Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy
Das, Sudipta; Debnath, Ujjal; Mamon, Abdulla Al
2015-01-01
In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. ...
Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy
International Nuclear Information System (INIS)
In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters. (orig.)
Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy
Das, Sudipta; Debnath, Ujjal; Mamon, Abdulla Al
2015-10-01
In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters.
Generalized Second Law of Thermodynamics for Non-canonical Scalar Field Model with Corrected-Entropy
Das, Sudipta; Mamon, Abdulla Al
2015-01-01
In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters.
Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy
Energy Technology Data Exchange (ETDEWEB)
Das, Sudipta; Mamon, Abdulla Al [Visva-Bharati, Department of Physics, Santiniketan (India); Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Department of Mathematics, Shibpur, Howrah (India)
2015-10-15
In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters. (orig.)
Statistical thermodynamics in relativistic particle and ion physics: Canonical or grand canonical
International Nuclear Information System (INIS)
We consider relativistic statistical thermodynamics of an ideal Boltzmann gas consisting of the particles K, Λ, A, Σ and their antiparticles. Baryon number (B) and strangeness (S) are conserved. While any relativistic gas is necessarily grand canonical with respect to particle numbers, conservation laws can be treated canonically or grand canonically. We construct the partition function for canonical BxS conservation and compare it with the grand canonical one. It is found that the grand canonical partition function is equivalent to a large B approximation of the canonical one. The relative difference between canonical and grand canonical quantities seems to decrease like const/B (two numerical examples) and from this a simple thumb rule for computing canonical quantities from grand canonical ones is guessed. For precise calculations, an integral representation is given. (orig.)
Canonical Ensemble Model for Black Hole Radiation
Indian Academy of Sciences (India)
Jingyi Zhang
2014-09-01
In this paper, a canonical ensemble model for the black hole quantum tunnelling radiation is introduced. In this model the probability distribution function corresponding to the emission shell is calculated to second order. The formula of pressure and internal energy of the thermal system is modified, and the fundamental equation of thermodynamics is also discussed.
Ising model on random networks and the canonical tensor model
International Nuclear Information System (INIS)
We introduce a statistical system on random networks of trivalent vertices for the purpose of studying the canonical tensor model, which is a rank-three tensor model in the canonical formalism. The partition function of the statistical system has a concise expression in terms of integrals, and has the same symmetries as the kinematical ones of the canonical tensor model. We consider the simplest non-trivial case of the statistical system corresponding to the Ising model on random networks, and find that its phase diagram agrees with what is implied by regrading the Hamiltonian vector field of the canonical tensor model with N=2 as a renormalization group flow. Along the way, we obtain an explicit exact expression of the free energy of the Ising model on random networks in the thermodynamic limit by the Laplace method. This paper provides a new example connecting a model of quantum gravity and a random statistical system
Thermodynamic signatures of an underlying quantum phase transition: A grand canonical approach
Jimenez, Kevin; Reslen, Jose
2016-08-01
The grand canonical formalism is employed to study the thermodynamic structure of a model displaying a quantum phase transition when studied with respect to the canonical formalism. A numerical survey shows that the grand partition function diverges following a power law when the interaction parameter approaches a limiting constant. The power-law exponent takes a distinctive value when such limiting constant coincides with the critical point of the subjacent quantum phase transition. An approximated expression for the grand partition function is derived analytically implementing a mean field scheme and a number of thermodynamic observables are obtained. The system observables show signatures that can be used to track the critical point of the underlying transition. This result provides a simple fact that can be exploited to verify the existence of a quantum phase transition avoiding the zero temperature regime.
Process modelling on a canonical basis[Process modelling; Canonical modelling
Energy Technology Data Exchange (ETDEWEB)
Siepmann, Volker
2006-12-20
Based on an equation oriented solving strategy, this thesis investigates a new approach to process modelling. Homogeneous thermodynamic state functions represent consistent mathematical models of thermodynamic properties. Such state functions of solely extensive canonical state variables are the basis of this work, as they are natural objective functions in optimisation nodes to calculate thermodynamic equilibrium regarding phase-interaction and chemical reactions. Analytical state function derivatives are utilised within the solution process as well as interpreted as physical properties. By this approach, only a limited range of imaginable process constraints are considered, namely linear balance equations of state variables. A second-order update of source contributions to these balance equations is obtained by an additional constitutive equation system. These equations are general dependent on state variables and first-order sensitivities, and cover therefore practically all potential process constraints. Symbolic computation technology efficiently provides sparsity and derivative information of active equations to avoid performance problems regarding robustness and computational effort. A benefit of detaching the constitutive equation system is that the structure of the main equation system remains unaffected by these constraints, and a priori information allows to implement an efficient solving strategy and a concise error diagnosis. A tailor-made linear algebra library handles the sparse recursive block structures efficiently. The optimisation principle for single modules of thermodynamic equilibrium is extended to host entire process models. State variables of different modules interact through balance equations, representing material flows from one module to the other. To account for reusability and encapsulation of process module details, modular process modelling is supported by a recursive module structure. The second-order solving algorithm makes it
Energy Technology Data Exchange (ETDEWEB)
Parvan, A.S. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Horia Hulubei National Institute of Physics and Nuclear Engineering, Department of Theoretical Physics, Bucharest (Romania); Moldova Academy of Sciences, Institute of Applied Physics, Chisinau (Moldova, Republic of)
2015-09-15
In the present paper, the Tsallis statistics in the grand canonical ensemble was reconsidered in a general form. The thermodynamic properties of the nonrelativistic ideal gas of hadrons in the grand canonical ensemble was studied numerically and analytically in a finite volume and the thermodynamic limit. It was proved that the Tsallis statistics in the grand canonical ensemble satisfies the requirements of the equilibrium thermodynamics in the thermodynamic limit if the thermodynamic potential is a homogeneous function of the first order with respect to the extensive variables of state of the system and the entropic variable z = 1/(q - 1) is an extensive variable of state. The equivalence of canonical, microcanonical and grand canonical ensembles for the nonrelativistic ideal gas of hadrons was demonstrated. (orig.)
Integral canonical models for Spin Shimura varieties
Pera, Keerthi Madapusi
2012-01-01
We construct regular integral canonical models for Shimura varieties attached to Spin groups at (possibly ramified) odd primes. We exhibit these models as schemes of 'relative PEL type' over integral canonical models of larger Spin Shimura varieties with good reduction. Work of Vasiu-Zink then shows that the classical Kuga-Satake construction extends over the integral model and that the integral models we construct are canonical in a very precise sense. We also construct good compactification...
Thermodynamics in dynamical Chern-Simons modified gravity with canonical scalar field
Rani, Shamaila; Nawaz, Tanzeela; Jawad, Abdul
2016-09-01
We take the scalar field dark energy model possessing a non-canonical kinetic term in the framework of modified Chern-Simon gravity. We assume the flat FRW universe model and interacting scenario between dark matter and non-canonical dark energy part. Under this scenario, we check the stability of the model using squared speed of sound which represents the stable behavior for a specific choice of model parameters. We also discuss the validity of generalized second law of thermodynamics by assuming the usual entropy and its corrected forms (logarithmic and power law) at the apparent horizon. This law satisfied for all cases versus redshift parameter at the present as well as later epoch.
The canonical and grand canonical models for nuclear multifragmentation
Indian Academy of Sciences (India)
G Chaudhuri; S Das Gupta
2010-08-01
Many observables seen in intermediate energy heavy-ion collisions can be explained on the basis of statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble, canonical ensemble or grand canonical ensemble. This paper deals with calculations with canonical and grand canonical ensembles. A recursive relation developed recently allows calculations with arbitrary precision for many nuclear problems. Calculations are done to study the nature of phase transition in nuclear matter.
THERMODYNAMICS OF GLOBAL MONOPOLE ANTI-DE-SITTER BLACK HOLE IN GRAND CANONICAL ENSEMBLE
Institute of Scientific and Technical Information of China (English)
陈菊华; 荆继良; 王永久
2001-01-01
In this paper, we investigate the thermodynamics of the global monopole anti-de-Sitter black hole in the grand canonical ensemble following the York's formalism. The black hole is enclosed in a cavity with a finite radius where the temperature and potential are fixed. We have studied some thermodynamical properties, i.e. the reduced action,thermal energy and entropy. By investigating the stability of the solutions, we find stable solutions and instantons.
The canonical effect in statistical models for relativistic heavy ion collisions
Keranen, A.; Becattini, F.
2001-01-01
Enforcing exact conservation laws instead of average ones in statistical thermal models for relativistic heavy ion reactions gives raise to so called canonical effect, which can be used to explain some enhancement effects when going from elementary (e.g. pp) or small (pA) systems towards large AA systems. We review the recently developed method for computation of canonical statistical thermodynamics, and give an insight when this is needed in analysis of experimental data.
The canonical effect in statistical models for relativistic heavy ion collisions
Keränen, A
2002-01-01
Enforcing exact conservation laws instead of average ones in statistical thermal models for relativistic heavy ion reactions gives raise to so called canonical effect, which can be used to explain some enhancement effects when going from elementary (e.g. pp) or small (pA) systems towards large AA systems. We review the recently developed method for computation of canonical statistical thermodynamics, and give an insight when this is needed in analysis of experimental data.
The canonical effect in statistical models for relativistic heavy ion collisions
International Nuclear Information System (INIS)
Enforcing exact conservation laws instead of average laws in statistical thermal models for relativistic heavy ion reactions gives rise to the so-called canonical effect, which can be used to explain some enhancement effects when going from elementary (e.g. pp) or small (pA) systems towards large AA systems. We review the recently developed method for the computation of canonical statistical thermodynamics, and give an insight into when this is needed in the analysis of experimental data. (author)
Evaluation of the thermodynamics of a four level system using canonical density matrix method
Directory of Open Access Journals (Sweden)
Awoga Oladunjoye A.
2013-02-01
Full Text Available We consider a four-level system with two subsystems coupled by weak interaction. The system is in thermal equilibrium. The thermodynamics of the system, namely internal energy, free energy, entropy and heat capacity, are evaluated using the canonical density matrix by two methods. First by Kronecker product method and later by treating the subsystems separately and then adding the evaluated thermodynamic properties of each subsystem. It is discovered that both methods yield the same result, the results obey the laws of thermodynamics and are the same as earlier obtained results. The results also show that each level of the subsystems introduces a new degree of freedom and increases the entropy of the entire system. We also found that the four-level system predicts a linear relationship between heat capacity and temperature at very low temperatures just as in metals. Our numerical results show the same trend.
Canonical vs. micro-canonical sampling methods in a 2D Ising model
International Nuclear Information System (INIS)
Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs
Canonical brackets of a toy model for the Hodge theory without its canonical conjugate momenta
Shukla, D; Malik, R P
2014-01-01
We consider the toy model of a rigid rotor as an example of the Hodge theory within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism and show that the internal symmetries of this theory lead to the derivation of canonical brackets amongst the creation and annihilation operators of the dynamical variables where the definition of the canonical conjugate momenta is not required. We invoke only the spin-statistics theorem, normal ordering and basic concepts of continuous symmetries (and their generators) to derive the canonical brackets for the model of a one (0 + 1)-dimensional (1D) rigid rotor without using the definition of the canonical conjugate momenta anywhere. Our present method of derivation of the basic brackets is conjectured to be true for a class of theories that provide a set of tractable physical examples for the Hodge theory.
Canonical brackets of a toy model for the Hodge theory without its canonical conjugate momenta
Shukla, D.; Bhanja, T.; Malik, R. P.
2015-07-01
We consider the toy model of a rigid rotor as an example of the Hodge theory within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism and show that the internal symmetries of this theory lead to the derivation of canonical brackets amongst the creation and annihilation operators of the dynamical variables where the definition of the canonical conjugate momenta is not required. We invoke only the spin-statistics theorem, normal ordering and basic concepts of continuous symmetries (and their generators) to derive the canonical brackets for the model of a one (0 + 1)-dimensional (1D) rigid rotor without using the definition of the canonical conjugate momenta anywhere. Our present method of derivation of the basic brackets is conjectured to be true for a class of theories that provide a set of tractable physical examples for the Hodge theory.
Integral Canonical Models for Automorphic Vector Bundles of Abelian Type
Lovering, Tom
2016-01-01
We define and construct integral canonical models for automorphic vector bundles over Shimura varieties of abelian type. More precisely, we first build on Kisin's work to construct integral canonical models over rings of integers of number fields with finitely many primes inverted for Shimura varieties of abelian type with hyperspecial level at all primes we do not invert, compatible with Kisin's construction. We then define a notion of an integral canonical model for the standard principal b...
Canonical brackets of a toy model for the Hodge theory without its canonical conjugate momenta
D Shukla; Bhanja, T.; Malik, R. P.
2014-01-01
We consider the toy model of a rigid rotor as an example of the Hodge theory within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism and show that the internal symmetries of this theory lead to the derivation of canonical brackets amongst the creation and annihilation operators of the dynamical variables where the definition of the canonical conjugate momenta is not required. We invoke only the spin-statistics theorem, normal ordering and basic concepts of continuous symmetries...
An $OSp$ extension of Canonical Tensor Model
Narain, Gaurav
2015-01-01
Tensor models are generalizations of matrix models, and are studied as discrete models of quantum gravity for arbitrary dimensions. Among them, the canonical tensor model (CTM for short) is a rank-three tensor model formulated as a totally constrained system with a number of first-class constraints, which have a similar algebraic structure as the constraints of the ADM formalism of general relativity. In this paper, we formulate a super-extension of CTM as an attempt to incorporate fermionic degrees of freedom. The kinematical symmetry group is extended from $O(N)$ to $OSp(N,\\tilde N)$, and the constraints are constructed so that they form a first-class constraint super-Poisson algebra. This is a straightforward super-extension, and the constraints and their algebraic structure are formally unchanged from the purely bosonic case, except for the additional signs associated to the order of the fermionic indices and dynamical variables. However, this extension of CTM leads to the existence of negative norm state...
Dotov, D G; Kim, S; Frank, T D
2015-02-01
We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. PMID:25619737
Non-extended phase space thermodynamics of Lovelock AdS black holes in the grand canonical ensemble
International Nuclear Information System (INIS)
Recently, extended phase space thermodynamics of Lovelock AdS black holes has been of great interest. To provide insight from a different perspective and gain a unified phase transition picture, the non-extended phase space thermodynamics of (n+1)-dimensional charged topological Lovelock AdS black holes is investigated in detail in the grand canonical ensemble. Specifically, the specific heat at constant electric potential is calculated and the phase transition in the grand canonical ensemble is discussed. To probe the impact of the various parameters, we utilize the control variate method and solve the phase transition condition equation numerically for the cases k = 1,-1. There are two critical points for the case n = 6, k = 1, while there is only one for the other cases. For k = 0, there exists no phase transition point. To figure out the nature of the phase transition in the grand canonical ensemble, we carry out an analytic check of the analog form of the Ehrenfest equations proposed by Banerjee et al. It is shown that Lovelock AdS black holes in the grand canonical ensemble undergo a second-order phase transition. To examine the phase structure in the grand canonical ensemble, we utilize the thermodynamic geometry method and calculate both the Weinhold metric and the Ruppeiner metric. It is shown that for both analytic and graphical results that the divergence structure of the Ruppeiner scalar curvature coincides with that of the specific heat. Our research provides one more example that Ruppeiner metric serves as a wonderful tool to probe the phase structures of black holes. (orig.)
Canonical extensions of N\\'eron models of Jacobians
Cais, Bryden
2009-01-01
Let A be the N\\'eron model of an abelian variety A_K over the fraction field K of a discrete valuation ring R. Due to work of Mazur-Messing, there is a functorial way to prolong the universal extension of A_K by a vector group to a smooth and separated group scheme over R, called the canonical extension of A. In this paper, we study the canonical extension when A_K=J_K is the Jacobian of a smooth proper and geometrically connected curve X_K over K. Assuming that X_K admits a proper flat regular model X over R that has generically smooth closed fiber, our main result identifies the identity component of the canonical extension with a certain functor Pic^{\
Li, Gu-Qiang; Mo, Jie-Xiong
2016-06-01
The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.
Li, Gu-Qiang
2016-01-01
The phase transition of four-dimensional charged AdS black hole solution in the $R+f(R)$ gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in canonical ensemble. There exists no critical point for $T-S$ curve while in former research critical point was found for both the $T-S$ curve and $T-r_+$ curve when the electric charge of $f(R)$ black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of $f(R)$ AdS black hole is fixed. The specific heat $C_\\Phi$ encounters a divergence when $0b$. This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat $C_Q$. To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and de...
Currents, charges, and canonical structure of pseudodual chiral models
International Nuclear Information System (INIS)
We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which have an infinite number of conservation laws but allow particle production, at variance with naive expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the usual chiral model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model, and we discuss the complete local current algebra for the pseudodual theory. We also exhibit the canonical transformation which connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual theory
Thermodynamic Model of Spatial Memory
Kaufman, Miron; Allen, P.
1998-03-01
We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.
Quantum statistical model of nuclear multifragmentation in the canonical ensemble method
Energy Technology Data Exchange (ETDEWEB)
Toneev, V.D.; Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Parvant, A.S. [Institute of Applied Physics, Moldova Academy of Sciences, MD Moldova (Ukraine); Parvant, A.S. [Joint Institute for Nuclear Research, Bogoliubov Lab. of Theoretical Physics, Dubna (Russian Federation)
1999-07-01
A quantum statistical model of nuclear multifragmentation is proposed. The recurrence equation method used the canonical ensemble makes the model solvable and transparent to physical assumptions and allows to get results without involving the Monte Carlo technique. The model exhibits the first order phase transition. Quantum statistics effects are clearly seen on the microscopic level of occupation numbers but are almost washed out for global thermodynamic variables and the averaged observables studied. In the latter case, the recurrence relations for multiplicity distributions of both intermediate-mass and all fragments are derived and the specific changes in the shape of multiplicity distributions in the narrow region of the transition temperature is stressed. The temperature domain favorable to search for the HBT effect is noted. (authors)
Quantum statistical model of nuclear multifragmentation in the canonical ensemble method
International Nuclear Information System (INIS)
A quantum statistical model of nuclear multifragmentation is proposed. The recurrence equation method used the canonical ensemble makes the model solvable and transparent to physical assumptions and allows to get results without involving the Monte Carlo technique. The model exhibits the first order phase transition. Quantum statistics effects are clearly seen on the microscopic level of occupation numbers but are almost washed out for global thermodynamic variables and the averaged observables studied. In the latter case, the recurrence relations for multiplicity distributions of both intermediate-mass and all fragments are derived and the specific changes in the shape of multiplicity distributions in the narrow region of the transition temperature is stressed. The temperature domain favorable to search for the HBT effect is noted. (authors)
Improved confinement regimes within the transport model of canonical profiles
International Nuclear Information System (INIS)
The canonical profiles transport model is extended to describe various modes with improved confinement in tokamaks. A generalized profile consistency principle is proposed and a corresponding mathematical formalism is formulated. This formalism is used for the modelling of various regimes, such as H modes in DIII-D, JET and ASDEX, the hot ion mode and enhanced performance after pellet injection (PEP mode) in JET. This modelling, together with a known global scaling law, allowed the dependence of the internal model parameters on the plasma geometry and other physical variables to be established. This makes the model predictive. The approximate analytical criteria for the L → H and L → hot ion mode transitions are also obtained. (author). 32 refs, 30 figs
Thermodynamics of Lemaitre-Tolman-Bondi Model
Chakraborty, Subenoy; Mazumder, Nairwita; Biswas, Ritabrata
2010-01-01
Here we consider our universe as inhomogeneous spherically symmetric Lemaitre-Tolman-Bondi Model and analyze the thermodynamics of this model of the universe. The trapping horizon is calculated and is found to coincide with the apparent horizon. The Einstein field equations are shown to be equivalent with the unified first law of thermodynamics. Finally assuming the first law of thermodynamics validity of the generalized second law of thermodynamics is examined at the apparent horizon for the...
Thermodynamic modelling of PWR coolant
International Nuclear Information System (INIS)
Spinel solubilities on PWR primary circuit surfaces vary with temperature, pH and coolant H2 concentration. The available solubility data are discussed for Fe, Ni, Co and Zn oxides, and species are identified where data are very limited or absent. An equilibrium thermodynamic model is described to predict the solubility, and results are described predicting relative Fe and Ni solubility under normal operating conditions and during shutdown/startup. The relative stabilities of stoichiometric and non-stoichiometric zinc ferrite spinels are also considered. (R.P.)
Modeling the thermodynamics of QCD
Energy Technology Data Exchange (ETDEWEB)
Hell, Thomas
2010-07-26
Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)
Modeling the thermodynamics of QCD
International Nuclear Information System (INIS)
Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)
An OSp extension of the canonical tensor model
Narain, Gaurav; Sasakura, Naoki
2015-12-01
Tensor models are generalizations of matrix models, and are studied as discrete models of quantum gravity for arbitrary dimensions. Among them, the canonical tensor model (CTM) is a rank-three tensor model formulated as a totally constrained system with a number of first-class constraints, which have a similar algebraic structure to the constraints of the Arnowitt-Deser-Misner formalism of general relativity. In this paper, we formulate a super-extension of CTM as an attempt to incorporate fermionic degrees of freedom. The kinematical symmetry group is extended from O(N) to OSp(N,tilde {N}), and the constraints are constructed so that they form a first-class-constraint super-Poisson algebra. This is a straightforward super-extension, and the constraints and their algebraic structure are formally unchanged from the purely bosonic case, except for the additional signs associated with the fermionic degrees of freedom. However, this extension contains negative norm states in the quantized case, and requires some future improvements as quantum gravity with fermions. On the other hand, various results obtained so far for the purely bosonic case should have parallels in this straightforward super-extension, such as the exact physical wave functions and the connection to randomly connected tensor networks.
Thermodynamically consistent model calibration in chemical kinetics
Directory of Open Access Journals (Sweden)
Goutsias John
2011-05-01
Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new
Thermodynamic modeling of complex systems
DEFF Research Database (Denmark)
Liang, Xiaodong
after an oil spill. Engineering thermodynamics could be applied in the state-of-the-art sonar products through advanced artificial technology, if the speed of sound, solubility and density of oil-seawater systems could be satisfactorily modelled. The addition of methanol or glycols into unprocessed well...... streams during subsea pipelines is necessary to inhibit gas hydrate formation, and the offshore reservoirs often mean complicated temperature and pressure conditions. Accurate description of the phase behavior and thermalphysical properties of complex systems containing petroleum fluids and polar...... for derivative properties, e.g. speed of sound, and for density under extreme conditions. This PhD thesis studies the capabilities and limitations of the Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) equation of state. It consists of three parts. In the first part, the PC-SAFT EOS...
Thermodynamic model of global warming
International Nuclear Information System (INIS)
A thermodynamic model of global warming (greenhouse effect) has been developed to calculate the rise in global temperature and sea level due to increasing concentration of atmospheric greenhouse gases relative to the pre -industrial era (∼ 1800 A D). The growth rate of various greenhouse gases in future decades has been taken as per IPCC-1996 technical data. Accordingly, the mean global temperature is projected to rise by about 1.9 K during 1800-2100 A D out of which 1.3 K will be in the next 100 years (i.e. twenty first century). Also, the mean sea level is projected to rise by about 86 cm during 1800 to 2100 AD out of which 60 cm will be in the next 100 years. It is the thermal expansion of oceans which accounts for about 95% of the rise in sea level and the rest comes from the melting of ice in greenland, glaciers and mountain caps. (author)
Thermodynamic modelling of PWR coolant
International Nuclear Information System (INIS)
Corrosion products released from PWR and VVER primary circuit surface oxides are transported in the coolant to the core, where they deposit and are activated to form radioactive corrosion products, which can be re-released to re-deposit on out-of-core surfaces. Spinel solubilities vary with the pH, temperature and sometimes the hydrogen concentration of the coolant. This paper describes the development of an equilibrium thermodynamic model to predict such changes, and discusses the extent of the available solubility data for Fe, Ni, Co and Zn oxides. Results are described on the relative solubility of Fe and Ni under both normal operating conditions and during shutdown/start-up, and on the relative stabilities of stoichiometric and non-stoichiometric zinc ferrite spinels. Comparison of the calculated corrosion product concentrations with reactor measurements indicates that, in reactors with low Ni content in the steam generator alloys, the concentration of Ni in the coolant is limited by its availability in the surface oxide. In reactors with high-Ni alloys, the circulating Ni concentrations may be dominated by colloidal material. The calculated changes in Ni and Fe concentrations during the acid-reducing phase of shutdown are in reasonable agreement with measurements from Sizewell B. The paper highlights the need for a more comprehensive open corrosion product data base, the need to consider both boiling and radiolysis in the core on corrosion product solubility in different parts of the primary circuit and, finally, the importance of kinetic factors at low temperature behaviour during shutdown and start-up. (author)
An Abelian Model of Gravity and Canonical Quantization by Means of Path Integrals
Bracken, Paul
An Abelian model of gravity is introduced and its constraint structure is obtained. The main task is to show that the model with constraints can be canonically quantized by means of the canonical path integral formalism using the Faddeev-Popov approach. It is shown how the path integral can be simplified by carrying out the integrals over those variables for which the integrals can be computed.
Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory
Shashaank Vattikuti; Phyllis Thangaraj; Hua W Xie; Gotts, Stephen J.; Alex Martin; Chow, Carson C.
2016-01-01
It has been shown that the same canonical cortical circuit model with mutual inhibition and a fatigue process can explain perceptual rivalry and other neurophysiological responses to a range of static stimuli. However, it has been proposed that this model cannot explain responses to dynamic inputs such as found in intermittent rivalry and rivalry memory, where maintenance of a percept when the stimulus is absent is required. This challenges the universality of the basic canonical cortical cir...
Canonical versus grand canonical treatment of the conservation laws
International Nuclear Information System (INIS)
The differences between the canonical and the grand canoncial treatment of the conservation laws in the relativistic statistical thermodynamics are discussed. The possible implications on the thermodynamics description of hadronic matter created in particle or ion collisions are considered
A thermodynamic model of sliding friction
Directory of Open Access Journals (Sweden)
Lasse Makkonen
2012-03-01
Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.
Thermodynamically valid noise models for nonlinear devices
Coram, Geoffrey J.
2000-11-01
Noise has been a concern from the very beginning of signal processing and electrical engineering in general, although it was perhaps of less interest until vacuum- tube amplifiers made it audible just after 1900. Rigorous noise models for linear resistors were developed in 1927 by Nyquist and Johnson [1, 2]. However, the intervening years have not brought similarly well-established models for noise in nonlinear devices. This thesis proposes using thermodynamic principles to determine whether a given nonlinear device noise model is physically valid. These tests are applied to several models. One conclusion is that the standard Gaussian noise models for nonlinear devices predict thermodynamically impossible circuit behavior: these models should be abandoned. But the nonlinear shot-noise model predicts thermodynamically acceptable behavior under a constraint derived here. This thesis shows how the thermodynamic requirements can be reduced to concise mathematical tests, involving no approximations, for the Gaussian and shot-noise models. When the above-mentioned constraint is satisfied, the nonlinear shot-noise model specifies the current noise amplitude at each operating point from knowledge of the device v - i curve alone. This relation between the dissipative behavior and the noise fluctuations is called, naturally enough, a fluctuation- dissipation relation. This thesis further investigates such FDRs, including one for linear resistors in nonlinear circuits that was previously unexplored. The aim of this thesis is to provide thermodynamically solid foundations for noise models. It is hoped that hypothesized noise models developed to match experiment will be validated against the concise mathematical tests of this thesis. Finding a correct noise model will help circuit designers and physicists understand the actual processes causing the noise, and perhaps help them minimize the noise or its effect in the circuit. (Copies available exclusively from MIT Libraries, Rm
Thermodynamic and kinetic modelling: creep resistant materials
DEFF Research Database (Denmark)
Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson;
2008-01-01
The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase part...
