WorldWideScience

Sample records for canopy tree species

  1. Are temperate canopy spiders tree-species specific?

    Science.gov (United States)

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  2. Impact of Canopy Coupling on Canopy Average Stomatal Conductance Across Seven Tree Species in Northern Wisconsin

    Science.gov (United States)

    Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.

    2001-12-01

    Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality

  3. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Science.gov (United States)

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  4. Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2017-04-01

    Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site

  5. Estimating tree species diversity in the savannah using NDVI and woody canopy cover

    Science.gov (United States)

    Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo; Naidoo, Laven

    2018-04-01

    Remote sensing applications in biodiversity research often rely on the establishment of relationships between spectral information from the image and tree species diversity measured in the field. Most studies have used normalized difference vegetation index (NDVI) to estimate tree species diversity on the basis that it is sensitive to primary productivity which defines spatial variation in plant diversity. The NDVI signal is influenced by photosynthetically active vegetation which, in the savannah, includes woody canopy foliage and grasses. The question is whether the relationship between NDVI and tree species diversity in the savanna depends on the woody cover percentage. This study explored the relationship between woody canopy cover (WCC) and tree species diversity in the savannah woodland of southern Africa and also investigated whether there is a significant interaction between seasonal NDVI and WCC in the factorial model when estimating tree species diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed tree species in 68 plots of 90 m × 90 m across the study area. Within each plot, all trees with diameter at breast height of >10 cm were sampled and Shannon index - a common measure of species diversity which considers both species richness and abundance - was used to quantify tree species diversity. We then extracted WCC in each plot from existing fractional woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial regression model was used to determine the interaction effect between NDVI and WCC when estimating tree species diversity. Results from regression analysis showed that (i) WCC has a highly significant relationship with tree species diversity (r2 = 0.21; p NDVI and WCC is not significant, however, the factorial model significantly reduced the error of prediction (RMSE = 0.47, p NDVI (RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result justifies our assertion

  6. Phylogenetic Structure of Tree Species across Different Life Stages from Seedlings to Canopy Trees in a Subtropical Evergreen Broad-Leaved Forest.

    Science.gov (United States)

    Jin, Yi; Qian, Hong; Yu, Mingjian

    2015-01-01

    Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.

  7. NLCD 2001 - Tree Canopy

    Data.gov (United States)

    Minnesota Department of Natural Resources — The National Land Cover Database 2001 tree canopy layer for Minnesota (mapping zones 39-42, 50-51) was produced through a cooperative project conducted by the...

  8. THE CANOPY EFFECTS OF Prosopis juliflora (DC. AND Acacia tortilis (HAYNE TREES ON HERBACEOUS PLANTS SPECIES AND SOIL PHYSICO-CHEMICAL PROPERTIES IN NJEMPS FLATS, KENYA

    Directory of Open Access Journals (Sweden)

    Henry C. Kahi

    2009-03-01

    Full Text Available The canopy effects of an exotic and indigenous tree species on soil properties and understorey herbaceous plant species were investigated on the Njemps Flats, Baringo district, Kenya. Samples of soil and herbaceous plant species were obtained within the canopies of systematically selected P. juliflora (exotic and A. tortilis (indigenous trees, and from adjacent open areas. Standing biomass, frequency and cover of understorey plant species were significantly (P

  9. Estimating tree species diversity in the savannah using NDVI and woody canopy cover

    CSIR Research Space (South Africa)

    Madonsela, Sabelo

    2018-04-01

    Full Text Available Remote sensing applications in biodiversity research often rely on the establishment of relationships between spectral information from the image and tree species diversity measured in the field. Most studies have used normalized difference...

  10. Estimation of miniature forest parameters, species, tree shape, and distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model

    International Nuclear Information System (INIS)

    Ding, Y.; Arai, K.

    2007-01-01

    A method for estimation of forest parameters, species, tree shape, distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model is proposed. The model is verified through experiments with the miniature model of forest, tree array of relatively small size of trees. Two types of miniature trees, ellipse-looking and cone-looking canopy are examined in the experiments. It is found that the proposed model and experimental results show a coincidence so that the proposed method is validated. It is also found that estimation of tree shape, trunk tree distance as well as distinction between deciduous or coniferous trees can be done with the proposed model. Furthermore, influences due to multiple reflections between trees and interaction between trees and under-laying grass are clarified with the proposed method

  11. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.

    1992-01-01

    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  12. Canopy gaps decrease microbial densities and disease risk for a shade-intolerant tree species

    Science.gov (United States)

    Kurt O. Reinhart; Alejandro A. Royo; Stacie A. Kageyama; Keith. Clay

    2010-01-01

    Canopy disturbances such as windthrowevents have obvious impacts on forest structure and composition aboveground, but changes in soil microbial communities and the consequences of these changes are less understood.We characterized the densities of a soil-borne pathogenic oomycete (Pythium) and a common saprotrophic zygomycete (Mortierella...

  13. Tree diversity and canopy cover in cocoa systems in Ghana

    DEFF Research Database (Denmark)

    Asare, Richard; Ræbild, Anders

    2016-01-01

    Cocoa (Theobroma cacao L.) growing systems in Ghana and West Africa consist of diverse tree species and densities.This study was conducted to determine factors that influence tree species configurations and how tree characteristics affect canopy cover in cocoa farms. Eighty-six farmers...

  14. Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position.

    Directory of Open Access Journals (Sweden)

    Albert Gargallo-Garriga

    Full Text Available Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes.We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation. The saplings of the large canopy species, Tetragastris panamensis, had the lowest concentrations of all identified amino acids and the highest concentrations of most identified secondary compounds. The saplings of the "mid canopy" species, Alseis blackiana, had the highest concentrations of amino acids coming from the biosynthesis pathways of glycerate-3P, oxaloacetate and α-ketoglutarate, and the saplings of the low canopy species, Heisteria concinna, had the highest concentrations of amino acids coming from the pyruvate synthesis pathways.The changes in metabolome provided strong evidence that different nutrients limit different species in different ways. With increasing P availability, the two canopy species shifted their metabolome towards larger investment in protection mechanisms, whereas with increasing N availability, the sub-canopy species increased its primary metabolism. The results highlighted the proportional distinct use of different nutrients by different species and the resulting different metabolome profiles in this high diversity community are consistent with the ecological niche theory.

  15. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability.

    Science.gov (United States)

    Suárez Salazar, Juan Carlos; Ngo Bieng, Marie Ange; Melgarejo, Luz Marina; Di Rienzo, Julio A; Casanoves, Fernando

    2018-01-01

    We present a typology of cacao agroforest systems in Colombian Amazonia. These systems had yet to be described in the literature, especially their potential in terms of biodiversity conservation. The systems studied are located in a post-conflict area, and a deforestation front in Colombian Amazonia. Cacao cropping systems are of key importance in Colombia: cacao plays a prime role in post conflict resolution, as cacao is a legal crop to replace illegal crops; cacao agroforests are expected to be a sustainable practice, promoting forest-friendly land use. We worked in 50 x 2000 m2 agroforest plots, in Colombian Amazonia. A cluster analysis was used to build a typology based on 28 variables characterised in each plot, and related to diversity, composition, spatial structure and light availability for the cacao trees. We included variables related to light availability to evaluate the amount of transmitted radiation to the cacao trees in each type, and its suitability for cacao ecophysiological development. We identified 4 types of cacao agroforests based on differences concerning tree species diversity and the impact of canopy spatial structure on light availability for the cacao trees in the understorey. We found 127 tree species in the dataset, with some exclusive species in each type. We also found that 3 out of the 4 types identified displayed an erosion of tree species diversity. This reduction in shade tree species may have been linked to the desire to reduce shade, but we also found that all the types described were compatible with good ecophysiological development of the cacao trees. Cacao agroforest systems may actually be achieving biodiversity conservation goals in Colombian Amazonia. One challenging prospect will be to monitor and encourage the conservation of tree species diversity in cacao agroforest systems during the development of these cropping systems, as a form of forest-friendly management enhancing sustainable peace building in Colombia.

  16. First typology of cacao (Theobroma cacao L.) systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability

    Science.gov (United States)

    Suárez Salazar, Juan Carlos; Melgarejo, Luz Marina; Di Rienzo, Julio A.; Casanoves, Fernando

    2018-01-01

    Aim and background We present a typology of cacao agroforest systems in Colombian Amazonia. These systems had yet to be described in the literature, especially their potential in terms of biodiversity conservation. The systems studied are located in a post-conflict area, and a deforestation front in Colombian Amazonia. Cacao cropping systems are of key importance in Colombia: cacao plays a prime role in post conflict resolution, as cacao is a legal crop to replace illegal crops; cacao agroforests are expected to be a sustainable practice, promoting forest-friendly land use. Material and methods We worked in 50 x 2000 m2 agroforest plots, in Colombian Amazonia. A cluster analysis was used to build a typology based on 28 variables characterised in each plot, and related to diversity, composition, spatial structure and light availability for the cacao trees. We included variables related to light availability to evaluate the amount of transmitted radiation to the cacao trees in each type, and its suitability for cacao ecophysiological development. Main results We identified 4 types of cacao agroforests based on differences concerning tree species diversity and the impact of canopy spatial structure on light availability for the cacao trees in the understorey. We found 127 tree species in the dataset, with some exclusive species in each type. We also found that 3 out of the 4 types identified displayed an erosion of tree species diversity. This reduction in shade tree species may have been linked to the desire to reduce shade, but we also found that all the types described were compatible with good ecophysiological development of the cacao trees. Main conclusions and prospects Cacao agroforest systems may actually be achieving biodiversity conservation goals in Colombian Amazonia. One challenging prospect will be to monitor and encourage the conservation of tree species diversity in cacao agroforest systems during the development of these cropping systems, as a form of

  17. First typology of cacao (Theobroma cacao L. systems in Colombian Amazonia, based on tree species richness, canopy structure and light availability.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Suárez Salazar

    Full Text Available We present a typology of cacao agroforest systems in Colombian Amazonia. These systems had yet to be described in the literature, especially their potential in terms of biodiversity conservation. The systems studied are located in a post-conflict area, and a deforestation front in Colombian Amazonia. Cacao cropping systems are of key importance in Colombia: cacao plays a prime role in post conflict resolution, as cacao is a legal crop to replace illegal crops; cacao agroforests are expected to be a sustainable practice, promoting forest-friendly land use.We worked in 50 x 2000 m2 agroforest plots, in Colombian Amazonia. A cluster analysis was used to build a typology based on 28 variables characterised in each plot, and related to diversity, composition, spatial structure and light availability for the cacao trees. We included variables related to light availability to evaluate the amount of transmitted radiation to the cacao trees in each type, and its suitability for cacao ecophysiological development.We identified 4 types of cacao agroforests based on differences concerning tree species diversity and the impact of canopy spatial structure on light availability for the cacao trees in the understorey. We found 127 tree species in the dataset, with some exclusive species in each type. We also found that 3 out of the 4 types identified displayed an erosion of tree species diversity. This reduction in shade tree species may have been linked to the desire to reduce shade, but we also found that all the types described were compatible with good ecophysiological development of the cacao trees.Cacao agroforest systems may actually be achieving biodiversity conservation goals in Colombian Amazonia. One challenging prospect will be to monitor and encourage the conservation of tree species diversity in cacao agroforest systems during the development of these cropping systems, as a form of forest-friendly management enhancing sustainable peace building in

  18. Species Turnover across Different Life Stages from Seedlings to Canopy Trees in Swamp Forests of Central Brazil

    Directory of Open Access Journals (Sweden)

    Clarissa G. Fontes

    2015-01-01

    Full Text Available Processes driving the assembly of swamp forest communities have been poorly explored. We analyzed natural regeneration and adult tree communities data of a swamp gallery forest in Central Brazil to discuss the role of ecological filters in shaping plant species turnover in a successional gradient. Species data of 120 plots were used to assess species turnover between natural regeneration and adult tree communities. Our analyses were based on 4995 individuals belonging to 72 species. Community patterns were discerned using ordination analyses. A clear floristic turnover among plant life stages was distinguished. Regeneration community of swamp forests was richer in species composition than the adult community. Tree species commonly found in nonflooded gallery forests were present in the regeneration plots but not in the adult community. Differences in the floristic composition of these two strata suggest that not all species in the seedling stage can stand permanent flooding conditions and only a few tolerant species survive to become adult trees. We propose that natural disturbances play an important role by altering limiting resources, allowing seeds of nonflooded forest species to germinate. This paper elucidates the turnover between plant life stages in swamp forests and suggests mechanisms that may shape these communities.

  19. Spectral mapping of savanna tree species at canopy level, with focus on tall trees, using an integrated CAO Hyperspectral & LiDAR sensor approach

    CSIR Research Space (South Africa)

    Naidoo, L

    2010-03-01

    Full Text Available The detection and mapping of tree/plant species in the savanna ecosystem can provide numerous benefits for the managerial authorities. This includes the accurate mapping of the spatial distribution of economically viable trees which are a key source...

  20. [Distribution patterns of canopy and understory tree species at local scale in a Tierra Firme forest, the Colombian Amazonia].

    Science.gov (United States)

    Barreto-Silva, Juan Sebastian; López, Dairon Cárdenas; Montoya, Alvaro Javier Duque

    2014-03-01

    The effect of environmental variation on the structure of tree communities in tropical forests is still under debate. There is evidence that in landscapes like Tierra Firme forest, where the environmental gradient decreases at a local level, the effect of soil on the distribution patterns of plant species is minimal, happens to be random or is due to biological processes. In contrast, in studies with different kinds of plants from tropical forests, a greater effect on floristic composition of varying soil and topography has been reported. To assess this, the current study was carried out in a permanent plot of ten hectares in the Amacayacu National Park, Colombian Amazonia. To run the analysis, floristic and environmental variations were obtained according to tree species abundance categories and growth forms. In order to quantify the role played by both environmental filtering and dispersal limitation, the variation of the spatial configuration was included. We used Detrended Correspondence Analysis and Canonical Correspondence Analysis, followed by a variation partitioning, to analyze the species distribution patterns. The spatial template was evaluated using the Principal Coordinates of Neighbor Matrix method. We recorded 14 074 individuals from 1 053 species and 80 families. The most abundant families were Myristicaceae, Moraceae, Meliaceae, Arecaceae and Lecythidaceae, coinciding with other studies from Northwest Amazonia. Beta diversity was relatively low within the plot. Soils were very poor, had high aluminum concentration and were predominantly clayey. The floristic differences explained along the ten hectares plot were mainly associated to biological processes, such as dispersal limitation. The largest proportion of community variation in our dataset was unexplained by either environmental or spatial data. In conclusion, these results support random processes as the major drivers of the spatial variation of tree species at a local scale on Tierra Firme

  1. Persistence of long-distance, insect-mediated pollen movement for a tropical canopy tree species in remnant forest patches in an urban landscape.

    Science.gov (United States)

    Noreen, A M E; Niissalo, M A; Lum, S K Y; Webb, E L

    2016-12-01

    As deforestation and urbanization continue at rapid rates in tropical regions, urban forest patches are essential repositories of biodiversity. However, almost nothing is known about gene flow of forest-dependent tree species in urban landscapes. In this study, we investigated gene flow in the insect-pollinated, wind-dispersed tropical tree Koompassia malaccensis in and among three remnant forest patches in the urbanized landscape of Singapore. We genotyped the vast majority of adults (N=179) and a large number of recruits (N=2103) with 8 highly polymorphic microsatellite markers. Spatial genetic structure of the recruit and adult cohorts was significant, showing routine gene dispersal distances of ~100-400 m. Parentage analysis showed that 97% of recruits were within 100 m of their mother tree, and a high frequency of relatively short-distance pollen dispersal (median ~143-187 m). Despite routine seed and pollen dispersal distances of within a few hundred meters, interpatch gene flow occurred between all patches and was dominated by pollen movement: parentage analysis showed 76 pollen versus 2 seed interpatch dispersal events, and the seedling neighborhood model estimated ~1-6% seed immigration and ~21-46% pollen immigration rates, depending on patch. In addition, the smallest patch (containing five adult K. malaccensis trees) was entirely surrounded by >2.5 km of 'impervious' substrate, yet had the highest proportional pollen and seed immigration estimates of any patch. Hence, contrary to our hypothesis, insect-mediated gene flow persisted across an urban landscape, and several of our results also parallel key findings from insect-pollinated canopy trees sampled in mixed agricultural-forest landscapes.

  2. Competition and facilitation structure plant communities under nurse tree canopies in extremely stressful environments.

    Science.gov (United States)

    Al-Namazi, Ali A; El-Bana, Magdy I; Bonser, Stephen P

    2017-04-01

    Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy-dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy-dominant species can also limit the performance of edge-dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.

  3. Response of Boreal forest tree canopy cover to chronic gamma irradiation

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1994-01-01

    A section of the Canadian Boreal forest was irradiated chronically by a point source of 137 Cs from 1973 to 1986. Tree canopy cover was measured at permanently marked locations during the pre-irradiation, irradiation and post-irradiation phases, spanning a period of two decades. The tree canopy was severely affected at dose rates greater than 10 mGy/h delivered chronically. The canopy of sensitive coniferous tree species, such as Abies balsamea and Picea Mariana, decreased at dose rates greater than 2 mGy/h, but in some cases the tree canopy was replaced by more resistant species, such as Populus tremuloides and Salix bebbiana. Effects on canopy cover could not be detected at dose rates less than 0.1 mGy/h. Even at dose rates of 5 mGy/h, the forest canopy is recovering six years after irradiation stopped. (author)

  4. Modeling percent tree canopy cover: a pilot study

    Science.gov (United States)

    John W. Coulston; Gretchen G. Moisen; Barry T. Wilson; Mark V. Finco; Warren B. Cohen; C. Kenneth Brewer

    2012-01-01

    Tree canopy cover is a fundamental component of the landscape, and the amount of cover influences fire behavior, air pollution mitigation, and carbon storage. As such, efforts to empirically model percent tree canopy cover across the United States are a critical area of research. The 2001 national-scale canopy cover modeling and mapping effort was completed in 2006,...

  5. Interspecific variation in tree seedlings establishment in canopy gaps in relation to tree density

    Energy Technology Data Exchange (ETDEWEB)

    Reader, R.J.; Bonser, S.P.; Duralia, T.E.; Bricker, B.D. [Guelph Univ., ON (Canada). Dept. of Botany

    1995-10-01

    We tested whether interspecific variation in tree seedling establishment in canopy gaps was significantly related to interspecific variation in tree density, for seven deciduous forest tree species (Quercus alba, Hamamelis virginiana, Acer rubrum, Sassafras albidum, Quercus rubra, Prunus serotina, Ostrya virginiana). For each species, seedling establishment was calculated as the difference in seedling density before experimental gap creation versus three years after gap creation. In each of the six experimentally-created gap types (33% or 66% removal of tree basal area from 0.01ha, 0.05ha or 0.20ha patches), differences in seedling establishment among species were significantly related to differences in their density in the tree canopy. A regression model with log{sub e} tree density as the independent variable accounted for between 93% and 98% of interspecific variation in seedling establishment. Our results provide empirical support for models of tree dynamics in gaps that assume seedling establishment depends on canopy tree density. 17 refs, 1 fig, 3 tabs

  6. Size-related flowering and fecundity in the tropical canopy tree species, Shorea acuminata (Dipterocarpaceae) during two consecutive general flowerings.

    Science.gov (United States)

    Naito, Yoko; Kanzaki, Mamoru; Numata, Shinya; Obayashi, Kyoko; Konuma, Akihiro; Nishimura, Sen; Ohta, Seiichi; Tsumura, Yoshihiko; Okuda, Toshinori; Lee, Soon Leong; Muhammad, Norwati

    2008-01-01

    We monitored the reproductive status of all trees with diameters at breast height (dbh) >30 cm in a 40-ha plot at Pasoh, west Malaysia, and investigated the individual fecundity of 15 Shorea acuminata Dyer (Dipterocarpaceae) trees using seed-trapping methods during two consecutive general flowering periods in 2001 (GF2001) and 2002 (GF2002). The proportion of flowering trees was higher, and not dependent on size, in GF2002 (84.2%), than in GF2001 (54.5%), when flowering mainly occurred in trees with a dbh investment during the two consecutive reproductive events clearly differed between medium-sized and large trees; the former concentrated their reproductive investment in one of the reproductive events whereas the latter allocated their investment more evenly to both reproductive events. Our results suggest size-related differences in the resource allocation pattern for reproduction.

  7. Interception storage capacities of tropical rainforest canopy trees

    Science.gov (United States)

    Herwitz, Stanley R.

    1985-04-01

    The rainwater interception storage capacities of mature canopy trees in a tropical rainforest site in northeast Queensland, Australia, were approximated using a combination of field and laboratory measurements. The above-ground vegetative surfaces of five selected species (three flaky-barked; two smooth-barked) were saturated under laboratory conditions in order to establish their maximum interception storage capacities. Average leaf surface interception storages ranged from 112 to 161 ml m -2. The interception storages of bark ranged from 0.51 to 0.97 ml cm -3. These standardized interception storages were applied to estimates of leaf surface area and bark volume for 51 mature canopy trees representing the selected species in the field site. The average whole tree interception storage capacities of the five species ranged from 110 to 5281 per tree and 2.2 to 8.3 mm per unit projected crown area. The highly significant interspecific differences in interception storage capacity suggest that both floristic and demographic data are needed in order to accurately calculate a forest-wide interception storage capacity for species-rich tropical rainforest vegetation. Species with large woody surface areas and small projected crown areas are capable of storing the greatest depth equivalents of rainwater under heavy rainfall conditions. In the case of both the flaky-barked and the smooth-barked species, bark accounted for > 50% of the total interception storage capacity under still-air conditions, and > 80% under turbulent air conditions. The emphasis in past interception studies on the role of leaf surfaces in determining the interception storage capacity of a vegetative cover must be modified for tropical rainforests to include the storage capacity provided by the bark tissue on canopy trees.

  8. Canopy seed banks as time capsules of biodiversity in pasture-remnant tree crowns.

    Science.gov (United States)

    Nadkarni, Nalini M; Haber, Willam A

    2009-10-01

    Tropical pastures present multiple barriers to tree regeneration and restoration. Relict trees serve as "regeneration foci" because they ameliorate the soil microclimate and serve as safe spots for dispersers. Here, we describe another mechanism by which remnant trees may facilitate pasture regeneration: the presence of seed banks in the canopy soil that accumulates from decomposing epiphytes within the crowns of mature remnant trees in tropical cloud forest pastures. We compared seed banks of canopy soils (histosols derived from fallen leaves, fruits, flower, and twigs of host trees and epiphytes, dead bryophytes, bark, detritus, dead animals, and microorganisms, and dust that accumulate on trunks and the upper surfaces of large branches) in pastures, canopy soils in primary forest trees, and soil on the forest floor in Monteverde, Costa Rica. There were 5211 epiphytic and terrestrial plant seeds in the three habitats. All habitats were dominated by seeds in a relatively small number of plant families, most of which were primarily woody, animal pollinated, and animal dispersed. The density of seeds on the forest floor was greater than seed density in either pasture-canopy or forest-canopy soils; the latter two did not differ. Eight species in 44 families and 61 genera from all of the habitats were tallied. There were 37 species in the pasture-canopy soil, 33 in the forest-canopy soil, and 57 on the forest floor. Eleven species were common to all habitats. The mean species richness in the pasture canopy was significantly higher than the forest canopy (F =83.38; p banks of pasture trees can function as time capsules by providing propagules that are removed in both space and time from the primary forest. Their presence may enhance the ability of pastures to regenerate more quickly, reinforcing the importance of trees in agricultural settings.

  9. Canopy treatment influences growth of replacement tree species in Fraxinus nigra forests threatened by the emerald ash borer in Minnesota, USA

    Science.gov (United States)

    Christopher E. Looney; Anthony W. D' Amato; Brian J. Palik; Robert A. Slesak

    2017-01-01

    Fraxinus nigra Marsh. (black ash), a dominant tree species of wetland forests in northern Minnesota, USA, is imperiled by the invasive insect emerald ash borer (EAB; Agrilus planipennis Fairmaire, 1888). Regeneration of associated tree species is generally low in F. nigra forests and could be impacted...

  10. Los Angeles 1-Million tree canopy cover assessment

    Science.gov (United States)

    Gregory E. McPherson; James R. Simpson; Qingfu Xiao; Wu Chunxia

    2008-01-01

    The Million Trees LA initiative intends to chart a course for sustainable growth through planting and stewardship of trees. The purpose of this study was to measure Los Angeles's existing tree canopy cover (TCC), determine if space exists for 1 million additional trees, and estimate future benefits from the planting. High resolution QuickBird remote sensing data,...

  11. Canopy soil bacterial communities altered by severing host tree limbs

    Directory of Open Access Journals (Sweden)

    Cody R. Dangerfield

    2017-09-01

    Full Text Available Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  12. Tree architecture and life-history strategies across 200 co-occurring tropical tree species

    NARCIS (Netherlands)

    Iida, Y.; Kohyama, T.S.; Kubo, T.; Kassim, A.R.; Poorter, L.; Sterck, F.J.; Potts, M.D.

    2011-01-01

    1. Tree architecture is thought to allow species to partition horizontal and vertical light gradients in the forest canopy. Tree architecture is closely related to light capture, carbon gain and the efficiency with which trees reach the canopy. Previous studies that investigated how light gradients

  13. Rank reversals in tree growth along tree size, competition and climatic gradients for four forest canopy dominant species in Central Spain

    NARCIS (Netherlands)

    Sánchez-Gómez, D.; Zavala, M.A.; Schalkwijk, D.B.V.; Urbieta, I.R.; Valladares, F.

    2008-01-01

    Interspecific differences in tree growth patterns with respect to biotic and abiotic factors are key for understanding forest structure and dynamics, and predicting potential changes under climate change. • Repeated observations from the Spanish Forest Inventory (SFI) were used to parameterize

  14. TREE STEM AND CANOPY BIOMASS ESTIMATES FROM TERRESTRIAL LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    K. Olofsson

    2017-10-01

    Full Text Available In this study an automatic method for estimating both the tree stem and the tree canopy biomass is presented. The point cloud tree extraction techniques operate on TLS data and models the biomass using the estimated stem and canopy volume as independent variables. The regression model fit error is of the order of less than 5 kg, which gives a relative model error of about 5 % for the stem estimate and 10–15 % for the spruce and pine canopy biomass estimates. The canopy biomass estimate was improved by separating the models by tree species which indicates that the method is allometry dependent and that the regression models need to be recomputed for different areas with different climate and different vegetation.

  15. Upper canopy pollinators of Eucryphia cordifolia Cav., a tree of South American temperate rain forest

    Directory of Open Access Journals (Sweden)

    Cecilia Smith-Ramírez

    2016-05-01

    Full Text Available Ecological processes in the upper canopy of temperate forests have been seldom studied because of the limited accessibility. Here, we present the results of the first survey of the pollinator assemblage and the frequency of insect visits to flowers in the upper branches of ulmo, Eucryphia cordifolia Cav., an emergent 30-40 m-tall tree in rainforests of Chiloé Island, Chile. We compared these findings with a survey of flower visitors restricted to lower branches of E. cordifolia 1- in the forest understory, 2- in lower branches in an agroforestry area. We found 10 species of pollinators in canopy, and eight, 12 and 15 species in understory, depending of tree locations. The main pollinators of E. cordifolia in the upper canopy differed significantly from the pollinator assemblage recorded in lower tree branches. We conclude that the pollinator assemblages of the temperate forest canopy and interior are still unknown.

  16. Canopy management, leaf fall and litter quality of dominant tree ...

    African Journals Online (AJOL)

    Small-scale farmers in the banana-coffee agro-zone of Central Uganda plant and maintain trees to provide a range of benefits. However, the impact of trees on soil fertility and crop yields is small. On many farms, trees exist in infinite numbers, compositions, with no proper spacing, sequencing and canopy management ...

  17. National Land Cover Database (NLCD) Percent Tree Canopy Collection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National Land Cover Database (NLCD) Percent Tree Canopy Collection is a product of the U.S. Forest Service (USFS), and is produced through a cooperative project...

  18. Million trees Los Angeles canopy cover and benefit assessment

    Science.gov (United States)

    E.G. McPherson; J.R. Simpson; Q. Xiao; C. Wu

    2011-01-01

    The Million Trees LA initiative intends to improve Los Angeles’s environment through planting and stewardship of 1 million trees. The purpose of this study was to measure Los Angeles’s existing tree canopy cover (TCC), determine if space exists for 1 million additional trees, and estimate future benefits from the planting. High-resolution QuickBird remote sensing data...

  19. An estimate of the number of tropical tree species

    DEFF Research Database (Denmark)

    Slik, J. W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin Ichiro

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, ...

  20. Relative abundance estimations of Chengal trees in a tropical rainforest by using modified canopy fractional cover (mCFC)

    International Nuclear Information System (INIS)

    Hassan, N

    2014-01-01

    Tree species composition estimations are important to sustain forest management. This study estimates relative abundance of useful timber tree species (chengal) using Hyperion EO-1 satellite data. For the estimation, modified Canopy Fractional Cover (mCFC) was developed using Canopy Fractional Cover (CFC). mCFC was more sensitive to estimate relative abundance of chengal trees rather than Mixture Tuned Matched Filtering (MTMF). Meanwhile, MTMF was more sensitive to estimate the relative abundance of undisturbed forest. Accuracy suggests that the mCFC model is better to explain relative abundance of chengal trees than MTMF. Therefore, it can be concluded that relative abundance of tree species extracted from Hyperion EO-1 satellite data using modified Canopy Fractional Cover is an obtrusive approach used for identifying tree species composition

  1. Relative abundance estimations of chengal tree in a tropical rainforest by using modified Canopy Fractional Cover (mCFC)

    International Nuclear Information System (INIS)

    Hassan, N

    2014-01-01

    Tree species composition estimations are important to sustain forest management. This study challenged estimates of relative abundance of useful timber tree species (chengal) using Hyperion EO-1 satellite data. For the estimation, modified Canopy Fractional Cover (mCFC) was developed using Canopy Fractional Cover (CFC). mCFC was more sensitive to estimate relative abundance of chengal trees rather than Mixture Tuned Matched Filtering (MTMF). Meanwhile, MTMF was more sensitive to estimate the relative abundance of undisturbed forest. Accuracy suggests that the mCFC model is better to explain relative abundance of chengal trees than MTMF. Therefore, it can be concluded that relative abundance of trees species extracted from Hyperion EO-1 satellite data using modified Canopy Fractional Cover is an obtrusive approach used for identifying trees species composition

  2. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance.

    Science.gov (United States)

    Villagra, Mariana; Campanello, Paula I; Montti, Lia; Goldstein, Guillermo

    2013-03-01

    A 4-year fertilization experiment with nitrogen (N) and phosphorus (P) was carried out in natural gaps of a subtropical forest in northeastern Argentina. Saplings of six dominant canopy species differing in shade tolerance were grown in five control and five N + P fertilized gaps. Hydraulic architectural traits such as wood density, the leaf area to sapwood area ratio (LA : SA), vulnerability to cavitation (P50) and specific and leaf-specific hydraulic conductivity were measured, as well as the relative growth rate, specific leaf area (SLA) and percentage of leaf damage by insect herbivores. Plant growth rates and resistance to drought-induced embolisms increased when nutrient limitations were removed. On average, the P50 of control plants was -1.1 MPa, while the P50 of fertilized plants was -1.6 MPa. Wood density and LA : SA decreased with N + P additions. A trade-off between vulnerability to cavitation and efficiency of water transport was not observed. The relative growth rate was positively related to the total leaf surface area per plant and negatively related to LA : SA, while P50 was positively related to SLA across species and treatments. Plants with higher growth rates and higher total leaf area in fertilized plots were able to avoid hydraulic dysfunction by becoming less vulnerable to cavitation (more negative P50). Two high-light-requiring species exhibited relatively low growth rates due to heavy herbivore damage. Contrary to expectations, shade-tolerant plants with relatively high resistance to hydraulic dysfunction and reduced herbivory damage were able to grow faster. These results suggest that during the initial phase of sapling establishment in gaps, species that were less vulnerable to cavitation and exhibited reduced herbivory damage had faster realized growth rates than less shade-tolerant species with higher potential growth rates. Finally, functional relationships between hydraulic traits and growth rate across species and treatments

  3. Water-borne hyphomycetes in tree canopies of Kaiga (Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Naga M. Sudheep

    2013-12-01

    Full Text Available The canopy samples such as trapped leaf litter, trapped sediment (during summer, stemflow and throughfall (during monsoon from five common riparian tree species (Artocarpus heterophyllus, Cassia fistula, Ficus recemosa, Syzygium caryophyllatum and Xylia xylocarpa in Kaiga forest stand of the Western Ghats of southwest India were evaluated for the occurrence of water-borne hyphomycetes. Partially decomposed trapped leaf litter was incubated in bubble chambers followed by filtration to assess conidial output. Sediments accumulated in tree holes or junction of branches were shaken with sterile leaf disks in distilled water followed by incubation of leaf disks in bubble chamber and filtration to find out colonized fungi. Stemflow and throughfall samples were filtered directly to collect free conidia. From five canopy niches, a total of 29 water-borne hyphomycetes were recovered. The species richness was higher in stemflow and throughfall than trapped leaf litter and sediments (14-16 vs. 6-10 species. Although sediments of Syzygium caryophyllatum were acidic (5.1, the conidial output was higher than other tree species. Stemflow and throughfall of Xylea xylocarpa even though alkaline (8.5-8.7 showed higher species richness (6-12 species as well as conidial load than rest of the tree species. Flagellospora curvula and Triscelophorus acuminatus were common in trapped leaf litter and sediments respectively, while conidia of Anguillospora crassa and A. longissima were frequent in stemflow and throughfall. Diversity of water-borne hyphomycetes was highest in throughfall of Xylea xylocarpa followed by throughfall of Ficus recemosa. Our study reconfirms the occurrence and survival of diverse water-borne hyphomycetes in different niches of riparian tree canopies of the Western Ghats during wet and dry regimes and predicts their possible role in canopy as saprophytes, endophytes and alternation of life cycle between canopy and aquatic habitats.

  4. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Science.gov (United States)

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula. Campanello

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  5. Spatial Structure of Soil Macrofauna Diversity and Tree Canopy in Riparian Forest of Maroon River

    Directory of Open Access Journals (Sweden)

    Ehsan Sayad

    2017-02-01

    Full Text Available Introduction: Sustainability and maintenance of riparian vegetation or restoring of degraded sites is critical to sustain inherent ecosystem function and values. Description of patterns in species assemblages and diversity is an essential step before generating hypotheses in functional ecology. If we want to have information about ecosystem function, soil biodiversity is best considered by focusing on the groups of soil organisms that play major roles in ecosystem functioning when exploring links with provision of ecosystem services. Information about the spatial pattern of soil biodiversity at the regional scale is limited though required, e.g. for understanding regional scale effects of biodiversity on ecosystem processes. The practical consequences of these findings are useful for sustainable management of soils and in monitoring soil quality. Soil macrofauna play significant, but largely ignored roles in the delivery of ecosystem services by soils at plot and landscape scales. One main reason responsible for the absence of information about biodiversity at regional scale is the lack of adequate methods for sampling and analyzing data at this dimension. An adequate approach for the analysis of spatial patterns is a transect study in which samples are taken in a certain order and with a certain distance between samples. Geostatistics provide descriptive tools such as variogram to characterize the spatial pattern of continuous and categorical soil attributes. This method allows assessment of consistency of spatial patterns as well as the scale at which they are expressed. This study was conducted to analyze spatial patterns of soil macrofauna in relation to tree canopy in the riparian forest landscape of Maroon. Materilas and Methods: The study was carried out in the Maroon riparian forest of the southeasternIran (30o 38/- 30 o 39/ N and 50 o 9/- 50 o 10/ E. The climate of the study area is semi-arid. Average yearly rainfall is about 350.04 mm

  6. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  7. Weeds under the canopies of tree species submitted to different planting densities and intercropping Plantas daninhas sob copas de espécies arbóreas submetidas a consórcios e densidades de plantio diferentes

    Directory of Open Access Journals (Sweden)

    A.D Souza

    2013-03-01

    Full Text Available Assessing the growth and floristic composition of species that grow under the canopy of trees is important for weed control (WC. The objective of this study was to assess two experiments (E1 and E2, when the trees were two years and one year of age, respectively. In E1, sabiá (S and gliricidia (G were submitted to planting densities from 400 to 1.200 plants ha-1. In E2, growing systems consisting of S, G, and neem (N combinations were compared: SSS, GGG, NNN, GSG, NSN, SGS, NGN, SNS, and GNG (each letter represents a row of plants. A random block design was adopted, with three (E1 and four (E2 replicates. In E1, treatments were arranged as split-plots (species in plots. In E2, the degrees of freedom for treatments (8 were partitioned into growing systems (treatments that involved the same species and between growing system groups (2. Twenty-one weed species were found in E1. Gliricidia attained greater plant height than sabiá, but these species did not differ in canopy diameter, number of weed species per plot, and weed green and dry biomass of the shoot. Higher planting densities resulted in the reduction of all those traits. Twenty-six weed species were found in E2. Growing systems that included gliricidia showed canopies with greater diameters than growing systems that included neem. There were no differences between growing systems for number of weed species per plot and for weed green and dry biomass of the shoot.Avaliações do crescimento e da composição florística de espécies que vegetam sob a copa das árvores são importantes no controle de plantas daninhas (PD. O objetivo deste trabalho foi realizar essas avaliações em dois experimentos (E1 e E2, quando as árvores tinham idades de dois anos e um ano, respectivamente. Em E1, sabiá (S e gliricídia (G foram submetidas a densidades de plantio de 400 a 1.200 plantas ha-1. Em E2, foram comparados sistemas de cultivo de S, G e nim (N: SSS, GGG, NNN, GSG, NSN, SGS, NGN, SNS e GNG

  8. Floristic Composition, Tree Canopy Structure and Regeneration in a ...

    African Journals Online (AJOL)

    Trees were the predominant plant form with 46 species (172 trees ha-1) while 7 shrubs, 15 lianas, 13 herbs, 1 grass and 1 fern species were recorded. Tree basal area and total volume were 10.29±0.88 m2 ha-1 and 22.43±1.85 m3 ha-1 respectively. The tallest tree height (35m) was recorded for Terminalia superba while ...

  9. Taxonomic identity determines N2 fixation by canopy trees across lowland tropical forests.

    Science.gov (United States)

    Wurzburger, Nina; Hedin, Lars O

    2016-01-01

    Legumes capable of fixing atmospheric N2 are abundant and diverse in many tropical forests, but the factors determining ecological patterns in fixation are unresolved. A long-standing idea is that fixation depends on soil nutrients (N, P or Mo), but recent evidence shows that fixation may also differ among N2-fixing species. We sampled canopy-height trees across five species and one species group of N2-fixers along a landscape P gradient, and manipulated P and Mo to seedlings in a shadehouse. Our results identify taxonomy as the major determinant of fixation, with P (and possibly Mo) only influencing fixation following tree-fall disturbances. While 44% of trees did not fix N2, other trees fixed at high rates, with two species functioning as superfixers across the landscape. Our results raise the possibility that fixation is determined by biodiversity, evolutionary history and species-specific traits (tree growth rate, canopy stature and response to disturbance) in the tropical biome. © 2015 John Wiley & Sons Ltd/CNRS.

  10. Dispersion simulation of airborne effluent through tree canopy using OpenFOAM CFD code

    International Nuclear Information System (INIS)

    Rakesh, P.T.; Venkatesan, R.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    Nuclear plants are often surrounded by tree canopy as a part of landscaping and green belt development. The transport and dispersion of air borne pollutants within the tree/plant canopies is greatly controlled by turbulence. The density of the tree canopy, the height and type of the trees is of importance while determining the intensity of turbulence. In order to study the mechanical effect of the canopy and the consequent modification in the ground level concentration pattern from a ground level release of radioactivity, a CFD code called OpenFOAM is used. The main task of this study is the implementation of flow and dispersion through plant canopies in Open FOAM

  11. A LIDAR-Based Tree Canopy Characterization under Simulated Uneven Road Condition: Advance in Tree Orchard Canopy Profile Measurement

    Directory of Open Access Journals (Sweden)

    Yue Shen

    2017-01-01

    Full Text Available In real outdoor canopy profile detection, the accuracy of a LIDAR scanner to measure canopy structure is affected by a potentially uneven road condition. The level of error associated with attitude angles from undulations in the ground surface can be reduced by developing appropriate correction algorithm. This paper proposes an offline attitude angle offset correction algorithm based on a 3D affine coordinate transformation. The validity of the correction algorithm is verified by conducting an indoor experiment. The experiment was conducted on an especially designed canopy profile measurement platform. During the experiment, an artificial tree and a tree-shaped carved board were continuously scanned at constant laser scanner travel speed and detection distances under simulated bumpy road conditions. Acquired LIDAR laser scanner raw data was processed offline by exceptionally developed MATLAB program. The obtained results before and after correction method show that the single attitude angle offset correction method is able to correct the distorted data points in tree-shaped carved board profile measurement, with a relative error of 5%, while the compound attitude angle offset correction method is effective to reduce the error associated with compound attitude angle deviation from the ideal scanner pose, with relative error of 7%.

  12. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    Science.gov (United States)

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  13. Canopy cover negatively affects arboreal ant species richness in a tropical open habitat

    Directory of Open Access Journals (Sweden)

    A. C. M. Queiroz

    Full Text Available Abstract We tested the hypothesis of a negative relationship between vegetation characteristics and ant species richness in a Brazilian open vegetation habitat, called candeial. We set up arboreal pitfalls to sample arboreal ants and measured the following environmental variables, which were used as surrogate of environmental heterogeneity: tree richness, tree density, tree height, circumference at the base of the plants, and canopy cover. Only canopy cover had a negative effect on the arboreal ant species richness. Vegetation characteristics and plant species composition are probably homogeneous in candeial, which explains the lack of relationship between other environmental variables and ant richness. Open vegetation habitats harbor a large number of opportunistic and generalist species, besides specialist ants from habitats with high temperatures. An increase in canopy cover decreases sunlight incidence and may cause local microclimatic differences, which negatively affect the species richness of specialist ants from open areas. Canopy cover regulates the richness of arboreal ants in open areas, since only few ant species are able to colonize sites with dense vegetation; most species are present in sites with high temperature and luminosity. Within open vegetation habitats the relationship between vegetation characteristics and species richness seems to be the opposite from closed vegetation areas, like forests.

  14. Phenology, seed dispersal and difficulties in natural recruitment of the canopy tree Pachira quinata (Malvaceae

    Directory of Open Access Journals (Sweden)

    Maria Clara Castellanos

    2011-06-01

    Full Text Available Life history and recruitment information of tropical trees in natural populations is scarce even for important commercial species. This study focused on a widely exploited Neotropical canopy species, Pachiraquinata (Malvaceae, at the southernmost, wettest limit of its natural distribution, in the Colombian Amazonia. We studied phenological patterns, seed production and natural densities; assessed the importance of seed dispersal and density-dependent effects on recruitment, using field experiments. At this seasonal forest P. quinata was overrepresented by large adult trees and had very low recruitment caused by the combination of low fruit production, high seed predation and very high seedling mortality under continuous canopies mostly due to damping off pathogens. There was no evidence of negative distance or density effects on recruitment, but a clear requirement of canopy gaps for seedling survival and growth, where pathogen incidence was drastically reduced. In spite of the strong dependence on light for survival of seedlings, seeds germinated readily in the dark. At the study site, the population of P. quinata appeared to be declining, likely because recruitment depended on the rare combination of large gap formation with the presence of reproductive trees nearby. The recruitment biology of this species makes it very vulnerable to any type of logging in natural populations. Rev. Biol. Trop. 59 (2: 921-933. Epub 2011 June 01

  15. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Science.gov (United States)

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  16. An Estimate Of The Number Of Tropical Tree Species.

    OpenAIRE

    Slik, J W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L; Bellingham, Peter J; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal

    2016-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000...

  17. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James L.; Ulyshen, Michael D.; Kilgo, John C.

    2005-01-01

    Horn, Scott, James L. Hanula, Michael D. Ulyshen, and John C. Kilgo. 2005. Abundance of green tree frogs and insects in artificial canopy gaps in a bottomland hardwood forest. Am. Midl. Nat. 153:321-326. Abstract: We found more green tree frogs (Hyla cinerea) in canopy gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopy gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat. Flies were the most commonly collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  18. Trees grow on money: Urban tree canopy cover and environmental justice

    Science.gov (United States)

    Kirsten Schwarz; Michail Fragkias; Christopher G. Boone; Weiqi Zhou; Melissa McHale; J. Morgan Grove; Jarlath O' Neil-Dunne; Joseph P. McFadden; Geoffrey L. Buckley; Dan Childers; Laura Ogden; Stephanie Pincetl; Diane Pataki; Ali Whitmer; Mary L. Cadenasso; Steven Arthur. Loiselle

    2015-01-01

    This study examines the distributional equity of urban tree canopy (UTC) cover for Baltimore, MD, Los Angeles, CA, New York, NY, Philadelphia, PA, Raleigh, NC, Sacramento, CA, and Washington, D.C. using high spatial resolution land cover data and census data. Data are analyzed at the Census Block Group levels using Spearman’s correlation, ordinary least squares...

  19. NITROGEN CONTENT AND DRY-MATTER DIGESTIBILITY OF GUINEA AND SABI GRASSES AS INFLUENCED BY TREE LEGUME CANOPY

    Directory of Open Access Journals (Sweden)

    Andi Lagaligo Amar

    2012-08-01

    Full Text Available A research study was undertaken to study the grass layer across a mini landscape dominated by tree legume Albizia lebbeck to explore the nutritional differences of two introduced grasses, guinea grass (Panicum maximum and sabi grass (Urochloa mosambicensis, paying particular attention to the presence or absence of tree legume canopy of Albizia lebbeck. The two grass species showed a tendency to replace the native spear grass (Heteropogon contortus; their dominance was more or less complete under tree canopies but was increasing in open areas between trees. Nutritional differences were examined by nitrogen concentration and dry matter digestibility. For comparison, Heteropogon contortus, a native species only found in the open, was included in the nutritional determination using the same methods as the guinea and sabi grasses. The quality parameters of the pasture species were statistically compared (LSD, P=0.05. The quality of herbage was different between the species. Urochloa mosambicensis was better than Panicum maximum. In the open, sabi grass has higher N content (0.62% than guinea grass (0.55%, but they were similar when grown under the canopy (0.69% and 0.72%, respectively. Sabi grass has consistently higher dry matter digestibility (41.39% and 36.83%, respectively under the canopy and in the open, than guinea grass (27.78% and 24.77%. These two species are much higher in both N concentration and dry matter digestibility than the native spear grass. The native species has contained 0.28% N, and 17.65% digestible dry matter. The feeding values of herbage were influenced by the canopy factor. Both guinea and sabi grasses have better quality when grown under the tree canopies than in between canopies. Nitrogen concentration and dry matter digestibility of the guinea grass under canopy were, 0.72% and 27.78%, respectively, significantly higher than those from the open area, 0.55% and 24.77%. Similarly, herbage of sabi grass under canopy has 0

  20. Automated detection of branch dimensions in woody skeletons of leafless fruit tree canopies

    NARCIS (Netherlands)

    Bucksch, A.; Fleck, S.

    2009-01-01

    Light driven physiological processes of tree canopies need to be modelled based on detailed 3Dcanopy structure – we explore the possibilities offered by terrestrial LIDAR to automatically represent woody skeletons of leafless trees as a basis for adequate models of canopy structure. The automatic

  1. Comparing alternative tree canopy cover estimates derived from digital aerial photography and field-based assessments

    Science.gov (United States)

    Tracey S. Frescino; Gretchen G. Moisen

    2012-01-01

    A spatially-explicit representation of live tree canopy cover, such as the National Land Cover Dataset (NLCD) percent tree canopy cover layer, is a valuable tool for many applications, such as defining forest land, delineating wildlife habitat, estimating carbon, and modeling fire risk and behavior. These layers are generated by predictive models wherein their accuracy...

  2. Can Canopy Uptake Influence Nitrogen Acquisition and Allocation by Trees?

    Science.gov (United States)

    Nair, Richard; Perks, Mike; Mencuccini, Maurizio

    2015-04-01

    Nitrogen (N) fertilization due to atmospheric deposition of anthropogenic nitrogen (NDEP) may explain some of the net carbon (C) sink (0.6-0.7 Pg y-1) in temperate forests, but estimates of the additional C uptake due to atmospheric N additions (ΔCΔN) can vary by over an order of magnitude (~ 5 to 200 ΔCΔN). High estimates from several recent studies [e.g. Magnani (2007), Nature 447 848-850], deriving ΔCΔN from regional correlations between NDEP and measures of C uptake (such as eddy covariance -derived net ecosystem production, or forest inventory data) contradict estimates from other studies of 15N tracer applications added as fertilizer to the forest floor. A strong ΔCΔN effect requires nitrogen to be efficiently acquired by trees and allocated to high C:N, long-lived woody tissues, but these isotope experiments typically report relatively little (~ 20 %) of 15N added is found above-ground, with estimates are often attributed to co-variation with other factors across the range of sites investigated. However 15N-fertilization treatments often impose considerably higher total N loads than ambient NDEP and almost exclusively only apply mineral 15N treatments to the soil, often in a limited number of treatment events over relatively short periods of time. Excessive N deposition loads can induce negative physiological effects and limit the resulting ΔCΔN observed, and applying treatments to the soil may ignore the importance of canopy nitrogen uptake in overall forest nutrition. As canopies can directly take up nitrogen, the chronic, (relatively) low levels of ambient NDEP inputs from pollution may be acquired without some of the effects of heavy N loads, obtaining this N before it reaches the soil, and allowing canopies to substitute for, or supplement, edaphic N nutrition. The strength of this effect depends on how much N uptake can occur across the canopy under field conditions, and if this extra N supplies growth in woody tissues such as the stem, as

  3. Abundance of Green Tree Frogs and Insects in Artificial Canopy Gaps in a Bottomland Hardwood Forest.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.; Ulyshen, Michael D.; Kilgo, John, C.

