis and megacholedochus, and present images that illustrate megaviscera simultaneously involving all 3 visceral organs. Since the co-manifestation of all 3 is unusual and has been reported only once previously, we have termed this rare clinical syndrome generalized megaviscera of lupus (GML). Although the SLE disease-activity parameters responded to aggressive immunomodulative therapy in our patient, clinical evidence of peristaltic dysfunction persisted in all involved viscera. This is a variation from the favorable outcomes reported previously in SLE patients with GML and we attribute this poor clinical outcome to disease severity and, most importantly, delayed clinical presentation. Since inflammation followed by atrophy and fibrosis are key aspects in the pathogenesis and natural history of GML, the poor response in our patient who presented late in the clinical course irreversible end-stage fibrosis. Thus, early recognition and timely initiation of treatment may be the key to recover visceral peristaltic function in patients with GML.

  14. Evaluation of flow injection analysis for determination of cholinesterase activities in biological material.

    Science.gov (United States)

    Cabal, Jiri; Bajgar, Jiri; Kassa, Jiri

    2010-09-06

    The method for automatic continual monitoring of acetylcholinesterase (AChE) activity in biological material is described. It is based on flexible system of plastic pipes mixing samples of biological material with reagents for enzyme determination; reaction product penetrates through the semipermeable membrane and it is spectrophotometrically determined (Ellman's method). It consists of sampling (either in vitro or in vivo), adding the substrate and flowing to dialyzer; reaction product (thiocholine) is dialyzed and mixed with 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB) transported to flow spectrophotometer. Flowing of all materials is realised using peristaltic pump. The method was validated: time for optimal hydratation of the cellophane membrane; type of the membrane; type of dialyzer; conditions for optimal permeation of reaction components; optimization of substrate and DTNB concentrations (linear dependence); efficacy of peristaltic pump; calibration of analytes after permeation through the membrane; excluding of the blood permeation through the membrane. Some examples of the evaluation of the effects of AChE inhibitors are described. It was demonstrated very good uniformity of peaks representing the enzyme activity (good reproducibility); time dependence of AChE inhibition caused by VX in vitro in the rat blood allowing to determine the half life of inhibition and thus, bimolecular rate constants of inhibition; reactivation of inhibited AChE by some reactivators, and continual monitoring of the activity in the whole blood in vivo in intact and VX-intoxicated rats. The method is simple and not expensive, allowing automatic determination of AChE activity in discrete or continual samples in vitro or in vivo. It will be evaluated for further research of cholinesterase inhibitors.

  15. Rapid freezing cryo-polymerization and microchannel liquid-flow focusing for cryogel beads: adsorbent preparation and characterization of supermacroporous bead-packed bed.

    Science.gov (United States)

    Yun, Junxian; Dafoe, Julian T; Peterson, Eric; Xu, Linhong; Yao, Shan-Jing; Daugulis, Andrew J

    2013-04-05

    Cryogel beads, fabricated by the microchannel liquid-flow focusing and cryo-polymerization method, have micron-scale supermacropores allowing the passage of crude feedstocks, and could be of interest as chromatographic adsorbents in bioseparation applications. In this work, we provide a rapid freezing and continuous formation method for cryogel beads by cryo-polymerization using dry ice particles as the freezing source and microchannel liquid-flow focusing using peristaltic pumps for the fluid supply. Polyacrylamide (pAAm)-based supermacroporous cryogel beads were prepared and grafted with N,N-dimethylaminoethyl methacrylate (DMAEMA), which provided the anion-exchange cryogel beads with tertiary amine functional groups suitable for binding proteins. Properties of the supermacroporous cryogel-bead packed bed, i.e., permeability, bed voidage, protein breakthrough as well as protein adsorption performance by using bovine γ-globulin as model protein, were experimentally investigated. A capillary-based model was employed to characterize the supermacroporous bed performance, and gave a reasonable description of the microstructure and thus an insight into the flow, dispersion and mass transfer behaviors within the cryogel bead-packed bed. The results also showed that by using dry ice as the freezing source, it is easy to reduce the temperature below -55 to -61°C in the bulk solution, causing the rapid formation of ice crystals within the monomer drops, and finally effective cryo-polymerization to form supermacropores within the cryogel beads. By using peristaltic pumps, continuous preparation was achieved and the obtained cryogel beads had favorable properties similar to those prepared using syringe pumps in the microchannel liquid-flow focusing process. This method is thus expected to be interesting in the liter- or even larger-scale preparation of cryogel adsorbents.

  16. Radiography and image-intensified fluoroscopy of barium passage through the gastrointestinal tract in six healthy Amazon parrots (Amazona aestiva).

    Science.gov (United States)

    Vink-Nooteboom, Mariette; Lumeij, J T; Wolvekamp, W T C

    2003-01-01

    Gastrointestinal contrast studies were performed in six clinically healthy blue-fronted Amazon parrots (Amazona aestiva) using radiography and image-intensified fluoroscopy. During examination, the birds were confined in a perspex cage. The quality of the lateral radiographs was adequate for assessment of the contrast medium-filled gastrointestinal tract. Thirty minutes after administration of 20 mL/kg of a 25% barium sulphate suspension directly in the crop, in all birds the ventriculus was totally outlined by barium. After 60 min, the small intestine was filled in five of six birds. After 180 min, the crop was empty in all birds. The barium-outlined ventriculus had differences in shape on radiographs of individual birds and also between birds. The colon and cloaca had further filling after 120 to 300 min. With image-intensified fluoroscopy, gastrointestinal motility was evaluated. Contractions of the crop were seen, and boluses of contrast medium passing through the esophagus toward the proventriculus were easily identified. Proventricular contractions were rarely noted, but ventriculus motility was present and clearly defined. The ventriculus had a mean of 3.7 contraction cycles/min. In the duodenum and small intestine, rapid antegrade and retrograde peristaltic movements in combination with segmental contractions were seen. In the colon, occasionally very slow peristaltic activity, mainly of segmental nature, was present. During the examinations, no defeacation was recorded. Confinement in a small perspex cage provides an adequate and handy radiological set-up for evaluation of gastrointestinal passage and motility in birds, minimizing the influences of stress and anesthesia.

  17. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities.

  18. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    Directory of Open Access Journals (Sweden)

    Juhyun Lee

    Full Text Available Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS and pressure gradients (∇P across the atrioventricular (AV canal. Zebrafish (Danio rerio are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP (y1 transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV across the atrioventricular (AV canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf, simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6, whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  19. Patterns of presynaptic activity and synaptic strength interact to produce motor output.

    Science.gov (United States)

    Wright, Terrence Michael; Calabrese, Ronald L

    2011-11-30

    Motor neuron activity is coordinated by premotor networks into a functional motor pattern by complex patterns of synaptic drive. These patterns combine both the temporal pattern of spikes of the premotor network and the profiles of synaptic strengths (i.e., conductances). Given the complexity of premotor networks in vertebrates, it has been difficult to ascertain the relative contributions of temporal patterns and synaptic strength profiles to the motor patterns observed in these animals. Here, we use the leech (Hirudo sp.) heartbeat central pattern generator (CPG), in which we can measure both the temporal pattern and the synaptic strength profiles of the entire premotor network and the motor outflow in individual animals. In this system, a series of motor neurons all receive input from the same premotor interneurons of the CPG but must be coordinated differentially to produce a functional pattern. These properties allow a theoretical and experimental dissection of the rules that govern how temporal patterns and synaptic strength profiles are combined in motor neurons so that functional motor patterns emerge, including an analysis of the impact of animal-to-animal variation in input to such variation in output. In the leech, segmental heart motor neurons are coordinated alternately in a synchronous and peristaltic pattern. We show that synchronous motor patterns result from a nearly synchronous premotor temporal pattern produced by the leech heartbeat CPG. For peristaltic motor patterns, the staggered premotor temporal pattern determines the phase range over which segmental motor neurons can fire while synaptic strength profiles define the intersegmental motor phase progression realized.

  20. Novel insights into the echinoderm nervous system from histaminergic and FMRFaminergic-like cells in the sea cucumber Leptosynapta clarki.

    Science.gov (United States)

    Hoekstra, Luke A; Moroz, Leonid L; Heyland, Andreas

    2012-01-01

    Understanding of the echinoderm nervous system is limited due to its distinct organization in comparison to other animal phyla and by the difficulty in accessing it. The transparent and accessible, apodid sea cucumber Leptosynapta clarki provides novel opportunities for detailed characterization of echinoderm neural systems. The present study used immunohistochemistry against FMRFamide and histamine to describe the neural organization in juvenile and adult sea cucumbers. Histaminergic- and FMRFaminergic-like immunoreactivity is reported in several distinct cell types throughout the body of L. clarki. FMRFamide-like immunoreactive cell bodies were found in the buccal tentacles, esophageal region and in proximity to the radial nerve cords. Sensory-like cells in the tentacles send processes toward the circumoral nerve ring, while unipolar and bipolar cells close to the radial nerve cords display extensive processes in close association with muscle and other cells of the body wall. Histamine-like immunoreactivity was identified in neuronal somatas located in the buccal tentacles, circumoral nerve ring and in papillae distributed across the body. The tentacular cells send processes into the nerve ring, while the processes of cells in the body wall papillae extend to the surface epithelium and radial nerve cords. Pharmacological application of histamine produced a strong coordinated, peristaltic response of the body wall suggesting the role of histamine in the feeding behavior. Our immunohistochemical data provide evidence for extensive connections between the hyponeural and ectoneural nervous system in the sea cucumber, challenging previously held views on a clear functional separation of the sub-components of the nervous system. Furthermore, our data indicate a potential function of histamine in coordinated, peristaltic movements; consistent with feeding patterns in this species. This study on L. clarki illustrates how using a broader range of neurotransmitter systems

  1. Dynamic Compression Enhances Pressure-to-Pain Threshold in Elite Athlete Recovery: Exploratory Study.

    Science.gov (United States)

    Sands, William A; McNeal, Jeni R; Murray, Steven R; Stone, Michael H

    2015-05-01

    Athlete recovery-adaptation is crucial to the progress and performance of highly trained athletes. The purpose of this study was to assess peristaltic pulse dynamic compression (PPDC) in reducing short-term pressure-to-pain threshold (PPT) among Olympic Training Center athletes after morning training. Muscular tenderness and stiffness are common symptoms of fatigue and exercise-induced muscle microtrauma and edema. Twenty-four highly trained athletes (men = 12 and women = 12) volunteered to participate in this study. The athletes were randomly assigned to experimental (n = 12) and control (n = 12) groups. Pressure-to-pain threshold measurements were conducted with a manual algometer on 3 lower extremity muscles. Experimental group athletes underwent PPDC on both legs through computer-controlled circumferential inflated leggings that used a peristaltic-like pressure pattern from feet to groin. Pressures in each cell were set to factory defaults. Treatment time was 15 minutes. The control group performed the same procedures except that the inflation pump to the leggings was off. The experimental timeline included a morning training session, followed by a PPT pretest, treatment application (PPDC or control), an immediate post-test (PPT), and a delayed post-test (PPT) after the afternoon practice session. Difference score results showed that the experimental group's PPT threshold improved after PPDC treatment immediately and persisted the remainder of the day after afternoon practice. The control group showed no statistical change. We conclude that PPDC is a promising means of accelerating and enhancing recovery after the normal aggressive training that occurs in Olympic and aspiring Olympic athletes.