Narasimhan, S L; Krishna, P S R; Ponmurugan, M; Murthy, K P N
2008-01-01
We have explained in detail why the canonical partition function of interacting self-avoiding walk (ISAW) is exactly equivalent to the configurational average of the weights associated with growth walks, such as the interacting growth walk (IGW), if the average is taken over the entire genealogical tree of the walk. In this context, we have shown that it is not always possible to factor the density of states out of the canonical partition function if the local growth rule is temperature dependent. We have presented Monte Carlo results for IGWs on a diamond lattice in order to demonstrate that the actual set of IGW configurations available for study is temperature dependent even though the weighted averages lead to the expected thermodynamic behavior of ISAW. PMID:18190183
Successive canonical transformation in model two-body electrodynamics
International Nuclear Information System (INIS)
The possibility is investigated of bypassing the no interaction theorum of Currie, Jordan and Sudarshan for direct action Lagrangians. Starting with the field theoretic description of a two-body electrodynamic problem, the field variable is solved for in terms of the particle variables, which paves the way to write an action-at-a-distance Hamiltonian for the problem. A suitable transformation is found which uncouples the field and the particle variables in the interaction up to order e2. It is shown that this transformation leaves the statement of Newton's 2nd law unchanged which also agrees with the standard results of electrodynamics. This allows for the identification of canonical variables for the proper action-at-a-distance problem. 19 references
Successive canonical transformation in model two-body electrodynamics
International Nuclear Information System (INIS)
We investigate the possibility of bypassing the no-interaction theorem of Currie, Jordan, and Sudarshan for direct action Lagrangians. Starting with the field-theoretic description of a two-body electrodynamic problem, we solve for the field variables in terms of the particle variables, which paves the way to write an action-at-a-distance Hamiltonian for the problem. A suitable transformation is found which uncouples the field and the particle variables in the interaction up to order e2. It is shown that this transformation leaves the statement of Newton's second law unchanged which also agrees with the standard results of electrodynamics. This allows for the identification of canonical variables for the proper action-at-a-distance problem
Renormalization procedure for random tensor networks and the canonical tensor model
International Nuclear Information System (INIS)
We discuss a renormalization procedure for random tensor networks, and show that the corresponding renormalization-group flow is given by the Hamiltonian vector flow of the canonical tensor model, which is a discretized model of quantum gravity. The result is a generalization of the previous one concerning the relation between the Ising model on random networks and the canonical tensor model with N=2. We also prove a general theorem that relates discontinuity of the renormalization-group flow and the phase transitions of random tensor networks
Modeling thermodynamics of Fe-N phases
DEFF Research Database (Denmark)
Pekelharing, Marjon I.; Böttger, Amarante; Somers, Marcel A. J.;
1999-01-01
In the present work homogeneous epsilon-nitride powders prepared at 723 K, having nitrogen contents ranging from 26.1 at. % N (z=0.29) to 31.1 at.% N (z=0.10), were investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two possible configur...
Quantization of the canonical tensor model and an exact wave function
International Nuclear Information System (INIS)
Tensor models in various forms are being studied as models of quantum gravity. Among them the canonical tensor model has a canonical pair of rank-three tensors as dynamical variables, and is a pure constraint system with first-class constraints. The Poisson algebra of the first-class constraints provides an algebraically consistent way of discretizing the Dirac algebra for general relativity. This paper successfully formulates the Wheeler-DeWitt quantization of the canonical tensor model. Formally one can obtain wave functions of the ''universe'' by solving the partial differential equations representing the constraints. For the simplest non-trivial case, the unique wave function is exactly and globally obtained. Although this case is far from being realistic, the wave function is physically interesting; locality is favored, and there exists a locus of configurations with features of the beginning of the universe
Brane structure and metastable graviton in five-dimensional model with (non)canonical scalar field
Zhong, Yuan; Zhao, Zhen-Hua
2014-01-01
The appearance of inner brane structure is an interesting issue in domain wall {brane model}. Because such structure usually leads to quasilocalized modes of various kinds of bulk fields. In this paper, we construct a domain wall brane model by using a scalar field $\\phi$, which couples to its kinetic term. The inner brane structure emerges as the scalar-kinetic coupling increases. With such brane structure, we show that it is possible to obtain gravity resonant modes in both tensor and scalar sectors. The number of the resonant modes depends on the vacuum expectation value of $\\phi$ and the form of scalar-kinetic coupling. The correspondence between our model and the canonical one is also discussed. The noncanonical and canonical background scalar fields are connected by an integral equation, while the warp factor remains the same. Via this correspondence, the canonical and noncanonical models share the same linear perturbation spectrum. So the gravity resonances {obtained} in the noncanonical frame can also...
Localizing the Latent Structure Canonical Uncertainty: Entropy Profiles for Hidden Markov Models
Durand, Jean-Baptiste
2012-01-01
This report addresses state inference for hidden Markov models. These models rely on unobserved states, which often have a meaningful interpretation. This makes it necessary to develop diagnostic tools for quantification of state uncertainty. The entropy of the state sequence that explains an observed sequence for a given hidden Markov chain model can be considered as the canonical measure of state sequence uncertainty. This canonical measure of state sequence uncertainty is not reflected by the classic multivariate state profiles computed by the smoothing algorithm, which summarizes the possible state sequences. Here, we introduce a new type of profiles which have the following properties: (i) these profiles of conditional entropies are a decomposition of the canonical measure of state sequence uncertainty along the sequence and makes it possible to localize this uncertainty, (ii) these profiles are univariate and thus remain easily interpretable on tree structures. We show how to extend the smoothing algori...
Non-local plasma response within the canonical profiles transport model
International Nuclear Information System (INIS)
The experiments on some tokamaks are simulated, where a fast response near the plasma centre was observed after cooling (by impurity ablation) or heating (by current rampup) at the edge. The canonical profiles transport model (CPTM) is modified for the simulations. The existing equations describing a slow relaxation of the real profile to the canonical profile are complemented by equations describing a fast evolution of the canonical profile. The problem of the canonical profile determination is linked to the transport set through the boundary conditions. Ohm's law and one of the Maxwell equations at the edge are used as boundary conditions for the canonical profile of μc (μ=1/q, q is the safety factor). Therefore, a change of Te(r) profile near the edge leads to a redistribution of the μc(r) profile and to a jump in the electron and ion heat diffusivities over the whole plasma cross-section. The sign of the response (heating or cooling) is very sensitive to details of Te(r) and the evolution of its gradient at the edge. The model reasonably describes both the core heating in TFTR and TEXT, and the core cooling in JET. (author)
Canonical quantization of the WZW model with defects and Chern-Simons theory
DEFF Research Database (Denmark)
Sarkissian, Gor
2010-01-01
We perform canonical quantization of the WZW model with defects and permutation branes. We establish symplectomorphism between phase space of WZW model with $N$ defects on cylinder and phase space of Chern-Simons theory on annulus times $R$ with $N$ Wilson lines, and between phase space of WZW...
Molecular Thermodynamic Model for Associated Polymers
Institute of Scientific and Technical Information of China (English)
PENG,Chang-Jun(彭昌军); LIU,Hong-Lai(刘洪来); HU,Ying(胡英)
2001-01-01
A molecular thermedynmnic model for homopolyrner and copolymer systems with association segments was establishedby adopting the molecular thermodynamic model for hard-sphere-chain fluid as a reference,a perturbation term contributed by the square-well potential and a contribution of as sociation terms.The latter considers the multi-associated-seg-ments in a chain-like molecule based on the shield-sticky model of chemical association.The model can be used to correlate the pVT of melten homopolymer and copolymer.Good agree-ments with experimental data have been obtained.
An Interacting Gauge Field Theoretic Model for Hodge Theory: Basic Canonical Brackets
R., Kumar; Gupta, S.; R. P., Malik
2014-06-01
We derive the basic canonical brackets amongst the creation and annihilation operators for a two (1 + 1)-dimensional (2D) gauge held theoretic model of an interacting Hodge theory where a U(1) gauge field (Aμ) is coupled with the fermionic Dirac fields (ψ and bar psi). In this derivation, we exploit the spin-statistics theorem, normal ordering and the strength of the underlying six infinitesimal continuous symmetries (and the concept of their generators) that are present in the theory. We do not use the definition of the canonical conjugate momenta (corresponding to the basic fields of the theory) anywhere in our whole discussion. Thus, we conjecture that our present approach provides an alternative to the canonical method of quantization for a class of gauge field theories that are physical examples of Hodge theory where the continuous symmetries (and corresponding generators) provide the physical realizations of the de Rham cohomological operators of differential geometry at the algebraic level.
Modeling thermodynamics of Fe-N phases
DEFF Research Database (Denmark)
Pekelharing, Marjon I.; Böttger, Amarante; Somers, Marcel A. J.; Steenvoorden, Michel P.; Kraan, Adrie M. van der; Mittemeijer, Eric J.
In the present work homogeneous epsilon-nitride powders prepared at 723 K, having nitrogen contents ranging from 26.1 at. % N (z=0.29) to 31.1 at.% N (z=0.10), were investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two possible configur......In the present work homogeneous epsilon-nitride powders prepared at 723 K, having nitrogen contents ranging from 26.1 at. % N (z=0.29) to 31.1 at.% N (z=0.10), were investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two possible...
THERMODYNAMIC MODEL OF INTELLECTUAL SENSOR SYSTEM OPERATION
Directory of Open Access Journals (Sweden)
V. Koleshko
2012-01-01
Full Text Available The paper presents a thermodynamic model reflecting interrelation of information and energy characteristics pertaining to the process of an intellectual sensor system operation. Sequence of parameter transformations has been analyzed in the process of sensor control while using the sensor with self-generation and without it. It has been shown that while executing high-accuracy control data amount is determined by relative accuracy algorithm and while carrying out rough control of physical values the given parameter depends on relative accuracy square. The paper contains a dependence of enthropy efficiency value of sensor control on its relative error. Evaluation of energy complexity pertaining to the execution of the given procedure has been analyzed for thermodynamic model of sensor data processing. The paper proposes a thermodynamic model where an input signal is realized in the form of separate energy abrupt changes and reveals the possibilities to reduce energy complexity of data process in the sensor control
Alkharusi, Hussain
2013-01-01
The present study aims at deriving correlational models of students' perceptions of assessment tasks, motivational orientations, and learning strategies using canonical analyses. Data were collected from 198 Omani tenth grade students. Results showed that high degrees of authenticity and transparency in assessment were associated with positive…
Basic canonical brackets in the gauge field theoretic models for the Hodge theory
Gupta, S; Malik, R P
2014-01-01
We deduce the canonical brackets for a two (1 + 1)-dimensional (2D) free Abelian 1-form as well as a four (3 + 1)-dimensional (4D) 2-form gauge theory by exploiting the beauty and strength of the continuous symmetries of the Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian densities that respect, in totality, six continuous symmetries. These symmetries entail upon these models to become the field theoretic examples for the Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that appear in the canonical method of quantization for the normal mode expansion of the basic fields of these theories. In other words, we provide an alternative to the canonical method of quantization for our present gauge field theoretic models for the Hodge theory where the continuous symmetries play a decisive role. We conjecture that our method of quantization would be valid for any arbitrary gauge field theoretic model for th...
Development of thermodynamics cognitive model of project activities
Савєльєва, Оксана Степанівна; Становська, Іраїда Іванівна; Торопенко, Алла Володимірівна; Березовська, Катерина Ігорівна; Хеблов, Ісмаіл
2016-01-01
Application of thermodynamic relations for decision support project activities. For this analysis of multiple elements of project activity, highlighted thermodynamic analogues transfer and their parameters and criteria made to adapt the set potentials and flows to modeling the type of thermodynamic functions and criteria proposed thermodynamic cognitive models transfer material and financial resources among elements of project activity based on analytical criterion equations thermal processes...
The final log canonical model of $\\bar{M}_6$
Müller, Fabian
2013-01-01
We describe the birational model of $\\bar{M}_6$ given by quadric hyperplane sections of the degree 5 del Pezzo surface. In the spirit of the genus 4 case treated by Fedorchuk, we show that it is the last non-trivial space in the log minimal model program for $\\bar{M}_6$. We also obtain a new upper bound for the moving slope of the moduli space.
Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta
Kumar, R.; Gupta, S.; Malik, R. P.
2016-01-01
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.
Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta
Kumar, R.; Gupta, S.; Malik, R. P.
2016-06-01
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.
Standard Model thermodynamics across the electroweak crossover
Energy Technology Data Exchange (ETDEWEB)
Laine, M.; Meyer, M. [Institute for Theoretical Physics, Albert Einstein Center, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2015-07-22
Even though the Standard Model with a Higgs mass m{sub \\tiny H}=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV.
Standard Model thermodynamics across the electroweak crossover
International Nuclear Information System (INIS)
Even though the Standard Model with a Higgs mass m\\tiny H=125 GeV possesses no bulk phase transition, its thermodynamics still experiences a “soft point” at temperatures around T=160 GeV, with a deviation from ideal gas thermodynamics. Such a deviation may have an effect on precision computations of weakly interacting dark matter relic abundances if their mass is in the few TeV range, or on leptogenesis scenarios operating in this temperature range. By making use of results from lattice simulations based on a dimensionally reduced effective field theory, we estimate the relevant thermodynamic functions across the crossover. The results are tabulated in a numerical form permitting for their insertion as a background equation of state into cosmological particle production/decoupling codes. We find that Higgs dynamics induces a non-trivial “structure” visible e.g. in the heat capacity, but that in general the largest radiative corrections originate from QCD effects, reducing the energy density by a couple of percent from the free value even at T>160 GeV
Canonical dressing in the multimode Jaynes-Cummings model
International Nuclear Information System (INIS)
The construction of a series of unitary decoupling transformations, which diagonalizes the multimode generalization of the Jaynes-Cummings model and provides them with an extremely convenient basis to gain a deeper understanding of the dressing processes present in the matter-radiation interaction, is presented
Canonical and path integral quantization of string cosmology models
Cavaglia, M; Ungarelli, C.
1999-01-01
We discuss the quantisation of a class of string cosmology models that are characterized by scale factor duality invariance. We compute the amplitudes for the full set of classically allowed and forbidden transitions by applying the reduce phase space and the path integral methods. We show that these approaches are consistent. The path integral calculation clarifies the meaning of the instanton-like behaviour of the transition amplitudes that has been first pointed out in previous investigati...
Canonical and noncanonical variables, Baxter's Q-operator and the XXX model
International Nuclear Information System (INIS)
Baxter's Q-operator for the XXX model is analysed to study the different roles played by the canonical and noncanonical variables using the formalism of Sklyanin. In this approach to the study of Baecklund transformation (BT) and Baxter's Q-operator one requires two Lax operators obeying the same Poisson algebra (i.e. having the same classical r matrix). Usually the nonlinear variables in the Lax operator are canonically conjugate quantities. In this communication we have shown that even when the variables in one Lax operator are not canonical, it is still possible to construct the BT and Q-operator by a proper representation of the corresponding nonlinear variables. The price for this is that, the BT is not easily interpretable as a canonical transformation in the conventional sense of the term. However the Q-operator for the XXX chain turns out to be similar to that obtained by Derkachov [J Phys A 32 (1999) 316] using a similar representation but in a different manner. It is important to note that although, in contrast to the results obtained by Kuznetsov et al. [J Phys A 33 (2000) 171], the Q-operator depends on two adjacent sites (xi,xi-1), its relevant properties can be explicitly established
Canonical term-structure models with observable factors and the dynamics of bond risk premiums
Marcello Pericoli; Marco Taboga
2006-01-01
We study the dynamics of risk premiums on the German bond market, employing no-arbitrage term-structure models with both observable and unobservable state variables, recently popularized by Ang and Piazzesi (2003). We conduct a specification analisys based on a new canonical representation for this class of models. We find that risk premiums display a considerable variability over time, are strongly counter-cyclical and bear no significant relation to inflation.
Courtney, Owen T
2016-01-01
Simplicial complexes are generalized network structures able to encode interactions occurring between more than two nodes. Simplicial complexes describe a large variety of complex interacting systems ranging from brain networks, to social and collaboration networks. Here we characterize the structure of simplicial complexes using their generalized degrees that capture fundamental properties of one, two, three or more linked nodes. Moreover we introduce the configuration model and the canonical ensemble of simplicial complexes, enforcing respectively the sequence of generalized degrees of the nodes and the sequence of the expected generalized degrees of the nodes. We evaluate the entropy of these ensembles, finding the asymptotic expression for the number of simplicial complexes in the configuration model. We provide the algorithms for the construction of simplicial complexes belonging to the configuration model and the canonical ensemble of simplicial complexes. We give an expression for the structural cutoff...
A thermodynamic model for blended cements
International Nuclear Information System (INIS)
A chemical thermodynamic model has been developed for blended cements, called CEMCHEM. Given the chemical compositions of the blend materials, CEMCHEM calculates the equilibrium phase distribution, achieved at 25oC. It is based on a portion of the CaO-Al2O3- SiO2- SO3- H2O system, whose phase relations have been determined from the results of 'compatibility experiments'. Solubility models have been developed for the cement hydrate phases used in CEMCHEM, for use with the computer codes MINEQL, PHREEQE and EQ3/6. Validation of the overall approach is provided by the agreement between observed and calculated aqueous compositions for the compatibility experiments. Thus CEMCHEM, with the cement hydrate solubility models, can be used as the basis for modelling near field chemistry in cementitious radwaste repositories. (author)
Relations between canonical and non-canonical inflation
Energy Technology Data Exchange (ETDEWEB)
Gwyn, Rhiannon [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2012-12-15
We look for potential observational degeneracies between canonical and non-canonical models of inflation of a single field {phi}. Non-canonical inflationary models are characterized by higher than linear powers of the standard kinetic term X in the effective Lagrangian p(X,{phi}) and arise for instance in the context of the Dirac-Born-Infeld (DBI) action in string theory. An on-shell transformation is introduced that transforms non-canonical inflationary theories to theories with a canonical kinetic term. The 2-point function observables of the original non-canonical theory and its canonical transform are found to match in the case of DBI inflation.
Relations between canonical and non-canonical inflation
International Nuclear Information System (INIS)
We look for potential observational degeneracies between canonical and non-canonical models of inflation of a single field φ. Non-canonical inflationary models are characterized by higher than linear powers of the standard kinetic term X in the effective Lagrangian p(X,φ) and arise for instance in the context of the Dirac-Born-Infeld (DBI) action in string theory. An on-shell transformation is introduced that transforms non-canonical inflationary theories to theories with a canonical kinetic term. The 2-point function observables of the original non-canonical theory and its canonical transform are found to match in the case of DBI inflation.
Czech Academy of Sciences Publication Activity Database
Kroupa, Aleš
2013-01-01
Roč. 66, JAN (2013), s. 3-13. ISSN 0927-0256 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Calphad method * phase diagram modelling * thermodynamic database development Subject RIV: BJ - Thermodynamics Impact factor: 1.879, year: 2013
Thermodynamic modeling of lead blast furnace
Institute of Scientific and Technical Information of China (English)
TAN Peng-fu
2005-01-01
A thermodynamic model was developed to predict the distribution behavior of Cu,Fe,S,O,Pb,Zn,As,and the heat balance in a lead blast furnace.The modeling results are validated by the plant data of a lead smelter in Kazakhstan.The model can be used to predict any set of controllable process parameters such as feed composition,smelting temperature,degree of oxygen enrichment and volume of oxygen-enriched air.The effects of the blast air,industrial oxygen,and coke charge on the distribution of Cu,Fe,S,O,Pb,Zn,As,the heat balance,and the lead loss in slag,were presented and discussed.
International Nuclear Information System (INIS)
The supersymmetric version of the Stueckelberg Lagrangian of the massive vector superfield leads to an example of higher-order derivative model. The canonical quantization yields massive states which compose two irreducible representations, one physical supermultiplet and another spurious. The origin of the different spurious states are investigated, especially those originating from the higher-order derivative terms. The spurious superfield is found to be decoupled when the supercurrent satisfies some appropriate conditions. (orig.)
The Thermodynamic Model for Nuclear Multifragmentation
Das, C. B.; Gupta, S. Das; Lynch, W.G.; Mekjian, A. Z.; M. B. Tsang
2004-01-01
A great many observables seen in intermediate energy heavy ion collisions can be explained on the basis of statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble (energy and number of particles in the system are kept fixed), canonical ensemble (temperature and number of particles are kept fixed) or grand canonical ensemble (fixed temperature and a variable number of particles but with an assigned average). This paper deals with cal...
Thermodynamic modeling for clathrate hydrates of ozone
International Nuclear Information System (INIS)
Highlights: • We present a phase-equilibrium model for ozone-containing clathrate hydrates. • We determine intermolecular potential parameters for O3. • There is good agreement between the developed model and the experimental data. • The results show the capability of O3 as a guest substance for clathrate hydrates. • We perform parametric studies for O3 storage capacity with various thermodynamic conditions. -- Abstract: We report a theoretical study to predict the phase-equilibrium properties of ozone-containing clathrate hydrates based on the statistical thermodynamics model developed by van der Waals and Platteeuw. The Patel–Teja–Valderrama equation of state is employed for an accurate estimation of the properties of gas phase ozone. We determined the three parameters of the Kihara intermolecular potential for ozone as a = 6.815 · 10−2 nm, σ = 2.9909 · 10−1 nm, and ε · kB−1 = 184.00 K. An infinite set of ε–σ parameters for ozone were determined, reproducing the experimental phase equilibrium pressure–temperature data of the (O3 + O2 + CO2) clathrate hydrate. A unique parameter pair was chosen based on the experimental ozone storage capacity data for the (O3 + O2 + CCl4) hydrate that we reported previously. The prediction with the developed model showed good agreement with the experimental phase equilibrium data within ±2% of the average deviation of the pressure. The Kihara parameters of ozone showed slightly better suitability for the structure-I hydrate than CO2, which was used as a help guest. Our model suggests the possibility of increasing the ozone storage capacity of clathrate hydrates (∼7% on a mass basis) from the previously reported experimental capacity (∼1%)
Thermodynamic watershed hydrological model: Constitutive relationship
Institute of Scientific and Technical Information of China (English)
2008-01-01
The representative elementary watershed (REW) approach proposed by Reggiani et al. was the first attempt to develop scale adaptable equations applicable directly at the macro scale. Tian et al. extended the initial definition of REW for simulating the energy related processes, and re-organized the deriving procedure of balance equations so that additional sub-regions and substances could be easily incorpo-rated. The resultant ordinary differential equation set can simulate various hydro-logical processes in a physically reasonable way. However, constitutive and geo-metric relationships have not been developed for Tian et al.’s equation set, which are necessary for the thermodynamic watershed hydrological model to apply in hydrological modeling practice. In this work, the constitutive equations for mass exchange terms and momentum exchange terms were developed as well as geo-metric relationships. The closed ordinary differential equation set with nine equa-tions was finally obtained.
Fermi, Enrico
1956-01-01
Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr
Thermodynamics and phase transitions in the Overhauser model
Energy Technology Data Exchange (ETDEWEB)
Duffield, N.G.; Pule, J.V.
1989-01-01
The authors analyze the thermodynamics of the Overhauser model and demonstrate rigorously the existence of a phase transition. This is achieved by extending techniques previously developed to treat the BCS model in the quasi-spin formulation. Additionally, they compare the thermodynamics of the quasi-spin and full-trace BCS models. The results are identical up to a temperature rescaling.
Thermodynamics and phase transitions in the Overhauser model
Duffield, N. G.; Pulé, J. V.
1989-01-01
We analyze the thermodynamics of the Overhauser model and demonstrate rigorously the existence of a phase transition. This is achieved by extending techniques previously developed to treat the BCS model in the quasi-spin formulation. Additionally, we compare the thermodynamics of the quasi-spin and full-trace BCS models. The results are identical up to a temperature rescaling.
Calculation of Thermodynamic Parameters for Freundlich and Temkin Isotherm Models
Institute of Scientific and Technical Information of China (English)
ZHANGZENGQIANG; ZHANGYIPING; 等
1999-01-01
Derivation of the Freundlich and Temkin isotherm models from the kinetic adsorption/desorption equations was carried out to calculate their thermodynamic equilibrium constants.The calculation formulase of three thermodynamic parameters,the standard molar Gibbs free energy change,the standard molar enthalpy change and the standard molar entropy change,of isothermal adsorption processes for Freundlich and Temkin isotherm models were deduced according to the relationship between the thermodynamic equilibrium constants and the temperature.
Nonequilibrium Thermodynamic Model of Manganese Carbonate Oxidation
Institute of Scientific and Technical Information of China (English)
郝瑞霞; 彭省临
1999-01-01
Manganese carbonate can be converted to many kinds of manganese oxides when it is aerated in air and oxygen.Pure manganese carbonate can be changed into Mn3O4 and γ-MnOOH,and manganese carbonate ore can be converted to MnO2 under the air-aerating and oxygen-aerating circumstances.The oxidation process of manganese carbonate is a changing process of mineral association,and is also a converting process of valence of manganese itself.Not only equilibrium stat,but also nonequilibrium state are involved in this whole process,This process is an irreversible heterogeneous complex reaction,and oberys the nonequilibrium thermodynamic model,The oxidation rate of manganese cabonate is controlled by many factors,especially nonmanganese metallic ions which play an important role in the oxidation process of manganese carbonate.
An Interacting Gauge Field Theoretic Model for Hodge Theory: Basic Canonical Brackets
International Nuclear Information System (INIS)
We derive the basic canonical brackets amongst the creation and annihilation operators for a two (1 + 1)-dimensional (2D) gauge held theoretic model of an interacting Hodge theory where a U(1) gauge field (Aμ) is coupled with the fermionic Dirac fields (ψ and ψ-bar ). In this derivation, we exploit the spin-statistics theorem, normal ordering and the strength of the underlying six infinitesimal continuous symmetries (and the concept of their generators) that are present in the theory. We do not use the definition of the canonical conjugate momenta (corresponding to the basic fields of the theory) anywhere in our whole discussion. Thus, we conjecture that our present approach provides an alternative to the canonical method of quantization for a class of gauge field theories that are physical examples of Hodge theory where the continuous symmetries (and corresponding generators) provide the physical realizations of the de Rham cohomological operators of differential geometry at the algebraic level. (physics of elementary particles and fields)
A thermodynamic counterpart of the Axelrod model of social influence
Gandica, Y; Bonalde, I
2012-01-01
We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional lattices, the thermodynamic model becomes a Potts model of several coupled chains with a site (agent) interaction that increases with the site matching traits. We analytically calculate thermodynamic and critical properties for a one-dimensional system and show that an order-disorder phase transition only occurs at T=0 independent of the number of cultural traits q and features F of the agents. We find that the parameter q does not induce any transition or anomaly in the thermodynamic model, as it does in the standard social model that violates detailed balance. The one-dimensional thermodynamic Axelrod model belongs to the same universality class of the Ising and Potts models notwithstanding the increase of the internal dimension of the local degree of freedom (agent).
Thermodynamics of quantum strings
Morgan, M J
1994-01-01
A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)
A null model for testing thermodynamic optimization in ecological systems
Doyle, Santiago R.; Carusela, Florencia; Guala, Sebastián; Momo, Fernando
2011-01-01
Several authors have hypothesized that ecological systems are subject to thermodynamic optimization, which, if proven correct, could represent a long sought general principle of organization in ecology. Although there have been recent advances, this still remains as an unresolved topic, and ecologists lack a general method to test thermodynamic optimization hypotheses in specific systems. Here we present a general, novel approach that allows generating a null model for testing thermodynamic o...
Thermodynamics of the topological Kondo model
Energy Technology Data Exchange (ETDEWEB)
Buccheri, Francesco, E-mail: buccheri@iip.ufrn.br [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Babujian, Hrachya [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Yerevan Physics Institute, Alikhanian Brothers 2, Yerevan, 375036 (Armenia); Korepin, Vladimir E. [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); C. N. Yang Institute for Theoretical Physics, Stony Brook University, NY 11794 (United States); Sodano, Pasquale [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Departemento de Fisíca Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Trombettoni, Andrea [CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste (Italy)
2015-07-15
Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and derive its free energy for arbitrary (even and odd) number of external wires. We then analyse the ground state energy as a function of the number of external wires and of their couplings to the Majorana bound states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of freedom localized within the central region and connected to the external wires. Our exact computation of the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly coupled fixed point.