    2005-04-01

    ABSTRACT - We found more green tree frogs ( Hyla cinerea) n canopv gaps than in closed canopy forest. Of the 331 green tree frogs observed, 88% were in canopv gaps. Likewise, higher numbers and biomasses of insects were captured in the open gap habitat Flies were the most commonlv collected insect group accounting for 54% of the total capture. These data suggest that one reason green tree frogs were more abundant in canopy gaps was the increased availability of prey and that small canopy gaps provide early successional habitats that are beneficial to green tree frog populations.

  4. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    Science.gov (United States)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch

  5. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    Science.gov (United States)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  6. Tree Death Not Resulting in Gap Creation: An Investigation of Canopy Dynamics of Northern Temperate Deciduous Forests

    Directory of Open Access Journals (Sweden)

    Jean-Francois Senécal

    2018-01-01

    Full Text Available Several decades of research have shown that canopy gaps drive tree renewal processes in the temperate deciduous forest biome. In the literature, canopy gaps are usually defined as canopy openings that are created by partial or total tree death of one or more canopy trees. In this study, we investigate linkages between tree damage mechanisms and the formation or not of new canopy gaps in northern temperate deciduous forests. We studied height loss processes in unmanaged and managed forests recovering from partial cutting with multi-temporal airborne Lidar data. The Lidar dataset was used to detect areas where canopy height reduction occurred, which were then field-studied to identify the tree damage mechanisms implicated. We also sampled the density of leaf material along transects to characterize canopy structure. We used the dataset of the canopy height reduction areas in a multi-model inference analysis to determine whether canopy structures or tree damage mechanisms most influenced the creation of new canopy gaps within canopy height reduction areas. According to our model, new canopy gaps are created mainly when canopy damage enlarges existing gaps or when height is reduced over areas without an already established dense sub-canopy tree layer.

  7. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest

    Science.gov (United States)

    Andrew N. Gray; Thomas A. Spies; Robert J. Pabst

    2012-01-01

    Canopy gaps created by tree mortality can affect the speed and trajectory of vegetation growth. Species’ population dynamics, and spatial heterogeneity in mature forests. Most studies focus on plant development within gaps, yet gaps also affect the mortality and growth of surrounding trees, which influence shading and root encroachment into gaps and determine whether,...

  8. Soil characteristics under legume and non-legume tree canopies in ...

    African Journals Online (AJOL)

    %, 100% and 150% the distance from tree trunk to canopy edge of leguminous sabiá (Mimosa caesalpiniifolia Benth.) and espinheiro (Machaerium aculeatum Raddi) and non-legume cajueiro (Anacardium occidentale L.) and jaqueira ...

  9. CMS: LiDAR-derived Tree Canopy Cover for Pennsylvania, USA, 2008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides estimated high-resolution (1-m) tree canopy cover for the state of Pennsylvania, USA, in 2008. The data were derived from 2006-2008...

  10. An estimate of the number of tropical tree species

    Science.gov (United States)

    Slik, J. W. Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F.; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L.; Bellingham, Peter J.; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q.; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo L. M.; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K.; Chazdon, Robin L.; Clark, Connie; Clark, David B.; Clark, Deborah A.; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S.; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J.; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl A. O.; Eisenlohr, Pedro V.; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J.; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T.; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M.; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A.; Joly, Carlos A.; de Jong, Bernardus H. J.; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F.; Lawes, Michael J.; do Amaral, Ieda Leao; Letcher, Susan G.; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H.; Meilby, Henrik; Melo, Felipe P. L.; Metcalfe, Daniel J.; Medjibe, Vincent P.; Metzger, Jean Paul; Millet, Jerome; Mohandass, D.; Montero, Juan C.; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria T. F.; Pitman, Nigel C. A.; Poorter, Lourens; Poulsen, Axel D.; Poulsen, John; Powers, Jennifer; Prasad, Rama C.; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A.; Santos, Fernanda; Sarker, Swapan K.; Satdichanh, Manichanh; Schmitt, Christine B.; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S.; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I.-Fang; Sunderland, Terry; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W.; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan L. C. H.; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Whitfeld, Timothy; Wich, Serge A.; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Yoneda, Tsuyoshi; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L.; Garcia Luize, Bruno; Venticinque, Eduardo M.

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa. PMID:26034279

  11. Groundwater decline and tree change in floodplain landscapes: Identifying non-linear threshold responses in canopy condition

    Directory of Open Access Journals (Sweden)

    J. Kath

    2014-12-01

    Full Text Available Groundwater decline is widespread, yet its implications for natural systems are poorly understood. Previous research has revealed links between groundwater depth and tree condition; however, critical thresholds which might indicate ecological ‘tipping points’ associated with rapid and potentially irreversible change have been difficult to quantify. This study collated data for two dominant floodplain species, Eucalyptus camaldulensis (river red gum and E. populnea (poplar box from 118 sites in eastern Australia where significant groundwater decline has occurred. Boosted regression trees, quantile regression and Threshold Indicator Taxa Analysis were used to investigate the relationship between tree condition and groundwater depth. Distinct non-linear responses were found, with groundwater depth thresholds identified in the range from 12.1 m to 22.6 m for E. camaldulensis and 12.6 m to 26.6 m for E. populnea beyond which canopy condition declined abruptly. Non-linear threshold responses in canopy condition in these species may be linked to rooting depth, with chronic groundwater decline decoupling trees from deep soil moisture resources. The quantification of groundwater depth thresholds is likely to be critical for management aimed at conserving groundwater dependent biodiversity. Identifying thresholds will be important in regions where water extraction and drying climates may contribute to further groundwater decline. Keywords: Canopy condition, Dieback, Drought, Tipping point, Ecological threshold, Groundwater dependent ecosystems

  12. Comparison of leaf beetle assemblages of deciduous trees canopies in Hungary (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Vig, K; Markó, V

    2005-01-01

    The species richness and species composition of Coleoptera assemblages were investigated in deciduous tree canopies in Hungary. Apple and pear orchards were investigated in Nagykovácsi, Kecskemét and Sárospatak in 1990-94, and limes and maples in Keszthely in 1999-2002. Faunistic results and conclusions of these investigations were published elsewhere. Examination of the fauna of parks, avenues and other planted urban plant stocks has only begun to occupy researchers in the last decade in Hungary. The proportion of leaf-beetle species in the material gathered on maples and limes ranged between 17.0 and 21.3 per cent. The commonest leaf-beetle specimens collected in the lime canopy were Aphthona euphorbiae, Chaetocnema tibialis, Longitarsus lycopi, L. pellucidus, L. pratensis and L. succineus. The commonest on maple were Aphthona euphorbiae, Chaetocnema concinna, C. tibialis, Longitarsus lycopi, L. pellucidus, L. succineus, Phyllotreta cruciferae and P. vittula. This study presents the details on the composition of the chrysomelid communities that was compared by metric ordination using the Syntax 5.1 program.

  13. Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees.

    Science.gov (United States)

    F.C. Meinzer; S.A. James; G. Goldstein; D. Woodruff

    2003-01-01

    The present study examines the manner in which several whole-tree water transport properties scale with species specific variation in sapwood water storage capacity. The hypothesis that constraints on relationships between sapwood capacitance and other water relations characteristics lead to predictable scaling relationships between intrinsic capacitance and whole-tree...

  14. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    Science.gov (United States)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  15. Mapping Urban Tree Canopy Cover Using Fused Airborne LIDAR and Satellite Imagery Data

    Science.gov (United States)

    Parmehr, Ebadat G.; Amati, Marco; Fraser, Clive S.

    2016-06-01

    Urban green spaces, particularly urban trees, play a key role in enhancing the liveability of cities. The availability of accurate and up-to-date maps of tree canopy cover is important for sustainable development of urban green spaces. LiDAR point clouds are widely used for the mapping of buildings and trees, and several LiDAR point cloud classification techniques have been proposed for automatic mapping. However, the effectiveness of point cloud classification techniques for automated tree extraction from LiDAR data can be impacted to the point of failure by the complexity of tree canopy shapes in urban areas. Multispectral imagery, which provides complementary information to LiDAR data, can improve point cloud classification quality. This paper proposes a reliable method for the extraction of tree canopy cover from fused LiDAR point cloud and multispectral satellite imagery data. The proposed method initially associates each LiDAR point with spectral information from the co-registered satellite imagery data. It calculates the normalised difference vegetation index (NDVI) value for each LiDAR point and corrects tree points which have been misclassified as buildings. Then, region growing of tree points, taking the NDVI value into account, is applied. Finally, the LiDAR points classified as tree points are utilised to generate a canopy cover map. The performance of the proposed tree canopy cover mapping method is experimentally evaluated on a data set of airborne LiDAR and WorldView 2 imagery covering a suburb in Melbourne, Australia.

  16. Changes in canopy structure and ant assemblages affect soil ecosystem variables as a foundation species declines

    DEFF Research Database (Denmark)

    Kendrick, Joseph A.; Ribbons, Relena Rose; Classen, Aimee Taylor

    2015-01-01

    in ant species composition would interact to alter soil ecosystem variables. In the Harvard Forest Hemlock Removal Experiment (HF-HeRE), established in 2003, T. canadensis in large plots were killed in place or logged and removed to mimic adelgid infestation or salvage harvesting, respectively. In 2006...... (richness and abundance) of ants increases rapidly as T. canadensis is lost from the stands. Because ants live and forage at the litter-soil interface, we hypothesized that environmental changes caused by hemlock loss (e.g., increased light and warmth at the forest floor, increased soil pH) and shifts......, we built ant exclosure subplots within all of the canopy manipulation plots to examine direct and interactive effects of canopy change and ant assemblage composition on soil and litter variables. Throughout HF-HeRE, T. canadensis was colonized by the adelgid in 2009, and the infested trees are now...

  17. STANDING HERBAGE BIOMASS UNDER DIFFERENT TREE SPECIES DISPERSED IN PASTURES OF CATTLE FARMS

    Directory of Open Access Journals (Sweden)

    Humberto Esquivel-Mimenza

    2013-08-01

    Full Text Available The study conducted in a tropical dry ecosystem at Cañas, Guanacaste, Costa Rica (10o 11´ N and 84o15´W measure the standing herbage biomass (SHB availability and quality under six isolated tree species of different canopy architecture dispersed in active Brachiaria brizantha pastures and compare it to that growing at full sun light. Standing herbage biomass (HB harvesting and Photosynthetic active radiation (PAR readings were taken at three different periods in a paired sample scheme. Of the six tree species studied, Enterolobium cyclocarpum had the largest mean crown cover while Acrocomia aculeata had the smallest. Significant differences were observed between species (P = 0.0002 and seasons (P<0.008 for the percentage of PAR transmitted under the canopy but PAR levels obtained under all species were consistent throughout seasons since the interaction between species and season was not significantly different (P=0.98. Lower PAR readings (<50% were taken under the canopies E. cyclocarpum and Guazuma ulmifolia (21.7 and 33.7 % respectively. Standing herbage biomass (SHB harvested under the crown of isolated mature individual tree species was significantly lower (P<0.001 than in open pasture areas for all tree species except that of A. aculeate but SHB crude protein content, was higher underneath all tree canopies. It can conclude that light reduction caused by tree canopies reduces SHB availability and increases the quality underneath tree canopies compared to areas of full sun but these varies accordingly to tree species and seasons.

  18. Olive Actual "on Year" Yield Forecast Tool Based on the Tree Canopy Geometry Using UAS Imagery.

    Science.gov (United States)

    Sola-Guirado, Rafael R; Castillo-Ruiz, Francisco J; Jiménez-Jiménez, Francisco; Blanco-Roldan, Gregorio L; Castro-Garcia, Sergio; Gil-Ribes, Jesus A

    2017-07-30

    Olive has a notable importance in countries of Mediterranean basin and its profitability depends on several factors such as actual yield, production cost or product price. Actual "on year" Yield (AY) is production (kg tree -1 ) in "on years", and this research attempts to relate it with geometrical parameters of the tree canopy. Regression equation to forecast AY based on manual canopy volume was determined based on data acquired from different orchard categories and cultivars during different harvesting seasons in southern Spain. Orthoimages were acquired with unmanned aerial systems (UAS) imagery calculating individual crown for relating to canopy volume and AY. Yield levels did not vary between orchard categories; however, it did between irrigated orchards (7000-17,000 kg ha -1 ) and rainfed ones (4000-7000 kg ha -1 ). After that, manual canopy volume was related with the individual crown area of trees that were calculated by orthoimages acquired with UAS imagery. Finally, AY was forecasted using both manual canopy volume and individual tree crown area as main factors for olive productivity. AY forecast only by using individual crown area made it possible to get a simple and cheap forecast tool for a wide range of olive orchards. Finally, the acquired information was introduced in a thematic map describing spatial AY variability obtained from orthoimage analysis that may be a powerful tool for farmers, insurance systems, market forecasts or to detect agronomical problems.

  19. Variation in foliar respiration and wood CO2 efflux rates among species and canopy layers in a wet tropical forest.

    Science.gov (United States)

    Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G

    2015-02-01

    As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface

  20. Tree-growth analyses to estimate tree species' drought tolerance

    NARCIS (Netherlands)

    Eilmann, B.; Rigling, A.

    2012-01-01

    Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree

  1. Explaining biomass growth of tropical canopy trees: the importance of sapwood

    OpenAIRE

    Sande, van der, M.T.; Zuidema, P.A.; Sterck, F.J.

    2015-01-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass...

  2. Assessing alternative measures of tree canopy cover: Photo-interpreted NAIP and ground-based estimates

    Science.gov (United States)

    Chris Toney; Greg Liknes; Andy Lister; Dacia Meneguzzo

    2012-01-01

    In preparation for the development of the National Land Cover Database (NLCD) 2011 tree canopy cover layer, a pilot project for research and method development was completed in 2010 by the USDA Forest Service Forest Inventory and Analysis (FIA) program and Remote Sensing Applications Center (RSAC).This paper explores one of several topics investigated during the NLCD...

  3. Canopy arthropod response to density and distribution of green trees retained after partial harvest.

    Science.gov (United States)

    Timothy D. Schowalter; Yanli Zhang; Robert A. Progar

    2005-01-01

    We measured canopy arthropod responses to six contrasting green-tree retention treatments at six locations (blocks) in western Oregon and Washington as part of the Demonstration of Ecosystem Management Options (DEMO) study. Treatments were 100% retention (uncut), 75% retention with three 1-ha harvested gaps, 40% dispersed retention, 40% aggregated retention with five 1...

  4. Explaining biomass growth of tropical canopy trees: the importance of sapwood

    NARCIS (Netherlands)

    Sande, van der M.T.; Zuidema, P.A.; Sterck, F.J.

    2015-01-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown

  5. Combining multiple isotopes and metagenomic to delineate the role of tree canopy nitrification in European forests along nitrogen deposition and climate gradients

    Science.gov (United States)

    Guerrieri, R.; Avila, A.; Barceló, A.; Elustondo, D.; Hellstein, S.; Magnani, F.; Mattana, S.; Matteucci, G.; Merilä, P.; Michalski, G. M.; Nicolas, M.; Vanguelova, E.; Verstraeten, A.; Waldner, P.; Watanabe, M.; Penuelas, J.; Mencuccini, M.

    2017-12-01

    Forest canopies influence our climate through carbon, water and energy exchanges with the atmosphere. However, less investigated is whether and how tree canopies change the chemical composition of precipitation, with important implications on forest nutrient cycling. Recently, we provided for the first time isotopic evidence that biological nitrification in tree canopies was responsible for significant changes in the amount of nitrate from rainfall to throughfall across two UK forests at high nitrogen (N) deposition [1]. This finding strongly suggested that bacteria and/or Archaea species of the phyllosphere are responsible for transforming atmospheric N before it reaches the soil. Despite microbial epiphytes representing an important component of tree canopies, attention has been mostly directed to their role as pathogens, while we still do not know whether and how they affect nutrient cycling. Our study aims to 1) characterize microbial communities harboured in tree canopies for two of the most dominant species in Europe (Fagus sylvatica L. and Pinus sylvestris L.) using metagenomic techniques, 2) quantify the functional genes related to nitrification but also to denitrification and N fixation, and 3) estimate the contribution of NO3 derived from biological canopy nitrification vs. atmospheric NO3 input by using δ15N, δ18O and δ17O of NO3in forest water. We considered i) twelve sites included in the EU ICP long term intensive forest monitoring network, chosen along a climate and nitrogen deposition gradient, spanning from Fennoscandia to the Mediterranean and ii) a manipulation experiment where N mist treatments were carried out either to the soil or over tree canopies. We will present preliminary results regarding microbial diversity in the phyllosphere, water (rainfall and throughfall) and soil samples over the gradient. Furthermore, we will report differences between the two investigated tree species for the phyllosphere core microbiome in terms of relative

  6. Intra-Urban Variability in Elemental Carbon Deposition to Tree Canopies

    Science.gov (United States)

    Barrett, T. E.; Ponette-González, A.; Rindy, J. E.; Sheesley, R. J.

    2017-12-01

    Urban areas cover biomass combustion, EC is a powerful climate-forcing agent and a significant component of fine particulate matter in urban atmospheres. Thus, understanding the factors that govern EC removal in urban areas could help mitigate climate change, while improving air quality for urban residents. EC particles can be removed from the atmosphere in precipitation (wet and fog deposition) or they can settle directly onto receptor surfaces (dry deposition). Only limited measurements indicate that EC deposition is higher in urban than in rural and remote regions. However, EC deposition likely exhibits considerable intra-urban variability, with tree canopies serving as potentially important sinks for EC on the cityscape. The goal of this research is to quantify spatial variability in total (wet + dry) EC deposition to urban tree canopies in the Dallas-Fort Worth Metroplex. Using a stratified non-random sampling design, 41 oak trees (22 post oak (Quercus stellata) and 19 live oak (Quercus virginiana)) were selected near (100 m) for measurements of throughfall (water that falls from the canopy to the forest floor). Additionally, 16 bulk rainfall samplers were deployed in grassy areas with no canopy cover. Results from one rain event indicate a volume weighted mean concentration of 83 µg EC L-1 in post oak throughfall, 36 µg EC L-1 in live oak throughfall, and 4 µg EC L-1 in bulk rainfall. Total EC deposition to oak tree canopies was 2.0 ± 2.1 (SD) mg m-2 for post oak and 0.7 ± 0.3 mg m-2 for live oak. Bulk rainfall deposition was 0.08 ± 0.1 mg m-2. Our preliminary findings show that trees are effective urban air filters, removing 9-25 times more EC from the atmosphere than rainwater alone. Resolving surface controls on atmospheric EC removal is key to developing and assessing near-term climate and air quality mitigation strategies.

  7. Functional diversity of photosynthetic light use of sixteen vascular epiphyte species under fluctuating irradiance in the canopy of a giant Virola michelii (Myristicaceae tree in the tropical lowland forest of French Guyana

    Directory of Open Access Journals (Sweden)

    Uwe eRascher

    2012-01-01

    Full Text Available Here we present the first study, in which a large number of different vascular epiphyte species were measured for their photosynthetic performance in the natural environment of their phorophyte in the lowland rainforest of French Guyana. More than 70 epiphyte species covered the host tree in a dense cover. Of these, the photosynthesis of 16 abundant species was analyzed intensely over several months. Moreover, the light environment was characterized with newly developed light sensors that recorded continuously and with high temporal resolution light intensity next to the epiphytes. Light intensity was highly fluctuating and showed great site specific spatio-temporal variations of photosynthetic photon flux. Using a novel computer routine we quantified the integrated light intensity the epiphytes were exposed to in a 3-hour window and we related this light intensity to measurements of the actual photosynthetic status. It could be shown that the photosynthetic apparatus of the epiphytes was well adapted to the quickly changing light conditions. Some of the epiphytes were chronically photoinhibited at pre-dawn and significant acute photoinhibition, expressed by a reduction of potential quantum efficiency (Fv/Fm30’, was observed during the day. By correlating (Fv/Fm30’ to the integrated and weighted light intensity perceived during the previous 3 hours, it became clear that acute photoinhibition was related to light environment prior to the measurements. Additionally photosynthetic performance was not determined by rain events, with the exception of an Aechmea species. This holds true for all the other 15 species of this study and we thus conclude that actual photosynthesis of these tropical epiphytes was determined by the specific and fluctuating light conditions of their microhabitat and cannot be simply attributed to light adapted ancestors.

  8. Species-specific associations between overstory and understory tree species in a semideciduous tropical forest

    Directory of Open Access Journals (Sweden)

    Flaviana Maluf Souza

    2015-03-01

    Full Text Available We investigated the occurrence of associations between overstory and understory tree species in a semideciduous tropical forest. We identified and measured all trees of nine canopy species with diameter at breast height ≥4.8 cm in a 10.24 ha plot and recorded all individuals beneath their canopies ("understory individuals" within the same diameter class. The total density of understory individuals did not significantly differ under different overstory species. One overstory species (Ceiba speciosa showed higher understory species richness compared with five other species. There was a strong positive association between three overstory species (Esenbeckia leiocarpa, Savia dictyocarpa, and C. speciosa and the density of seven understory species (Balfourodendron riedelianum, Chrysophyllum gonocarpum, E. leiocarpa, Holocalyx balansae, Machaerium stipitatum, Rhaminidium elaeocarpum, and S. dictyocarpa. These results probably reflect the outcome of a complex set of interactions including facilitation and competition, and further studies are necessary to better understand the magnitude and type of the effects of individual overstory species on understory species. The occurrence of species-specific associations shown here reinforces the importance of non-random processes in structuring plant communities and suggest that the influence of overstory species on understory species in high-diversity forests may be more significant than previously thought.

  9. TREE CANOPY COVER MAPPING USING LiDAR IN URBAN BARANGAYS OF CEBU CITY, CENTRAL PHILIPPINES

    Directory of Open Access Journals (Sweden)

    J. A. Ejares

    2016-06-01

    Full Text Available This paper investigates tree canopy cover mapping of urban barangays (smallest administrative division in the Philippines in Cebu City using LiDAR (Light Detection and Ranging. Object-Based Image Analysis (OBIA was used to extract tree canopy cover. Multi-resolution segmentation and a series of assign-class algorithm in eCognition software was also performed to extract different land features. Contextual features of tree canopies such as height, area, roundness, slope, length-width and elliptic fit were also evaluated. The results showed that at the time the LiDAR data was collected (June 24, 2014, the tree cover was around 25.11 % (or 15,674,341.8 m2 of the city’s urban barangays (or 62,426,064.6 m2. Among all urban barangays in Cebu City, Barangay Busay had the highest cover (55.79 % while barangay Suba had the lowest (0.8 %. The 16 barangays with less than 10 % tree cover were generally located in the coastal area, presumably due to accelerated urbanization. Thirty-one barangays have tree cover ranging from 10.59–-27.3 %. Only 3 barangays (i.e., Lahug, Talamban, and Busay have tree cover greater than 30 %. The overall accuracy of the analysis was 96.6 % with the Kappa Index of Agreement or KIA of 0.9. From the study, a grouping can be made of the city’s urban barangays with regards to tree cover. The grouping will be useful to urban planners not only in allocating budget to the tree planting program of the city but also in planning and creation of urban parks and playgrounds.

  10. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes

    Science.gov (United States)

    Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme

    2018-06-01

    Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.

  11. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions.

    Directory of Open Access Journals (Sweden)

    Lixin Chen

    Full Text Available The functional convergence of tree transpiration has rarely been tested for tree species growing under urban conditions even though it is of significance to elucidate the relationship between functional convergence and species differences of urban trees for establishing sustainable urban forests in the context of forest water relations.We measured sap flux of four urban tree species including Cedrus deodara, Zelkova schneideriana, Euonymus bungeanus and Metasequoia glyptostroboides in an urban park by using thermal dissipation probes (TDP. The concurrent microclimate conditions and soil moisture content were also measured. Our objectives were to examine 1 the influence of tree species and size on transpiration, and 2 the hydraulic control of urban trees under different environmental conditions over the transpiration in response to VPD as represented by canopy conductance. The results showed that the functional convergence between tree diameter at breast height (DBH and tree canopy transpiration amount (E(c was not reliable to predict stand transpiration and there were species differences within same DBH class. Species differed in transpiration patterns to seasonal weather progression and soil water stress as a result of varied sensitivity to water availability. Species differences were also found in their potential maximum transpiration rate and reaction to light. However, a same theoretical hydraulic relationship between G(c at VPD = 1 kPa (G(cref and the G(c sensitivity to VPD (-dG(c/dlnVPD across studied species as well as under contrasting soil water and R(s conditions in the urban area.We concluded that urban trees show the same hydraulic regulation over response to VPD across varying tree size and environmental conditions and thus tree transpiration could be predicted with appropriate assessment of G(cref.

  12. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions.

    Science.gov (United States)

    Chen, Lixin; Zhang, Zhiqiang; Ewers, Brent E

    2012-01-01

    The functional convergence of tree transpiration has rarely been tested for tree species growing under urban conditions even though it is of significance to elucidate the relationship between functional convergence and species differences of urban trees for establishing sustainable urban forests in the context of forest water relations. We measured sap flux of four urban tree species including Cedrus deodara, Zelkova schneideriana, Euonymus bungeanus and Metasequoia glyptostroboides in an urban park by using thermal dissipation probes (TDP). The concurrent microclimate conditions and soil moisture content were also measured. Our objectives were to examine 1) the influence of tree species and size on transpiration, and 2) the hydraulic control of urban trees under different environmental conditions over the transpiration in response to VPD as represented by canopy conductance. The results showed that the functional convergence between tree diameter at breast height (DBH) and tree canopy transpiration amount (E(c)) was not reliable to predict stand transpiration and there were species differences within same DBH class. Species differed in transpiration patterns to seasonal weather progression and soil water stress as a result of varied sensitivity to water availability. Species differences were also found in their potential maximum transpiration rate and reaction to light. However, a same theoretical hydraulic relationship between G(c) at VPD = 1 kPa (G(cref)) and the G(c) sensitivity to VPD (-dG(c)/dlnVPD) across studied species as well as under contrasting soil water and R(s) conditions in the urban area. We concluded that urban trees show the same hydraulic regulation over response to VPD across varying tree size and environmental conditions and thus tree transpiration could be predicted with appropriate assessment of G(cref).

  13. Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species

    Directory of Open Access Journals (Sweden)

    Isabelle Laforest-Lapointe

    2016-08-01

    Full Text Available Background The diversity and composition of the microbial community of tree leaves (the phyllosphere varies among trees and host species and along spatial, temporal, and environmental gradients. Phyllosphere community variation within the canopy of an individual tree exists but the importance of this variation relative to among-tree and among-species variation is poorly understood. Sampling techniques employed for phyllosphere studies include picking leaves from one canopy location to mixing randomly selected leaves from throughout the canopy. In this context, our goal was to characterize the relative importance of intra-individual variation in phyllosphere communities across multiple species, and compare this variation to inter-individual and interspecific variation of phyllosphere epiphytic bacterial communities in a natural temperate forest in Quebec, Canada. Methods We targeted five dominant temperate forest tree species including angiosperms and gymnosperms: Acer saccharum, Acer rubrum, Betula papyrifera, Abies balsamea and Picea glauca. For one randomly selected tree of each species, we sampled microbial communities at six distinct canopy locations: bottom-canopy (1–2 m height, the four cardinal points of mid-canopy (2–4 m height, and the top-canopy (4–6 m height. We also collected bottom-canopy leaves from five additional trees from each species. Results Based on an analysis of bacterial community structure measured via Illumina sequencing of the bacterial 16S gene, we demonstrate that 65% of the intra-individual variation in leaf bacterial community structure could be attributed to the effect of inter-individual and inter-specific differences while the effect of canopy location was not significant. In comparison, host species identity explains 47% of inter-individual and inter-specific variation in leaf bacterial community structure followed by individual identity (32% and canopy location (6%. Discussion Our results suggest that

  14. Slope variation and population structure of tree species from different ecological groups in South Brazil.

    Science.gov (United States)

    Bianchini, Edmilson; Garcia, Cristina C; Pimenta, José A; Torezan, José M D

    2010-09-01

    Size structure and spatial arrangement of 13 abundant tree species were determined in a riparian forest fragment in Paraná State, South Brazil (23°16'S and 51°01'W). The studied species were Aspidosperma polyneuron Müll. Arg., Astronium graveolens Jacq. and Gallesia integrifolia (Spreng) Harms (emergent species); Alseis floribunda Schott, Ruprechtia laxiflora Meisn. and Bougainvillea spectabilis Willd. (shade-intolerant canopy species); Machaerium paraguariense Hassl, Myroxylum peruiferum L. and Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl. (shade-tolerant canopy species); Sorocea bonplandii (Baill.) Bürger, Trichilia casaretti C. Dc, Trichilia catigua A. Juss. and Actinostemon concolor (Spreng.) Müll. Arg. (understory small trees species). Height and diameter structures and basal area of species were analyzed. Spatial patterns and slope correlation were analyzed by Moran's / spatial autocorrelation coefficient and partial Mantel test, respectively. The emergent and small understory species showed the highest and the lowest variations in height, diameter and basal area. Size distribution differed among emergent species and also among canopy shade-intolerant species. The spatial pattern ranged among species in all groups, except in understory small tree species. The slope was correlated with spatial pattern for A. polyneuron, A. graveolens, A. floribunda, R. laxiflora, M. peruiferum and T. casaretti. The results indicated that most species occurred in specific places, suggesting that niche differentiation can be an important factor in structuring the tree community.

  15. Canopy Fuel Load Mapping of Mediterranean Pine Sites Based on Individual Tree-Crown Delineation

    Directory of Open Access Journals (Sweden)

    Giorgos Mallinis

    2013-12-01

    Full Text Available This study presents an individual tree-crown-based approach for canopy fuel load estimation and mapping in two Mediterranean pine stands. Based on destructive sampling, an allometric equation was developed for the estimation of crown fuel weight considering only pine crown width, a tree characteristic that can be estimated from passive imagery. Two high resolution images were used originally for discriminating Aleppo and Calabrian pines crown regions through a geographic object based image analysis approach. Subsequently, the crown region images were segmented using a watershed segmentation algorithm and crown width was extracted. The overall accuracy of the tree crown isolation expressed through a perfect match between the reference and the delineated crowns was 34.00% for the Kassandra site and 48.11% for the Thessaloniki site, while the coefficient of determination between the ground measured and the satellite extracted crown width was 0.5. Canopy fuel load values estimated in the current study presented mean values from 1.29 ± 0.6 to 1.65 ± 0.7 kg/m2 similar to other conifers worldwide. Despite the modest accuracies attained in this first study of individual tree crown fuel load mapping, the combination of the allometric equations with satellite-based extracted crown width information, can contribute to the spatially explicit mapping of canopy fuel load in Mediterranean areas. These maps can be used among others in fire behavior prediction, in fuel reduction treatments prioritization and during active fire suppression.

  16. [Quantitative models between canopy hyperspectrum and its component features at apple tree prosperous fruit stage].

    Science.gov (United States)

    Wang, Ling; Zhao, Geng-xing; Zhu, Xi-cun; Lei, Tong; Dong, Fang

    2010-10-01

    Hyperspectral technique has become the basis of quantitative remote sensing. Hyperspectrum of apple tree canopy at prosperous fruit stage consists of the complex information of fruits, leaves, stocks, soil and reflecting films, which was mostly affected by component features of canopy at this stage. First, the hyperspectrum of 18 sample apple trees with reflecting films was compared with that of 44 trees without reflecting films. It could be seen that the impact of reflecting films on reflectance was obvious, so the sample trees with ground reflecting films should be separated to analyze from those without ground films. Secondly, nine indexes of canopy components were built based on classified digital photos of 44 apple trees without ground films. Thirdly, the correlation between the nine indexes and canopy reflectance including some kinds of conversion data was analyzed. The results showed that the correlation between reflectance and the ratio of fruit to leaf was the best, among which the max coefficient reached 0.815, and the correlation between reflectance and the ratio of leaf was a little better than that between reflectance and the density of fruit. Then models of correlation analysis, linear regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the hyperspectral reflectance and the ratio of fruit to leaf with the softwares of DPS and LIBSVM. It was feasible that all of the four models in 611-680 nm characteristic band are feasible to be used to predict, while the model accuracy of BP neural network and support vector regression was better than one-variable linear regression and multi-variable regression, and the accuracy of support vector regression model was the best. This study will be served as a reliable theoretical reference for the yield estimation of apples based on remote sensing data.

  17. Canopy and knowledge gaps when invasive alien insects remove foundation species.

    Science.gov (United States)

    Marler, Thomas E; Lawrence, John H

    2013-01-01

    The armored scale Aulacaspis yasumatsui invaded the northern range of the cycad Cycas micronesica in 2003, and epidemic tree mortality ensued due to a lack of natural enemies of the insect. We quantified cycad demographic responses to the invasion, but the ecological responses to the selective removal of this foundation species have not been addressed. We use this case to highlight information gaps in our understanding of how alien invasive phytophagous insects force cascading adverse ecosystem changes. The mechanistic role of unique canopy gaps, oceanic island examples and threatened foundation species with distinctive traits are three issues that deserve research efforts in a quest to understand this facet of ecosystem change occurring across multiple settings globally.

  18. Early Yield Prediction Using Image Analysis of Apple Fruit and Tree Canopy Features with Neural Networks

    Directory of Open Access Journals (Sweden)

    Hong Cheng

    2017-01-01

    Full Text Available (1 Background: Since early yield prediction is relevant for resource requirements of harvesting and marketing in the whole fruit industry, this paper presents a new approach of using image analysis and tree canopy features to predict early yield with artificial neural networks (ANN; (2 Methods: Two back propagation neural network (BPNN models were developed for the early period after natural fruit drop in June and the ripening period, respectively. Within the same periods, images of apple cv. “Gala” trees were captured from an orchard near Bonn, Germany. Two sample sets were developed to train and test models; each set included 150 samples from the 2009 and 2010 growing season. For each sample (each canopy image, pixels were segmented into fruit, foliage, and background using image segmentation. The four features extracted from the data set for the canopy were: total cross-sectional area of fruits, fruit number, total cross-section area of small fruits, and cross-sectional area of foliage, and were used as inputs. With the actual weighted yield per tree as a target, BPNN was employed to learn their mutual relationship as a prerequisite to develop the prediction; (3 Results: For the developed BPNN model of the early period after June drop, correlation coefficients (R2 between the estimated and the actual weighted yield, mean forecast error (MFE, mean absolute percentage error (MAPE, and root mean square error (RMSE were 0.81, −0.05, 10.7%, 2.34 kg/tree, respectively. For the model of the ripening period, these measures were 0.83, −0.03, 8.9%, 2.3 kg/tree, respectively. In 2011, the two previously developed models were used to predict apple yield. The RMSE and R2 values between the estimated and harvested apple yield were 2.6 kg/tree and 0.62 for the early period (small, green fruit and improved near harvest (red, large fruit to 2.5 kg/tree and 0.75 for a tree with ca. 18 kg yield per tree. For further method verification, the cv.

  19. Applications of urban tree canopy assessment and prioritization tools: supporting collaborative decision making to achieve urban sustainability goals

    Science.gov (United States)

    Dexter H. Locke; J. Morgan Grove; Michael Galvin; Jarlath P.M. ONeil-Dunne; Charles. Murphy

    2013-01-01

    Urban Tree Canopy (UTC) Prioritizations can be both a set of geographic analysis tools and a planning process for collaborative decision-making. In this paper, we describe how UTC Prioritizations can be used as a planning process to provide decision support to multiple government agencies, civic groups and private businesses to aid in reaching a canopy target. Linkages...

  20. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions

    International Nuclear Information System (INIS)

    Nunn, Angela J.; Wieser, Gerhard; Metzger, Ursula; Loew, Markus; Wipfler, Philip; Haeberle, Karl-Heinz; Matyssek, Rainer

    2007-01-01

    Whole-tree O 3 uptake was exemplified for Picea abies, Fagus sylvatica and Larix decidua in stands at high and low altitude and contrasting water availability through sap flow measurement in tree trunks, intrinsically accounting for drought and boundary layer effects on O 3 flux. O 3 uptake of evergreen spruce per unit foliage area was enhanced by 100% at high relative to low elevation, whereas deciduous beech and larch showed similar uptake regardless of altitude. The responsiveness of the canopy conductance to water vapor and, as a consequence, O 3 uptake to soil moisture and air humidity did not differ between species. Unifying findings at the whole-tree level will promote cause-effect based O 3 risk assessment and modeling. - Sap flow-based assessment of whole-tree O 3 uptake reflects similar responsiveness of canopy conductance and O 3 uptake across contrasting tree species and site conditions

  1. A Model for the Detailed Analysis of Radio Links Involving Tree Canopies

    Directory of Open Access Journals (Sweden)

    F. Perez-Fontan

    2016-12-01

    Full Text Available Detailed analysis of tree canopy interaction with incident radiowaves has mainly been limited to remote sensing for the purpose of forest classification among many other applications. This represents a monostatic configuration, unlike the case of communication links, which are bistatic. In general, link analyses have been limited to the application of simple, empirical formulas based on the use of specific attenuation values in dB/m and the traversed vegetated mass as, e.g., the model in Recommendation ITU-R P.833-8 [1]. In remote sensing, two main techniques are used: Multiple Scattering Theory (MST [2][5] and Radiative Transfer Theory (RT, [5] and [6]. We have paid attention in the past to MST [7][10]. It was shown that a full application of MST leads to very long computation times which are unacceptable in the case where we have to analyze a scenario with several trees. Extensive work using MST has been also presented by others in [11][16] showing the interest in this technique. We have proposed a simplified model for scattering from tree canopies based on a hybridization of MST and a modified physical optics (PO approach [16]. We assume that propagation through a canopy is accounted for by using the complex valued propagation constant obtained by MST. Unlike the case when the full MST is applied, the proposed approach offers significant benefits including a direct software implementation and acceptable computation times even for high frequencies and electrically large canopies. The proposed model thus replaces the coherent component in MST, significant in the forward direction, but keeps the incoherent or diffuse scattering component present in all directions. The incoherent component can be calculated within reasonable times. Here, we present tests of the proposed model against MST using an artificial single-tree scenario at 2 GHz and 10 GHz.

  2. An Analysis of Overstory Tree Canopy Cover in Sites Occupied by Native and Introduced Cottontails in the Northeastern United States with Recommendations for Habitat Management for New England Cottontail.

    Directory of Open Access Journals (Sweden)

    Bill Buffum

    Full Text Available The New England cottontail (Sylvilagus transitionalis is a high conservation priority in the Northeastern United States and has been listed as a candidate species under the Endangered Species Act. Loss of early successional habitat is the most common explanation for the decline of the species, which is considered to require habitat with dense low vegetation and limited overstory tree canopy. Federal and state wildlife agencies actively encourage landowners to create this habitat type by clearcutting blocks of forest. However, there are recent indications that the species also occupies sites with moderate overstory tree canopy cover. This is important because many landowners have negative views about clearcutting and are more willing to adopt silvicultural approaches that retain some overstory trees. Furthermore, it is possible that clearcuts with no overstory canopy cover may attract the eastern cottontail (S. floridanus, an introduced species with an expanding range. The objective of our study was to provide guidance for future efforts to create habitat that would be more favorable for New England cottontail than eastern cottontail in areas where the two species are sympatric. We analyzed canopy cover at 336 cottontail locations in five states using maximum entropy modelling and other statistical methods. We found that New England cottontail occupied sites with a mean overstory tree canopy cover of 58% (SE±1.36, and was less likely than eastern cottontail to occupy sites with lower overstory canopy cover and more likely to occupy sites with higher overstory canopy cover. Our findings suggest that silvicultural approaches that retain some overstory canopy cover may be appropriate for creating habitat for New England cottontail. We believe that our results will help inform critical management decisions for the conservation of New England cottontail, and that our methodology can be applied to analyses of habitat use of other critical wildlife

  3. Trait acclimation mitigates mortality risks of tropical canopy trees under global warming

    Directory of Open Access Journals (Sweden)

    Frank eSterck

    2016-05-01

    Full Text Available There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35ºC and ambient CO2 concentrations (390-800 ppm predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2ºC, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  4. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    Science.gov (United States)

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  5. Relative lack of regeneration of shade-intolerant canopy species in some South African forests

    CSIR Research Space (South Africa)

    Midgley, JJ

    1995-01-01

    Full Text Available Some species such as Celtis Africana, are experiencing relative recruitment bottlenecks, because there are usually fewer recruits [i.e. individuals <20 cm diameter at breast height, (dbh)] than canopy individuals. The species with low recruitment...

  6. Irrigation and fruit canopy position modify oil quality of olive trees (cv. Frantoio).

    Science.gov (United States)

    Caruso, Giovanni; Gucci, Riccardo; Sifola, Maria Isabella; Selvaggini, Roberto; Urbani, Stefania; Esposto, Sonia; Taticchi, Agnese; Servili, Maurizio

    2017-08-01

    Fruit development and oil quality in Olea europaea L. are strongly influenced by both light and water availability. In the present study, the simultaneous effects of light environment and irrigation on fruit characteristics and oil quality were studied in a high-density orchard over two consecutive years. Olive fruits were harvested from three canopy positions (intercepting approximately 64%, 42% and 30% of above canopy radiation) of fully-productive trees subjected to full, deficit or complementary irrigation. Fruits receiving 61-67% of above canopy radiation showed the highest fruit weight, mesocarp oil content and maturation index, whereas those intercepting only 27-33% showed the lowest values. Palmitoleic and linoleic acids increased in oils obtained from fruits exposed to high light levels, whereas oleic acid and the oleic-linoleic acid ratio decreased. Neither canopy position, nor irrigation affected K 232 , K 270 , ΔK and the concentration of lignan in virgin olive oils (VOOs). Total phenols, 3,4-DHPEA-EDA [2-(3,4-hydroxyphenyl)ethyl (3S,4E)-4-formyl-3-(2-oxoethyl)hex-4-enoate] and p-HPEA-EDA (decarboxymethyl ligstroside-aglycone) increased in VOOs produced from fruits harvested from the top of the canopy, whereas full irrigation decreased total phenols and 3,4-DHPEA-EDA concentrations with respect to the complementary irrigation treatment. Light and water availability are crucial not only for tree productivity, but also they clearly affect olive oil quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Tree canopy composition in the tropical mountain rainforest of los Tuxtlas, Mexico

    Directory of Open Access Journals (Sweden)

    Mario Vázquez-Torres

    2008-09-01

    Full Text Available We studied the arboreal composition of the tropical mountain rainforest’s upper canopy in the San Martín Pajapán volcano, Tatahuicapan, Veracruz, México (18°26’ N; 94°17’ W. Two forest stands were studied, one in an exposed position and one protected. The Shannon index of diversity and the Jaccard index of affinity were calculated to calculate affinities between plots and between stands of different environmental exposures. The average Shannon value was 3.391 +0.121 for the exposed zone and 3.511 +0.53 for the protected zone. There is a greater species number and tree density in the exposed stand. This difference might be caused be different orientation to dominant winds. The diversity index value is high is similar between the stands, despite the important difference in species composition. Rev. Biol. Trop. 56 (3: 1571-1579. Epub 2008 September 30.El objetivo de este trabajo fue conocer la composición arbórea del bosque tropical lluvioso en el volcán de San Martín Pajapán. Se comparan dos áreas en diferente exposición: expuesta a los vientos dominates y protegida de los vientos. El valor medio del índice de diversidad de Shannon es de 3.391 +0.121 para la zona expuesta y 3.511 +0.53 para la protegida. El número de especies y la densidad de árboles por hectárea es mayor en la zona expuesta y la composición de especies es muy diferente entre las parcelas.

  8. Tree-growth analyses to estimate tree species' drought tolerance.

    Science.gov (United States)

    Eilmann, Britta; Rigling, Andreas

    2012-02-01

    Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree species' potential for surviving future aggravated environmental conditions is rather demanding. The aim of this study was to find a tree-ring-based method suitable for identifying very drought-tolerant species, particularly potential substitute species for Scots pine (Pinus sylvestris L.) in Valais. In this inner-Alpine valley, Scots pine used to be the dominating species for dry forests, but today it suffers from high drought-induced mortality. We investigate the growth response of two native tree species, Scots pine and European larch (Larix decidua Mill.), and two non-native species, black pine (Pinus nigra Arnold) and Douglas fir (Pseudotsuga menziesii Mirb. var. menziesii), to drought. This involved analysing how the radial increment of these species responded to increasing water shortage (abandonment of irrigation) and to increasingly frequent drought years. Black pine and Douglas fir are able to cope with drought better than Scots pine and larch, as they show relatively high radial growth even after irrigation has been stopped and a plastic growth response to drought years. European larch does not seem to be able to cope with these dry conditions as it lacks the ability to recover from drought years. The analysis of trees' short-term response to extreme climate events seems to be the most promising and suitable method for detecting how tolerant a tree species is towards drought. However, combining all the methods used in this study provides a complete picture of how water shortage could limit species.

  9. Leaf water 18 O and 2 H enrichment along vertical canopy profiles in a broadleaved and a conifer forest tree.

    Science.gov (United States)

    Bögelein, Rebekka; Thomas, Frank M; Kahmen, Ansgar

    2017-07-01

    Distinguishing meteorological and plant-mediated drivers of leaf water isotopic enrichment is prerequisite for ecological interpretations of stable hydrogen and oxygen isotopes in plant tissue. We measured input and leaf water δ 2 H and δ 18 O as well as micrometeorological and leaf morpho-physiological variables along a vertical gradient in a mature angiosperm (European beech) and gymnosperm (Douglas fir) tree. We used these variables and different enrichment models to quantify the influence of Péclet and non-steady state effects and of the biophysical drivers on leaf water enrichment. The two-pool model accurately described the diurnal variation of leaf water enrichment. The estimated unenriched water fraction was linked to leaf dry matter content across the canopy heights. Non-steady state effects and reduced stomatal conductance caused a higher enrichment of Douglas fir compared to beech leaf water. A dynamic effect analyses revealed that the light-induced vertical gradients of stomatal conductance and leaf temperature outbalanced each other in their effects on evaporative enrichment. We conclude that neither vertical canopy gradients nor the Péclet effect is important for estimates and interpretation of isotopic leaf water enrichment in hypostomatous trees. Contrarily, species-specific non-steady state effects and leaf temperatures as well as the water vapour isotope composition need careful consideration. © 2017 John Wiley & Sons Ltd.

  10. Edge-to-Stem Variability in Wet-Canopy Evaporation From an Urban Tree Row

    Science.gov (United States)

    Van Stan, John T.; Norman, Zachary; Meghoo, Adrian; Friesen, Jan; Hildebrandt, Anke; Côté, Jean-François; Underwood, S. Jeffrey; Maldonado, Gustavo

    2017-11-01

    Evaporation from wet-canopy (E_C) and stem (E_S) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, E_C and E_S dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in E_C and assume (with few indirect data) that E_S is generally {<}2% of total wet-canopy evaporation. We test these common assumptions for the first time with a spatially-distributed network of in-canopy meteorological monitoring and 45 surface temperature sensors in an urban Pinus elliottii tree row to estimate E_C and E_S under the assumption that crown surfaces behave as "wet bulbs". From December 2015 through July 2016, 33 saturated crown periods (195 h of 5-min observations) were isolated from storms for determination of 5-min evaporation rates ranging from negligible to 0.67 mm h^{-1}. Mean E_S (0.10 mm h^{-1}) was significantly lower (p < 0.01) than mean E_C (0.16 mm h^{-1}). But, E_S values often equalled E_C and, when scaled to trunk area using terrestrial lidar, accounted for 8-13% (inter-quartile range) of total wet-crown evaporation (E_S+E_C scaled to surface area). E_S contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2-17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.

  11. Conductive sapwood area prediction from stem and canopy areas - allometric equations of Kalahari trees, Botswana

    NARCIS (Netherlands)

    Lubczynski, M.W.; Chavarro-Rincon, D.C.; Rossiter, David

    2017-01-01

    Conductive sapwood (xylem) area (Ax) of all trees in a given forested area is the main factor contributing to spatial tree transpiration. One hundred ninety-five trees of 9 species in the Kalahari region of Botswana were felled, stained, cut into discs, and measured to develop allometric equations

  12. Spatial Patterns and Interspecific Associations of Three Canopy Species at Different Life Stages in a Subtropical Forest,China

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Shi-Guang Wei; Zhong-Liang Huang; Wan-Hui Ye; Hong-Lin Cao

    2008-01-01

    Spatial patterns of species at different life stages are an important aspect for understanding causal mechanisms that facilitate species co-existence.Using Ripley's univariate L(t) and bivariate L12(t) functions,we analyzed the spatial patterns and interspecific associations of three canopy species at different life history stages in a 20-ha subtropical forest plot in Dinghushan Nature Reserve.Based on diameter at breast height (DBH),four life stages were distinguished.Castanopsis chinensis and Schima superba showed a unimodal DBH distribution.Engelhardtia roxburghiana showed a bimodal curve.L(t) function analysis showed significantly aggregated distributions of all three species at later life stages and random distribution at early life stages at some scales.From the analysis of L12(t) function,the results showed the positive association was a dominant pattern for most species pairs at most scales but the intensity of association decreases with the increase of life stages.Juveniles of the three species had no negative intra- and interspecific associations with the older life stages.Only premature trees were suppressed by overmature trees at some scales.Considering these results,we found three canopy-dominant species that lacked regeneration.There was no direct competition occurring between understorey individuals.Young trees can grow well under conspecific species with two other species.Longevity and lack of regeneration led to a large number of trees stored in mature and overmature stages,therefore,intra-and inter-competition can be strong at later life stages.