  2. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis.

    Science.gov (United States)

    Lee, Juhyun; Moghadam, Mahdi Esmaily; Kung, Ethan; Cao, Hung; Beebe, Tyler; Miller, Yury; Roman, Beth L; Lien, Ching-Ling; Chi, Neil C; Marsden, Alison L; Hsiai, Tzung K

    2013-01-01

    Peristaltic contraction of the embryonic heart tube produces time- and spatial-varying wall shear stress (WSS) and pressure gradients (∇P) across the atrioventricular (AV) canal. Zebrafish (Danio rerio) are a genetically tractable system to investigate cardiac morphogenesis. The use of Tg(fli1a:EGFP) (y1) transgenic embryos allowed for delineation and two-dimensional reconstruction of the endocardium. This time-varying wall motion was then prescribed in a two-dimensional moving domain computational fluid dynamics (CFD) model, providing new insights into spatial and temporal variations in WSS and ∇P during cardiac development. The CFD simulations were validated with particle image velocimetry (PIV) across the atrioventricular (AV) canal, revealing an increase in both velocities and heart rates, but a decrease in the duration of atrial systole from early to later stages. At 20-30 hours post fertilization (hpf), simulation results revealed bidirectional WSS across the AV canal in the heart tube in response to peristaltic motion of the wall. At 40-50 hpf, the tube structure undergoes cardiac looping, accompanied by a nearly 3-fold increase in WSS magnitude. At 110-120 hpf, distinct AV valve, atrium, ventricle, and bulbus arteriosus form, accompanied by incremental increases in both WSS magnitude and ∇P, but a decrease in bi-directional flow. Laminar flow develops across the AV canal at 20-30 hpf, and persists at 110-120 hpf. Reynolds numbers at the AV canal increase from 0.07±0.03 at 20-30 hpf to 0.23±0.07 at 110-120 hpf (p< 0.05, n=6), whereas Womersley numbers remain relatively unchanged from 0.11 to 0.13. Our moving domain simulations highlights hemodynamic changes in relation to cardiac morphogenesis; thereby, providing a 2-D quantitative approach to complement imaging analysis.

  3. Biomechanics of milk extraction during breast-feeding.

    Science.gov (United States)

    Elad, David; Kozlovsky, Pavel; Blum, Omry; Laine, Andrew F; Po, Ming Jack; Botzer, Eyal; Dollberg, Shaul; Zelicovich, Mabel; Ben Sira, Liat

    2014-04-08

    How do infants extract milk during breast-feeding? We have resolved a century-long scientific controversy, whether it is sucking of the milk by subatmospheric pressure or mouthing of the nipple-areola complex to induce a peristaltic-like extraction mechanism. Breast-feeding is a dynamic process, which requires coupling between periodic motions of the infant's jaws, undulation of the tongue, and the breast milk ejection reflex. The physical mechanisms executed by the infant have been intriguing topics. We used an objective and dynamic analysis of ultrasound (US) movie clips acquired during breast-feeding to explore the tongue dynamic characteristics. Then, we developed a new 3D biophysical model of the breast and lactiferous tubes that enables the mimicking of dynamic characteristics observed in US imaging during breast-feeding, and thereby, exploration of the biomechanical aspects of breast-feeding. We have shown, for the first time to our knowledge, that latch-on to draw the nipple-areola complex into the infant mouth, as well as milk extraction during breast-feeding, require development of time-varying subatmospheric pressures within the infant's oral cavity. Analysis of the US movies clearly demonstrated that tongue motility during breast-feeding was fairly periodic. The anterior tongue, which is wedged between the nipple-areola complex and the lower lips, moves as a rigid body with the cycling motion of the mandible, while the posterior section of the tongue undulates in a pattern similar to a propagating peristaltic wave, which is essential for swallowing.

  4. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  5. Deep via subclavian vein pump into the high concentration of potassium correct clinical study of hypokalemia%经锁骨下深静脉泵入高浓度钾纠正低钾血症的临床研究

    Institute of Scientific and Technical Information of China (English)

    胡沥; 郭令丽

    2014-01-01

    目的:探讨高浓度钾溶液经过锁骨下深静脉泵入治疗严重低钾血症患者的疗效观察。方法:收集我科38名严重低钾血症患者,随机分成治疗组和对照组,每组19名,治疗组泵入高浓度钾,对照组常规补钾,在补钾过程中监测心电图、血清钾、肾功能及尿量。结果:2组严重低价血症患者低钾均被纠正,无不良反应,但治疗组纠正低钾血症时间短且补液量较少。结论:经锁骨下深静脉泵入高浓度钾安全有效,即可纠正低钾血症又可控制液体入量。%Objective:To investigate the clinical efficacy of treating patients with severe hypokalemia using micro-pump pump into high concentration potassium through the subclavian vein.Methods:Col ect my families and 38 patients with severe hypokalemia,randomly divided into treatment group and control group,each group of 19,the treatment group pump into the high concentration of potassium and the control group conventional potassium supplement,in the process of potassium supplement monitoring ecg,serum potassium,renal function and urine output.Result:The two groups have been corrected and no adverse reaction,compared with the control ,the time is shorter and less fluid.Conclusion:Using micro-pump pump into high concentration potassium through the subclavian vein is safe,the methods can correct hypokalG emia and control of fluid.

  6. Experience of emergency treatment of cardiac and respiratory sudden arrest induced by severe hypokalemia%严重低钾血症致心跳呼吸骤停的急诊救治体会

    Institute of Scientific and Technical Information of China (English)

    干金文; 刘晓曼; 金刚; 成广海

    2016-01-01

    AIM: To investigate the effective emergency treat-ment on patients with cardiac and respiratory sudden arrest induced by severe hypokalemia. METHODS: A total of 4 patients with cardiac and respiratory sudden arrest induced by severe hypokalemia admitted into Emergency Department of Xi’an Aerospace General Hospital were selected as object of study. All patients were given central venous infusions of concentrated potas-sium chloride corrects hypokalemia by micro-pump on the basis of conventional cardiopulmonary cerebral resuscitation therapy. The curative effect and prognosis were observed. RESULTS: All the cardiopulmonary resuscitations were successful, and 3 cases were cured and discharged, 1 case died due to incurable multiple organ failure and refractory hypotension. No complications occurred due to high concentration of potassium supplement. CONCLUSION:On the basis of early effective cardiopulmonary cerebral resuscita-tion therapy, it’s an extremely effective method of treating patients with cardiac and respiratory sudden arrest induced by severe hypokalemia with central venous infusions of concentrated potassi-um chloride corrects hypokalemia by micro-pump, which can improve the successful ratio of resuscitation.%目的:探讨严重低钾血症致心跳呼吸骤停患者的有效急诊救治方法。方法:选取西安航天总医院急诊科收治的4例严重低钾血症致心跳呼吸骤停患者作为研究对象,在常规心肺脑复苏治疗的基础上,采用微量泵中心静脉泵推高浓度钾进行补钾治疗,观察其疗效及预后情况。结果:所有患者均心肺复苏成功,其中3例病情好转治愈出院,1例因出现多脏器衰竭,顽固性低血压,无法纠正而死亡。均未出现因高浓度补钾的并发症。结论:在早期正规有效的心肺复苏救治的基础上,采用中心静脉微量泵高浓度氯化钾溶液补钾是救治严重低钾血症所致心跳呼吸骤停的有效方法,可提高其复苏成功率。

  7. Integrated Microfluidic Devices for Automated Microarray-Based Gene Expression and Genotyping Analysis

    Science.gov (United States)

    Liu, Robin H.; Lodes, Mike; Fuji, H. Sho; Danley, David; McShea, Andrew

    Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed

  8. 微量泵在急诊科的临床应用以及护理体会%Clinical Application and Nursing of Micro Pump in the Emergency Department

    Institute of Scientific and Technical Information of China (English)

    刘荣辉

    2015-01-01

    Objective To evaluate the clinical application of micro pump in the emergency department and the problems of critical y il patients in clinical nursing work to find ef ective solutions to ensure drug safety and ef icacy.Methods A retrospective hospital emergency department in June 2013 June 2014 120 patients we specifications,lack of knowledge,responsibility is not enough.Results The cause of nursing staf is not familiar with micro pump using the operating specifications of the main reasons for the problem of micro pump in clinical use, lack of knowledge, lack of responsibility. Conclusion For clinical use micro-pump problems,the development of micro-pumps use practices,rescue ef iciency,reduce the incidence of adverse events.%目的:探讨微量泵在急诊科危重患者的临床应用以及在临床护理工作中的问题,找出有效的解决措施,确保用药有效性和安全性。方法回顾我院急诊科2013年6月~2014年6月收治的120例患者应用微量泵的临床护理资料。结果导致微量泵在临床使用中出现问题主要原因是护理人员对微量泵使用操作规范不熟悉,缺乏相关知识,责任心不够。结论针对微量泵临床使用中的问题,制定微量泵使用操作规范,对护理人员加强专业培训,掌握微量泵使用操作流程、适应症及相关药物知识等,可以提高抢救效率,减少不良事件的发生。

  9. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Directory of Open Access Journals (Sweden)

    Rosanna La Rocca

    Full Text Available In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal, depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK cells cytotoxic recognition.

  10. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih

    2013-01-01

    We present a novel design of micropumps and valves driven by osmotic force for point-of-care applications. Although there have been significant progresses in microfluidic components and control devices such as fluidic diodes, switches, resonators and digital-to-analog converters, the ultimate power source still depends on bulky off-chip components, which are expensive and cannot be easily miniaturized. For point-of-care applications, it is critical to integrate all the components in a compact size at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations under 125 kPa back pressure. We have also implemented an osmotic pump, which can pump a high flow rate over 30 μL/min for longer than 30 minutes. The experimental data demonstrates the possibility and potential of applying osmotic actuation in point-of-care disposable microfluidics. © 2013 IEEE.

  11. An Environmental Friendly Procedure for Photometric Determination of Hypochlorite in Tap Water Employing a Miniaturized Multicommuted Flow Analysis Setup

    Science.gov (United States)

    Borges, Sivanildo S.; Reis, Boaventura F.