Self-organization of hot plasmas the canonical profile transport model
Dnestrovskij, Yu N
2015-01-01
In this monograph the author presents the Canonical Profile Transport Model or CPTM as a rather general mathematical framework to simulate plasma discharges.The description of hot plasmas in a magnetic fusion device is a very challenging task and many plasma properties still lack a physical explanation. One important property is plasma self-organization.It is very well known from experiments that the radial profile of the plasma pressure and temperature remains rather unaffected by changes of the deposited power or plasma density. The attractiveness of the CPTM is that it includes the effect o
Courtney, Owen T.; Bianconi, Ginestra
2016-06-01
Simplicial complexes are generalized network structures able to encode interactions occurring between more than two nodes. Simplicial complexes describe a large variety of complex interacting systems ranging from brain networks to social and collaboration networks. Here we characterize the structure of simplicial complexes using their generalized degrees that capture fundamental properties of one, two, three, or more linked nodes. Moreover, we introduce the configuration model and the canonical ensemble of simplicial complexes, enforcing, respectively, the sequence of generalized degrees of the nodes and the sequence of the expected generalized degrees of the nodes. We evaluate the entropy of these ensembles, finding the asymptotic expression for the number of simplicial complexes in the configuration model. We provide the algorithms for the construction of simplicial complexes belonging to the configuration model and the canonical ensemble of simplicial complexes. We give an expression for the structural cutoff of simplicial complexes that for simplicial complexes of dimension d =1 reduces to the structural cutoff of simple networks. Finally, we provide a numerical analysis of the natural correlations emerging in the configuration model of simplicial complexes without structural cutoff.
On the thermodynamically consistent quasiparticle model of quark gluon plasma
Kadam, Guru Prakash
2016-01-01
We give the alternative formulation of quasiparticle model of quark gluon plasma with medium dependent dispersion relation. The model is thermodynamically consistent provided the medium dependent contribution to the energy density is taken in to account. We establish the connection of our model with other variants of quasiparticle models which are thermodynamically consistent. We test the model by comparing the equation of state with the lattice gauge theory simulations of SU(3) pure gluodynamics .
Bag model of hadrons, dual QCD thermodynamics and Quark-Gluon Plasma
Chandola, H C; Dehnen, H
2015-01-01
Using the grand canonical ensemble formulation of a multi-particle statistical system, the thermodynamical description of the dual QCD has been presented in terms of the bag model of hadrons and analyzed for the quark-gluon plasma phase of hadronic matter. The dual QCD bag construction has been shown to lead to the radial pressure on the bag surface in terms of the vector glueball masses of the magnetically condensed QCD vacuum. Constructing the grand canonical partition function to deal with the quark-gluon plasma phase of the non-strange hadrons, the energy density and the plasma pressure have been derived and used to understand the dynamics of the associated phase transition. The critical temperature for QGP-hadron phase transition has been derived and numerically estimated by using various thermodynamic considerations. A comparison of the values of the critical temperatures for QGP-hadron phase transition with those obtained for the deconfinement-phase transition, has been shown to lead to the relaxation ...
Bremner, Paul G.; Vazquez, Gabriel; Christiano, Daniel J.; Trout, Dawn H.
2016-01-01
Prediction of the maximum expected electromagnetic pick-up of conductors inside a realistic shielding enclosure is an important canonical problem for system-level EMC design of space craft, launch vehicles, aircraft and automobiles. This paper introduces a simple statistical power balance model for prediction of the maximum expected current in a wire conductor inside an aperture enclosure. It calculates both the statistical mean and variance of the immission from the physical design parameters of the problem. Familiar probability density functions can then be used to predict the maximum expected immission for deign purposes. The statistical power balance model requires minimal EMC design information and solves orders of magnitude faster than existing numerical models, making it ultimately viable for scaled-up, full system-level modeling. Both experimental test results and full wave simulation results are used to validate the foundational model.
Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory
Vattikuti, Shashaank; Xie, Hua W.; Gotts, Stephen J.; Martin, Alex; Chow, Carson C.
2016-01-01
It has been shown that the same canonical cortical circuit model with mutual inhibition and a fatigue process can explain perceptual rivalry and other neurophysiological responses to a range of static stimuli. However, it has been proposed that this model cannot explain responses to dynamic inputs such as found in intermittent rivalry and rivalry memory, where maintenance of a percept when the stimulus is absent is required. This challenges the universality of the basic canonical cortical circuit. Here, we show that by including an overlooked realistic small nonspecific background neural activity, the same basic model can reproduce intermittent rivalry and rivalry memory without compromising static rivalry and other cortical phenomena. The background activity induces a mutual-inhibition mechanism for short-term memory, which is robust to noise and where fine-tuning of recurrent excitation or inclusion of sub-threshold currents or synaptic facilitation is unnecessary. We prove existence conditions for the mechanism and show that it can explain experimental results from the quartet apparent motion illusion, which is a prototypical intermittent rivalry stimulus. PMID:27138214
Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory.
Directory of Open Access Journals (Sweden)
Shashaank Vattikuti
2016-05-01
Full Text Available It has been shown that the same canonical cortical circuit model with mutual inhibition and a fatigue process can explain perceptual rivalry and other neurophysiological responses to a range of static stimuli. However, it has been proposed that this model cannot explain responses to dynamic inputs such as found in intermittent rivalry and rivalry memory, where maintenance of a percept when the stimulus is absent is required. This challenges the universality of the basic canonical cortical circuit. Here, we show that by including an overlooked realistic small nonspecific background neural activity, the same basic model can reproduce intermittent rivalry and rivalry memory without compromising static rivalry and other cortical phenomena. The background activity induces a mutual-inhibition mechanism for short-term memory, which is robust to noise and where fine-tuning of recurrent excitation or inclusion of sub-threshold currents or synaptic facilitation is unnecessary. We prove existence conditions for the mechanism and show that it can explain experimental results from the quartet apparent motion illusion, which is a prototypical intermittent rivalry stimulus.
Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory.
Vattikuti, Shashaank; Thangaraj, Phyllis; Xie, Hua W; Gotts, Stephen J; Martin, Alex; Chow, Carson C
2016-05-01
It has been shown that the same canonical cortical circuit model with mutual inhibition and a fatigue process can explain perceptual rivalry and other neurophysiological responses to a range of static stimuli. However, it has been proposed that this model cannot explain responses to dynamic inputs such as found in intermittent rivalry and rivalry memory, where maintenance of a percept when the stimulus is absent is required. This challenges the universality of the basic canonical cortical circuit. Here, we show that by including an overlooked realistic small nonspecific background neural activity, the same basic model can reproduce intermittent rivalry and rivalry memory without compromising static rivalry and other cortical phenomena. The background activity induces a mutual-inhibition mechanism for short-term memory, which is robust to noise and where fine-tuning of recurrent excitation or inclusion of sub-threshold currents or synaptic facilitation is unnecessary. We prove existence conditions for the mechanism and show that it can explain experimental results from the quartet apparent motion illusion, which is a prototypical intermittent rivalry stimulus. PMID:27138214
Equation of motion of canonical tensor model and Hamilton-Jacobi equation of general relativity
Chen, Hua; Sato, Yuki
2016-01-01
The canonical tensor model (CTM) is a rank-three tensor model formulated as a totally constrained system in the canonical formalism. The constraint algebra of CTM has a similar structure as that of the ADM formalism of general relativity, and is studied as a discretized model for quantum gravity. In this paper, we analyze the classical equation of motion (EOM) of CTM in a formal continuum limit through a derivative expansion of the tensor up to the forth order, and show that it is the same as the EOM of a coupled system of gravity and a scalar field derived from the Hamilton-Jacobi equation with an appropriate choice of an action. The action contains a scalar field potential of an exponential form, and the system classically respects a dilatational symmetry. We find that the system has a critical dimension, given by six, over which it becomes unstable due to the wrong sign of the scalar kinetic term. In six dimensions, de Sitter spacetime becomes a solution to the EOM, signaling the emergence of a conformal s...
Comparison of thermodynamic databases used in geochemical modelling
International Nuclear Information System (INIS)
Four thermodynamic databases used by European groups for geochemical modelling have been compared. Thermodynamic data for both aqueous species and solid species have been listed. When the values are directly comparable any differences between them have been highlighted at two levels of significance. (author)
Solanki, Arun
2008-01-01
The comprehension of the laws which govern any material system is greatly facilitated by considering the energy and entropy of the system in various states of which it is capable. As in the case of simply mechanics systems, the performance of mechanical work, the function which expresses the capability of the system for this kind of action also plays the leading part in the theory of equilibrium. The present book is written to explain the basic concepts, theories and equilibrium concerning thermodynamics of fluids and stationary systems, geometrical representation of thermodynamic properties
Physical states in the canonical tensor model from the perspective of random tensor networks
Narain, Gaurav; Sato, Yuki
2014-01-01
Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for physical wave-functions, which do not seem straightforward to solve due to their non-linear character. In this paper, after providing some explicit solutions for N = 2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks, or random tensor networks more generally, provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological con...
Thermodynamic modeling of micro heat engines for power generation
Khu, Khu; Jiang, Liudi; Markvart, Tom
2010-01-01
The need for compact, high power-density power sources has led to significant research interest in micro heat engines. However, there is a lack of suitable thermodynamic models which can be used to evaluate the power performance of micro heat engines by taking into consideration the effect of leakage and finite heat input. This work is the first to develop such a thermodynamic model to predict the upper limit of performance of micro heat engines. The model allows investigation of the effects ...
Formulations of moist thermodynamics for atmospheric modelling
Marquet, Pascal
2015-01-01
Internal energy, enthalpy and entropy are the key quantities to study thermodynamic properties of the moist atmosphere, because they correspond to the First (internal energy and enthalpy) and Second (entropy) Laws of thermodynamics. The aim of this chapter is to search for analytical formulas for the specific values of enthalpy and entropy and for the moist-air mixture composing the atmosphere. The Third Law of thermodynamics leads to the definition of absolute reference values for thermal enthalpies and entropies of all atmospheric species. It is shown in this Chapter 22 that it is possible to define and compute a general moist-air entropy potential temperature, which is really an equivalent of the moist-air specific entropy in all circumstances (saturated, or not saturated). Similarly, it is shown that it is possible to define and compute the moist-air specific enthalpy, which is different from the thermal part of what is called Moist-Static-Energy in atmospheric studies.
IFN signaling: how a non-canonical model led to the development of IFN mimetics
Directory of Open Access Journals (Sweden)
Howard M Johnson
2013-07-01
Full Text Available The classical model of cytokine signaling dominates our view of specific gene activation by cytokines such as the interferons (IFNs. The importance of the model extends beyond cytokines and applies to hormones such as growth hormone (GH and insulin, and growth factors such as epidermal growth factor (EGF and fibroblast growth factor (FGF. According to this model, ligand activates the cell via interaction with the extracellular domain of the receptor. This results in activation of receptor or receptor-associated tyrosine kinases, primarily of the Janus kinase (JAK family, phosphorylation and dimerization of the STAT transcription factors, which dissociate from the receptor cytoplasmic domain and translocate to the nucleus. This view ascribes no further role to the ligand, JAK kinase, or receptor in either specific gene activation or the associated epigenetic events. The presence of dimeric STATs in the nucleus essentially explains it all. Our studies have resulted in the development of a non-canonical, more complex model of IFNγ signaling that is akin to that of steroid hormone/steroid receptor signaling. We have shown that ligand, receptor, activated JAKs and STATs are associated with specific gene activation, where the receptor subunit IFNGR1 functions as a co-transcription factor and the JAKs are involved in associated epigenetic events. We found that the type I IFN system functions similarly. The fact that GH receptor, insulin receptor, EGF receptor, and FGF receptor undergo nuclear translocation upon ligand binding suggests that they may also function similarly. The steroid hormone/steroid receptor nature of type I and II IFN signaling provides insight into the specificity of signaling by members of cytokine families. The non-canonical model could also provide better understanding to more complex cytokine families such as those of IL-2 and IL-12, whose members often use the same JAKs and STATs, but also have different functions and
Critical adsorption and critical Casimir forces in the canonical ensemble
Gross, Markus; Vasilyev, Oleg; Gambassi, Andrea; Dietrich, S.
2016-08-01
Critical properties of a liquid film between two planar walls are investigated in the canonical ensemble, within which the total number of fluid particles, rather than their chemical potential, is kept constant. The effect of this constraint is analyzed within mean-field theory (MFT) based on a Ginzburg-Landau free-energy functional as well as via Monte Carlo simulations of the three-dimensional Ising model with fixed total magnetization. Within MFT and for finite adsorption strengths at the walls, the thermodynamic properties of the film in the canonical ensemble can be mapped exactly onto a grand canonical ensemble in which the corresponding chemical potential plays the role of the Lagrange multiplier associated with the constraint. However, due to a nonintegrable divergence of the mean-field order parameter profile near a wall, the limit of infinitely strong adsorption turns out to be not well-defined within MFT, because it would necessarily violate the constraint. The critical Casimir force (CCF) acting on the two planar walls of the film is generally found to behave differently in the canonical and grand canonical ensembles. For instance, the canonical CCF in the presence of equal preferential adsorption at the two walls is found to have the opposite sign and a slower decay behavior as a function of the film thickness compared to its grand canonical counterpart. We derive the stress tensor in the canonical ensemble and find that it has the same expression as in the grand canonical case, but with the chemical potential playing the role of the Lagrange multiplier associated with the constraint. The different behavior of the CCF in the two ensembles is rationalized within MFT by showing that, for a prescribed value of the thermodynamic control parameter of the film, i.e., density or chemical potential, the film pressures are identical in the two ensembles, while the corresponding bulk pressures are not.
Determination of thermodynamic data for modeling corrosion
International Nuclear Information System (INIS)
Preventing or diminishing corrosion in PWR steam generators requires an understanding of chemical reactions that occur at the metal-water interface. Tests performed with a high-temperature, corrosion-resistant flow calorimeter yielded important thermodynamic properties of several reactions involving potentially corrosive copper ions, nickel ions, and sodium ions
The integrated model of sport confidence: a canonical correlation and mediational analysis.
Koehn, Stefan; Pearce, Alan J; Morris, Tony
2013-12-01
The main purpose of the study was to examine crucial parts of Vealey's (2001) integrated framework hypothesizing that sport confidence is a mediating variable between sources of sport confidence (including achievement, self-regulation, and social climate) and athletes' affect in competition. The sample consisted of 386 athletes, who completed the Sources of Sport Confidence Questionnaire, Trait Sport Confidence Inventory, and Dispositional Flow Scale-2. Canonical correlation analysis revealed a confidence-achievement dimension underlying flow. Bias-corrected bootstrap confidence intervals in AMOS 20.0 were used in examining mediation effects between source domains and dispositional flow. Results showed that sport confidence partially mediated the relationship between achievement and self-regulation domains and flow, whereas no significant mediation was found for social climate. On a subscale level, full mediation models emerged for achievement and flow dimensions of challenge-skills balance, clear goals, and concentration on the task at hand. PMID:24334324
Excluded volume effect on thermodynamical quantities in a hadron thermal model
Energy Technology Data Exchange (ETDEWEB)
Hirsch, Luciana Rocha [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil); Delfino, Antonio [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Chiapparini, Marcelo [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica
2011-07-01
Full text: We present an investigation of thermodynamical aspects on systems produced after central heavy-ion collisions for the energy at center of mass, {radical}s, varying from 1 up to 200 GeV. Our study has been done via our own thermal model version realized only in a gran canonical ensemble, in which the strangeness, isotopic and baryonic charges are conserved explicit. Our ensemble includes all hadrons with masses up to 2 GeV, lights and strangers. The branching ratios are taken into account. The results allow to construct a functional f({radical}s, {mu}b, T) that could be compared with other ones presented in the literature. In our approach we study mesons and baryons point-like in order to compare with excluded volume effects on some thermodynamical quantities as, for instance, total pressure, energy per particle, entropy density and the fireball freeze-out volume. We show that, although equal baryon and meson excluded volume do not affect much the hadronic ratio fittings, they cause a sizeable dependence on the studied thermodynamical quantities. (author)
Quantum thermodynamics of the driven resonant level model
Bruch, Anton; Thomas, Mark; Viola Kusminskiy, Silvia; von Oppen, Felix; Nitzan, Abraham
2016-03-01
We present a consistent thermodynamic theory for the resonant level model in the wide-band limit, whose level energy is driven slowly by an external force. The problem of defining "system" and "bath" in the strong-coupling regime is circumvented by considering as the system everything that is influenced by the externally driven level. The thermodynamic functions that are obtained to first order beyond the quasistatic limit fulfill the first and second law with a positive entropy production, successfully connect to the forces experienced by the external driving, and reproduce the correct weak-coupling limit of stochastic thermodynamics.
Thermodynamical Aspects of Modified Holographic Dark Energy Model
Li, Hui; Zhang, Yi
2014-07-01
We investigate the unified first law and the generalized second law in a modified holographic dark energy model. The thermodynamical analysis on the apparent horizon can work and the corresponding entropy formula is extracted from the systematic algorithm. The entropy correction term depends on the extra-dimension number of the brane as expected, but the interplay between the correction term and the extra dimensions is more complicated. With the unified first law of thermodynamics well-founded, the generalized second law of thermodynamics is discussed and it is found that the second law can be violated in certain circumstances. Particularly, if the number of the extra dimensions is larger than one, the generalized law of thermodynamics is always satisfied; otherwise, the validity of the second law can only be guaranteed with the Hubble radius greatly smaller than the crossover scale rc of the 5-dimensional DGP model.
Thermodynamical Aspects of Modified Holographic Dark Energy Model
International Nuclear Information System (INIS)
We investigate the unified first law and the generalized second law in a modified holographic dark energy model. The thermodynamical analysis on the apparent horizon can work and the corresponding entropy formula is extracted from the systematic algorithm. The entropy correction term depends on the extra-dimension number of the brane as expected, but the interplay between the correction term and the extra dimensions is more complicated. With the unified first law of thermodynamics well-founded, the generalized second law of thermodynamics is discussed and it is found that the second law can be violated in certain circumstances. Particularly, if the number of the extra dimensions is larger than one, the generalized law of thermodynamics is always satisfied; otherwise, the validity of the second law can only be guaranteed with the Hubble radius greatly smaller than the crossover scale rc of the 5-dimensional DGP model. (geophysics, astronomy, and astrophysics)
Thermodynamical aspects of modified holographic dark energy model
Li, Hui
2014-01-01
We investigate the unified first law and the generalized second law in a modified holographic dark energy model. The thermodynamical analysis on the apparent horizon can work and the corresponding entropy formula is extracted from the systematic algorithm. The entropy correction term depends on the extra-dimension number of the brane as expected, but the interplay between the correction term and the extra dimensions is more complicated. With the unified first law of thermodynamics well-founded, the generalized second law of thermodynamics is discussed and it's found that the second law can be violated in certain circumstances. Particularly, if the number of the extra dimensions is larger than one, the generalized law of thermodynamics is always satisfied; otherwise, the validity of the second law can only be guaranteed with the Hubble radius greatly smaller than the crossover scale $r_c$ of the $5$-dimensional DGP model.
Thermodynamic Behavior of particular $f(R,T)$ Gravity Models
Sharif, M
2014-01-01
We investigate the thermodynamics at the apparent horizon of the FRW universe in $f(R,T)$ theory under non-equilibrium description. The laws of thermodynamics have been discussed for two particular models of $f(R,T)$ theory. The first law of thermodynamics is expressed in the form of Clausius relation $T_hd\\hat{S}_h=\\delta{Q}$, where $\\delta{Q}=-d\\hat{E}+Wd\\mathbb{V}+T_hd_{\\jmath}\\hat{S}$ is the energy flux across the horizon and $d_{\\jmath}\\hat{S}$ is the entropy production term. Furthermore, the conditions to preserve the generalized second law of thermodynamics are established with the constraints of positive temperature and attractive gravity. We have illustrated our results for some concrete models in this theory.
Lovelock black hole thermodynamics in a string cloud model
Lee, Tae-Hun; Ghosh, Sushant G.; Maharaj, Sunil D.(Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag 54001, 4000, Durban, South Africa); Baboolal, Dharmanand
2015-01-01
The Lovelock theory is an extension of general relativity to higher dimensions. We study the Lovelock black hole for a string cloud model in arbitrary dimensional spacetime, and in turn also analyze its thermodynamical properties. Indeed, we compute the mass, temperature and entropy of the black hole and also perform a thermodynamical stability analysis. The phase structure suggests that the Hawking-Page phase transition is achievable. It turns out that the presence of the Lovelock terms and/...
Directory of Open Access Journals (Sweden)
Adolfo Ribeiro
2015-03-01
Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪ Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.
Evaluation of the Thermodynamic Models for the Thermal Diffusion Factor
DEFF Research Database (Denmark)
Gonzalez-Bagnoli, Mariana G.; Shapiro, Alexander; Stenby, Erling Halfdan
2003-01-01
Over the years, several thermodynamic models for the thermal diffusion factors for binary mixtures have been proposed. The goal of this paper is to test some of these models in combination with different equations of state. We tested the following models: those proposed by Rutherford and Drickamer...... in 1954, by Dougherty and Drickamer in 1955, by Haase in 1969, by Kempers in 1989 and 2002, and by Shucla and Firoozabadi in 1998. The calculated values of thermal diffusion factors were compared with a few sets of experimental data for hydrocarbon mixtures. For calculation of the partial molar...... properties we applied different thermodynamic models, such as the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The necessity to try different thermo-dynamic models is caused by the high sensitivity of the thermal diffusion factors to the values of the partial molar properties. Two different...
On the area operators of the Husain-Kuchar-Rovelli model and Canonical/Loop Quantum Gravity
AMELINO-CAMELIA, Giovanni
1998-01-01
I investigate the relation between an operative definition of the area of a surface specified by matter fields and the area operators recently introduced in the canonical/loop approach to Quantum Gravity and in Rovelli's variant of the Husain-Kuchar Quantum-Gravity toy model. The results suggest that the discreteness of the spectra of the area operators might not be observable.
Thermodynamic state ensemble models of cis-regulation.
Directory of Open Access Journals (Sweden)
Marc S Sherman
Full Text Available A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1 the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2 the binding constants that describe the affinity of the protein-protein and protein-DNA interactions that occur in each state, and (3 whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence.
Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast
Directory of Open Access Journals (Sweden)
Luis L. Fonseca
2012-02-01
Full Text Available Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, which has forced most experimental and modeling analyses in the past to focus on just one or a few of its aspects. Here we review the basic components of the heat stress response in yeast and outline what has been done, and what needs to be done, to merge the available information into computational structures that permit comprehensive diagnostics, interrogation, and interpretation. We illustrate the process in particular with the coordination of two metabolic responses, namely the dramatic accumulation of the protective disaccharide trehalose and the substantial change in the profile of sphingolipids, which in turn affect gene expression. The proposed methods primarily use differential equations in the canonical modeling framework of Biochemical Systems Theory (BST, which permits the relatively easy construction of coarse, initial models even in systems that are incompletely characterized.
Thermodynamic modeling of the Co-Fe-O system
DEFF Research Database (Denmark)
Zhang, Weiwei; Chen, Ming
2013-01-01
As a part of the research project aimed at developing a thermodynamic database of the La-Sr-Co-Fe-O system for applications in Solid Oxide Fuel Cells (SOFCs), the Co-Fe-O subsystem was thermodynamically re-modeled in the present work using the CALPHAD methodology. The solid phases were described ...... data. The modeling covers a temperature range from 298 K to 3000 K and oxygen partial pressure from 10-16 to 102 bar. A good agreement with the experimental data was shown. Improvements were made as compared to previous modeling results. © 2013 Elsevier Ltd....
A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models
Lau, William K. M.; Wu, H. T.; Kim, K. M.
2012-01-01
Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.
Deconfinement and Thermodynamics in 5D Holographic Models of QCD
Gursoy, Umut
2009-01-01
We review 5D holographic approaches to finite temperature QCD. Thermodynamic properties of the "hard-wall" and the "soft-wall" models are derived. Various non-realistic features in these models are cured by the set-up of improved holographic QCD, that we review here.
A Thermodynamic Mixed-Solid Asphaltene Precipitation Model
DEFF Research Database (Denmark)
Lindeloff, Niels; Heidemann, R.A.; Andersen, Simon Ivar;
1998-01-01
A simple model for the prediction of asphaltene precipitation is proposed. The model is based on an equation of state and uses standard thermodynamics, thus assuming that the precipitation phenomenon is a reversible process. The solid phase is treated as an ideal multicomponent mixture. An activi...
Structured modeling for processes: A thermodynamical network theory
Couenne, Françoise; Jallut, Christian; Maschke, Bernhard; Tayakout, Melaz; Breedveld, Peter C.
2008-01-01
We review the use of bond graphs for modeling of physico-chemical processes. We recall that bond graphs define a circuit-type language which root on a thermodynamical consistent definition of its network elements. We present the bond graph basic elements in the light of lumped models arising from ch
A Thermodynamic Mixed-Solid Asphaltene Precipitation Model
DEFF Research Database (Denmark)
Lindeloff, Niels; Heidemann, R.A.; Andersen, Simon Ivar; Stenby, Erling Halfdan
A simple model for the prediction of asphaltene precipitation is proposed. The model is based on an equation of state and uses standard thermodynamics, thus assuming that the precipitation phenomenon is a reversible process. The solid phase is treated as an ideal multicomponent mixture. An activity...
Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates
Energy Technology Data Exchange (ETDEWEB)
Chaka, Anne M.; Felmy, Andrew R.
2014-03-28
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Thermodynamic modelling of alkali-activated slag cements
International Nuclear Information System (INIS)
Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na2SiO3- and Na2CO3-activated slag cements. • Phase diagrams for NaOH-activated and Na2SiO3-activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na2SiO3-activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na2SiO3-activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na2CO3-activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags
Aluminum Deoxidation Equilibria in Liquid Iron: Part II. Thermodynamic Modeling
Paek, Min-Kyu; Pak, Jong-Jin; Kang, Youn-Bae
2015-10-01
Al deoxidation equilibria in liquid iron over the whole composition range from very low Al ([pct Al] = 0.0027) to almost pure liquid Al were thermodynamically modeled for the first time using the Modified Quasichemical Model in the pair approximation for the liquid phase. The present modeling is distinguished from previous approaches in many ways. First, very strong attractions between metallic components, Fe and Al, and non-metallic component, O, were taken into account explicitly in terms of Short-Range Ordering. Second, the present thermodynamic modeling does not distinguish solvent and solutes among metallic components, and the model calculation can be applied from pure liquid Fe to pure liquid Al. Therefore, this approach is thermodynamically self-consistent, contrary to the previous approaches using interaction parameter formalism. Third, the present thermodynamic modeling describes an integral Gibbs energy of the liquid alloy in the framework of CALPHAD; therefore, it can be further used to develop a multicomponent thermodynamic database for liquid steel. Fourth, only a small temperature-independent parameter for ternary liquid was enough to account for the Al deoxidation over wide concentration (0.0027 oxide saturation) were modeled, and relevant model parameters were optimized. By merging these Gibbs energy descriptions with that of Fe-Al binary liquid modeled by the same modeling approach, the Gibbs energy of ternary Fe-Al-O solution at metal-rich region was obtained along with one small ternary parameter. It was shown that the present model successfully reproduced all available experimental data for the Al deoxidation equilibria. Limit of previously used interaction parameter formalism at high Al concentration is discussed.