  13. Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species

    Directory of Open Access Journals (Sweden)

    Tawanda W. Gara

    2018-02-01

    Full Text Available Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA. Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N, chlorophyll (Cab, carbon (C, and equivalent water thickness (EWT were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05 shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level

  14. Reconciliation with non-binary species trees.

    Science.gov (United States)

    Vernot, Benjamin; Stolzer, Maureen; Goldman, Aiton; Durand, Dannie

    2008-10-01

    Reconciliation extracts information from the topological incongruence between gene and species trees to infer duplications and losses in the history of a gene family. The inferred duplication-loss histories provide valuable information for a broad range of biological applications, including ortholog identification, estimating gene duplication times, and rooting and correcting gene trees. While reconciliation for binary trees is a tractable and well studied problem, there are no algorithms for reconciliation with non-binary species trees. Yet a striking proportion of species trees are non-binary. For example, 64% of branch points in the NCBI taxonomy have three or more children. When applied to non-binary species trees, current algorithms overestimate the number of duplications because they cannot distinguish between duplication and incomplete lineage sorting. We present the first algorithms for reconciling binary gene trees with non-binary species trees under a duplication-loss parsimony model. Our algorithms utilize an efficient mapping from gene to species trees to infer the minimum number of duplications in O(|V(G) | x (k(S) + h(S))) time, where |V(G)| is the number of nodes in the gene tree, h(S) is the height of the species tree and k(S) is the size of its largest polytomy. We present a dynamic programming algorithm which also minimizes the total number of losses. Although this algorithm is exponential in the size of the largest polytomy, it performs well in practice for polytomies with outdegree of 12 or less. We also present a heuristic which estimates the minimal number of losses in polynomial time. In empirical tests, this algorithm finds an optimal loss history 99% of the time. Our algorithms have been implemented in NOTUNG, a robust, production quality, tree-fitting program, which provides a graphical user interface for exploratory analysis and also supports automated, high-throughput analysis of large data sets.

  15. How many trees are enough? Tree death and the urban canopy

    Science.gov (United States)

    Lara A. Roman

    2014-01-01

    Massive city tree planting campaigns have invigorated the urban forestry movement, and engaged politicians, planners, and the public in urban greening. Million tree initiatives have been launched in Los Angeles, CA; Denver, CO; New York City, NY; Philadelphia, PA, and other cities. Sacramento, CA even has a five million tree program. These...

  16. Compatibility of organic farming treatments against Monosteira unicostata with non-target arthropod fauna of almond trees canopy

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Ramos, I.; Marcotegui, A.; Pascual, S.; Fernández, C.E.; Cobos, G.; González-Núñez, M.

    2017-07-01

    Field trials had shown that 1-2 applications of kaolin and potassium salts of fatty acids combined with thyme essential oil (PSTEO) reduced the abundance of the lace bug Monosteira unicostata (Mulsant & Rey) (Hemiptera: Tingidae), an important pest of almond trees in the Mediterranean region. These products could be useful for the control of this pest in organic production of almonds, but higher number of applications could be necessary. However, the possible detrimental effects on the almond orchard ecosystem should be evaluated. In the present work, the effects observed on the non-target arthropod fauna of the almond trees canopy in those field assays are shown. First, a comprehensive report of the non-target arthropod fauna of the almond tree is provided. Regarding natural enemies, most of the predatory arthropods captured were spiders belonging to different families like Salticidae, Thomisidae, Philodromidae, Theridiidae, Araneidae or Oxyopidae. Other predatory families that appeared in significant numbers were Chrysopidae, Anthocoridae, Aeolothripidae, Coccinellidae, Phytoseiidae, Erythraeidae or Forficulidae. Among parasitoids, the most abundant families were Eulophidae, Scelionidae and Dryinidae. Kaolin reduced the abundance of natural enemies and other non-target arthropods as well as their diversity and number of species. On the contrary, PSTEO only produced a slight reduction in the number of natural enemies, whereas no effect was found on the diversity and species richness. These effects were observed despite the reduced number of applications, so greater effect is expected if its frequency is increased in order to achieve an efficient control of M. unicostata.

  17. Compatibility of organic farming treatments against Monosteira unicostata with non-target arthropod fauna of almond trees canopy

    International Nuclear Information System (INIS)

    Sánchez-Ramos, I.; Marcotegui, A.; Pascual, S.; Fernández, C.E.; Cobos, G.; González-Núñez, M.

    2017-01-01

    Field trials had shown that 1-2 applications of kaolin and potassium salts of fatty acids combined with thyme essential oil (PSTEO) reduced the abundance of the lace bug Monosteira unicostata (Mulsant & Rey) (Hemiptera: Tingidae), an important pest of almond trees in the Mediterranean region. These products could be useful for the control of this pest in organic production of almonds, but higher number of applications could be necessary. However, the possible detrimental effects on the almond orchard ecosystem should be evaluated. In the present work, the effects observed on the non-target arthropod fauna of the almond trees canopy in those field assays are shown. First, a comprehensive report of the non-target arthropod fauna of the almond tree is provided. Regarding natural enemies, most of the predatory arthropods captured were spiders belonging to different families like Salticidae, Thomisidae, Philodromidae, Theridiidae, Araneidae or Oxyopidae. Other predatory families that appeared in significant numbers were Chrysopidae, Anthocoridae, Aeolothripidae, Coccinellidae, Phytoseiidae, Erythraeidae or Forficulidae. Among parasitoids, the most abundant families were Eulophidae, Scelionidae and Dryinidae. Kaolin reduced the abundance of natural enemies and other non-target arthropods as well as their diversity and number of species. On the contrary, PSTEO only produced a slight reduction in the number of natural enemies, whereas no effect was found on the diversity and species richness. These effects were observed despite the reduced number of applications, so greater effect is expected if its frequency is increased in order to achieve an efficient control of M. unicostata.

  18. Effect of Different Tree canopies on the Brightness Temperature of Snowpack

    Science.gov (United States)

    Mousavi, S.; De Roo, R. D.; Brucker, L.

    2017-12-01

    Snow stores the water we drink and is essential to grow food that we eat. But changes in snow quantities such as snow water equivalent (SWE) are underway and have serious consequences. So, effective management of the freshwater reservoir requires to monitor frequently (weekly or better) the spatial distribution of SWE and snowpack wetness. Both microwave radar and radiometer systems have long been considered as relevant remote sensing tools in retrieving globally snow physical parameters of interest thanks to their all-weather operation capability. However, their observations are sensitive to the presence of tree canopies, which in turns impacts SWE estimation. To address this long-lasting challenge, we parked a truck-mounted microwave radiometer system for an entire winter in a rare area where it exists different tree types in the different cardinal directions. We used dual-polarization microwave radiometers at three different frequencies (1.4, 19, and 37 GHz), mounted on a boom truck to observe continuously the snowpack surrounding the truck. Observations were recorded at different incidence angles. These measurements have been collected in Grand Mesa National Forest, Colorado as part of the NASA SnowEx 2016-17. In this presentation, the effect of Engelmann Spruce and Aspen trees on the measured brightness temperature of snow is discussed. It is shown that Engelmann Spruce trees increases the brightness temperature of the snowpack more than Aspen trees do. Moreover, the elevation angular dependence of the measured brightness temperatures of snowpack with and without tree canopies is investigated in the context of SWE retrievals. A time-lapse camera was monitoring a snow post installed in the sensors' field of view to characterize the brightness temperature change as snow depth evolved. Also, our study takes advantage of the snowpit measurements that were collected near the radiometers' field of view.

  19. Big data of tree species distributions

    DEFF Research Database (Denmark)

    Serra-Diaz, Josep M.; Enquist, Brian J.; Maitner, Brian

    2018-01-01

    are currently available in big databases, several challenges hamper their use, notably geolocation problems and taxonomic uncertainty. Further, we lack a complete picture of the data coverage and quality assessment for open/public databases of tree occurrences. Methods: We combined data from five major...... and data aggregation, especially from national forest inventory programs, to improve the current publicly available data.......Background: Trees play crucial roles in the biosphere and societies worldwide, with a total of 60,065 tree species currently identified. Increasingly, a large amount of data on tree species occurrences is being generated worldwide: from inventories to pressed plants. While many of these data...

  20. What controls stemflow? A LiDAR-based investigation of individual tree canopy structure, neighborhood conditions, and meteorological factors

    Science.gov (United States)

    Yankine, S. A.; Van Stan, J. T., II; Mesta, D. C.; Côté, J. F.; Hildebrandt, A.; Friesen, J.; Maldonado, G.

    2017-12-01

    Stemflow is a pointed hydrologic flux at the base of tree stems that has been linked to a host of biogeochemical processes in vegetated landscapes. Much work has been done to examine controls over stemflow water yield, finding three major factors: individual tree canopy structure, meteorological variables, and neighborhood conditions. However, the authors are unaware of any study to directly quantify all factors using a combination of terrestrial LiDAR and micrometeorological monitoring methods. This study directly quantifies individual Pinus palustris tree canopy characteristics (trunk volume and angle, branch volume and angle from 1st-to-3rd order, bark roughness, and height), 10-m radius neighborhood properties (number of trees, mean diameter and height, mean distance from study tree, and canopy overlap), and above-canopy storm conditions (magnitude, intensity, mean/max wind speed, and vapor pressure deficit) directly at the site. Stemflow production was 1% of rainfall, ranging from 0.3-59 L per storm from individual trees. Preliminary findings from storms (5-176 mm in magnitude) indicate that all individual tree characteristics, besides bark roughness, have little influence on stemflow generation. Bark roughness altered stemflow generation by affecting trunk water storage (0.1-0.7 mm) and wet trunk evaporation rates (0.005-0.03 mm/h). The strongest influence over stemflow generation from individual trees was the interaction between neighborhood characteristics and meteorological conditions (primarily rainfall amount and, secondarily, rainfall intensity).

  1. Temperature profile in apricot tree canopies under the soil and climate conditions of the Romanian Black Sea Coast

    Science.gov (United States)

    Paltineanu, Cristian; Septar, Leinar; Chitu, Emil

    2016-03-01

    The paper describes the temperature profiles determined by thermal imagery in apricot tree canopies under the semi-arid conditions of the Black Sea Coast in a chernozem of Dobrogea Region, Romania. The study analyzes the thermal vertical profile of apricot orchards for three representative cultivars during summertime. Measurements were done when the soil water content (SWC) was at field capacity (FC) within the rooting depth, after intense sprinkler irrigation applications. Canopy temperature was measured during clear sky days at three heights for both sides of the apricot trees, sunlit (south), and shaded (north). For the SWC studied, i.e., FC, canopy height did not induce a significant difference between the temperature of apricot tree leaves (Tc) and the ambient air temperature (Ta) within the entire vertical tree profile, and temperature measurements by thermal imagery can therefore be taken at any height on the tree crown leaves. Differences between sunlit and shaded sides of the canopy were significant. Because of these differences for Tc-Ta among the apricot tree cultivars studied, lower base lines (LBLs) should be determined for each cultivar separately. The use of thermal imagery technique under the conditions of semi-arid coastal areas with low range of vapor pressure deficit could be useful in irrigation scheduling of apricot trees. The paper discusses the implications of the data obtained in the experiment under the conditions of the coastal area of the Black Sea, Romania, and neighboring countries with similar climate, such as Bulgaria and Turkey.

  2. Canopy gradients in leaf functional traits for species that differ in growth strategies and shade tolerance.

    Science.gov (United States)

    Coble, Adam P; Fogel, Marilyn L; Parker, Geoffrey G

    2017-10-01

    In temperate deciduous forests, vertical gradients in leaf mass per area (LMA) and area-based leaf nitrogen (Narea) are strongly controlled by gradients in light availability. While there is evidence that hydrostatic constraints on leaf development may diminish LMA and Narea responses to light, inherent differences among tree species may also influence leaf developmental and morphological response to light. We investigated vertical gradients in LMA, Narea and leaf carbon isotope composition (δ13C) for three temperate deciduous species (Carpinus caroliniana Walter, Fagus grandifolia Ehrh., Liriodendron tulipifera L.) that differed in growth strategy (e.g., indeterminate and determinate growth), shade tolerance and leaf area to sapwood ratio (Al:As). Leaves were sampled across a broad range of light conditions within three vertical layers of tree crowns to maximize variation in light availability at each height and to minimize collinearity between light and height. All species displayed similar responses to light with respect to Narea and δ13C, but not for LMA. Light was more important for gradients in LMA for the shade-tolerant (C. caroliniana) and -intolerant (L. tulipifera) species with indeterminate growth, and height (e.g., hydrostatic gradients) and light were equally important for the shade-tolerant (F. grandifolia) species with determinate growth. Fagus grandifolia had a higher morphological plasticity in response to light, which may offer a competitive advantage in occupying a broader range of light conditions throughout the canopy. Differences in responses to light and height for the taller tree species, L. tulipifera and F. grandifolia, may be attributed to differences in growth strategy or Al:As, which may alter morphological and functional responses to light availability. While height was important in F. grandifolia, height was no more robust in predicting LMA than light in any of the species, confirming the strong role of light availability in

  3. Tree structural and species diversities in Okwangwo Forest, Cross ...

    African Journals Online (AJOL)

    Tree species were grouped into abundance classes. A total of 125 tree species belonging to 36 families and 96 genera were recorded in the area with Margaleffs index of species richness of 2.2754. Most (99) of the tree species encountered were threatened/endangered, 23 species were rare with only 3 tree species ...

  4. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    Science.gov (United States)

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The Canopy Graph and Level Statistics for Random Operators on Trees

    International Nuclear Information System (INIS)

    Aizenman, Michael; Warzel, Simone

    2006-01-01

    For operators with homogeneous disorder, it is generally expected that there is a relation between the spectral characteristics of a random operator in the infinite setup and the distribution of the energy gaps in its finite volume versions, in corresponding energy ranges. Whereas pure point spectrum of the infinite operator goes along with Poisson level statistics, it is expected that purely absolutely continuous spectrum would be associated with gap distributions resembling the corresponding random matrix ensemble. We prove that on regular rooted trees, which exhibit both spectral types, the eigenstate point process has always Poissonian limit. However, we also find that this does not contradict the picture described above if that is carefully interpreted, as the relevant limit of finite trees is not the infinite homogenous tree graph but rather a single-ended 'canopy graph.' For this tree graph, the random Schroedinger operator is proven here to have only pure-point spectrum at any strength of the disorder. For more general single-ended trees it is shown that the spectrum is always singular - pure point possibly with singular continuous component which is proven to occur in some cases

  6. Reconciliation of Gene and Species Trees

    Directory of Open Access Journals (Sweden)

    L. Y. Rusin

    2014-01-01

    Full Text Available The first part of the paper briefly overviews the problem of gene and species trees reconciliation with the focus on defining and algorithmic construction of the evolutionary scenario. Basic ideas are discussed for the aspects of mapping definitions, costs of the mapping and evolutionary scenario, imposing time scales on a scenario, incorporating horizontal gene transfers, binarization and reconciliation of polytomous trees, and construction of species trees and scenarios. The review does not intend to cover the vast diversity of literature published on these subjects. Instead, the authors strived to overview the problem of the evolutionary scenario as a central concept in many areas of evolutionary research. The second part provides detailed mathematical proofs for the solutions of two problems: (i inferring a gene evolution along a species tree accounting for various types of evolutionary events and (ii trees reconciliation into a single species tree when only gene duplications and losses are allowed. All proposed algorithms have a cubic time complexity and are mathematically proved to find exact solutions. Solving algorithms for problem (ii can be naturally extended to incorporate horizontal transfers, other evolutionary events, and time scales on the species tree.

  7. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    Science.gov (United States)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be compared with previously created UTC maps of the same area but for earlier dates, producing a canopy change map corresponding to the Worcester area tree removal and replanting effort.

  8. Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurement

    International Nuclear Information System (INIS)

    Wieser, G.; Matyssek, R.; Koestner, B.; Oberhuber, W.

    2003-01-01

    Sap-flow based measurements can be used to estimate ozone uptake at whole-tree and stand levels. - Micro-climatic and ambient ozone data were combined with measurements of sap flow through tree trunks in order to estimate whole-tree ozone uptake of adult Norway spruce (Picea abies), cembran pine (Pinus cembra), and European larch (Larix decidua) trees. Sap flow was monitored by means of the heat balance approach in two trees of each species during the growing season of 1998. In trees making up the stand canopy, the ozone uptake by evergreen foliages was significantly higher than by deciduous ones, when scaled to the ground area. However, if expressed per unit of whole-tree foliage area, ozone flux through the stomata into the needle mesophyll was 1.09, 1.18 and 1.40 nmol m -2 s -1 in Picea abies, Pinus cembra and Larix decidua, respectively. These fluxes are consistent with findings from measurements of needle gas exchange, published from the same species at the study site. It is concluded that the sap flow-based approach offers an inexpensive, spatially and temporally integrating way for estimating ozone uptake at the whole-tree and stand level, intrinsically covering the effect of boundary layers on ozone flux

  9. Fractal characteristics correlation between the solar total radiation and net radiation on the apple tree canopy

    International Nuclear Information System (INIS)

    Meng Ping; Zhang Jingsong

    2005-01-01

    The characteristics correlation between solar total radiations(Q) and net radiation(R n) on the apple tree canopy at mainly growth stage in the hilly of Taihang Mountain are analyzed with fractal theory based on regression analysis. The results showed that:1)Q and R n had good liner correlation. The regression function was as the following:R n=0.740 8Q-32.436, which coefficient r is 0.981 1(n=26 279), F cal= 343 665.2 F 0.01 36 277=6.63; 2)The fractal dimension curves of Q and R n both had two no s caling regions, which circumscription time value of the inflexion was 453 and 441 minutes respectively.In the first region, fractal dimensions of Q and R n was 1.112 6, 1.131 9 respectively,and 1.913 6@@@ 1.883 4 in the second region.Those information showed that fractal characteristics of Q and R n is similar. So R n can be calculated with Q on the apple tree canopy

  10. Fine-spatial scale predictions of understory species using climate- and LiDAR-derived terrain and canopy metrics

    Science.gov (United States)

    Nijland, Wiebe; Nielsen, Scott E.; Coops, Nicholas C.; Wulder, Michael A.; Stenhouse, Gordon B.

    2014-01-01

    Food and habitat resources are critical components of wildlife management and conservation efforts. The grizzly bear (Ursus arctos) has diverse diets and habitat requirements particularly for understory plant species, which are impacted by human developments and forest management activities. We use light detection and ranging (LiDAR) data to predict the occurrence of 14 understory plant species relevant to bear forage and compare our predictions with more conventional climate- and land cover-based models. We use boosted regression trees to model each of the 14 understory species across 4435 km2 using occurrence (presence-absence) data from 1941 field plots. Three sets of models were fitted: climate only, climate and basic land and forest covers from Landsat 30-m imagery, and a climate- and LiDAR-derived model describing both the terrain and forest canopy. Resulting model accuracies varied widely among species. Overall, 8 of 14 species models were improved by including the LiDAR-derived variables. For climate-only models, mean annual precipitation and frost-free periods were the most important variables. With inclusion of LiDAR-derived attributes, depth-to-water table, terrain-intercepted annual radiation, and elevation were most often selected. This suggests that fine-scale terrain conditions affect the distribution of the studied species more than canopy conditions.

  11. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  12. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    Science.gov (United States)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  13. Vibration parameters assessment to develop a continuous lateral canopy shaker for mechanical harvesting of traditional olive trees

    Energy Technology Data Exchange (ETDEWEB)

    Sola-Guirado, R.R.; Jimenez-Jimenez, F.; Blanco-Roldan, G.L.; Castro-Garcia, S.; Castillo-Ruiz, F.J.; Gil Ribes, J.A.

    2016-11-01

    The fruit harvesting is a key factor involving both product quality and profitability. Particularly, mechanical harvesting of traditional oil olive orchards is hint by tree training system for manual harvesting, tree size and several and slanted trunks which makes difficult trunk shaker work. Therefore, canopy shaker technology could be a feasible alternative to develop an integral harvester able to work on irregular canopies. The aim of this research was to determine vibration parameters applied to the olive tree for efficient mechanical harvesting by canopy shaker measuring fruit removal efficiency and debris. In this work, a continuous lateral canopy shaker harvester has been developed and tested on large olive trees in order to analyse the operating harvester parameters and tree properties to improve mutual adaptation. Vibration amplitude and frequency, rod density and ground speed were assessed. Vibration amplitude and frequency beside ground speed were decisive factors on fruit removal efficiency. Increasing rod density has not influenced on removal efficiency although it increased significantly debris. Promising results has been reached with 77.3% of removal efficiency, applying a 28 s shaking duration, 0.17 m amplitude vibration and 12 rod drum. This result was obtained reporting 0.26 s of accumulative shaking time over 200 m/s2 resultant acceleration. The canopy shaker mechanism enabled more than 65% of detached fruits to fall vertically, facilitating catch fruit. In order to improve removal efficiency it is advisable to adapt trees, set high amplitude in the shaker mechanism, and enhance the contact time between rods and tree. (Author)

  14. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis

    Science.gov (United States)

    MacFaden, Sean W.; O'Neil-Dunne, Jarlath P. M.; Royar, Anna R.; Lu, Jacqueline W. T.; Rundle, Andrew G.

    2012-01-01

    Urban tree canopy is widely believed to have myriad environmental, social, and human-health benefits, but a lack of precise canopy estimates has hindered quantification of these benefits in many municipalities. This problem was addressed for New York City using object-based image analysis (OBIA) to develop a comprehensive land-cover map, including tree canopy to the scale of individual trees. Mapping was performed using a rule-based expert system that relied primarily on high-resolution LIDAR, specifically its capacity for evaluating the height and texture of aboveground features. Multispectral imagery was also used, but shadowing and varying temporal conditions limited its utility. Contextual analysis was a key part of classification, distinguishing trees according to their physical and spectral properties as well as their relationships to adjacent, nonvegetated features. The automated product was extensively reviewed and edited via manual interpretation, and overall per-pixel accuracy of the final map was 96%. Although manual editing had only a marginal effect on accuracy despite requiring a majority of project effort, it maximized aesthetic quality and ensured the capture of small, isolated trees. Converting high-resolution LIDAR and imagery into usable information is a nontrivial exercise, requiring significant processing time and labor, but an expert system-based combination of OBIA and manual review was an effective method for fine-scale canopy mapping in a complex urban environment.

  15. Tree Species Identity Shapes Earthworm Communities

    DEFF Research Database (Denmark)

    Schelfhout, Stephanie; Mertens, Jan; Verheyen, Kris

    2017-01-01

    Earthworms are key organisms in forest ecosystems because they incorporate organic material into the soil and affect the activity of other soil organisms. Here, we investigated how tree species affect earthworm communities via litter and soil characteristics. In a 36-year old common garden...... of soil and foliar litter, and determined the forest floor turnover rate and the density and biomass of the earthworm species occurring in the stands. Tree species significantly affected earthworm communities via leaf litter and/or soil characteristics. Anecic earthworms were abundant under Fraxinus, Acer...

  16. A GIS-based tool for estimating tree canopy cover on fixed-radius plots using high-resolution aerial imagery

    Science.gov (United States)

    Sara A. Goeking; Greg C. Liknes; Erik Lindblom; John Chase; Dennis M. Jacobs; Robert. Benton

    2012-01-01

    Recent changes to the Forest Inventory and Analysis (FIA) Program's definition of forest land precipitated the development of a geographic information system (GIS)-based tool for efficiently estimating tree canopy cover for all FIA plots. The FIA definition of forest land has shifted from a density-related criterion based on stocking to a 10 percent tree canopy...

  17. Effects of Corn Canopy on Seedling Emergence of Seven Weed Species

    Directory of Open Access Journals (Sweden)

    F Kordbacheh

    2012-02-01

    Full Text Available In this research corn were planted in 3 densities (8, 12, 16 plant/m2 in two planting patterns (single and double-row with seven summer weed species, including redroot pigweed, green foxtail, annual bluegrass, common lambsquarter, jimsonweed, black nightshade and johnsongrass were planted. Temperature, quality and quantity of light reaching to soil surface were measured and the number of emerged seedlings for each weed species was countered in three sampling dates. Temperature fluctuation wasn't affected by density and planting patterns and was reduced with canopy formation. In all weed species 3 seedling emergence patterns were observed. In small seed species, redroot pigweed had one germination flush, so it was not respond to crop canopy. The number of emerged weed seedlings of annual bluegrass, common lambsquarter and green foxtail were significantly higher in bareground than under corn canopy. In double-row planting pattern was higher compared to the single-row and had three germination flushes. The number of emerged seedlings in the species with relatively large seeds had no significant difference between bareground and under corn canopy in jimsonweed and black nightshade. But it increased in johnsongrass under corn canopy compare to the bare ground. In all three species it was higher in double-row compare to single-row pattern. Jimsonweed had three germination flushes but blacknightshade and johnsongrass had 1 germination flush.

  18. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests

    DEFF Research Database (Denmark)

    Augusto, Laurent; De Schrijver, An; Vesterdal, Lars

    2015-01-01

    It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance...... present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs......, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production...

  19. Olive Actual “on Year” Yield Forecast Tool Based on the Tree Canopy Geometry Using UAS Imagery

    Directory of Open Access Journals (Sweden)

    Rafael R. Sola-Guirado

    2017-07-01

    Full Text Available Olive has a notable importance in countries of Mediterranean basin and its profitability depends on several factors such as actual yield, production cost or product price. Actual “on year” Yield (AY is production (kg tree−1 in “on years”, and this research attempts to relate it with geometrical parameters of the tree canopy. Regression equation to forecast AY based on manual canopy volume was determined based on data acquired from different orchard categories and cultivars during different harvesting seasons in southern Spain. Orthoimages were acquired with unmanned aerial systems (UAS imagery calculating individual crown for relating to canopy volume and AY. Yield levels did not vary between orchard categories; however, it did between irrigated orchards (7000–17,000 kg ha−1 and rainfed ones (4000–7000 kg ha−1. After that, manual canopy volume was related with the individual crown area of trees that were calculated by orthoimages acquired with UAS imagery. Finally, AY was forecasted using both manual canopy volume and individual tree crown area as main factors for olive productivity. AY forecast only by using individual crown area made it possible to get a simple and cheap forecast tool for a wide range of olive orchards. Finally, the acquired information was introduced in a thematic map describing spatial AY variability obtained from orthoimage analysis that may be a powerful tool for farmers, insurance systems, market forecasts or to detect agronomical problems.

  20. Olive Actual “on Year” Yield Forecast Tool Based on the Tree Canopy Geometry Using UAS Imagery

    Science.gov (United States)

    Sola-Guirado, Rafael R.; Castillo-Ruiz, Francisco J.; Jiménez-Jiménez, Francisco; Blanco-Roldan, Gregorio L.; Gil-Ribes, Jesus A.

    2017-01-01

    Olive has a notable importance in countries of Mediterranean basin and its profitability depends on several factors such as actual yield, production cost or product price. Actual “on year” Yield (AY) is production (kg tree−1) in “on years”, and this research attempts to relate it with geometrical parameters of the tree canopy. Regression equation to forecast AY based on manual canopy volume was determined based on data acquired from different orchard categories and cultivars during different harvesting seasons in southern Spain. Orthoimages were acquired with unmanned aerial systems (UAS) imagery calculating individual crown for relating to canopy volume and AY. Yield levels did not vary between orchard categories; however, it did between irrigated orchards (7000–17,000 kg ha−1) and rainfed ones (4000–7000 kg ha−1). After that, manual canopy volume was related with the individual crown area of trees that were calculated by orthoimages acquired with UAS imagery. Finally, AY was forecasted using both manual canopy volume and individual tree crown area as main factors for olive productivity. AY forecast only by using individual crown area made it possible to get a simple and cheap forecast tool for a wide range of olive orchards. Finally, the acquired information was introduced in a thematic map describing spatial AY variability obtained from orthoimage analysis that may be a powerful tool for farmers, insurance systems, market forecasts or to detect agronomical problems. PMID:28758945

  1. DLRS: gene tree evolution in light of a species tree.

    Science.gov (United States)

    Sjöstrand, Joel; Sennblad, Bengt; Arvestad, Lars; Lagergren, Jens

    2012-11-15

    PrIME-DLRS (or colloquially: 'Delirious') is a phylogenetic software tool to simultaneously infer and reconcile a gene tree given a species tree. It accounts for duplication and loss events, a relaxed molecular clock and is intended for the study of homologous gene families, for example in a comparative genomics setting involving multiple species. PrIME-DLRS uses a Bayesian MCMC framework, where the input is a known species tree with divergence times and a multiple sequence alignment, and the output is a posterior distribution over gene trees and model parameters. PrIME-DLRS is available for Java SE 6+ under the New BSD License, and JAR files and source code can be downloaded from http://code.google.com/p/jprime/. There is also a slightly older C++ version available as a binary package for Ubuntu, with download instructions at http://prime.sbc.su.se. The C++ source code is available upon request. joel.sjostrand@scilifelab.se or jens.lagergren@scilifelab.se. PrIME-DLRS is based on a sound probabilistic model (Åkerborg et al., 2009) and has been thoroughly validated on synthetic and biological datasets (Supplementary Material online).

  2. Pushing the pace of tree species migration.

    Directory of Open Access Journals (Sweden)

    Eli D Lazarus

    Full Text Available Plants and animals have responded to past climate changes by migrating with habitable environments, sometimes shifting the boundaries of their geographic ranges by tens of kilometers per year or more. Species migrating in response to present climate conditions, however, must contend with landscapes fragmented by anthropogenic disturbance. We consider this problem in the context of wind-dispersed tree species. Mechanisms of long-distance seed dispersal make these species capable of rapid migration rates. Models of species-front migration suggest that even tree species with the capacity for long-distance dispersal will be unable to keep pace with future spatial changes in temperature gradients, exclusive of habitat fragmentation effects. Here we present a numerical model that captures the salient dynamics of migration by long-distance dispersal for a generic tree species. We then use the model to explore the possible effects of assisted colonization within a fragmented landscape under a simulated tree-planting scheme. Our results suggest that an assisted-colonization program could accelerate species-front migration rates enough to match the speed of climate change, but such a program would involve an environmental-sustainability intervention at a massive scale.

  3. Compatibility of organic farming treatments against Monosteira unicostata with non-target arthropod fauna of almond trees canopy

    Directory of Open Access Journals (Sweden)

    Ismael Sánchez-Ramos

    2017-07-01

    Full Text Available Field trials had shown that 1-2 applications of kaolin and potassium salts of fatty acids combined with thyme essential oil (PSTEO reduced the abundance of the lace bug Monosteira unicostata (Mulsant & Rey (Hemiptera: Tingidae, an important pest of almond trees in the Mediterranean region. These products could be useful for the control of this pest in organic production of almonds, but higher number of applications could be necessary. However, the possible detrimental effects on the almond orchard ecosystem should be evaluated. In the present work, the effects observed on the non-target arthropod fauna of the almond trees canopy in those field assays are shown. First, a comprehensive report of the non-target arthropod fauna of the almond tree is provided. Regarding natural enemies, most of the predatory arthropods captured were spiders belonging to different families like Salticidae, Thomisidae, Philodromidae, Theridiidae, Araneidae or Oxyopidae. Other predatory families that appeared in significant numbers were Chrysopidae, Anthocoridae, Aeolothripidae, Coccinellidae, Phytoseiidae, Erythraeidae or Forficulidae. Among parasitoids, the most abundant families were Eulophidae, Scelionidae and Dryinidae. Kaolin reduced the abundance of natural enemies and other non-target arthropods as well as their diversity and number of species. On the contrary, PSTEO only produced a slight reduction in the number of natural enemies, whereas no effect was found on the diversity and species richness. These effects were observed despite the reduced number of applications, so greater effect is expected if its frequency is increased in order to achieve an efficient control of M. unicostata.

  4. CROWN-LEVEL TREE SPECIES CLASSIFICATION USING INTEGRATED AIRBORNE HYPERSPECTRAL AND LIDAR REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    Z. Wang

    2018-05-01

    Full Text Available Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced remote sensing data such as airborne Light Detection and Ranging (LiDAR and hyperspectral imagery offer a great potential opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact Airborne Spectrographic Imager (CASI hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were include: 1 A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM derived from LiDAR data; 2 The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to the delineated crown; 3 Spectral features within 3 × 3 neighborhood regions centered on the treetops detected by the treetop detection algorithm were derived from the spectrally normalized CASI imagery; 4 The shape characteristics related to their crown diameters and heights were established, and different crown-level tree species were classified using the combination of spectral and shape characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12 %, Kc = 0.90 performed better than Li

  5. Crown-Level Tree Species Classification Using Integrated Airborne Hyperspectral and LIDAR Remote Sensing Data

    Science.gov (United States)

    Wang, Z.; Wu, J.; Wang, Y.; Kong, X.; Bao, H.; Ni, Y.; Ma, L.; Jin, J.

    2018-05-01

    Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced remote sensing data such as airborne Light Detection and Ranging (LiDAR) and hyperspectral imagery offer a great potential opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were include: 1) A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM) derived from LiDAR data; 2) The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to the delineated crown; 3) Spectral features within 3 × 3 neighborhood regions centered on the treetops detected by the treetop detection algorithm were derived from the spectrally normalized CASI imagery; 4) The shape characteristics related to their crown diameters and heights were established, and different crown-level tree species were classified using the combination of spectral and shape characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12 %, Kc = 0.90) performed better than LiDAR-metrics method (OA = 79

  6. Roles of Urban Tree Canopy and Buildings in Urban Heat Island Effects: Parameterization and Preliminary Results

    Science.gov (United States)

    Loughner, Christopher P.; Allen, Dale J.; Zhang, Da-Lin; Pickering, Kenneth E.; Dickerson, Russell R.; Landry, Laura

    2012-01-01

    Urban heat island (UHI) effects can strengthen heat waves and air pollution episodes. In this study, the dampening impact of urban trees on the UHI during an extreme heat wave in the Washington, D.C., and Baltimore, Maryland, metropolitan area is examined by incorporating trees, soil, and grass into the coupled Weather Research and Forecasting model and an urban canopy model (WRF-UCM). By parameterizing the effects of these natural surfaces alongside roadways and buildings, the modified WRF-UCM is used to investigate how urban trees, soil, and grass dampen the UHI. The modified model was run with 50% tree cover over urban roads and a 10% decrease in the width of urban streets to make space for soil and grass alongside the roads and buildings. Results show that, averaged over all urban areas, the added vegetation decreases surface air temperature in urban street canyons by 4.1 K and road-surface and building-wall temperatures by 15.4 and 8.9 K, respectively, as a result of tree shading and evapotranspiration. These temperature changes propagate downwind and alter the temperature gradient associated with the Chesapeake Bay breeze and, therefore, alter the strength of the bay breeze. The impact of building height on the UHI shows that decreasing commercial building heights by 8 m and residential building heights by 2.5 m results in up to 0.4-K higher daytime surface and near-surface air temperatures because of less building shading and up to 1.2-K lower nighttime temperatures because of less longwave radiative trapping in urban street canyons.

  7. Canopy arthropod responses to experimental canopy opening and debris deposition in a tropical rainforest subject to hurricanes

    Science.gov (United States)

    Timothy D. Schowalter; Michael R. Willig; Steven J. Presley

    2014-01-01

    We analyzed responses of canopy arthropods on seven representative early and late successional overstory and understory tree species to a canopy trimming experiment designed to separate effects of canopy opening and debris pulse (resulting from hurricane disturbance) in a tropical rainforest ecosystem at the Luquillo Experimental Forest Long-Term Ecological Research (...

  8. Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy.

    Science.gov (United States)

    Watanabe, Keiji; Kohzu, Ayato; Suda, Wataru; Yamamura, Shigeki; Takamatsu, Takejiro; Takenaka, Akio; Koshikawa, Masami Kanao; Hayashi, Seiji; Watanabe, Mirai

    2016-01-01

    To investigate the nitrification potential of phyllospheric microbes, we incubated throughfall samples collected under the canopies of Japanese cedar (Cryptomeria japonica) and analyzed the transformation of inorganic nitrogen in the samples. Nitrate concentration increased in the unfiltered throughfall after 4 weeks of incubation, but remained nearly constant in the filtered samples (pore size: 0.2 and 0.4 µm). In the unfiltered samples, δ(18)O and δ(15)N values of nitrate decreased during incubation. In addition, archaeal ammonia monooxygenase subunit A (amoA) genes, which participate in the oxidation of ammonia, were found in the throughfall samples, although betaproteobacterial amoA genes were not detected. The amoA genes recovered from the leaf surface of C. japonica were also from archaea. Conversely, nitrate production, decreased isotope ratios of nitrate, and the presence of amoA genes was not observed in rainfall samples collected from an open area. Thus, the microbial nitrification that occurred in the incubated throughfall is likely due to ammonia-oxidizing archaea that were washed off the tree canopy by precipitation.

  9. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Kuswata Kartawinata

    2003-12-01

    Full Text Available KARTAWINATA, KUSWATA; SAMSOEDIN, ISMAYADI; HERIYANTO, M. AND AFRIASTINI, J. J. 2004. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12 (2: 145 – 157. The results of the inventory of trees with DBH ≥ 10 cm shows that 184 species in 41 families, represented by 583 individuals with the total basal areas of 40.56 m² occurred in the one-hectare plot sampled. Together with the saplings and shrubs the number of species was 240 belonging to 47 families. The forest is richer in tree species than other lowland forests in North Sumatra, but poorer than those in Borneo and the Malay Peninsula. Dipterocarps constituted 18.42 % of total species with basal area of 18.99 m² or 46.82 % of the total basal area in the plot. The most prominent species was Shorea gibbosa. Hopea nigra, reported to be rare in Bangka and Belitung, occurred here as one of the ten leading species. The species-area curve shows that a considerable number of additional species was encountered more or less steadily up to one hectare and there was no indication of levelling off. A simulated profile diagram shows the forest may be stratified into five layers: (1 emergent layer, (2 upper canopy, (3 middle canopy, (4 lower canopy and (5 ground canopy. Dipterocarps were leading species in the emergent layer, upper canopy and middle canopy. Only 82 species were regenerating as represented by their presence in the sapling stage ranging from 5 to 50 plants/hectare. Macaranga lowii King ex Hook. f. dominated the section which seemed to be previously occupied by gaps.

  10. Isoprene emission from tropical tree species

    International Nuclear Information System (INIS)

    Padhy, P.K.; Varshney, C.K.

    2005-01-01

    Foliar emission of isoprene was measured in nine commonly growing tree species of Delhi, India. Dynamic flow enclosure technique was used and gas samples were collected onto Tenax-GC/Carboseive cartridges, which were then attached to the sample injection system in the gas chromatograph (GC). Eluting compounds were analysed using a flame ionisation detector (FID). Out of the nine tree species, isoprene emission was found in six species (Eucalyptus sp., Ficus benghalensis, Ficus religiosa, Mangifera indica, Melia azedarach, and Syzygium jambolanum), whereas, in the remaining three tree species (Alstonia scholaris, Azadirachta indica, and Cassia fistula) no isoprene emission was detected or the levels of emission were negligible or below the detection limit (BDL). Among six tree species, the highest hourly emission (10.2±6.8 μg g -1 leaf dry weight, average of five seasons) was observed in Ficus religiosa, while minimum emission was from Melia azedarach (2.2±4.9 μg g -1 leaf dry weight, average of five seasons). Isoprene emission (average of six species), over five seasons, was found to vary between 3.9 and 8.5 μg g -1 leaf dry weight during the rainy season. In addition, significant diurnal variation in isoprene emission was observed in each species. The preliminary estimate made in this study on the annual biogenic VOC emission from India may probably be the first of its kind from this part of the world. - Isoprene flux (diurnal and seasonal) from some tropical tree species was estimated and a regional comparison was made

  11. Isoprene emission from tropical tree species

    Energy Technology Data Exchange (ETDEWEB)

    Padhy, P.K. [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)]. E-mail: padhypk2003@yahoo.com; Varshney, C.K. [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)

    2005-05-01

    Foliar emission of isoprene was measured in nine commonly growing tree species of Delhi, India. Dynamic flow enclosure technique was used and gas samples were collected onto Tenax-GC/Carboseive cartridges, which were then attached to the sample injection system in the gas chromatograph (GC). Eluting compounds were analysed using a flame ionisation detector (FID). Out of the nine tree species, isoprene emission was found in six species (Eucalyptus sp., Ficus benghalensis, Ficus religiosa, Mangifera indica, Melia azedarach, and Syzygium jambolanum), whereas, in the remaining three tree species (Alstonia scholaris, Azadirachta indica, and Cassia fistula) no isoprene emission was detected or the levels of emission were negligible or below the detection limit (BDL). Among six tree species, the highest hourly emission (10.2{+-}6.8 {mu}g g{sup -1} leaf dry weight, average of five seasons) was observed in Ficus religiosa, while minimum emission was from Melia azedarach (2.2{+-}4.9 {mu}g g{sup -1} leaf dry weight, average of five seasons). Isoprene emission (average of six species), over five seasons, was found to vary between 3.9 and 8.5 {mu}g g{sup -1} leaf dry weight during the rainy season. In addition, significant diurnal variation in isoprene emission was observed in each species. The preliminary estimate made in this study on the annual biogenic VOC emission from India may probably be the first of its kind from this part of the world. - Isoprene flux (diurnal and seasonal) from some tropical tree species was estimated and a regional comparison was made.

  12. Region effects influence local tree species diversity.

    Science.gov (United States)

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.

  13. Vapor Pressure Deficit and Sap Velocity Dynamic Coupling in Canopy Dominant Trees in the Amazon basin

    Science.gov (United States)

    Chambers, J. Q.; Gimenez, B.; Jardine, K.; Negron Juarez, R. I.; Cobello, L. O.; Fontes, C.; Dawson, T. E.; Higuchi, N.

    2017-12-01

    In order to improve our ability to predict terrestrial water fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, especially in tropical forests which recycle large fluxes of water to the atmosphere. This need has become more relevant due to observed records in global temperature. In this study we show a strong temporal correlation between sap velocity and leaf-to-air vapor pressure deficit (VPD) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As VPDs in the upper canopy (20-30 m) varied throughout the day and night, basal sap velocity (1.5 m) responded rapidly without an observable delay (< 15 min). Sap velocity showed a sigmoidal dependence on VPDs including an exponential increase, an inflection point, and a plateau, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity, stomatal conductance, and leaf water potential was evident with morning periods showing higher sensitivities to VPD than afternoon and night periods. Diurnal leaf gas exchange observations revealed a morning to midday peak in stomatal conductance, but midday to afternoon peak in transpiration and VPD. Thus, our study confirms that the temporal lag between the Gs peak and VPD peak are the major regulators of the hysteresis phenomenon as previously described by other studies. Moreover, out study provide direct evidence for the role of decreased stomatal conductance in the warm afternoon periods to reduce transpiration and allow for the partial recovery of leaf water potential to less negative values. Our results suggests the possibility of predicting evapotranspiration fluxes from ecosystem to regional scales using remote sensing of vegetation temperature from, for example, thermal images of satellites and drones.

  14. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.

    Science.gov (United States)

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2011-06-01

    Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.

  15. [Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression].

    Science.gov (United States)

    Han, Zhao-ying; Zhu, Xi-cun; Fang, Xian-yi; Wang, Zhuo-yuan; Wang, Ling; Zhao, Geng-Xing; Jiang, Yuan-mao

    2016-03-01

    Leaf area index (LAI) is the dynamic index of crop population size. Hyperspectral technology can be used to estimate apple canopy LAI rapidly and nondestructively. It can be provide a reference for monitoring the tree growing and yield estimation. The Red Fuji apple trees of full bearing fruit are the researching objects. Ninety apple trees canopies spectral reflectance and LAI values were measured by the ASD Fieldspec3 spectrometer and LAI-2200 in thirty orchards in constant two years in Qixia research area of Shandong Province. The optimal vegetation indices were selected by the method of correlation analysis of the original spectral reflectance and vegetation indices. The models of predicting the LAI were built with the multivariate regression analysis method of support vector machine (SVM) and random forest (RF). The new vegetation indices, GNDVI527, ND-VI676, RVI682, FD-NVI656 and GRVI517 and the previous two main vegetation indices, NDVI670 and NDVI705, are in accordance with LAI. In the RF regression model, the calibration set decision coefficient C-R2 of 0.920 and validation set decision coefficient V-R2 of 0.889 are higher than the SVM regression model by 0.045 and 0.033 respectively. The root mean square error of calibration set C-RMSE of 0.249, the root mean square error validation set V-RMSE of 0.236 are lower than that of the SVM regression model by 0.054 and 0.058 respectively. Relative analysis of calibrating error C-RPD and relative analysis of validation set V-RPD reached 3.363 and 2.520, 0.598 and 0.262, respectively, which were higher than the SVM regression model. The measured and predicted the scatterplot trend line slope of the calibration set and validation set C-S and V-S are close to 1. The estimation result of RF regression model is better than that of the SVM. RF regression model can be used to estimate the LAI of red Fuji apple trees in full fruit period.

  16. Impact of tree planting configuration on canopy interception and soil hydrological properties: Implications for flood mitigation in silvopastoral systems

    Science.gov (United States)

    Lunka, Peter; Patil, Sopan

    2015-04-01

    Compaction of upper soil layers by intensive sheep grazing has been connected with increased local flood risk in silvopastoral systems. A 12 week field study was conducted at the Henfaes Research Station near Bangor, Wales to compare two silvopastoral configurations, trees planted in fenced off clumps and trees planted evenly spaced, in terms of canopy throughfall, soil water infiltration and soil bulk density. The study's aim was to characterize the potential of these tree planting configurations to reduce local flood risk. The study site (Henfaes) was established in 1992 on 14 ha of agricultural land and is part of the Silvopastoral National Network Experiment sites that have been set up across the UK to examine the potential of silvopasture and agroforestry on UK farms. Automated throughfall gauges were installed in each silvopastoral treatment along with a similarly designed control gauge located in the grazed control pasture. Soil water infiltration and bulk density were measured 20 times in a stratified random design for each treatment and the control. Soil infiltration capacity in the clumped configuration was significantly higher than in the even spaced configuration and control pasture. The clumped configuration had mean infiltration capacity 504% greater than the control pasture and 454% greater than the even spaced configuration. Canopy interception was higher in the clumped trees than in the evenly spaced trees. Average canopy interception was 34% in the clumped treatment and 28% in the evenly spaced treatment. Soil bulk density was lower in the clumped configuration than in the control pasture and evenly spaced configuration. Results suggest that in silvopastoral systems the clumped tree configuration is more likely to reduce local flood risk than the evenly spaced tree configuration due to enhanced infiltration and increased canopy interception.

  17. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions.

    Science.gov (United States)

    Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel

    2010-06-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.

  18. The symbiotic relationship between dominant canopy trees and soil microbes affects the nitrogen source utilization of co-existing understory trees

    Science.gov (United States)

    Iwaoka, C.; Hyodo, F.; Taniguchi, T.; Shi, W.; Du, S.; Yamanaka, N.; Tateno, R.

    2017-12-01

    The symbiotic relationship between dominant canopy trees and soil microbes such as mycorrhiza or nitrogen (N) fixer are important determinants of soil N dynamics of a forest. However, it is not known how and to what extent the symbiotic relationship of dominant canopy trees with soil microbes affect the N source of co-existing trees in forest. We measured the δ15N of surface soils (0-10 cm), leaves, and roots of the dominant canopy trees and common understory trees in an arbuscular mycorrhizal N-fixing black locust (Robinia pseudoacacia) plantation and an ectomycorrhizal oak (Quercus liaotungensis) natural forest in a China dryland. We also analyzed the soil dissolved N content in soil extracts and absorbed by ion exchange resin, and soil ammonia-oxidizer abundance using real-time PCR. The δ15N of soil and leaves were higher in the black locust forest than in the oak forest, although the δ15N of fine roots was similar in the two forests, in co-existing understory trees as well as dominant canopy trees. Accordingly, the δ15N of leaves was similar to or higher than that of fine roots in the black locust forest, whereas it was consistently lower than that of fine roots in the oak forest. In the black locust forest, the soil dissolved organic N and ammonium N contents were less abundant but the nitrate N contents in soils and absorbed by the ion exchange resin and ammonia-oxidizer abundance were greater, due to N fixation or less uptake of organic N from arbuscular mycorrhiza. In contrast, the soil dissolved organic N and ammonium N contents were more abundant in the oak forest, whereas the N content featured very low nitrate, due to ectomycorrhizal ability to access organic N. These results suggest that the main N source is nitrate N in the black locust forest, but dissolved organic N or ammonium N in the oak forest. N fixation or high N loss due to high N availability would cause high δ15N in soil and leaves in black locust forest. On the other hand, low soil N

  19. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure

    International Nuclear Information System (INIS)

    Herbinger, K.; Then, Ch.; Loew, M.; Haberer, K.; Alexous, M.; Koch, N.; Remele, K.; Heerdt, C.; Grill, D.; Rennenberg, H.; Haeberle, K.-H.; Matyssek, R.; Tausz, M.; Wieser, G.