    2011-01-01

    A photometric procedure for the determination of ClO− in tap water employing a miniaturized multicommuted flow analysis setup and an LED-based photometer is described. The analytical procedure was implemented using leucocrystal violet (LCV; 4,4′,4′′-methylidynetris (N,N-dimethylaniline), C25H31N3) as a chromogenic reagent. Solenoid micropumps employed for solutions propelling were assembled together with the photometer in order to compose a compact unit of small dimensions. After control variables optimization, the system was applied for the determination of ClO− in samples of tap water, and aiming accuracy assessment samples were also analyzed using an independent method. Applying the paired t-test between results obtained using both methods, no significant difference at the 95% confidence level was observed. Other useful features include low reagent consumption, 2.4 μg of LCV per determination, a linear response ranging from 0.02 up to 2.0 mg L−1  ClO−, a relative standard deviation of 1.0% (n = 11) for samples containing 0.2 mg L−1  ClO−, a detection limit of 6.0 μg L−1  ClO−, a sampling throughput of 84 determinations per hour, and a waste generation of 432 μL per determination. PMID:21747732

  12. Mechanical properties identification and design optimization of nitinol shape memory alloy microactuators

    Science.gov (United States)

    Salehi, M.; Hamedi, M.; Salmani Nohouji, H.; Arghavani, J.

    2014-02-01

    Microactuators are essential elements of MEMS and are widely used in these devices. Microgrippers, micropositioners, microfixtures, micropumps and microvalves are well-known applications of microstructures. In this paper, the design optimization of shape memory alloy microactuators is discussed. Four different configurations of microactuator with variable geometrical parameters, generating different levels of displacement and force, are designed and analysed. In order to determine the optimum values of parameters for each microactuator, statistical design of experiments (DOE) is used. For this purpose, the Souza et al constitutive model (1988 Eur. J. Mech. A 17 789-806) is adapted for use in finite element analysis software. Mechanical properties of the SMA are identified by performing experimental tests on Ti-49.8%Ni. Finally, the specific energy of each microactuator is determined using the calibrated model and regression analysis. Moreover, the characteristic curve of each microactuator is obtained and with this virtual tool one can choose a microactuator with the desired force and displacement. The methodology discussed in this paper can be used as a reference to design appropriate microactuators for different MEMS applications producing various ranges of displacement and force.

  13. The role of vascular endothelial growth factors and fibroblast growth factors in angiogenesis during otitis media.

    Science.gov (United States)

    Husseman, Jacob; Palacios, Sean D; Rivkin, Alexander Z; Oehl, Heinz; Ryan, Allen F

    2012-01-01

    The middle ear response to otitis media includes transformation and hyperplasia of the mucosal epithelium and subepithelial connective tissue. Significant neovascularization is also noted, which occurs both to support the hypertrophied mucosa and to mediate the increased trafficking of leukocytes. We investigated the role of two known potent angiogenic growth factor families, the fibroblast growth factors (FGFs) and vascular endothelial growth factors (VEGFs), in middle ear mucosal angiogenesis. DNA microarrays were used to evaluate the expression of FGFs and VEGFs, as well as their receptors and unique signaling proteins, in the middle ears of mice undergoing a complete course of acute bacterial otitis media. In addition, a member of each family was introduced to the middle ear submucosal compartment of the normal middle ears of guinea pigs, by a continuous-release osmotic minipump system over 1 week. During the course of bacterial otitis media, a significant regulation of a number of genes important for angiogenesis was identified. Histologic evaluation of middle ear mucosa following micropump infusion of both FGF1 and VEGF-A showed significant angiogenesis at the site of infusion in comparison to control saline infusion. These results support a role for FGFs and VEGFs in the neovascularization of the middle ear mucosa during otitis media, and offer a potential avenue for therapeutic intervention.

  14. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    Science.gov (United States)

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  15. Mechanical stress downregulates MHC class I expression on human cancer cell membrane.

    Science.gov (United States)

    La Rocca, Rosanna; Tallerico, Rossana; Talib Hassan, Almosawy; Das, Gobind; Lakshmikanth, Tadepally; Tadepally, Lakshmikanth; Matteucci, Marco; Liberale, Carlo; Mesuraca, Maria; Scumaci, Domenica; Gentile, Francesco; Cojoc, Gheorghe; Perozziello, Gerardo; Ammendolia, Antonio; Gallo, Adriana; Kärre, Klas; Cuda, Giovanni; Candeloro, Patrizio; Di Fabrizio, Enzo; Carbone, Ennio

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700-1800 cm(-1), indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  16. Fabrication and characterization of magnetic nanoparticle composite membranes

    Science.gov (United States)

    Cruickshank, Akeem Armand

    To effectively and accurately deliver drugs within the human body, both new designs and components for implantable micropumps are being studied. Designs must ensure high biocompatibility, drug compatibility, accuracy and small power consumption. The focus of this thesis was to fabricate a prototype magnetic nanoparticle membrane for eventual incorporation into a biomedical pump and then determine the relationship between this membrane deflection and applied pneumatic or magnetic force. The magnetic nanoparticle polymer composite (MNPC) membranes in this study were composed of crosslinked polydimethylsiloxane (PDMS) and iron oxide nanoparticles (IONPs). An optimal iron oxide fabrication route was identified and particle size in each batch was approximately 24.6 nm. Once these nanoparticles were incorporated into a membrane (5 wt. %), the nanoparticle formed agglomerates with an average diameter of 2.26 +/-1.23 microm. Comparisons between the 0 and 5 wt. % loading of particles into the membranes indicated that the elastic modulus of the composite decreased with increasing particle concentration. The pressure- central deflection of the membranes could not be predicated by prior models and variation between magnetic and pneumatic pressure-deflection curves was quantified. Attempts to fabricate membranes with above 5 wt. % nanoparticles were not successful (no gelation). Fourier Transform Infrared (FTIR) spectroscopy results suggest that excess oleic acid on the nanoparticles prior to mixing might have prevented crosslinking.

  17. Fuel cell-powered microfluidic platform for lab-on-a-chip applications.

    Science.gov (United States)

    Esquivel, Juan Pablo; Castellarnau, Marc; Senn, Tobias; Löchel, Bernd; Samitier, Josep; Sabaté, Neus

    2012-01-07

    The achievement of a higher degree of integration of components--especially micropumps and power sources--is a challenge currently being pursued to obtain portable and totally autonomous microfluidic devices. This paper presents the integration of a micro direct methanol fuel cell (μDMFC) in a microfluidic platform as a smart solution to provide both electrical and pumping power to a Lab-on-a-Chip system. In this system the electric power produced by the fuel cell is available to enable most of the functionalites required by the microfluidic chip, while the generated CO(2) from the electrochemical reaction produces a pressure capable of pumping a liquid volume through a microchannel. The control of the fuel cell operating conditions allows regulation of the flow rate of a liquid sample through a microfluidic network. The relation between sample flow rate and the current generated by the fuel cell is practically linear, achieving values in the range of 4-18 μL min(-1) while having an available power between 1-4 mW. This permits adjusting the desired flow rate for a given application by controlling the fuel cell output conditions and foresees a fully autonomous analytical Lab-on-a-Chip in which the same device would provide the electrical power to a detection module and at the same time use the CO(2) pumping action to flow the required analytes through a particular microfluidic design.

  18. Design, fabrication and analysis of silicon hollow microneedles for transdermal drug delivery system for treatment of hemodynamic dysfunctions.

    Science.gov (United States)

    Ashraf, M W; Tayyaba, S; Nisar, A; Afzulpurkar, N; Bodhale, D W; Lomas, T; Poyai, A; Tuantranont, A

    2010-09-01

    In this paper, we present design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedles with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The mask layout design and fabrication process of silicon microneedles and reservoir involving deep reactive ion etching (DRIE) is first presented. This is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of a MEMS based piezoelectrically actuated device with integrated silicon microneedles is presented. The coupledfield analysis of hollow silicon microneedle array integrated with piezoelectric micropump has involved structural and fluid field couplings in a sequential structural-fluid analysis on a three-dimensional model of the microfluidic device. The effect of voltage and frequency on silicon membrane deflection and flow rate through the microneedle is investigated in the coupled field analysis using multiple code coupling method. The results of the present study provide valuable benchmark and prediction data to fabricate optimized designs of the silicon hollow microneedle based microfluidic devices for transdermal drug delivery applications.

  19. Continuous Flow Controlled Synthesis of Gold Nanoparticles Using Pulsed Mixing Microfluidic System

    Directory of Open Access Journals (Sweden)

    Guojun Liu

    2015-01-01

    Full Text Available To prepare the gold nanoparticles (AuNPs with uniform sizes, fine morphology, and good monodispersity, a pulsed mixing microfluidic system based on PZT actuation was presented. The system includes PZT micropump and Y type micromixer. By adjusting voltage (entrance flow rate, pulsed frequency, phase, and other parameters, a variety of mixing modes can be achieved, so as to realize the controllable synthesis of nanoparticles in a certain range. By numerical simulation and analysis, the channel section size, entrance angle, and pulse frequency were optimized. Based on the optimized structure and working parameters, the test prototype has been manufactured in lab, and the related synthesis tests of AuNPs were carried out. The test results indicate that AuNPs with uniform morphology and good monodispersity can be synthesized using the system with the section size (0.4 mm × 0.4 mm, the entrance channel angle (60° under condition of the pulsed frequency (300 Hz, and the entrance flow rate (4 mL/min. The average diameter and its standard deviation of AuNPs synthesized were 21.6 nm, 4.83 nm, respectively. The research work above can be applied to the fields such as the controlled synthesis of noble metal nanoparticles, biomedicine, and microchemical system.

  20. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    KAUST Repository

    La Rocca, Rosanna

    2014-12-26

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition.

  1. Synechococcus as a "singing" bacterium: biology inspired by micro-engineered acoustic streaming devices

    CERN Document Server

    Ehlers, Kurt

    2009-01-01

    Certain cyanobacteria, such as open ocean strains of Synechococcus, are able to swim at speeds up to 25 diameters per second, without flagella or visible changes in shape. The means by which Synechococcus generates thrust for self-propulsion is unknown. The only mechanism that has not been ruled out employs tangential waves of surface deformations. In Ehlers et al, the average swimming velocity for this mechanism was estimated using the methods inaugurated by Taylor and Lighthill in the 1950's and revisited in differential geometric language by Shapere and Wilczek in 1989. In this article we propose an entirely different physical principle self propulsion based on acoustic streaming (AS). Micro-pumps in silicon chips, based on AS, have been constructed by engineers since the 1990's, but to the best of our knowledge acoustic streaming as a means of microorganisms locomotion has not been proposed before. Our hypothesis is supported by two recent discoveries: (1) In Samuel, et al, deep-freeze electron microscopy...