Institute of Scientific and Technical Information of China (English)
胡继敏; 金家善; 严志腾
2013-01-01
The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and charge steam flow under three different control strategies of charge valve. Characteristic performance parameters from the average sub-cooled degree and the charging energy coefficient point of views were also defined to evaluate and predict the charge performance of system combined with the simulation model and experimental data. The results show that the average steam flow reflects the average sub-cooled degree qualitatively, while the charging energy coefficients of 74.6%, 69.9% and 100% relate to the end value of the average sub-cooled degree at 2.1, 2.9 and 0 respectively for the three sets of experiments. The mean and maximum deviations of the results predicted from those by experimental data are smaller than 6.8% and 10.8%, respectively. In conclusion, the decrease of average steam flow can effectively increase the charging energy coefficient in the same charge time condition and therefore improve the thermodynamic charge performance of system. While the increase of the charging energy coefficient by extending the charge time needs the consideration of the operating frequency for steam users.
THERMODYNAMIC MODELING AND FIRST-PRINCIPLES CALCULATIONS
Energy Technology Data Exchange (ETDEWEB)
Turchi, P; Abrikosov, I; Burton, B; Fries, S; Grimvall, G; Kaufman, L; Korzhavyi, P; Manga, R; Ohno, M; Pisch, A; Scott, A; Zhang, W
2005-12-15
The increased application of quantum mechanical-based methodologies to the study of alloy stability has required a re-assessment of the field. The focus is mainly on inorganic materials in the solid state. In a first part, after a brief overview of the so-called ab initio methods with their approximations, constraints, and limitations, recommendations are made for a good usage of first-principles codes with a set of qualifiers. Examples are given to illustrate the power and the limitations of ab initio codes. However, despite the ''success'' of these methodologies, thermodynamics of complex multi-component alloys, as used in engineering applications, requires a more versatile approach presently afforded within CALPHAD. Hence, in a second part, the links that presently exist between ab initio methodologies, experiments, and CALPHAD approach are examined with illustrations. Finally, the issues of dynamical instability and of the role of lattice vibrations that still constitute the subject of ample discussions within the CALPHAD community are revisited in the light of the current knowledge with a set of recommendations.
Thermodynamic models of alkaline-earth metal ion flotation
International Nuclear Information System (INIS)
Two thermodynamic models for predicting selectivity coefficients for the pairs Be2+/Cu2+, Mg2+/Cu2+, Ca2+/Cu2+, Sr2+/Cu2+, and Ba2+/Cu2+ in ion flotation with the dodecyl sulfate ion as a collector are compared. The dehydration model largely gives exaggerated results, and the cavity model gives both exaggerated and underestimated values compared with the experimental selectivity coefficients. The cavity model was found to better describe molecules and ions of different sizes
Advances on statistical/thermodynamical models for unpolarized structure functions
International Nuclear Information System (INIS)
During the eights and nineties many statistical/thermodynamical models were proposed to describe the nucleons’ structure functions and distribution of the quarks in the hadrons. Most of these models describe the compound quarks and gluons inside the nucleon as a Fermi / Bose gas respectively, confined in a MIT bag with continuous energy levels. Another models considers discrete spectrum. Some interesting features of the nucleons are obtained by these models, like the sea asymmetries -d/-u and -d–-u.
Dallaire-Demers, Pierre-Luc; Wilhelm, Frank K.
2016-03-01
Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model whose thermodynamic properties can be computed from its grand-canonical potential. In general, there is no closed-form expression of the grand-canonical potential for lattices of more than one spatial dimension, but solutions can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists of finding its self-energy through a variational principle. This allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. Here it is shown theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.
Indian Academy of Sciences (India)
W. X. Zhong
2014-09-01
In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is used to investigate the black hole tunnelling radiation spectrum.We also discuss the mechanism of information flowing from the black hole.
Modelling grain growth in the framework of Rational Extended Thermodynamics
Kertsch, Lukas; Helm, Dirk
2016-05-01
Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena.
Lee, S J
2002-01-01
Various phenomenological models of particle multiplicity distributions are discussed using a general form of the grand canonical partition function. These phenomenological models include a wide range of varied processes such as coherent emission or Poisson processes, chaotic emission resulting in a negative binomial distribution, combinations of coherent and chaotic processes called signal/noise distributions, and models based on field emission from Lorentzian line shapes leading to Lorentz/Catalan distributions. These specific cases can be written as special cases of a more general distribution. Using this grand canonical approach moments and cumulants, combinants, hierarchical structure, void scaling relations, KNO scaling features, clan variables and branching laws associated with stochastic or ancestral variables are discussed. It is shown that just looking at the mean and fluctuation of data is not enough to distinguish these distributions or the underlying mechanism. A generalization of the Poisson tran...
Thermodynamical properties of Strunz’s quantum dissipative models
International Nuclear Information System (INIS)
The existence of the negative of specific heat from quantum dissipative theory is investigated. Strunz’s quantum dissipative model will be used in this studies. The thermodynamical properties will be studied starts out from the thermo-dynamic partition function of the dissipative system. The path integral technique is used to calculate the partition function under consideration. The results shows that the specific heat can be negative if the damping parameter more than a half the oscillator frequency and also occur at low temperatures. For damping factor greater than the frequency of harmonic oscillator then specific heat will oscillate at low temperatures and approaching normal conditions at a high temperature
Thermodynamical properties of Strunz’s quantum dissipative models
Energy Technology Data Exchange (ETDEWEB)
Zen, Freddy P. [Theoretical Physics Laboratory (THEPI), Department of Physics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Jl. Ganesha 10, Bandung 40132 (Indonesia); Sulaiman, A. [Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Jl. Ganesha 10, Bandung 40132 (Indonesia); Geostech Laboratory, Badan Pengkajian dan Penerapan Teknologi (BPPT), Kawasan Puspiptek Serpong, Tanggerang Selatan (Indonesia)
2015-09-30
The existence of the negative of specific heat from quantum dissipative theory is investigated. Strunz’s quantum dissipative model will be used in this studies. The thermodynamical properties will be studied starts out from the thermo-dynamic partition function of the dissipative system. The path integral technique is used to calculate the partition function under consideration. The results shows that the specific heat can be negative if the damping parameter more than a half the oscillator frequency and also occur at low temperatures. For damping factor greater than the frequency of harmonic oscillator then specific heat will oscillate at low temperatures and approaching normal conditions at a high temperature.
Cosmological Constant in the Thermodynamic Models of Gravity
Gogberashvili, Merab
2016-01-01
Within thermodynamic models of gravity, where the universe is considered as a finite ensemble of quantum particles, cosmological constant in the Einstein's equations appears as a constant of integration. Then it can be bounded using Karolyhazy uncertainty relation applied for horizon distances, as the amount of information in principle accessible to an external observer.
Thermodynamic model of natural, medieval and nuclear waste glass durability
International Nuclear Information System (INIS)
A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (106 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table
Molecular thermodynamic modeling of droplet-type microemulsions.
Moreira, Livia A; Firoozabadi, Abbas
2012-01-24
Microemulsions are nanoheterogeneous, thermodynamically stable, spontaneously forming mixtures of oil and water by means of surfactants, with or without cosurfactants. The pledge to use small volumes of amphiphile molecules compared to large amounts of bulk phase modifiers in a variety of chemical and industrial processes, from enhanced oil recovery to biotechnology, fosters continuous investigation and an improved understanding of these systems. In this work, we develop a molecular thermodynamic theory for droplet-type microemulsions, both water-in-oil and oil-in-water, and provide the theoretical formulation for three-component microemulsions. Our thermodynamic model, which is based on a direct minimization of the Gibbs free energy of the total system, predicts the structural and compositional features of microemulsions. The predictions are compared with experimental data for droplet size in water-alkane-didodecyl dimethylammonium bromide systems. PMID:22149425
Development of a Stirling System Dynamic Model With Enhanced Thermodynamics
Regan, Timothy F.; Lewandowski, Edward J.
2005-01-01
The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.
WATEQ3 geochemical model: thermodynamic data for several additional solids
International Nuclear Information System (INIS)
Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ΔG0/sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs
A unified viscoplasticity constitutive model based on irreversible thermodynamics
Institute of Scientific and Technical Information of China (English)
2008-01-01
A unified viscoplasticity constitutive model for metal materials is developed within the framework of irreversible thermodynamics, and an expression for the Helmholtz free energy function involving the parameters reflecting kinematic hardening and isotropic hardening is given. At the same time a non-associated flow potential function including the corresponding state variables is also given, from which the flow equation and the evolution equations of the internal state variables are derived. Thus, a general theoretical framework constructing a unified viscoplasticity constitutive model is given. Compared with the typical unified viscoplasticity constitutive models, the presented model evidently satisfies the irreversible thermodynamics laws. Moreover, this method not only provides a new theoretical foundation for further development of the unified viscoplasticity constitutive model, but also gives a new theoretical framework for the stress-strain analysis of more materials.
A Cosmological Model of Thermodynamic Open Universe
Goswami, G K
2012-01-01
In this paper we have given a generalisation of the earlier work by Prigogine et al. who have constructed a phenomenological model of entropy production via particle creation in the very early universe generated out of the vacuum rather than from a singularity, by including radiation also as the energy source and tried to develop an alternative cosmological model in which particle creation prevents the big bang. We developed Radiation dominated model of the universe which shows a general tendency that (i) it originates from instability of vacuum rather than from a singularity. (ii) Up to a characteristic time cosmological quantities like density, pressure, Hubble constant and expansion parameter vary rapidly with time. (iii) After the characteristic time these quantities settles down and the models are turned into de-sitter type model with uniform matter, radiation, creation densities and Hubble's constant H. The de-sitter regime survives during a decay time then connects continuously to a usual adiabatic mat...
Brambilla, M; Ugoccioni, R
2006-01-01
Theorems on zeros of the truncated generating function in the complex plane are reviewed. When examined in the framework of a statistical model of high energy collisions based on the negative binomial (Pascal) multiplicity distribution, these results lead to maps of zeros of the grand canonical partition function which allow us to interpret in a novel way different classes of events in pp collisions at LHC c.m. energies.
Brambilla, M.; Giovannini, A.; Ugoccioni, R.
2006-06-01
Theorems on zeros of the truncated generating function in the complex plane are reviewed. When examined in the framework of a statistical model of high energy collisions based on the negative binomial (Pascal) multiplicity distribution, these results lead to maps of zeros of the grand canonical partition function which allow us to interpret in a novel way different classes of events in pp collisions at LHC c.m. energies.
Brambilla, M.; Giovannini, A.; Ugoccioni, R.
2005-01-01
Theorems on zeroes of the truncated generating function in the complex plane are reviewed. When examined in the framework of a statistical model of high energy collisions based on the negative binomial (Pascal) multiplicity distribution, these results lead to maps of zeroes of the grand canonical partition function which allow to interpret in a novel way different classes of events in pp collisions at LHC c.m. energies.
Integrated thermodynamic model for ignition target performance
Directory of Open Access Journals (Sweden)
Springer P.T.
2013-11-01
Full Text Available We have derived a 3-dimensional synthetic model for NIF implosion conditions, by predicting and optimizing fits to a broad set of x-ray and nuclear diagnostics obtained on each shot. By matching x-ray images, burn width, neutron time-of-flight ion temperature, yield, and fuel ρr, we obtain nearly unique constraints on conditions in the hotspot and fuel in a model that is entirely consistent with the observables. This model allows us to determine hotspot density, pressure, areal density (ρr, total energy, and other ignition-relevant parameters not available from any single diagnostic. This article describes the model and its application to National Ignition Facility (NIF tritium–hydrogen–deuterium (THD and DT implosion data, and provides an explanation for the large yield and ρr degradation compared to numerical code predictions.
Thermodynamic modeling of direct injection methanol fueled engines
International Nuclear Information System (INIS)
In-cylinder pressure is an important parameter that is used to investigate the combustion process in internal combustion (IC) engines. In this paper, a thermodynamic model of IC engine combustion is presented and examined. A heat release function and an empirical conversion efficiency factor are introduced to solve the model. The pressure traces obtained by solving the thermodynamic model are compared with measured pressure data for a fully instrumented laboratory IC spark ignition (SI) engine. Derived scaling parameters for time to peak pressure, peak pressure, and maximum rate of pressure rise (among others) are developed and compared with the numerical simulations. The models examined here may serve as pedagogic tools and, when suitably refined, as preliminary design tools.
Thermodynamic performance for a chemical reactions model
International Nuclear Information System (INIS)
This paper presents the analysis efficiency of a chemical reaction model of four states, such that their activated states can occur at any point (fixed but arbitrary) of the transition from one state to another. This mechanism operates under a single heat reservoir temperature, unlike the internal combustion engines where there are two thermal sources. Different efficiencies are compared to this model, which operate at different optimum engine regimes. Thus, some analytical methods are used to give an approximate expression, facilitating the comparison between them. Finally, the result is compared with that obtained by other authors considered a general model of an isothermal molecular machine. Taking into account the above, the results seems to follow a similar behaviour for all the optimized engines, which resemble that observed in the case of heat engine efficiencies
Twenty lectures on thermodynamics
Buchdahl, H A
2013-01-01
Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text
DEFF Research Database (Denmark)
Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj
2015-01-01
Aqueous MDEA is the most commonly used solvent for H2S removal from natural gas. A reliable thermodynamic model is required for the proper design of natural gas sweetening processes. In this study, a rigorous thermodynamic model is developed to represent properties of the H2S-MDEA-H2O ternary...
Thermodynamical aspects of running vacuum models
Lima, J. A. S.; Basilakos, Spyros; Solà, Joan
2016-04-01
The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ (H) ∝ H^{n+2}, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρ _r ∝ T4, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S0 ˜ 10^{87}-10^{88} (in natural units), independently of the initial conditions. In addition, by assuming Gibbons-Hawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρ _{Λ 0}/ρ _{Λ I} ˜ 10^{-123}. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases.
Thermodynamical aspects of running vacuum models
Energy Technology Data Exchange (ETDEWEB)
Lima, J.A.S. [Universidade de Sao Paulo, Departamento de Astronomia, Sao Paulo (Brazil); Basilakos, Spyros [Academy of Athens, Research Center for Astronomy and Applied Mathematics, Athens (Greece); Sola, Joan [Univ. de Barcelona, High Energy Physics Group, Dept. d' Estructura i Constituents de la Materia, Institut de Ciencies del Cosmos (ICC), Barcelona, Catalonia (Spain)
2016-04-15
The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ(H) ∝ H{sup n+2}, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρ{sub r} ∝ T{sup 4}, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S{sub 0} ∝ 10{sup 87}-10{sup 88} (in natural units), independently of the initial conditions. In addition, by assuming Gibbons¨CHawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρ{sub Λ0}/ρ{sub ΛI} 10{sup -123}. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases. (orig.)
Thermodynamics of Paint Related Systems with Engineering Models
DEFF Research Database (Denmark)
Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios
2001-01-01
solid surfaces and drying. Many engineering models have been applied over the last decades for solutions with commoditity polymers. In this work the performance of some of these models is investigated for paint-related systems, focusing on those drying by the so-called " lacquer mechanism " (evaporation...... conclude that, despite the uncertainties involved, several models yield reasonably accurate activity coefficients, even at infinite dilution. Thus, engineering models may be useful for solvent selection via semiempirical rules of thumb, which are based on thermodynamic considerations....
Numerical Modeling of Nonlinear Thermodynamics in SMA Wires
Energy Technology Data Exchange (ETDEWEB)
Reynolds, D R; Kloucek, P
2004-01-08
We present a mathematical model describing the thermodynamic behavior of shape memory alloy wires, as well as a computational technique to solve the resulting system of partial differential equations. The model consists of conservation equations based on a new Helmholtz free energy potential. The computational technique introduces a viscosity-based continuation method, which allows the model to handle dynamic applications where the temporally local behavior of solutions is desired. Computational experiments document that this combination of modeling and solution techniques appropriately predicts the thermally- and stress-induced martensitic phase transitions, as well as the hysteretic behavior and production of latent heat associated with such materials.
De Siena, Silvio; Di Lisi, Antonio; Illuminati, Fabrizio
2002-01-01
We introduce nonlinear canonical transformations that yield effective Hamiltonians of multiphoton down conversion processes, and we define the associated non-Gaussian multiphoton squeezed states as the coherent states of the multiphoton Hamiltonians. We study in detail the four-photon processes and the associated non-Gaussian four-photon squeezed states. The realization of squeezing, the behavior of the field statistics, and the structure of the phase space distributions show that these state...
Length-independent structural similarities enrich the antibody CDR canonical class model
Nowak, Jaroslaw; Baker, Terry; Georges, Guy; Kelm, Sebastian; Klostermann, Stefan; Shi, Jiye; Sridharan, Sudharsan; Deane, Charlotte M.
2016-01-01
ABSTRACT Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs. Our length variable structural clusters show strong sequence patterns suggesting either that they evolved from the same original structure or result from some form of convergence. We find that our length-independent method not only clusters a larger number of CDRs, but also predicts canonical class from sequence better than the standard length-dependent approach. To demonstrate the usefulness of our findings, we predicted cluster membership of CDR-L3 sequences from 3 next-generation sequencing datasets of the antibody repertoire (over 1,000,000 sequences). Using the length-independent clusters, we can structurally classify an additional 135,000 sequences, which represents a ∼20% improvement over the standard approach. This suggests that our length-independent canonical classes might be a highly prevalent feature of antibody space, and could substantially improve our ability to accurately predict the structure of novel CDRs identified by next-generation sequencing. PMID:26963563
Length-independent structural similarities enrich the antibody CDR canonical class model.
Nowak, Jaroslaw; Baker, Terry; Georges, Guy; Kelm, Sebastian; Klostermann, Stefan; Shi, Jiye; Sridharan, Sudharsan; Deane, Charlotte M
2016-01-01
Complementarity-determining regions (CDRs) are antibody loops that make up the antigen binding site. Here, we show that all CDR types have structurally similar loops of different lengths. Based on these findings, we created length-independent canonical classes for the non-H3 CDRs. Our length variable structural clusters show strong sequence patterns suggesting either that they evolved from the same original structure or result from some form of convergence. We find that our length-independent method not only clusters a larger number of CDRs, but also predicts canonical class from sequence better than the standard length-dependent approach. To demonstrate the usefulness of our findings, we predicted cluster membership of CDR-L3 sequences from 3 next-generation sequencing datasets of the antibody repertoire (over 1,000,000 sequences). Using the length-independent clusters, we can structurally classify an additional 135,000 sequences, which represents a ∼20% improvement over the standard approach. This suggests that our length-independent canonical classes might be a highly prevalent feature of antibody space, and could substantially improve our ability to accurately predict the structure of novel CDRs identified by next-generation sequencing. PMID:26963563
Quantum Modeling of Thermodynamic Properties of Warm Dense Aluminum
Termini, Nicholas; Miloshesky, Gennady; Hassanein, Ahmed
2015-01-01
Warm dense matter is attracting a lot of attention in the scientific community, due to its formation during intense laser-matter interaction and inertial confinement fusion. However, there is no accurate solution to mapping out the thermodynamic properties of warm dense matter. Experimental data are also incredibly scarce making computational models an incredibly useful tool. This paper provides equation of state (EOS) data for aluminum at specific densities within the warm dense matter regim...
Hydration Thermodynamics of Nonpolar Solutes by Simple Molecular Models
Czech Academy of Sciences Publication Activity Database
Jirsák, Jan; Škvor, J.; Nezbeda, Ivo
- : -, 2012, s. 72. ISBN N. [EMLG/JMLG Annual Meeting 2012 "Molecular Association in Fluid Phases and at Fluid Interfaces". Eger (HU), 05.09.2012-09.09.2012] R&D Projects: GA AV ČR IAA400720802 Grant ostatní: MŠMT(CZ) GPP208/12/P710 Institutional support: RVO:67985858 Keywords : liquid water * fluid model * thermodynamic perturbation Subject RIV: CF - Physical ; Theoretical Chemistry http://emlg2012.ektf.hu/Abstract_book.htm
Thermodynamic simulation model of the isasmelt process for copper matte
Nagamori, M.; Errington, W. J.; Mackey, P. J.; Poggi, D.
1994-12-01
A computer model has been constructed to simulate thermodynamically the behavior of the minor elements Zn, Pb, As, Sb, and Bi as well as the major elements Cu, Fe, Si, O, and S in the Isasmelt process, producing copper matte. The model is based on the new concept that there are two independent reaction sites in a slag bath: one for fast oxidation and the other for slow reduction. The oxidizing reaction at the first site produces matte, magnetite-rich slag and gas from chalcopyritic concentrate and siliceous flux. The slag is then partially reduced with lump coal at a site removed from the first site. The oxidizing and reducing reactions are assumed to proceed under a separate set of equilibrium conditions. The process heat balance and thermodynamic distribution of the minor elements are united and expressed as functions of varying weights and compositions of concentrate, flux (silica, limestone), coal, oil, and oxygen-enriched air. The process chemistry was analyzed in terms of Fe3O4, FeO, and FeS activities, as well as SO2 partial pressure. The thermodynamic model explains well the minor element distributions observed in the 15 tons per hour pilot furnace, and it is used to project the optimal smelting conditions for the full-scale 100 tons per hour Isasmelt furnace.
Thermodynamic modeling of the stacking fault energy of austenitic steels
Energy Technology Data Exchange (ETDEWEB)
Curtze, S., E-mail: sven.curtze@oxinst.com [Tampere University of Technology, Department of Materials Science, P.O. Box 589, FI-33101 Tampere (Finland); Kuokkala, V.-T. [Tampere University of Technology, Department of Materials Science, P.O. Box 589, FI-33101 Tampere (Finland); Oikari, A. [Aalto University School of Science and Technology, Department of Engineering Design and Production, P.O. Box 14200, FI-00076 Aalto (Finland); Talonen, J. [Outokumpu Oyj, P.O. Box 140, FI-02201 Espoo (Finland); Haenninen, H. [Aalto University School of Science and Technology, Department of Engineering Design and Production, P.O. Box 14200, FI-00076 Aalto (Finland)
2011-02-15
The stacking fault energies (SFE) of 10 austenitic steels were determined in the temperature range 50 {<=} T {<=} 600 K by thermodynamic modeling of the Fe-Cr-Ni-Mn-Al-Si-Cu-C-N system using a modified Olson and Cohen modeling approach (Olson GB, Cohen M. Metall Trans 1976;7A:1897 ). The applied model accounts for each element's contribution to the Gibbs energy, the first-order excess free energies, magnetic contributions and the effect of interstitial nitrogen. Experimental SFE values from X-ray diffraction measurements were used for comparison. The effect of SFE on deformation mechanisms was also studied by electron backscatter diffraction.
Energy Technology Data Exchange (ETDEWEB)
Al Mamon, Abdulla; Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)
2015-06-15
In this present work, we try to build up a cosmological model using a non-canonical scalar field within the framework of a spatially flat FRW space-time. In this context, we have considered four different parametrizations of the equation of state parameter of the non-canonical scalar field. Under this scenario, analytical solutions for various cosmological parameters have been found out. It has been found that the deceleration parameter shows a smooth transition from a positive value to some negative value which indicates that the universe was undergoing an early deceleration followed by late time acceleration which is essential for the structure formation of the universe. With these four parametrizations, the future evolution of the models are also discussed. It has been found that one of the models (Generalized Chaplygin gas model, GCG) mimics the concordance ΛCDM in the near future, whereas two other models (CPL and JBP) diverge due to future singularity. Finally, we have studied these theoretical models with the latest datasets from SN Ia + H(z) + BAO/CMB. (orig.)
International Nuclear Information System (INIS)
In this present work, we try to build up a cosmological model using a non-canonical scalar field within the framework of a spatially flat FRW space-time. In this context, we have considered four different parametrizations of the equation of state parameter of the non-canonical scalar field. Under this scenario, analytical solutions for various cosmological parameters have been found out. It has been found that the deceleration parameter shows a smooth transition from a positive value to some negative value which indicates that the universe was undergoing an early deceleration followed by late time acceleration which is essential for the structure formation of the universe. With these four parametrizations, the future evolution of the models are also discussed. It has been found that one of the models (Generalized Chaplygin gas model, GCG) mimics the concordance ΛCDM in the near future, whereas two other models (CPL and JBP) diverge due to future singularity. Finally, we have studied these theoretical models with the latest datasets from SN Ia + H(z) + BAO/CMB. (orig.)
Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun
2016-07-01
In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. PMID:26861909
Upper Stage Tank Thermodynamic Modeling Using SINDA/FLUINT
Schallhorn, Paul; Campbell, D. Michael; Chase, Sukhdeep; Piquero, Jorge; Fortenberry, Cindy; Li, Xiaoyi; Grob, Lisa
2006-01-01
Modeling to predict the condition of cryogenic propellants in an upper stage of a launch vehicle is necessary for mission planning and successful execution. Traditionally, this effort was performed using custom, in-house proprietary codes, limiting accessibility and application. Phenomena responsible for influencing the thermodynamic state of the propellant have been characterized as distinct events whose sequence defines a mission. These events include thermal stratification, passive thermal control roll (rotation), slosh, and engine firing. This paper demonstrates the use of an off the shelf, commercially available, thermal/fluid-network code to predict the thermodynamic state of propellant during the coast phase between engine firings, i.e. the first three of the above identified events. Results of this effort will also be presented.
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) software package is an open source, MATLABSimulink toolbox (plug in) that can be used by industry professionals and academics for the development of thermodynamic and controls simulations.
Multiensemble Markov models of molecular thermodynamics and kinetics.
Wu, Hao; Paul, Fabian; Wehmeyer, Christoph; Noé, Frank
2016-06-01
We introduce the general transition-based reweighting analysis method (TRAM), a statistically optimal approach to integrate both unbiased and biased molecular dynamics simulations, such as umbrella sampling or replica exchange. TRAM estimates a multiensemble Markov model (MEMM) with full thermodynamic and kinetic information at all ensembles. The approach combines the benefits of Markov state models-clustering of high-dimensional spaces and modeling of complex many-state systems-with those of the multistate Bennett acceptance ratio of exploiting biased or high-temperature ensembles to accelerate rare-event sampling. TRAM does not depend on any rate model in addition to the widely used Markov state model approximation, but uses only fundamental relations such as detailed balance and binless reweighting of configurations between ensembles. Previous methods, including the multistate Bennett acceptance ratio, discrete TRAM, and Markov state models are special cases and can be derived from the TRAM equations. TRAM is demonstrated by efficiently computing MEMMs in cases where other estimators break down, including the full thermodynamics and rare-event kinetics from high-dimensional simulation data of an all-atom protein-ligand binding model. PMID:27226302
De Siena, S; Illuminati, F; Siena, Silvio De; Lisi, Antonio Di; Illuminati, Fabrizio
2002-01-01
We introduce nonlinear canonical transformations that yield effective Hamiltonians of multiphoton down conversion processes, and we define the associated non-Gaussian multiphoton squeezed states as the coherent states of the multiphoton Hamiltonians. We study in detail the four-photon processes and the associated non-Gaussian four-photon squeezed states. The realization of squeezing, the behavior of the field statistics, and the structure of the phase space distributions show that these states realize a natural four-photon generalization of the two-photon squeezed states.
Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.
Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando
2015-10-21
The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties. PMID:26387742
Thermodynamics with long-range interactions: from Ising models to black holes.
Oppenheim, Jonathan
2003-07-01
Methods are presented which enables one to analyze the thermodynamics of systems with long-range interactions. Generically, such systems have entropies which are nonextensive (do not scale with the size of the system). We show how to calculate the degree of nonextensivity for such a system. We find that a system interacting with a heat reservoir is in a probability distribution of canonical ensembles. The system still possesses a parameter akin to a global temperature, which is constant throughout the substance. There is also a useful quantity which acts like a local temperatures and it varies throughout the substance. These quantities are closely related to counterparts found in general relativity. A lattice model with long-range spin-spin coupling is studied. This is compared with systems such as those encountered in general relativity and gravitating systems with Newtonian-type interactions. A long-range lattice model is presented which can be seen as a black hole analog. One finds that the analog's temperature and entropy have many properties which are found in black holes. Finally, the entropy scaling behavior of a gravitating perfect fluid of constant density is calculated. For weak interactions, the entropy scales like the volume of the system. As the interactions become stronger, the entropy becomes higher near the surface of the system, and becomes more area scaling. PMID:12935201
Balawender, Robert
2009-01-01
A unified formulation of the equilibrium state of a many-electron system in terms of an ensemble (mixed-state) density matrix, which applies the maximum entropy principle combined with the use of Massieu-Planck function, is presented. The properties of the characteristic functionals for macrocanonical ensemble are established. Their extension to other ensembles is accomplished via a Legendre transform. The relations between equilibrium states defined by a formal mathematical procedure and by criteria adopted for traditional (Gibbs, Helmholtz) potentials are investigated using Massieu-Planck transform. The preeminence of the Massieu-Planck function over the traditional thermodynamic potentials is discussed in detail on an example of their second derivatives. Introduced functions are suitable for application to the extensions of the density functional theory, both at finite and zero temperatures.