    2005-01-01

    We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1xO 3 ) or two-fold ambient (2xO 3 ) O 3 concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO 2 concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2xO 3 variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1xO 3 and 2xO 3 regimes were not observed. Glutathione concentrations were significantly increased under 2xO 3 across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2xO 3 without regard of tree age or canopy position. - Ozone effects on leaf gas exchange and antioxidative systems of beech across tree age and canopy level were investigated in a free air exposure system

  20. Tree age dependence and within-canopy variation of leaf gas exchange and antioxidative defence in Fagus sylvatica under experimental free-air ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Herbinger, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]. E-mail: karin.herbinger@uni-graz.at; Then, Ch. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)]|[Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Loew, M.; Koch, N. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Haberer, K.; Alexous, M. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Remele, K. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Heerdt, C. [Lehrstuhl fuer Bioklimatologie und Immissionsforschung, Technische Universitaet Muenchen, Am Hochanger 13, D-85354 Freising (Germany); Grill, D. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria); Rennenberg, H. [Institut fuer Forstbotanik und Baumphysiologie, Universitaet Freiburg, Georges-Koehler-Allee 053/054, D-79085 Freiburg (Germany); Haeberle, K.-H.; Matyssek, R. [Lehrstuhl fuer Oekophysiologie der Pflanzen, Technische Universitaet Muenchen, Life Sciences Center Weihenstephan, Am Hochanger 13, D-85354 Freising (Germany); Tausz, M. [Institut fuer Pflanzenwissenschaften, Universitaet Graz, Schubertstrasse 51, A-8010 Graz (Austria)]|[[School of Forest and Ecosystem Science, University of Melbourne, Water Street, Creswick, Vic. 3363 (Australia); Wieser, G. [Bundesamt und Forschungszentrum fuer Wald, Abteilung Forstpflanzenphysiologie, Rennweg 1, A-6020 Innsbruck (Austria)

    2005-10-15

    We characterized leaf gas exchange and antioxidative defence of two-year-old seedlings and 60-year-old trees of Fagus sylvatica exposed to ambient (1xO{sub 3}) or two-fold ambient (2xO{sub 3}) O{sub 3} concentrations (maximum of 150 ppb) in a free-air canopy exposure system throughout the growing season. Decline in photosynthesis from sun-exposed to shaded conditions was more pronounced in adult than juvenile trees. Seedling leaves and leaves in the sun-exposed canopy had higher stomatal conductance and higher internal CO{sub 2} concentrations relative to leaves of adult trees and leaves in shaded conditions. There was a weak overall depression of photosynthesis in the 2xO{sub 3} variants across age classes and canopy positions. Pigment and tocopherol concentrations of leaves were significantly affected by canopy position and tree age, whereas differences between 1xO{sub 3} and 2xO{sub 3} regimes were not observed. Glutathione concentrations were significantly increased under 2xO{sub 3} across both age classes and canopy levels. Seedlings differed from adult trees in relevant physiological and biochemical traits in ozone response. The water-soluble antioxidative systems responded most sensitively to 2xO{sub 3} without regard of tree age or canopy position. - Ozone effects on leaf gas exchange and antioxidative systems of beech across tree age and canopy level were investigated in a free air exposure system.

  1. Terrestrial arthropods from tree canopies in the Pantanal of Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Marinêz Isaac Marques

    2006-06-01

    Full Text Available Terrestrial arthropods from tree canopies in the Pantanal of Mato Grosso, Brazil. This study represents a contribution to the knowledge of the diversity of arthropods associated to the canopy of Vochysia divergens Pohl (Vochysiaceae. Three trees individuals were sampled during two seasonal periods in this region: a by spraying one tree canopy during high water (February; b by fogging two tree canopies during low water (September/October. The 15,744 arthropods (183.2±38.9 individuals/m² obtained from all three trees (86 m² represented 20 taxonomic orders, 87.1% were Insecta, and 12.9% Arachnida. The dominant groups were Hymenoptera (48.5%; 88.9 individuals/m², mostly Formicidae (44.5%; 81.4 individuals/m², followed by Coleoptera (14.0%; 25.5 individuals/m² and Araneae (10.2%; 19.5 individuals/m², together representing 62.5% of the total catch. Fourteen (70% of all orders occurred on three trees. Dermaptera, Isoptera, Neuroptera, Odonata, Plecoptera and Trichoptera were collected from only one tree. Of the total, 2,197 adult Coleoptera collected (25.5±11.3 individuals/m², 99% were assigned to 32 families and 256 morphospecies. Nitidulidae (17.9% of the total catch; 4.6 individuals/m², Anobiidae (16.7%; 4.3 individuals/m², Curculionidae (13.2%; 3.4 individuals/m² and Meloidae (11.4%; 2.9 individuals/m² dominated. The communitiy of adult Coleoptera on V. divergens indicated a dominance of herbivores (37.8% of the total catch, 127 spp. and predators (35.2%, 82 spp., followed by saprophages (16.2%, 32 spp. and fungivores (10.8%, 15 spp.. The influence of the flood pulse on the community of arboreal arthropods in V. divergens is indicated by the seasonal variation in evaluated groups, causing changes in their structure and composition.Artrópodes terrestres associados a copas de árvores no Pantanal de Mato Grosso, Brasil. Este estudo representa uma contribuição ao conhecimento da diversidade de artrópodes associados à copa de Vochysia

  2. Tree Species Identity Shapes Earthworm Communities

    Directory of Open Access Journals (Sweden)

    Stephanie Schelfhout

    2017-03-01

    Full Text Available Earthworms are key organisms in forest ecosystems because they incorporate organic material into the soil and affect the activity of other soil organisms. Here, we investigated how tree species affect earthworm communities via litter and soil characteristics. In a 36-year old common garden experiment, replicated six times over Denmark, six tree species were planted in blocks: sycamore maple (Acer pseudoplatanus, beech (Fagus sylvatica, ash (Fraxinus excelsior, Norway spruce (Picea abies, pedunculate oak (Quercus robur and lime (Tilia cordata. We studied the chemical characteristics of soil and foliar litter, and determined the forest floor turnover rate and the density and biomass of the earthworm species occurring in the stands. Tree species significantly affected earthworm communities via leaf litter and/or soil characteristics. Anecic earthworms were abundant under Fraxinus, Acer and Tilia, which is related to calcium-rich litter and low soil acidification. Epigeic earthworms were indifferent to calcium content in leaf litter and were shown to be mainly related to soil moisture content and litter C:P ratios. Almost no earthworms were found in Picea stands, likely because of the combined effects of recalcitrant litter, low pH and low soil moisture content.

  3. Carbon isotope discrimination, ash, and canopy temperature in three wheatgrass species

    International Nuclear Information System (INIS)

    Frank, A.B.; Ray, I.M.; Berdahl, R.D.; Karn, J.F.

    1997-01-01

    Soil water is the main factor influencing forage production in the semiarid Northern Great Plains. Developing germplasm that uses limited water more efficiently would benefit forage production for hay and livestock grazing. Development of selection criteria suited to screening large breeding populations for water-use efficiency (WUE) are needed to enhance this effort. This study evaluated carbon isotope discrimination (delta), tissue ash concentration, and canopy temperature of populations of diploid crested wheatgrass (Agropyron cristatum L.), tetraploid crested wheatgrass [A. desertorum (Fisch. ex. Link) Schult.], and western wheatgrass [Pascopyrum smithii (Rybd.) Love] to determine the utility of using ash concentration and canopy temperature as alternative criteria to delta for selecting plants with high WUE. Tissue ash concentration, canopy temperature, and delta were measured on half-sib families from genetically broad-based populations of each species across two field growing seasons. Sufficient genetic variation was present for delta and ash concentration among families within each species to suggest possible use of these traits as criteria for selecting plants with higher WUE. Differences in canopy temperature among families were present only in 1994. Correlations between ash and delta were greatest for tetraploid crested wheatgrass and least for western wheatgrass. Correlation of canopy temperature with delta was significant for tetraploid crested wheatgrass both years and for diploid crested wheatgrass in 1993, but neither year for western wheatgrass. Ash concentration and delta were moderately heritable in all three grass populations, indicating that both traits are under genetic control and could likely be altered through breeding. Using ash and canopy temperature as criteria for selecting plants with greater WUE would provide a relatively low-cost, simple approach to develop cultivars with improved WUE

  4. Feeding choices and impacts of extralimital giraffe on two keystone tree species in the Kgalagadi National Park

    Directory of Open Access Journals (Sweden)

    Edmund February

    2017-05-01

    Full Text Available In this article we determine the effect of an extralimital megaherbivore on the reproductive potential and vegetation structure of two keystone tree species in the Auob River in the south western Kalahari Desert of southern Africa. Using spoor and dung counts we establish the presence of giraffe in three predetermined density zones by walking 50 transects across the river in each zone. We also photographed six trees from each species in each zone and use these photographs to determine browse impact on reproductive potential, canopy volume as well as the percentage dieback on the extremities of the canopy. We then perform stable carbon and nitrogen isotope analysis on the leaves of the trees and compare these relative to the isotope ratios of giraffe dung to ascertain dietary preference. Crude protein was determined as a guide to nutritive value. Finally, we determine both chemical and physical defences for the two species. Our results show a significant negative impact of giraffe browse on tree canopies, no significant differences in recruitment and a noticeable decrease in flowers and pods at the giraffe browse height of 2 m – 5 m. No significant differences in crude protein or condensed tannins were found but significant differences in spinescence. Giraffe are not endemic to the Auob River and our study shows that the introduction of these animals is having a negative impact on the canopies of Vachellia haematoxylon. While there are, as yet, no significant impacts on reproductive potential we speculate that this will happen with time. Conservation implications: Our study shows that giraffe are significantly impacting the canopies of two common tree species in the Auob River in the arid Kgalagadi Transfrontier Park. Without management intervention an increasing population of giraffe will result in substantial changes to the plant community vegetation structure of the river.

  5. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia

    Directory of Open Access Journals (Sweden)

    Daxing Gu

    2017-06-01

    Full Text Available In arid and semiarid lands, canopy transpiration and its dynamics depend largely on stomatal sensitivity to drought. In this study, the sap flow of a dominant species, Haloxylon ammodendron growing in Central Asian deserts, was monitored using Granier-type sensors, from which the canopy stomatal conductance was derived. The responses of canopy transpiration and stomatal conductance to environmental variables during the second half of the growing season, when annual prolonged drought occurred, was analyzed for four continuous years, from 2013 to 2016. A soil water content (SWC of 3% was identified as the lower soil water threshold for this species, below which the plant lost the ability for stomatal regulation on water loss and suffered the risk of mortality. Above this threshold, the sensitivity of canopy transpiration to vapor pressure deficit, VPD (K, was linearly correlated with SWC, which mainly resulted from different stomatal behaviors at varying drought intensities. Stomatal sensitivity to VPD (m/Gsref increased linearly with soil moisture deficit, inducing a shift from more anisohydric to a more isohydric stomatal behavior. The flexibility of stomatal behavior regarding soil drought was one key element facilitating the survival of H. ammodendron in such an extreme dry environment.

  6. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies

    Science.gov (United States)

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura

    2003-01-01

    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  7. Growth strategies of tropical tree species: disentangling light and size effects.

    Directory of Open Access Journals (Sweden)

    Nadja Rüger

    Full Text Available An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2% and high light (20% were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics.

  8. Tree species effect on the redistribution of soil metals

    NARCIS (Netherlands)

    Mertens, J.; Nevel, Van L.; Schrijver, De A.; Piesschaert, F.; Oosterbaan, A.; Tack, F.M.G.; Verheyen, K.

    2007-01-01

    Phytostabilization of metals using trees is often promoted although the influence of different tree species on the mobilization of metals is not yet clear. Soil and biomass were sampled 33 years after planting four tree species (Quercus robur, Fraxinus excelsior, Acer pseudoplatanus, Populus

  9. Distribution characteristics of mineral elements in tree Species from ...

    African Journals Online (AJOL)

    Tree species populations were 44 in Akyaakrom (AS), 29 in Dopiri (DS), and families were 18 in AS and 16 in DS. Tree densities were 121 and 99 in AS and DS, respectively, in 0.57 ha. In terms of tree species population, diversity and density, AS was superior to DS. The distribution of major mineral elements in the leaves ...

  10. Leaf anatomical traits of non-arboreal savanna species along a gradient of tree encroachment

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Souza Pinheiro

    2017-10-01

    Full Text Available ABSTRACT In the Brazilian savanna (Cerrado of Brazil, fire suppression has transformed typical savanna formations (TS into forested savanna (FS due to the phenomenon of encroachment. Under encroachment, non-arboreal plants begin to receive less light due to greater tree density and canopy closure. Here we aim to evaluate if leaf anatomical traits of non-arboreal species differ according to the degree of tree encroachment at the Assis Ecological Station - São Paulo, Brazil. To this end, we evaluated leaf tissue thickness and specific leaf area (SLA in representative non-arboreal species occurring along a gradient of tree encroachment. Leaves of TS species showed a trend towards xeromorphism, with traits reported to facilitate survival under high luminosity, such as thick leaves, thick epidermis and mesophyll, and low SLA. In contrast, FS species exhibited mesomorphic leaves, with thin mesophyll and high SLA, which are able to capture diffuse light in denser environments. Thus, non-arboreal understory species with mesomorphic leaf traits should be favored in environments with denser vegetation in contrast to typical savanna species. The results suggest that typical non-arboreal savanna species would not survive under tree encroachment due to the low competitiveness of their leaf anatomical strategies in shady environments.

  11. Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance

    Science.gov (United States)

    2013-01-01

    Background Constructing species trees from multi-copy gene trees remains a challenging problem in phylogenetics. One difficulty is that the underlying genes can be incongruent due to evolutionary processes such as gene duplication and loss, deep coalescence, or lateral gene transfer. Gene tree estimation errors may further exacerbate the difficulties of species tree estimation. Results We present a new approach for inferring species trees from incongruent multi-copy gene trees that is based on a generalization of the Robinson-Foulds (RF) distance measure to multi-labeled trees (mul-trees). We prove that it is NP-hard to compute the RF distance between two mul-trees; however, it is easy to calculate this distance between a mul-tree and a singly-labeled species tree. Motivated by this, we formulate the RF problem for mul-trees (MulRF) as follows: Given a collection of multi-copy gene trees, find a singly-labeled species tree that minimizes the total RF distance from the input mul-trees. We develop and implement a fast SPR-based heuristic algorithm for the NP-hard MulRF problem. We compare the performance of the MulRF method (available at http://genome.cs.iastate.edu/CBL/MulRF/) with several gene tree parsimony approaches using gene tree simulations that incorporate gene tree error, gene duplications and losses, and/or lateral transfer. The MulRF method produces more accurate species trees than gene tree parsimony approaches. We also demonstrate that the MulRF method infers in minutes a credible plant species tree from a collection of nearly 2,000 gene trees. Conclusions Our new phylogenetic inference method, based on a generalized RF distance, makes it possible to quickly estimate species trees from large genomic data sets. Since the MulRF method, unlike gene tree parsimony, is based on a generic tree distance measure, it is appealing for analyses of genomic data sets, in which many processes such as deep coalescence, recombination, gene duplication and losses as

  12. Leaf reflectance variation along a vertical crown gradient of two deciduous tree species in a Belgian industrial habitat

    International Nuclear Information System (INIS)

    Khavaninzadeh, Ali Reza; Veroustraete, Frank; Van Wittenberghe, Shari; Verrelst, Jochem; Samson, Roeland

    2015-01-01

    The reflectometry of leaf asymmetry is a novel approach in the bio-monitoring of tree health in urban or industrial habitats. Leaf asymmetry responds to the degree of environmental pollution and reflects structural changes in a leaf due to environmental pollution. This paper describes the boundary conditions to scale up from leaf to canopy level reflectance, by describing the variability of adaxial and abaxial leaf reflectance, hence leaf asymmetry, along the crown height gradients of two tree species. Our findings open a research pathway towards bio-monitoring based on the airborne remote sensing of tree canopies and their leaf asymmetric properties. - Highlights: • Reflectometry of leaf asymmetry is a novel approach in tree health bio-monitoring. • Leaf asymmetry reflects degrees of structural changes by environmental pollution. • Conditions to scale up from leaf to canopy level reflectance are described. • A research pathway is opened towards airborne pollution bio-assessment. - Tree leaf asymmetry responds to the degree of environmental pollution and reflects leaf structural changes differentially according to species and height in the crown

  13. Seed rain under native and non-native tree species in the Cabo Rojo National Wildlife Refuge, Puerto Rico.

    Science.gov (United States)

    Arias Garcia, Andrea; Chinea, J Danilo

    2014-09-01

    Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-native) influences seed dispersal. For this, seed rain was sampled for one year under the canopies of four native and four non-native tree species common in this refuge using 40 seed traps. No significant differences were found for the abundance of seeds, or their diversity, dispersing under native versus non-native focal tree species, nor under the different tree species. A significantly different seed species composition was observed reaching native versus non-native focal species. However, this last result could be more easily explained as a function of distance of the closest adults of the two most abundantly dispersed plant species to the seed traps than as a function of the geographic origin of the focal species. We suggest to continue the practice of planting native tree species, not only as a way to restore the community to a condition similar to the original one, but also to reduce the distances needed for effective dispersal.

  14. Simulation of Canopy CO2/H2O Fluxes for a Rubber (Hevea Brasiliensis) Plantation in Central Cambodia: The Effect of the Regular Spacing of Planted Trees

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Tomo' omi; Mudd, Ryan; Miyazawa, Yoshiyuki; Liu, Wen; Giambelluca, Thomas; Kobayashi, N.; Lim, Tiva Khan; Jomura, Mayuko; Matsumoto, Kazuho; Huang, Maoyi; Chen, Qi; Ziegler, Alan; Yin, Song

    2013-09-10

    We developed a soil-vegetation-atmosphere transfer (SVAT) model applicable to simulating CO2 and H2O fluxes from the canopies of rubber plantations, which are characterized by distinct canopy clumping produced by regular spacing of plantation trees. Rubber (Hevea brasiliensis Müll. Arg.) plantations, which are rapidly expanding into both climatically optimal and sub-optimal environments throughout mainland Southeast Asia, potentially change the partitioning of water, energy, and carbon at multiple scales, compared with traditional land covers it is replacing. Describing the biosphere-atmosphere exchange in rubber plantations via SVAT modeling is therefore essential to understanding the impacts on environmental processes. The regular spacing of plantation trees creates a peculiar canopy structure that is not well represented in most SVAT models, which generally assumes a non-uniform spacing of vegetation. Herein we develop a SVAT model applicable to rubber plantation and an evaluation method for its canopy structure, and examine how the peculiar canopy structure of rubber plantations affects canopy CO2 and H2O exchanges. Model results are compared with measurements collected at a field site in central Cambodia. Our findings suggest that it is crucial to account for intensive canopy clumping in order to reproduce observed rubber plantation fluxes. These results suggest a potentially optimal spacing of rubber trees to produce high productivity and water use efficiency.

  15. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions

    International Nuclear Information System (INIS)

    Schaub, M.; Skelly, J.M.; Zhang, J.W.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.; Davis, D.D.; Steiner, K.C.

    2005-01-01

    The crowns of five canopy dominant black cherry (Prunus serotina Ehrh.), five white ash (Fraxinus americana L.), and six red maple (Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania. Ambient ozone concentrations, meteorological parameters, leaf gas exchange and leaf water potential were measured at the sites during the growing seasons of 1998 and 1999. Visible ozone-induced foliar injury was assessed on leaves within the upper and lower crown branches of each tree. Ambient ozone exposures were sufficient to induce typical symptoms on cherry (0-5% total affected leaf area, LAA), whereas foliar injury was not observed on ash or maple. There was a positive correlation between increasing cumulative ozone uptake (U) and increasing percent of LAA for cherry grown under drier site conditions. The lower crown leaves of cherry showed more severe foliar injury than the upper crown leaves. No significant differences in predawn leaf water potential (ψ L ) were detected for all three species indicating no differing soil moisture conditions across the sites. Significant variation in stomatal conductance for water vapor (g wv ) was found among species, soil moisture, time of day and sample date. When comparing cumulative ozone uptake and decreased photosynthetic activity (P n ), red maple was the only species to show higher gas exchange under mesic vs. drier soil conditions (P wv and P n demonstrate the strong influence of heterogeneous environmental conditions within forest canopies. - Within the heterogeneous environment of a mature forest, many factors in addition to soil moisture play a significant role in determining exposure/response relationships to ozone

  16. Seasonal variation in canopy reflectance and its application to determine the water status and water use by citrus trees in the Western Cape, South Africa

    CSIR Research Space (South Africa)

    Dzikiti, Sebinasi

    2011-08-01

    Full Text Available the year with a considerable impact on tree energy balance and water use. In addition, the contribution of the internally stored water to daily transpiration is a possible indicator of drought stress for citrus trees detectable from changes in canopy...

  17. Flavanol binding of nuclei from tree species.

    Science.gov (United States)

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  18. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  19. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Mycorrhizal colonization of different agroforestry tree species in two social forestry nurseries was investigated. Percentage of Arbuscular mycorrhizal (AM) infection, number of resting spores and AM fungi species varies both in tree species as well as in two different nurseries. This variation is attributed to various factors such ...

  20. Ethnobotanical survey of tree species used for wound healing in ...

    African Journals Online (AJOL)

    Seventy-one plants out of which sixty-five were tree species belonging to thirty angiosperm families were identified as plant species used for the treatment of wound and related skin disorders. Some of the most frequently used tree species mentioned by the respondents are: Khaya grandifoliola C. D. C., Vitellaria paradoxa ...

  1. TREE SPECIES DIRECT SOWING FOR FOREST RESTORATION

    Directory of Open Access Journals (Sweden)

    Robério Anastácio Ferreira

    2007-09-01

    Full Text Available The direct sowing to tropical forest restoration can be viable when the ecological and silvicultural aspects of species areknown. This work evaluated the effect of breaking seed dormancy and a physical protector on the initial growth of riparian treespecies. The experiment was carried out in a randomized blocks design, in a factorial (2x2, with four blocks and four plots for eachtreatment. The treatment to break seed dormancy used were: immersion in sulphuric acid for 20 minutes and washing in water for 1hour plus soaking for 24 hours for Trema micrantha; immersion in boiling water (100oC with following soaking until refreshing for24 hours to Senna multijuga and Senna macranthera and pre-soaking in water for 2 hours for Solanum granuloso-leprosum. Thephysical protector used was a transparent plastic cup (500mL. The breaking seed dormancy used was efficient in laboratory, exceptfor S. macranthera. In field conditions, it was efficient only for S. multijuga and S. macranthera. The physical protector did notpresented any benefit for the studied tree species regarding seedlings emergence and survival, but it provided significant differencesin height and base diameter for S. multijuga and in height for S. macranthera after three months. After 24 months, T. micranthapresented the highest values for height and basal diameter. S. macranthera presented the height relative growth and T. micrantha thehighest basal diameter. The studied species can be recommended for ecological forest restoration, using direct sowing.

  2. The Analysis of Tree Species Distribution Information Extraction and Landscape Pattern Based on Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Yi Zeng

    2017-08-01

    Full Text Available The forest ecosystem is the largest land vegetation type, which plays the role of unreplacement with its unique value. And in the landscape scale, the research on forest landscape pattern has become the current hot spot, wherein the study of forest canopy structure is very important. They determines the process and the strength of forests energy flow, which influences the adjustments of ecosystem for climate and species diversity to some extent. The extraction of influencing factors of canopy structure and the analysis of the vegetation distribution pattern are especially important. To solve the problems, remote sensing technology, which is superior to other technical means because of its fine timeliness and large-scale monitoring, is applied to the study. Taking Lingkong Mountain as the study area, the paper uses the remote sensing image to analyze the forest distribution pattern and obtains the spatial characteristics of canopy structure distribution, and DEM data are as the basic data to extract the influencing factors of canopy structure. In this paper, pattern of trees distribution is further analyzed by using terrain parameters, spatial analysis tools and surface processes quantitative simulation. The Hydrological Analysis tool is used to build distributed hydrological model, and corresponding algorithm is applied to determine surface water flow path, rivers network and basin boundary. Results show that forest vegetation distribution of dominant tree species present plaque on the landscape scale and their distribution have spatial heterogeneity which is related to terrain factors closely. After the overlay analysis of aspect, slope and forest distribution pattern respectively, the most suitable area for stand growth and the better living condition are obtained.

  3. Effects of groundwater abstraction on two keystone tree species in an arid savanna national park.

    Science.gov (United States)

    Shadwell, Eleanor; February, Edmund

    2017-01-01

    In arid systems with no surface water, deep boreholes in ephemeral river beds provide for humans and animals. With continually increasing infrastructure development for tourism in arid wildlife parks such as the Kgalagadi Transfrontier Park in southern Africa, we ask what effects increased abstraction may have on large trees. Large trees in arid savannas perform essential ecosystem services by providing food, shade, nesting sites and increased nutrients for many other plant and animal species and for this are regarded as keystone species. We determine seasonal fluctuations in the water table while also determining the water source for the dominant large tree species in the Auob and Nossob rivers in the Park. We also determine the extent to which these trees are physiologically stressed using leaf δ 13 C, xylem pressure potentials, specific leaf area and an estimate of canopy death. We do this both upstream and downstream of a low water use borehole in the Auob River and a high water use borehole in the Nossob River. Our results show that the trees are indeed using deep groundwater in the wet season and that this is the same water used by people. In the dry season, trees in the Auob downstream of the active borehole become detached from the aquifer and use more isotopically enriched soil water. In the Nossob in the dry season, all trees use isotopically enriched soil water, and downstream of the active borehole use stomatal regulation to maintain leaf water potentials. These results suggest that trees in the more heavily utilised Nossob are under more water stress than those trees in the Auob but that trees in both rivers demonstrate physiological adaptation to the changes in available water with smaller heavier leaves, no significant canopy dieback and in the dry season in the Nossob stomatal regulation of leaf water potentials. An increase in abstraction of groundwater particularly at the Nossob borehole may cause an additional draw down of the water table adding

  4. Effects of groundwater abstraction on two keystone tree species in an arid savanna national park

    Directory of Open Access Journals (Sweden)

    Eleanor Shadwell

    2017-01-01

    Full Text Available Background In arid systems with no surface water, deep boreholes in ephemeral river beds provide for humans and animals. With continually increasing infrastructure development for tourism in arid wildlife parks such as the Kgalagadi Transfrontier Park in southern Africa, we ask what effects increased abstraction may have on large trees. Large trees in arid savannas perform essential ecosystem services by providing food, shade, nesting sites and increased nutrients for many other plant and animal species and for this are regarded as keystone species. Methods We determine seasonal fluctuations in the water table while also determining the water source for the dominant large tree species in the Auob and Nossob rivers in the Park. We also determine the extent to which these trees are physiologically stressed using leaf δ13C, xylem pressure potentials, specific leaf area and an estimate of canopy death. We do this both upstream and downstream of a low water use borehole in the Auob River and a high water use borehole in the Nossob River. Results Our results show that the trees are indeed using deep groundwater in the wet season and that this is the same water used by people. In the dry season, trees in the Auob downstream of the active borehole become detached from the aquifer and use more isotopically enriched soil water. In the Nossob in the dry season, all trees use isotopically enriched soil water, and downstream of the active borehole use stomatal regulation to maintain leaf water potentials. These results suggest that trees in the more heavily utilised Nossob are under more water stress than those trees in the Auob but that trees in both rivers demonstrate physiological adaptation to the changes in available water with smaller heavier leaves, no significant canopy dieback and in the dry season in the Nossob stomatal regulation of leaf water potentials. Discussion An increase in abstraction of groundwater particularly at the Nossob borehole may

  5. Effects of the pear tree canopy on photosynthetically active radiation availability

    International Nuclear Information System (INIS)

    Rossi, F.; Baldini, E.; Baraldi, R.

    1984-01-01

    The relationships existing between radiant energy and photosynthesis have been extensively investigated on the apple /2/ but not on the other fruit trees, pear included. In addition, such information resists generalization, owing to the remarkable differences underlying tree morphology and physiology of the different species; furthermore, some disagreement arises regarding the terminology and the units used to evaluate the amount of radiant energy useful for the photosynthetic process. In general this evaluation is based on the readouts of illuminance (symbol Ev; unit: lux), in agreement with the photopic curve (fig. 1:A), i.e. with the human eye sensibility to the visible radiation(light). However, the relative response of the chloroplasts to the radiant flux, although included within the same spectral wavebands as the photopic curve, follows a different model (fig.1:B), that is, it has two peaks in connection with the spectral wavelenghts of blue (440–490 nm), and, particularly, of red (620–700 nm). Therefore, according to a number of authors /3/6/8/11/, the correct evaluation of the photosynthetically active radiation should be made using sensors calibrated to measure the photosynthetic photon lux density (symbol: PPFD; unit: μE m -2 s -1 ), and provided with a relative spectral response similar to that of the leaves. (author)

  6. The interactive effects of surface-burn severity and canopy cover on conifer and broadleaf tree seedling ecophysiology

    Science.gov (United States)

    Sheel Bansal; Till Jochum; David A. Wardle; Marie-Charlotte Nilsson

    2014-01-01

    Fire has an important role for regeneration of many boreal forest tree species, and this includes both wildfire and prescribed burning following clear-cutting. Depending on the severity, fire can have a variety of effects on above- and belowground properties that impact tree seedling establishment. Very little is known about the impacts of ground fire severity on post-...

  7. Moose?tree interactions: rebrowsing is common across tree species

    OpenAIRE

    Mathisen, Karen Marie; Milner, Jos M.; Skarpe, Christina

    2017-01-01

    Background Plant strategies to resist herbivory include tolerance and avoidance. Tolerance strategies, such as rapid regrowth which increases the palatability of new shoots, can lead to positive feedback loops between plants and herbivores. An example of such a positive feedback occurs when moose (Alces alces) browse trees in boreal forests. We described the degree of change in tree morphology that accumulated over time in response to repeated browsing by moose, using an index of accumulated ...

  8. FULLY AUTOMATED GIS-BASED INDIVIDUAL TREE CROWN DELINEATION BASED ON CURVATURE VALUES FROM A LIDAR DERIVED CANOPY HEIGHT MODEL IN A CONIFEROUS PLANTATION

    Directory of Open Access Journals (Sweden)

    R. J. L. Argamosa

    2016-06-01

    Full Text Available The generation of high resolution canopy height model (CHM from LiDAR makes it possible to delineate individual tree crown by means of a fully-automated method using the CHM’s curvature through its slope. The local maxima are obtained by taking the maximum raster value in a 3 m x 3 m cell. These values are assumed as tree tops and therefore considered as individual trees. Based on the assumptions, thiessen polygons were generated to serve as buffers for the canopy extent. The negative profile curvature is then measured from the slope of the CHM. The results show that the aggregated points from a negative profile curvature raster provide the most realistic crown shape. The absence of field data regarding tree crown dimensions require accurate visual assessment after the appended delineated tree crown polygon was superimposed to the hill shaded CHM.

  9. Understanding recruitment failure in tropical tree species: Insights from a tree ring study

    NARCIS (Netherlands)

    Vlam, M.; Baker, P.J.; Bunyavejchewin, S.; Mohren, G.M.J.; Zuidema, P.A.

    2014-01-01

    Many tropical tree species have population structures that exhibit strong recruitment failure. While the presence of adult trees indicates that appropriate regeneration conditions occurred in the past, it is often unclear why small individuals are absent. Knowing how, when and where these tree

  10. Study of the effectiveness of several tree canopy types on roadside green belt in influencing the distribution of NO2 gas emitted from transportation

    Science.gov (United States)

    Desyana, R. D.; Sulistyantara, B.; Nasrullah, N.; Fatimah, I. S.

    2017-03-01

    Transportation is one significant factor which contributes to urban air pollution. One of the pollutants emitted from transportation which affect human’s health is NO2. Plants, especially trees, have high potential in reducing air pollutants from transportation through diffusion, absorbtion, adsorption and deposition. Purpose of this study was to analyze the effectiveness of several tree canopy types on roadside green belt in influencing distribution of NO2 gas emitted from transportation. The study conducted in three plots of tree canopy in Jagorawi Highway: Bungur (Lagerstroemia speciosa), Gmelina (Gmelina arborea) and Tanjung (Mimusops elengi). The tree canopy ability in absorbing pollutant is derived by comparing air quality on vegetated area with ambience air quality at control area (open field). Air sampling was conducted to measure NO2 concentration at elevation 1.5m, 5m and 10m at distance 0m, 10m and 30m, using Air Sampler Impinger. Concentration of NO2 was analyzed with Griess-Saltzman method. From this research, the result of ANOVA showed that tree plot (vegetated area) affected significantly to NO2 concentration. However the effect of distance from road and elevation was not significant. Among the plots, the highest NO2 concentration was found on Control plot (area without tree canopy), while the lowest NO2 concentration was found in Tanjung plot. Tanjung plot with round shape and high density canopy performed better in reducing NO2 than Bungur plot with round shape and medium density canopy, regardless the sampling elevation and distance. Gmelina plot performed the best in reducing horizontal distribution of NO2 concentration at elevation 1.5 and 5m, but the result at elevation 10m was not significant.

  11. Ecological impact of Prosopis species invasion in Turkwel riverine forest, Kenya

    NARCIS (Netherlands)

    Muturi, G.M.; Poorter, L.; Mohren, G.M.J.; Kigomo, B.N.

    2013-01-01

    The impact of Prosopis species invasion in the Turkwel riverine forest in Kenya was investigated under three contrasting: Acacia, Prosopis and Mixed species (Acacia and Prosopis) canopies. Variation amongst canopies was assessed through soil nutrients and physical properties, tree characteristics

  12. STBase: one million species trees for comparative biology.

    Science.gov (United States)

    McMahon, Michelle M; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J

    2015-01-01

    Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user's query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed

  13. STBase: one million species trees for comparative biology.

    Directory of Open Access Journals (Sweden)

    Michelle M McMahon

    Full Text Available Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user's query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies

  14. Tree species composition within Kano State University of science ...

    African Journals Online (AJOL)

    The study accessed the tree species composition within the Kano State University of Science and Technology Wudil, Kano State, Nigeria with the view of providing information that will help in the management and conservation of tree species within the campus. The study area was stratified into four (4) sections from which ...

  15. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction.

    Science.gov (United States)

    Mai, Uyen; Sayyari, Erfan; Mirarab, Siavash

    2017-01-01

    Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.

  16. Continental-scale patterns of canopy tree composition and function across Amazonia

    Science.gov (United States)

    Ter Steege, Hans; Pitman, Nigel C. A.; Phillips, Oliver L.; Chave, Jerome; Sabatier, Daniel; Duque, Alvaro; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, Rodolphe; Castellanos, Hernán; von Hildebrand, Patricio; Vásquez, Rodolfo

    2006-09-01

    The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described. Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists. Although forest inventories often lack the species-level identifications favoured by tropical plant ecologists, their consistency of measurement and vast spatial coverage make them ideally suited for numerical analyses at large scales, and a valuable resource to describe the still poorly understood spatial variation of biomass, diversity, community composition and forest functioning across the South American tropics. Here we show, by using the seven forest inventories complemented with trait and inventory data collected elsewhere, two dominant gradients in tree composition and function across the Amazon, one paralleling a major gradient in soil fertility and the other paralleling a gradient in dry season length. The data set also indicates that the dominance of Fabaceae in the Guiana shield is not necessarily the result of root adaptations to poor soils (nodulation or ectomycorrhizal associations) but perhaps also the result of their remarkably high seed mass there as a potential adaptation to low rates of disturbance.

  17. The ghosts of trees past: savanna trees create enduring legacies in plant species composition.

    Science.gov (United States)

    Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M

    2015-09-01

    Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.

  18. Biomass Production of Some Salt Tolerant Tree Species Grown in Different Ecological Zones of Pakistan

    International Nuclear Information System (INIS)

    Mahmood, K.; Chughtai, M. I.; Awan, A. R.; Waheed, R. A.

    2016-01-01

    A study was carried out to evaluate the biomass production potential of salt tolerant tree species grown in saline environments. For this purpose, 5 sites near Badin, Gawadar, Lahore, Faisalabad and Peshawar in different ecological zones of Pakistan were selected. Plantations of 7 tree species common to all sites including Eucalyptus camaldulensis, Phoenix dactylifera, Acacia nilotica, Acacia ampliceps, Prosopis juliflora, Casurinaobesa and Tamarix aphylla were selected for non-destructive biomass measurements. Five trees from each species at each site were assessed for plant height, girth at breast height, canopy area, canopy shape and number of branches. For destructive biomass estimation, six trees of four species (Eucalyptus camaldulensis, Acacia nilotica, Prosopis juliflora and Tamarix aphylla) were harvested at two sites near Lahore and Faisalabad. Biomass of whole tree and its components like stem, branches, twigs, leaves and fruits were determined. Soil and water resources of these sites were also characterized. Results indicated that E. camaldulensis produced maximum average biomass 329 kg in 81/2 years at soil salinity (EC 1:1) 8.5 to 9.4 dS m/sup -1/ and T. aphylla produced 188 kg at soil salinity 12.8 dS m/sup -1/ in 91/2 years. A. nilotica produced biomass 187 kg at 16.9 dS m/sup -1/ in 10 years at Faisalabad; while at Lahore, 369 kg in 18 years under soil salinity level 7.3 dS m/sup -1/. P. juliflora produced minimum biomass 123 kg at soil salinity 7.1 dS m/sup -1/ in 8 years at Lahore and 278 kg at soil salinity 17.2 dS m/sup -1/ in 16 years at Faisalabad. Both soil and water quality was comparatively better at Gawadar and Faisalabad than other sites. Overall, it is concluded that studied tree species are good performer on salt-affected soils and can make saline areas productive. (author)

  19. Glasshouse seedling δ13C and canopy δ13C of 8-year-old hoop pine families grown in south-east Queensland in relation to canopy δ18O, nitrogen concentration and tree growth

    International Nuclear Information System (INIS)

    Prasolova, N.V.; Saffigna, P.G.; Farquhar, G.D.

    1999-01-01

    Full text: Carbon isotope composition (δ l3 C) in C 3 plants has been theoretically and empirically linked to plant water-use efficiency (WUE). The plant δ 13 C has been suggested as an early selection criterion in plant breeding. The δ 13 C and nitrogen concentration (N mass ) of branchlet tissue for inner and outer upper canopy positions were assessed for 8-year-old hoop pine (Araucaria cunninghamii Ait.ex D.Don) trees from 23 half-sib families grown in 5 blocks of a progeny test in south-east Queensland, and for glasshouse seedlings. Tree height was positively related to N mass in branchlets of the 2 canopy positions, indicating that tree growth was limited by nitrogen deficiency. Our data indicated that water supply was also a growth-limiting factor in the hoop pine plantation of the study-area. There were considerable variations in δ 13 C and N mass between families and blocks in the field (with a heritability estimate of 0.73 for branchlet δ 13 C from the inner canopy position). Significant variation in δ 13 C was observed between positions and families of the glasshouse seedlings (with a heritability estimate of 0.66). There was also a significant difference in N mass between the 2 sampling positions in the field. The δ 13 C was positively related to N mass for the branchlets of the upper outer crown (r=0.62, p 13 C (r: 0.28-0.41, p l3 C of the 2 canopy positions for all the 115 trees sampled. There was no significant correlation between δ 13 C values for 2 seedling canopy positions at age 18 months, possibly due to restricted rooting conditions in small pots, leading to greater stomatal closure in upper canopy, which was also reflected in more positive δ 13 C. Significant correlation existed between seedling δ 13 C of upper canopy position at age 8 months and low canopy position at age 18 months. This, together with field data, demonstrated the sensitivity and reliability of δ 13 C as an indicator of plant growth environment. Strong correlation

  20. Tree dynamics in canopy gaps in old-growth forests of Nothofagus pumilio in Southern Chile

    NARCIS (Netherlands)

    Fajardo, Alex; Graaf, de N.R.

    2004-01-01

    The gap dynamics of two Nothofagus pumilio (lenga) stands have been investigated. We evaluated and compared tree diameter distributions, spatial patterns, tree fall and gap characteristics and regeneration responses in gaps in two old-growth forests of Nothofagus pumilio in Southern Chile

  1. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    NARCIS (Netherlands)

    Sterck, Frank; Anten, Niels P.R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided

  2. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  3. Physiological and foliar symptom response of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ozone under differing site conditions

    Science.gov (United States)

    M. Schaub; J.M. Skelly; J.W. Zhang; J.A. Ferdinand; J.E. Savage; R.E. Stevenson; D.D. Davis; K.C. Steiner

    2005-01-01

    The crowns of five canopy dominant black cherry ( Prunus serotina Ehrh.), five white ash ( Fraxinus americana L.), and six red maple ( Acer rubrum L.) trees on naturally differing environmental conditions were accessed with scaffold towers within a mixed hardwood forest stand in central Pennsylvania....

  4. Global variation in woodpecker species richness shaped by tree availability

    DEFF Research Database (Denmark)

    Ilsoe, Sigrid Kistrup; Kissling, W. Daniel; Fjeldsa, Jon

    2017-01-01

    . Location: Global. Methods: We used spatial and non-spatial regressions to test for relationships between broad-scale woodpecker species richness and predictor variables describing current and deep-time availability of trees, current climate, Quaternary climate change, human impact, topographical...... a negative indirect effect on woodpecker species richness. Main conclusions: Global species richness of woodpeckers is primarily shaped by current tree cover and precipitation, reflecting a strong biotic association between woodpeckers and trees. Human influence can have a negative effect on woodpecker....... As an example, woodpeckers (Picidae) are closely associated with trees and woody habitats because of multiple morphological and ecological specializations. In this study, we test whether this strong biotic association causes woodpecker diversity to be closely linked to tree availability at a global scale...

  5. STRIDE: Species Tree Root Inference from Gene Duplication Events.

    Science.gov (United States)

    Emms, David M; Kelly, Steven

    2017-12-01

    The correct interpretation of any phylogenetic tree is dependent on that tree being correctly rooted. We present STRIDE, a fast, effective, and outgroup-free method for identification of gene duplication events and species tree root inference in large-scale molecular phylogenetic analyses. STRIDE identifies sets of well-supported in-group gene duplication events from a set of unrooted gene trees, and analyses these events to infer a probability distribution over an unrooted species tree for the location of its root. We show that STRIDE correctly identifies the root of the species tree in multiple large-scale molecular phylogenetic data sets spanning a wide range of timescales and taxonomic groups. We demonstrate that the novel probability model implemented in STRIDE can accurately represent the ambiguity in species tree root assignment for data sets where information is limited. Furthermore, application of STRIDE to outgroup-free inference of the origin of the eukaryotic tree resulted in a root probability distribution that provides additional support for leading hypotheses for the origin of the eukaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Optimal tree-stem bucking of northeastern species of China

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux; Joseph McNeel

    2004-01-01

    An application of optimal tree-stem bucking to the northeastern tree species of China is reported. The bucking procedures used in this region are summarized, which are the basic guidelines for the optimal bucking design. The directed graph approach was adopted to generate the bucking patterns by using the network analysis labeling algorithm. A computer-based bucking...

  7. Species collapse via hybridization in Darwin's tree finches.

    Science.gov (United States)

    Kleindorfer, Sonia; O'Connor, Jody A; Dudaniec, Rachael Y; Myers, Steven A; Robertson, Jeremy; Sulloway, Frank J

    2014-03-01

    Species hybridization can lead to fitness costs, species collapse, and novel evolutionary trajectories in changing environments. Hybridization is predicted to be more common when environmental conditions change rapidly. Here, we test patterns of hybridization in three sympatric tree finch species (small tree finch Camarhynchus parvulus, medium tree finch Camarhynchus pauper, and large tree finch: Camarhynchus psittacula) that are currently recognized on Floreana Island, Galápagos Archipelago. Genetic analysis of microsatellite data from contemporary samples showed two genetic populations and one hybrid cluster in both 2005 and 2010; hybrid individuals were derived from genetic population 1 (small morph) and genetic population 2 (large morph). Females of the large and rare species were more likely to pair with males of the small common species. Finch populations differed in morphology in 1852-1906 compared with 2005/2010. An unsupervised clustering method showed (a) support for three morphological clusters in the historical tree finch sample (1852-1906), which is consistent with current species recognition; (b) support for two or three morphological clusters in 2005 with some (19%) hybridization; and (c) support for just two morphological clusters in 2010 with frequent (41%) hybridization. We discuss these findings in relation to species demarcations of Camarhynchus tree finches on Floreana Island.

  8. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    Science.gov (United States)

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the New…

  9. Testing for Polytomies in Phylogenetic Species Trees Using Quartet Frequencies.

    Science.gov (United States)

    Sayyari, Erfan; Mirarab, Siavash

    2018-02-28

    Phylogenetic species trees typically represent the speciation history as a bifurcating tree. Speciation events that simultaneously create more than two descendants, thereby creating polytomies in the phylogeny, are possible. Moreover, the inability to resolve relationships is often shown as a (soft) polytomy. Both types of polytomies have been traditionally studied in the context of gene tree reconstruction from sequence data. However, polytomies in the species tree cannot be detected or ruled out without considering gene tree discordance. In this paper, we describe a statistical test based on properties of the multi-species coalescent model to test the null hypothesis that a branch in an estimated species tree should be replaced by a polytomy. On both simulated and biological datasets, we show that the null hypothesis is rejected for all but the shortest branches, and in most cases, it is retained for true polytomies. The test, available as part of the Accurate Species TRee ALgorithm (ASTRAL) package, can help systematists decide whether their datasets are sufficient to resolve specific relationships of interest.

  10. Testing for Polytomies in Phylogenetic Species Trees Using Quartet Frequencies

    Science.gov (United States)

    Sayyari, Erfan

    2018-01-01

    Phylogenetic species trees typically represent the speciation history as a bifurcating tree. Speciation events that simultaneously create more than two descendants, thereby creating polytomies in the phylogeny, are possible. Moreover, the inability to resolve relationships is often shown as a (soft) polytomy. Both types of polytomies have been traditionally studied in the context of gene tree reconstruction from sequence data. However, polytomies in the species tree cannot be detected or ruled out without considering gene tree discordance. In this paper, we describe a statistical test based on properties of the multi-species coalescent model to test the null hypothesis that a branch in an estimated species tree should be replaced by a polytomy. On both simulated and biological datasets, we show that the null hypothesis is rejected for all but the shortest branches, and in most cases, it is retained for true polytomies. The test, available as part of the Accurate Species TRee ALgorithm (ASTRAL) package, can help systematists decide whether their datasets are sufficient to resolve specific relationships of interest. PMID:29495636

  11. Nutritional composition of five food trees species products used in ...

    African Journals Online (AJOL)

    Nutritional composition of five food trees species products used in human diet during food shortage period in Burkina Faso. Thiombiano Daniabla Natacha Edwige, Parkouda Charles, Lamien Nieyidouba, Sere Aminata, Castro-Euler Ana Margarida, Boussim Issaka Joseph ...

  12. Vegetative propagation of twelve fodder tree species indigenous to ...

    African Journals Online (AJOL)

    Vegetative propagation of twelve fodder tree species indigenous to the Sahel, West Africa. Catherine Ky-Dembele, Jules Bayala, Antoine Kalinganire, Fatoumata Tata Traoré, Bréhima Koné, Alain Olivier ...

  13. Long-term Seedling Dynamics of Tree Species in a Subtropical Rain Forest, Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Hao Chang-Yang

    2013-03-01

    Full Text Available Knowledge of demographical rates at seedling stage is critical for understanding forest composition and dynamics. We monitored the seedling dynamics of tree species in a subtropical rain forest in Fushan, northern Taiwan (24°45’ N, 121°35’ E during an 8-yr period (2003–2010. There were great temporal fluctuations in the seedling density, which might be largely driven by the pulses of seedling recruitment. Interspecific variation in the seedling abundance, however, was not related to the reproductive adult abundance. Previous studies showed that frequent typhoon disturbances contributed to the high canopy openness and high understory light availability at Fushan, which might benefit tree regeneration. But our results do not support this idea. Most of the newly recruited seedlings died within six months and only grew 1.55 ± 0.20 cm per year, which might be suppressed by the dense understory vegetation. Our results suggested that the majority of tree species in Fushan were recruitment limited, which might have important consequences for species coexistence. High temporal variability in recruitment density and low growth rates of seedlings emphasize the importance of long-term studies to our understandings of forest dynamics.

  14. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings.

    Science.gov (United States)

    Wandrag, Elizabeth M; Dunham, Amy E; Duncan, Richard P; Rogers, Haldre S

    2017-10-03

    Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition.

  15. Leapfrogging of tree species provenances? Interaction of microclimate and genetics on upward shifts in tree species' range limits

    Science.gov (United States)

    Reinhardt, K.; Castanha, C.; Germino, M. J.; Kueppers, L. M.