  2. A novel artificial anal sphincter system based on transcutaneous energy transmission

    Institute of Scientific and Technical Information of China (English)

    Zan Peng; Yan Guozheng; Liu Hua

    2008-01-01

    For controlling anal incontinence, a new artificial anal sphincter system (AASS) with sensor feedback based on transcutaneous energy transmission is developed. The device mainly comprises an artificial anal sphincter (AAS), a wireless power supply subsystem, and a communication subsystem. The artificial anal sphincter comprises a front cuff and a sensor cuff placed around the rectum, a reservoir sited in abdominal cavity and a micropump controlling inflation and deflation of the front cuff. There are two pressure sensors in the artificial anal sphincter. One can measure the pressure in the front cuff to clamp the rectum, the other in the sensor cuff can measure the pressure of the rectum. Wireless power supply subsystem includes a resonance transmit coil to transmit an alternating magnetic field and a secondary coil to receive the power. Wireless communication subsystem can transmit the pressure information of the artificial anal sphincter to the monitor, or send the control commands to the artificial anal sphincter. A prototype is designed and the basic function of the artificial anal sphincter system has been tested through experiments. The results demonstrate that the artificial anal sphincter system can control anal incontinence effectively.

  3. LOW COST ANALYZER FOR THE DETERMINATION OF PHOSPHORUS BASED ON OPEN-SOURCE HARDWARE AND PULSED FLOWS

    Directory of Open Access Journals (Sweden)

    Pablo González

    2016-04-01

    Full Text Available The need for automated analyzers for industrial and environmental samples has triggered the research for new and cost-effective strategies of automation and control of analytical systems. The widespread availability of open-source hardware together with novel analytical methods based on pulsed flows have opened the possibility of implementing standalone automated analytical systems at low cost. Among the areas that can benefit from this approach are the analysis of industrial products and effluents and environmental analysis. In this work, a multi-pumping flow system is proposed for the determination of phosphorus in effluents and polluted water samples. The system employs photometric detection based on the formation of molybdovanadophosphoric acid, and the fluidic circuit is built using three solenoid micropumps. The detection is implemented with a low cost LED-photodiode photometric detection system and the whole system is controlled by an open-source Arduino Uno microcontroller board. The optimization of the timing to ensure the color development and the pumping cycle is discussed for the proposed implementation. Experimental results to evaluate the system behavior are presented verifying a linear relationship between the relative absorbance and the phosphorus concentrations for levels as high as 50 mg L-1.

  4. Enzymatically induced motion at nano- and micro-scales

    Science.gov (United States)

    Gáspár, Szilveszter

    2014-06-01

    In contrast to adenosine triphosphate (ATP)-dependent motor enzymes, other enzymes are little-known as ``motors'' or ``pumps'', that is, for their ability to induce motion. The enhanced diffusive movement of enzyme molecules, the self-propulsion of enzyme-based nanomotors, and liquid pumping with enzymatic micropumps were indeed only recently reported. Enzymatically induced motion can be achieved in mild conditions and without the use of external fields. It is thus better suited for use in living systems (from single-cell to whole-body) than most other ways to achieve motion at small scales. Enzymatically induced motion is thus not only new but also important. Therefore, the present work reviews the most significant discoveries in enzymatically induced motion. As we will learn, freely diffusing enzymes enhance their diffusive movement by nonreciprocal conformational changes which parallel their catalytic cycles. Meanwhile, enzyme-modified nano- and micro-objects turn chemical energy into kinetic energy through mechanisms such as bubble recoil propulsion, self-electrophoresis, and self-diffusiophoresis. Enzymatically induced motion of small objects ranges from enhanced diffusive movement to directed motion at speeds as high as 1 cm s-1. In spite of the progress made in understanding how the energy of enzyme reactions is turned into motion, most enzymatically powered devices remain inefficient and need improvements before we will witness their application in real world environments.

  5. On electrostatically actuated NEMS/MEMS circular plates

    Science.gov (United States)

    Caruntu, Dumitru I.; Alvarado, Iris

    2011-04-01

    This paper deals with electrostatically actuated micro and nano-electromechanical (MEMS/NEMS) circular plates. The system under investigation consists of two bodies, a deformable and conductive circular plate placed above a fixed, rigid and conductive ground plate. The deformable circular plate is electrostatically actuated by applying an AC voltage between the two plates. Nonlinear parametric resonance and pull-in occur at certain frequencies and relatively large AC voltage, respectively. Such phenomena are useful for applications such as sensors, actuators, switches, micro-pumps, micro-tweezers, chemical and mass sensing, and micro-mirrors. A mathematical model of clamped circular MEMS/NEMS electrostatically actuated plates has been developed. Since the model is in the micro- and nano-scale, surface forces, van der Waals and/or Casimir, acting on the plate are included. A perturbation method, the Method of Multiple Scales (MMS), is used for investigating the case of weakly nonlinear MEMS/NEMS circular plates. Two time scales, fast and slow, are considered in this work. The amplitude-frequency and phase-frequency response of the plate in the case of primary resonance are obtained and discussed.

  6. Miniaturized total analysis systems: integration of electronics and fluidics using low-temperature co-fired ceramics.

    Science.gov (United States)

    Martínez-Cisneros, Cynthia S; Ibáñez-García, Núria; Valdés, Francisco; Alonso, Julián

    2007-11-01

    The advantages of microanalyzers, usually fabricated in silicon, glass, or polymers, are well-known. The design and construction of fluidic platforms are well-developed areas due to the perfectly established microfabrication technologies used. However, there is still the need to achieve devices that include not only the fluid management system but also the measurement electronics, so that real portable miniaturized analyzers can be obtained. Low-temperature co-fired ceramics technology permits the incorporation of actuators, such as micropumps and microvalves, controlled either magnetically, piezoelectrically, or thermally. Furthermore, electronic circuits can be also easily built exploiting the properties of these ceramics and the fact that they can be fabricated using a multilayer approach. In this work, taking advantage of the possibility of combining fluidics and electronics in a single substrate and using the same fabrication methodology, a chemical microanalyzer that integrates microfluidics, the detection system, and also the data acquisition and digital signal processing electronics is presented. To demonstrate the versatility of the technology, two alternative setups have been developed. In the first one, a modular configuration is proposed. In this case, the same electronic module can be used to determine different chemical parameters by simply exchanging the chemical module. In the second one, the monolithic integration of all the elements was accomplished, allowing the construction of compact and dedicated devices. Chloride ion microanalyzers have been constructed to demonstrate the operability of both device configurations. In all cases, the results obtained showed adequate analytical features.

  7. Calibration of an eye oximeter with a dynamic eye phantom

    Science.gov (United States)

    Nabili, A.; Bardakci, D.; Helling, K.; Matyas, C.; Muro, S.; Ramella-Roman, J. C.

    2008-02-01

    Measurements of oxygen saturation and flow in the retina can yield information about the eye health and the onset of eye pathologies such as Diabetic Retinopathy. Recently we have realized an instrument capable of measuring oxygenation in the retina using six different wavelengths and capable of measuring blood flow using speckle-based techniques. The calibration of such instrument is particularly difficult due to the layered structure of the eye and the lack of alternative measurement techniques. For this purpose we have realized an in vitro model of the human eye. The artificial eye is composed of four layers: the retina vessels, the choroids, the retinal pigmented epithelium (RPE), and the sclera. The retina vessels are modeled with 150 μm tube connected to a micro-pump delivering 34 μl/min. The micro-tube, the pump, and a blood reservoir were connected in a closed circulatory system; blood oxygenation in the vessel could be modified using an external oxygen reservoir. The optical properties of all other layers were mimicked using titanium dioxide as a scatterer and ink as an absorber. The absorption coefficient μa and the scattering coefficient µs of these layers were independently measured using an integrating sphere. Absorption and scattering coefficient of all layers were modified before experimental measurements and a Monte Carlo program was finally used to model the experimental results.

  8. Artificial intelligence: Collective behaviors of synthetic micromachines

    Science.gov (United States)

    Duan, Wentao

    oscillation initiates, and triggers periodic change of the associated self-diffusiophoretic effects as well as interactions between particles. As a result, dispersion and clustering of particles take place alternatively, and sizes of colloidal clusters vary periodically together with local colloid concentration, formulating a namely "colloidal clock". In the system, oscillation can propagate from individual clusters to nearby clusters, and there can exist more than one oscillation frequencies in one system, possibly due to different local particle concentrations or cluster size. Chapter 4 quantitatively investigates the influence of pairwise interaction between motors on their diffusional behaviors by analyzing motion of light-powered silver chloride particles. Powered by UV light, nano/micrometer-sized silver chloride (AgCl) particles exhibit autonomous movement and form "schools" in aqueous solution. Motion of these AgCl particles are tracked and analyzed. AgCl particles exhibit ballistic motion at short time intervals that transition to enhanced diffusive motion as the time interval is increased. The onset of this transition was found to occur more quickly for particles with more neighbors. If the active particles became "trapped" in a formed "school", the diffusive behavior further changes to subdiffusion. The correlation between these transitions and the number of neighboring particles was verified by simulation, and confirms the influence of pairwise interaction between motors. Chapter 5 aims at quantitative understanding on the self-diffusiophoresis propulsion mechanism through numerical simulation with COMSOL Multiphysics. A self-powered micropump based on ion-exchange is chosen as the experimental model system. Weakly acidicform ion-exchange resin can function as self-powered micropumps in aqueous solution, manipulating fluid flow at vicinity and transporting inert tracer colloids. Pumping direction in the system can be dynamically altered in response to pH change

  9. Pressure generation at the junction of two microchannels with different depths.

    Science.gov (United States)

    Yanagisawa, Naoki; Dutta, Debashis

    2010-06-01

    In this study, we report the design of a microchip-based hydraulic pump that comprises three glass conduits arranged in a T-geometry, one of which has a 2 mm long segment shallower (0.5-3 microm in depth) than the remaining 15 microm deep microfluidic network. Upon application of an electric field across this microchannel junction, a mismatch in EOF rate is introduced due to a differential in the fluid conductivity across the deep and shallow segments. Using the reported micropump, pressure-driven velocities up to 3.2 mm/s have been generated in a 15 microm deep separation channel for an applied voltage of 1.75 kV allowing us to operate under separation conditions that yield the minimum plate height. Moreover, we have shown that this flow velocity can be maximized by optimizing the depth in the shallow region of the T-geometry. Interestingly however, a simple theory accounting for fluid conductivity differences across microchannels of different depths significantly underestimates the pressure-driven velocities observed in our experiments. The Taylor dispersion coefficient in our system on the other hand compares well with the theoretical predictions reported in the literature. Finally, the functionality of our device has been demonstrated by implementing a reverse-phase chromatographic separation that was driven by the pressure-driven flow generated on-chip.

  10. Microfabricated instrument for tissue biopsy and analysis

    Science.gov (United States)

    Krulevitch, Peter A.; Lee, Abraham P.; Northrup, M. Allen; Benett, William J.