Mcconaghy, Trent; Gielen, Georges
2011-01-01
This paper presents a method to automatically generate compact symbolic performance models of analog circuits with no prior specification of an equation template. The approach takes SPICE simulation data as input, which enables modeling of any nonlinear circuits and circuit characteristics. Genetic programming is applied as a means of traversing the space of possible symbolic expressions. A grammar is specially designed to constrain the search to a canonical form for functions. Novel evolutionary search operators are designed to exploit the structure of the grammar. The approach generates a set of symbolic models which collectively provide a tradeoff between error and model complexity. Experimental results show that the symbolic models generated are compact and easy to understand, making this an effective method for aiding understanding in analog design. The models also demonstrate better prediction quality than posynomials.
Dynamic and Thermodynamic Analysis of a Simple Model of DNA
Techera, Mario Isaac Felix
1991-02-01
A new simple model of DNA is presented based on the results of lattice dynamics (LD) calculations in conjunction with the modified self-consistent phonon approximation (MSPA) done on a detailed model of DNA homopolymers. The model emphasizes the intrinsic nonlinearities present in the hydrogen-bonded duplex. The impetus for introducing the simplified model is to analyze the importance of the nonlinearities in the dynamics that lead to denaturation. An initial analysis is done on the possible dynamical excitations that can exist in the system due to the hydrogen bond (HB) nonlinearities. It is found that in a certain regime of base-pair motion, the nonlinearities can prevent dissipation of wave packets and thus suggesting the possibility of energy transfer along the molecule. What is also found, is the ability of the nonlinearities to "pin" excitations on the lattice thus suggesting a possible mechanism for localizing energy along the molecule for biologically significant periods of time. This analysis is done on a "cold" chain, i.e. at T = 0 K. In the latter part of this thesis, this model is shown to be thermodynamically unstable under certain circumstances. This instability is analyzed and general conclusions are drawn concerning the thermodynamics of any interaction similar to the ones used in the present case. As a result of this instability the thermodynamic analysis is done in nonequilibrium situations using stochastic methods to simulate a heat bath. Numerical calculations are performed to study the dissociation of the molecule and the possible effects of the thermal bath on the dynamical excitations mentioned in the previous paragraph. It is found that the dissociation time is very long at room temperature for long molecules.
Extending canonical Monte Carlo methods
Velazquez, L.; Curilef, S.
2010-02-01
In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C < 0. The resulting framework appears to be a suitable generalization of the methodology associated with the so-called dynamical ensemble, which is applied to the extension of two well-known Monte Carlo methods: the Metropolis importance sampling and the Swendsen-Wang cluster algorithm. These Monte Carlo algorithms are employed to study the anomalous thermodynamic behavior of the Potts models with many spin states q defined on a d-dimensional hypercubic lattice with periodic boundary conditions, which successfully reduce the exponential divergence of the decorrelation time τ with increase of the system size N to a weak power-law divergence \\tau \\propto N^{\\alpha } with α≈0.2 for the particular case of the 2D ten-state Potts model.
Microscopically constrained mean-field models from chiral nuclear thermodynamics
Rrapaj, Ermal; Roggero, Alessandro; Holt, Jeremy W.
2016-06-01
We explore the use of mean-field models to approximate microscopic nuclear equations of state derived from chiral effective field theory across the densities and temperatures relevant for simulating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers. We consider both relativistic mean-field theory with scalar and vector meson exchange as well as energy density functionals based on Skyrme phenomenology and compare to thermodynamic equations of state derived from chiral two- and three-nucleon forces in many-body perturbation theory. Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used to determine the density regimes in which perturbation theory with chiral nuclear forces is valid. Within the theoretical uncertainties associated with the many-body methods, we find that select mean-field models describe well microscopic nuclear thermodynamics. As an additional consistency requirement, we study as well the single-particle properties of nucleons in a hot/dense environment, which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean-field models can be used across a larger range of densities and temperatures in astrophysical simulations than more computationally expensive microscopic models.
Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling
International Nuclear Information System (INIS)
Calcium sulfoaluminate cements (CSA) are a promising low-CO2 alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH)3 until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additional hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.
An approximate local thermodynamic nonequilibrium radiation model for air
Gally, Thomas A.; Carlson, Leland A.
1992-01-01
A radiatively coupled viscous shock layer analysis program which includes chemical and thermal nonequilibrium is used to calculate stagnation point flow profiles for typical aeroassisted orbital transfer vehicle conditions. Two methods of predicting local thermodynamic nonequilibrium radiation effects are used as a first and second order approximation to this phenomena. Tabulated results for both nitrogen and air freestreams are given with temperature, species, and radiation profiles for some air conditions. Two body solution results are shown for 45 and 60 degree hyperboloid bodies at 12 km/sec and 80 km altitude. The presented results constitute an advancement in the engineering modeling of radiating nonequilibrium reentry flows.
A Liquid Model Analogue for Black Hole Thermodynamics
Hochberg, D; Hochberg, David; Pérez-Mercader, Juan
1996-01-01
We are able to characterize a 2--dimensional classical fluid sharing some of the same thermodynamic state functions as the Schwarzschild black hole. This phenomenological correspondence between black holes and fluids is established by means of the model liquid's pair-correlation function and the two-body atomic interaction potential. These latter two functions are calculated exactly in terms of the black hole internal (quasilocal) energy and the isothermal compressibility. We find the existence of a ``screening" like effect for the components of the liquid.
Thermodynamic modeling of the in situ leaching of uranium
International Nuclear Information System (INIS)
The thermodynamic model of uranium in situ leaching process at the stage of acidification was investigated. It was demonstrated that in the frontal zone of acid leaching solutions reduction of U(VI) up to U(IV) was possible due to the behavior of oxidation-reduction processes with the ferrous ions involved. At the same time uranium is precipitated as U(OH)4. In order to eliminate the negative influence of ferrous iron ions, artificial oxidizers were proposed to be used not only at the stage of active leaching of cells but also at acidification stage of new process cells. (author)
Canonical Quantization of an Open Universe Model with a Cosmological Constant
Kim, S P
1999-01-01
We study canonical quantization of an open universe with a cosmological constant and minimal massless scalar field. It is found that for the exotic quantum states of the scalar field the Wheeler-DeWitt equation of the Lorentzian geometry has a classically forbidden regime extending from the cosmological singularity to a finite scale factor and then a classically allowed regime extending to infinity. We find analytically the approximate wave functions for the quantum creation of the Universe from the {\\it nothingness}. We prescribe the Hartle-Hawking's no-boundary, the Linde's and the Vilenkin's tunneling wave functions. In particular, we find the wave functions for the Euclidean geometry, whose semiclassical solutions are regular at the matching boundary with the Lorentzian geometry but singular at the cosmological singularity.
Thermodynamic Modeling of Natural Gas Systems Containing Water
DEFF Research Database (Denmark)
Karakatsani, Eirini K.; Kontogeorgis, Georgios M.
2013-01-01
As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium with a...... heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...
Modelling within a thermodynamic framework : a footnote to Sanders (1999)
Winder, Nick
2000-01-01
Many modellers use micro-level dynamics to study aggregate behaviours. Since this approach was pioneered in physics, I call it "Thermodynamic modelling". I revisit Sanders’ comparison of synergetic with microsimulation methods and propose a new taxonomy of modellers. If "microsimulation modelling" is defined as "thermodynamic modelling with post-hoc alignment", then the synergetic and microsimulation paradigms are irreconcilable.
International Nuclear Information System (INIS)
Contamination of domestic water wells by Mo, Se, SO4 and U has been documented in the vicinity of a uranium mill near Canon City, Colorado. Fluids collected from the tailings ponds were passed through cores of the subjacent calcite-bearing sandstone to determine the effect of pH and Eh on the mobility of Al, Ca, Cu, Fe, Mn, Mo, Se, SO4, V, U, and Zn. During Experiment 27 the pH initially increased from 2.3 to 8.0 as calcite in the core dissolved. Concurrently, iron hydroxide precipitated in the micro-environment surrounding the carbonate grains, effectively reducing the area of calcite exposed to the acidic eluent. This led to a decrease in pH to 3.4. Experiment 27 was modeled using the mass transfer computer program, MINTEQ. The pH was modeled by dissolving decreasing amounts of calcite to simulate the acidification of the system, while Eh was set at the levels measured in the experiments. Mn was adequately described by the dissolution of manganiferous calcite, but an adequate model for dissolved Ca required both calcite dissolution and ion-exchange of Ca by Na. Al was simulated by the solubility constraint imposed by an amorphous aluminum hydroxide above a pH of 6.0, ad by AIOHSO4 in more acidic regimes. Fe was modeled by the precipitation of an amorphous hydroxide. Zn was modeled using triple-layer sorption routine with an amorphous iron hydroxide phase as the sobent, but Cu could not be modeled using the same values for the triple-layer parameters. Se sorption is affected by both the mass of sorbent in the system and by competition for surface sites with sulfate ion. The experiments suggest that Se may be the best tracer of the escape and movement of raffinate in the aquifer at Canon City
Experimental measurements and thermodynamic modeling of refrigerant hydrates dissociation conditions
International Nuclear Information System (INIS)
Highlights: • Dissociation conditions of refrigerant hydrates are studied experimentally and theoretically. • Refrigerants R23, R134a, R125a, R22, R410A, R407C and R507C are studied experimentally. • A thermodynamic model able to predict refrigerant hydrates dissociation conditions is proposed. • The results show good agreement between the experimental and predicted values. - Abstract: This study aims to investigate dissociation conditions of refrigerant hydrates both experimentally and theoretically. For this purpose, dissociation conditions of refrigerants R23, R134a, R125a, R22, R410A, R407C and R507C have been measured experimentally. A thermodynamic model that is able to predict refrigerant hydrates dissociation conditions in the various phase equilibrium regions has been proposed as well. Refrigerants modeled in this study include pure refrigerants: R11, R12, R13, R22, R23, R32, R134a, R141b, R143a, R125a, R152a, and mixed refrigerants: R11 + R12, R11 + R114, R12 + R114, R32 + R125a + R134a (R407C), R32 + R125a (R410A). For the modeling of the fluid and hydrate phases, the Peng-Robinson equation of state modified by Stryjek and Vera and the MHV2 GE-EoS mixing rule along with the UNIFAC (original) activity coefficient and van der Waals–Platteeuw (vdW–P) models were employed. The results show good agreement between the experimental and predicted values
Directory of Open Access Journals (Sweden)
Si Wu
2016-02-01
Full Text Available Owing to its many computationally desirable properties, the model of continuous attractor neural networks (CANNs has been successfully applied to describe the encoding of simple continuous features in neural systems, such as orientation, moving direction, head direction, and spatial location of objects. Recent experimental and computational studies revealed that complex features of external inputs may also be encoded by low-dimensional CANNs embedded in the high-dimensional space of neural population activity. The new experimental data also confirmed the existence of the M-shaped correlation between neuronal responses, which is a correlation structure associated with the unique dynamics of CANNs. This body of evidence, which is reviewed in this report, suggests that CANNs may serve as a canonical model for neural information representation.
A Thermodynamic Model for Argon Plasma Kernel Formation
Directory of Open Access Journals (Sweden)
James Keck
2010-11-01
Full Text Available Plasma kernel formation of argon is studied experimentally and theoretically. The experiments have been performed in a constant volume cylindrical vessel located in a shadowgraph system. The experiments have been done in constant pressure. The energy of plasma is supplied by an ignition system through two electrodes located in the vessel. The experiments have been done with two different spark energies to study the effect of input energy on kernel growth and its properties. A thermodynamic model employing mass and energy balance was developed to predict the experimental data. The agreement between experiments and model prediction is very good. The effect of various parameters such as initial temperature, initial radius of the kernel, and the radiation energy loss have been investigated and it has been concluded that initial condition is very important on formation and expansion of the kernel.
Limits of thermodynamic models for nuclear level densities
International Nuclear Information System (INIS)
The current status of thermodynamic models as applied to nuclear level densities is reviewed. Considerable refinement has taken place during the last fifteen years, with the result that some of the undesirable assumptions originally required by the model are no longer necessary. Some problems remain, however, particularly in calculating level densities for deformed nuclei. Furthermore, some related parameters, such as the positive-parity negative-parity ratio for levels and the spin cutoff parameter are more sensitive to the presence of two-body interactions than the total level density. Improvement in characterization of nuclear level densities will require use of techniques which can incorporate the effects of two-body interactions in the level density calculation. 25 references
Structure and thermodynamics of core-softened models for alcohols
Energy Technology Data Exchange (ETDEWEB)
Munaò, Gianmarco, E-mail: gmunao@unime.it [Dipartimento di Fisica e di Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina (Italy); Urbic, Tomaz [Department of Chemistry and Chemical Technology, Chair of Physical Chemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana (Slovenia)
2015-06-07
The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number of CH{sub 2} groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function g{sub ij}(r) and static structure factor S{sub ij}(k); the latter shows the presence of a low−k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers.
Thermodynamics of the inhomogeneous perfect fluid LTB model: Modified Bekenstein-Hawking system
Saha, Subhajit; Chakraborty, Subenoy
2012-01-01
The present work deals with three alternative generalized Bekenstein-Hawking formulation of thermodynamical parameters namely entropy and temperature for the universal thermodynamical system bounded by a horizon in the frame work of inhomogeneous perfect fluid Lemaitre-Tolman-Bondi (LTB) model of the Universe. For the first choice, the first law of thermodynamics holds only for the trivial de Sitter case of the LTB model while we need restriction on the evolution of the horizon radius for the...
Thermodynamics of bread baking: A two-state model
Zürcher, Ulrich
2014-03-01
Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.
Element Distribution in Silicon Refining: Thermodynamic Model and Industrial Measurements
Næss, Mari K.; Kero, Ida; Tranell, Gabriella; Tang, Kai; Tveit, Halvard
2014-11-01
To establish an overview of impurity elemental distribution among silicon, slag, and gas/fume in the refining process of metallurgical grade silicon (MG-Si), an industrial measurement campaign was performed at the Elkem Salten MG-Si plant in Norway. Samples of in- and outgoing mass streams, i.e., tapped Si, flux and cooling materials, refined Si, slag, and fume, were analyzed by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), with respect to 62 elements. The elemental distributions were calculated and the experimental data compared with equilibrium estimations based on commercial and proprietary, published databases and carried out using the ChemSheet software. The results are discussed in terms of boiling temperatures, vapor pressures, redox potentials, and activities of the elements. These model calculations indicate a need for expanded databases with more and reliable thermodynamic data for trace elements in general and fume constituents in particular.
Thermodynamic model of hydrogen-induced silicon surface layer cleavage
International Nuclear Information System (INIS)
A thermodynamic model of hydrogen-induced silicon surface layer splitting with the help of a bonded silicon wafer is proposed in this article. Wafer splitting is the result of lateral growth of hydrogen blisters in the entire hydrogen-implanted region during annealing. The blister growth rate depends on the effective activation energies of both hydrogen complex dissociation and hydrogen diffusion. The hydrogen blister radius was studied as a function of annealing time, annealing temperature, and implantation dose. The critical radius was obtained according to the Griffith energy condition. The time required for wafer splitting at the cut temperature was calculated in accordance with the growth of hydrogen blisters. [copyright] 2001 American Institute of Physics
Dark Energy Models and Laws of Thermodynamics in Bianchi I Model
Sharif, M
2013-01-01
This paper is devoted to check validity of the laws of thermodynamics for LRS Bianchi type I universe model which is filled with combination of dark matter and dark energy. We take two types of dark energy models, i.e., generalized holographic dark energy and generalized Ricci dark energy. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both the models. Further, we take fixed radius $L$ of the apparent horizon with original holographic or Ricci dark energy. We conclude that the first and generalized second laws of thermodynamics do not hold on the horizon of fixed radius $L$ for both the models.
A thermodynamic model of microtubule assembly and disassembly.
Directory of Open Access Journals (Sweden)
Bernard M A G Piette
Full Text Available Microtubules are self-assembling polymers whose dynamics are essential for the normal function of cellular processes including chromosome separation and cytokinesis. Therefore understanding what factors effect microtubule growth is fundamental to our understanding of the control of microtubule based processes. An important factor that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap. Here, we derive a Monte Carlo model of the assembly and disassembly of microtubules. We use thermodynamic laws to reduce the number of parameters of our model and, in particular, we take into account the contribution of water to the entropy of the system. We fit all parameters of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. Also we calculate and incorporate the GTP hydrolysis rate. We have applied our model and can mimic published experimental data, which formerly suggested a single layer GTP tubulin dimer microtubule cap, to show that these data demonstrate that the GTP cap can fluctuate and can be several microns long.
A parametric model for the global thermodynamic behavior of fluids in the critical region
International Nuclear Information System (INIS)
The asymptotic thermodynamic behavior of fluids near the critical point is described by scaling laws with universal scaling functions that can be represented by parametric equations. In this paper, we derive a more general parametric model that incorporates the crossover from singular thermodynamic behavior near the critical point to regular classical thermodynamic behavior far away from the critical point. Using ethane as an example, we show that such a parametric crossover model yields an accurate representation of the thermodynamic properties of fluids in a large region around the critical point
International Nuclear Information System (INIS)
Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions
T-MATS Toolbox for the Modeling and Analysis of Thermodynamic Systems
Chapman, Jeffryes W.
2014-01-01
The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a MATLABSimulink (The MathWorks Inc.) plug-in for creating and simulating thermodynamic systems and controls. The package contains generic parameterized components that can be combined with a variable input iterative solver and optimization algorithm to create complex system models, such as gas turbines.
THERMODYNAMIC MODEL OF THE CYCLE OF SPARK IGNITION ENGINE WITH EXHAUST GAS RECIRCULATION
Öğüçlü, Özer
2015-01-01
A thermodynamic model has been developed and applied to predict the emission levels and performance of a spark ignition engine with using Exhaust Gas Recirculation (EGR) gas. The model simulates the full thermodynamic cycle of the engine and includes heat transfer, combustion, gas exchange process, thermal dissociation of water and carbon dioxide, and chemical equilibrium.
Critical, statistical, and thermodynamical properties of lattice models
International Nuclear Information System (INIS)
In this thesis we investigate zero temperature and low temperature properties - critical, statistical and thermodynamical - of lattice models in the contexts of bosonic cold atom systems, magnetic materials, and non-interacting particles on various lattice geometries. We study quantum phase transitions in the Bose-Hubbard model with higher body interactions, as relevant for optical lattice experiments of strongly interacting bosons, in one and two dimensions; the universality of the Mott insulator to superfluid transition is found to remain unchanged for even large three body interaction strengths. A systematic renormalization procedure is formulated to fully re-sum these higher (three and four) body interactions into the two body terms. In the strongly repulsive limit, we analyse the zero and low temperature physics of interacting hard-core bosons on the kagome lattice at various fillings. Evidence for a disordered phase in the Ising limit of the model is presented; in the strong coupling limit, the transition between the valence bond solid and the superfluid is argued to be first order at the tip of the solid lobe.
Critical, statistical, and thermodynamical properties of lattice models
Energy Technology Data Exchange (ETDEWEB)
Varma, Vipin Kerala
2013-10-15
In this thesis we investigate zero temperature and low temperature properties - critical, statistical and thermodynamical - of lattice models in the contexts of bosonic cold atom systems, magnetic materials, and non-interacting particles on various lattice geometries. We study quantum phase transitions in the Bose-Hubbard model with higher body interactions, as relevant for optical lattice experiments of strongly interacting bosons, in one and two dimensions; the universality of the Mott insulator to superfluid transition is found to remain unchanged for even large three body interaction strengths. A systematic renormalization procedure is formulated to fully re-sum these higher (three and four) body interactions into the two body terms. In the strongly repulsive limit, we analyse the zero and low temperature physics of interacting hard-core bosons on the kagome lattice at various fillings. Evidence for a disordered phase in the Ising limit of the model is presented; in the strong coupling limit, the transition between the valence bond solid and the superfluid is argued to be first order at the tip of the solid lobe.
Statistical thermodynamics and mean-field theory for the alloy under irradiation model
International Nuclear Information System (INIS)
A generalization of statistical thermodynamics to the open systems case, is discussed, using as an example the alloy-under-irradiation model. The statistical properties of stationary states are described with the use of generalized thermodynamic potentials and 'quasi-interactions' determined from the master equation for micro-configuration probabilities. Methods for resolving this equation are illustrated by the mean-field type calculations of correlators, thermodynamic potentials and phase diagrams for disordered alloys
Directory of Open Access Journals (Sweden)
T. Urbic
2013-01-01
Full Text Available Thermodynamic properties of the particles interacting through smooth version of Stell-Hemmer interaction were studied using Wertheim's thermodynamic perturbation theory. The temperature dependence of molar volume, heat capacity, isothermal compressibility and thermal expansion coefficient at constant pressure for different number of bonding sites on particle were evaluated. The model showed water-like anomalies for all evaluated quantities, but thermodynamic perturbation theory does not properly predict dependence of these properties at fixed number of bonding points.
Constrained Canonical Correlation.
DeSarbo, Wayne S.; And Others
1982-01-01
A variety of problems associated with the interpretation of traditional canonical correlation are discussed. A response surface approach is developed which allows for investigation of changes in the coefficients while maintaining an optimum canonical correlation value. Also, a discrete or constrained canonical correlation method is presented. (JKS)
Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob
2016-04-01
The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.
Thermodynamic Modelling of Volatiles in Kimberlite Ascent and Eruption
Russell, J. K.; Gordon, T. M.
2009-04-01
speciation calculations were attempted. The thermodynamic properties of the fluids were retrieved using program REFPROP (Lemmon et al. 2007) that employs the GERG-2004 equation of state and mixing models (Kunz et al. 2007). We then compute how the properties (V, H, S) of the expanding fluid change as a function of ascent path. As the magma decompresses, the fluid phase increases in mass and volume, and the thermal consequences of adiabatic expansion begin to dominate. We have explored the isentropic and isenthalpic adiabatic expansion paths (e.g., Spera 1984; Mastin & Ghiorso 2003) for the ascending magma. The paths are based on "intrinsic" thermodynamic properties (Dodson, 1971) and do not include energy associated with motion or position in the gravitational field. References Dodson M 1971. Isenthalpic flow, Joule-Kelvin coefficients & mantle convection. Nature 234, 212. Ghiorso MS & Sack RO 1995. Chemical mass transfer in magmatic processes. CMP 119, 197-212. Kunz O et al. 2007. The GERG-2004 wide-range reference equation of state for natural gases. GERG Technical Monograph 15. Fortschritt Berichte VDI, Reihe 6, 557. Lemmon EW et al. 2007. Fluid Thermodynamic & Transport Properties - REFPROP Version 8.0, NIST, Boulder. Mastin LG & Ghiorso MS 2001. Adiabatic temperature changes of magma-gas mixtures during ascent and eruption. CMP 141: 307-321. Papale P, Moretti R, Barbato D 2006. Chemical Geology 229, 78-95. Spera, F.J. 1984. Carbon dioxide in petrogenesis. CMP, 88: 217-232.
Thermodynamic Property Model of Wide-Fluid Phase Propane
Directory of Open Access Journals (Sweden)
I Made Astina
2007-05-01
Full Text Available A new thermodynamic property model for propane is expressed in form of the Helmholtz free energy function. It consists of eight terms of the ideal-gas part and eighteen terms of the residual part. Accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered in the development to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures. Based on the state range of experimental data used in the model development, the validity range is judged from the triple-point of 85.48 K to temperature of 450 K and pressure up to 60 MPa. The uncertainties with respect to different properties are estimated to be 0.03% in ideal-gas isobaric specific heat, 0.2% in liquid phase density, 0.3% in gaseous phase density 1% in specific heats, 0.1% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% in speed of sound of the gaseous phase and 1% in speed of sound of the liquid phase.
Razavi, Amir Reza; Gill, Hans; Ahlfeldt, Hans; Shahsavar, Nosrat
2005-01-01
Data mining methods can be used for extracting specific medical knowledge such as important predictors for recurrence of breast cancer in pertinent data material. However, when there is a huge quantity of variables in the data material it is first necessary to identify and select important variables. In this study we present a preprocessing method for selecting important variables in a dataset prior to building a predictive model.In the dataset, data from 5787 female patients were analysed. To cover more predictors and obtain a better assessment of the outcomes, data were retrieved from three different registers: the regional breast cancer, tumour markers, and cause of death registers. After retrieving information about selected predictors and outcomes from the different registers, the raw data were cleaned by running different logical rules. Thereafter, domain experts selected predictors assumed to be important regarding recurrence of breast cancer. After that, Canonical Correlation Analysis (CCA) was applied as a dimension reduction technique to preserve the character of the original data.Artificial Neural Network (ANN) was applied to the resulting dataset for two different analyses with the same settings. Performance of the predictive models was confirmed by ten-fold cross validation. The results showed an increase in the accuracy of the prediction and reduction of the mean absolute error. PMID:16160255
Towards a Canonical Method to Solve Patterns of Ontology Modeling Issues (9 Month Report)
Rodriguez-Castro, Benedicto; Glaser, Hugh; Carr, Les
2006-01-01
This report presents a brief description of the different activities carried out in the field of ontology engineering. It identifies a lack of guidelines on how to address modeling issues during the ontology conceptualization phase, in the current methodologies to build ontologies from scratch. It describes an example scenario of an ontology modeling task and it proposes a possible solution inspired by folksonomy based systems and faceted classification. This is followed by a study of the dif...
Lee, Hye-Seung; Paik, Myunghee Cho; Lee, Joseph H.
2008-01-01
Analysis of multiple traits can provide additional information beyond analysis of a single trait, allowing better understanding of the underlying genetic mechanism of a common disease. To accommodate multiple traits in familial correlation analysis adjusting for confounders, we develop a regression model for canonical correlation parameters and propose joint modeling along with mean and scale parameters. The proposed method is more powerful than the regression method modeling pairwise correla...
Thermodynamical description of the ghost dark energy model
Honarvaryan, M.; Sheykhi, A.; Moradpour, H.
2015-01-01
In this paper, we point out thermodynamical description of ghost dark energy and its generalization to the early universe. Thereinafter, we find expressions for the entropy changes of these dark energy candidates. In addition, considering thermal fluctuations, thermodynamics of the dark energy component interacting with a dark matter sector is addressed. {We will also find the effects of considering the coincidence problem on the mutual interaction between the dark sectors, and thus the equat...
The thermodynamics of enhanced heat transfer: a model study
Hovhannisyan, Karen; Allahverdyan, Armen E.
2010-06-01
Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (the human sweating system, enzyme catalysis, facilitated diffusion across biomembranes, industrial heat-exchangers and so on). The thermodynamics of such processes remains, however, open. Here we study enhanced heat transfer by using a model junction immersed between two thermal baths at different temperatures Th and Tc (Th > Tc). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process demands consumption and subsequent dissipation of work. The efficiency of the enhancement is defined via the increment in the heat power divided by the amount of work done. We show that this efficiency is bounded from above by Tc/(Th - Tc). Formally this is identical to the Carnot bound for the efficiency of ordinary refrigerators which transfer heat from cold to hot bodies. It also shares some (but not all) physical features of the Carnot bound.