    2011-12-01

    The elevation limit of tree growth (alpine treeline) is considered to be constrained by environmental (i.e., thermal) and genetic (i.e., inability to adapt to climatic conditions) limitations to growth. Warming conditions due to climate change are predicted to cause upward shifts in the elevation of alpine treelines, through relief of cold-induced physiological limitations on seedling recruitment beyond current treeline boundaries. To determine how genetics and climate may interact to affect seedling establishment, we transplanted recently germinated seedlings from high- and low-elevation provenances (HI and LO, respectively) of Pinus flexilis in common gardens arrayed along an elevation and canopy gradient from subalpine forest into the alpine zone at Niwot Ridge, CO. We compared differences in microclimate and seedling ecophysiology among sites and between provenances. During the first summer of growth, frequently cloudy skies resulted in similar solar radiation incidence and air and soil temperatures among sites, despite nearly a 500 m-span in elevation across all sites. Preliminary findings suggest that survival of seedlings was similar between the lowest and highest elevations, with greater survival of LO (60%) compared to HI (40%) seedlings at each of these sites. Photosynthesis, carbon balance (photosynthesis/respiration), and conductance increased more than 2X with elevation for both provenances, and were 35-77% greater in LO seedlings compared to HI seedlings. There were no differences in dark-adapted chlorophyll fluorescence (Fv/Fm) among sites or between provenances. However, in a common-garden study at low elevation, we observed no differences in carbon or water relations between two naturally-germinated mitochondrial haplotypes of P. flexilis (of narrow and wide-ranging distributions). We did observe water-related thresholds on seedling carbon balance and survival that occurred when soil volumetric water content dropped below 10% and seedling water

  16. Field guide to red tree vole nests

    Science.gov (United States)

    Damon B. Lesmeister; James K. Swingle

    2017-01-01

    Surveys for red tree vole (Arborimus longicaudus) nests require tree climbing because the species is a highly specialized arboreal rodent that live in the tree canopy of coniferous forests in western Oregon and northwestern California. Tree voles are associated with old coniferous forest (≥80 years old) that are structurally complex, but are often...

  17. Slope variation and population structure of tree species from different ecological groups in South Brazil

    Directory of Open Access Journals (Sweden)

    Edmilson Bianchini

    2010-09-01

    Full Text Available Size structure and spatial arrangement of 13 abundant tree species were determined in a riparian forest fragment inParaná State, South Brazil (23"16'S and 51"01'W. The studied species were Aspidosperma polyneuron Müll. Arg., Astronium graveolens Jacq. and Gallesia integrifolia (Spreng Harms (emergent species; Alseis floribunda Schott, Ruprechtia laxiflora Meisn. and Bougainvillea spectabilis Willd. (shade-intolerant canopy species; Machaerium paraguariense Hassl, Myroxylum peruiferum L. and Chrysophyllum gonocarpum (Mart. & Eichler ex Miq. Engl. (shade-tolerant canopy species; Sorocea bonplandii (Baill. Bürger, Trichilia casaretti C. Dc, Trichilia catigua A. Juss. and Actinostemon concolor (Spreng. Müll. Arg. (understory small trees species. Height and diameter structures and basal area of species were analyzed. Spatial patterns and slope correlation were analyzed by Moran's / spatial autocorrelation coefficient and partial Mantel test, respectively. The emergent and small understory species showed the highest and the lowest variations in height, diameter and basal area. Size distribution differed among emergent species and also among canopy shade-intolerant species. The spatial pattern ranged among species in all groups, except in understory small tree species. The slope was correlated with spatial pattern for A. polyneuron, A. graveolens, A. floribunda, R. laxiflora, M. peruiferum and T. casaretti. The results indicated that most species occurredin specific places, suggesting that niche differentiation can be an important factor in structuring the tree community.Visando contribuir para o conhecimento das estratégias devida de espécies em fragmentos florestais, foram determinadas as estruturas de tamanho e espacial de 13 espécies arbóreas do remanescente de floresta ciliar no Estado do Paraná, no Sul do Brasil (23"16'S e 51"01'W. Foram analisadas as espécies: Aspidosperma polyneuron Müll. Arg., Astronium graveolens Jacq. e Gallesia

  18. Influence of tree species on the herbaceous understory and soil chemical characteristics in a silvopastoral system in semi-arid northeastern Brazil

    Directory of Open Access Journals (Sweden)

    R. S. C. Menezes

    1999-12-01

    Full Text Available Studies from some semi-arid regions of the world have shown the beneficial effect of trees in silvopastoral systems, by promoting the formation of resource islands and increasing the sustainability of the system. No data are available in this respect for tree species of common occurrence in semi-arid Northeastern Brazil. In the present study, conducted in the summer of 1996, three tree species (Zyziphus joazeiro, Spondias tuberosa and Prosopis juliflora: found within Cenchrus ciliaris pastures were selected to evaluate differences on herbaceous understory and soil chemical characteristics between samples taken under the tree canopy and in open grass areas. Transects extending from the tree trunk to open grass areas were established, and soil (0-15 cm and herbaceous understory (standing live biomass in 1 m² plots samples were taken at 0, 25, 50, 100, 150 and 200% of the average canopy radius (average radius was 6.6 ± 0.5, 4.5 ± 0.5, and 5.3 ± 0.8 m for Z. joazeiro, P. juliflora, and S. tuberosa , respectively. Higher levels of soil C, N, P, Ca, Mg, K, and Na were found under the canopies of Z. joazeiro and P. juliflora: trees, as compared to open grass areas. Only soil Mg organic P were higher under the canopies of S. tuberosa trees, as compared to open grass areas. Herbaceous understory biomass was significantly lower under the canopy of S. tuberosa and P. juliflora trees (107 and 96 g m-2, respectively relatively to open grass areas (145 and 194 g m-2. No herbaceous biomass differences were found between Z. joazeiro canopies and open grass areas (107 and 87 g m-2, respectively. Among the three tree species studied, Z. joazeiro was the one that presented the greatest potential for use in a silvopastoral system at the study site, since it had a larger nutrient stock in the soil without negatively affecting herbaceous understory biomass, relatively to open grass areas.

  19. Temperate forest and open landscapes are distinct alternative states as reflected in canopy height and tree cover

    NARCIS (Netherlands)

    Xu, Chi; Vergnon, Remi; Cornelissen, J.H.C.; Hantson, S.; Holmgren, M.; Nes, van E.H.; Scheffer, M.

    2015-01-01

    The suggestion that woody plants of intermediate height between trees and shrubs (‘trubs’) are conspicuously rare [1] invoked much interest. Two comments showed regional species lists that did not have this paucity of medium-sized woody plants 2 and 3. In response, we hypothesized that the

  20. Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus × domestica) cultivars

    Science.gov (United States)

    Feng, Fengjuan; Li, Mingjun; Ma, Fengwang; Cheng, Lailiang

    2014-01-01

    Fruits from three cultivars of apple (Malus × domestica Borkh.)—‘McIntosh’, ‘Gala’ and ‘Mutsu’—were harvested from the exterior and interior of the tree canopy. Peel and flesh tissues were sampled separately to determine how the position of the fruit on the tree might affect the levels of the primary and secondary metabolites in the fruit. Fruit from the outer-canopy had a higher fresh weight and a higher soluble solids content compared with inner-canopy fruit. Both the flesh and peel of the outer-canopy fruit had higher concentrations of soluble sugars and sugar alcohols, but lower starch concentrations than the inner-canopy fruit. Canopy position did not significantly affect malic acid concentrations, except in the peel of ‘McIntosh’ and the flesh of ‘Mutsu’. Although levels of ascorbic and succinic acids were higher in the peel of the outer-canopy fruit, the responses of other organic acids to canopy position depended on tissue type and cultivar. Except for histidine, lysine, threonine and glycine, most amino acids accumulated at higher concentrations in the inner-canopy fruit. By contrast, levels of phenolic compounds from both the peel and flesh were significantly higher in the outer-canopy fruit. The significant effects of location within the canopy on both primary metabolites and secondary metabolites demonstrate the importance of light exposure on apple fruit quality. PMID:26504536

  1. Genetic improvement of forest tree species

    Directory of Open Access Journals (Sweden)

    Teotônio Francisco Assis

    2011-01-01

    Full Text Available Brazilian forestry sector is considered one of the most developed in the world, being the base for important industrialsegments which use wood as raw material. Tree breeding has played an important role on improving the competitiveness ofBrazilian forestry-based companies, especially for its positive reflexes on increasing adaptation, forestry productivity and woodquality. In spite of the importance of other forest trees for the economy, such as Schizolobium, Araucaria, Populus and Hevea, themain genera under genetic improvement in the country are Eucalyptus, Pinus, Acacia and Tectona. They are used by industries likepulp and paper, siderurgy, tannin, chips for exportation and lumber, constituting an important source of revenues for the Brazilian’seconomy, besides their positive social and environmental impacts. This paper presents a generic approach to genetic improvementaspects of these four major genera currently undergoing breeding in Brazil.

  2. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees

    Science.gov (United States)

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-01-01

    Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978

  3. [Research on identification of species of fruit trees by spectral analysis].

    Science.gov (United States)

    Xing, Dong-Xing; Chang, Qing-Rui

    2009-07-01

    Using the spectral reflectance data (R2) of canopies, the present paper identifies seven species of fruit trees bearing fruit in the fruit mature period. Firstly, it compares the fruit tree species identification capability of six kinds of satellite sensors and four kinds of vegetation index through re-sampling the spectral data with six kinds of pre-defined filter function and the related data processing of calculating vegetation indexes. Then, it structures a BP neural network model for identifying seven species of fruit trees on the basis of choosing the best transformation of R(lambda) and optimizing the model parameters. The main conclusions are: (1) the order of the identification capability of the six kinds of satellite sensors from strong to weak is: MODIS, ASTER, ETM+, HRG, QUICKBIRD and IKONOS; (2) among the four kinds of vegetation indexes, the identification capability of RVI is the most powerful, the next is NDVI, while the identification capability of SAVI or DVI is relatively weak; (3) The identification capability of RVI and NDVI calculated with the reflectance of near-infrared and red channels of ETM+ or MODIS sensor is relatively powerful; (4) Among R(lambda) and its 22 kinds of transformation data, d1 [log(1/R(lambda))](derivative gap is set 9 nm) is the best transformation for structuring BP neural network model; (5) The paper structures a 3-layer BP neural network model for identifying seven species of fruit trees using the best transformation of R(lambda) which is d1 [log(1/R(lambda))](derivative gap is set 9 nm).

  4. Variación florística de especies arbóreas a escala local en un bosque de tierra firme en la Amazonia colombiana Floristic variation of canopy tree species at a local scale on tierra firme forests in colombian Amazonia

    Directory of Open Access Journals (Sweden)

    Juan Sebastian Barreto Silva

    2010-03-01

    Full Text Available El presente estudio se llevó a cabo en cinco hectáreas de una parcela permanente establecida en el Parque Nacional Amacayacu, Amazonia colombiana. En éste, se evaluó el efecto de la variación ambiental y la configuración espacial sobre los patrones florísticos de las especies arbóreas (DAP>10 cm a escala local en un bosque de tierra firme. Se estudió la variación florística y ambiental en cuadrantes de 20x20 m. Adicionalmente, se consideraron diferentes categorías de abundancia (total, alta, media y baja. Se utilizó el Análisis de Correspondencia Linealizado y el Análisis de Correspondencia Canónica, seguido de una partición de la variación, para cuantificar la magnitud a la cual el ambiente y la limitación en dispersión determinan la variación florística. La fracción espacial, representando procesos de autocorrelación como la limitación en dispersión, se analizó mediante dos métodos: Asumiendo un polinomio de tercer grado y por el método de Coordenadas Principales de Matrices Vecinas (PCNM. La diversidad beta de la parcela fue baja. El PCNM aparece como el método de análisis más apropiado para estudios a esta escala. Las diferencias florísticas explicadas a lo largo de la parcela de 5-ha fueron principalmente asociadas con procesos biológicos como la limitación en dispersión. La mayor parte de la variación florística, no obstante, no fue explicada por las variables ambientales o espaciales consideradas. En conclusión, estos resultados sugieren que procesos aleatorios son determinantes esenciales de la variación espacial de las especies arbóreas a escala local en tierra firme en los bosques en el Parque Nacional Amacayacu.This study was carried out in a 5-ha permanent plot established in the Amacayacu National Park, Colombian Amazonia. We assessed the extent at which floristic patterns of tree species were determined by either the environmental variation or the spatial configuration in tierra firme

  5. A Pine Is a Pine and a Spruce Is a Spruce--The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities.

    Science.gov (United States)

    Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran

    2016-01-01

    With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.

  6. A Pine Is a Pine and a Spruce Is a Spruce--The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities.

    Directory of Open Access Journals (Sweden)

    Sofia Bäcklund

    Full Text Available With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.

  7. A Pine Is a Pine and a Spruce Is a Spruce – The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities

    Science.gov (United States)

    Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran

    2016-01-01

    With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden. PMID:26799558

  8. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  9. Water Level Controls on Sap Flux of Canopy Species in Black Ash Wetlands

    Science.gov (United States)

    Joseph Shannon; Matthew Van Grinsven; Joshua Davis; Nicholas Bolton; Nam Noh; Thomas Pypker; Randall Kolka

    2018-01-01

    Black ash (Fraxinus nigra Marsh.) exhibits canopy dominance in regularly inundated wetlands, suggesting advantageous adaptation. Black ash mortality due to emerald ash borer (Agrilus planipennis Fairmaire) will alter canopy composition and site hydrology. Retention of these forested wetlands requires understanding black ash...

  10. Geographical range and local abundance of tree species in China.

    Directory of Open Access Journals (Sweden)

    Haibao Ren

    Full Text Available Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1 whether locally abundant species tend to be geographically widespread; 2 whether species are more abundant towards their range-centers; and 3 how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20-25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km(2, and >90% of 651 species had ranges >10(5 km(2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species' abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges.

  11. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest.

    Science.gov (United States)

    Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi

    2006-07-01

    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.

  12. Invasive plant species in hardwood tree plantations

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  13. Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canopy trees of Dryobalanops aromatica (Dipterocarpaceae) in a Malaysian tropical rain forest.

    Science.gov (United States)

    Inoue, Yuta; Ichie, Tomoaki; Kenzo, Tanaka; Yoneyama, Aogu; Kumagai, Tomo'omi; Nakashizuka, Tohru

    2017-10-01

    Climate change exposes vegetation to unusual levels of drought, risking a decline in productivity and an increase in mortality. It still remains unclear how trees and forests respond to such unusual drought, particularly Southeast Asian tropical rain forests. To understand leaf ecophysiological responses of tropical rain forest trees to soil drying, a rainfall exclusion experiment was conducted on mature canopy trees of Dryobalanops aromatica Gaertn.f. (Dipterocarpaceae) for 4 months in an aseasonal tropical rain forest in Sarawak, Malaysia. The rainfall was intercepted by using a soft vinyl chloride sheet. We compared the three control and three treatment trees with respect to leaf water use at the top of the crown, including stomatal conductance (gsmax), photosynthesis (Amax), leaf water potential (predawn: Ψpre; midday: Ψmid), leaf water potential at turgor loss point (πtlp), osmotic potential at full turgor (π100) and a bulk modulus of elasticity (ε). Measurements were taken using tree-tower and canopy-crane systems. During the experiment, the treatment trees suffered drought stress without evidence of canopy dieback in comparison with the control trees; e.g., Ψpre and Ψmid decreased with soil drying. Minimum values of Ψmid in the treatment trees decreased during the experiment, and were lower than πtlp in the control trees. However, the treatment trees also decreased their πtlp by osmotic adjustment, and the values were lower than the minimum values of their Ψmid. In addition, the treatment trees maintained gs and Amax especially in the morning, though at midday, values decreased to half those of the control trees. Decreasing leaf water potential by osmotic adjustment to maintain gs and Amax under soil drying in treatment trees was considered to represent anisohydric behavior. These results suggest that D. aromatica may have high leaf adaptability to drought by regulating leaf water consumption and maintaining turgor pressure to improve its leaf

  14. TREE SPECIES CLASSIFICATION OF BROADLEAVED FORESTS IN NAGANO, CENTRAL JAPAN, USING AIRBORNE LASER DATA AND MULTISPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    S. Deng

    2017-10-01

    Full Text Available This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB, 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees, four classes for the second level (Pinus densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees, and 13 classes for the third level (three coniferous and ten broadleaved species, using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90 % at the first and second levels but less than 60 % at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features.

  15. Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models

    Science.gov (United States)

    Alexander, Cici; Korstjens, Amanda H.; Hill, Ross A.

    2018-03-01

    Tree or canopy height is an important attribute for carbon stock estimation, forest management and habitat quality assessment. Airborne Laser Scanning (ALS) based on Light Detection and Ranging (LiDAR) has advantages over other remote sensing techniques for describing the structure of forests. However, sloped terrain can be challenging for accurate estimation of tree locations and heights based on a Canopy Height Model (CHM) generated from ALS data; a CHM is a height-normalised Digital Surface Model (DSM) obtained by subtracting a Digital Terrain Model (DTM) from a DSM. On sloped terrain, points at the same elevation on a tree crown appear to increase in height in the downhill direction, based on the ground elevations at these points. A point will be incorrectly identified as the treetop by individual tree crown (ITC) recognition algorithms if its height is greater than that of the actual treetop in the CHM, which will be recorded as the tree height. In this study, the influence of terrain slope and crown characteristics on the detection of treetops and estimation of tree heights is assessed using ALS data in a tropical forest with complex terrain (i.e. micro-topography) and tree crown characteristics. Locations and heights of 11,442 trees based on a DSM are compared with those based on a CHM. The horizontal (DH) and vertical displacements (DV) increase with terrain slope (r = 0.47 and r = 0.54 respectively, p tree height are up to 16.6 m on slopes greater than 50° in our study area in Sumatra. The errors in locations (DH) and tree heights (DV) are modelled for trees with conical and spherical tree crowns. For a spherical tree crown, DH can be modelled as R sin θ, and DV as R (sec θ - 1). In this study, a model is developed for an idealised conical tree crown, DV = R (tan θ - tan ψ), where R is the crown radius, and θ and ψ are terrain and crown angles respectively. It is shown that errors occur only when terrain angle exceeds the crown angle, with the

  16. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis

    Science.gov (United States)

    Somers, B.; Asner, G. P.

    2014-09-01

    The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among co-existing species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection in Multiple Endmember Spectral Mixture Analysis (MESMA). The temporal analysis provided a way to incorporate species phenology while feature selection indicated the best phenological time and best spectral feature set to optimize the separability between tree species. Instead of using the same set of spectral bands throughout the image which is the standard approach in MESMA, our modified Wavelength Adaptive Spectral Mixture Analysis (WASMA) approach allowed the spectral subsets to vary on a per pixel basis. As such we were able to optimize the spectral separability between the tree species present in each pixel. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively assessed using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, WASMA provided a more accurate tree species map compared to conventional MESMA (Kappa = 0.54; p-value < 0.05. The flexible or adaptive use of band sets in WASMA provides an interesting avenue to address spectral similarities in complex vegetation canopies.

  17. Tree competition and species coexistence in a Quercus--Betula forest in the Dongling Mountains in northern China

    Science.gov (United States)

    Hou, Ji-hua; Mi, Xiang-cheng; Liu, Can-ran; Ma, Ke-ping

    2006-09-01

    The population size structure, growth dynamics and mode of competition among adult trees (≥ 4 cm DBH) of six abundant tree species in a 5 ha study plot of a temperate deciduous forest in the Dongling Mountains in northern China were investigated using diffusion and growth dynamics models. In the year of 2000, two dominant species, Quercus liaotungensis and Betula dahurica accounted for ca. 68.69% of the total basal area and 52.71% of the total density of adult plants. Q. liaotungensis, Populus davidiana and Acer mono exhibited inverse J-shaped DBH distributions whereas Betula dahurica, B. platyphylla and Salix caprea had unimodal DBH distributions. One-sided interspecific competition was detected between some species combinations at the scale of the 5 ha study plot, and the competitive effect was mainly size-dependent rather than from species-specific interactions with large individuals in the canopy layer out competing smaller individuals in the understory. Symmetric competition was found between Q. liaotungensis and A. mono only. However, considering the straight line relationship of G ( t, x) - √{D(t, x)}, which suggests that competitive asymmetry is very low or absent, combined with the relatively low mortality of trees with a DBH larger than 4 cm, we speculate that asymmetric interspecific competition was not important in structuring this tree community. Regeneration characteristics of each species are most likely important in regulating species coexistence and stand dynamics in this forest.

  18. Tree species effect on the redistribution of soil metals

    International Nuclear Information System (INIS)

    Mertens, Jan; Van Nevel, Lotte; De Schrijver, An; Piesschaert, Frederic; Oosterbaan, Anne; Tack, Filip M.G.; Verheyen, Kris

    2007-01-01

    Phytostabilization of metals using trees is often promoted although the influence of different tree species on the mobilization of metals is not yet clear. Soil and biomass were sampled 33 years after planting four tree species (Quercus robur, Fraxinus excelsior, Acer pseudoplatanus, Populus 'Robusta') in a plot experiment on dredged sediment. Poplar took up high amounts of Cd and Zn and this was associated with increased Cd and Zn concentrations in the upper soil layer. The other species contained normal concentrations of Cd, Cu, Cr, Pb and Zn in their tissues. Oak acidified the soil more than the other species and caused a decrease in the concentration of metals in the upper soil layer. The pH under poplar was lower than expected and associated with high carbon concentrations in the top soil. This might be assigned to retardation of the litter decomposition due to elevated Cd and Zn concentrations in the litter. - Trees (33-year-old) growing on polluted dredged sediment have influenced the metal concentration in the upper soil layer and there was a significant tree species effect

  19. Time Series of Images to Improve Tree Species Classification

    Science.gov (United States)

    Miyoshi, G. T.; Imai, N. N.; de Moraes, M. V. A.; Tommaselli, A. M. G.; Näsi, R.

    2017-10-01

    Tree species classification provides valuable information to forest monitoring and management. The high floristic variation of the tree species appears as a challenging issue in the tree species classification because the vegetation characteristics changes according to the season. To help to monitor this complex environment, the imaging spectroscopy has been largely applied since the development of miniaturized sensors attached to Unmanned Aerial Vehicles (UAV). Considering the seasonal changes in forests and the higher spectral and spatial resolution acquired with sensors attached to UAV, we present the use of time series of images to classify four tree species. The study area is an Atlantic Forest area located in the western part of São Paulo State. Images were acquired in August 2015 and August 2016, generating three data sets of images: only with the image spectra of 2015; only with the image spectra of 2016; with the layer stacking of images from 2015 and 2016. Four tree species were classified using Spectral angle mapper (SAM), Spectral information divergence (SID) and Random Forest (RF). The results showed that SAM and SID caused an overfitting of the data whereas RF showed better results and the use of the layer stacking improved the classification achieving a kappa coefficient of 18.26 %.

  20. Germplasm characterization of three jabuticaba tree species

    Directory of Open Access Journals (Sweden)

    Moeses Andrigo Danner

    2011-09-01

    Full Text Available The purpose of this study was to characterize cultivated genotypes of three jabuticaba species (Plinia cauliflora, P. trunciflora, and P. jaboticaba. Phenology and fruit growth, as well as leaf, flower and fruit traits were evaluated. Variability in all traits was observed among genotypes of the three jabuticaba species. The trait peduncle size is indicated for differentiation of the three species under study. The leaf and fruit sizes of the genotypes P. trunciflora 3, P. trunciflora 4, P. trunciflora 5 and P. jaboticaba 1 differ from those described in the literature for these species, indicating the formation of ecotypes. Jabuticaba fruit skin contains high anthocyanin and flavonoid concentrations, with potential use in food and pharmaceutical industries.

  1. Modeling Ecosystem Services for Park Trees: Sensitivity of i-Tree Eco Simulations to Light Exposure and Tree Species Classification

    Directory of Open Access Journals (Sweden)

    Rocco Pace

    2018-02-01

    Full Text Available Ecosystem modeling can help decision making regarding planting of urban trees for climate change mitigation and air pollution reduction. Algorithms and models that link the properties of plant functional types, species groups, or single species to their impact on specific ecosystem services have been developed. However, these models require a considerable effort for initialization that is inherently related to uncertainties originating from the high diversity of plant species in urban areas. We therefore suggest a new automated method to be used with the i-Tree Eco model to derive light competition for individual trees and investigate the importance of this property. Since competition depends also on the species, which is difficult to determine from increasingly used remote sensing methodologies, we also investigate the impact of uncertain tree species classification on the ecosystem services by comparing a species-specific inventory determined by field observation with a genus-specific categorization and a model initialization for the dominant deciduous and evergreen species only. Our results show how the simulation of competition affects the determination of carbon sequestration, leaf area, and related ecosystem services and that the proposed method provides a tool for improving estimations. Misclassifications of tree species can lead to large deviations in estimates of ecosystem impacts, particularly concerning biogenic volatile compound emissions. In our test case, monoterpene emissions almost doubled and isoprene emissions decreased to less than 10% when species were estimated to belong only to either two groups instead of being determined by species or genus. It is discussed that this uncertainty of emission estimates propagates further uncertainty in the estimation of potential ozone formation. Overall, we show the importance of using an individual light competition approach and explicitly parameterizing all ecosystem functions at the

  2. Why abundant tropical tree species are phylogenetically old.

    Science.gov (United States)

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community.

  3. Species trees for the tree swallows (Genus Tachycineta): an alternative phylogenetic hypothesis to the mitochondrial gene tree.

    Science.gov (United States)

    Dor, Roi; Carling, Matthew D; Lovette, Irby J; Sheldon, Frederick H; Winkler, David W

    2012-10-01

    The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Influence of environmental variables on the shrub and tree species distribution in two Semideciduous Forest sites in Viçosa, Minas Gerais, Brazil.

    Science.gov (United States)

    Pinto, Sheila Isabel do C; Martins, Sebastião V; de Barros, Nairam F; Dias, Herly Carlos T; Kunz, Sustanis H

    2008-09-01

    The floristic variations of shrub and tree components were studied in two sites of Semideciduous Forest, initial forest and mature forest, located in the Mata do Paraíso Forest Reserve, in Viçosa, State of Minas Gerais, Southeastern Brazil, in order to analyze the floristic similarity and the correlations between environmental variables and the distribution of tree species in these forests. Individual trees with a diameter at breast height (DBH) > or = 4.8 cm were sampled in twenty 10 x 30 m plots (10 plots in each site). The plots were distributed systematically at 10 m intervals. The environmental variables analyzed were: the canopy openness and soil chemical and texture characteristics. The two forest sites showed clear differences in the levels of canopy openness and soil fertility, factors that reflect the floristic and successional differences of the shrub and tree component, revealed by the low similarity between these forests by cluster analysis. The canonical correspondence analysis (CCA) of environmental variables and species abundance indicated that the species in these forests studied are distributed under strong influence of canopy openness, moisture and soil fertility.

  5. Fuelwood quality of promising tree species for alkaline soil sites in relation to tree age

    Energy Technology Data Exchange (ETDEWEB)

    Goel, V.L.; Behl, H.M. [National Botanical Research Inst., Lucknow (India). Biomass Research Center

    1996-06-01

    The fuelwood quality of five tree species suitable for afforestation of alkaline soil sites was investigated in relation to tree age for establishing harvest rotation cycles. Prosopis juliflora and Acacia nilotica were found to be the most suitable species for short rotation fuel wood forestry programmes because of their high wood density, biomass yield, low ash and moisture content, and good heat of combustion at the juvenile stage. The performance of other species like Acacia auriculiformis, Terminalia arjuna and Sesbania formosa is discussed. (author)

  6. TREE CANOPY PRUNING DOES NOT REGULATE BIENNIAL BEARING IN ”ELSTAR” APPLE (Malus domestica Borkh.

    Directory of Open Access Journals (Sweden)

    Nikola Pavičić

    2004-12-01

    Full Text Available Four alternative pruning strategies (A– 25 generative buds, B– 50 generative buds, C– 75 generative buds and D–100 generative buds per tree for Elstar apple cultivar and their possible impact on improvement in productivity were examined in 1999 and 2000. Year was significant factor for all traits, except yield. The pruning strategy is significant for number of fruits per flower cluster and fruit mass. Interaction year and pruning strategy is significant only for number of fruits per flower cluster. Fruit mass was larger for pruning strategy A compared to the pruning strategies C and D. Yield efficiency and biennial bearing index were not affected by pruning strategies. The biennial bearing index variance was the lowest for the pruning strategy B. Trunk cross sectional area (TCSA had negative impact on fruit mass in pruning strategy C. Correlation between the flower and crop density was positive in pruning strategy A. Flower density was in positive correlation with yield in pruning strategy C. The research shows that tree pruning alone will not result in adequate yield regulation in ‘Elstar’ apple.

  7. Where to nest? Ecological determinants of chimpanzee nest abundance and distribution at the habitat and tree species scale.

    Science.gov (United States)

    Carvalho, Joana S; Meyer, Christoph F J; Vicente, Luis; Marques, Tiago A

    2015-02-01

    Conversion of forests to anthropogenic land-uses increasingly subjects chimpanzee populations to habitat changes and concomitant alterations in the plant resources available to them for nesting and feeding. Based on nest count surveys conducted during the dry season, we investigated nest tree species selection and the effect of vegetation attributes on nest abundance of the western chimpanzee, Pan troglodytes verus, at Lagoas de Cufada Natural Park (LCNP), Guinea-Bissau, a forest-savannah mosaic widely disturbed by humans. Further, we assessed patterns of nest height distribution to determine support for the anti-predator hypothesis. A zero-altered generalized linear mixed model showed that nest abundance was negatively related to floristic diversity (exponential form of the Shannon index) and positively with the availability of smaller-sized trees, reflecting characteristics of dense-canopy forest. A positive correlation between nest abundance and floristic richness (number of plant species) and composition indicated that species-rich open habitats are also important in nest site selection. Restricting this analysis to feeding trees, nest abundance was again positively associated with the availability of smaller-sized trees, further supporting the preference for nesting in food tree species from dense forest. Nest tree species selection was non-random, and oil palms were used at a much lower proportion (10%) than previously reported from other study sites in forest-savannah mosaics. While this study suggests that human disturbance may underlie the exclusive arboreal nesting at LCNP, better quantitative data are needed to determine to what extent the construction of elevated nests is in fact a response to predators able to climb trees. Given the importance of LCNP as refuge for Pan t. verus our findings can improve conservation decisions for the management of this important umbrella species as well as its remaining suitable habitats. © 2014 Wiley Periodicals, Inc.

  8. Dust retaining properties of leaves of some tree species

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, M I

    1960-05-01

    A study was made in Tashkent, Russia of the dust-retaining power of leaves of several tree species. Investigations were made in a park where these tree species were growing in close proximity, exposed to the effects of dust from the main city street and from the highway passing through the park. Observations on the dust-retaining power of leaves were made mostly during the summer and fall months. The dust-retaining power of leaves of different tree species varied with the dust concentration in the air. In the summer and fall when rains are scarce a steady accumulation of dust was observed on the surface of the leaves. 1 table.

  9. Diagnostics of Tree Diseases Caused by Phytophthora austrocedri Species.

    Science.gov (United States)

    Mulholland, Vincent; Elliot, Matthew; Green, Sarah

    2015-01-01

    We present methods for the detection and quantification of four Phytophthora species which are pathogenic on trees; Phytophthora ramorum, Phytophthora kernoviae, Phytophthora lateralis, and Phytophthora austrocedri. Nucleic acid extraction methods are presented for phloem tissue from trees, soil, and pure cultures on agar plates. Real-time PCR methods are presented and include primer and probe sets for each species, general advice on real-time PCR setup and data analysis. A method for sequence-based identification, useful for pure cultures, is also included.

  10. Interactions between terrestrial mammals and the fruits of two neotropical rainforest tree species

    Science.gov (United States)

    Camargo-Sanabria, Angela A.; Mendoza, Eduardo

    2016-05-01

    Mammalian frugivory is a distinctive biotic interaction of tropical forests; however, most efforts in the Neotropics have focused on cases of animals foraging in the forest canopy, in particular primates and bats. In contrast much less is known about this interaction when it involves fruits deposited on the forest floor and terrestrial mammals. We conducted a camera-trapping survey to analyze the characteristics of the mammalian ensembles visiting fruits of Licania platypus and Pouteria sapota deposited on the forest floor in a well preserved tropical rainforest of Mexico. Both tree species produce large fruits but contrast in their population densities and fruit chemical composition. In particular, we expected that more species of terrestrial mammals would consume P. sapota fruits due to its higher pulp:seed ratio, lower availability and greater carbohydrate content. We monitored fruits at the base of 13 trees (P. sapota, n = 4 and L. platypus, n = 9) using camera-traps. We recorded 13 mammal species from which we had evidence of 8 consuming or removing fruits. These eight species accounted for 70% of the species of mammalian frugivores active in the forest floor of our study area. The ensemble of frugivores associated with L. platypus (6 spp.) was a subset of that associated with P. sapota (8 spp). Large body-sized species such as Tapirus bairdii, Pecari tajacu and Cuniculus paca were the mammals more frequently interacting with fruits of the focal species. Our results further our understanding of the characteristics of the interaction between terrestrial mammalian frugivores and large-sized fruits, helping to gain a more balanced view of its importance across different tropical forests and providing a baseline to compare against defaunated forests.

  11. Description of the lynx spiders of a canopy fogging project in northern Borneo (Araneae: Oxyopidae), with description of a new genus and six new species of Hamataliwa

    NARCIS (Netherlands)

    Deeleman - Reinhold, C.L.

    2009-01-01

    All oxyopid spider species collected in a long-term ecological canopy project in northern Borneo are described. A total of nine species in three genera could be established, one of which belongs to a new genus. Four species could be assigned to known species, five are described as new species in the

  12. Influence of tree canopy on N{sub 2} fixation by pasture legumes and soil rhizobial abundance in Mediterranean oak woodlands

    Energy Technology Data Exchange (ETDEWEB)

    Carranca, C., E-mail: corina.carranca@iniav.pt [INIAV, Qta Marquês, 2784-505 Oeiras (Portugal); Castro, I.V.; Figueiredo, N. [INIAV, Qta Marquês, 2784-505 Oeiras (Portugal); Redondo, R. [Laboratorio de Isotopos Estables, Universidade Autonoma, Madrid (Spain); Rodrigues, A.R.F. [Centro de Estudos Florestais, ISA/UL, Tapada Ajuda, 1349-017 Lisboa (Portugal); Saraiva, I.; Maricato, R. [INIAV, Qta Marquês, 2784-505 Oeiras (Portugal); Madeira, M.A.V. [Centro de Estudos Florestais, ISA/UL, Tapada Ajuda, 1349-017 Lisboa (Portugal)

    2015-02-15

    Symbiotic N{sub 2} fixation is of primordial significance in sustainable agro-forestry management as it allows reducing the use of mineral N in the production of mixed stands and by protecting the soils from degradation. Thereby, on a 2-year basis, N{sub 2} fixation was evaluated in four oak woodlands under Mediterranean conditions using a split-plot design and three replicates. {sup 15}N technique was used for determination of N{sub 2} fixation rate. Variations in environmental conditions (temperature, rainfall, radiation) by the cork tree canopy as well as the age of stands and pasture management can cause great differences in vegetation growth, legume N{sub 2} fixation, and soil rhizobial abundance. In the present study, non-legumes dominated the swards, in particular beneath the tree canopy, and legumes represented only 42% of total herbage. A 2-fold biomass reduction was observed in the oldest sown pasture in relation to the medium-age sward (6 t DW ha{sup −1} yr{sup −1}). Overall, competition of pasture growth for light was negligible, but soil rhizobial abundance and symbiotic N{sub 2} fixation capacity were highly favored by this environmental factor in the spring and outside the influence of tree canopy. Nitrogen derived from the atmosphere was moderate to high (54–72%) in unsown and sown swards. Inputs of fixed N2 increased from winter to spring due to more favorable climatic conditions (temperature and light intensity) for both rhizobia and vegetation growths. Assuming a constant fixation rate at each seasonal period, N{sub 2} fixation capacity increased from about 0.10 kg N ha{sup −1} per day in the autumn–winter period to 0.15 kg N ha{sup −1} per day in spring. Belowground plant material contributed to 11% of accumulated N in pasture legumes and was not affected by canopy. Size of soil fixing bacteria contributed little to explain pasture legumes N. - Highlights: • Legumes fixation in oak woodlands was quantified in terms of biomass and N

  13. Multilocus inference of species trees and DNA barcoding.

    Science.gov (United States)

    Mallo, Diego; Posada, David

    2016-09-05

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree-gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  14. Nitrogen use strategies of seedlings from neotropical tree species of distinct successional groups.

    Science.gov (United States)

    Oliveira, Halley Caixeta; da Silva, Ligia Maria Inocêncio; de Freitas, Letícia Dias; Debiasi, Tatiane Viegas; Marchiori, Nidia Mara; Aidar, Marcos Pereira Marinho; Bianchini, Edmilson; Pimenta, José Antonio; Stolf-Moreira, Renata

    2017-05-01

    Few studies have analyzed the strategies of neotropical tree seedlings for absorbing, translocating and assimilating the nitrogen. Here, we compared the nitrogen use strategies of seedlings from six tree species that are native to the Brazilian Atlantic Forest and that belong to different successional groups: Trema micrantha, Heliocarpus popayanensis and Cecropia pachystachya (pioneers), Cariniana estrellensis, Eugenia brasiliensis and Guarea kunthiana (non-pioneers). The effects of cultivating seedlings with nitrate or ammonium on the growth, physiology and nitrogen metabolism were analyzed. Nitrate-grown pioneer species had much higher leaf nitrate reductase activity than non-pioneer ones, but non-pioneer seedlings were also able to use nitrate as a nitrogen source. In addition to this remarkable difference between the groups in the capacity for leaf nitrate assimilation, substantial variations in the nitrogen use strategies were observed within the successional classes. Differently from the other non-pioneers, the canopy species C. estrellensis seemed to assimilate nitrate mainly in the leaves. Morphophysiological analyses showed a gradient of ammonium toxicity response, with E. brasiliensis as the most tolerant species, and T. micrantha and H. popayanensis as the most sensitive ones. Guarea kunthiana showed a relatively low tolerance to ammonium and an unusual high translocation of this cation in the xylem sap. In contrast to the other pioneers, C. pachystachya had a high plasticity in the use of nitrogen sources. Overall, these results suggest that nitrogen use strategies of neotropical tree seedlings were not determined solely by their successional position. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Soil moisture extremes drive tree canopy death in 2011 Texas drought: multispectral (Landsat, NAIP) and L-band passive microwave remote sensing (SMOS-IC)

    Science.gov (United States)

    Swenson, J. J.; Schwantes, A. M.; Johnson, D. M.; Domec, J. C.; Wigneron, J. P.

    2017-12-01

    Climate change is bringing more frequent and intense droughts that are causing broad scale tree mortality events. Detecting regional drought stress is now more frequently monitored with passive microwave satellite sensing of soil moisture (SM) and vegetation water status (through the vegetation optical depth (VOD) index), that can be validated with in-situ measurements of soil moisture or corroborated with satellite multispectral indices of greenness. The detection of canopy death however marks the passing of a definitive physiological threshold. We compare soil moisture from the L-band SMOS-IC passive microwave product (2010-20176) to an accurate and detailed (30-m spatial resolution) map of canopy loss across the US state of Texas during the record breaking 2011 drought. The SMOS-IC product (25 km) is a new and simpler product of soil moisture and VOD that has been shown to be more accurate than past SMOS products and it is independent of ancillary data. Canopy loss was mapped from Landsat imagery trained with 186, 41 km2 subplots of classified National Agriculture Inventory Program color infrared aerial imagery recorded before and after the drought. Bringing these two datasets of disparate spatial resolution together and averaging them across the state, we find that areas with at least 25% tree cover that experienced the most canopy loss (highest quartile) had lower soil moisture compared to areas with less canopy loss in 2011. These areas with the most loss, experienced up to 9 weeks of the growing season at stress as well as the effects of topography, soil, and climate. Having more information on plant hydraulic limits would lend itself to modeling and prediction of die offs based on satellite tracked SM.

  16. Nitrogen deposition outweighs climatic variability in driving annual growth rate of canopy beech trees: Evidence from long-term growth reconstruction across a geographic gradient.

    Science.gov (United States)

    Gentilesca, Tiziana; Rita, Angelo; Brunetti, Michele; Giammarchi, Francesco; Leonardi, Stefano; Magnani, Federico; van Noije, Twan; Tonon, Giustino; Borghetti, Marco

    2018-07-01

    In this study, we investigated the role of climatic variability and atmospheric nitrogen deposition in driving long-term tree growth in canopy beech trees along a geographic gradient in the montane belt of the Italian peninsula, from the Alps to the southern Apennines. We sampled dominant trees at different developmental stages (from young to mature tree cohorts, with tree ages spanning from 35 to 160 years) and used stem analysis to infer historic reconstruction of tree volume and dominant height. Annual growth volume (G V ) and height (G H ) variability were related to annual variability in model simulated atmospheric nitrogen deposition and site-specific climatic variables, (i.e. mean annual temperature, total annual precipitation, mean growing period temperature, total growing period precipitation, and standard precipitation evapotranspiration index) and atmospheric CO 2 concentration, including tree cambial age among growth predictors. Generalized additive models (GAM), linear mixed-effects models (LMM), and Bayesian regression models (BRM) were independently employed to assess explanatory variables. The main results from our study were as follows: (i) tree age was the main explanatory variable for long-term growth variability; (ii) GAM, LMM, and BRM results consistently indicated climatic variables and CO 2 effects on G V and G H were weak, therefore evidence of recent climatic variability influence on beech annual growth rates was limited in the montane belt of the Italian peninsula; (iii) instead, significant positive nitrogen deposition (N dep ) effects were repeatedly observed in G V and G H ; the positive effects of N dep on canopy height growth rates, which tended to level off at N dep values greater than approximately 1.0 g m -2  y -1 , were interpreted as positive impacts on forest stand above-ground net productivity at the selected study sites. © 2018 John Wiley & Sons Ltd.

  17. Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by maximum likelihood.

    Science.gov (United States)

    Wu, Yufeng

    2012-03-01

    Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.

  18. Seedling growth strategies in Bauhinia species: comparing lianas and trees

    NARCIS (Netherlands)

    Cai, Z.Q.; Poorter, L.; Cao, K.F.; Bongers, F.J.J.M.

    2007-01-01

    Background and Aims: Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass

  19. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants

    Science.gov (United States)

    John W. Coulston; Gretchen C. Smith; William D. Smith

    2003-01-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...

  20. Antimicrobial Screening of Some Exotic Tree Species of Rajasthan Desert

    OpenAIRE

    B.B.S. Kapoor* and Shelja Pandita

    2013-01-01

    Antimicrobial screening of ethyl ether and alcoholic extracts of leaves of four selected exotic tree species growing inRajasthan Desert was carried out. Colophospermum mopane, Holoptelea integrifolia, Kigelia pinnata andPutranjiva roxburghii showed positive reactions against bacterial pathogens i.e. Staphylococcus aureus, Escherichiacoli and a fungal pathogen Candida albicans.

  1. Performance of Asian longhorned beetle among tree species

    Science.gov (United States)

    Kelli Hoover; Scott Ludwig; James Sellmer; Deborah McCullough; Laura Lazarus

    2003-01-01

    Two procedures were evaluated for assessing susceptibility of a variety of tree species to Anoplophora glabripennis. In the first procedure, adult beetles were caged with a section of sugar maple, northern red oak, white oak, honeylocust, eastern cottonwood, sycamore or tulip poplar wood and allowed to oviposit.

  2. Evaluation of some tree species for heavy metal biomonitoring and ...

    African Journals Online (AJOL)

    ajl yemi

    It is well established that trees help to reduce air pollution, and there is a growing impetus for green ... with the expansion of cities, increasing demand of energy ... In this study, four plant species were selected in Isfahan city. Leaves samples were collected in July 2009. Leaf samples were dried at 70°C to constant weight.

  3. Tolerance of Four Tropical Tree Species to Heavy Petroleum Contamination

    NARCIS (Netherlands)

    Perez-Hernandez, I.; Ochoa-Gaona, S.; Schroeder, R.H.A.; Rivera-Cruz, M.C.; Geissen, V.

    2013-01-01

    Four species of trees were selected to evaluate the tolerance to heavy crude oil contamination by means of a tolerance index integrating germination, height, biomass and survival as variables. Fresh seeds to Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia

  4. Regional variation in Caribbean dry forest tree species composition

    Science.gov (United States)

    Janet Franklin; Julie Ripplinger; Ethan H. Freid; Humfredo Marcano-Vega; David W. Steadman

    2015-01-01

    How does tree species composition vary in relation to geographical and environmental gradients in a globally rare tropical/subtropical broadleaf dry forest community in the Caribbean? We analyzed data from 153 Forest Inventory and Analysis (FIA) plots from Puerto Rico and the U.S. Virgin Islands (USVI), along with 42 plots that we sampled in the Bahamian Archipelago (...

  5. Biomass models to estimate carbon stocks for hardwood tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Montero, G.; Rio, M. del

    2012-11-01

    To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data. (Author) 45 refs.

  6. Tree species Diversity in the Department of Forest Resources ...

    African Journals Online (AJOL)

    An inventory of trees (>10cm diameter at breast height (dbh)) growing within the premises (~1.2ha) of the Department of Forest Resources Management (DFRM), University of Ibadan, Nigeria, was conducted as a case study of the species quality (richness and diversity) and quantity (volume) found on the University campus.

  7. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Administrator

    2011-05-05

    May 5, 2011 ... Key words: Arbuscular mycorrhizal fungi, agroforestry tree species. INTRODUCTION ... plant growth hormones, protection of host roots from pathogens .... interactions between fungal strains and soil than between the fungus ... phosphorus and drought stress on the growth of Acacic nilotica and. Leucaena ...

  8. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment.

    Directory of Open Access Journals (Sweden)

    Annika Wein

    Full Text Available Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2. The species pool consists of six congeneric species pairs of European and North American origin (12 species in total planted in monocultures and mixtures (1, 2, 4, 6 species. We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.

  9. tropiTree: An NGS-Based EST-SSR Resource for 24 Tropical Tree Species

    Science.gov (United States)

    Russell, Joanne R.; Hedley, Peter E.; Cardle, Linda; Dancey, Siobhan; Morris, Jenny; Booth, Allan; Odee, David; Mwaura, Lucy; Omondi, William; Angaine, Peter; Machua, Joseph; Muchugi, Alice; Milne, Iain; Kindt, Roeland; Jamnadass, Ramni; Dawson, Ian K.

    2014-01-01

    The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data. PMID:25025376

  10. Potential tree species for use in the restoration of unsanitary landfills.

    Science.gov (United States)

    Kim, Kee Dae; Lee, Eun Ju

    2005-07-01

    Given that they represent the most economical option for disposing of refuse, waste landfills are widespread in urban areas. However, landfills generate air and water pollution and require restoration for landscape development. A number of unsanitary waste landfills have caused severe environmental problems in developing countries. This study aimed to investigate the colonization status of different tree species on waste landfills to assess their potential for restoring unsanitary landfills in South Korea. Plot surveys were conducted using 10 x 10-m quadrats at seven waste landfill sites: Bunsuri, Dugiri, Hasanundong, Gomaeri, Kyongseodong, Mojeonri, and Shindaedong. We determined the height, diameter at breast height (DBH), and number of tree species in the plots, and enumerated all saplings landfills, we measured the distance from the presumed mother plant (i.e., the tallest black locust in a patch), height, and DBH of all individuals in black locust patches to determine patch structure. Robinia pseudoacacia, Salix koreensis, and Populus sieboldii formed canopy layers in the waste landfills. The basal area of black locust was 1.51 m(2)/ha, and this species had the highest number of saplings among all tree species. The diameter of the black locust patches ranged from 3.71 to 11.29 m. As the patch diameter increased, the number of regenerated saplings also tended to increase, albeit not significantly. Black locust invaded via bud banks and spread clonally in a concentric pattern across the landfills. This species grew well in the dry habitat of the landfills, and its growth rate was very high. Furthermore, black locust has the ability to fix nitrogen symbiotically; it is therefore considered a well-adapted species for waste landfills. Eleven woody species were selected for screening: Acer palmatum, Albizzia julibrissin, Buxus microphylla var. koreana, Ginkgo biloba, Hibiscus syriacus, Koelreuteria paniculata, Ligustrum obtusifolium, Liriodendron tulipifera, Pinus

  11. Low host-tree preferences among saproxylic beetles : acomparison of four deciduous species

    OpenAIRE

    Milberg, Per; Bergman, Karl-Olof; Johansson, Helena; Jansson, Nicklas

    2014-01-01

    Many wood-dwelling beetles rely on old hollow trees. In Europe, oaks are known to harbour a species-rich saproxylic beetle fauna, while less is known regarding other broad-leaved tree species. Furthermore, the extent to which saproxylic insect species have specialised on different tree species remains unknown. In this study, we sampled beetles through pitfall traps and window traps in four different tree species in a landscape with many old oaks. We recorded 242 saproxylic beetle species of w...

  12. Continental-scale patterns of canopy tree composition and function across Amazonia

    OpenAIRE

    Ter Steege, H.; Pitman, N.C.A.; Phillips, O.L.; Chave, J.; Sabatier, Daniel; Duque, A.; Molino, Jean-François; Prévost, Marie-Françoise; Spichiger, R.; Castellanos, H.; Von Hildebrand, P.; Vasquez, R.