    1999-01-01

    A microfabricated biopsy/histology instrument which has several advantages over the conventional procedures, including minimal specimen handling, smooth cutting edges with atomic sharpness capable of slicing very thin specimens (approximately 2 .mu.m or greater), micro-liter volumes of chemicals for treating the specimens, low cost, disposable, fabrication process which renders sterile parts, and ease of use. The cutter is a "cheese-grater" style design comprising a block or substrate of silicon and which uses anisotropic etching of the silicon to form extremely sharp and precise cutting edges. As a specimen is cut, it passes through the silicon cutter and lies flat on a piece of glass which is bonded to the cutter. Microchannels are etched into the glass or silicon substrates for delivering small volumes of chemicals for treating the specimen. After treatment, the specimens can be examined through the glass substrate. For automation purposes, microvalves and micropumps may be incorporated. Also, specimens in parallel may be cut and treated with identical or varied chemicals. The instrument is disposable due to its low cost and thus could replace current expensive microtome and histology equipment.

  11. Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control.

    Science.gov (United States)

    Kim, Jungkyu; Kang, Minjee; Jensen, Erik C; Mathies, Richard A

    2012-02-21

    We describe the development and characterization of pneumatically actuated "lifting gate" microvalves and pumps. A fluidic layer containing the gate structure and a pneumatic layer are fabricated by soft-lithography in PDMS and bonded permanently with an oxygen plasma treatment. The microvalve structures are then reversibly bonded to a featureless glass or plastic substrate to form hybrid glass-PDMS and plastic-PDMS microchannel structures. The break-through pressures of the microvalve increase linearly up to 65 kPa as the closing pressure increases. The pumping capability of these structures ranges from the nanoliter to microliter scale depending on the number of cycles and closing pressure employed. The micropump structures exhibit up to 86.2% pumping efficiency from flow rate measurements. The utility of these structures for integrated sample processing is demonstrated by performing an automated immunoassay. These lifting gate valve and pump structures enable facile integration of complex microfluidic control systems with a wide range of lab-on-a-chip substrates.

  12. Stress-Free Bonding Technology with Pyrex for Highly Integrated 3D Fluidic Microsystems

    Directory of Open Access Journals (Sweden)

    Florian Thoma

    2014-09-01

    Full Text Available In this article, a novel Pyrex reflow bonding technology is introduced which bonds two functional units made of silicon via a Pyrex reflow bonding process. The practical application demonstrated here is a precision dosing system that uses a mechanically actuated membrane micropump which includes passive membranes for fluid metering. To enable proper functioning after full integration, a technique for device assembly must be established which does not introduce additional stress into the system, but fulfills all other requirements, like pressure tolerance and chemical stability. This is achieved with a stress-free thermal bonding principle to bond Pyrex to silicon in a five-layer stack: after alignment, the silicon-Pyrex-silicon stack is heated to 730 °C. Above the glass transition temperature of 525 °C Pyrex exhibits viscoelastic behavior. This allows the glass layer to come into close mechanical contact with the upper and lower silicon layers. The high temperature and the close contact promotes the formation of a stable and reliable Si-O-Si bond, without introducing mechanical stress into the system, and without deformation upon cooling due to thermal mismatch.

  13. [Spirograph for small laboratory animals].

    Science.gov (United States)

    Daniiarov, S B; Lanskiĭ, Iu M; Bebinov, E M

    1986-10-01

    A design of dry spirograph is described. It is characterized by greater precision, lack of inertia, high reliability, absence of respiration resistance, adequate form of recording, rapid resetting to any respiratory rate. The device consists of two similar injection syringes, photoelectric sensor for the identification of the initial moments of respiration stages, electromagnetic valves, two photoelectric converters of the air volume into the impulse signal, vacuum micro-pump, microcompressor and a system of air-driving tubes. In the initial position of pistons and valves the microcompressor pumps air into the inhalation cylinder and lifts the piston to the upper extreme position. With the signal marking the beginning of inspiration, the valves switch over and the piston lowers, pushing out the air, which moves into the animals' respiratory organs. Simultaneously, the signals of the inhaled air volume from the photoelectric transducer reach the recorder. During expiration the air pushes the piston down into the second cylinder and photoelectric transducer gives the information on the volume of the expired air.

  14. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.

    Science.gov (United States)

    Nakashoji, Yuta; Tanaka, Hironari; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2017-01-01

    A PDMS microfluidic chip with T-junction channel geometry, two inlet reservoirs, and one outlet reservoir was reversibly adhered on a glass plate through the viscoelastic properties of PDMS. This formed a detachable microfluidic device for creation of water-in-oil emulsion droplets that were used as discrete reaction compartments for the droplet digital PCR. The PDMS/glass device could continuously produce monodisperse droplets without leakage of fluids using a vacuum-driven autonomous micropumping method. This droplet preparation technique only required evacuation of air dissolved in the PDMS before loading of oil and aqueous phases into separate inlet reservoirs. Degassing of the PDMS chip at approximately 300 Pa for 1.5 h in a vacuum desiccator gave 40 000 droplets in 80 min, which corresponded to a generation frequency of up to nine droplets per second. Over multiple runs the droplet creation was very reproducible, and the size reproducibility of generated droplets (polydispersity of up to 4.1%) was comparable to that acquired using other microfluidic droplet preparation techniques. Because the PDMS chip can be peeled off the glass plate, blocked channels can easily be fixed when they arise, and this extends the lifetime of the chip. Single DNA molecules partitioned into the droplets were successfully amplified by PCR. In addition, the droplet digital PCR platform allowed absolute quantification of low copy numbers of target DNA, and was robust against instrumental variance.

  15. Chronic subarachnoid administration of 1-(4chlorobenzoyl)-5methoxy-2methyl-1H-indole-3 acetic acid (indomethacin): an evaluation of its neurotoxic effects in an animal model.

    Science.gov (United States)

    Guevara-López, Uriah; Covarrubias-Gómez, Alfredo; Gutierrez-Acar, Hilario; Aldrete, J Antonio; López-Muñoz, Francisco J; Martínez-Benítez, Braulio

    2006-07-01

    Neuraxial administration of nonsteroid antiinflammatory drugs has been suggested as an alternative in the management of intractable pain, but there is little evidence that the neurotoxic effects of indomethacin by this route of administration have been evaluated. In this study, we evaluated histological neurotoxicity of indomethacin after its subarachnoid administration in guinea pigs. The hypothesis tested was "Does subarachnoid administration of indomethacin produce damage in the spinal cord of guinea pigs?" Ten male guinea pigs were anesthetized, and a polyamide catheter connected to a subcutaneous osmotic micro-pump was implanted at the L2-3 level. Animals were randomly assigned in 2 groups of 5 animals each. Indomethacin or saline solution was administered by continuous infusion (0.5 microL/h) for 14 days. Neurotoxicity was determined by spinal cord histopathology. There was no evidence of toxicity in the histological examinations of either group. These data suggest that subarachnoid administration of indomethacin infusion, at these doses, did not produce lesions typical of neurotoxicity in the spinal cord. We have concluded that epidural administration of indomethacin may be considered an alternative for application in human pain management, although more studies to determine its safety are required.

  16. Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system.

    Science.gov (United States)

    Lee, Wen-Bin; Weng, Chen-Hsun; Cheng, Fong-Yu; Yeh, Chen-Sheng; Lei, Huan-Yao; Lee, Gwo-Bin

    2009-02-01

    The preparation of nanoparticles is essential in the application of many nanotechnologies and various preparation methods have been explored in the previous decades. Among them, iron oxide nanoparticles have been widely investigated in applications ranging from bio-imaging to bio-sensing due to their unique magnetic properties. Recently, microfluidic systems have been utilized for synthesis of nanoparticles, which have the advantages of automation, well-controlled reactions, and a high particle uniformity. In this study, a new microfluidic system capable of mixing, transporting and reacting was developed for the synthesis of iron oxide nanoparticles. It allowed for a rapid and efficient approach to accelerate and automate the synthesis of the iron oxide nanoparticles as compared with traditional methods. The microfluidic system uses micro-electro-mechanical-system technologies to integrate a new double-loop micromixer, two micropumps, and a microvalve on a single chip. When compared with large-scale synthesis systems with commonly-observed particle aggregation issues, successful synthesis of dispersed and uniform iron oxide nanoparticles has been observed within a shorter period of time (15 min). It was found that the size distribution of these iron oxide nanoparticles is superior to that of the large-scale systems without requiring any extra additives or heating. The size distribution had a variation of 16%. This is much lower than a comparable large-scale system (34%). The development of this microfluidic system is promising for the synthesis of nanoparticles for many future biomedical applications.

  17. High-throughput microfluidic device for single cell analysis using multiple integrated soft lithographic pumps.

    Science.gov (United States)

    Patabadige, Damith E W; Mickleburgh, Tom; Ferris, Lorin; Brummer, Gage; Culbertson, Anne H; Culbertson, Christopher T

    2016-05-01

    The ability to accurately control fluid transport in microfluidic devices is key for developing high-throughput methods for single cell analysis. Making small, reproducible changes to flow rates, however, to optimize lysis and injection using pumps external to the microfluidic device are challenging and time-consuming. To improve the throughput and increase the number of cells analyzed, we have integrated previously reported micropumps into a microfluidic device that can increase the cell analysis rate to ∼1000 cells/h and operate for over an hour continuously. In order to increase the flow rates sufficiently to handle cells at a higher throughput, three sets of pumps were multiplexed. These pumps are simple, low-cost, durable, easy to fabricate, and biocompatible. They provide precise control of the flow rate up to 9.2 nL/s. These devices were used to automatically transport, lyse, and electrophoretically separate T-Lymphocyte cells loaded with Oregon green and 6-carboxyfluorescein. Peak overlap statistics predicted the number of fully resolved single-cell electropherograms seen. In addition, there was no change in the average fluorescent dye peak areas indicating that the cells remained intact and the dyes did not leak out of the cells over the 1 h analysis time. The cell lysate peak area distribution followed that expected of an asynchronous steady-state population of immortalized cells.

  18. Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications.

    Science.gov (United States)

    Sticker, Drago; Rothbauer, Mario; Lechner, Sarah; Hehenberger, Marie-Therese; Ertl, Peter

    2015-12-21

    In this study we have investigated a photosensitive thermoset (OSTEMER 322-40) as a complementary material to readily fabricate complex multi-layered microdevices for applications in life science. Simple, versatile and robust fabrication of multifunctional microfluidics is becoming increasingly important for the development of customized tissue-, organ- and body-on-a-chip systems capable of mimicking tissue interfaces and biological barriers. In the present work key material properties including optical properties, vapor permeability, hydrophilicity and biocompatibility are evaluated for cell-based assays using fibroblasts, endothelial cells and mesenchymal stem cells. The excellent bonding strength of the OSTEMER thermoset to flexible fluoropolymer (FEP) sheets and poly(dimethylsiloxane) (PDMS) membranes further allows for the fabrication of integrated microfluidic components such as membrane-based microdegassers, microvalves and micropumps. We demonstrate the application of multi-layered, membrane-integrated microdevices that consist of up to seven layers and three membranes that specially confine and separate vascular cells from the epithelial barrier and 3D tissue structures.