Chemval project. Comparison of thermodynamic databases used in geochemical modelling
International Nuclear Information System (INIS)
The following four thermodynamic databases used by European groups for geochemical modelling have been compared: UWIST; AERE, Harwell; CHEMVAL Stage I; EIR. The number of aqueous species and solid species as well as components in each database is listed. There are many cases where numbers in the different databases are not directly comparable and have not been compared here. There are five different reasons why this can occur. In each case these are noted. When numbers are directly comparable, they are not necessarily the same between databases. When differences occur we have highlighted them by marking with those cases where β values differ by between a factor of two and an order of magnitude (or the difference in log β is ≥ 0.3 but ≤ 1.0) and where the difference in β values is more than an order of magnitude (difference in log β > 1.0). This work is a component of the Chemval/Mirage project, performed within the third CEC R and D programme on radioactive waste management and storage
A new self-consistent model for thermodynamics of binary solutions
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Shan, Y. V.; Fischer, F. D.
2015-01-01
Roč. 108, NOV (2015), s. 27-30. ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Thermodynamics * Analytical methods * CALPHAD * Phase diagram * Self-consistent model Subject RIV: BJ - Thermodynamics Impact factor: 3.224, year: 2014
Existence of log canonical closures
Hacon, Christopher D
2011-01-01
Let $f:X\\to U$ be a projective morphism of normal varieties and $(X,\\Delta)$ a dlt pair. We prove that if there is an open set $U^0\\subset U$, such that $(X,\\Delta)\\times_U U^0$ has a good minimal model over $U^0$ and the images of all the non-klt centers intersect $U^0$, then $(X,\\Delta)$ has a good minimal model over $U$. As consequences we show the existence of log canonical compactifications for open log canonical pairs, and the fact that the moduli functor of stable schemes satisfies the valuative criterion for properness.
Thermodynamic Modeling of the YO(l.5)-ZrO2 System
Jacobson, Nathan S.; Liu, Zi-Kui; Kaufman, Larry; Zhang, Fan
2003-01-01
The YO1.5-ZrO2 system consists of five solid solutions, one liquid solution, and one intermediate compound. A thermodynamic description of this system is developed, which allows calculation of the phase diagram and thermodynamic properties. Two different solution models are used-a neutral species model with YO1.5 and ZrO2 as the components and a charged species model with Y(+3), Zr(+4), O(-2), and vacancies as components. For each model, regular and sub-regular solution parameters are derived fiom selected equilibrium phase and thermodynamic data.
Multiplicity fluctuations in heavy-ion collisions using canonical and grand-canonical ensemble
Energy Technology Data Exchange (ETDEWEB)
Garg, P. [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Science, Simrol (India); Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K. [Bhabha Atomic Research Center, Nuclear Physics Division, Mumbai (India)
2016-02-15
We report the higher-order cumulants and their ratios for baryon, charge and strangeness multiplicity in canonical and grand-canonical ensembles in ideal thermal model including all the resonances. When the number of conserved quanta is small, an explicit treatment of these conserved charges is required, which leads to a canonical description of the system and the fluctuations are significantly different from the grand-canonical ensemble. Cumulant ratios of total-charge and net-charge multiplicity as a function of collision energies are also compared in grand-canonical ensemble. (orig.)
Multiplicity fluctuations in heavy ion collisions using canonical and grand canonical ensemble
Garg, P; Netrakanti, P K; Mohanty, A K
2015-01-01
We report the higher order cumulants and their ratios for baryon, charge and strangeness multiplicity in canonical and grand-canonical ensembles in ideal thermal model including all the resonances. When the number of conserved quanta is small, an explicit treatment of these conserved charges is required, which leads to a canonical description of the system and the fluctuations are significantly different from the grand canonical ensemble. Cumulant ratios of total charge and net-charge multiplicity as a function of collision energies are also compared in grand canonical ensemble.
Uranyl sorption by smectites: spectroscopic assessment of thermodynamic modeling.
Chisholm-Brause, C J; Berg, J M; Little, K M; Matzner, R A; Morris, D E
2004-09-15
Batch sorption experiments and thermodynamic modeling of the interaction of UO2(2+) and its hydrolysis products with two smectitic clay minerals, the reference material SWy-1 [McKinley et al., Clays Clay Miner. 43 (1995) 586] and the soil isolate LK-1 [Turner et al., Geochim. Cosmochim. Acta 30 (1996) 3399], have established a conceptual framework for uranyl/smectite surface complexation based on general reactions between aqueous uranyl species and the reactive sites on the mineral surfaces. In this report, we have formulated and spectroscopically tested a set of hypotheses based on this conceptual framework using samples prepared under similar or identical conditions to evaluate the agreement between surface complexation/speciation as enumerated by spectroscopic characterization and that elaborated by the surface complexation model. Both steady-state and time-resolved optical emission spectral data are presented for uranyl on both smectite minerals as well as on the analogue phases SiO2 and Al(OH)3 spanning the pH range from approximately 4 to 8 and the background electrolyte concentrations from approximately 0.001 to 0.1 M. The spectral data enable the explicit identification of an outer-sphere exchange-site population of the hydrated cation [UO2(OH2)5(2+) ] in SWy-1. Spectral data also clearly establish the existence of inner-sphere surface complexes on the analogue phases and on the amphoteric clay crystallite edge sites [aluminol (>Al-OH) and silanol (>Si-OH)]. Based on the spectral characteristics of these uranyl edge-site populations, it is possible to readily infer for the SiO2, Al(OH)3, and SWy-1 samples the evolution in surface speciation with increasing pH to more hydrolyzed uranyl-surface complexes consistent with the conceptual model. The spectral domain characteristics of the edge-site populations on LK-1 with increasing pH suggest that there is no change in the hydrolysis of the uranyl-surface species. However, emission lifetime data are interpreted
Mohamad Javad Kamali; Zakarya Kamali; Gholamhossein Vatankhah
2015-01-01
Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other...
Transfermatrix-DMRG for dynamics of stochastic models and thermodynamics of fermionic models
Kemper, Andreas
2003-01-01
The present work applies a numerical method, namely the transfer-matrix density-matrix renormalization group (TMRG), to two seemingly different types of models. In a first part the TMRG is used to investigate the thermodynamics of one-dimensional fermionic models. A second part deals with a novel TMRG method for one-dimensional stochastic models, whose development is an integral part of the thesis. First, the traditional TMRG algorithm for quantum systems is outlined in its historical context...
Coupled thermodynamic-dynamic semi-analytical model of Free Piston Stirling engines
Formosa, Fabien
2013-01-01
The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standard...
Canonical Quantization of the Self-Dual Model coupled to Fermions
Girotti, H O
1999-01-01
This paper is dedicated to formulate the interaction picture dynamics of the self-dual field minimally coupled to fermions. To make this possible, we start by quantizing the free self-dual model by means of the Dirac bracket quantization procedure. We obtain, as result, that the free self-dual model is a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge invariant) excitations of the free Maxwell-Chern-Simons theory. The model describing the interaction of the self-dual field minimally coupled to fermions is also quantized through the Dirac bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the interaction picture dynamics is only possible after the elimination of the just mentioned component. This procedure brings, in turns, two new interaction terms, which are local in space and time while non-renormalizable by power counting. Relativistic invar...
International Nuclear Information System (INIS)
The thermodynamical method for studing a critical state is illustrated by the example of critical behavior of metallic cerium in the frameworks of the improved Rainford-Edwards model. Thermodynamical stability of the model is investigated, and behavior of the whole complex of thermodynamical characteristics of the system is analyzed. It is concluded that the model has the first type of critical behaviour
Thermodynamic modelling of Mg(BH{sub 4}){sub 2}
Energy Technology Data Exchange (ETDEWEB)
Pinatel, E.R.; Albanese, E.; Civalleri, B.; Baricco, M.
2015-10-05
Highlights: • DFT calculations providing missing thermodynamic data for Mg(BH{sub 4}){sub 2}were performed. • A Calphad assessment of Mg(BH{sub 4}){sub 2} was performed, considering all the available data. • Stable and metastable phase diagrams have been calculated for Mg(BH{sub 4}){sub 2}. • Several dehydrogenation paths of Mg(BH{sub 4}){sub 2} have been analysed and discussed. - Abstract: Application of the Calphad method to the description of thermodynamic properties in complex borohydride-based systems may allow a faster development of hydrogen storage materials. It is, however, limited by the low number of available thermodynamic description for borohydrides in thermodynamic databases. In the present work, a Calphad assessment of Mg(BH{sub 4}){sub 2} has been performed, considering available thermodynamic data. DFT calculations have been performed in order to provide missing thermodynamic data and to calculate the relative stability of the α, β and γ polymorphs. Experimental results have been compared detecting inconsistencies between them. The database obtained has been used to estimate driving forces for several dehydrogenation reactions. The dehydrogenation reaction leading to the formation of MgB{sub 2} and gaseous hydrogen is the most favoured thermodynamically, even if at low temperatures the formation of MgB{sub 12}H{sub 12} is competitive. On the contrary, positive driving forces have been calculated for the decomposition into B{sub 2}H{sub 6} and Mg(B{sub 3}H{sub 8}){sub 2}.
Thermodynamic modeling of the power plant based on the SOFC with internal steam reforming of methane
International Nuclear Information System (INIS)
Mathematical model based on the thermodynamic modeling of gaseous mixtures is developed for SOFC with internal steam reforming of methane. Macroscopic porous-electrode theory, including non-linear kinetics and gas-phase diffusion, is used to calculate the reforming reaction and the concentration polarization. Provided the data concerning properties and costs of materials the model is fit for wide range of parametric analysis of thermodynamic cycles including SOFC
Bravo-Suárez Juan J.; Páez-Mozo Edgar A.; Oyama S. Ted
2004-01-01
Several models for the estimation of thermodynamic properties of layered double hydroxides (LDHs) are presented. The predicted thermodynamic quantities calculated by the proposed models agree with experimental thermodynamic data. A thermodynamic study of the anion exchange process on LDHs is also made using the described models. Tables for the prediction of monovalent anion exchange selectivities on LDHs are provided. Reasonable agreement is found between the predicted and the experimental mo...
Directory of Open Access Journals (Sweden)
Bravo-Suárez Juan J.
2004-01-01
Full Text Available Several models for the estimation of thermodynamic properties of layered double hydroxides (LDHs are presented. The predicted thermodynamic quantities calculated by the proposed models agree with experimental thermodynamic data. A thermodynamic study of the anion exchange process on LDHs is also made using the described models. Tables for the prediction of monovalent anion exchange selectivities on LDHs are provided. Reasonable agreement is found between the predicted and the experimental monovalent anion exchange selectivities.
Wang, WenBin; Wu, ZiNiu; Wang, ChunFeng; Hu, RuiFeng
2013-11-01
A model based on a thermodynamic approach is proposed for predicting the dynamics of communicable epidemics assumed to be governed by controlling efforts of multiple scales so that an entropy is associated with the system. All the epidemic details are factored into a single and time-dependent coefficient, the functional form of this coefficient is found through four constraints, including notably the existence of an inflexion point and a maximum. The model is solved to give a log-normal distribution for the spread rate, for which a Shannon entropy can be defined. The only parameter, that characterizes the width of the distribution function, is uniquely determined through maximizing the rate of entropy production. This entropy-based thermodynamic (EBT) model predicts the number of hospitalized cases with a reasonable accuracy for SARS in the year 2003. This EBT model can be of use for potential epidemics such as avian influenza and H7N9 in China.
Thermodynamics of spin chains of Haldane-Shastry type and one-dimensional vertex models
Energy Technology Data Exchange (ETDEWEB)
Enciso, Alberto [Instituto de Ciencias Matematicas, Consejo Superior de Investigaciones Cientificas, 28049 Madrid (Spain); Finkel, Federico [Departamento de Fisica Teorica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Gonzalez-Lopez, Artemio, E-mail: artemio@fis.ucm.es [Departamento de Fisica Teorica II, Universidad Complutense de Madrid, 28040 Madrid (Spain)
2012-11-15
We study the thermodynamic properties of spin chains of Haldane-Shastry type associated with the A{sub N-1} root system in the presence of a uniform external magnetic field. To this end, we exactly compute the partition function of these models for an arbitrary finite number of spins. We then show that these chains are equivalent to a suitable inhomogeneous classical Ising model in a spatially dependent magnetic field, generalizing the results of Basu-Mallick et al. for the zero magnetic field case. Using the standard transfer matrix approach, we are able to compute in closed form the free energy per site in the thermodynamic limit. We perform a detailed analysis of the chains' thermodynamics in a unified way, with special emphasis on the zero field and zero temperature limits. Finally, we provide a novel interpretation of the thermodynamic quantities of spin chains of Haldane-Shastry type as weighted averages of the analogous quantities over an ensemble of classical Ising models. - Highlights: Black-Right-Pointing-Pointer Partition function of spin chains of Haldane-Shastry type in magnetic field. Black-Right-Pointing-Pointer Equivalence to classical inhomogeneous Ising models. Black-Right-Pointing-Pointer Free energy per site, other thermodynamic quantities in thermodynamic limit. Black-Right-Pointing-Pointer Zero field, zero temperature limits. Black-Right-Pointing-Pointer Thermodynamic equivalence with ensemble of classical Ising models.
Molten lanthanide halide systems: experimental, modeling and thermodynamic computation
International Nuclear Information System (INIS)
Molten lanthanide halide based systems were studied using two approaches: experiments and calculations. Liquid mixing enthalpies of chloride europium systems (MCl-EuCl2; M = Na, K, Rb) were measured at 1138 K. They can be represented (in kJ.mol-1) as a function of the molar fraction of EuCl2 (x) with the polynomials: ΔmixHm0 (NaCl - EuCl2) = x(1 - x)(-1.6634 - 5.4964x + 6.3324x2), ΔmixHm0 (KCl - EuCl2 = x(1 - x)(-21.262 + 17.196x- 6.6293x2), ΔmixHm0 (RbCl - EuCl2 = x(1 - x)(-25.286 + 15.786x). The NaCl-EuCl2 phase diagram was experimentally determined. It exhibits an eutectic equilibrium (x(EuCl2) = 0.49; Teut = 847 ± 2 K). Temperatures and enthalpies effusion and transition of EuCl2 were also measured (Ttrs= 1014 ± 2 K, ΔtrsHm0 = 11.5 ± 0.7 kJ.mol1, TfUs = 1125 ± 2 K, ΔfusHm0 = 18.7 ± 1,1 kJ.mol-1) as well as heat capacities (Cpm0(EuCl2, ortho.) = 76.26 + 8.08 x 10-3 T between 310
International Nuclear Information System (INIS)
The ω-factor approach is a method that explicitly incorporates organizational factors into Probabilistic safety assessment of nuclear power plants. Bayesian networks (BNs) are the underlying formalism used in this approach. They have a structural part formed by a graph whose nodes represent organizational variables, and a parametric part that consists of conditional probabilities, each of them quantifying organizational influences between one variable and its parents in the graph. The aim of this paper is twofold. First, we discuss some important limitations of current procedures in the ω-factor approach for either assessing conditional probabilities from experts or estimating them from data. We illustrate the discussion with an example that uses data from Licensee Events Reports of nuclear power plants for the estimation task. Second, we introduce significant improvements in the way BNs for the ω-factor approach can be constructed, so that parameter acquisition becomes easier and more intuitive. The improvements are based on the use of noisy-OR gates as model of multicausal interaction between each BN node and its parents
Energy Technology Data Exchange (ETDEWEB)
Galan, S.F. [Dpto. de Inteligencia Artificial, E.T.S.I. Informatica (UNED), Juan del Rosal, 16, 28040 Madrid (Spain)]. E-mail: seve@dia.uned.es; Mosleh, A. [2100A Marie Mount Hall, Materials and Nuclear Engineering Department, University of Maryland, College Park, MD 20742 (United States)]. E-mail: mosleh@umd.edu; Izquierdo, J.M. [Area de Modelado y Simulacion, Consejo de Seguridad Nuclear, Justo Dorado, 11, 28040 Madrid (Spain)]. E-mail: jmir@csn.es
2007-08-15
The {omega}-factor approach is a method that explicitly incorporates organizational factors into Probabilistic safety assessment of nuclear power plants. Bayesian networks (BNs) are the underlying formalism used in this approach. They have a structural part formed by a graph whose nodes represent organizational variables, and a parametric part that consists of conditional probabilities, each of them quantifying organizational influences between one variable and its parents in the graph. The aim of this paper is twofold. First, we discuss some important limitations of current procedures in the {omega}-factor approach for either assessing conditional probabilities from experts or estimating them from data. We illustrate the discussion with an example that uses data from Licensee Events Reports of nuclear power plants for the estimation task. Second, we introduce significant improvements in the way BNs for the {omega}-factor approach can be constructed, so that parameter acquisition becomes easier and more intuitive. The improvements are based on the use of noisy-OR gates as model of multicausal interaction between each BN node and its parents.
Rainforth, Tom; Wood, Frank
2015-01-01
We introduce canonical correlation forests (CCFs), a new decision tree ensemble method for classification. Individual canonical correlation trees are binary decision trees with hyperplane splits based on canonical correlation components. Unlike axis-aligned alternatives, the decision surfaces of CCFs are not restricted to the coordinate system of the input features and therefore more naturally represent data with correlation between the features. Additionally we introduce a novel alternative ...
Modeling thermodynamic distance, curvature and fluctuations a geometric approach
Badescu, Viorel
2016-01-01
This textbook aims to briefly outline the main directions in which the geometrization of thermodynamics has been developed in the last decades. The textbook is accessible to people trained in thermal sciences but not necessarily with solid formation in mathematics. For this, in the first chapters a summary of the main mathematical concepts is made. In some sense, this makes the textbook self-consistent. The rest of the textbook consists of a collection of results previously obtained in this young branch of thermodynamics. The manner of presentation used throughout the textbook is adapted for ease of access of readers with education in natural and technical sciences.
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics.
Williamson, Bryce E.; Morikawa, Tetsuo
2002-01-01
Introduces a chemical model illustrating the aspects of the second law of thermodynamics which explains concepts such as reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry. Presents a thought experiment using an ideal galvanic electrochemical cell. (YDS)
Thermodynamics second law and ω=-1 crossing(s) in interacting holographic dark energy model
International Nuclear Information System (INIS)
By the assumption that the thermodynamics second law is valid, we study the possibility of ω=-1 crossing in an interacting holographic dark energy model. We show that this crossing is possible provided we choose appropriate parameters for the system
Extending canonical Monte Carlo methods: II
International Nuclear Information System (INIS)
We have previously presented a methodology for extending canonical Monte Carlo methods inspired by a suitable extension of the canonical fluctuation relation C = β2(δE2) compatible with negative heat capacities, C α, as is shown in the particular case of the 2D seven-state Potts model where the exponent α = 0.14–0.18
Thermodynamic Property Models for Unburned Mixtures and Combustion Gases
Messina Michele; Lanzafame Rosario
2006-01-01
New mathematical functions, with the functional form of a fifth order logarithmic polynomial, have been developed. These polynomials have been used to describe gases’ thermodynamic properties, and have been utilized for combustion processes, with “frozen composition” and “shifting equilibrium composition” evaluation. The logarithmic polynomials present the advantage of covering a wide range of temperatures with only a single mathematical funct...
An extended rational thermodynamics model for surface excess fluxes
Sagis, L.M.C.
2012-01-01
In this paper, we derive constitutive equations for the surface excess fluxes in multiphase systems, in the context of an extended rational thermodynamics formalism. This formalism allows us to derive Maxwell–Cattaneo type constitutive laws for the surface extra stress tensor, the surface thermal en
On lumped models for thermodynamic properties of simulated annealing problems
Andresen, Bjarne; Hoffmann, Karl Heinz; Mosegaard, Klaus; Nulton, Jim; Pedersen, Jacob Mørch; Salamon, Peter
1988-01-01
The paper describes a new method for the estimation of thermodynamic properties for simulated annealing problems using data obtained during a simulated annealing run. The method works by estimating energy-to-energy transition probabilities and is well adapted to simulations such as simulated annealing, in which the system is never in equilibrium.
Thermodynamic modeling in the Cu-In-Sn system
Czech Academy of Sciences Publication Activity Database
Drápala, J.; Vřešťál, J.; Kroupa, Aleš
Pennsylvania : The Pennsylvania State university, 2007. s. 150-105. [CALPHAD /36./. 06.05.2007-11.05.2007, Pennsylvania] R&D Projects: GA MŠk OC 531.001; GA MŠk OC 531.002 Institutional research plan: CEZ:AV0Z20410507 Keywords : Cu-In-Sn system Subject RIV: BJ - Thermodynamic s
Directory of Open Access Journals (Sweden)
Géraldine Walthe
2012-03-01
Full Text Available Non-canonical inflection (deponency, heteroclisis. . . is extensively studied in theoretical morphology. However, these studies often lack practical implementations associated with large-scale lexica. Yet these are precisely the requirements for objective comparative studies on the complexity of morphological descriptions. We show how parsli, our model of inflectional morphology, manages to represent many non-canonical phenomena and to formalise them in way allowing for their subsequent implementation. We illustrate it with data about a variety of languages. We expose experiments conducted on the complexity of four competing descriptions of French verbal inflection, which is evaluated using the information-theoretic concept of description length. We show that the new concepts introduced in parsli reduce the complexity of morphological descriptions w.r.t. both traditional or more recent models.
Experimental study and thermodynamic modeling of the MgO–NiO–SiO2 system
International Nuclear Information System (INIS)
Highlights: ► Thermodynamic optimization of the NiO–MgO–SiO2 system. ► Phase equilibria studied by equilibration, quenching and EPMA. ► A set of self-consistent Gibbs energy functions of all phases was obtained. ► All phase equilibria and thermodynamic data are reproduced within experimental error limits. ► This is the basis for a thermodynamic database for simulation of nickel extraction from ores. -- Abstract: The MgO–NiO–SiO2 system has been studied by a combination of thermodynamic modeling and experimental measurements of phase equilibria. A complete literature review, critical evaluation and thermodynamic modeling of phase diagrams and thermodynamic properties of all oxide phases in the MgO–NiO–SiO2 system at 1 atm total pressure are presented. To resolve the contradictions in the literature data, a new experimental investigation has been carried out over the temperature range from (1400 to 1650) °C using an equilibration and quenching technique followed by electron probe X-ray microanalysis (EPMA). Tie-lines between olivine and monoxide, olivine and proto-pyroxene, liquid and olivine and liquid and cristobalite have been measured. The whole set of experimental data, including the new experimental results and previously published data, has been taken into consideration in thermodynamic modeling of oxide phases in the MgO–NiO–SiO2 system. The Modified Quasichemical Model has been used for the liquid phase. A simple random mixing model with a polynomial expansion of the excess Gibbs energy has been used for the monoxide solid solution. The models for olivine and proto-pyroxene were developed within the framework of the Compound Energy Formalism. The optimized model parameters reproduce all available thermodynamic and phase diagram data within experimental error limits
Energy Technology Data Exchange (ETDEWEB)
Charley, Dawna R.; Higgins, Matthew B.
2007-12-01
Mode-stirred chamber and anechoic chamber measurements were made on two sets of canonical test objects (cylindrical and rectangular) with varying numbers of thin slot apertures. The shielding effectiveness was compared to determine the level of correction needed to compensate the mode-stirred data to levels commensurate with anechoic data from the same test object.
Universal canonical entropy for gravitating systems
Indian Academy of Sciences (India)
Ashok Chatterjee; Parthasarathi Majumdar
2004-10-01
The thermodynamics of general relativistic systems with boundary, obeying a Hamiltonian constraint in the bulk, is determined solely by the boundary quantum dynamics, and hence by the area spectrum. Assuming, for large area of the boundary, (a) an area spectrum as determined by non-perturbative canonical quantum general relativity (NCQGR), (b) an energy spectrum that bears a power law relation to the area spectrum, (c) an area law for the leading order microcanonical entropy, leading thermal fluctuation corrections to the canonical entropy are shown to be logarithmic in area with a universal coefficient. Since the microcanonical entropy also has universal logarithmic corrections to the area law (from quantum space-time fluctuations, as found earlier) the canonical entropy then has a universal form including logarithmic corrections to the area law. This form is shown to be independent of the index appearing in assumption (b). The index, however, is crucial in ascertaining the domain of validity of our approach based on thermal equilibrium.
Modelling plasticity of unsaturated soils in a thermodynamically consistent framework
Coussy, O
2010-01-01
Constitutive equations of unsaturated soils are often derived in a thermodynamically consistent framework through the use a unique 'effective' interstitial pressure. This later is naturally chosen as the space averaged interstitial pressure. However, experimental observations have revealed that two stress state variables were needed to describe the stress-strain-strength behaviour of unsaturated soils. The thermodynamics analysis presented here shows that the most general approach to the behaviour of unsaturated soils actually requires three stress state variables: the suction, which is required to describe the retention properties of the soil and two effective stresses, which are required to describe the soil deformation at water saturation held constant. Actually, it is shown that a simple assumption related to internal deformation leads to the need of a unique effective stress to formulate the stress-strain constitutive equation describing the soil deformation. An elastoplastic framework is then presented ...
Quantum thermodynamics for a model of an expanding universe
Liu, Nana; Fuentes, Ivette; Vedral, Vlatko; Modi, Kavan; Bruschi, David Edward
2016-01-01
We investigate the thermodynamical properties of quantum fields in curved spacetime. Our approach is to consider quantum fields in curved spacetime as a quantum system undergoing an out-of-equilibrium transformation. The non-equilibrium features are studied by using a formalism which has been developed to derive fluctuation relations and emergent irreversible features beyond the linear response regime. We apply these ideas to an expanding universe scenario, therefore avoiding assumptions on the relation between entropy and quantum matter. We provide a fluctuation theorem which allows us to understand particle production due to the expansion of the universe as an entropic increase. Our results pave the way towards a different understanding of the thermodynamics of relativistic and quantum systems in our universe.
Directory of Open Access Journals (Sweden)
Abdallah Haouam
2012-03-01
Full Text Available Samples of Inconel 600 were isothermally oxidized in a controlled atmosphere with a special mounting at high-temperature oxidation. Along with this experimental study, a simulation of thermodynamic behavior of the material in the same oxidation conditions was carried out using the Thermo-Calc code. The thermodynamic modeling is able to predict the phase nature and its distribution in the structure of the surface layer resulting from the corrosion of the material in thermodynamic equilibrium in the absence of mechanical stress. The results of this simulation are supplemented to results obtained from the analysis by glow discharge spectrometry (GDS which is performed on the samples tested.
Thermodynamic Property Models for Unburned Mixtures and Combustion Gases
Rosario, Lanzafame; Michele, Messina
2006-01-01
New mathematical functions, with the functional form of a fifth order logarithmic polynomial, have been developed. These polynomials have been used to describe gases’ thermodynamic properties, and have been utilized for combustion processes, with “frozen composition” and “shifting equilibrium composition” evaluation. The logarithmic polynomials present the advantage of covering a wide range of temperatures with only a single mathematical function. The logarithmic...
Thermodynamics of water modeled using ab initio simulations
Weber, Valéry
2010-01-01
We regularize the potential distribution framework to calculate the excess free energy of liquid water simulated with the BLYP-D density functional. The calculated free energy is in fair agreement with experiments but the excess internal energy and hence also the excess entropy are not. Our work emphasizes the importance of thermodynamic characterization in assessing the quality of electron density functionals in describing liquid water and hydration phenomena.
Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations
Energy Technology Data Exchange (ETDEWEB)
Jordal, Kristin
1999-02-01
Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency
A Thermodynamic-Based Model to Predict the Fraction of Martensite in Steels
Huyan, Fei; Hedström, Peter; Höglund, Lars; Borgenstam, Annika
2016-06-01
A thermodynamic-based model to predict the fraction of martensite in steels with undercooling has been developed. The model utilizes the thermodynamic driving force to describe the transformation curve and it is able to predict the fraction of athermal martensite at quenching to different temperatures for low alloy steels. The only model parameter is a linear function of the martensite start temperature (M s), and the model predicts that a steel with a higher M s has a lower difference between the martensite start and finish temperatures. When the present model is combined with a previously developed thermodynamic-based model for M s, the model predictions of the full martensite transformation curve with undercooling are in close agreement with literature data.
Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)
Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.
Thermodynamic instability of doubly spinning black objects
Astefanesei, D.; Rodriguez, M.; S. Theisen
2010-01-01
We investigate the thermodynamic stability of neutral black objects with (at least) two angular momenta. We use the quasilocal formalism to compute the grand canonical potential and show that the doubly spinning black ring is thermodynamically unstable. We consider the thermodynamic instabilities of ultra-spinning black objects and point out a subtle relation between the microcanonical and grand canonical ensembles. We also find the location of the black string/membrane phases of doubly spinn...
Bahroun, Sami
2010-01-01
The goal of this thesis is the modeling and thermodynamic based control of three-phase catalytic reactor working in continuous or discontinuous modes. These types of reactors are highly nonlinear, multivariable and exothermal processes. We use the concepts of irreversible thermodynamics for the synthesis of stabilizing control laws for these two types of chemical reactors. Indeed, the strict concavity of the entropy function has allowed us to define a storage function used as a candidate Lyap...
Duality, thermodynamics, and the linear programming problem in constraint-based models of metabolism
Warren, Patrick B.; Jones, Janette L.
2007-01-01
It is shown that the dual to the linear programming problem that arises in constraint-based models of metabolism can be given a thermodynamic interpretation in which the shadow prices are chemical potential analogues, and the objective is to minimise free energy consumption given a free energy drain corresponding to growth. The interpretation is distinct from conventional non-equilibrium thermodynamics, although it does satisfy a minimum entropy production principle. It can be used to motivat...
Directory of Open Access Journals (Sweden)
Carlos García-Bedoya Maguiña
2011-05-01
Full Text Available Canon es un concepto clave en la historia literaria. En el presente artículo,se revisa la evolución histórica del canon literario peruano. Es solo con la llamada República Aristocrática, en las primeras décadas del siglo XX, que cabe hablar en el caso peruano de la formación de un auténtico canon nacional. El autor denomina a esta primera versión del canon literario peruano como canon oligárquico y destaca la importancia de la obra de Riva Agüero y de Ventura García Calderón en su configuración. Es solo más tarde, desde los años 20 y de modo definitivo desde los años 50, que puede hablarse de la emergencia de un nuevo canon literarioal que el autor propone determinar canon posoligárquico.
Energy Technology Data Exchange (ETDEWEB)
Xiao Yamping; Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy
1996-12-31
This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.
Turkheimer, Federico E; Leech, Robert; Expert, Paul; Lord, Louis-David; Vernon, Anthony C
2015-08-01
A variety of anatomical and physiological evidence suggests that the brain performs computations using motifs that are repeated across species, brain areas, and modalities. The computational architecture of cortex, for example, is very similar from one area to another and the types, arrangements, and connections of cortical neurons are highly stereotyped. This supports the idea that each cortical area conducts calculations using similarly structured neuronal modules: what we term canonical computational motifs. In addition, the remarkable self-similarity of the brain observables at the micro-, meso- and macro-scale further suggests that these motifs are repeated at increasing spatial and temporal scales supporting brain activity from primary motor and sensory processing to higher-level behaviour and cognition. Here, we briefly review the biological bases of canonical brain circuits and the role of inhibitory interneurons in these computational elements. We then elucidate how canonical computational motifs can be repeated across spatial and temporal scales to build a multiplexing information system able to encode and transmit information of increasing complexity. We point to the similarities between the patterns of activation observed in primary sensory cortices by use of electrophysiology and those observed in large scale networks measured with fMRI. We then employ the canonical model of brain function to unify seemingly disparate evidence on the pathophysiology of schizophrenia in a single explanatory framework. We hypothesise that such a framework may also be extended to cover multiple brain disorders which are grounded in dysfunction of GABA interneurons and/or these computational motifs. PMID:25956253
Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle
Abe, Sumiyoshi; Okuyama, Shinji
2010-01-01
Similarity between quantum mechanics and thermodynamics is discussed. It is found that if the Clausius equality is imposed on the Shannon entropy and the analogue of the heat quantity, then the value of the Shannon entropy comes to formally coincide with that of the von Neumann entropy of the canonical density matrix, and pure-state quantum mechanics apparently transmutes into quantum thermodynamics. The corresponding quantum Carnot cycle of a simple two-state model of a particle confined in ...
Thermodynamic Modeling as a Strategy for Casting High Alloy Steels
Institute of Scientific and Technical Information of China (English)
Peri Reddy V; S Raman Sankaranarayanan
2009-01-01
Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging of submerged entry nozzle during continuous casting. Approaches to producing high alloy steels by continuous casting have been taken. One of the strategies to avoid the oxidation of chromium is to add a small amount of other elements (subject to other constraints), which do not cause subsequent problems. The problem has been studied using the Thermo-CalcR software, with related databases; and the results obtained for different process conditions or generic com-positions have been presented.
Konrad-Schmolke, Matthias; Halama, Ralf
2014-11-01
Quantitative geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to radioactive waste disposal. In addition, the development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams has greatly advanced our ability to model geodynamic processes. Combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In metamorphic petrology the combination of thermodynamic and trace element forward modeling can be used to study and to quantify processes at spatial scales from μm to km. The thermodynamic forward models utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. Here we illustrate the capacities of combined thermodynamic-geochemical modeling based on two examples relevant to mass transfer during metamorphism. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab, the associated transport of B as well as variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. We compare the modeled results of both examples to geochemical data of natural minerals and rocks and demonstrate that the combination
Theoretical models for fluid thermodynamics based on the quasi-Gaussian entropy theory
Amadei, Andrea
1998-01-01
Summary The theoretical modeling of fluid thermodynamics is one of the most challenging fields in physical chemistry. In fact the fluid behavior, except at very low density conditions, is still extremely difficult to be modeled from a statistical mechanical point of view, as for any realistic model
International Nuclear Information System (INIS)
The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.
Technical Work Plan for: Thermodynamic Database for Chemical Modeling
Energy Technology Data Exchange (ETDEWEB)
C.F. Jovecolon
2006-09-07
The objective of the work scope covered by this Technical Work Plan (TWP) is to correct and improve the Yucca Mountain Project (YMP) thermodynamic databases, to update their documentation, and to ensure reasonable consistency among them. In addition, the work scope will continue to generate database revisions, which are organized and named so as to be transparent to internal and external users and reviewers. Regarding consistency among databases, it is noted that aqueous speciation and mineral solubility data for a given system may differ according to how solubility was determined, and the method used for subsequent retrieval of thermodynamic parameter values from measured data. Of particular concern are the details of the determination of ''infinite dilution'' constants, which involve the use of specific methods for activity coefficient corrections. That is, equilibrium constants developed for a given system for one set of conditions may not be consistent with constants developed for other conditions, depending on the species considered in the chemical reactions and the methods used in the reported studies. Hence, there will be some differences (for example in log K values) between the Pitzer and ''B-dot'' database parameters for the same reactions or species.
Technical Work Plan for: Thermodynamic Databases for Chemical Modeling
International Nuclear Information System (INIS)
The objective of the work scope covered by this Technical Work Plan (TWP) is to correct and improve the Yucca Mountain Project (YMP) thermodynamic databases, to update their documentation, and to ensure reasonable consistency among them. In addition, the work scope will continue to generate database revisions, which are organized and named so as to be transparent to internal and external users and reviewers. Regarding consistency among databases, it is noted that aqueous speciation and mineral solubility data for a given system may differ according to how solubility was determined, and the method used for subsequent retrieval of thermodynamic parameter values from measured data. Of particular concern are the details of the determination of ''infinite dilution'' constants, which involve the use of specific methods for activity coefficient corrections. That is, equilibrium constants developed for a given system for one set of conditions may not be consistent with constants developed for other conditions, depending on the species considered in the chemical reactions and the methods used in the reported studies. Hence, there will be some differences (for example in log K values) between the Pitzer and ''B-dot'' database parameters for the same reactions or species
Thermodynamic modeling of mineralogical phases formed by continuous casting powders
International Nuclear Information System (INIS)
A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca4Si2O7F2) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF2). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.
Thermodynamic Model of the Loss Factor Applied to Steam Turbines
Directory of Open Access Journals (Sweden)
Antonio Valero
2001-09-01
Full Text Available Erosion, roughness, steam path damage, etc., are factors that reduce power capacity in a steam turbine. Any power loss occurring locally in intermediate stages of a steam turbine results in more available energy in the downstream stages, this effect is well known as the Loss Factor (Salisbury, 1974; Stodola, 1927; Husain, 1984. Currently, the Loss Factor is been calculated by graphical methods (Cotton, 1996. In this work a new thermodynamic expression for the Loss Factor (LF is introduced, in order to improve applications to evaluate malfunctions in the first and intermediate stages of steam turbines. The new thermodynamic expression for the Loss Factor, is based on Second Law Analysis; and concepts like the internal parameter θ, and the dissipation temperature Td; (Royo, 1992. An Example of a steam turbine in a conventional power plant of 158 MW is analyzed by comparing a classical graphical method (ASME/ANSI PTC-6, 1970; and Cotton, 1993, and the proposed expression of the Loss Factor (LF. Special emphasis is made on the thermoeconomical deviations that could arise by an imprecise application of the Loss Factor Method, during an energy audit of the steam turbine internal parts.
Canonical Information Analysis
DEFF Research Database (Denmark)
Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg
2015-01-01
Canonical correlation analysis is an established multivariate statistical method in which correlation between linear combinations of multivariate sets of variables is maximized. In canonical information analysis introduced here, linear correlation as a measure of association between variables is...... replaced by the information theoretical, entropy based measure mutual information, which is a much more general measure of association. We make canonical information analysis feasible for large sample problems, including for example multispectral images, due to the use of a fast kernel density estimator...... for entropy estimation. Canonical information analysis is applied successfully to (1) simple simulated data to illustrate the basic idea and evaluate performance, (2) fusion of weather radar and optical geostationary satellite data in a situation with heavy precipitation, and (3) change detection in...
Bertot, Yves; Gonthier, Georges; Ould Biha, Sidi; Pasca, Ioana
2008-01-01
In this paper, we present an approach to describe uniformly iterated “big” operations and to provide lemmas that encapsulate all the commonly used reasoning steps on these constructs. We show that these iterated operations can be handled generically using the syntactic notation and canonical structure facilities provided by the Coq system. We then show how these canonical big operations played a crucial enabling role in the study of various parts of linear algebra and multi-dimensional real a...
Development of a thermodynamic data base for selected heavy metals
International Nuclear Information System (INIS)
The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.
A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects
Guo, Zhenlin
2014-01-01
In this paper, we develop a phase-field model for binary incompressible fluid with thermocapillary effects, which allows the different properties (densities, viscosities and heat conductivities) for each component and meanwhile maintains the thermodynamic consistency. The governing equations of the model including the Navier-Stokes equations, Cahn-Hilliard equations and energy balance equation are derived together within a thermodynamic framework based on the entropy generation, which guarantees the thermodynamic consistency. The sharp-interface limit analysis is carried out to show that the interfacial conditions of the classical sharp-interface models can be recovered from our phase-field model. Moreover, some numerical examples including thermocapillary migration of a bubble and thermocapillary convections in a two- layer fluid system are computed by using a continuous finite element method. The results are compared to the existing analytical solutions and theoretical predictions as validations for our mod...
Thermodynamic modeling of the UO2–CaO phase diagram
International Nuclear Information System (INIS)
Highlights: • The UO2–CaO phase diagram was modeled thermodynamically. • A tentative phase diagram was presented by calculating the liquidus, solidus, and solvus curves. • The lattice stabilities and the activities of each component were evaluated. - Abstract: A thermodynamic modeling of the UO2–CaO phase diagram was performed with experimental data available in the literature. A relatively simple approach is used to model the solution phases, which are treated as the regular and the sub-regular solutions of the end-members. A consistent set of optimized interaction parameters was derived for describing the Gibbs energy of each phase in this system leading to a good fit between calculation and experimental data. A tentative phase diagram was presented by calculating the liquidus, solidus, and solvus curves. Also, the lattice stabilities and the activities of each component were evaluated from the present thermodynamic modeling
Using lattice methods in non-canonical quantum statistics
International Nuclear Information System (INIS)
We define a natural coarse-graining procedure which can be applied to any closed equilibrium quantum system described by a density matrix ensemble and we show how the coarse-graining leads to the Gaussian and canonical ensembles. After this motivation, we present two ways of evaluating the Gaussian expectation values with lattice simulations. The first one is computationally demanding but general, whereas the second employs only canonical expectation values but it is applicable only for systems which are almost thermodynamical
Recent Advances in Study on Thermodynamic Models for Real Systems Including Electrolytes
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A comprehensive review of recent advances in study on thermodynamic models for real electrolyte solutions is presented. The differences between primitive and non-primitive electrolyte models are demonstrated. Some new thermodynamic models for electrolyte solutions based on the mean spherical approximation and perturbation theory are introduced. An extended scaled-particle theory and modified CleggPitz er equation are presented for physical and chemical absorption processes with mixed solvents, respectively. A pseudo one-component two-Yukawa equation of state is used for the aqueous two-phase extraction process in charged colloidal systems.
Size-dependent melting of nanoparticles: Hundred years of thermodynamic model
Indian Academy of Sciences (India)
K K Nanda
2009-04-01
Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different nanostructures such as nanowires, prism-shaped nanoparticles, etc. The model has also been modified to understand the melting of supported nanoparticles and superheating of embedded nanoparticles. In this article, we have reviewed the melting behaviour of nanostructures reported in the literature since 1909.
Thermodynamic Modeling of Oxide Phases in the Mn-O System
Kang, Youn-Bae; Jung, In-Ho
2016-06-01
A critical evaluation and thermodynamic modeling for thermodynamic properties of all oxide phases and phase diagrams in the Mn-O system are presented. Optimized Gibbs energy parameters for the thermodynamic models of the oxide phases were obtained which reproduce all available and reliable experimental data within error limits from 298 K (25 °C) to above the liquidus temperature at compositions covering from MnO to MnO2, and oxygen partial pressure from 10-15 to 102 (bar). The optimized thermodynamic properties and phase diagrams are believed to be the best estimates presently available. Two spinel phases (α - and β -Mn3O4) were modeled using Compound Energy Formalism (CEF) with the use of physically meaningful parameters. Valence states of the spinels are interpreted based on the available thermopower measurement, for which Mn4+ was considered in the cubic spinel (β -Mn3O4). The present Mn3O4 spinel solutions can be integrated into a larger spinel solution database, which has been already developed. The database of the model parameters can be used along with a software for Gibbs energy minimization in order to calculate any type of phase diagram sections and thermodynamic properties.
Experimental investigation and thermodynamic modeling of the Nd-Ni system
International Nuclear Information System (INIS)
The Nd-Ni system has been investigated via experiments and thermodynamic modeling. In the experimental part, alloys across the entire composition range were prepared by arc melting pure Nd and Ni slugs and annealing the alloys at 500 deg. C (70 at.% Ni) for 2 weeks. The annealed alloys were then subjected to differential scanning calorimetry and differential thermal analysis (DTA) measurements to determine the invariant reaction temperatures. Except for the peritectic reaction liquid + Nd7Ni3 ↔ Nd3Ni and the polymorphous phase transformation of Nd2Ni7 found in this study, all the other invariant reactions are confirmed to be the same types but with significant different temperatures as reported results. In the modeling part, the available phase equilibrium and thermodynamic data in the Nd-Ni system were analyzed by using thermodynamic models for the Gibbs energies of individual phases. An optimal set of thermodynamic parameters were obtained using WinPhad software. The calculated phase equilibria and thermodynamic properties from the model parameters were compared to the corresponding experimental data and good agreement was obtained
Experimental investigation and thermodynamic modeling of the Ni-Pr system
International Nuclear Information System (INIS)
The Ni-Pr system is investigated via experiments and thermodynamic modeling. In the experimental part, five alloys with compositions of Ni-96 at.% Pr, Ni-85 at.% Pr, Ni3Pr, Ni5Pr and Ni-5 at.% Pr were prepared by arc melting pure Ni and Pr slugs and annealing the alloys at 500 deg. C for 2 weeks. The annealed alloys were then subjected to differential thermal analysis (DTA) measurements. The decomposition temperatures of Ni7Pr2 (1162 deg. C), Ni3Pr (1029 deg. C), Ni2Pr (921 deg. C), dhcp (Pr) (780 deg. C), the eutectic reaction temperature of liquid ↔ fcc (Ni) + Ni5Pr (1280 deg. C) and the congruent melting point of Ni5Pr (1385 deg. C) were determined by DTA, respectively. In the modeling part, the available phase equilibrium and thermodynamic data in the Ni-Pr system were analyzed by using thermodynamic models for the Gibbs energies of individual phases. An optimal set of thermodynamic parameters was obtained using WinPhad software. The calculated phase equilibria and thermodynamic properties from the model parameters were compared to the corresponding experimental data and good agreement was obtained
Three Dimensional Canonical Quantum Gravity
Matschull, Hans-Juergen
1995-01-01
General aspects of vielbein representation, ADM formulation and canonical quantization of gravity are reviewed using pure gravity in three dimensions as a toy model. The classical part focusses on the role of observers in general relativity, which will later be identified with quantum observers. A precise definition of gauge symmetries and a classification of inequivalent solutions of Einstein's equations in dreibein formalism is given as well. In the quantum part the construction of the phys...
Basic Canonical Brackets Without Canonical Conjugate Momenta: Supersymmetric Harmonic Oscillator
Shukla, A; Malik, R P
2014-01-01
We exploit the ideas of spin-statistics theorem, normal-ordering and the key concepts behind the symmetry principles to derive the canonical (anti)commutators for the case of a one (0 + 1)-dimensional (1D) supersymmetric (SUSY) harmonic oscillator without taking the help of the mathematical definition of the canonical conjugate momenta with respect to the bosonic and fermionic variables of this toy model for the Hodge theory (where the continuous and discrete symmetries of the theory provide the physical realizations of the de Rham cohomological operators of differential geometry). In our present endeavor, it is the full set of continuous symmetries and their corresponding generators that lead to the derivation of basic (anti)commutators amongst the creation and annihilation operators that appear in the normal mode expansions of the dynamical variables of our theory.
Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines
International Nuclear Information System (INIS)
Research highlights: → The free piston Stirling behaviour relies on its thermal and dynamic features. → A global semi-analytical model for preliminary design is developed. → The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.
The Second Law of Thermodynamics in a Quantum Heat Engine Model
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.
Thermodynamic and Process Modelling of Gas Hydrate Systems in CO2 Capture Processes
DEFF Research Database (Denmark)
Herslund, Peter Jørgensen
formation may be performed at pressures of approximately 20 MPa and temperatures below 280 K. Thermodynamic promoters are needed, to reduce the pressure requirement of the process, thereby making it competitive to existing capture technologies. A literature study is presented focusing mainly...... pressures are reduced by approximately 20 percent compared to the cyclopentane promoted system. The mixed promoter system thereby represents a new state-ofthe-art within thermodynamic promotion of gas hydrates in the framework of the classical hydrate structures. A thermodynamic model based on the Cubic...... simplified carbon dioxide capture processes are simulated by use of the model. Three to four capture stages are needed in all processes to obtain a product stream richer than 95 mole percent in terms of carbon dioxide. The modeling results presented here are discouraging for the post-combustion carbon...
Directory of Open Access Journals (Sweden)
Chellaboina Vijaysekhar
2005-01-01
Full Text Available We develop thermodynamic models for discrete-time large-scale dynamical systems. Specifically, using compartmental dynamical system theory, we develop energy flow models possessing energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation principles for discrete-time, large-scale dynamical systems. Furthermore, we introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency of a dynamical system to do useful work and grow more organized, and show that conservation of energy in an isolated thermodynamic system necessarily leads to nonconservation of ectropy and entropy. In addition, using the system ectropy as a Lyapunov function candidate, we show that our discrete-time, large-scale thermodynamic energy flow model has convergent trajectories to Lyapunov stable equilibria determined by the system initial subsystem energies.
The Second Law of Thermodynamics in a Quantum Heat Engine Model
International Nuclear Information System (INIS)
The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.
Flux representation of an effective Polyakov loop model for QCD thermodynamics
Gattringer, Christof
2011-01-01
We discuss an effective Polyakov loop model for QCD thermodynamics with a chemical potential. Using high temperature expansion techniques the partition sum is mapped exactly onto the partition sum of a flux model. In the flux representation the complex action problem is resolved and a simulation with worm-type algorithms becomes possible also at finite chemical potential.
Pun, Betty K.; Griffin, Robert J.; Seigneur, Christian; Seinfeld, John H.
2002-01-01
A model that predicts secondary organic aerosol (SOA) formation based on the thermodynamic equilibrium partitioning of secondary organic oxidation products has been developed for implementation into atmospheric models. Hydrophobic secondary products are assumed to partition to an absorbing organic aerosol consisting of primary organic aerosol (POA) and other secondary hydrophobic organics according to an equilibrium partitioning coefficient calculated iteratively for each secondary compound p...
Directory of Open Access Journals (Sweden)
Mohamad Javad Kamali
2015-01-01
Full Text Available Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other temperatures in binary and ternary system of aqueous electrolyte solution are predicted. The average absolute deviations for calculation of surface tension of binary and mixed electrolyte systems by new model are 1.98 and 1.70%, respectively.
Thermodynamic modeling of the Eu–Te and Te–Yb systems
Energy Technology Data Exchange (ETDEWEB)
Ghamri, H., E-mail: ghamri.houda@hotmail.fr; Djaballah, Y.; Belgacem-Bouzida, A.
2015-09-15
Highlights: • The Eu–Te and Te–Yb binary systems were not previously thermodynamically assessed. • The Eu–Te and Te–Yb systems were assessed by using the CALPHAD technique. • A coherent set of thermodynamic parameters was obtained for both systems. • An agreement between the calculated results and experimental data was obtained for both systems. - Abstract: In this work, thermodynamic assessments of the Eu–Te and Te–Yb binary systems were carried out by using the CALculation of PHase Diagrams (CALPHAD) method based on the available experimental data including thermodynamic properties and phase equilibria. Reasonable models were constructed for all the phases of the two systems. The liquid phases were described by the substitutional solution model with the Redlich–Kister polynomial. The three intermetallic compounds, Eu{sub 4}Te{sub 7}, Eu{sub 3}Te{sub 7} and TeYb in the two systems, were treated as stoichiometric phases, while the non-stoichiometric phase (EuTe), which has an homogeneity range, was treated by a two-sublattice model following the schema: (Eu,Te){sub 0.5}(Te){sub 0.5}. A consistent set of thermodynamic parameters leading to reasonable agreement between the calculated results and experimental data was obtained.
Wilmanski, Krzysztof
2008-01-01
This book is a unique presentation of thermodynamic methods of construction of continuous models. It is based on a uniform approach following from the entropy inequality and using Lagrange multipliers as auxiliary quantities in its evaluation. It covers a wide range of models - ideal gases, thermoviscoelastic fluids, thermoelastic and thermoviscoelastic solids, plastic polycrystals, miscible and immiscible mixtures, and many others. The structure of phenomenological thermodynamics is justified by a systematic derivation from the Liouville equation, through the BBGKY-hierarchy-derived Boltzmann
LIU, SHEN-SHEN; ZHOU, PU; Zhang, Yanqiu
2016-01-01
To investigate the molecular pathogenesis of the canonical Wnt/β-catenin pathway in exercise-induced osteoarthritis (OA), 30 male healthy Sprague Dawley rats were divided into three groups (control, normal exercise-induced OA and injured exercise-induced OA groups) in order to establish the exercise-induced OA rat model. The mRNA and protein expression levels of Runx-2, BMP-2, Ctnnb1, Sox-9, collagen II, Mmp-13, Wnt-3a and β-catenin in chon-drocytes were detected by reverse transcription-quan...
Rocha, Julio; Mol, Lucas; Costa, Bismarck
2015-03-01
In this work we show that the canonical partition function zeros, the Fisher zeros, can be used to uniquely characterize a transition as being in the Berezinskii-Kosterlitz-Thouless (BKT) class of universality. By studying the zeros map for the 2D XY model we found that its internal border coalesces into the real positive axis in a finite region corresponding to temperatures smaller than the BKT transition temperature. This behavior is consistent with the predicted existence of a line of critical points below the transition temperature, allowing one to distinguish the BKT class of universality from other ones. This work was partially supported by CNPq and Fapemig, Brazilian Agencies.
Proton production in relativistic heavy ion collisions; comparison with a thermodynamical model
Parizet, M. J.; Alard, J. P.; Rahmani, A.; Montarou, G.; Augerat, J.; Bastid, N.; Demaison, P.; Dupieux, P.; Fraysse, L.; Marroncle, J.; et, a. l.; Schimmerling, W. (Principal Investigator)
1989-01-01
Experimental results concerning proton production in nuclear collisions, obtained at Saturne with the Diogene 4 pi facility, are compared with the predictions of a thermodynamical model, using collective velocity distributions combined with a statistical thermodynamics in local rest frames. Experimental differential cross sections for alpha + nucleus and Neon + nucleus central collisions at incident energies between 200 and 800 MeV per nucleon are well reproduced by the model, for an angular range 30-110 degrees in the laboratory system. Extracted values of the temperatures are compared with those given by other authors.
Thermodynamic geometry of a kagome Ising model in a magnetic field
International Nuclear Information System (INIS)
We derived the thermodynamic curvature of the Ising model on a kagome lattice under the presence of an external magnetic field. The curvature was found to have a singularity at the critical point. We focused on the zero field case to derive thermodynamic curvature and its components near the criticality. According to standard scaling, scalar curvature R behaves as |β−βc|α−2 for α>0 where β is the inverse temperature and α is the critical exponent of specific heat. In the model considered here in which α is zero, we found that R behaves as |β−βc|α−1.
Multiplicity distributions in a thermodynamical model of hadron production in e+e- collisions
Becattini, F; Lupia, S
1996-01-01
Predictions of a thermodynamical model of hadron production for multiplicity distributions in e^+e^- annihilations at LEP and PEP-PETRA centre of mass energies are shown. The production process is described as a two-step process in which primary hadrons emitted from the thermal source decay into final observable particles. The final charged tracks multiplicity distributions turn out to be of Negative Binomial type and are in quite good agreement with experimental observations. The average number of clans calculated from fitted Negative Binomial coincides with the average number of primary hadrons predicted by the thermodynamical model, suggesting that clans should be identified with primary hadrons.
Canonical proper time quantum gravitation
Lindesay, James
2015-05-01
At the root of the tensions involved in modeling the quantum dynamics of gravitating systems are the subtleties of quantum locality. Quantum mechanics describes physical phenomena using a theory of non-local phase relationships (non-local in the sense that quantum states maintain a space-like coherence that is acausal). However, the principle of equivalence in general relativity asserts that freely falling frames are locally inertial frames of reference. Thus, gravitating systems are often described using constituents that are freely falling, undergoing geodesic motion defining well localized trajectories. The canonical proper time formulation of relativistic dynamics is particularly useful for describing such inertial constituents using the coordinates of non-inertial observers. The physics of the simplest of gravitating inertial quantum systems, consistent with presented experimental evidence, will be examined. Subsequently, descriptions of both weakly and strongly gravitating quantum systems will be developed using canonical proper gravitation.
Canonical phylogenetic ordination.