    2006-01-01

    The world's greatest terrestrial stores of biodiversity and carbon are found in the forests of northern South America, where large-scale biogeographic patterns and processes have recently begun to be described(1-4). Seven of the nine countries with territory in the Amazon basin and the Guiana shield have carried out large-scale forest inventories, but such massive data sets have been little exploited by tropical plant ecologists(5-8). Although forest inventories often lack the species-level i...

  13. Canopy structure and tree condition of young, mature, and old-growth Douglas-fir/hardwood forests

    Science.gov (United States)

    B.B. Bingham; J.O. Sawyer

    1992-01-01

    Sixty-two Douglas-fir/hardwood stands ranging from 40 to 560 years old were used to characterize the density; diameter, and height class distributions of canopy hardwoods and conifers in young (40 -100 yr), mature (101 - 200 yr) and old-growth (>200 yr) forests. The crown, bole, disease, disturbance, and cavity conditions of canopy conifers and hardwoods were...

  14. Water use in forest canopy black cherry trees and its relationship to leaf gas exchange and environment

    Science.gov (United States)

    B. J. Joyce; K. C. Steiner; J. M. Skelly

    1996-01-01

    Models of canopy gas exchange are needed to connect leaf-level measurement to higher scales. Because of the correspondence between leaf gas exchange and water use, it may be possible to predict variation in leaf gas exchange at the canopy level by monitoring rates of branch water use.

  15. Capturing characteristics of beryllium-7 in selected tree species

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Karube, Yoshiharu.

    1997-01-01

    With regard to 7 Be, a natural radioactive nuclide, the botanical capturing characteristics were compared between eight species of those trees which grow in a local district. The mechanism of such botanical capture by their leaves was discussed. The amounts of captured 7 Be were different by tree species. Higher radioactivities were found in the coniferous trees than in the broadleaf trees. The seasonal change of 7 Be radioactivity in leaves was significantly higher in winter and spring and lower in summer. Since airborne or fallout 7 Be particles stay on the upper face of leaves, the deposited amount depended on the surface area per weight of leaves particularly for evergreen trees. Because the 7 Be amount in leaves depended on the fallout capturing ability of leafs superficial skin as well as the cleaning effect of rain and the like, the radioactivity on the surface can change depending on the surface condition of leaves even in the case the levels of 7 Be fallout stayed the same. (author)

  16. National Land Cover Database 2001 (NLCD01) Tree Canopy Layer Tile 4, Southeast United States: CNPY01_4

    Science.gov (United States)

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  17. National Land Cover Database 2001 (NLCD01) Tree Canopy Layer Tile 2, Northeast United States: CNPY01_2

    Science.gov (United States)

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  18. National Land Cover Database 2001 (NLCD01) Tree Canopy Layer Tile 1, Northwest United States: CNPY01_1

    Science.gov (United States)

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg. The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov

  19. National Land Cover Database 2001 (NLCD01) Tree Canopy Layer Tile 3, Southwest United States: CNPY01_3

    Science.gov (United States)

    LaMotte, Andrew E.; Wieczorek, Michael

    2010-01-01

    This 30-meter resolution data set represents the tree canopy layer for the conterminous United States for the 2001 time period. The data have been arranged into four tiles to facilitate timely display and manipulation within a Geographic Information System, browse graphic: nlcd01-partition.jpg The National Land Cover Data Set for 2001 was produced through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of Federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (USEPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (USFWS), the Bureau of Land Management (BLM), and the USDA Natural Resources Conservation Service (NRCS). One of the primary goals of the project is to generate a current, consistent, seamless, and accurate National Land Cover Database (NLCD) circa 2001 for the United States at medium spatial resolution. For a detailed definition and discussion on MRLC and the NLCD 2001 products, refer to Homer and others (2004) and http://www.mrlc.gov/mrlc2k.asp. The NLCD 2001 was created by partitioning the United States into mapping-zones. A total of 68 mapping-zones browse graphic: nlcd01-mappingzones.jpg were delineated within the conterminous United States based on ecoregion and geographical characteristics, edge-matching features, and the size requirement of Landsat mosaics. Mapping-zones encompass the whole or parts of several states. Questions about the NLCD mapping zones can be directed to the NLCD 2001 Land Cover Mapping Team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  20. Assessing a Template Matching Approach for Tree Height and Position Extraction from Lidar-Derived Canopy Height Models of Pinus Pinaster Stands

    Directory of Open Access Journals (Sweden)

    Francesco Pirotti

    2010-10-01

    Full Text Available In this paper, an assessment of a method using a correlation filter over a lidar-derived digital canopy height model (CHM is presented. The objective of the procedure is to obtain stem density, position, and height values, on a stand with the following characteristics: ellipsoidal canopy shape (Pinus pinaster, even-aged and single-layer structure. The process consists of three steps: extracting a correlation map from CHM by applying a template whose size and shape resembles the canopy to be detected, applying a threshold mask to the correlation map to keep a subset of candidate-pixels, and then applying a local maximum filter to the remaining pixel groups. The method performs satisfactorily considering the experimental conditions. The mean tree extraction percentage is 65% with a coefficient of agreement of 0.4. The mean absolute error of height is ~0.5 m for all plots except one. It can be considered a valid approach for extracting tree density and height in regularly spaced stands (i.e., poplar plantations which are fundamental for extracting related forest parameters such as volume and biomass.

  1. Seasonal variation in radiocesium concentrations in three tree species

    International Nuclear Information System (INIS)

    Garten, C.R. Jr.; Briese, L.A.; Sharitz, R.R.; Gentry, J.B.

    1975-01-01

    Radiocesium concentrations in leaves and stems of black willow (Salix nigra), wax myrtle (Myrica cerifera), and tag alder (Alnus serrulata) trees inhabiting a floodplain contaminated by production-reactor effluents were measured over 1 year. In willow and myrtle trees, leaf radiocesium levels were highest in the spring and declined during the growing season; stem levels remained relatively unchanged or exhibited a slight increase. Seasonal changes in alder tree parts depended on the site examined. The relationship among component parts was essentially consistent across species and collecting sites in the summer. The radiocesium concentrations in order of rank were: roots greater than or equal to leaves greater than stems. Species differences in component-part radiocesium levels were dependent on the part sampled and the collecting site examined. Mean soil to plant-part concentration factors in summer ranged from 0.9 to 7.6, and species means across leaves, stems, and roots averaged 2.1, 3.8, and 6.2 for alder, willow, and myrtle trees, respectively

  2. Use of Hardwood Tree Species by Birds Nesting in Ponderosa Pine Forests

    Science.gov (United States)

    Kathryn L. Purcell; Douglas A. Drynan

    2008-01-01

    We examined the use of hardwood tree species for nesting by bird species breeding in ponderosa pine (Pinus ponderosa) forests in the Sierra National Forest, California. From 1995 through 2002, we located 668 nests of 36 bird species nesting in trees and snags on four 60-ha study sites. Two-thirds of all species nesting in trees or snags used...

  3. Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions

    Science.gov (United States)

    Matyssek, R.; Wieser, G.; Nunn, A. J.; Kozovits, A. R.; Reiter, I. M.; Heerdt, C.; Winkler, J. B.; Baumgarten, M.; Häberle, K.-H.; Grams, T. E. E.; Werner, H.; Fabian, P.; Havranek, W. M.

    The current AOT40 concept for inferring risks in forest trees by ozone (O 3) injury is based on an accumulated external O 3 exposure rather than an internal O 3 dose or uptake rate. AOT40 assumes O 3 concentrations below 40 nl l -1 and night-time exposure to be negligible. Hence, this concept is rather inconsistent with observed forest conditions. In contrast, the flux concept of cumulative O 3 uptake (CU) into the leaves has the potential of reflecting a physiologically meaningful internal O 3 dose experienced by trees. In this paper, we relate AOT40 to cumulative O 3 uptake into European beech ( Fagus sylvatica), Norway spruce ( Picea abies), European larch ( Larix decidua) and cembran pine ( Pinus cembra) trees differing in size, age and site conditions. We demonstrate that the flux concept can be extended to the tree and the stand level, making use of sap flow measurements through tree trunks. Although in both seedlings and adult trees AOT40 may show some linearity in correlations with average CU, the latter varies, at given AOT40, by 25±11% within and between species. This is because O 3 flux is primarily influenced by stomatal aperture, the latter being affected by climate, canopy position, leaf and tree age while varying between species. In particular, if weighed by detoxification capacity, we suggest, therefore, O 3 uptake related air quality indices to be promoted towards ecologically meaningful standards in forest protection, overcoming the shortcomings of exposure concepts. As O 3 injury results from the balance between O 3 uptake and detoxification in the leaf mesophyll, we conclude the flux concept in combination with measures of biochemical defence to have the capacity for predicting tree response to O 3 stress.

  4. Litter Fall and Its Decomposition in Sapium sebiferum Roxb.: An Invasive Tree Species in Western Himalaya

    Directory of Open Access Journals (Sweden)

    Vikrant Jaryan

    2014-01-01

    Full Text Available Recognizing that high litter fall and its rapid decomposition are key traits of invasive species, litter fall and its decay in Sapium sebiferum Roxb. were studied in Palampur. For this, litter traps of dimension 50 × 50 × 50 cm3 were placed in under-canopy and canopy gap of the species. Litter fall was monitored monthly and segregated into different components. For litter decay studies, litter bags of dimension 25 × 20 cm2 with a mesh size 2 mm were used and the same were analyzed on a fortnightly basis. Litter fall in both under-canopy and canopy gap was highest in November (1.16 Mg ha−1 y−1 in under-canopy and 0.38 Mg ha−1 y−1 in canopy gap and lowest during March. Litter production in under-canopy and canopy gap was 4.04 Mg ha−1 y−1 and 1.87 Mg ha−1 y−1, respectively. These values are comparable to sal forest (1.7 t C ha−1 y−1, chir pine-mixed forest (2.1 t C ha−1 y−1, and mixed oak-conifer forest (2.8 t C ha−1 y−1 of the Western Himalaya. The decay rate, 0.46% day−1 in under-canopy and 0.48% day−1 in canopy gap, was also fast. Owing to this the species may be able to modify the habitats to its advantage, as has been reported elsewhere.

  5. Gainesville's urban forest canopy cover

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  6. Nitrogen fixation in four dryland tree species in central Chile

    International Nuclear Information System (INIS)

    Ovalle, C.; Arredondo, S.; Aronson, J.; Longeri, L.; Avendano, J.

    1998-01-01

    Results are presented from a 5-year experiment using 15 N-enriched fertilizer to determine N 2 fixation in four tree species on degraded soils in a Mediterranean-climate region of central Chile in which there are 5 months of drought. Species tested included three slow-growing but long-lived savannah trees native to southers South America, (acacia caven, Prosopic alba and P. chilensis; Mimosoideae), and Tagasaste (Chamaecytisus proliferus ssp. palmensis; Papilonoideae), a fast-growing but medium-lived tree from the Canary Islands. Tagasaste produced four- to twenty-fold more biomass than the other species, but showed declining N 2 fixation and biomass accumulation during the 5th year, corresponding to the juvenile-to-adult developmental transition. Nitrogen content was significantly higher in Tagasaste and Acacia caven than in the other species. The data revealed inter-specific differences in resource allocation and phenology of N 2 fixation rarely detailed for woody plants in dryland regions. (author)

  7. Diversification rates and species richness across the Tree of Life.

    Science.gov (United States)

    Scholl, Joshua P; Wiens, John J

    2016-09-14

    Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies. © 2016 The Author(s).

  8. Widespread Discordance of Gene Trees with Species Tree inDrosophila: Evidence for Incomplete Lineage Sorting

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, Daniel A.; Iyer, Venky N.; Moses, Alan M.; Eisen,Michael B.

    2006-08-28

    The phylogenetic relationship of the now fully sequencedspecies Drosophila erecta and D. yakuba with respect to the D.melanogaster species complex has been a subject of controversy. All threepossible groupings of the species have been reported in the past, thoughrecent multi-gene studies suggest that D. erecta and D. yakuba are sisterspecies. Using the whole genomes of each of these species as well as thefour other fully sequenced species in the subgenus Sophophora, we set outto investigate the placement of D. erecta and D. yakuba in the D.melanogaster species group and to understand the cause of the pastincongruence. Though we find that the phylogeny grouping D. erecta and D.yakuba together is the best supported, we also find widespreadincongruence in nucleotide and amino acid substitutions, insertions anddeletions, and gene trees. The time inferred to span the two keyspeciation events is short enough that under the coalescent model, theincongruence could be the result of incomplete lineage sorting.Consistent with the lineage-sorting hypothesis, substitutions supportingthe same tree were spatially clustered. Support for the different treeswas found to be linked to recombination such that adjacent genes supportthe same tree most often in regions of low recombination andsubstitutions supporting the same tree are most enriched roughly on thesame scale as linkage disequilibrium, also consistent with lineagesorting. The incongruence was found to be statistically significant androbust to model and species choice. No systematic biases were found. Weconclude that phylogenetic incongruence in the D. melanogaster speciescomplex is the result, at least in part, of incomplete lineage sorting.Incomplete lineage sorting will likely cause phylogenetic incongruence inmany comparative genomics datasets. Methods to infer the correct speciestree, the history of every base in the genome, and comparative methodsthat control for and/or utilize this information will be

  9. A MULTIVARIATE APPROACH TO ANALYSE NATIVE FOREST TREE SPECIE SEEDS

    Directory of Open Access Journals (Sweden)

    Alessandro Dal Col Lúcio

    2006-03-01

    Full Text Available This work grouped, by species, the most similar seed tree, using the variables observed in exotic forest species of theBrazilian flora of seeds collected in the Forest Research and Soil Conservation Center of Santa Maria, Rio Grande do Sul, analyzedfrom January, 1997, to march, 2003. For the cluster analysis, all the species that possessed four or more analyses per lot wereanalyzed by the hierarchical Clustering method, of the standardized Euclidian medium distance, being also a principal componentanalysis technique for reducing the number of variables. The species Callistemon speciosus, Cassia fistula, Eucalyptus grandis,Eucalyptus robusta, Eucalyptus saligna, Eucalyptus tereticornis, Delonix regia, Jacaranda mimosaefolia e Pinus elliottii presentedmore than four analyses per lot, in which the third and fourth main components explained 80% of the total variation. The clusteranalysis was efficient in the separation of the groups of all tested species, as well as the method of the main components.

  10. Climatic extremes improve predictions of spatial patterns of tree species

    Science.gov (United States)

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  11. Community organization of tree species along soil gradients in a north-eastern USA forest

    NARCIS (Netherlands)

    Bigalow, S.W.; Canham, C.D.

    2002-01-01

    1 A study was carried out in oak-northern hardwood forest in NW Connecticut USA involving measurements of growth, light and soil environment of saplings of six canopy trees that are strongly associated with particular soil types as adults. The objectives were to determine patterns of growth response

  12. Methodology to evaluate the insecticide potential of forest tree species

    International Nuclear Information System (INIS)

    Morales Soto, Leon; Garcia P, Carlos Mario

    2000-01-01

    The flora diversity of Colombia has an enormous potential in the rational use of its forest resources. Trees with biocidal effects to control pests and diseases need to be investigated. The objective of this research was to develop a methodology with low costs, easy application and quick results. The methodology employed was as follows: selection of tree species based on bibliography, ancestral reports and personal observations. The process was as follows: field collection of plants, preparation of plants extracts and test with Artemia salina Leach to detect biological activity of the extracts using LC50. Bioassays with those extract more promising (LC50 less than 1000 ppm) Determination of active compounds. The methodology was employed with 5 forest tree species: guarea guidonia (L) Sleumer and trichia hirta L. (Meliaceae), Machaerium Moritzianum Benth. (Fabaceae), Swinglea glutinosa Merrill (rutaceae) and Mammea americana L. (Clusiaceae). Using Artemia salina Leach as indicator of biocidal potential, two species were selected as the most promising, those were: Swinglea glutinosa Merril and Machaerium moritzianum Benth. In addition bioassays were made to evaluate fagoinhibition on Atta cephalotes (L.) (Hym: Formicidae) and control of Alconeura. This methodology is recommended for this kind of research

  13. Change in hydraulic properties and leaf traits of a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics

    Science.gov (United States)

    Schuldt, B.; Leuschner, C.; Horna, V.; Moser, G.; Köhler, M.; Barus, H.

    2010-11-01

    In a throughfall displacement experiment on Sulawesi, Indonesia, three 0.16 ha stands of a premontane perhumid rainforest were exposed to a two-year soil desiccation period that reduced the soil moisture in the upper soil layers beyond the conventional wilting point. About 25 variables, including leaf morphological and chemical traits, stem diameter growth and hydraulic properties of the xylem in the trunk and terminal twigs, were investigated in trees of the tall-growing tree species Castanopsis acuminatissima (Fagaceae) by comparing desiccated roof plots with nearby control plots. We tested the hypotheses that this tall and productive species is particularly sensitive to drought, and the exposed upper sun canopy is more affected than the shade canopy. Hydraulic conductivity in the xylem of terminal twigs normalised to vessel lumen area was reduced by 25%, leaf area-specific conductivity by 10-33% during the desiccation treatment. Surprisingly, the leaves present at the end of the drought treatment were significantly larger, but not smaller in the roof plots, though reduced in number (about 30% less leaves per unit of twig sapwood area), which points to a drought effect on the leaf bud formation while the remaining leaves may have profited from a surplus of water. Mean vessel diameter and axial conductivity in the outermost xylem of the trunk were significantly reduced and wood density increased, while annual stem diameter increment decreased by 26%. In contradiction to our hypotheses, (i) we found no signs of major damage to the C. acuminatissima trees nor to any other drought sensitivity of tall trees, and (ii) the exposed upper canopy was not more drought susceptible than the shade canopy.

  14. Measuring species diversity in a subtropical forest across a tree size gradient: a comparison of diversity indices

    International Nuclear Information System (INIS)

    Ke, X.; Su, Z.; Hu, Y.; Zhou, Y.; Xu, M.

    2017-01-01

    Shannon-Wiener index and Simpson's diversity index together with other metrics, e.g., richness, number of stems per species or species-specific density (N: S ratio), and kurtosis, were applied to characterize the woody plant diversity patterns of a subtropical broadleaved forest in south China. The aims of our study were to compare the efficacy and sensitivity to community diversity measures between Shannon-Wiener index and Simpson's diversity index. Tree census data from a 5-ha sample plot was partitioned into 3 datasets by diameter class to represent 3 distinct woody plant communities for the characterization of diversity across communities. The 5-ha sample plot of the forest had a total abundance of 23,301 tree stems = 1 cm DBH and a richness of 139 species. The majority of tree stems were seedlings (41.1%) and saplings (38.8%), whereas canopy trees only accounted for 20.1% of the total tree stems. Both Shannon-Wiener index and Simpson's diversity index decreased significantly in response to a decrease in the N: S ratio across the datasets, but Shannon-Wiener index was more sensitive to plot-based richness changes and had a higher efficacy in predicting changes in species richness. Our findings are contrary to the general belief that Shannon-Wiener index is an insensitive measure of the character of the N: S relationship and have demonstrated that it remains a good measure for species diversity in plant community studies for its sensitivity and efficacy. We also suggest that the kurtosis statistic can be used as a new diversity measure due to its sensitivity to diversity change. (author)

  15. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  16. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  17. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  18. Tree species migration studies in the White Mountains of New Hampshire

    Science.gov (United States)

    William B. Leak; Mariko. Yamasaki

    2012-01-01

    The movement of tree species in either latitude or elevation has attracted increased recent attention due to growing national/international concerns over climate change. However, studies on tree species movements began in the early 1970s in the White Mountains of New Hampshire, mostly due to ecological interests in the episodic behavior of upper-elevation tree species...

  19. Management and conservation of tree squirrels: the importance of endemism, species richness, and forest condition

    Science.gov (United States)

    John L. Koprowski

    2005-01-01

    Tree squirrels are excellent indicators of forest health yet the taxon is understudied. Most tree squirrels in the Holarctic Region are imperiled with some level of legal protection. The Madrean Archipelago is the epicenter for tree squirrel diversity in North America with 5 endemic species and 2 introduced species. Most species of the region are poorly studied in...

  20. Predicting abundance of 80 tree species following climate change in the Eastern United States

    Science.gov (United States)

    Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    1998-01-01

    Projected climate warming will potentially have profound effects on the earth?s biota, including a large redistribution of tree species. We developed models to evaluate potential shifts for 80 individual tree species in the eastern United States. First, environmental factors associated with current ranges of tree species were assessed using geographic information...

  1. Temperature regulates positively photoblastic seed germination in four ficus (moraceae) tree species from contrasting habitats in a seasonal tropical rainforest.

    Science.gov (United States)

    Chen, Hui; Cao, Min; Baskin, Jerry M; Baskin, Carol C

    2013-08-01

    Differences in seed germination responses of trees in tropical forests to temperature and light quality may contribute to their coexistence. We investigated the effects of temperature and red:far-red light (R:FR ratio) on seed germination of two gap-demanding species (Ficus hispida and F. racemosa) and two shade-tolerant species (F. altissima and F. auriculata) in a tropical seasonal rainforest in southwest China. A R:FR ratio gradient was created by filtering fluorescent light through polyester filters. Four temperature treatments were used to test the effect of temperature on seed germination of the four Ficus tree species across the R:FR gradient. Seeds of the four Ficus species were positively photoblastic. Seed germination of F. hispida and F. racemosa was not affected across the R:FR ratio gradient (0.25-1.19) at 25/35°C, but it was inhibited under low R:FR at 22/23°C. By contrast, germination percentages of F. altissima and F. auriculata were not inhibited along the entire light gradient in all temperature treatments. Differences in germination responses of Ficus species might contribute to differences in their habitat preferences. The inhibitory effect of understory temperatures in the forest might be a new mechanism that prevents positively photoblastic seeds of the gap-demanding species such as F. hispida and F. racemosa from germinating in the understory and in small canopy gaps.

  2. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    Science.gov (United States)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  3. Can community members identify tropical tree species for REDD+ carbon and biodiversity measurements?

    DEFF Research Database (Denmark)

    Zhao, Mingxu; Brofeldt, Søren; Li, Qiaohong

    2016-01-01

    to take advantage of the same data for detecting changes in the tree diversity, using the richness and abundance of canopy trees as a proxy for biodiversity. If local community members are already assessing the above-ground biomass in a representative network of forest vegetation plots, it may require...... minimal further effort to collect data on the diversity of trees. We compare community members and trained scientists' data on tree diversity in permanent vegetation plots in montane forest in Yunnan, China. We show that local community members here can collect tree diversity data of comparable quality...... to trained botanists, at one third the cost. Without access to herbaria, identification guides or the Internet, community members could provide the ethno-taxonomical names for 95% of 1071 trees in 60 vegetation plots. Moreover, we show that the community-led survey spent 89% of the expenses at village level...

  4. Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems.

    Science.gov (United States)

    Ali, Arshad; Mattsson, Eskil

    2017-11-15

    The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R 2 =0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and

  5. Inferring species trees from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Aliatypus.

    Directory of Open Access Journals (Sweden)

    Jordan D Satler

    Full Text Available The California Floristic Province is a biodiversity hotspot, reflecting a complex geologic history, strong selective gradients, and a heterogeneous landscape. These factors have led to high endemic diversity across many lifeforms within this region, including the richest diversity of mygalomorph spiders (tarantulas, trapdoor spiders, and kin in North America. The trapdoor spider genus Aliatypus encompasses twelve described species, eleven of which are endemic to California. Several Aliatypus species show disjunct distributional patterns in California (some are found on both sides of the vast Central Valley, and the genus as a whole occupies an impressive variety of habitats.We collected specimens from 89 populations representing all described species. DNA sequence data were collected from seven gene regions, including two newly developed for spider systematics. Bayesian inference (in individual gene tree and species tree approaches recovered a general "3 clade" structure for the genus (A. gulosus, californicus group, erebus group, with three other phylogenetically isolated species differing slightly in position across different phylogenetic analyses. Because of extremely high intraspecific divergences in mitochondrial COI sequences, the relatively slowly evolving 28S rRNA gene was found to be more useful than mitochondrial data for identification of morphologically indistinguishable immatures. For multiple species spanning the Central Valley, explicit hypothesis testing suggests a lack of monophyly for regional populations (e.g., western Coast Range populations. Phylogenetic evidence clearly shows that syntopy is restricted to distant phylogenetic relatives, consistent with ecological niche conservatism.This study provides fundamental insight into a radiation of trapdoor spiders found in the biodiversity hotspot of California. Species relationships are clarified and undescribed lineages are discovered, with more geographic sampling likely to

  6. AFLP diversity and spatial structure of Calycophyllum candidissimum (Rubiaceae), a dominant tree species of Nicaragua's critically endangered seasonally dry forest.

    Science.gov (United States)

    Dávila-Lara, A; Affenzeller, M; Tribsch, A; Díaz, V; Comes, H P

    2017-10-01

    The Central American seasonally dry tropical (SDT) forest biome is one of the worlds' most endangered ecosystems, yet little is known about the genetic consequences of its recent fragmentation. A prominent constituent of this biome is Calycophyllum candidissimum, an insect-pollinated and wind-dispersed canopy tree of high socio-economic importance, particularly in Nicaragua. Here, we surveyed amplified fragment length polymorphisms across 13 populations of this species in Nicaragua to elucidate the relative roles of contemporary vs historical factors in shaping its genetic variation. Genetic diversity was low in all investigated populations (mean H E =0.125), and negatively correlated with latitude. Overall population differentiation was moderate (Φ ST =0.109, Pforest regions may be genetically resilient to habitat fragmentation due to species-typical dispersal characteristics, the necessity of broad-scale measures for their conservation notwithstanding.

  7. VEGETATIVE MORPHOLOGY FOR SPECIES IDENTIFICATION OF TROPICAL TREES: FAMILY DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Peter Hargreaves

    2006-03-01

    Full Text Available Tree specimens from the ESAL herbarium of the Universidade Federal de Lavras, Minas Gerais, Brazil, were describedby vegetative characteristics using CARipé, a Microsoft Access database application specially developed for this study. Only onespecimen per species was usually described. Thus, 2 observers described 567 herbarium species as a base to test methods ofidentification as part of a larger study. The present work formed part of that study and provides information on the distribution of22 vegetative characters among 16 families having 10 or more species described. The characters are discussed. The study foundmarked differences, even discontinuities, of distributions of characters between those families. Therefore it should be possible toincorporate phylogenetic relationships into the identification process.

  8. Response of transpiration to rain pulses for two tree species in a semiarid plantation

    Science.gov (United States)

    Chen, Lixin; Zhang, Zhiqiang; Zeppel, Melanie; Liu, Caifeng; Guo, Junting; Zhu, Jinzhao; Zhang, Xuepei; Zhang, Jianjun; Zha, Tonggang

    2014-09-01

    Responses of transpiration ( E c) to rain pulses are presented for two semiarid tree species in a stand of Pinus tabulaeformis and Robinia pseudoacacia. Our objectives are to investigate (1) the environmental control over the stand transpiration after rainfall by analyzing the effect of vapor pressure deficit (VPD), soil water condition, and rainfall on the post-rainfall E c development and recovery rate, and (2) the species responses to rain pulses and implications on vegetation coverage under a changing rainfall regime. Results showed that the sensitivity of canopy conductance ( G c) to VPD varied under different incident radiation and soil water conditions, and the two species exhibited the same hydraulic control (-d G c/dlnVPD to G cref ratio) over transpiration. Strengthened physiological control and low sapwood area of the stand contributed to low E c. VPD after rainfall significantly influenced the magnitude and time series of post-rainfall stand E c. The fluctuation of post-rainfall VPD in comparison with the pre-rainfall influenced the E c recovery. Further, the stand E c was significantly related to monthly rainfall, but the recovery was independent of the rainfall event size. E c enhanced with cumulative soil moisture change (ΔVWC) within each dry-wet cycle, yet still was limited in large rainfall months. The two species had different response patterns of post-rainfall E c recovery. E c recovery of P. tabulaeformis was influenced by the pre- and post-rainfall VPD differences and the duration of rainless interval. R. pseudoacacia showed a larger immediate post-rainfall E c increase than P. tabulaeformis did. We, therefore, concluded that concentrated rainfall events do not trigger significant increase of transpiration unless large events penetrate the deep soil and the species differences of E c in response to pulses of rain may shape the composition of semiarid woodlands under future rainfall regimes.

  9. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis.

    Science.gov (United States)

    Brienen, Roel J W; Zuidema, Pieter A

    2005-11-01

    Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate-growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines.

  10. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient

    International Nuclear Information System (INIS)

    Kitao, Mitsutoshi; Loew, Markus; Heerdt, Christian; Grams, Thorsten E.E.; Haeberle, Karl-Heinz; Matyssek, Rainer

    2009-01-01

    The effects of elevated O 3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O 3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ 13 C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O 3 detoxification and repair was suggested under elevated O 3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O 3 , this effect being accompanied by lowered F v /F m . These results suggest that chronic O 3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O 3 sensitivity of photosynthesis and accelerated senescence in shade leaves. - Across leaf differentiation in adult beech crowns, elevated ozone acted through stomatal closure on gas exchange although enhancing photosynthetic sensitivity of shaded leaves

  11. High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss.

    Directory of Open Access Journals (Sweden)

    Annika M E Noreen

    Full Text Available Over the last 150 years, Singapore's primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter, 193 saplings (>1 yr, and 1,822 seedlings (<1 yr of the canopy tree Koompassia malaccensis (Fabaceae. We tested hypotheses relevant to the genetic consequences of habitat loss: (1 that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2 K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843-0.854, high allelic richness (R = 16.7-19.5, low inbreeding co-efficients (FIS = 0.013-0.076, and a large proportion (30.1% of rare alleles (i.e. frequency <1%. However, spatial genetic structure (SGS analyses showed significant differences between the adults and the recruits. We detected significantly greater SGS intensity, as well as higher relatedness in the 0-10 m distance class, for seedlings and saplings compared to the adults. Demographic factors for this population (i.e. <200 adult trees are a cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961, calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss.

  12. Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology.

    Science.gov (United States)

    Pollastrini, M; Holland, V; Brüggemann, W; Koricheva, J; Jussila, I; Scherer-Lorenzen, M; Berger, S; Bussotti, F

    2014-03-01

    Chlorophyll a fluorescence (ChlF) and leaf morphology were assessed in two sites in Europe (Kaltenborn, Germany, and Satakunta, Finland) within a forest diversity experiment. Trees at Satakunta, planted in 1999, form a stratified canopy, while in Kaltenborn the trees are 7 years old, with no apparent canopy connection among broadleaf species. The following ChlF parameters from measured OJIP transient curves were examined: F(V)/F(M) (a proxy for maximum quantum yield); ΨEo (a proxy for efficiency in transferring an electron from reduced QA to the electron transport chain); I-P phase (a proxy for efficiency of reducing final acceptors beyond PSI); and PItot (total performance index for potential energy conservation from photons absorbed by PSII to reduction of PSI end acceptors). At Satakunta F(V)/F(M) and ΨEo in Betula pendula were higher in monocultures and lower in mixed plots, perhaps due to increasing light availability in mixed plots, which can induce photoinhibition. The opposite trend was observed in Picea abies, which was shaded in mixed plots. At Kaltenborn F(V)/F(M) decreased in Fagus sylvatica and P. abies in mixed plots due to competition both above- and belowground. At Satakunta LMA increased in B. pendula leaves with increasing species richness. Leaf area of ten leaves was reduced in F. sylvatica in mixed plots at Kaltenborn. By up-scaling the overall fluorescence response to plot level (PItot_plot ), a significant positive correlation with tree diversity was found at Kaltenborn, but not at Satakunta. This could suggest that competition/facilitation processes in mixed stands play a significant role in the early stages of forest establishment, but then tend to be compensated in more mature stands. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Improved quality of beneath-canopy grass in South African savannas: Local and seasonal variation

    NARCIS (Netherlands)

    Treydte, A.C.; Looringh van Beeck, F.A.; Ludwig, F.; Heitkonig, I.M.A.

    2008-01-01

    Questions: Do large trees improve the nutrient content and the structure of the grass layer in savannas? Does the magnitude of this improvement differ with locality ( soil nutrients) and season ( water availability)? Are grass structure and species composition beneath tree canopies influenced by

  14. Estimating phylogenetic relationships despite discordant gene trees across loci: the species tree of a diverse species group of feather mites (Acari: Proctophyllodidae).

    Science.gov (United States)

    Knowles, Lacey L; Klimov, Pavel B

    2011-11-01

    With the increased availability of multilocus sequence data, the lack of concordance of gene trees estimated for independent loci has focused attention on both the biological processes producing the discord and the methodologies used to estimate phylogenetic relationships. What has emerged is a suite of new analytical tools for phylogenetic inference--species tree approaches. In contrast to traditional phylogenetic methods that are stymied by the idiosyncrasies of gene trees, approaches for estimating species trees explicitly take into account the cause of discord among loci and, in the process, provides a direct estimate of phylogenetic history (i.e. the history of species divergence, not divergence of specific loci). We illustrate the utility of species tree estimates with an analysis of a diverse group of feather mites, the pinnatus species group (genus Proctophyllodes). Discord among four sequenced nuclear loci is consistent with theoretical expectations, given the short time separating speciation events (as evident by short internodes relative to terminal branch lengths in the trees). Nevertheless, many of the relationships are well resolved in a Bayesian estimate of the species tree; the analysis also highlights ambiguous aspects of the phylogeny that require additional loci. The broad utility of species tree approaches is discussed, and specifically, their application to groups with high speciation rates--a history of diversification with particular prevalence in host/parasite systems where species interactions can drive rapid diversification.

  15. Bayesian and Classical Machine Learning Methods: A Comparison for Tree Species Classification with LiDAR Waveform Signatures

    Directory of Open Access Journals (Sweden)

    Tan Zhou

    2017-12-01

    Full Text Available A plethora of information contained in full-waveform (FW Light Detection and Ranging (LiDAR data offers prospects for characterizing vegetation structures. This study aims to investigate the capacity of FW LiDAR data alone for tree species identification through the integration of waveform metrics with machine learning methods and Bayesian inference. Specifically, we first conducted automatic tree segmentation based on the waveform-based canopy height model (CHM using three approaches including TreeVaW, watershed algorithms and the combination of TreeVaW and watershed (TW algorithms. Subsequently, the Random forests (RF and Conditional inference forests (CF models were employed to identify important tree-level waveform metrics derived from three distinct sources, such as raw waveforms, composite waveforms, the waveform-based point cloud and the combined variables from these three sources. Further, we discriminated tree (gray pine, blue oak, interior live oak and shrub species through the RF, CF and Bayesian multinomial logistic regression (BMLR using important waveform metrics identified in this study. Results of the tree segmentation demonstrated that the TW algorithms outperformed other algorithms for delineating individual tree crowns. The CF model overcomes waveform metrics selection bias caused by the RF model which favors correlated metrics and enhances the accuracy of subsequent classification. We also found that composite waveforms are more informative than raw waveforms and waveform-based point cloud for characterizing tree species in our study area. Both classical machine learning methods (the RF and CF and the BMLR generated satisfactory average overall accuracy (74% for the RF, 77% for the CF and 81% for the BMLR and the BMLR slightly outperformed the other two methods. However, these three methods suffered from low individual classification accuracy for the blue oak which is prone to being misclassified as the interior live oak due

  16. Architecture of 53 rain forest tree species differing in adult stature and shade tolerance

    NARCIS (Netherlands)

    Poorter, L.; Bongers, F.J.J.M.; Sterck, F.J.; Wöll, H.

    2003-01-01

    Tree architecture determines a tree's light capture, stability, and efficiency of crown growth. The hypothesis that light demand and adult stature of tree species within a community, independently of each other, determine species' architectural traits was tested by comparing 53 Liberian rain forest

  17. Systematic adaptive cluster sampling for the assessment of rare tree species in Nepal

    NARCIS (Netherlands)

    Acharya, B.; Bhattarai, G.; Gier, de A.; Stein, A.

    2000-01-01

    Sampling to assess rare tree species poses methodic problems, because they may cluster and many plots with no such trees are to be expected. We used systematic adaptive cluster sampling (SACS) to sample three rare tree species in a forest area of about 40 ha in Nepal. We checked its applicability

  18. Effects of habitat structure and altitudinal gradients on avian species ...

    African Journals Online (AJOL)

    ... effect on bird species diversity. Bird species diversity increased with increase in tree height. A significant decline in bird species diversity with increased number of trees and canopy cover was noted. This result probably suggests an accumulation of forest edge species and generalist species in the less forested habitat.

  19. Shade tree selection and management practices by farmers in ...

    African Journals Online (AJOL)

    There is a traditional practice of forest management in coffee producing communities in Ethiopian moist Afromontane forests to increase coffee production. The practice involves removal of big canopy trees with excessive shade and selectively retaining specific tree species as preferred shade trees. This study was initiated ...

  20. Competition for light and light use efficiency for Acacia mangium and Eucalyptus grandis trees in mono-specific and mixed-species plantations in Brazil

    Science.gov (United States)

    Le Maire, G.; Nouvellon, Y.; Gonçalves, J.; Bouillet, J.; Laclau, J.

    2010-12-01

    Mixed plantations with N-fixing species might be an attractive option for limiting the use of fertilizer in highly productive Eucalyptus plantations. A randomized block design was set up in southern Brazil, including a replacement series and an additive series design, as well as a nitrogen fertilization treatment, and conducted during a full 6 years rotation. The gradient of competition between Eucalyptus and Acacia in this design resulted in very different conditions of growth of Acacia, from totally dominated up to dominant canopies. We used the MAESTRA model to estimate the amount of absorbed photosynthetically active radiation (APAR) at tree level. This model requires the description of the scene and distinct structural variables of the two species, and their evolution with time. The competition for light is analysed by comparing the inter-specific values of APAR during a period of 2 years at the end of the rotation. APAR is further compared to the measured increment in stem wood biomass of the tree, and their ratio is an estimation of the light use efficiency for stemwood production at tree-scale. Variability of these LUE are analysed in respect to the species, the size of the tree, and at plot scale (competition level). Stemwood production was 3400, 3900 and 2400 gDM/m2 while APAR was 1640, 2280 and 2900 MJ/y for the pure Eucalyptus, pure Acacia and 50/50 mixed plantation, respectively, for an average LAI of 3.7, 3.3 and 4.5, respectively. Individual LUE for stemwood was estimated at an average value of 1.72 and 1.41 gDM/MJ/tree for Eucalyptus and Acacia, respectively, and at 0.92 and 0.40 gDM/MJ/tree when they were planted in mixed 50/50 plantations. LUE was highly dependant on tree size for both species. At the plot scale, LUE for stemwood were 2.1 gDM/MJ and 1.75 for Eucalyptus and Acacias, respectively, and 0.85 for the mixed 50/50 plantation. These results suggest that the mixed 50/50 plantation, which absorbed a higher amount of light, produce less

  1. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.

    1995-01-01

    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  2. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model

    Directory of Open Access Journals (Sweden)

    Edwards Scott V

    2010-10-01

    Full Text Available Abstract Background Several phylogenetic approaches have been developed to estimate species trees from collections of gene trees. However, maximum likelihood approaches for estimating species trees under the coalescent model are limited. Although the likelihood of a species tree under the multispecies coalescent model has already been derived by Rannala and Yang, it can be shown that the maximum likelihood estimate (MLE of the species tree (topology, branch lengths, and population sizes from gene trees under this formula does not exist. In this paper, we develop a pseudo-likelihood function of the species tree to obtain maximum pseudo-likelihood estimates (MPE of species trees, with branch lengths of the species tree in coalescent units. Results We show that the MPE of the species tree is statistically consistent as the number M of genes goes to infinity. In addition, the probability that the MPE of the species tree matches the true species tree converges to 1 at rate O(M -1. The simulation results confirm that the maximum pseudo-likelihood approach is statistically consistent even when the species tree is in the anomaly zone. We applied our method, Maximum Pseudo-likelihood for Estimating Species Trees (MP-EST to a mammal dataset. The four major clades found in the MP-EST tree are consistent with those in the Bayesian concatenation tree. The bootstrap supports for the species tree estimated by the MP-EST method are more reasonable than the posterior probability supports given by the Bayesian concatenation method in reflecting the level of uncertainty in gene trees and controversies over the relationship of four major groups of placental mammals. Conclusions MP-EST can consistently estimate the topology and branch lengths (in coalescent units of the species tree. Although the pseudo-likelihood is derived from coalescent theory, and assumes no gene flow or horizontal gene transfer (HGT, the MP-EST method is robust to a small amount of HGT in the

  3. LEAF RESIDUE DECOMPOSITION OF SELECTED ATLANTIC FOREST TREE SPECIES

    Directory of Open Access Journals (Sweden)

    Helga Dias Arato

    2018-02-01

    Full Text Available ABSTRACT Biogeochemical cycling is essential to establish and maintain plant and animal communities. Litter is one of main compartments of this cycle, and the kinetics of leaf decomposition in forest litter depend on the chemical composition and environmental conditions. This study evaluated the effect of leaf composition and environmental conditions on leaf decomposition of native Atlantic Forest trees. The following species were analyzed: Mabea fistulifera Mart., Bauhinia forficata Link., Aegiphila sellowiana Cham., Zeyheria tuberculosa (Vell, Luehea grandiflora Mart. et. Zucc., Croton floribundus Spreng., Trema micrantha (L Blume, Cassia ferruginea (Schrad Schrad ex DC, Senna macranthera (DC ex Collad. H. S. Irwin and Barney and Schinus terebinthifolius Raddi (Anacardiaceae. For each species, litter bags were distributed on and fixed to the soil surface of soil-filled pots (in a greenhouse, or directly to the surface of the same soil type in a natural forest (field. Every 30 days, the dry weight and soil basal respiration in both environments were determined. The cumulative decomposition of leaves varied according to the species, leaf nutrient content and environment. In general, the decomposition rate was lowest for Aegiphila sellowiana and fastest for Bauhinia forficate and Schinus terebinthifolius. This trend was similar under the controlled conditions of a greenhouse and in the field. The selection of species with a differentiated decomposition pattern, suited for different stages of the recovery process, can help improve soil restoration.

  4. Mapping tropical forest trees using high-resolution aerial digital photographs

    NARCIS (Netherlands)

    Garzon-Lopez, C.X.; Bohlman, S.A.; Olff, H.; Jansen, P.A.

    2013-01-01

    The spatial arrangement of tree species is a key aspect of community ecology. Because tree species in tropical forests occur at low densities, it is logistically challenging to measure distributions across large areas. In this study, we evaluated the potential use of canopy tree crown maps, derived

  5. Rapid and accurate species tree estimation for phylogeographic investigations using replicated subsampling.

    Science.gov (United States)

    Hird, Sarah; Kubatko, Laura; Carstens, Bryan

    2010-11-01

    We describe a method for estimating species trees that relies on replicated subsampling of large data matrices. One application of this method is phylogeographic research, which has long depended on large datasets that sample intensively from the geographic range of the focal species; these datasets allow systematicists to identify cryptic diversity and understand how contemporary and historical landscape forces influence genetic diversity. However, analyzing any large dataset can be computationally difficult, particularly when newly developed methods for species tree estimation are used. Here we explore the use of replicated subsampling, a potential solution to the problem posed by large datasets, with both a simulation study and an empirical analysis. In the simulations, we sample different numbers of alleles and loci, estimate species trees using STEM, and compare the estimated to the actual species tree. Our results indicate that subsampling three alleles per species for eight loci nearly always results in an accurate species tree topology, even in cases where the species tree was characterized by extremely rapid divergence. Even more modest subsampling effort, for example one allele per species and two loci, was more likely than not (>50%) to identify the correct species tree topology, indicating that in nearly all cases, computing the majority-rule consensus tree from replicated subsampling provides a good estimate of topology. These results were supported by estimating the correct species tree topology and reasonable branch lengths for an empirical 10-locus great ape dataset. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Fruit and nut weight in pecan trees canopies in relation to the severity of pecan scab at different heights

    Science.gov (United States)

    Fusicladium effusum is the cause of pecan scab, the most destructive disease of pecan in the southeastern US. This study addressed the distribution of scab and measures of yield in relation to sample height in tall trees (14 to 16 m tall) in three experiments in 2010 and 2011 with trees receiving fu...

  7. Climatic, landform, microtopographic, and overstory canopy controls of tree invasion in a subalpine meadow landscape, Oregon Cascades, USA

    Science.gov (United States)

    Harold S.J. Zald; Thomas A. Spies; Manuela Huso; Demetrios. Gatziolis

    2012-01-01

    Tree invasions have been documented throughout Northern Hemisphere high elevation meadows, as well as globally in many grass and forb-dominated ecosystems. Tree invasions are often associated with large-scale changes in climate or disturbance regimes, but are fundamentally driven by regeneration processes influenced by interactions between climatic, topographic, and...

  8. Urban trees and forests of the Chicago region

    Science.gov (United States)

    David J. Nowak; Robert E. III Hoehn; Allison R. Bodine; Daniel E. Crane; John F. Dwyer; Veta Bonnewell; Gary Watson

    2013-01-01

    An analysis of trees in the Chicago region of Illinois reveals that this area has about 157,142,000 trees with tree and shrub canopy that covers 21.0 percent of the region. The most common tree species are European buckthorn, green ash, boxelder, black cherry, and American elm. Trees in the Chicago region currently store about 16.9 million tons of carbon (61.9 million...

  9. Can Community Members Identify Tropical Tree Species for REDD+ Carbon and Biodiversity Measurements?

    Science.gov (United States)

    Zhao, Mingxu; Brofeldt, Søren; Li, Qiaohong; Xu, Jianchu; Danielsen, Finn; Læssøe, Simon Bjarke Lægaard; Poulsen, Michael Køie; Gottlieb, Anna; Maxwell, James Franklin; Theilade, Ida

    2016-01-01

    Biodiversity conservation is a required co-benefit of REDD+. Biodiversity monitoring is therefore needed, yet in most areas it will be constrained by limitations in the available human professional and financial resources. REDD+ programs that use forest plots for biomass monitoring may be able to take advantage of the same data for detecting changes in the tree diversity, using the richness and abundance of canopy trees as a proxy for biodiversity. If local community members are already assessing the above-ground biomass in a representative network of forest vegetation plots, it may require minimal further effort to collect data on the diversity of trees. We compare community members and trained scientists' data on tree diversity in permanent vegetation plots in montane forest in Yunnan, China. We show that local community members here can collect tree diversity data of comparable quality to trained botanists, at one third the cost. Without access to herbaria, identification guides or the Internet, community members could provide the ethno-taxonomical names for 95% of 1071 trees in 60 vegetation plots. Moreover, we show that the community-led survey spent 89% of the expenses at village level as opposed to 23% of funds in the monitoring by botanists. In participatory REDD+ programs in areas where community members demonstrate great knowledge of forest trees, community-based collection of tree diversity data can be a cost-effective approach for obtaining tree diversity information.

  10. Can Community Members Identify Tropical Tree Species for REDD+ Carbon and Biodiversity Measurements?

    Directory of Open Access Journals (Sweden)

    Mingxu Zhao

    Full Text Available Biodiversity conservation is a required co-benefit of REDD+. Biodiversity monitoring is therefore needed, yet in most areas it will be constrained by limitations in the available human professional and financial resources. REDD+ programs that use forest plots for biomass monitoring may be able to take advantage of the same data for detecting changes in the tree diversity, using the richness and abundance of canopy trees as a proxy for biodiversity. If local community members are already assessing the above-ground biomass in a representative network of forest vegetation plots, it may require minimal further effort to collect data on the diversity of trees. We compare community members and trained scientists' data on tree diversity in permanent vegetation plots in montane forest in Yunnan, China. We show that local community members here can collect tree diversity data of comparable quality to trained botanists, at one third the cost. Without access to herbaria, identification guides or the Internet, community members could provide the ethno-taxonomical names for 95% of 1071 trees in 60 vegetation plots. Moreover, we show that the community-led survey spent 89% of the expenses at village level as opposed to 23% of funds in the monitoring by botanists. In participatory REDD+ programs in areas where community members demonstrate great knowledge of forest trees, community-based collection of tree diversity data can be a cost-effective approach for obtaining tree diversity information.

  11. In vitro propagation of tropical hardwood tree species — A review (2001-2011)

    Science.gov (United States)

    Paula M. Pijut; Rochelle R. Beasley; Shaneka S. Lawson; Kaitlin J. Palla; Micah E. Stevens; Ying. Wang

    2012-01-01

    Tropical hardwood tree species are important economically and ecologically, and play a significant role in the biodiversity of plant and animal species within an ecosystem. There are over 600 species of tropical timbers in the world, many of which are commercially valuable in the international trade of plywood, roundwood, sawnwood, and veneer. Many of these tree...

  12. Effects of tree species on soil properties in a forest of the Northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2001-01-01

    Large differences in soil pH and available Ca in the surface soil exist among tree species growing in a mixed hardwood forest in northwestern Connecticut. The observed association between tree species and specific soil chemical properties within mixed-species stands implies that changes in

  13. Effect of liquid nitrogen storage on seed germination of 51 tree species

    Science.gov (United States)

    Jill R. Barbour; Bernard R. Parresol

    2003-01-01

    Two liquid nitrogen storage experiments were performed on 51 tree species. In experiment 1, seeds of 9western tree species were placed in a liquid nitrogen tank for 3 time periods: 24 hours, 4 weeks, and 222 days. A corresponding control sample accompanied each treatment. For three species,Calocedrus decurrens, Pinus jefferyi, and ...