  19. Ion transport through a charged cylindrical membrane pore contacting stagnant diffusion layers

    Science.gov (United States)

    Andersen, Mathias B.; Biesheuvel, P. M.; Bazant, Martin Z.; Mani, Ali

    2012-11-01

    Fundamental understanding of the ion transport in membrane systems by diffusion, electromigration and advection is important in widespread processes such as de-ionization by reverse osmosis and electrodialysis and electro-osmotic micropumps. Here we revisit the classical analysis of a single cylindrical pore, see e.g. Gross and Osterle [J Chem Phys 49, 228 (1968)]. We extend the analysis by including the well-established concept of contacting stagnant diffusion layers on either side of the pore; thus, the pore is not in direct equilibrium with the reservoirs. Inside the pore the ions are assumed to be in quasi-equilibrium in the radial direction with the surface charge on the pore wall and we obtain a 1D model by area-averaging. We demonstrate that in some extreme limits this model reduces to simpler models studied in the literature; see e.g. Yaroshchuk [J Membrane Sci 396, 43 (2012)]. Using our model we present predictions of important transport effects such as variation of transport numbers inside the membrane, onset of limiting current, and transient dynamics described by the method of characteristics.

  20. Key parameters controlling the performance of catalytic motors

    Science.gov (United States)

    Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David

    2016-03-01

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  1. Sequential spectrofluorimetric determination of free and total glycerol in biodiesel in a multicommuted flow system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei G. [Universidade de Sao Paulo, Instituto de Quimica, Sao Paulo (Brazil); Morales-Rubio, Angel; Guardia, Miguel de la [Universidad de Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain); Rocha, Fabio R.P. [Universidade de Sao Paulo, Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    2011-07-15

    A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L{sup -1} with a detection limit of 0.5 mg L{sup -1}, which corresponds to 2 mg kg{sup -1} in biodiesel. The coefficient of variation was 0.9% (20 mg L{sup -1}, n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L{sup -1}. The detection limit was 1.4 mg L{sup -1} (2.8 mg kg{sup -1} in biodiesel) with a coefficient of variation of 1.4% (200 mg L{sup -1}, n = 10). The sampling rate was ca. 35 samples h{sup -1} and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans. (orig.)

  2. Dielectric properties of polyacrylate thick films used in sensors and actuators

    Science.gov (United States)

    Jean-Mistral, C.; Sylvestre, A.; Basrour, S.; Chaillout, J.-J.

    2010-07-01

    Dielectric polymers are emerging electro-active materials used in high performance applications such as micropumps, robots and artificial muscles. The development of such applications requires the use of models taking into account the electrical parameters of the material. However, there is still some controversy over the dielectric constant of the most widely used dielectric polymer (VHB 4910, 3M, USA). In this paper, we present an exhaustive study relating to changes in the dielectric constant of VHB 4910 over wide frequency and temperature ranges. We found that the permittivity was a function of: frequency, temperature, the nature of the electrodes and the pre-stress applied to material. Mechanisms of dielectric polarization (β-relaxation) explain the behaviour in temperature and frequency of this parameter. The use of silver grease-compliant electrodes induces an increase in the dielectric constant which moves to a value of 5.4 (against 4.7 with gold electrodes). A pre-strain applied to the material shows a reduction up to 15% in the value of the dielectric constant. Short-range dipolar relaxation, local mechanical constraints in the material and a possible crystallization of material induced by the stretching are suggested to explain these behaviours. Analytic equations of the dielectric constant according to the temperature and pre-strain are then proposed and used to validate the behaviour of these materials for actuator and scavenger devices.

  3. Metal-coated microfluidic channels: An approach to eliminate streaming potential effects in nano biosensors.

    Science.gov (United States)

    Lee, Jieun; Wipf, Mathias; Mu, Luye; Adams, Chris; Hannant, Jennifer; Reed, Mark A

    2017-01-15

    We report a method to suppress streaming potential using an Ag-coated microfluidic channel on a p-type silicon nanowire (SiNW) array measured by a multiplexed electrical readout. The metal layer sets a constant electrical potential along the microfluidic channel for a given reference electrode voltage regardless of the flow velocity. Without the Ag layer, the magnitude and sign of the surface potential change on the SiNW depends on the flow velocity, width of the microfluidic channel and the device's location inside the microfluidic channel with respect to the reference electrode. Noise analysis of the SiNW array with and without the Ag coating in the fluidic channel shows that noise frequency peaks, resulting from the operation of a piezoelectric micropump, are eliminated using the Ag layer with two reference electrodes located at inlet and outlet. This strategy presents a simple platform to eliminate the streaming potential and can become a powerful tool for nanoscale potentiometric biosensors.

  4. Practical considerations for measuring hydrogen concentrations in groundwater

    Science.gov (United States)

    Chapelle, F.H.; Vroblesky, D.A.; Woodward, J.C.; Lovley, D.R.

    1997-01-01

    Several practical considerations for measuring concentrations of dissolved molecular hydrogen (H2) in groundwater including 1 sampling methods 2 pumping methods and (3) effects of well casing materials were evaluated. Three different sampling methodologies (a downhole sampler, a gas- stripping method, and a diffusion sampler) were compared. The downhole sampler and gas-stripping methods gave similar results when applied to the same wells, the other hand, appeared to The diffusion sampler, on overestimate H2 concentrations relative to the downhole sampler. Of these methods, the gas-stripping method is better suited to field conditions because it is faster (~ 30 min for a single analysis as opposed to 2 h for the downhole sampler or 8 h for the diffusion sampler), the analysis is easier (less sample manipulation is required), and the data computations are more straightforward (H2 concentrations need not be corrected for water sample volume). Measurement of H2 using the gas-stripping method can be affected by different pumping equipment. Peristaltic, piston, and bladder pumps all gave similar results when applied to water produced from the same well. It was observed, however, that peristaltic-pumped water (which draws water under a negative pressure) enhanced the gas-stripping process and equilibrated slightly faster than either piston or bladder pumps (which push water under a positive pressure). A direct current(dc) electrically driven submersible pump was observed to produce H2 and was not suitable for measuring H2 in groundwater. Measurements from two field sites indicate that iron or steel well casings, produce H2, which masks H2 concentrations in groundwater. PVC-cased wells or wells cased with other materials that do not produce H2 are necessary for measuring H2 concentrations in groundwater.Several practical considerations for measuring concentrations of dissolved molecular hydrogen in groundwater including sampling methods, pumping methods, and effects of

  5. Kinetic mechanism of inorganic scale plugging removal at near wellbore zone by high power ultrasonic technology%大功率超声波近井无机垢解堵的动力学机理

    Institute of Scientific and Technical Information of China (English)

    蒲春生; 饶鹏; 许洪星; 吴飞鹏

    2011-01-01

    Based on the theory of solid and liquid coupling wave mechanics, the micro-dynamical characteristics caused by the transport of ultrasonic in porous media at near wellbore zone, including the elastic deformation of rock, the elastic crossflow of pore fluid and frame solid, and fluid squirt-flow produced by pore elastic deformation, are analyzed. Analysis of kinetics of peristaltic difference of porosity radius in porous media is presented. The characteristics of the removal of inorganic scale particle in porous media by using ultrasonic technology are also studied. Besides, by applying high power ultrasonic technology, the acoustic energy gathering in porous media at near wellbore zone leading to fracture of part rocks is illustrated. According to these analyses, the micro-dynamical mechanisms, such as inorganic scale fragmentation, ultrasonic cavitations, ultrasonic friction, ultrasonic peristaltic transport and ultrasonic fracture-making, occurred in inorganic scale plugging removal by high power ultrasonic technology are proposed.%利用超声波在含流体储层多孔介质中传播的固/液耦合波动力学理论,大功率超声波解除近井带地层堵塞过程中,超声波在近井储层多孔介质中传播引起岩石骨架弹性形变、孔隙流体与骨架固体弹性错流和孔隙弹性变形引起流体挤压喷射流动等微观动力学特性;超声波作用引起储层多孔介质孔隙半径蠕动变化的动力学特征;超声波作用解除储层多孔介质中无机垢颗粒微观动力学特征;分析了大功率超声波作用下,近井带储层多孔介质中声能聚集引起岩石局部起裂的动力学特征.在此基础上,提出了大功率超声波解除无机结垢堵塞的无机垢体破碎作用、超声空化作用、超声摩擦作用、超声蠕动输运作用以及超声造缝作用等微观动力学机理.

  6. Specific hunger- and satiety-induced tuning of guinea pig enteric nerve activity.

    Science.gov (United States)

    Roosen, Lina; Boesmans, Werend; Dondeyne, Marjan; Depoortere, Inge; Tack, Jan; Vanden Berghe, Pieter

    2012-09-01

    Although hunger and satiety are mainly centrally regulated, there is convincing evidence that also gastrointestinal motor activity and hormone fluctuations significantly contribute to appetite signalling. In this study, we investigated how motility and enteric nerve activity are set by fasting and feeding. By means of video-imaging, we tested whether peristaltic activity differs in ex vivo preparations from fasted and re-fed guinea pigs. Ca(2+) imaging was used to investigate whether the feeding state directly alters neuronal activity, either occurring spontaneously or evoked by (an)orexigenic signalling molecules. We found that pressure-induced (2 cmH(2)O) peristaltic activity occurs at a higher frequency in ileal segments from re-fed animals (re-fed versus fasted, 6.12 ± 0.22 vs. 4.84 ± 0.52 waves min(-1), P = 0.028), even in vitro hours after death. Myenteric neuronal responses were tuned to the feeding status, since neurons in tissues from re-fed animals remained hyper-responsive to high K(+)-evoked depolarization (P < 0.001) and anorexigenic molecules (P < 0.001), while being less responsive to orexigenic ghrelin (P = 0.013). This illustrates that the feeding status remains ‘imprinted' ex vivo. We were able to reproduce this feeding state-related memory in vitro and found humoral feeding state-related factors to be implicated. Although the molecular link with hyperactivity is not entirely elucidated yet, glucose-dependent pathways are clearly involved in tuning neuronal excitability. We conclude that a bistable memory system that tunes neuronal responses to fasting and re-feeding is present in the enteric nervous system, increasing responses to depolarization and anorexigenic molecules in the re-fed state, while decreasing responses to orexigenic ghrelin. Unlike the hypothalamus, where specific cell populations sensitive to either orexigenic or anorexigenic molecules exist, the enteric feeding state-related memory system is present at the functional level

  7. A system for accurate and automated injection of hyperpolarized substrate with minimal dead time and scalable volumes over a large range

    Science.gov (United States)

    Reynolds, Steven; Bucur, Adriana; Port, Michael; Alizadeh, Tooba; Kazan, Samira M.; Tozer, Gillian M.; Paley, Martyn N. J.