  14. The hydrological vulnerability of western North American boreal tree species based on ground-based observations of tree mortality

    Science.gov (United States)

    Hember, R. A.; Kurz, W. A.; Coops, N. C.

    2017-12-01

    Several studies indicate that climate change has increased rates of tree mortality, adversely affecting timber supply and carbon storage in western North American boreal forests. Statistical models of tree mortality can play a complimentary role in detecting and diagnosing forest change. Yet, such models struggle to address real-world complexity, including expectations that hydrological vulnerability arises from both drought stress and excess-water stress, and that these effects vary by species, tree size, and competitive status. Here, we describe models that predict annual probability of tree mortality (Pm) of common boreal tree species based on tree height (H), biomass of larger trees (BLT), soil water content (W), reference evapotranspiration (E), and two-way interactions. We show that interactions among H and hydrological variables are consistently significant. Vulnerability to extreme droughts consistently increases as H approaches maximum observed values of each species, while some species additionally show increasing vulnerability at low H. Some species additionally show increasing vulnerability to low W under high BLT, or increasing drought vulnerability under low BLT. These results suggest that vulnerability of trees to increasingly severe droughts depends on the hydraulic efficiency, competitive status, and microclimate of individual trees. Static simulations of Pm across a 1-km grid (i.e., with time-independent inputs of H, BLT, and species composition) indicate complex spatial patterns in the time trends during 1965-2014 and a mean change in Pm of 42 %. Lastly, we discuss how the size-dependence of hydrological vulnerability, in concert with increasingly severe drought events, may shape future responses of stand-level biomass production to continued warming and increasing carbon dioxide concentration in the region.

  15. Seed germination responses in a temperate rain forest of Chiloé, Chile: effects of a gap and the tree canopy

    OpenAIRE

    Figueroa, Javier A; Hernández, Juan F

    2001-01-01

    This study determined germination responses of 19 species, including trees, shrubs, vines, and herbs, under natural gap and non-gap conditions, in a secondary forest in Chiloé Island, southern Chile, in order to assess if there is any association between the habitat where the seedlings of these plant species occur and their germination requirements. Statistical differences in percentage seed germination were detected in six species in a gap habitat compared to the understory. Five forest edge...

  16. Section-Based Tree Species Identification Using Airborne LIDAR Point Cloud

    Science.gov (United States)

    Yao, C.; Zhang, X.; Liu, H.

    2017-09-01

    The application of LiDAR data in forestry initially focused on mapping forest community, particularly and primarily intended for largescale forest management and planning. Then with the smaller footprint and higher sampling density LiDAR data available, detecting individual tree overstory, estimating crowns parameters and identifying tree species are demonstrated practicable. This paper proposes a section-based protocol of tree species identification taking palm tree as an example. Section-based method is to detect objects through certain profile among different direction, basically along X-axis or Y-axis. And this method improve the utilization of spatial information to generate accurate results. Firstly, separate the tree points from manmade-object points by decision-tree-based rules, and create Crown Height Mode (CHM) by subtracting the Digital Terrain Model (DTM) from the digital surface model (DSM). Then calculate and extract key points to locate individual trees, thus estimate specific tree parameters related to species information, such as crown height, crown radius, and cross point etc. Finally, with parameters we are able to identify certain tree species. Comparing to species information measured on ground, the portion correctly identified trees on all plots could reach up to 90.65 %. The identification result in this research demonstrate the ability to distinguish palm tree using LiDAR point cloud. Furthermore, with more prior knowledge, section-based method enable the process to classify trees into different classes.

  17. Iodine uptake and distribution in horticultural and fruit tree species

    Directory of Open Access Journals (Sweden)

    Alessandra Caffagni

    2012-07-01

    Full Text Available Iodine is an essential microelement for humans and iodine deficiency disorder (IDD is one of the most widespread nutrient-deficiency diseases in the world. Iodine biofortification of plants provides an attractive opportunity to increase iodine intake in humans and to prevent and control IDD. This study was conducted to investigate the iodine uptake and accumulation in edible portion of two fruit trees: plum and nectarine, and two horticultural crops: tomato and potato. Two type of iodine treatments (soil and foliar spray application, and, for fresh market tomato, two production systems (open field and greenhouse hydroponic culture were tested. The distribution of iodine in potato stem and leaves, and in plum tree fruits, leaves, and branches was investigated. Iodine content of potato tubers after postharvest storage and processing (cooking, and iodine content of nectarine fruits after postharvest storage and processing (peeling were also determined. Differences in iodine accumulation were observed among the four crops, between applications, and between production systems. In open field, the maximum iodine content ranged from 9.5 and 14.3 μg 100 g−1 for plum and nectarine fruit, to 89.4 and 144.0 μg 100 g−1 for potato tuber and tomato fruit, respectively. These results showed that nectarine and plum tree accumulated significantly lower amounts of iodine in their edible tissues, in comparison with potato and tomato. The experiments also indicated hydroponic culture as the most efficient system for iodine uptake in tomato, since its fresh fruits accumulated up to 2423 μg 100 g−1 of iodine. Iodine was stored mainly in the leaves, in all species investigated. Only a small portion of iodine was moved to plum tree branches and fruits, and to potato stems and tubers. No differences in iodine content after fruit peeling was observed. A significant increase in iodine content of potato was observed after baking, whereas a significant decrease was

  18. Landscape variation in tree species richness in northern Iran forests.

    Science.gov (United States)

    Bourque, Charles P-A; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be

  19. The relationship between canopy cover and colony size of the wood ant Formica lugubris--implications for the thermal effects on a keystone ant species.

    Directory of Open Access Journals (Sweden)

    Yi-Huei Chen

    Full Text Available Climate change may affect ecosystems and biodiversity through the impacts of rising temperature on species' body size. In terms of physiology and genetics, the colony is the unit of selection for ants so colony size can be considered the body size of a colony. For polydomous ant species, a colony is spread across several nests. This study aims to clarify how climate change may influence an ecologically significant ant species group by investigating thermal effects on wood ant colony size. The strong link between canopy cover and the local temperatures of wood ant's nesting location provides a feasible approach for our study. Our results showed that nests were larger in shadier areas where the thermal environment was colder and more stable compared to open areas. Colonies (sum of nests in a polydomous colony also tended to be larger in shadier areas than in open areas. In addition to temperature, our results supported that food resource availability may be an additional factor mediating the relationship between canopy cover and nest size. The effects of canopy cover on total colony size may act at the nest level because of the positive relationship between total colony size and mean nest size, rather than at the colony level due to lack of link between canopy cover and number of nests per colony. Causal relationships between the environment and the life-history characteristics may suggest possible future impacts of climate change on these species.

  20. Response of leaf and whole-tree canopy conductance to wet conditions within a mature premontane tropical forest in Costa Rica

    Science.gov (United States)

    Aparecido, L. M. T.; Miller, G. R.; Cahill, A. T.; Andrews, R.; Moore, G. W.

    2017-12-01

    Tropical water recycling and carbon storage are dependent on canopy-atmosphere dynamics, which are substantially altered when rainfall occurs. However, models only indirectly consider leaf wetness as a driving factor for carbon and water fluxes. To better understand how leaf wetness condition affects stomatal and canopy conductance to water vapor, we tested a set of widely used models for a mature tropical forest of Costa Rica with prolonged periods of wet leaves. We relied on a year of sap flux measurements from 26 trees to estimate transpiration (Ec) and multiple micrometeorological profile measurements from a 40-m tower to be used in the models. Stomatal conductance (gs) models included those proposed by Jones (1992) (gs-J), using shaded and sunlit leaf temperatures, and Monteith and Unsworth (1990) (gs-MU), using air temperature. Canopy conductance (gc) models included those proposed by McNaughton and Jarvis (1983) (gc-MJ) and Penman-Monteith (gc-PM). Between gs and gc, gc had the largest differences within models during dry periods; while estimates were most similar during wet periods. Yet, all gc and gs estimates on wet days were at least as high as on dry days, indicative of their insensitivity to leaf wetness. Shaded leaf gs averaged 26% higher than in sunlit leaves. Additionally, the highly decoupled interface (Ω>0.90) reflected multiple environmental drivers that may influence conductance (e.g. vapor pressure deficit and leaf temperature). This was also seen through large shifts of diurnal peaks of gs and gc (up to 2 hours earlier than Ec) associated with the daily variation of air temperature and net radiation. Overall, this study led to three major insights: 1) gc and gs cannot accurately be predicted under wet conditions without accounting for leaf wetness, 2) even during dry days, low vapor pressure deficits interfere with model accuracy, and 3) intermittent rain during semi-dry and wet days cause large fluctuations in gc and gs estimates. Thus, it

  1. Effects of tree species, water and nitrogen on mycorrhizal C flux

    Science.gov (United States)

    Menyailo, O.; Matvienko, A.

    2012-12-01

    Mycorrhiza plays an important role in global carbon cycle, especially, in forest soils, yet the effect of tree species on the amount and timing of C transfer through roots to myccorhiza is largely unknown. We studied the C transport to mycorrhiza under 6 most commonly dominant in boreal forests tree species using the mesh collars installed at the Siberian afforestation experiment. The CO2 flux from mycorrhizal and non-mycorrhizal mesh collars indicated the mycorrhizal C flux. Tree species strongly differed in C flux to mycorrhiza: more C was transferred by deciduous species than by conifers. The mycorrhizal CO2 flux was not linked to soil temperature but rather to trees phenology and to photosynthetic activity. All tree species transfered more carbon to mycorrhiza during the second half of summer and in September, this is because all the carbon photosynthesized earlier is used for building the tree biomass. Seasonal variation in C transfer to mycorrhiza was much larger than hourly variation (within a day). Nitrogen application (50 kg/ha) increased mycorrhizal C flux only under Scots pine, but not under larch, thus the effect of N application is tree species dependent. We found under most tree species that more C was transferred by trees to mycorrhiza in root-free collars, where the soil moisture was higher than in collars with roots. This suggests that trees preferentially support those parts of mycorrhiza, which can gain extra-resources.

  2. Prospect of Milicia excelsa (Welw. C. Berg for Multi-Tree Species Agroforestry

    Directory of Open Access Journals (Sweden)

    Alfred Ossai Onefeli

    2015-11-01

    Full Text Available Background and Purpose: The population of most of our economically indigenous tree species in Nigeria is declining. Human activities and agricultural practices have been the ultimate contributors to this decrease. In order to ameliorate the conflict between agriculture and forestry, agroforestry was introduced. However, most of the practiced agroforestry is based on single tree species. Agroforestry practiced using single tree species have been reported to be ecologically staggered and therefore it is pertinent that phytosociology of trees with agroforestry potential is studied in order to improve the sustainability of human livelihood. Materials and Methods: This study was carried out in the University of Ibadan’s campus forest. The data were collected on Milicia excelsa (Welw. C. Berg by enumerating the tree species and also by identifying and enumerating the tree species associated with the subject tree (Milicia excelsa. Statistical analysis was done using percentages, Chi-square and charts. Results: A total of 49 individual Milicia excelsa were encountered in the study area. The results show 31 woody tree species associated with Milicia excelsa. Of all the associates Azadirachta indica A.Juss. happened to be the best one, having an average distance of 5.4 m to the subject tree. The sex ratio of Milicia excelsa was discovered to be approximately 1:1. Conclusions: Based on the obtained results of this research it may be concluded that Milicia excelsa has the prospect of being used in agroforestry in multi-tree species systems.

  3. Upscaling from leaf to canopy chlorophyll/carotenoid pigment based vegetation indices reveal phenology of photosynthesis in temperate evergreen and deciduous trees

    Science.gov (United States)

    Wong, C. Y.; Bhathena, Y.; Arain, M. A.; Ensminger, I.

    2017-12-01

    Optically derived vegetation indices have been developed to provide information about plant status including photosynthetic activity. They reflect changes in leaf pigments, which vary seasonally in pigment composition, enabling them to be used as a proxy of photosynthetic phenology. Important pigments in photosynthetic activity are carotenoids and chlorophylls, which are associated with light harvesting and energy dissipation. In temperate forests, which consist of deciduous and evergreen trees, there are difficulties resolving evergreen phenology using the most widely used index, the normalized difference vegetation index (NDVI). NDVI works well in deciduous trees, which exhibit a "visible" phenological process of leaf growth in the spring, and leaf senescence and abscission in the autumn. Evergreen conifers stay green year-round and utilize "invisible" changes of overwintering pigment composition that NDVI cannot resolve, so carotenoid pigment sensitive vegetation indices have been suggested for evergreens. The aim of this study was to evaluate carotenoid based vegetation indices over the chlorophyll sensitive NDVI. For this purpose, we evaluated the greenness index, NDVI, and carotenoid pigment sensitive indices: photochemical reflectance index (PRI) and chlorophyll/carotenoid index (CCI) in red maple, white oak and eastern white pine for two years. We also measured leaf gas exchange and pigment concentrations. We observed that NDVI correlated with photosynthetic activity in deciduous trees, whereas PRI and CCI correlated with photosynthesis across both evergreen and deciduous trees. This pattern was consistent, upscaling from leaf- to canopy-scales indicating that the mechanisms involved in winter acclimation can be resolved at larger spatial scales. PRI and CCI detected seasonal changes in carotenoids and chlorophylls linked to photoprotection and are suitable as a proxy of photosynthetic activity. These findings have implications to improve our use and

  4. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants?

    Science.gov (United States)

    Takahashi, Kazuaki; Takahashi, Kaori; Washitani, Izumi

    2015-01-01

    Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula). We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study) to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study).

  5. Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy-Fruited Plants?

    Directory of Open Access Journals (Sweden)

    Kazuaki Takahashi

    Full Text Available Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created canopy gaps has not been evaluated in the context of multiple forest dynamics. Our hypothesis was that small canopy gaps created by black bears improve light conditions, which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also that this chain interaction depends on interactions among the size of gaps, improved light conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created canopy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak (Quercus crispula. We found that light conditions improved beneath black bear-disturbed trees with canopy gaps of large size, and the effect of improvement of light conditions was reduced with descending forest layers. Fruiting of fleshy-fruited plants, especially woody lianas and trees, was facilitated by the improvement of light conditions accompanied by an increase in the size of black-bear-created gaps. Data from this study revealed that canopy disturbance by black bears was key for improving light conditions and accelerating fruiting of fleshy-fruited trees and woody lianas in the canopy layers in particular. Therefore, our hypothesis was mostly supported. Our results provide evidence that Japanese black bears have high potential as ecosystem engineers that increase the availability of resources (light and fruit in this study to other species by causing physical state changes in biotic materials (branches of Q. crispula in this study.

  6. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m 2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  7. Species tree estimation for the late blight pathogen, Phytophthora infestans, and close relatives.

    Directory of Open Access Journals (Sweden)

    Jaime E Blair

    Full Text Available To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based "supergene" approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred.

  8. Species tree estimation for the late blight pathogen, Phytophthora infestans, and close relatives.

    Science.gov (United States)

    Blair, Jaime E; Coffey, Michael D; Martin, Frank N

    2012-01-01

    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based "supergene" approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred.

  9. Indicator species of essential forest tree species in the Burdur district.

    Science.gov (United States)

    Negiz, Mehmet Güvenç; Eser, Yunus; Kuzugüdenll, Emre; Izkan, Kürşad

    2015-01-01

    The forests of Burdur district for long have been subjected to over grazing and individual selection. As a result of this, majority of the forest areas in the district were degraded. In the district, afforestation efforts included majority of forestry implementations. It is well known that selecting suitable species plays an important role for achieving afforestation efforts. In this context, knowing the indicator species among the target species would be used in afforestation efforts, studies on the interrelationships between environmental factors and target species distribution is vital for selecting suitable species for a given area. In this study, Anatolian Black pine (Pinus nigra), Red pine (Pinus brutia), Crimean juniper (Juniperus excelsa) and Taurus cedar (Cedrus libani), essential tree species, were considered as target species. The data taken from 100 sample plots in Burdur district was used. Interspecific correlation analysis was performed to determine the positive and negative indicator species among each of the target species. As a result of ICA, 2 positive (Berberis crataegina, Juniperus oxycedrus), 2 negative (Phillyrea latifolia, Quercus coccifera) for Crimean Juniper, I positive (Juniperus oxycedrus), 3 negative (Onopordium acanthium, Fraxinus ornus, Phillyrea latifolia) for Anatolian black pine, 3 positive (Paliurus spina-christi, Quercus coccifer, Crataegus orientalis), 2 negative (Berberis crataegina, Astragalus nanus) for Red pine and 3 positive (Berberis crataegina, Rhamnus oleoides, Astragalus prusianus) 2 negative (Paliurus spina-christi, Quercus cerris) for Taurus cedarwere defined as indicator plant species. In this way, practical information was obtained for selecting the most suitable species, among the target species, for afforestation efforts in Burdur district.

  10. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Domec, J.C.; North Carolina State Univ., Raleigh, NC; Schafer, K.; Oren, R.; Kim, H.S.; McCarthy, H.R.

    2010-01-01

    Tree growth and wood quality are being affected by changes in atmospheric carbon dioxide (CO 2 ) concentrations and precipitation regimes. Plant photosynthesis is likely to be higher under elevated atmospheric CO 2 concentrations, thereby increasing the availability of carbohydrates for growth. This study quantified the effect of elevated CO 2 concentration on anatomical and functional traits related to water transport, gas exchange, water economy and drought tolerance. The conditions under which embolism in the xylem of roots and branches are most likely to occur were investigated on 4 tree species at the Duke Forest free-air CO 2 enrichment (FACE) facility. The trees occupied different canopy strata and represented different xylem types. The study determined whether different xylem anatomies result in a wide range of hydraulic conductance and difference in resistance to cavitation. The link between liquid and gas-phase transport and how it is affected by elevated CO 2 was then quantified. Physiological changes observed under elevated CO 2 were not clearly related to structural change in the xylem of any of the species. The study showed that in some species, elevated CO 2 changed the hydraulic pathways, most likely structurally, thereby affecting the liquid phase transport and reducing stomatal conductance. The results provided a better understanding of the physiological and anatomical mechanisms that determine the responses of tree species to drought, and more generally to global change. 96 refs., 3 tabs., 8 figs.

  11. Allometric relationships predicting foliar biomass and leaf area:sapwood area ratio from tree height in five Costa Rican rain forest species.

    Science.gov (United States)

    Calvo-Alvarado, J C; McDowell, N G; Waring, R H

    2008-11-01

    We developed allometric equations to predict whole-tree leaf area (A(l)), leaf biomass (M(l)) and leaf area to sapwood area ratio (A(l):A(s)) in five rain forest tree species of Costa Rica: Pentaclethra macroloba (Willd.) Kuntze (Fabaceae/Mim), Carapa guianensis Aubl. (Meliaceae), Vochysia ferru-gi-nea Mart. (Vochysiaceae), Virola koshnii Warb. (Myristicaceae) and Tetragastris panamensis (Engl.) Kuntze (Burseraceae). By destructive analyses (n = 11-14 trees per species), we observed strong nonlinear allometric relationships (r(2) > or = 0.9) for predicting A(l) or M(l) from stem diameters or A(s) measured at breast height. Linear relationships were less accurate. In general, A(l):A(s) at breast height increased linearly with tree height except for Penta-clethra, which showed a negative trend. All species, however, showed increased total A(l) with height. The observation that four of the five species increased in A(l):A(s) with height is consistent with hypotheses about trade--offs between morphological and anatomical adaptations that favor efficient water flow through variation in the amount of leaf area supported by sapwood and those imposed by the need to respond quickly to light gaps in the canopy.

  12. A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction

    Science.gov (United States)

    De Oliveira Martins, Leonardo; Mallo, Diego; Posada, David

    2016-01-01

    Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus, genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML) supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast to more sophisticated models. PMID:25281847

  13. Remnant trees affect species composition but not structure of tropical second-growth forest.

    Science.gov (United States)

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  14. A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction.

    Science.gov (United States)

    De Oliveira Martins, Leonardo; Mallo, Diego; Posada, David

    2016-05-01

    Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus, genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML) supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast to more sophisticated models. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  15. Changes in olive oil volatile organic compounds induced by water status and light environment in canopies of Olea europaea L. trees.

    Science.gov (United States)

    Benelli, Giovanni; Caruso, Giovanni; Giunti, Giulia; Cuzzola, Angela; Saba, Alessandro; Raffaelli, Andrea; Gucci, Riccardo

    2015-09-01

    Light and water are major factors in fruit development and quality. In this study, the effect of water and light in Olea europaea trees on volatile organic compounds (VOCs) in olive oil was studied over 2 years. Mature fruits were harvested from three zones of the canopy with different light exposure (64%, 42% and 30% of incident light) of trees subjected to full, deficit or complementary irrigation. VOCs were determined by SPME GC-MS and analysed by principal component analysis followed by discriminant analysis to partition treatment effects. Fruit fresh weight and mesocarp oil content decreased in zones where intercepted light was less. Low light levels significantly slowed down fruit maturation, whereas conditions of water deficit accelerated the maturation process. The presence of cyclosativene and α-muurulene was associated with water deficit, nonanal, valencene with full irrigation; α-muurulene, (E)-2-hexanal were related to low light conditions, while trans-β-ocimene, α-copaene, (Z)-2-penten-1-ol, hexanal and nonanal to well exposed zones. The year strongly affected the VOC profile of olive oil. This is the first report on qualitative changes in VOCs induced by light environment and/or water status. This information is valuable to better understand the role of environmental factors on the sensory quality of virgin olive oil. © 2014 Society of Chemical Industry.

  16. Episodic Canopy Structural Transformations and Biological Invasion in a Hawaiian Forest

    Directory of Open Access Journals (Sweden)

    Christopher S. Balzotti

    2017-07-01

    Full Text Available The remaining native forests on the Hawaiian Islands have been recognized as threatened by changing climate, increasing insect outbreak, new deadly pathogens, and growing populations of canopy structure-altering invasive species. The objective of this study was to assess long-term, net changes to upper canopy structure in sub-montane forests on the eastern slope of Mauna Kea volcano, Hawai‘i, in the context of continuing climate events, insect outbreaks, and biological invasion. We used high-resolution multi-temporal Light Detection and Ranging (LiDAR data to quantify near-decadal net changes in forest canopy height and gap distributions at a critical transition between alien invaded lowland and native sub-montane forest at the end of a recent drought and host-specific insect (Scotorythra paludicola outbreak. We found that sub-montane forests have experienced a net loss in average canopy height, and therefore structure and aboveground carbon stock. Additionally, where invasive alien tree species co-dominate with native trees, the upper canopy structure became more homogeneous. Tracking the loss of forest canopy height and spatial variation with airborne LiDAR is a cost-effective way to monitor forest canopy health, and to track and quantify ecological impacts of invasive species through space and time.

  17. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.

    Science.gov (United States)

    Friedli, Michael; Kirchgessner, Norbert; Grieder, Christoph; Liebisch, Frank; Mannale, Michael; Walter, Achim

    2016-01-01

    Plant growth is a good indicator of crop performance and can be measured by different methods and on different spatial and temporal scales. In this study, we measured the canopy height growth of maize (Zea mays), soybean (Glycine max) and wheat (Triticum aestivum) under field conditions by terrestrial laser scanning (TLS). We tested the hypotheses whether such measurements are capable to elucidate (1) differences in architecture that exist between genotypes; (2) genotypic differences between canopy height growth during the season and (3) short-term growth fluctuations (within 24 h), which could e.g. indicate responses to rapidly fluctuating environmental conditions. The canopies were scanned with a commercially available 3D laser scanner and canopy height growth over time was analyzed with a novel and simple approach using spherical targets with fixed positions during the whole season. This way, a high precision of the measurement was obtained allowing for comparison of canopy parameters (e.g. canopy height growth) at subsequent time points. Three filtering approaches for canopy height calculation from TLS were evaluated and the most suitable approach was used for the subsequent analyses. For wheat, high coefficients of determination (R(2)) of the linear regression between manually measured and TLS-derived canopy height were achieved. The temporal resolution that can be achieved with our approach depends on the scanned crop. For maize, a temporal resolution of several hours can be achieved, whereas soybean is ideally scanned only once per day, after leaves have reached their most horizontal orientation. Additionally, we could show for maize that plant architectural traits are potentially detectable with our method. The TLS approach presented here allows for measuring canopy height growth of different crops under field conditions with a high temporal resolution, depending on crop species. This method will enable advances in automated phenotyping for breeding and

  18. Landscape variation in tree species richness in northern Iran forests.

    Directory of Open Access Journals (Sweden)

    Charles P-A Bourque

    Full Text Available Mapping landscape variation in tree species richness (SR is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i three topographic variables generated directly from the area's digital terrain model; (ii four ecophysiologically-relevant variables derived from process models or from first principles; and (iii seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content, yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot, than by Fagus orientalis (median difference of one species. This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently

  19. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    Science.gov (United States)

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between

  20. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  1. Silviculture and the assessment of climate change genetic risk for southern Appalachian forest tree species

    Science.gov (United States)

    Kevin M. Potter; Barbara S. Crane

    2012-01-01

    Changing climate conditions and increasing insect and pathogen infestations will increase the likelihood that forest trees could experience population-level extirpation or species-level extinction during the next century. Gene conservation and silvicultural efforts to preserve forest tree genetic diversity present a particular challenge in species-rich regions such as...

  2. Calcium weathering in forested soils and the effedt of different tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Breemen, van N.; Jongmans, A.G.; Davies, G.R.; Likens, G.E.

    2003-01-01

    Soil weathering can be an important mechanism to neutralize acidity in forest soils. Tree species may differ in their effect on or response to soil weathering. We used soil mineral data and the natural strontium isotope ratio Sr-87/Sr-86 as a tracer to identify the effect of tree species on the Ca

  3. Water and nitrogen dynamics in rotational woodlots of five tree species in western Tanzania

    NARCIS (Netherlands)

    Nyadzi, G.I.; Janssen, B.H.; Otsyina, R.M.; Booltink, H.W.G.; Ong, C.K.; Oenema, O.

    2003-01-01

    The objective of this study was to compare the effects of woodlots of five tree species, continuous maize (Zea mays L.) and natural fallow on soil water and nitrogen dynamics in western Tanzania. The tree species evaluated were Acacia crassicarpa (A. Cunn. ex Benth.), Acacia julifera ( Berth.),

  4. Tree species diversity and distribution patterns in tropical forests of Garo Hills.

    Science.gov (United States)

    A. Kumar; B.G. Marcot; A. Saxena

    2006-01-01

    We analyzed phytosociological characteristics and diversity patterns of tree species of tropical forests of Garo Hills, western Meghalaya, northeast India. The main vegetation of the region included primary forests, secondary forests, and sal (Shorea robusta) plantations, with 162, 132, and 87 tree species, respectively. The Shannon-Wiener...

  5. Ecological and economic determinants of invasive tree species on Alabama forestland

    Science.gov (United States)

    Anwar Hussain; Changyou Sun; Xiaoping Zhou; Ian A. Munn

    2008-01-01

    The spread of invasive tree species has caused increasing harm to the environment. This study was motivated by the considerations that earlier studies generally ignored the role of economic factors related to the occurrence and abundance of invasive species, and empirical analyses of invasive trees on forestland have been inadequate. We assessed the impact of...

  6. Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species

    Science.gov (United States)

    Benedicte Bachelot; María Uriarte; Krista L. McGuire; Jill Thompson; Jess Zimmerman

    2017-01-01

    Negative population feedbacks mediated by natural enemies can promote species coexistence at the community scale through disproportionate mortality of numerically dominant (common) tree species. Simultaneously, associations with arbuscular mycorrhizal fungi (AMF) can result in positive effects on tree populations. Coupling data on seedling foliar damage from herbivores...

  7. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    Science.gov (United States)

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Canopy and litter ant assemblages share similar climate-species density relationships

    Czech Academy of Sciences Publication Activity Database

    Weiser, M. D.; Sanders, N. J.; Agosti, D.; Andersen, A. N.; Ellison, A. M.; Fisher, B. L.; Gibb, H.; Gotelli, N. J.; Gove, A. D.; Gross, K.; Guénard, B.; Janda, Milan; Kaspari, M.; Lessard, J.-P.; Longino, J. T.; Majer, J. D.; Menke, S. B.; McGlynn, T. P.; Parr, C. L.; Philpott, S. M.; Retana, J.; Suarez, A. V.; Vasconcelos, H.L.; Yanoviak, P.; Dunn, R. R.

    2010-01-01

    Roč. 6, č. 6 (2010), s. 769-772 ISSN 1744-9561 Grant - others: NASA Biodiversity Grant(US) ROSES-NNX09AK22G; National Science Foundation(US) NSF-OISE-0749047; National Science Foundation(US) NSF-DEB-0640015; National Science Foundation(US) NSF-0716966; National Science Foundation(US) NSF-DEB0842395 Institutional research plan: CEZ:AV0Z50070508 Keywords : Formicidae * species richness * global diversity gradients Subject RIV: EH - Ecology, Behaviour Impact factor: 3.651, year: 2010

  9. Uranium mobility across annual growth rings in three deciduous tree species.

    Science.gov (United States)

    McHugh, Kelly C; Widom, Elisabeth; Spitz, Henry B; Wiles, Gregory C; Glover, Sam E

    2018-02-01

    Black walnut (Juglans nigra), slippery elm (Ulmus rubra), and white ash (Fraxinus americana) trees were evaluated as potential archives of past uranium (U) contamination. Like other metals, U mobility in annual growth rings of trees is dependent on the tree species. Uranium concentrations and isotopic compositions (masses 234, 235, 236, and 238) were analyzed by thermal ionization mass spectrometry to test the efficacy of using tree rings to retroactively monitor U pollution from the FFMPC, a U purification facility operating from 1951 to 1989. This study found non-natural U (depleted U and detectable 236 U) in growth rings of all three tree species that pre-dated the start of operations at FFMPC and compositional trends that did not correspond with known contamination events. Therefore, the annual growth rings of these tree species cannot be used to reliably monitor the chronology of U contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Weed community and growth under the canopy of trees adapted to the brazilian semi-arid region Comunidade e crescimento de plantas daninhas sob a copa de árvores adaptadas ao semi-árido brasileiro

    Directory of Open Access Journals (Sweden)

    P.S.L. Silva

    2010-01-01

    Full Text Available The objectives of this work were to evaluate the floristic composition and dry biomass of weeds under the canopy of seven perennial species adapted to the Semi-Arid region of Brazil, and correlate these characteristics with growth traits of the perennial species. The following perennial species were evaluated in two experiments (E1 and E2: mesquite (Prosopis juliflora, jucá (Caesalpinia ferrea, white popinac (Leucaena leucocephala, mofumbo (Combretum leprosum, neem (Azadirachata indica, sabiá (Mimosa caesalpiniaefolia and tamarind (Tamarindus indica. In E1, the seven species were evaluated in a random block design with four replicates and nine plants per plot. In E2, evaluation comprised four species (mesquite, jucá, white popinac, and tamarind in a random block design with eight replicates and nine plants per plot. A circle with an area of 1.77 m² was established around the trunk of each plant, two years after they were transplanted to the permanent location. The weeds collected within this circle were cut even with the ground, classified and weighed. At this time, plant height, and crown and stem diameters were evaluated in all trees of each plot. In E1 there were no differences between tree species as to weed frequency under their canopies; however, weed growth was smaller under the canopy of sabiá trees. Mesquite and sabiá had the greatest plant height and crown diameter means, but only sabiá had the greatest stem diameter. In E2, the perennial species were not different with regard to weed frequency and growth under their canopies, but mesquite had the greatest growth, as measured by plant height (with significant results for jucá as well and crown and stem diameter.Os objetivos deste trabalho foram avaliar a composição florística e a biomassa de plantas daninhas sob a copa de sete espécies perenes adaptadas à região semi-árida do Brasil, e correlacionar essas características com características do crescimento das esp

  11. Tree species distribution in temperate forests is more influenced by soil than by climate.

    Science.gov (United States)

    Walthert, Lorenz; Meier, Eliane Seraina

    2017-11-01

    Knowledge of the ecological requirements determining tree species distributions is a precondition for sustainable forest management. At present, the abiotic requirements and the relative importance of the different abiotic factors are still unclear for many temperate tree species. We therefore investigated the relative importance of climatic and edaphic factors for the abundance of 12 temperate tree species along environmental gradients. Our investigations are based on data from 1,075 forest stands across Switzerland including the cold-induced tree line of all studied species and the drought-induced range boundaries of several species. Four climatic and four edaphic predictors represented the important growth factors temperature, water supply, nutrient availability, and soil aeration. The climatic predictors were derived from the meteorological network of MeteoSwiss, and the edaphic predictors were available from soil profiles. Species cover abundances were recorded in field surveys. The explanatory power of the predictors was assessed by variation partitioning analyses with generalized linear models. For six of the 12 species, edaphic predictors were more important than climatic predictors in shaping species distribution. Over all species, abundances depended mainly on nutrient availability, followed by temperature, water supply, and soil aeration. The often co-occurring species responded similar to these growth factors. Drought turned out to be a determinant of the lower range boundary for some species. We conclude that over all 12 studied tree species, soil properties were more important than climate variables in shaping tree species distribution. The inclusion of appropriate soil variables in species distribution models allowed to better explain species' ecological niches. Moreover, our study revealed that the ecological requirements of tree species assessed in local field studies and in experiments are valid at larger scales across Switzerland.

  12. The natural abundance of 15N in litter and soil profiles under six temperate tree species: N cycling depends on tree species traits and site fertility

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Nilsson, Lars Ola; Schmidt, Inger Kappel

    2013-01-01

    We investigated the influence of tree species on the natural 15N abundance in forest stands under elevated ambient N deposition.We analysed δ15N in litter, the forest floor and three mineral soil horizons along with ecosystem N status variables at six sites planted three decades ago with five Eur...... to nitrate leaching or other N transformation processes....... species leached more nitrate.The δ15N pattern reflected tree species related traits affecting the N cycling as well as site fertility and former land use, and possibly differences in N leaching. The tree species δ15N patterns reflected fractionation caused by uptake of N through mycorrhiza rather than due...

  13. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  14. Variation in leaf litter production and resorption of nutrients in abundant tree species in Nyungwe tropical montane rainforest in Rwanda

    Science.gov (United States)

    Nyirambangutse, Brigitte; Mirindi Dusenge, Eric; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2014-05-01

    African tropical rainforests play many roles from local to global scale as providers of resources and ecosystem services. Although covering 30% of the global rainforest, only few studies aiming to better understand the storage and fluxes of carbon and nutrients in these forests have been conducted. To answer questions related to these issues, we have established 15 permanent 0.5 ha plots where we compare carbon and nutrient fluxes of primary and secondary forest tree communities in a tropical montane forest in central Africa. The studies are conducted in Nyungwe montane tropical rain forest gazetted as a National Park to protect its extensive floral and faunal diversity covering an area of 970 km2. Nyungwe is located in Southwest Rwanda (2o17'-2o50'S, 29o07'-29o26A'E). The forest is ranging between 1600-2950 m.a.s.l. and is one of the most biologically important rainforest in Albertine Rift region in terms of Biodiversity. Nyungwe consists of a mixture of primary and secondary forest communities supporting a richness of plant and animal life. More than 260 species of trees and shrubs have been found in Nyungwe, including species endemic to the Albertine Rift. The forest has a climate with a mean annual temperature of 15.5oC and annual rainfall of ca 1850 mm yr-1, with July and August being the only months when rainfall drops. A part of this study is focusing on the dynamics of nutrients through leaf turnover. This turnover of leaves is regulated to maximize the carbon gain through canopy photosynthesis and resource-use efficiency of the plant. It is known that about half of leaf nitrogen is invested in photosynthetic apparatus and that there normally is a strong correlation between the photosynthetic capacity and leaf nitrogen per unit area. Hence leaf nitrogen is an important factor for canopy photosynthesis. However, leaves are produced, senesce and fall. Some nitrogen in the leaf is lost when leaves senesce but other is resorbed. The resorption of nitrogen

  15. Complementarity of native and introduced tree species: Exploring ...

    African Journals Online (AJOL)

    Given that access to timber from native trees within the protected area is restricted, management of tree resources outside of the protected area represents a critical nexus between biodiversity conservation and human benefits linked to ecosystem services. We investigated and characterized the local farmer's use of ...

  16. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    Science.gov (United States)

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic

  17. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    Science.gov (United States)

    Jens-Christian Svenning; Matthew C. Fitzpatrick; Signe Normand; Catherine H. Graham; Peter B. Pearman; Louis R. Iverson; Flemming. Skov

    2010-01-01

    Environmental conditions and biotic interactions are generally thought to influence local species richness. However, immigration and the evolutionary and historical factors that shape regional species pools should also contribute to determining local species richness because local communities arise by assembly from regional species pools. Using the European tree flora...

  18. Ecology and Conservation of the Critically Endangered Tree Species Gymnocladus assamicus in Arunachal Pradesh, India

    International Nuclear Information System (INIS)

    Choudhury, B.I.; Khan, M.L.; Arunachalam, A.; Das, A.K.

    2007-01-01

    Gymnocladus assamicus is a critically endangered leguminous tree species endemic to Northeast India. Mature pods of the trees yield soap material and are collected by local people for domestic purposes and religious activities. G. assamicus grows on hill slopes and along banks of streams. Male and hermaphrodite flowers are borne by separate individual trees. Altogether 28 mature trees were documented from nine populations. Of these, very few regenerating trees were found. This species regenerates only through seeds. The major constraints to natural regeneration are over harvesting of mature fruits, habitat destruction, grazing, predation of seeds by scatter-hoarding animals, poor percentage of seed germination due to their hard-waxy seed coats, and the lack of seed dispersal. Effective conservation initiatives should emphasize sustainable harvesting of mature pods, awareness among local people, and preservation of surviving individuals of the species. Nonetheless, reintroduction of the species to suitable ecological habitats is also recommended.

  19. 50 CFR 15.32 - Criteria for including species in the approved list for non-captive-bred species.

    Science.gov (United States)

    2010-10-01

    ... Management and Scientific Authorities transmitting the management plan of this species; (iii) A summary of... where the species forages (aerial feeder, tree canopy, tree trunk, midstory, understory, open water or..., disease carrier; a description of the damage the pest species causes to its ecosystem; and a description...

  20. Effects of nurse trees, spacing, and tree species on biomass production in mixed forest plantations

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Meilby, Henrik

    2016-01-01

    Growing concern about increasing concentrations of greenhouse gases in the atmosphere, and resulting global climate change, has spurred a growing demand for renewable energy. In this study, we hypothesized that a nurse tree crop may provide additional early yields of biomass for fuel, while...... was in most cases reduced due to competition. However, provided timely thinning of nurse trees, the qualitative development of the trees will allow for long-term timber production....

  1. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    Science.gov (United States)

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  2. CpDNA-based species identification and phylogeography: application to African tropical tree species.

    Science.gov (United States)

    Duminil, J; Heuertz, M; Doucet, J-L; Bourland, N; Cruaud, C; Gavory, F; Doumenge, C; Navascués, M; Hardy, O J

    2010-12-01

    Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their history and the processes that have structured their biodiversity are understood poorly. With respect to past demographic processes, new insights can be gained through characterizing the distribution of genetic diversity. However, few studies of this type have been conducted in Central Africa, where the identification of species in the field can be difficult. We examine here the distribution of chloroplast DNA (cpDNA) diversity in Lower Guinea in two tree species that are difficult to distinguish, Erythrophleum ivorense and Erythrophleum suaveolens (Fabaceae). By using a blind-sampling approach and comparing molecular and morphological markers, we first identified retrospectively all sampled individuals and determined the limits of the distribution of each species. We then performed a phylogeographic study using the same genetic data set. The two species displayed essentially parapatric distributions that were correlated well with the rainfall gradient, which indicated different ecological requirements. In addition, a phylogeographic structure was found for E. suaveolens and, for both species, substantially higher levels of diversity and allelic endemism were observed in the south (Gabon) than in the north (Cameroon) of the Lower Guinea region. This finding indicated different histories of population demographics for the two species, which might reflect different responses to Quaternary climate changes. We suggest that a recent period of forest perturbation, which might have been caused by humans, favoured the spread of these two species and that their poor recruitment at present results from natural succession in their forest formations. © 2010 Blackwell Publishing Ltd.

  3. Estimating tree species richness from forest inventory plot data

    Science.gov (United States)

    Ronald E. McRoberts; Dacia M. Meneguzzo

    2007-01-01

    Montreal Process Criterion 1, Conservation of Biological Diversity, expresses species diversity in terms of number of forest dependent species. Species richness, defined as the total number of species present, is a common metric for analyzing species diversity. A crucial difficulty in estimating species richness from sample data obtained from sources such as inventory...

  4. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China.

    Science.gov (United States)

    He, Huaijiang; Zhang, Chunyu; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang

    2018-01-01

    Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China.

  5. Using a stand-level model to predict light absorption in stands with vertically and horizontally heterogeneous canopies

    Directory of Open Access Journals (Sweden)

    David I Forrester

    2014-09-01

    Full Text Available Background Forest ecosystem functioning is strongly influenced by the absorption of photosynthetically active radiation (APAR, and therefore, accurate predictions of APAR are critical for many process-based forest growth models. The Lambert-Beer law can be applied to estimate APAR for simple homogeneous canopies composed of one layer, one species, and no canopy gaps. However, the vertical and horizontal structure of forest canopies is rarely homogeneous. Detailed tree-level models can account for this heterogeneity but these often have high input and computational demands and work on finer temporal and spatial resolutions than required by stand-level growth models. The aim of this study was to test a stand-level light absorption model that can estimate APAR by individual species in mixed-species and multi-layered stands with any degree of canopy openness including open-grown trees to closed canopies. Methods The stand-level model was compared with a detailed tree-level model that has already been tested in mixed-species stands using empirical data. Both models were parameterised for five different forests, including a wide range of species compositions, species proportions, stand densities, crown architectures and canopy structures. Results The stand-level model performed well in all stands except in the stand where extinction coefficients were unusually variable and it appears unlikely that APAR could be predicted in such stands using (tree- or stand-level models that do not allow individuals of a given species to have different extinction coefficients, leaf-area density or analogous parameters. Conclusion This model is parameterised with species-specific information about extinction coefficients and mean crown length, diameter, height and leaf area. It could be used to examine light dynamics in complex canopies and in stand-level growth models.

  6. Important LiDAR metrics for discriminating forest tree species in Central Europe

    Science.gov (United States)

    Shi, Yifang; Wang, Tiejun; Skidmore, Andrew K.; Heurich, Marco

    2018-03-01

    Numerous airborne LiDAR-derived metrics have been proposed for classifying tree species. Yet an in-depth ecological and biological understanding of the significance of these metrics for tree species mapping remains largely unexplored. In this paper, we evaluated the performance of 37 frequently used LiDAR metrics derived under leaf-on and leaf-off conditions, respectively, for discriminating six different tree species in a natural forest in Germany. We firstly assessed the correlation between these metrics. Then we applied a Random Forest algorithm to classify the tree species and evaluated the importance of the LiDAR metrics. Finally, we identified the most important LiDAR metrics and tested their robustness and transferability. Our results indicated that about 60% of LiDAR metrics were highly correlated to each other (|r| > 0.7). There was no statistically significant difference in tree species mapping accuracy between the use of leaf-on and leaf-off LiDAR metrics. However, combining leaf-on and leaf-off LiDAR metrics significantly increased the overall accuracy from 58.2% (leaf-on) and 62.0% (leaf-off) to 66.5% as well as the kappa coefficient from 0.47 (leaf-on) and 0.51 (leaf-off) to 0.58. Radiometric features, especially intensity related metrics, provided more consistent and significant contributions than geometric features for tree species discrimination. Specifically, the mean intensity of first-or-single returns as well as the mean value of echo width were identified as the most robust LiDAR metrics for tree species discrimination. These results indicate that metrics derived from airborne LiDAR data, especially radiometric metrics, can aid in discriminating tree species in a mixed temperate forest, and represent candidate metrics for tree species classification and monitoring in Central Europe.

  7. Anchoring quartet-based phylogenetic distances and applications to species tree reconstruction.

    Science.gov (United States)

    Sayyari, Erfan; Mirarab, Siavash

    2016-11-11

    Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed. We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves. We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.

  8. Use of tree species by White-throated treerunner (Pygarrhichas albogularis King) in a secondary native forest of southern Chile

    OpenAIRE

    Gantz, Alberto; Yañez, Miguel; Orellana, José I.; Sade, Soraya; Valdivia, Carlos E.

    2015-01-01

    ABSTRACT In forest ecosystems, numerous species of insectivorous birds use certain tree species as feeding and nesting substrates. Between 2009 and 2010, the use of different floristic components as feeding substrate by the Pygarrhichas albogularis King, 1831 was evaluated in a southern Chilean secondary native forest. From a total of 13 trees and bush species, six tree species were used by P. albogularis as a feeding substrate. Tree use was limited to intermediate heights (11-20 m) and, main...

  9. Nutritional composition of five food trees species products used in ...

    African Journals Online (AJOL)

    SAM

    2014-04-23

    Apr 23, 2014 ... Industrielle et Bioinformatique, UFR Sciences de la Vie et de la Terre, ... Consumption of these tree products can help to overcome nutrients deficiency that is ..... ket place Innovation and the National Institute for Agricul-.

  10. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... on forest floor C and N content was primarily attributed to large differences in turnover rates as indicated by fractional annual loss of forest floor C and N. The C/N ratio of foliar litterfall was a good indicator of forest floor C and N contents, fractional annual loss of forest floor C and N...

  11. The influence of tree species composition on the storage and mobility of semivolatile organic compounds in forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Komprdová, Klára, E-mail: komprdova@recetox.muni.cz [RECETOX (Research Centre for Toxic Compounds in the Environment), Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Komprda, Jiří [RECETOX (Research Centre for Toxic Compounds in the Environment), Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Menšík, Ladislav [Mendel University in Brno, Faculty of Forestry and Wood Technology, Zemědělská 3, Brno 613 00 (Czech Republic); Vaňková, Lenka [RECETOX (Research Centre for Toxic Compounds in the Environment), Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Kulhavý, Jiří [Mendel University in Brno, Faculty of Forestry and Wood Technology, Zemědělská 3, Brno 613 00 (Czech Republic); Nizzetto, Luca [RECETOX (Research Centre for Toxic Compounds in the Environment), Kamenice 753/5, CZ-625 00 Brno (Czech Republic); Norwegian Institute for Water Research, Gaustadalleen 21, NO-0349 Oslo (Norway)

    2016-05-15

    Soil contamination with PCBs and PAHs in adjacent forest plots, characterized by a distinct composition in tree species (spruce only, mixed and beech only), was analyzed to investigate the influence of ecosystem type on contaminant mobility in soil under very similar climate and exposure conditions. Physical-chemical properties and contaminant concentrations in litter (L), organic (F, H) and mineral (A, B) soil horizons were analyzed. Contaminant distribution in the soil core varied both in relation to forest type and contaminant group/properties. Contaminant mobility in soil was assessed by examining the ratios of total organic carbon (TOC)-standardized concentrations across soil horizons (Enrichment factors, EF{sub TOC}) and the relationship between EF{sub TOC} and the octanol-water equilibrium partitioning coefficient (K{sub OW}). Contaminant distribution appeared to be highly unsteady, with pedogenic/biogeochemical drivers controlling contaminant mobility in organic layers and leaching controlling accumulation in mineral layers. Lighter PCBs displayed higher mobility in all forest types primarily controlled by leaching and, to a minor extent, diffusion. Pedogenic processes controlling the formation of soil horizons were found to be crucial drivers of PAHs and heavier PCBs distribution. All contaminants appeared to be more mobile in the soil of the broadleaved plot, followed by mixed canopy and spruce forest. Increasing proportion of deciduous broadleaf species in the forest can thus lead to faster degradation or the faster leaching of PAHs and PCBs. The composition of humic substances was found to be a better descriptor of contaminant concentration than TOC. - Highlights: • Tree species composition influences vertical distribution of PCBs and PAHs in soils. • PCBs and PAHs were more mobile in the soil of the broadleaved plot. • Low molecular weight PCBs displayed higher mobility in all forest types. • Humic substances were important descriptors of

  12. The influence of tree species composition on the storage and mobility of semivolatile organic compounds in forest soils

    International Nuclear Information System (INIS)

    Komprdová, Klára; Komprda, Jiří; Menšík, Ladislav; Vaňková, Lenka; Kulhavý, Jiří; Nizzetto, Luca

    2016-01-01

    Soil contamination with PCBs and PAHs in adjacent forest plots, characterized by a distinct composition in tree species (spruce only, mixed and beech only), was analyzed to investigate the influence of ecosystem type on contaminant mobility in soil under very similar climate and exposure conditions. Physical-chemical properties and contaminant concentrations in litter (L), organic (F, H) and mineral (A, B) soil horizons were analyzed. Contaminant distribution in the soil core varied both in relation to forest type and contaminant group/properties. Contaminant mobility in soil was assessed by examining the ratios of total organic carbon (TOC)-standardized concentrations across soil horizons (Enrichment factors, EF_T_O_C) and the relationship between EF_T_O_C and the octanol-water equilibrium partitioning coefficient (K_O_W). Contaminant distribution appeared to be highly unsteady, with pedogenic/biogeochemical drivers controlling contaminant mobility in organic layers and leaching controlling accumulation in mineral layers. Lighter PCBs displayed higher mobility in all forest types primarily controlled by leaching and, to a minor extent, diffusion. Pedogenic processes controlling the formation of soil horizons were found to be crucial drivers of PAHs and heavier PCBs distribution. All contaminants appeared to be more mobile in the soil of the broadleaved plot, followed by mixed canopy and spruce forest. Increasing proportion of deciduous broadleaf species in the forest can thus lead to faster degradation or the faster leaching of PAHs and PCBs. The composition of humic substances was found to be a better descriptor of contaminant concentration than TOC. - Highlights: • Tree species composition influences vertical distribution of PCBs and PAHs in soils. • PCBs and PAHs were more mobile in the soil of the broadleaved plot. • Low molecular weight PCBs displayed higher mobility in all forest types. • Humic substances were important descriptors of contaminant

  13. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent.

    Science.gov (United States)

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-02-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.

  14. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    Science.gov (United States)

    Wang, Le

    2003-10-01

    Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted

  15. Earthworm abundance and species composition in abandoned tropical croplands: comparisons of tree plantations and secondary forests.

    Science.gov (United States)

    G. Gonzalez; X. Zou; S. Borges

    1996-01-01

    We compared patterns of earthworms abundance and species composition in tree plantation and secondary forest of Puerto Rico. Tree plantations included pine (Pinus caribea Morelet) and mahogany (Swietenia macrophylla King) established in the 1930's; 1960's; and 1970's; secondary forests were naturally regenerated in areas adjacent to these plantations. We...

  16. Growth of 11 introduced tree species on selected forest sites in Hawaii

    Science.gov (United States)

    Michael G Buck; Roger H. Imoto

    1982-01-01

    Growth and volume data for trees on 25 plots reprsenting 11 introduced species in Hawaii were recorded during a 21-year period. Tree were measured at about 5-year intervals to determine overall growth and stand development. The sites selected were considered better-than-average in terms of elevation, amount of precipitation, and soil quality. Except for redwood, stands...

  17. tree and shrub species integration in the crop-livestock farming ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    cash for investment in the required activities, easy land certification and market opportunity for tree and shrub products. The tree and shrub .... for its consistency, logical flow, coding and length were amended. .... TABLE 2. List of shrub species identified in the watershed of highlands of central Ethiopia. Scientific name.

  18. Comprehensive database of diameter-based biomass regressions for North American tree species

    Science.gov (United States)

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2004-01-01

    A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America. Bibliographic information, geographic locations, diameter limits, diameter and biomass units, equation forms, statistical errors, and coefficients are provided for each equation,...

  19. Summer droughts limit tree growth across 10 temperate species on a productive forest site

    NARCIS (Netherlands)

    Weemstra, M.; Eilmann, B.; Sass-Klaassen, U.; Sterck, F.J.

    2013-01-01

    Studies on climate impacts on tree annual growth are mainly restricted to marginal sites. To date, the climate effects on annual growth of trees in favorable environments remain therefore unclear despite the importance of these sites in terms of forest productivity. Because species respond

  20. Degree of susceptibility of industrial gases of tree and shrub species

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovoljskii, I A

    1952-01-01

    The trees and shrubs of the iron smelting region of Krivoi Rog, in the Ukraine, were surveyed to determine susceptibility to air pollution damage. Most of the observations were made in parks and green belts in industrial areas. A classification of tree and shrub species is presented; they are separated into three classes according to their susceptibility to air pollutant injury.

  1. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Science.gov (United States)

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne. Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  2. Species divergence and phylogenetic variation of ecophysiological traits in lianas and trees.

    Science.gov (United States)

    Rios, Rodrigo S; Salgado-Luarte, Cristian; Gianoli, Ernesto

    2014-01-01

    The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees. Estimates of evolutionary rates showed that R(d) evolved faster in lianas, while SLA evolved faster in trees. The mean phylogenetic distance was 1.2 times greater among liana species than among tree species. Likewise, estimates of phylogenetic distance indicated that lianas were less related than by chance alone (phylogenetic evenness across 63 species), and trees were more related than expected by chance (phylogenetic clustering across 71 species). Lianas showed evenness for R(d), while trees showed phylogenetic clustering for this trait. In contrast, for SLA, lianas exhibited phylogenetic clustering and trees showed phylogenetic evenness. Lianas and trees showed patterns of ecophysiological trait variation among species that were independent of phylogenetic relatedness. We found support for the expected pattern of greater species divergence in lianas, but did not find consistent patterns regarding ecophysiological trait evolution and divergence. R(d) followed the species-level pattern, i.e., greater divergence/evolution in lianas compared to trees, while the opposite occurred for SLA and no pattern was detected for A(max). R(d) may have driven lianas' divergence across forest environments, and might contribute to diversification in climber clades.

  3. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  4. Shifts in relative stocking of common tree species in Kentucky from 1975 to 2004

    Science.gov (United States)

    Christopher M. Oswalt; Jeffrey A. Stringer; Jeffery A. Turner

    2008-01-01

    Changes in species-specific relative stocking indicate the extent to which a species is either increasing or decreasing in a particular system. Changes in relative stocking values of common tree species in Kentucky from 1988 to 2004 were compared to values calculated for 1975 to 1988. Mean annual increase in relative stocking between 1988 and 2004 was greatest for...

  5. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  6. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser

    2018-01-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...

  7. Spatial distribution of seeds and seedlings of two tropical tree species: Is there correspondence between patterns?

    International Nuclear Information System (INIS)

    Parrado Rosselli, Angela

    2007-01-01

    The spatial patterns of seed and seedling distribution relative to parent trees (seed and seedling shadow, respectively) were studied for Dacryodes chimantensis (Burseraceae) and Brosimum utile (Moraceae), two common tree species of terra firme forests of Colombian Amazonia. The general objective was to assess whether the patterns imposed by seed dispersal change or persist in subsequent life stages occurring during the transition from seeds/saplings to adult stages. Seed and seedling shadows on the ground were characterized for each tree species along four 50-m radial transects from the base of the parent tree. Causes of seed and seedling predation as a function of distance to the parent tree were determined, as well as the spatial consistency between life stages. Results showed that seed density of both Dacryodes and Brosimum declined leptokurtically with distance, and it was skewed towards the parent tree. However, seed density was more skewed and leptokurtic in Dacryodes than in Brosimum. The overall trend was maintained in the seedling stage of both species and was positively correlated with the distribution patterns of seeds. Seed and seedling predation were positively correlated with density and negatively correlated with the distance from the parent tree. Factors that could be generating the high consistency between the spatial patterns of seed and seedling distribution are discussed, as well as its implications in the population structure of both species and the debate on the factors that influence the spatial distribution of plant species in tropical rain forests.

  8. New flux based dose–response relationships for ozone for European forest tree species

    International Nuclear Information System (INIS)

    Büker, P.; Feng, Z.; Uddling, J.; Briolat, A.; Alonso, R.; Braun, S.; Elvira, S.; Gerosa, G.; Karlsson, P.E.; Le Thiec, D.

    2015-01-01

    To derive O 3 dose–response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O 3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O 3 flux concept and represents a step forward in predicting O 3 damage to forests in a spatially and temporally varying climate. - Highlights: • We present new ozone flux based dose–response relationships for European trees. • The model-based study accounted for the soil water effect on stomatal flux. • Different statistically derived ozone flux thresholds were applied. • Climate region specific parameterisation often outperformed simplified parameterisation. • Findings could help redefining critical levels for ozone effects on trees. - New stomatal flux based ozone dose–response relationships for tree species are derived for the regional risk assessment of ozone effects on European forest ecosystems.

  9. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species

    CSIR Research Space (South Africa)

    Madonsela, Sabelo

    2017-06-01

    Full Text Available and a spectral configuration encompassing important spectral regions not previously available for vegetation mapping. This study investigated i) the benefits of the eight-band WorldView-2 (WV-2) spectral configuration for discriminating tree species...

  10. Species-level para- and polyphyly in DNA barcode gene trees

    DEFF Research Database (Denmark)

    Mutanen, Marko; Kivelä, Sami M.; Vos, Rutger A.

    2016-01-01

    was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than...... between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer......" to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention...

  11. Guild of Frugivores on three fruit-producing tree species Polyscias ...

    African Journals Online (AJOL)

    Guild of Frugivores on three fruit-producing tree species Polyscias fulva, Syzyguim Guineensis SUBSP. Bamensdae and Pouteria Altissima ) in Ngel Nyaki Forest Reserve, a Montane Forest Ecosystem in Nigeria.

  12. Promotion of adventitious root formation of difficult-to-root hardwood tree species

    Science.gov (United States)

    Paula M. Pijut; Keith E. Woeste; Charles H. Michler

    2011-01-01

    North American hardwood tree species, such as alder (Alnus spp.), ash (Fraxinus spp.), basswood (Tilia spp.), beech (Fagus spp.), birch (Betula spp.), black cherry (Prunus seratina), black walnut (Juglans nigra), black willow (...

  13. composition and size class structure of tree species in ihang'ana

    African Journals Online (AJOL)

    nb

    Previous plant biodiversity studies in this ecosystem concentrated on large-sized Forest ... assess tree species composition, structure and diversity in Ihang'ana FR (2982 ha), one of the ..... Dombeya rotundifolia. (Hochst) ... Ficus lutea. Vahl.

  14. Leaf development and photosynthetic properties of three tropical tree species with delayed greening

    NARCIS (Netherlands)

    Cai, Z.Q.; Slot, M.; Fan, Z.X.

    2005-01-01

    Leaf developmental patterns were characterized for three tropical tree species with delayed greening. Changes in the pigment contents, photosynthetic capacity, stomata development, photosystem 2 efficiency, rate of energy dissipation, and the activity of partial protective enzymes were followed in

  15. Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier

    Directory of Open Access Journals (Sweden)

    Dar A. Roberts

    2012-06-01

    Full Text Available This study explores a method to classify seven tropical rainforest tree species from full-range (400–2,500 nm hyperspectral data acquired at tissue (leaf and bark, pixel and crown scales using laboratory and airborne sensors. Metrics that respond to vegetation chemistry and structure were derived using narrowband indices, derivative- and absorption-based techniques, and spectral mixture analysis. We then used the Random Forests tree-based classifier to discriminate species with minimally-correlated, importance-ranked metrics. At all scales, best overall accuracies were achieved with metrics derived from all four techniques and that targeted chemical and structural properties across the visible to shortwave infrared spectrum (400–2500 nm. For tissue spectra, overall accuracies were 86.8% for leaves, 74.2% for bark, and 84.9% for leaves plus bark. Variation in tissue metrics was best explained by an axis of red absorption related to photosynthetic leaves and an axis distinguishing bark water and other chemical absorption features. Overall accuracies for individual tree crowns were 71.5% for pixel spectra, 70.6% crown-mean spectra, and 87.4% for a pixel-majority technique. At pixel and crown scales, tree structure and phenology at the time of image acquisition were important factors that determined species spectral separability.

  16. Tree species diversity in the Eastern Ghats of northern Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    M. Tarakeswara Naidu

    2015-06-01

    Full Text Available The present study was conducted to analyze tree species diversity in the tropical forests of the Eastern Ghats of northern Andhra Pradesh, India.  A total of 270 species of trees (≥15cm girth at breast height pertaining to 177 genera belonging to 55 families were recorded.  Among the 270 species, 141 species were observed to be common, 78 were occasional and 51 species were rare in the study area.  Fabaceae was the dominant family with 33 species followed by Rubiaceae with 15 species and Malvaceae, Moraceae and Phyllanthaceae with 13 species each.  The genera with the highest number of species include Ficus (12 species, Diospyros (8 species, Albizia and Grewia (6 species each, Acacia and Bauhinia (5 species each.  Forty-five percent of the species were indigenous. This illustrates the diversity of the tree species in the studied area of the Eastern Ghats and also emphasizes the need for their conservation. 

  17. Climate Responses in Growth and Wood Anatomy of Imoprtant Forest Tree Species in Denmark

    DEFF Research Database (Denmark)

    Huang, Weiwei

    and high temperatures on the development of Danish tree species are scarcely investigated. Through a dendroecological approach this dissertation assessed the growth responses related to increment, xylem anatomy and wood property of eight different important tree species, namely Picea abies (L.) Karst......., Picea sitchensis (Bong.) Carr., Abies alba Mill., Abies grandis (Dougl.) Lindl., Pseudotsuga mensiesii (Mirb.) Franco, Larix kaempferi (Lamb.) Carr., Quercus robur L. and Fagus sylvatica L., to long-term drought and high temperatures, aiming at identifying a species portfolio matching future climate...... intolerant species, mainly due to their low drought tolerance (both species) and susceptibility to high autumn temperature (only P. abies). Overall, this dissertation improves the understanding of how drought and high temperatures have impacted and will influence the growth of tree species in Danish forest...

  18. Predicting climate change extirpation risk for central and southern Appalachian forest tree species

    Science.gov (United States)

    Kevin M. Potter; William W. Hargrove; Frank H. Koch

    2010-01-01

    Climate change will likely pose a severe threat to the viability of certain forest tree species, which will be forced either to adapt to new conditions or to shift to more favorable environments if they are to survive. Several forest tree species of the central and southern Appalachians may be at particular risk, since they occur in limited high-elevation ranges and/or...

  19. Mapping forest tree species over large areas with partially cloudy Landsat imagery

    Science.gov (United States)

    Turlej, K.; Radeloff, V.

    2017-12-01

    Forests provide numerous services to natural systems and humankind, but which services forest provide depends greatly on their tree species composition. That makes it important to track not only changes in forest extent, something that remote sensing excels in, but also to map tree species. The main goal of our work was to map tree species with Landsat imagery, and to identify how to maximize mapping accuracy by including partially cloudy imagery. Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with temperate and boreal forests. We selected this area because it contains numerous tree species and variable forest composition providing an ideal study area to test the limits of Landsat data. We quantified how species-level classification accuracy was affected by a) the number of acquisitions, b) the seasonal distribution of observations, and c) the amount of cloud contamination. We classified a single year stack of Landsat-7, and -8 images data with a decision tree algorithm to generate a map of dominant tree species at the pixel- and stand-level. We obtained three important results. First, we achieved producer's accuracies in the range 70-80% and user's accuracies in range 80-90% for the most abundant tree species in our study area. Second, classification accuracy improved with more acquisitions, when observations were available from all seasons, and is the best when images with up to 40% cloud cover are included. Finally, classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. We conclude that including partially cloudy Landsat imagery allows to map forest tree species with accuracies that were previously only possible for rare years with many cloud-free observations. Our approach thus provides important information for both forest management and science.

  20. Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2016-08-01

    The elevations at which tropical treelines occur are believed to represent the point where low mean temperatures limit the growth of upright woody trees. Consequently, tropical treelines are predicted to shift to higher elevations with global warming. However, treelines throughout the tropics have remained stationary despite increasing global mean temperatures. The goal of the study reported here was to build a more comprehensive understanding of the effects of mean temperature, low-temperature extremes, shading, and their interactions on seedling survival at tropical treelines. We conducted a seedling transplant study using three dominant canopy-forming treeline species in the southern tropical Andes. We found species-specific differences and contrasting responses in seedling survival to changes in mean temperature. The most abundant naturally occurring species at the seedling stage outside the treeline, Weinmannia fagaroides, showed a negative relationship between the survival of transplanted seedlings and mean temperature, the opposite of a priori expectations. Conversely, Clethra cuneata showed increased survival at higher mean temperatures, but survival also increased with higher absolute low temperatures and the presence of shade. Finally, the survival of Gynoxys nitida seedlings was insensitive to temperature but increased under shade. These findings show that multiple factors can determine the upper distributional limit of species forming the current tropical treeline. As such, predictions of future local and regional tropical treeline shifts may need to consider several factors beyond changes in mean temperature. If the treeline remains stationary and cloud forests are unable to expand into higher elevations, there may be severe species loss in this biodiversity hotspot.

  1. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    OpenAIRE

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal dif...

  2. Tree cover and species composition effects on academic performance of primary school students.

    Science.gov (United States)

    Sivarajah, Sivajanani; Smith, Sandy M; Thomas, Sean C

    2018-01-01

    Human exposure to green space and vegetation is widely recognized to result in physical and mental health benefits; however, to date, the specific effects of tree cover, diversity, and species composition on student academic performance have not been investigated. We compiled standardized performance scores in Grades 3 and 6 for the collective student body in 387 schools across the Toronto District School Board (TDSB), and examined variation in relation to tree cover, tree diversity, and tree species composition based on comprehensive inventories of trees on school properties combined with aerial-photo-based assessments of tree cover. Analyses accounted for variation due to socioeconomic factors using the learning opportunity index (LOI), a regional composite index of external challenges to learning that incorporates income and other factors, such as students with English as a second language. As expected, LOI had the greatest influence on student academic performance; however, the proportion of tree cover, as distinct from other types of "green space" such as grass, was found to be a significant positive predictor of student performance, accounting for 13% of the variance explained in a statistical model predicting mean student performance assessments. The effects of tree cover and species composition were most pronounced in schools that showed the highest level of external challenges, suggesting the importance of urban forestry investments in these schools.

  3. Spatial distribution and size of small canopy gaps created by Japanese black bears: estimating gap size using dropped branch measurements.

    Science.gov (United States)

    Takahashi, Kazuaki; Takahashi, Kaori

    2013-06-10

    Japanese black bears, a large-bodied omnivore, frequently create small gaps in the tree crown during fruit foraging. However, there are no previous reports of black bear-created canopy gaps. To characterize physical canopy disturbance by black bears, we examined a number of parameters, including the species of trees in which canopy gaps were created, gap size, the horizontal and vertical distribution of gaps, and the size of branches broken to create gaps. The size of black bear-created canopy gaps was estimated using data from branches that had been broken and dropped on the ground. The disturbance regime was characterized by a highly biased distribution of small canopy gaps on ridges, a large total overall gap area, a wide range in gap height relative to canopy height, and diversity in gap size. Surprisingly, the annual rate of bear-created canopy gap formation reached 141.3 m2 ha-1 yr-1 on ridges, which were hot spots in terms of black bear activity. This rate was approximately 6.6 times that of tree-fall gap formation on ridges at this study site. Furthermore, this rate was approximately two to three times that of common tree-fall gap formation in Japanese forests, as reported in other studies. Our findings suggest that the ecological interaction between black bears and fruit-bearing trees may create a unique light regime, distinct from that created by tree falls, which increases the availability of light resources to plants below the canopy.

  4. Evaluation of seven drought tolerant tree species for central California

    Science.gov (United States)

    E.G. McPherson; S. Albers

    2014-01-01

    Climate change poses challenges for the Southwest, where an already parched region is expected to get hotter and, in its southern half, significantly drier (Garfin et al. 2013). Increased heat and sustained drought will stress water sources and redefine urban landscapes. As landscapes gradually evolve from lush to xeric, tolerance of trees to water-related stress...

  5. Demography of exploited tree species in the Bolivian Amazon

    NARCIS (Netherlands)

    Zuidema, P.A.

    2000-01-01

    Tropical forests are threatened world-wide. Therefore, there is a search for ways to use the forests in a sustainable way, as this could assist in the conservation of these special ecosystems. Non-timber products collected from trees in tropical forests are often mentioned as examples of

  6. Stem biomass and volume models of selected tropical tree species ...

    African Journals Online (AJOL)

    Stem biomass and stem volume were modelled as a function of diameter (at breast height; Dbh) and stem height (height to the crown base). Logarithmic models are presented that utilise Dbh and height data to predict tree component biomass and stem volumes. Alternative models are given that afford prediction based on ...

  7. Modelling dimensional growth of three street tree species in the ...

    African Journals Online (AJOL)

    The results could also be used in the process of modelling energy use reduction, air pollution uptake, rainfall interception, carbon sequestration and microclimate modification of urban forests such as those found in the City of Tshwane. Keywords: allometry; regression; size relationships; tree growth; urban forests. Southern ...

  8. Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species

    Science.gov (United States)

    Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon

    2017-10-01

    Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.

  9. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  10. Comparative measurements of transpiration an canopy conductance in two mixed deciduous woodlands differing in structure and species composition

    DEFF Research Database (Denmark)

    Herbst, Mathias; Rosier, Paul T.W.; Morecroft, Michael D.

    2008-01-01

    a continuous hazel (Corylus avellana L.) understory. Wytham Woods, which had an LAI of 3.6, was dominated by ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) and had only a sparse understory. Annual canopy transpiration was 367 mm for Grimsbury Wood and 397 mm for Wytham Woods. These values...

  11. Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern Appalachians

    Science.gov (United States)

    Chelcy R. Ford; Robert M. Hubbard; James M. Vose

    2010-01-01

    Recent studies have shown that planted pine stands exhibit higher evapotranspiration (ET) and are more sensitive to climatic conditions compared with hardwood stands. Whether this is due to management and stand effects, biological effects or their interaction is poorly understood. We estimated growing season canopy- and sap flux-scaled leaf-level transpiration (Ec and...

  12. The role of exotic tree species in Nordic forestry

    DEFF Research Database (Denmark)

    Kjær, Erik Dahl; Lobo, Albin; Myking, Tor

    2014-01-01

    the vegetation and forest history and its implications for the interest in using exotic species. We review to what extent exotic species can contribute to increased economic returns from forest plantings and the potential negative ecological effects associated with introduction of new species. Considering...... the expected climate changes, we discuss whether and how the increased use of exotic species can contribute to sustained and increased health and productivity of Nordic forests without jeopardising ecological and social values....

  13. Frost hardiness of tree species is independent of phenology and ...

    Indian Academy of Sciences (India)

    The differences in timing in bud burst between species have been interpreted as an adaptation to late frost events in spring. Thus, it has been suggested that the degree of frost susceptibility of leaves is species-specific and depends on the species' phenology and geographic distribution range. To test for relationships ...

  14. [Effects of sampling plot number on tree species distribution prediction under climate change].

    Science.gov (United States)

    Liang, Yu; He, Hong-Shi; Wu, Zhi-Wei; Li, Xiao-Na; Luo, Xu

    2013-05-01

    Based on the neutral landscapes under different degrees of landscape fragmentation, this paper studied the effects of sampling plot number on the prediction of tree species distribution at landscape scale under climate change. The tree species distribution was predicted by the coupled modeling approach which linked an ecosystem process model with a forest landscape model, and three contingent scenarios and one reference scenario of sampling plot numbers were assumed. The differences between the three scenarios and the reference scenario under different degrees of landscape fragmentation were tested. The results indicated that the effects of sampling plot number on the prediction of tree species distribution depended on the tree species life history attributes. For the generalist species, the prediction of their distribution at landscape scale needed more plots. Except for the extreme specialist, landscape fragmentation degree also affected the effects of sampling plot number on the prediction. With the increase of simulation period, the effects of sampling plot number on the prediction of tree species distribution at landscape scale could be changed. For generalist species, more plots are needed for the long-term simulation.

  15. Carbon and Nitrogen dynamics in forest soils depending on light conditions and tree species

    Science.gov (United States)

    Veselinovic, Bojana; Hager, Herbert

    2013-04-01

    Climate change mitigation actions under the Kyoto Protocol apply among other decreases of CO2-emissions and/or increases of carbon (C) stocks. As soils represent the second biggest C-reservoir on Earth, an exact estimation of the stocks and reliable knowledge on C-dynamics in forest soils is of high importance. Anyhow, here, the accurate GHG-accounting, emission reductions and increase in C stocks is hampered due to lack of reliable data and solid statistical methods for the factors which influence C-sequestration in and its release from these systems. In spite of good progress in the scientific research, these factors are numerous and diverse in their interactions. This work focuses on influence of the economically relevant tree species - Picea abies, Fagus sylvatica and Quercus spp. - and light conditions on forest floor and mineral soil C and N dynamics in forest soils. Spruce monocultures have been widely used management practices in central European forests during the past century. Such stands are in lower altitudes and on heavy and water logged soils unstable and prone to disturbances, especially to windthrows. We hypothesize that windthrow areas loose C & N and that the establishment of the previous nutrient stocks is, if at all, only possible to be reached over the longer periods of time. We research also how the increased OM depletion affects the change of C & N stocks in forest floor vs. mineral soil. Conversion of such secondary spruce monocultures to site adequate beech and oak forests may enable higher stocks allocated predominantly as stable organic carbon and as plant available nitrogen. For this purpose sites at 300-700 m altitude with planosols were chosen in the region of the Northern Alpine Foothills. A false chronosequence approach was used in order to evaluate the impacts of the tree species and change in light conditions on dynamic of C & N in the forest floor and mineral soil, over the period 0-100 (for oak 120 y.) years. The C- and N

  16. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    Science.gov (United States)

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  17. Remote sensing of canopy nitrogen at regional scale in Mediterranean forests using the spaceborne MERIS Terrestrial Chlorophyll Index

    Science.gov (United States)

    Loozen, Yasmina; Rebel, Karin T.; Karssenberg, Derek; Wassen, Martin J.; Sardans, Jordi; Peñuelas, Josep; De Jong, Steven M.

    2018-05-01

    Canopy nitrogen (N) concentration and content are linked to several vegetation processes. Therefore, canopy N concentration is a state variable in global vegetation models with coupled carbon (C) and N cycles. While there are ample C data available to constrain the models, widespread N data are lacking. Remotely sensed vegetation indices have been used to detect canopy N concentration and canopy N content at the local scale in grasslands and forests. Vegetation indices could be a valuable tool to detect canopy N concentration and canopy N content at larger scale. In this paper, we conducted a regional case-study analysis to investigate the relationship between the Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) time series from European Space Agency (ESA) Envisat satellite at 1 km spatial resolution and both canopy N concentration (%N) and canopy N content (N g m-2, of ground area) from a Mediterranean forest inventory in the region of Catalonia, in the northeast of Spain. The relationships between the datasets were studied after resampling both datasets to lower spatial resolutions (20, 15, 10 and 5 km) and at the original spatial resolution of 1 km. The results at higher spatial resolution (1 km) yielded significant log-linear relationships between MTCI and both canopy N concentration and content: r2 = 0.32 and r2 = 0.17, respectively. We also investigated these relationships per plant functional type. While the relationship between MTCI and canopy N concentration was strongest for deciduous broadleaf and mixed plots (r2 = 0.24 and r2 = 0.44, respectively), the relationship between MTCI and canopy N content was strongest for evergreen needleleaf trees (r2 = 0.19). At the species level, canopy N concentration was strongly related to MTCI for European beech plots (r2 = 0.69). These results present a new perspective on the application of MTCI time series for canopy N detection.

  18. Canopy and leaf composition drive patterns of nutrient release from pruning residues in a coffee agroforest.

    Science.gov (United States)

    Tully, Katherine L; Lawrence, Deborah

    2012-06-01

    In a coffee agroforest, the crop is cultivated under the shade of fruit-bearing and nitrogen (N)-fixing trees. These trees are periodically pruned to promote flowering and fruiting as well as to make nutrients stored in tree biomass available to plants. We investigated the effect of canopy composition and substrate quality on decomposition rates and patterns of nutrient release from pruning residues in a coffee agroforest located in Costa Rica's Central Valley. Initial phosphorus (P) release was enhanced under a canopy composed solely of N-fixing, Erythrina poeppigiana compared to a mixed canopy of Erythrina and Musa acuminata (banana). Both initial and final N release were similar under the two canopy types. However, after five months of decomposition, a higher proportion of initial N had been released under the single canopy. Although patterns of decomposition and nutrient release were not predicted by initial substrate quality, mass loss in leaf mixtures rates were well predicted by mean mass loss of their component species. This study identifies specific pruning regimes that may regulate N and P release during crucial growth periods, and it suggests that strategic pruning can enhance nutrient availability. For example, during the onset of rapid fruit growth, a two-species mixture may release more P than a three-species mixture. However, by the time of the harvest, the two- and three-species mixtures have released roughly the same amount of N and P. These nutrients do not always follow the same pattern, as N release can be maximized in single-species substrates, while P release is often facilitated in species mixtures. Our study indicates the importance of management practices in mediating patterns of nutrient release. Future research should investigate how canopy composition and farm management can also mediate on-farm nutrient losses.

  19. Predicting Potential Changes in Suitable Habitat and Distribution by 2100 for Tree Species of the Eastern United States

    Science.gov (United States)

    Louis R Iverson; Anantha M. Prasad; Mark W. Schwartz; Mark W. Schwartz

    2005-01-01

    We predict current distribution and abundance for tree species present in eastern North America, and subsequently estimate potential suitable habitat for those species under a changed climate with 2 x CO2. We used a series of statistical models (i.e., Regression Tree Analysis (RTA), Multivariate Adaptive Regression Splines (MARS), Bagging Trees (...

  20. [Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].

    Science.gov (United States)

    Wang, Gui-Bin; Cao, Fu-Liang; Zhang, Xiao-Yan; Zhang, Wang-Xiang

    2010-03-01

    Aimed to understand the waterlogging tolerance and adaptation mechanisms of different tree species, a simulated field experiment was conducted to study the growth and energy-metabolic enzyme activities of one-year-old seedlings of Taxodium distichum, Carya illinoensis, and Sapium sebiferum. Three treatments were installed, i. e., CK, waterlogging, and flooding, with the treatment duration being 60 days. Under waterlogging and flooding, the relative growth of test tree species was in the order of T. distichum > C. illinoensis > S. sebiferum, indicating that T. distichum had the strongest tolerance against waterlogging and flooding, while S. sebiferum had the weakest one. Also under waterlogging and flooding, the root/crown ratio of the three tree species increased significantly, suggesting that more photosynthates were allocated in roots, and the lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) activities of the tree species also had a significant increase. Among the test tree species, T. distichum had the lowest increment of LDH and ADH activities under waterlogging and flooding, but the increment could maintain at a higher level in the treatment duration, while for C. illinoensis and S. sebiferum, the increment was larger during the initial and medium period, but declined rapidly during the later period of treatment. The malate dehydrogenase (MDH), phosphohexose (HPI), and glucose-6-phosphate dehydrogenase (G6PDH) -6-phosphogluconate dehydrogenase (6PGDH) activities of the tree species under waterlogging and flooding had a significant decrease, and the decrement was the largest for T. distichum, being 35.6% for MDH, 21.0% for HPI, and 22.7% for G6PDH - 6PGDH under flooding. It was suggested that under waterlogging and flooding, the tree species with strong waterlogging tolerance had a higher ability to maintain energy-metabolic balance, and thus, its growth could be maintained at a certain level.

  1. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    Directory of Open Access Journals (Sweden)

    Kyle Dexter

    2016-09-01

    Full Text Available Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

  2. The effect of canopy closure on chimpanzee nest abundance in Lagoas de Cufada National Park, Guinea-Bissau.

    Science.gov (United States)

    Sousa, Joana; Casanova, Catarina; Barata, André V; Sousa, Cláudia

    2014-04-01

    The present study aimed to gather baseline information about chimpanzee nesting and density in Lagoas de Cufada Natural Park (LCNP), in Guinea-Bissau. Old and narrow trails were followed to estimate chimpanzee density through marked-nest counts and to test the effect of canopy closure (woodland savannah, forest with a sparse canopy, and forest with a dense canopy) on nest distribution. Chimpanzee abundance was estimated at 0.79 nest builders/km(2), the lowest among the areas of Guinea-Bissau with currently studied chimpanzee populations. Our data suggest that sub-humid forest with a dense canopy accounts for significantly higher chimpanzee nest abundance (1.50 nests/km of trail) than sub-humid forest with a sparse canopy (0.49 nests/km of trail) or woodland savannah (0.30 nests/km of trail). Dense-canopy forests play an important role in chimpanzee nesting in the patchy and highly humanized landscape of LCNP. The tree species most frequently used for nesting are Dialium guineense (46%) and Elaeis guineensis (28%). E. guineensis contain nests built higher in the canopy, while D. guineense contain nests built at lower heights. Nests observed during baseline sampling and replications suggest seasonal variations in the tree species used for nest building.

  3. The Forest Canopy as a Temporally and Spatially Dynamic Ecosystem: Preliminary Results of Biomass Scaling and Habitat Use from a Case Study in Large Eastern White Pines (Pinus Strobus)

    Science.gov (United States)

    Martin, J.; Laughlin, M. M.; Olson, E.

    2017-12-01

    Canopy processes can be viewed at many scales and through many lenses. Fundamentally, we may wish to start by treating each canopy as a unique surface, an ecosystem unto itself. By doing so, we can may make some important observations that greatly influence our ability to scale canopies to landscape, regional and global scales. This work summarizes an ongoing endeavor to quantify various canopy level processes on individual old and large Eastern white pine trees (Pinus strobus). Our work shows that these canopies contain complex structures that vary with height and as the tree ages. This phenomenon complicates the allometric scaling of these large trees using standard methods, but detailed measurements from within the canopy provided a method to constrain scaling equations. We also quantified how these canopies change and respond to canopy disturbance, and documented disproportionate variation of growth compared to the lower stem as the trees develop. Additionally, the complex shape and surface area allow these canopies to act like ecosystems themselves; despite being relatively young and more commonplace when compared to the more notable canopies of the tropics and the Pacific Northwestern US. The white pines of these relatively simple, near boreal forests appear to house various species including many lichens. The lichen species can cover significant portions of the canopy surface area (which may be only 25 to 50 years old) and are a sizable source of potential nitrogen additions to the soils below, as well as a modulator to hydrologic cycles by holding significant amounts of precipitation. Lastly, the combined complex surface area and focused verticality offers important habitat to numerous animal species, some of which are quite surprising.

  4. Ambrosia Beetle (Coleoptera: Scolytidae) Species, Flight, and Attack on Living Eastern Cottonwood Trees.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, D R; D.C. Booth: M.S. Wallace

    2005-12-01

    ABSTRACT In spring 2002, ambrosia beetles (Coleoptera: Scolytidae) infested an intensively managed 22-ha tree plantation on the upper coastal plain of South Carolina. Nearly 3,500 scolytids representing 28 species were captured in ethanol-baited traps from 18 June 2002 to 18 April 2004. More than 88% of total captures were exotic species. Five species [Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Pseudopityophthorus minutissimus (Zimmermann), Xyleborus atratus Eichhoff, and Xyleborus impressus Eichhoff]) were collected in South Carolina for the first time. Of four tree species in the plantation, eastern cottonwood, Populus deltoides Bartram, was the only one attacked, with nearly 40% of the trees sustaining ambrosia beetle damage. Clone ST66 sustained more damage than clone S7C15. ST66 trees receiving fertilization were attacked more frequently than trees receiving irrigation, irrigation_fertilization, or controls, although the number of S7C15 trees attacked did not differ among treatments. The study location is near major shipping ports; our results demonstrate the necessity for intensive monitoring programs to determine the arrival, spread, ecology, and impact of exotic scolytids.

  5. A novel approach to internal crown characterization for coniferous tree species classification

    Science.gov (United States)

    Harikumar, A.; Bovolo, F.; Bruzzone, L.

    2016-10-01

    The knowledge about individual trees in forest is highly beneficial in forest management. High density small foot- print multi-return airborne Light Detection and Ranging (LiDAR) data can provide a very accurate information about the structural properties of individual trees in forests. Every tree species has a unique set of crown structural characteristics that can be used for tree species classification. In this paper, we use both the internal and external crown structural information of a conifer tree crown, derived from a high density small foot-print multi-return LiDAR data acquisition for species classification. Considering the fact that branches are the major building blocks of a conifer tree crown, we obtain the internal crown structural information using a branch level analysis. The structure of each conifer branch is represented using clusters in the LiDAR point cloud. We propose the joint use of the k-means clustering and geometric shape fitting, on the LiDAR data projected onto a novel 3-dimensional space, to identify branch clusters. After mapping the identified clusters back to the original space, six internal geometric features are estimated using a branch-level analysis. The external crown characteristics are modeled by using six least correlated features based on cone fitting and convex hull. Species classification is performed using a sparse Support Vector Machines (sparse SVM) classifier.

  6. Trees of Laos and Vietnam: a field guide to 100 economically or ecologically important species

    NARCIS (Netherlands)

    Sam, Hoang Van; Nanthavong, Khamseng; Keßler, P.J.A.

    2004-01-01

    This field guide to 100 economically or ecologically important tree species from Laos and Vietnam enables the user to identify the included taxa with user-friendly keys. It includes scientific names, botanical descriptions of families, genera, and species. Specific information on distribution,

  7. Climate-related genetic variation in a threatened tree species, Pinus albicaulis

    Science.gov (United States)

    Marcus V. Warwell; Ruth G. Shaw

    2017-01-01

    PREMISE OF THE STUDY: With ongoing climate change, understanding of intraspecific adaptive variation is critical for conservation and restoration of plant species. Such information is especially scarce for threatened and endangered tree species, such as Pinus albicaulis Engelm. Therefore, our principal aims were to assess adaptive variation and characterize its...

  8. Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico

    Science.gov (United States)

    P. Bayman; D. J. Lodge; P. Angulo-Sandoval; Z. Baez-Ortiz

    1998-01-01

    Xylaria species are common endophytes in tropical plants. It is not known, however, whether transmission of Xylaria occurs horizontally or vertically, whether individual Xylaria strains have wide host ranges or are host-specific, or how they are dispersed. We compared frequency of Xylaria endophytes in leaves and seeds of two tree species in Puerto Rico, Casuarina...

  9. Equations relating compacted and uncompacted live crown ratio for common tree species in the South

    Science.gov (United States)

    KaDonna C. Randolph

    2010-01-01

    Species-specific equations to predict uncompacted crown ratio (UNCR) from compacted live crown ratio (CCR), tree length, and stem diameter were developed for 24 species and 12 genera in the southern United States. Using data from the US Forest Service Forest Inventory and Analysis program, nonlinear regression was used to model UNCR with a logistic function. Model...

  10. Trees of Laos and Vietnam: a field guide to 100 economically or ecologically important species

    OpenAIRE

    Sam, Hoang Van; Nanthavong, Khamseng; Keßler, P.J.A.

    2004-01-01

    This field guide to 100 economically or ecologically important tree species from Laos and Vietnam enables the user to identify the included taxa with user-friendly keys. It includes scientific names, botanical descriptions of families, genera, and species. Specific information on distribution, habitat, ecology, and uses has been compiled. All specimens examined have been listed.

  11. Factors influencing non-native tree species distribution in urban landscapes

    Science.gov (United States)

    Wayne C. Zipperer

    2010-01-01

    Non-native species are presumed to be pervasive across the urban landscape. Yet, we actually know very little about their actual distribution. For this study, vegetation plot data from Syracuse, NY and Baltimore, MD were used to examine non-native tree species distribution in urban landscapes. Data were collected from remnant and emergent forest patches on upland sites...

  12. Barriopsis iraniana and Phaeobotryon cupressi: two new species of the Botryosphaeriaceae from trees in Iran

    NARCIS (Netherlands)

    Abdollahzadeh, J.; Mohammadi Goltapeh, E.; Javadi, A.; Shams-bakhsh, M.; Zare, R.; Phillips:, A.J.L.

    2009-01-01

    Species in the Botryosphaeriaceae are well known as pathogens and saprobes of woody hosts, but little is known about the species that occur in Iran. In a recent survey of this family in Iran two fungi with diplodia-like anamorphs were isolated from various tree hosts. These two fungi were fully

  13. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Fitzpatrick, Matthew C.; Normand, Signe

    2010-01-01

    by assembly from regional species pools. Using the European tree flora as our study system, we implemented a novel approach to assess the relative importance of local and regional mechanisms that control local species richness. We first identified species pools that tolerate particular local environments....../P richness ratio estimates, but we found consistent support for a negative effect of regional geographic fragmentation and a positive topographic effect. We also identified fairly broad support for the predicted effect of accessibility. We conclude that local tree assemblages in Europe often fail to realize...

  14. Spectral reflectance of five hardwood tree species in southern Indiana

    Science.gov (United States)

    Dale R. Weigel; J.C. Randolph

    2013-01-01

    The use of remote sensing to identify forest species has been ongoing since the launch of Landsat-1 using MSS imagery. The ability to separate hardwoods from conifers was accomplished by the 1980s. However, distinguishing individual hardwood species is more problematic due to similar spectral and phenological characteristics. With the launch of commercial satellites...

  15. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China.

    Directory of Open Access Journals (Sweden)

    Guoyu Lan

    Full Text Available Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1 fourteen of the twenty tree species were negatively (or positively associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2 Most saplings of the study species showed a significantly clumped distribution at small scales (0-10 m which was lost at larger scales (10-30 m. (3 The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4 It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China.

  16. Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa; Schmidt, Inger Kappel; Gundersen, Per

    2013-01-01

    explored. Effects of four tree species on soil C and N stocks and soil water nitrate concentration below the root zone were evaluated in a common garden design replicated at eight sites in Denmark. The tree species were beech (Fagus sylvatica L.), oak (Quercus robur L.), larch (Larix leptolepis Kaempf......), and Norway spruce (Picea abies (L) Karst.). After four decades, there were significant differences in forest floor C stocks among all four species, and C stocks increased consistently in the order oak Forest floor N stocks only...... differed significantly between conifers and broadleaves. The observed differences in forest floor C and N stocks were attributed to differences in litter turnover rates among the tree species. Mineral soil C stocks were significantly higher in stands of Norway spruce than in stands of oak and beech while...

  17. The influence of multi-season imagery on models of canopy cover: A case study

    Science.gov (United States)

    John W. Coulston; Dennis M. Jacobs; Chris R. King; Ivey C. Elmore

    2013-01-01

    Quantifying tree canopy cover in a spatially explicit fashion is important for broad-scale monitoring of ecosystems and for management of natural resources. Researchers have developed empirical models of tree canopy cover to produce geospatial products. For subpixel models, percent tree canopy cover estimates (derived from fine-scale imagery) serve as the response...

  18. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran

    International Nuclear Information System (INIS)

    Sadeghi, Seyed Mohammad Moein; Attarod, Pedram; Van Stan, John Toland; Pypker, Thomas Grant

    2016-01-01

    As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems. - Highlights: • Measured rain partitioning of four most common species used in semiarid afforestation • Species rain partitioning differences are important in a water management. • Recommendations provided to guide

  19. The importance of considering rainfall partitioning in afforestation initiatives in semiarid climates: A comparison of common planted tree species in Tehran, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Seyed Mohammad Moein, E-mail: moeinsadeghi@ut.ac.ir [Department of Forestry and Forest Economics, University of Tehran (Iran, Islamic Republic of); Attarod, Pedram [Department of Forestry and Forest Economics, University of Tehran (Iran, Islamic Republic of); Van Stan, John Toland [Department of Geology and Geography, Georgia Southern University, Statesboro, Georgia (United States); Pypker, Thomas Grant [Department of Natural Resource Sciences, Faculty of Science, Thompson Rivers University, Kamloops (Canada)

    2016-10-15

    As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems. - Highlights: • Measured rain partitioning of four most common species used in semiarid afforestation • Species rain partitioning differences are important in a water management. • Recommendations provided to guide

  20. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Rhizosphere soil microbial index of tree species in a coal mining ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.; Masto, R.E.; Ram, L.C.; Selvi, V.A.; Srivastava, N.K.; Tripathi, R.C.; George, J. [Central Institute of Mining & Fuel Research, Dhanbad (India)

    2009-09-15

    Microbial characterization of the tree rhizosphere provides important information relating to the screening of tree species for re-vegetation of degraded land. Rhizosphere soil samples collected from a few predominant tree species growing in the coal mining ecosystem of Dhanbad, India, were analyzed for soil organic carbon (SOC), mineralizable N, microbial biomass carbon (MBC), active microbial biomass carbon (AMBC), basal soil respiration (BSR), and soil enzyme activities (dehydrogenase, urease, catalase, phenol oxidase, and peroxidase). Principal component analysis was employed to derive a rhizosphere soil microbial index (RSMI) and accordingly, dehydrogenase, BSR/MBC, MBC/SOC, EC, phenol oxidase and AMBC were found to be the most critical properties. The observed values for the above properties were converted into a unitless score (0-1.00) and the scores were integrated into RSMI. The tree species could be arranged in decreasing order of the RSMI as: A. marmelos (0.718), A. indica (0.715), Bauhinia bauhinia (0.693), B. monosperma (0.611), E. jambolana (0.601), Moringa oleifera (0.565), Dalbergia sissoo (0.498), T indica (0.488), Morus alba (0.415), F religiosa (0.291), Eucalyptus sp. (0.232) and T grandis (0.181). It was concluded that tree species in coal mining areas had diverse effects on their respective rhizosphere microbial processes, which could directly or indirectly determine the survival and performance of the planted tree species in degraded coal mining areas. Tree species with higher RSMI values could be recommended for re-vegetation of degraded coal mining area.

  2. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  3. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  4. Survival and development of Lymantria monacha (Lepidoptera: Lymantriidae) on North American and introduced Eurasian tree species.

    Science.gov (United States)

    Keena, M A

    2003-02-01

    Lymantria monacha (L.) (Lepidoptera: Lymantriidae), the nun moth, is a Eurasian pest of conifers that has potential for accidental introduction into North America. To project the potential host range of this insect if introduced into North America, survival and development of L. monacha on 26 North American and eight introduced Eurasian tree species were examined. Seven conifer species (Abies concolor, Picea abies, P. glauca, P. pungens, Pinus sylvestris with male cones, P. menziesii variety glance, and Tsuga canadensis) and six broadleaf species (Betula populifolia, Malus x domestica, Prunus serotiaa, Quercus lobata, Q. rubra, and Q. velutina) were suitable for L. monacha survival and development. Eleven of the host species tested were rated as intermediate in suitability, four conifer species (Larix occidentalis, P. nigra, P. ponderosa, P. strobus, and Pseudotsuga menziesii variety menziesii) and six broadleaf species (Carpinus caroliniana, Carya ovata, Fagus grandifolia, Populus grandidentata, Q. alba, and Tilia cordata) and the remaining 10 species tested were rated as poor (Acer rubrum, A. platanoidies, A. saccharum, F. americana, Juniperus virginiana, Larix kaempferi, Liriodendron tulipfera, Morus alba, P. taeda, and P. deltoides). The phenological state of the trees had a major impact on establishment, survival, and development of L. monacha on many of the tree species tested. Several of the deciduous tree species that are suitable for L. monacha also are suitable for L. dispar (L.) and L. mathura Moore. Establishment of L. monacha in North America would be catastrophic because of the large number of economically important tree species on which it can survive and develop, and the ability of mated females to fly and colonize new areas.

  5. [Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species].

    Science.gov (United States)

    Lin, Hai-jun; Zhang, Hui-fang; Gao, Ya-qi; Li, Xia; Yang, Fan; Zhou, Yan-fei

    2014-12-01

    The hyperspectral reflectance of Populus euphratica, Tamarix hispida, Haloxylon ammodendron and Calligonum mongolicum in the lower reaches of Tarim River and Turpan Desert Botanical Garden was measured by using the HR-768 field-portable spectroradiometer. The method of continuum removal, first derivative reflectance and second derivative reflectance were used to deal with the original spectral data of four tree species. The method of Mahalanobis Distance was used to select the bands with significant differences in the original spectral data and transform spectral data to identify the different tree species. The progressive discrimination analyses were used to test the selective bands used to identify different tree species. The results showed that The Mahalanobis Distance method was an effective method in feature band extraction. The bands for identifying different tree species were most near-infrared bands. The recognition accuracy of four methods was 85%, 93.8%, 92.4% and 95.5% respectively. Spectrum transform could improve the recognition accuracy. The recognition accuracy of different research objects and different spectrum transform methods were different. The research provided evidence for desert tree species classification, monitoring biodiversity and the analysis of area in desert by using large scale remote sensing method.

  6. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees.

    Science.gov (United States)

    Stolzer, Maureen; Lai, Han; Xu, Minli; Sathaye, Deepa; Vernot, Benjamin; Durand, Dannie

    2012-09-15

    Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile non-binary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung. mstolzer@andrew.cmu.edu.

  7. TimeTree2: species divergence times on the iPhone.

    Science.gov (United States)

    Kumar, Sudhir; Hedges, S Blair

    2011-07-15

    Scientists, educators and the general public often need to know times of divergence between species. But they rarely can locate that information because it is buried in the scientific literature, usually in a format that is inaccessible to text search engines. We have developed a public knowledgebase that enables data-driven access to the collection of peer-reviewed publications in molecular evolution and phylogenetics that have reported estimates of time of divergence between species. Users can query the TimeTree resource by providing two names of organisms (common or scientific) that can correspond to species or groups of species. The current TimeTree web resource (TimeTree2) contains timetrees reported from molecular clock analyses in 910 published studies and 17 341 species that span the diversity of life. TimeTree2 interprets complex and hierarchical data from these studies for each user query, which can be launched using an iPhone application, in addition to the website. Published time estimates are now readily accessible to the scientific community, K-12 and college educators, and the general public, without requiring knowledge of evolutionary nomenclature. TimeTree2 is accessible from the URL http://www.timetree.org, with an iPhone app available from iTunes (http://itunes.apple.com/us/app/timetree/id372842500?mt=8) and a YouTube tutorial (http://www.youtube.com/watch?v=CxmshZQciwo).

  8. Sampling procedures for inventory of commercial volume tree species in Amazon Forest.

    Science.gov (United States)

    Netto, Sylvio P; Pelissari, Allan L; Cysneiros, Vinicius C; Bonazza, Marcelo; Sanquetta, Carlos R

    2017-01-01

    The spatial distribution of tropical tree species can affect the consistency of the estimators in commercial forest inventories, therefore, appropriate sampling procedures are required to survey species with diffe