    2014-02-01

    Over recent years hyperpolarization by dissolution dynamic nuclear polarization has become an established technique for studying metabolism in vivo in animal models. Temporal signal plots obtained from the injected metabolite and daughter products, e.g. pyruvate and lactate, can be fitted to compartmental models to estimate kinetic rate constants. Modeling and physiological parameter estimation can be made more robust by consistent and reproducible injections through automation. An injection system previously developed by us was limited in the injectable volume to between 0.6 and 2.4 ml and injection was delayed due to a required syringe filling step. An improved MR-compatible injector system has been developed that measures the pH of injected substrate, uses flow control to reduce dead volume within the injection cannula and can be operated over a larger volume range. The delay time to injection has been minimized by removing the syringe filling step by use of a peristaltic pump. For 100 μl to 10.000 ml, the volume range typically used for mice to rabbits, the average delivered volume was 97.8% of the demand volume. The standard deviation of delivered volumes was 7 μl for 100 μl and 20 μl for 10.000 ml demand volumes (mean S.D. was 9 ul in this range). In three repeat injections through a fixed 0.96 mm O.D. tube the coefficient of variation for the area under the curve was 2%. For in vivo injections of hyperpolarized pyruvate in tumor-bearing rats, signal was first detected in the input femoral vein cannula at 3-4 s post-injection trigger signal and at 9-12 s in tumor tissue. The pH of the injected pyruvate was 7.1 ± 0.3 (mean ± S.D., n = 10). For small injection volumes, e.g. less than 100 μl, the internal diameter of the tubing contained within the peristaltic pump could be reduced to improve accuracy. Larger injection volumes are limited only by the size of the receiving vessel connected to the pump.

  8. A system for accurate and automated injection of hyperpolarized substrate with minimal dead time and scalable volumes over a large range☆

    Science.gov (United States)

    Reynolds, Steven; Bucur, Adriana; Port, Michael; Alizadeh, Tooba; Kazan, Samira M.; Tozer, Gillian M.; Paley, Martyn N.J.

    2014-01-01

    Over recent years hyperpolarization by dissolution dynamic nuclear polarization has become an established technique for studying metabolism in vivo in animal models. Temporal signal plots obtained from the injected metabolite and daughter products, e.g. pyruvate and lactate, can be fitted to compartmental models to estimate kinetic rate constants. Modeling and physiological parameter estimation can be made more robust by consistent and reproducible injections through automation. An injection system previously developed by us was limited in the injectable volume to between 0.6 and 2.4 ml and injection was delayed due to a required syringe filling step. An improved MR-compatible injector system has been developed that measures the pH of injected substrate, uses flow control to reduce dead volume within the injection cannula and can be operated over a larger volume range. The delay time to injection has been minimized by removing the syringe filling step by use of a peristaltic pump. For 100 μl to 10.000 ml, the volume range typically used for mice to rabbits, the average delivered volume was 97.8% of the demand volume. The standard deviation of delivered volumes was 7 μl for 100 μl and 20 μl for 10.000 ml demand volumes (mean S.D. was 9 ul in this range). In three repeat injections through a fixed 0.96 mm O.D. tube the coefficient of variation for the area under the curve was 2%. For in vivo injections of hyperpolarized pyruvate in tumor-bearing rats, signal was first detected in the input femoral vein cannula at 3–4 s post-injection trigger signal and at 9–12 s in tumor tissue. The pH of the injected pyruvate was 7.1 ± 0.3 (mean ± S.D., n = 10). For small injection volumes, e.g. less than 100 μl, the internal diameter of the tubing contained within the peristaltic pump could be reduced to improve accuracy. Larger injection volumes are limited only by the size of the receiving vessel connected to the pump. PMID:24355621

  9. 猪急性颅高压损伤模型的病理生理及超微结构改变%Pathophysiological and ultrastructural changes in porcine model of acute intracranial hypertension brain injury

    Institute of Scientific and Technical Information of China (English)

    吴伟; 成惠林; 杭春华; 史继新; 印红霞; 吴晋荣; 黎介寿

    2012-01-01

    目的 观察猪急性颅高压损伤模型的病理生理变化及超微结构改变.方法 选用中型猪5只,采用微量泵注射自体动脉血法建立急性颅高压损伤控制模型,模型制备过程中及制备后2h持续监测颅内压、平均动脉压变化,注血后2h行头部CT扫描,24 h取脑行大体切片,苏木精-伊红染色光镜观察组织学病理改变、超微电镜观察受损神经元的超微结构改变.结果 注血后颅内压、平均动脉压均明显上升,最高分别达(51.2±2.5) mmHg和(152.7±12.8) mmHg,颅内压升至约50 mmHg时,出现呼吸、心率改变;头部CT扫描、大体切片均显示脑内血肿形成;电镜检查显示血肿区神经元肿胀,胞质内细胞器数量减少,线粒体肿胀,嵴排列不整齐,粗面内质网颗粒扩张,血管内皮细胞肿胀,基膜不完整,血管周围可见明显水肿带.结论 采用微量泵注射自体动脉血法可建立稳定、可靠的猪急性颅高压损伤控制模型.%Objective To observe the pathophysiological and ultrastructural changes in the porcine model of acute intracranial hypertension brain injury. Methods Autologous arterial blood was injected into the brain in 5 middle-weighted pigs by micro-pump for establishing the brain injury model due to acute intracranial hypertension. And the change of intracranial pressure (ICP) and mean arterial pressure (MAP) were monitored. CT scanning was performed 2 h after blood injection. After H&E staining, histological changes were observed under light microscope and ultrastructural changes under electron microscope. Results ICP and MAP significantly increased after the blood injection, and the peak reached 51.2 ± 2.5 mmHg and 152.7 ± 12.8 mmHg respectively. The porcine respiration and heart rate changed when the ICP increased to about 50 mmHg. CT scanning and pathological examination all showed the brain hematoma formed. Electron microscope examination showed that the neuronal swelling in hematoma area

  10. 重症低钾血症患者快速补钾的临床观察和护理%Clinical Observation and Nursing of Patients with Severe Hypokalemia Rapid Potassium

    Institute of Scientific and Technical Information of China (English)

    马鹤星

    2014-01-01

    目的探讨快速静脉补钾及安全护理治疗危重患者低钾血症的可行性。方法我院重症医学科2009年7月~2014年1月共收治98例重症低钾血症患者,在治疗原发病基础上,给予微量泵中心静脉推注1%的氯化钾溶液,速度为1.0~1.5g/h,同时给予安全护理,包括:尿量、动态血钾监测、心电监护、血气分析监测、抢救物品准备及心理干预,回顾性分析98例患者的临床疗效。结果98例中92例血钾于24h内上升至正常值(93.9%);6例出现反复,但继续接受上述治疗后于48h内纠正;所有患者均未因补钾发生不良反应。结论在保证安全护理条件下给予微量泵静脉快速补钾,疗效好且安全,适合于危重患者低钾血症的治疗。%Objective To explore the ef ect of rapid intravenous supplement of potassium and nursing care on patients with hypokalemia. Methods 98 patients with severe hypokalemia received from July 2009 to January 2014 were chosen. Based on the treatment of primary disease, intravenous injection of 1% potassium chloride solution was given by the micro-pump with speed of 1.0~1.5g/h. Besides, nursing care including urine, serum potassium dynamic monitoring, ECG monitor, blood gas analysis and monitoring, rescue items ready and psychological intervention were applied. The clinical ef icacy of 98 patients was retrospective analysed. Results Level of serum potassium of 92 cases rised to normal within 24 hours (93.9%) while that of 6 cases repeated which rised to normal within 48 hours after treatment. No patients showed adverse reactions due to potassium supplement. Conclusion In the guarantee of safe nursing care, rapid intravenous supplement of potassium by the micro-pump showed good curative ef ect and safety, suggesting a promising expectation for severe patients with hypokalemia.

  11. Application and nursing experience on treatment of infant with severe pneumonia%婴幼儿重症肺炎的治疗方法应用与护理体会

    Institute of Scientific and Technical Information of China (English)

    舒小玲; 闵利

    2014-01-01

    目的:探讨应用酚妥拉明联合多巴胺治疗婴幼儿重症肺炎并发心衰的方法、疗效、副作用观察与护理。方法:将98例婴幼儿重症肺炎并发心衰的患儿随机分为2组。对照组按酚妥拉明5~10μg/(kg.min),多巴胺3~5μg/(kg.min)溶于10%葡萄糖20~30 ml中微量泵2~3小时输注完毕,每天1~2次,连用3~5天为1个疗程。实验组给酚妥拉明2~10μg/(kg.min),多巴胺各1~5μg/(kg.min),溶于10%葡萄糖20~30ml中微量泵持续泵入24小时,后根据病情调整药物剂量和持续时间并逐渐改为持续泵入12小时;8小时;6小时直至停药。结果:实验组总有效率96%,无明显副作用。对照组总有效率86%,副作用明显,P﹤0.05。结论:酚妥拉明联合多巴胺持续微量泵泵入治疗婴幼儿重症肺炎并发心衰的疗效较好,副作用小,临床应用疗效确切,值得推广使用。%Objective:To investigate the efficacy and side effects of the treatment of infants with severe pneumonia complicated heart failure by continuous micro-pump the phentolamine united dopamine .Methods:98 cases of infants with severe pneumonia complicated by heart failure were randomly divided into two groups .Control group: phentolamine 5 ~10μg /(kg.minutes), dopamine 3 ~5μg /(kg.minutes) Add into 20-30 ml of 10%glucose infusion by micro -pump in 2-3 hours, 1-2 times a day for 3 to 5 days ,which is a course of treatment.Experimental group:phentolamine 2 ~10μg /(kg.minutes), dopamine 1 ~5μg /(kg.minutes), dissolved in 20-30ml 10%glucose by micro-pump for continuous infusion 24 hours, and the drug be adjusted according to the disease ,duration gradually replaced by continuous infusion of 12 hours;8 hours;6 hours until the withdrawal .Results:The total efficiency of experimental group was 96%, no significant side effects.The control group, the total efficiency of 86%, obviously side effects, P <0.05.Conclu

  12. THEORY AND MACHINERY ON CURVED ROBOT%曲线轮廓机器人及其结构设计

    Institute of Scientific and Technical Information of China (English)

    李银胜; 张和明; 金万敏

    2000-01-01

    As a type of bionic robot with distinct construct and inventive concept, it can transfer gravity,which is usually an obstacle in other mechanics, to be a propelling force by taking advantage of dynamicinterference force and such forces as those between linkage and ground surface. Moreover, the robot canimitate animals to fall down, stand up without shock, move peristaltically and ascend a step. These functionshave important sense. The paper discusses its moving theory and mechanics.%曲线轮廓三杆机器人是一种形状独特、概念新颖的仿生机器人.利用激振及杆与杆、杆与地面之间的作用力,它将常规机器人机构视为阻力的重力转化为驱动力,并可模仿动物进行不受冲击的转倒、起立以及蠕动、爬台阶等多项运动,具有积极的意义.本文对它的结构、运动原理和运动学设计进行了讨论.

  13. Rett syndrome and gastric perforation.

    Science.gov (United States)

    Shah, Malay B; Bittner, James G; Edwards, Michael A

    2008-04-01

    Rett Syndrome is associated with decreased peristaltic esophageal waves and gastric dysmotility, resulting in swallowing difficulties and gastric dilation. Rarely, gastric necrosis and perforation occur. Our case represents the third reported case of gastric necrosis and perforation associated with Rett Syndrome. A 31-year-old female after 11 hours of intermittent emesis and constant, sharp abdominal pain presented with evidence of multiorgan system failure including hypovolemic shock, metabolic acidosis, coagulopathy, and hepatorenal failure. A chest radiograph revealed intra-abdominal free air necessitating emergent laparotomy. During exploration, a severely dilated, thin-walled stomach with an area of necrosis and gross perforation was noted. Wedge resection of the necrotic tissue and primary closure were performed. Despite aggressive perioperative resuscitation and ventilation support, the patient died 3 hours postoperatively secondary to refractory shock and hypoxemia. Severe gastric dilation can occur with Rett Syndrome and may cause gastric necrosis and perforation. Prolonged elevated gastric pressures can decrease perfusion and may contribute to perforation. Timely decompression via percutaneous endoscopic or surgical gastrostomy could decrease the risk of perforation particularly when significant gastric distention is present. Consideration of gastric necrosis and perforation in patients with Rett Syndrome may lead to earlier intervention and decreased mortality.

  14. Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube

    Science.gov (United States)

    Akbar, Noreen Sher; Abid, Syed Ali; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2017-03-01

    The transport of single-wall carbon nanotube (CNT) nanofluids with temperature-dependent variable viscosity is analyzed by peristaltically driven flow. The main flow problem has been modeled using cylindrical coordinates and flow equations are simplified to ordinary differential equations using long wavelength and low Reynolds' number approximation. Analytical solutions have been obtained for axial velocity, pressure gradient and temperature. Results acquired are discussed graphically for better understanding. It is observed that with an increment in the Grashof number the velocity of the governing fluids starts to decrease significantly and the pressure gradient is higher for pure water as compared to single-walled carbon nanotubes due to low density. As the specific heat is very high for pure water as compared to the multi-wall carbon nanotubes, it raises temperature of the muscles, in the case of pure water, as compared to the multi-walled carbon nanotubes. Furthermore, it is noticed that the trapped bolus starts decreasing in size as the buoyancy forces are dominant as compared to viscous forces. This model may be applicable in biomedical engineering and nanotechnology to design the biomedical devices.

  15. Preferential entry of botulinum neurotoxin A Hc domain through intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine.

    Directory of Open Access Journals (Sweden)

    Aurélie Couesnon

    Full Text Available Botulism, characterized by flaccid paralysis, commonly results from botulinum neurotoxin (BoNT absorption across the epithelial barrier from the digestive tract and then dissemination through the blood circulation to target autonomic and motor nerve terminals. The trafficking pathway of BoNT/A passage through the intestinal barrier is not yet fully understood. We report that intralumenal administration of purified BoNT/A into mouse ileum segment impaired spontaneous muscle contractions and abolished the smooth muscle contractions evoked by electric field stimulation. Entry of BoNT/A into the mouse upper small intestine was monitored with fluorescent HcA (half C-terminal domain of heavy chain which interacts with cell surface receptor(s. We show that HcA preferentially recognizes a subset of neuroendocrine intestinal crypt cells, which probably represent the entry site of the toxin through the intestinal barrier, then targets specific neurons in the submucosa and later (90-120 min in the musculosa. HcA mainly binds to certain cholinergic neurons of both submucosal and myenteric plexuses, but also recognizes, although to a lower extent, other neuronal cells including glutamatergic and serotoninergic neurons in the submucosa. Intestinal cholinergic neuron targeting by HcA could account for the inhibition of intestinal peristaltism and secretion observed in botulism, but the consequences of the targeting to non-cholinergic neurons remains to be determined.

  16. On the flow through the normal fetal aortic arc at late gestation

    Science.gov (United States)

    Pekkan, Kerem; Nourparvar, Paymon; Yerneni, Srinivasu; Dasi, Lakshmi; de Zelicourt, Diane; Fogel, Mark; Yoganathan, Ajit

    2006-11-01

    During the fetal stage, the aortic arc is a complex junction of great vessels (right and left ventricular outflow tracks (RVOT, LVOT), pulmonary arteries (PA), ductus, head-neck vessels, decending aorta (Dao)) delicately distributing the oxygenated blood flow to the lungs and the body -preferential to the brain. Experimental and computational studies are performed in idealized models of the fetal aorta to understand and visualize the unsteady hemodynamics. Unsteady in vitro flow, generated by two peristaltic pumps (RVOT and LVOT) is visualized with two colored dyes and a red laser in a rigid glass model with physiological diameters. Helical flow patterns at the PA's and ductal shunting to the Dao are visualized. Computational fluid dynamics of the same geometry is modeled using the commercial code Fidap with porous boundary conditions representing systemic and pulmonary resistances (˜400000 tetrahedral elements). Combined (RVOT+LVOT) average flow rates ranging from 1.9 to 2.1-L/min for 34 to 38-weeks gestation were simulated with the Reynolds and Womersly numbers (Dao) of 500 and 8. Computational results are compared qualitatively with the flow visualizations at this target flow condition. Understanding fetal hemodynamics is critical for congenital heart defects, tissue engineering, fetal cardiac MRI and surgeries.

  17. A thin-film aluminum strain gauges array in a flexible gastrointestinal catheter for pressure measurements

    Science.gov (United States)

    Sousa, P. J.; Silva, L. R.; Pinto, V. C.; Goncalves, L. M.; Minas, G.

    2016-08-01

    This paper presents an innovative approach to measure the pressure patterns associated with the motility and peristaltic movements in the upper gastrointestinal tract. This approach is based on inexpensive and easy to fabricate thin-film aluminum strain gauge pressure sensors using a flexible polyimide film (Kapton) as substrate and SU-8 structural support. These sensors are fabricated using well-established and standard photolithographic and wet etching techniques. Each sensor has a 3.4 mm2 area, allowing a fabrication process with a high level of sensors integration (four sensors in 1.7 cm), which is suitable for placing them in a single catheter. These strain gauges bend when pressure is applied and, consequently, their electrical resistance is changed. The fabricated sensors feature an almost linear response (R 2  =  0.9945) and an overall sensitivity of 6.4 mV mmHg-1. Their readout and control electronics were developed in a flexible Kapton ribbon cable and, together with the sensors, bonded and wrapped around a catheter-like structure. The sequential acquisition of the different signals is carried by a microcontroller with a 10 bit ADC at a sample rate of 250 Hz per-1 sensor. The signals are presented in a user friendly interface developed using the integrated development environment software, QtCreator IDE, for better visualization by physicians.

  18. Low-cost microcontroller platform for studying lymphatic biomechanics in vitro.

    Science.gov (United States)

    Kornuta, Jeffrey A; Nipper, Matthew E; Dixon, J Brandon

    2013-01-04

    The pumping innate to collecting lymphatic vessels routinely exposes the endothelium to oscillatory wall shear stress and other dynamic forces. However, studying the mechanical sensitivity of the lymphatic endothelium remains a difficult task due to limitations of commercial or custom systems to apply a variety of time-varying stresses in vitro. Current biomechanical in vitro testing devices are very expensive, limited in capability, or highly complex; rendering them largely inaccessible to the endothelial cell biology community. To address these shortcomings, the authors propose a reliable, low-cost platform for augmenting the capabilities of commercially available pumps to produce a wide variety of flow rate waveforms. In particular, the Arduino Uno, a microcontroller development board, is used to provide open-loop control of a digital peristaltic pump using precisely timed serial commands. In addition, the flexibility of this platform is further demonstrated through its support of a custom-built cell-straining device capable of producing oscillatory strains with varying amplitudes and frequencies. Hence, this microcontroller development board is shown to be an inexpensive, precise, and easy-to-use tool for supplementing in vitro assays to quantify the effects of biomechanical forces on lymphatic endothelial cells.

  19. CT enterography: technical and interpretive pitfalls.

    Science.gov (United States)

    Barlow, John M; Goss, Brian C; Hansel, Stephanie L; Kolbe, Amy B; Rackham, Joshua L; Bruining, David H; Fletcher, Joel G

    2015-06-01

    CT enterography is a first-line test at many institutions to investigate potential small bowel disorders. While numerous articles have focused on the ability of CT enterography to diagnose and stage Crohn's disease, small bowel neoplasia, and malabsorptive or vascular disorders, this article reviews CT enterography limitations, technical and interpretive pitfalls, image review tactics, and complementary radiologic and endoscopic examinations to improve diagnostic accuracy. CT enterography limitations include its inability to demonstrate isolated mucosal abnormalities such as aphthous ulcers and its use of ionizing radiation. The most common technical pitfall of CT enterography is inadequate small bowel distention resulting from inadequate ingestion, gastric retention, or rapid small bowel transit of a large volume of neutral enteric contrast material. Additionally, segments of jejunum are frequently collapsed. Interpretive pitfalls commonly result from peristaltic contractions, transient intussusception and opaque intraluminal debris. Opaque debris is especially problematic during multiphasic CT enterography performed to identify potential small bowel sources of obscure gastrointestinal bleeding. False-negative examinations may result from inadequate radiation dose. Examinations complementary to CT enterography include small bowel follow through, enteroclysis, CT enteroclysis, MR enterography, MR enteroclysis, capsule endoscopy, and balloon-assisted endoscopy. Properly performed and accurately interpreted CT enterography contributes to the diagnosis and management of small bowel disease by itself and as a complement to other radiologic and optical small bowel imaging examinations.

  20. Colloidal Iron, Aluminum, and DOC/DON in Surface Waters of the Northwest Pacific: Results from the 2002 NSF/IOC Cruise

    Science.gov (United States)

    Sonke, J.; Landing, W. M.

    2002-12-01

    Over 70 surface seawater samples were collected on the 2002 NSF/IOC cruise between Japan and Hawaii using a towed "fish" peristaltic pump trace-metals clean sampling system. Samples for total dissolved Fe and AL were filtered using 0.2 um cartridge filters. Colloidal Fe and Al were isolated using a Millipore PrepScale 1 kDa regenerated cellulose tangential flow ultrafiltration device. Concentration factors were 8-10. Aluminum concentrations were measured using the lumogallion fluorometric technique; Fe concentrations were measured by Fe-57 isotope dilution with a Finnegan Element high-resolution magnetic sector ICPMS. Total dissolved Fe concentrations ranged from 0.2 to 0.6 nM and were weakly correlated with atmospheric Fe deposition (calculated from aerosol Fe concentrations). Colloidal Fe ranged from 10-60 percent of the total dissolved Fe and appeared to be related to atmospheric input and biological activity. We will discuss the relationships between the concentrations of particulate, dissolved and colloidal Fe, Al, and DOC/DON and the intertwined effects of atmospheric input, complexation by natural ligands, and physical dilution into the mixed layer.