Giannini, Norberto P
2003-10-01
A phylogenetic comparative method is proposed for estimating historical effects on comparative data using the partitions that compose a cladogram, i.e., its monophyletic groups. Two basic matrices, Y and X, are defined in the context of an ordinary linear model. Y contains the comparative data measured over t taxa. X consists of an initial tree matrix that contains all the xj monophyletic groups (each coded separately as a binary indicator variable) of the phylogenetic tree available for those taxa. The method seeks to define the subset of groups, i.e., a reduced tree matrix, that best explains the patterns in Y. This definition is accomplished via regression or canonical ordination (depending on the dimensionality of Y) coupled with Monte Carlo permutations. It is argued here that unrestricted permutations (i.e., under an equiprobable model) are valid for testing this specific kind of groupwise hypothesis. Phylogeny is either partialled out or, more properly, incorporated into the analysis in the form of component variation. Direct extensions allow for testing ecomorphological data controlled by phylogeny in a variation partitioning approach. Currently available statistical techniques make this method applicable under most univariate/multivariate models and metrics; two-way phylogenetic effects can be estimated as well. The simplest case (univariate Y), tested with simulations, yielded acceptable type I error rates. Applications presented include examples from evolutionary ethology, ecology, and ecomorphology. Results showed that the new technique detected previously overlooked variation clearly associated with phylogeny and that many phylogenetic effects on comparative data may occur at particular groups rather than across the entire tree. PMID:14530135
You, Setthivoine
2015-11-01
A new canonical field theory has been developed to help interpret the interaction between plasma flows and magnetic fields. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, on scales ranging from classical to general relativistic. The Lagrangian is augmented with two extra terms that represent the interaction between the motion of matter and electromagnetic fields. The dynamical equations can then be re-formulated as a canonical form of Maxwell's equations or a canonical form of Ohm's law valid across all non-quantum regimes. The field theory rigourously shows that helicity can be preserved in kinetic regimes and not only fluid regimes, that helicity transfer between species governs the formation of flows or magnetic fields, and that helicity changes little compared to total energy only if density gradients are shallow. The theory suggests a possible interpretation of particle energization partitioning during magnetic reconnection as canonical wave interactions. This work is supported by US DOE Grant DE-SC0010340.
Iig, Patrick
2011-01-01
Complex fluids, such as polymers, colloids, liquid-crystals etc., show intriguing viscoelastic properties, due to the complicated interplay between flow-induced structure formation and dynamical behavior. Starting from microscopic models of complex fluids, a systematic coarse-graining method is presented that allows us to derive closed-form and thermodynamically consistent constitutive equations for such fluids. Essential ingredients of the proposed approach are thermodynamically guided simulations within a consistent coarse-graining scheme. In addition to this new type of multiscale simulations, we reconstruct the building blocks that constitute the thermodynamically consistent coarse-grained model. We illustrate the method for low-molecular polymer melts, which are subject to different imposed flow fields like planar shear and different elongational flows. The constitutive equation for general flow conditions we obtain shows rheological behavior including shear thinning, normal stress differences, and elongational viscosities in good agreement with reference results. PMID:21678766
Wang, W B; Cao, Z M; Hu, R F
2013-01-01
A model based on a thermodynamic approach is proposed for predicting the dynamics of communicable epidemics in a city, when the epidemic is governed by controlling efforts of multiple scales so that an entropy is associated with the system. All the epidemic details are factored into a single parameter that is determined by maximizing the rate of entropy production. Despite the simplicity of the final model, it predicts the number of hospitalized cases with a reasonable accuracy, using the data of SARS of the year 2003, once the inflexion point characterizing the effect of multiple controlling efforts is known. This model is supposed to be of potential usefulness since epidemics such as avian influenza like H7H9 in China this year have the risk to become communicable among human beings.
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei (OA)
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This presentation describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this presentation is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture.
HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS
Energy Technology Data Exchange (ETDEWEB)
Vinayak N. Kabadi
2000-05-01
The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.
Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels
Energy Technology Data Exchange (ETDEWEB)
Yang, Y., E-mail: yangying@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Busby, J.T. [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)
2014-05-01
This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors.
Refining inflation using non-canonical scalars
Energy Technology Data Exchange (ETDEWEB)
Unnikrishnan, Sanil; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Toporensky, Aleksey, E-mail: sanil@iucaa.ernet.in, E-mail: varun@iucaa.ernet.in, E-mail: atopor@rambler.ru [Sternberg Astronomical Institute, Moscow State University, Universitetsky Prospekt, 13, Moscow 119992 (Russian Federation)
2012-08-01
This paper revisits the Inflationary scenario within the framework of scalar field models possessing a non-canonical kinetic term. We obtain closed form solutions for all essential quantities associated with chaotic inflation including slow roll parameters, scalar and tensor power spectra, spectral indices, the tensor-to-scalar ratio, etc. We also examine the Hamilton-Jacobi equation and demonstrate the existence of an inflationary attractor. Our results highlight the fact that non-canonical scalars can significantly improve the viability of inflationary models. They accomplish this by decreasing the tensor-to-scalar ratio while simultaneously increasing the value of the scalar spectral index, thereby redeeming models which are incompatible with the cosmic microwave background (CMB) in their canonical version. For instance, the non-canonical version of the chaotic inflationary potential, V(φ) ∼ λφ{sup 4}, is found to agree with observations for values of λ as large as unity! The exponential potential can also provide a reasonable fit to CMB observations. A central result of this paper is that steep potentials (such as V∝φ{sup −n}) usually associated with dark energy, can drive inflation in the non-canonical setting. Interestingly, non-canonical scalars violate the consistency relation r = −8n{sub T}, which emerges as a smoking gun test for this class of models.
Towards a Realistic, Data-Driven Thermodynamic MHD Model of the Global Solar Corona
Downs, Cooper; Roussev, Ilia I.; van der Holst, Bart; Lugaz, Noé; Sokolov, Igor V.; Gombosi, Tamas I.
2009-01-01
In this work we describe our implementation of a thermodynamic energy equation into the global corona model of the Space Weather Modeling Framework (SWMF), and its development into the new Lower Corona (LC) model. This work includes the integration of the additional energy transport terms of coronal heating, electron heat conduction, and optically thin radiative cooling into the governing magnetohydrodynamic (MHD) energy equation. We examine two different boundary conditions using this model;...
Canonical affordances in context
Directory of Open Access Journals (Sweden)
Alan Costall
2012-12-01
Full Text Available James Gibson’s concept of affordances was an attempt to undermine the traditional dualism of the objective and subjective. Gibson himself insisted on the continuity of “affordances in general” and those attached to human artifacts. However, a crucial distinction needs to be drawn between “affordances in general” and the “canonical affordances” that are connected primarily to artifacts. Canonical affordances are conventional and normative. It is only in such cases that it makes sense to talk of the affordance of the object. Chairs, for example, are for sitting-on, even though we may also use them in many other ways. A good deal of confusion has arisen in the discussion of affordances from (1 the failure to recognize the normative status of canonical affordances and (2 then generalizing from this special case.
Toward a Classical Thermodynamic Model for Retro-cognition
International Nuclear Information System (INIS)
Retro-cognition--a human response before a randomly determined future stimulus--has always been part of our experience. Experiments over the last 80 years show a small but statistically significant effect. If this turns out to be true, then it suggests a form of macroscopic retro-causation. The 2nd Law of Thermodynamics provides an explanation for the apparent single direction of time at the macroscopic level although time is reversible at the microscopic level. In a preliminary study, I examined seven anomalous cognition (a.k.a., ESP) studies in which the entropic gradients and the entropy of their associated target systems were calculated, and the quality of the response was estimated by a rating system called the figure of merit. The combined Spearman's correlation coefficient for these variables for the seven studies was 0.211 (p = 6.4x10-4) with a 95% confidence interval for the correlation of [0.084, 0.332]; whereas, the same data for a correlation with the entropy itself was 0.028 (p = 0.36; 95% confidence interval of [-0.120-0.175]). This suggests that anomalous cognition is mediated via some kind of a sensory system in that all the normal sensory systems are more sensitive to changes than they are to inputs that are not changing. A standard relationship for the change of entropy of a binary sequence appears to provide an upper limit to anomalous cognition functioning for free response and for forced-choice Zener card guessing. This entropic relation and an apparent limit set by the entropy may provide a clue for understanding macroscopic retro-causation.
Critical Assessment and Thermodynamic Modeling of the Al-Fe-O System
Shishin, Denis; Prostakova, Viktoria; Jak, Evgueni; Decterov, Sergei A.
2016-02-01
A complete literature review, critical evaluation, and thermodynamic modeling of the phase diagrams and thermodynamic properties of phases in the Al-Fe-O system at 1 atm total pressure are presented. Optimized model equations for the thermodynamic properties of all phases are obtained, which reproduce all available thermodynamic and phase-equilibrium data within experimental error limits from 298.15 K (25 °C) to above the liquidus temperatures at all compositions and oxygen partial pressures from metal saturation to 1 atm. The complex phase relationships in the system have been elucidated, and discrepancies among the data have been resolved. The database of the model parameters can be used along with software for Gibbs-energy minimization in order to calculate all thermodynamic properties and any type of phase diagram section. The modified quasichemical model was used for the liquid oxide phase. A sublattice model, based upon the Compound Energy Formalism, was developed for spinel, which expands from magnetite, Fe3O4, to hercynite, FeAl2O4. The distribution of cations between octahedral and tetrahedral sites and oxygen nonstoichiometry in spinel are taken into account. The model for metallic liquid assumes random mixing of associates: Fe, Al, O, AlO, and Al2O. It describes well the minimum that is observed on the solubility of oxygen in liquid iron as a function of the Al content. The solid solution between hematite and corundum exhibiting a miscibility gap, as well as a small solubility of Al2O3 in wüstite are quantitatively described by a simple Bragg-Williams model.
Study on swelling model and thermodynamic structure of native konjac glucomannan
Institute of Scientific and Technical Information of China (English)
Long LI; Hui RUAN; Liu-liu MA; Wei WANG; Ping ZHOU; Guo-qing HE
2009-01-01
We investigated the higher structure of konjac glucomannan (KGM) in the amorphous state and solution using a laser particle size analyzer and a water activity meter. The results show that the thermodynamic structures of native KGM were pri-marily composed of the lamella structure units, which involve both granular crystalline and amorphous regions, and that the connection zones of such units contained both loose and tight aggregation regions. The value of surface tension (σ) of native KGM,resting with the density of its hydroxyl groups' self-association, Was an important parameter to analyze the higher structures of native KGM in the thermodynamic swelling model of native KGM.
Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing
International Nuclear Information System (INIS)
Firstly in this paper, the influence of H2 and water vapor content on selective oxidation occurred in continuous hot-dip galvanizing has been studied by thermodynamics and Wagner model, then, the Gibbs energy of each possible aluminothermic reducing reaction in zinc bath was calculated in order to judge the possibility of these reactions. It was found that oxides' amounts and oxidation type were greatly related to the H2 and water content in the annealing atmosphere. And from the view of thermodynamics, surface oxides (MnO, Cr2O3, SiO2 etc.) can be reduced by the effective Al in Zn bath.
Energy Technology Data Exchange (ETDEWEB)
Jack Istok; Melora Park; James McKinley; Chongxuan Liu; Lee Krumholz; Anne Spain; Aaron Peacock; Brett Baldwin
2007-04-19
The overall goal of this project is to develop and test a thermodynamic network model for predicting the effects of substrate additions and environmental perturbations on microbial growth, community composition and system geochemistry. The hypothesis is that a thermodynamic analysis of the energy-yielding growth reactions performed by defined groups of microorganisms can be used to make quantitative and testable predictions of the change in microbial community composition that will occur when a substrate is added to the subsurface or when environmental conditions change.
Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Fischer, F. D.
2014-01-01
Roč. 22, č. 1 (2014), Art. No. 015013. ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : grain boundary segregation * abnormal grain growth * theory * modelling * solute drag Subject RIV: BJ - Thermodynamic s Impact factor: 2.167, year: 2014
Thermodynamic modeling of the RE–Pb (RE = Sc, Dy, Gd) systems
International Nuclear Information System (INIS)
Highlights: • Rare earth (RE) and Pb alloys or compounds are interesting as magnetic materials. • The phase diagrams and thermodynamic properties of RE–Pb (RE = Sc, Dy, Gd) systems have been assessed. • The CALPHAD method was used with the Redlich–Kister model to optimize the solution phases. • A self-consistent set of thermodynamic parameters has been evaluated. • A good agreement was found between the calculation and experiments. -- Abstract: The phase diagrams and thermodynamic properties of RE–Pb (RE = Sc, Dy, Gd) systems have been assessed by means of the CALPHAD method. The solution phases (liquid, fcc, bcc and hcp) were described by the sublattice formalism and the excess term of the Gibbs energy with the Redlich–Kister equation. The stoichiometric intermetallic compounds (Sc5Pb3, Sc6Pb5, Dy5Pb4, DyPb, DyPb2, DyPb3, β-Gd5Pb4, α-Gd5Pb4, Gd11Pb10, Gd6Pb7, GdPb2 and GdPb2) were modeled as line compounds. The non-stoichiometric Dy5Pb3 and Gd5Pb3 phases with a narrow homogeneity range were modeled using a two-sublattice model with substitution. A consistent set of the thermodynamic parameters leading to a reasonable agreement between the calculated results and literature data was obtained
The presence of a wide range of radionuclides, metal ions, inorganic ligands, and organic chelating agents combined with the high base and electrolyte concentration in the Hanford waste tanks creates some unique and difficult problems in modeling the aqueous thermodynamics of the...
Thermodynamics of 1D N-Component Bariev Model Under Open Boundary Conditions
Institute of Scientific and Technical Information of China (English)
WANG Chun; KE San-Min; YUE Rui-Hong
2006-01-01
The thermodynamic Bethe ansatz equations and free energy for 1D N-component Bariev model under open boundary conditions are derived based on the string hypothesis for both, a repulsive and an attractive interaction.These equations are discussed in some limiting cases, such as the ground state, weak and strong couplings.
Thermodynamic and mechanical properties of curved interfaces : A discussion of models
Oversteegen, S.M.
2000-01-01
Although relatively much is known about the physics of curved interfaces, several models for these kind of systems seem conflicting or internally inconsistent. It is the aim of this thesis to derive a rigorous framework of thermodynamic and mechanical expressions and study their relation to previous
Thermodynamic and kinetic modeling of bcc phase in the Ti-Al-V ternary system
International Nuclear Information System (INIS)
Research highlights: → Thermodynamic modelling of the Ti-Al-V system is presented. → Emphasis is placed on the assessment of the B2 phase. → The atomic mobilities of the Ti-Al-V ternary system are assessed. → Application of the models allows new grades of Ti alloy to be designed. - Abstract: A thermodynamic optimisation of the ordered B2 phase in the Ti-Al binary and Ti-Al-V ternary systems is carried out, making use of a two-sublattice model (Ti,Al,V):(Ti,Al,V). A self-consistent set of parameters is obtained; it is demonstrated that the available experimental data for the phase equilibria are reproduced accurately. Based upon the thermodynamic driving forces calculated by the new thermodynamic database, interdiffusion in the disordered A2 phase of the ternary Ti-Al-V system is assessed and optimised. A set of parameters describing the atomic mobilities of the disordered A2 phase are given, which will be useful for future quantitative models of phase transitions involving this phase.
A Thermodynamic Model for Square-well Chain Fluid: Theory and Monte Carlo Simulation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A thermodynamic model for the freely jointed square-well chain fluids was developed based on the thermodynamic perturbation theory of Barker-Henderson, Zhang and Wertheim. In this derivation Zhang's expressions for square-well monomers improved from Barker-Henderson compressibility approximation were adopted as the reference fluid, and Wertheim＇s polymerization method was used to obtain the free energy term due to the bond connectivity. An analytic expression for the Helmholtz free energy of the square-well chain fluids was obtained. The expression without adjustable parameters leads to the thermodynamic consistent predictions of the compressibility factors, residual internal energy and constant-volume heat capacity for dimer,4-mer, 8-mer and 16-mer square-well fluids. The results are in good agreement with the Monte Carlo simulation. To obtain the MC data of residual internal energy and the constant-volume heat capacity needed, NVT MC simulations were performed for these square-well chain fluids.
Differential Forms on Log Canonical Spaces
Greb, Daniel; Kovacs, Sandor J; Peternell, Thomas
2010-01-01
The present paper is concerned with differential forms on log canonical varieties. It is shown that any p-form defined on the smooth locus of a variety with canonical or klt singularities extends regularly to any resolution of singularities. In fact, a much more general theorem for log canonical pairs is established. The proof relies on vanishing theorems for log canonical varieties and on methods of the minimal model program. In addition, a theory of differential forms on dlt pairs is developed. It is shown that many of the fundamental theorems and techniques known for sheaves of logarithmic differentials on smooth varieties also hold in the dlt setting. Immediate applications include the existence of a pull-back map for reflexive differentials, generalisations of Bogomolov-Sommese type vanishing results, and a positive answer to the Lipman-Zariski conjecture for klt spaces.
International Nuclear Information System (INIS)
Investigations on systematics of thermodynamic data were performed for enhancement of thermodynamic database for performance assessment of geological disposal of high-level radioactive and part of TRU wastes. Correlation between standard free energy of formation and standard enthalpy of formation was investigated, and it was shown that estimation of the standard enthalpy of formation from the standard free energy of formation was possible using the correlation. Three models on systematics of formation constant of actinides were compared and the best model was proposed. It was shown that estimation of formation constants for unpublished actinide species was possible using the model. Furthermore, two models for estimation of activity coefficient which was required to estimate solubility of elements of interest and the estimated activity coefficient were compared. It was found that the estimated solubility values using the one of the two models were 6 times larger/smaller at a maximum than those using the other. It was expected that the estimation of unreported thermodynamic data would enhance thermodynamic database was useful and use of more elaborate activity coefficient model was required to improve the reliability of the performance assessment of geological disposal. (author)
Theoretical models for fluid thermodynamics based on the quasi-Gaussian entropy theory
Amadei, Andrea
1998-01-01
Summary The theoretical modeling of fluid thermodynamics is one of the most challenging fields in physical chemistry. In fact the fluid behavior, except at very low density conditions, is still extremely difficult to be modeled from a statistical mechanical point of view, as for any realistic model Hamiltonian the configurational part of the partition function cannot be evaluated, i.e., the corresponding high dimensional integral is far too complex to be solved. Hence once a molecular Hamilto...
International Nuclear Information System (INIS)
Phosphorus removal and recovery by ferric phosphate (FePO4.2H2O) precipitation has been considered as an effective technology. In the present study, we examined chemical precipitation thermodynamic modeling of the PHREEQC program for phosphorus removal and recovery from wastewater. The objective of this research was to employ thermodynamic modeling to evaluate the effect of solution factors on FePO4.2H2O precipitation. In order to provide comparison, with the evaluation of thermodynamic modeling, the case study of phosphate removal from anaerobic supernatant was studied. The results indicated that the saturation-index (SI) of FePO4.2H2O followed a polynomial function of pH, and the solution pH influenced the ion activities of ferric iron salts and phosphate. The SI of FePO4.2H2O increased with a logarithmic function of Fe3+:PO43- molar ratio (Fe/P) and initial PO43- concentration, respectively. Furthermore, the SI of FePO4.2H2O decreased with a logarithmic function of alkalinity and ionic strength, respectively. With an increase in temperature, the SI at pH 6.0 and 9.0 decreased with a linear function, and the SI at pH 4.0 followed a polynomial function. For the case study of phosphate removal from anaerobic supernatant, the phosphate removal trend at different pH and Fe/P was closer to the predictions of thermodynamic modeling. The results indicated that the thermodynamic modeling of FePO4.2H2O precipitation could be utilized to predict the technology parameters for phosphorus removal and recovery.
Energy Technology Data Exchange (ETDEWEB)
Zhang Tao; Ding Lili [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu (China); Ren Hongqiang, E-mail: hqren@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu (China); Guo Zhitao; Tan Jing [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu (China)
2010-04-15
Phosphorus removal and recovery by ferric phosphate (FePO{sub 4}.2H{sub 2}O) precipitation has been considered as an effective technology. In the present study, we examined chemical precipitation thermodynamic modeling of the PHREEQC program for phosphorus removal and recovery from wastewater. The objective of this research was to employ thermodynamic modeling to evaluate the effect of solution factors on FePO{sub 4}.2H{sub 2}O precipitation. In order to provide comparison, with the evaluation of thermodynamic modeling, the case study of phosphate removal from anaerobic supernatant was studied. The results indicated that the saturation-index (SI) of FePO{sub 4}.2H{sub 2}O followed a polynomial function of pH, and the solution pH influenced the ion activities of ferric iron salts and phosphate. The SI of FePO{sub 4}.2H{sub 2}O increased with a logarithmic function of Fe{sup 3+}:PO{sub 4}{sup 3-} molar ratio (Fe/P) and initial PO{sub 4}{sup 3-} concentration, respectively. Furthermore, the SI of FePO{sub 4}.2H{sub 2}O decreased with a logarithmic function of alkalinity and ionic strength, respectively. With an increase in temperature, the SI at pH 6.0 and 9.0 decreased with a linear function, and the SI at pH 4.0 followed a polynomial function. For the case study of phosphate removal from anaerobic supernatant, the phosphate removal trend at different pH and Fe/P was closer to the predictions of thermodynamic modeling. The results indicated that the thermodynamic modeling of FePO{sub 4}.2H{sub 2}O precipitation could be utilized to predict the technology parameters for phosphorus removal and recovery.
A Combined Thermodynamic and Kinetic Model for Barite Prediction at Oil Reservoir Conditions
DEFF Research Database (Denmark)
Zhen Wu, Bi Yun
research was to develop a model, based on thermodynamics and kinetics, for predicting barite precipitation rates in saline waters at the pressures and temperatures of oil bearing reservoirs, using the geochemical modelling code PHREEQC. This task is complicated by the conditions where traditional methods...... to calculate ion activity fail and for which barite reaction rates have not been determined. The model development consisted of three subprojects: first, to identify a consistent set of parameters to describe the thermodynamics of the Ba2+-SO42--H2O system at standard state conditions, based on...... detailed review of the literature (PhD Study 1). The reviewed dataset was used as starting point for geochemical speciation modelling and applied to predict the stability of sulphate minerals in North Sea oil field brines. Second, for modelling of high salinity solutions using the Pitzer ion interaction...
Cometary models - excitation of molecules at radio wavelengths and thermodynamics of the coma
International Nuclear Information System (INIS)
Models for molecular excitation under physical conditions of cometary atmospheres are obviously a requisite for interpreting radio spectroscopic observations of comets. A review of such models is presented. The prevailing excitation mechanism for the rotational lines of parent molecules is pumping of the fundamental vibrational bands by the solar infrared radiation field, followed by spontaneous decay; the molecular rotational population is then at fluorescence equilibrium. Another competing mechanism in the inner coma is thermal excitation by collisions. Its evaluation needs the knowledge of the coma kinetic temperature law, which up to now can only be achieved by modeling the coma thermodynamics. A review of cometary thermodynamical models is also given here, and the relations between such models and cometary molecular observations are discussed. 50 references
Cao, Yuansheng; Gong, Zongping; Quan, H. T.
2015-06-01
Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012), 10.1073/pnas.1204263109] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013), 10.1103/PhysRevLett.111.030602], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.
Bouc-Wen-type models with stiffness degradation: thermodynamic analysis and applications
Erlicher, Silvano; 10.1061/(ASCE)0733-9399
2009-01-01
In this paper, a thermodynamic analysis of Bouc-Wen models endowed with both strength and stiffness degradation is provided. It is based on the relationship between the flow rules of these models and those of the endochronic plasticity theory with damage, discussed in a companion paper (Erlicher and Point, 2008). Using the theoretical framework of that extended endochronic theory, it is shown that an elastic Bouc-Wen model with damage, i.e. without plastic strains, can be formulated. Moreover, a proper definition of the dissipated energy of these Bouc-Wen models with degradation is given and some thermodynamic constraints on the parameters defining the models behavior are emphasized and discussed. In particular, some properties of the energetic linear stiffness degradation rule as well as the so-called pivot rule, well-known in the seismic engineering field, are illustrated and commented upon. An improved energetic stiffness degradation rule and a new stiffness degradation rule are proposed.
Cao, Yuansheng; Gong, Zongping; Quan, H T
2015-06-01
Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012)] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013)], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems. PMID:26172671
A THERMODYNAMIC MODEL TO PREDICT WAX FORMATION IN PETROLEUM FLUIDS
Coutinho J.A.P.; Pauly J.; Daridon J.L.
2001-01-01
Some years ago the authors proposed a model for the non-ideality of the solid phase, based on the Predictive Local Composition concept. This was first applied to the Wilson equation and latter extended to NRTL and UNIQUAC models. Predictive UNIQUAC proved to be extraordinarily successful in predicting the behaviour of both model and real hydrocarbon fluids at low temperatures. This work illustrates the ability of Predictive UNIQUAC in the description of the low temperature behaviour of petrol...
Thermodynamic Model for the Ammonia-Water System
DEFF Research Database (Denmark)
Thomsen, Kaj; Rasmussen, Peter
2000-01-01
The ammonia-water system is described by the Extended UNIQUAC model, which is an electrolyte model, formed by combining the original UNIQUAC model, the Debye-Hückel law and the Soave-Redlich-Kwong equation of state. The model is limited to temperatures below the critical temperature of ammonia....... Vapor-liquid equilibria are described within the experimental accuracy. The accuracy of enthalpy calculations is better than ±100 J mol-1, and heat capacity calculations deviate less than ±1% from experimental data. The accurate description of the thermal properties is achieved by taking speciation...
Thermodynamic modeling of lead distribution among matte, slag, and liquid copper
Degterov, Sergei A.; Pelton, Arthur D.
1999-12-01
Recently, a thermodynamic database was developed for the calculation of equilibria involved in the production of copper. The present study is concerned with the further development of the thermodynamic models and the database of model parameters for the matte, slag, and blister copper phases with a view to including Pb in the database and permitting calculations in the seven-component system Pb-Cu-Ca-Fe-Si-O-S. Thermodynamic and phase equilibrium data available in the literature are reviewed, critically assessed, and optimized with the modified quasi-chemical model. When used with the Gibbs energy minimization software and other databases of the FACT thermodynamic computing system, the database developed in the present study can be used for the calculation of matte-slag-copper-gas phase equilibria during copper smelting and converting. The distribution of lead among these phases can be computed. For example, the distribution of lead among matte, silica-saturated slag, and copper has been calculated at metal saturation, or under fixed partial pressure of SO2, and has been compared with the available experimental data. The Pb distributions among the equilibrium phases have been calculated under various conditions, which are difficult to study experimentally, such as at magnetite saturation or under various oxygen partial pressures and iron to silica ratios in the slag.
Fontenete, Sílvia; Guimarães, Nuno; Wengel, Jesper; Azevedo, Nuno Filipe
2016-06-01
The thermodynamics and kinetics of DNA hybridization, i.e. the process of self-assembly of one, two or more complementary nucleic acid strands, has been studied for many years. The appearance of the nearest-neighbor model led to several theoretical and experimental papers on DNA thermodynamics that provide reasonably accurate thermodynamic information on nucleic acid duplexes and allow estimation of the melting temperature. Because there are no thermodynamic models specifically developed to predict the hybridization temperature of a probe used in a fluorescence in situ hybridization (FISH) procedure, the melting temperature is used as a reference, together with corrections for certain compounds that are used during FISH. However, the quantitative relation between melting and experimental FISH temperatures is poorly described. In this review, various models used to predict the melting temperature for rRNA targets, for DNA oligonucleotides and for nucleic acid mimics (chemically modified oligonucleotides), will be addressed in detail, together with a critical assessment of how this information should be used in FISH. PMID:25586037
Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations
DEFF Research Database (Denmark)
Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing;
2007-01-01
Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included in ...
A Canonical Ensemble Approach to the Fermion/Boson Random Point Processes and Its Applications
Tamura, H.; Ito, K. R.
2006-04-01
We introduce the boson and the fermion point processes from the elementary quantum mechanical point of view. That is, we consider quantum statistical mechanics of the canonical ensemble for a fixed number of particles which obey Bose-Einstein, Fermi-Dirac statistics, respectively, in a finite volume. Focusing on the distribution of positions of the particles, we have point processes of the fixed number of points in a bounded domain. By taking the thermodynamic limit such that the particle density converges to a finite value, the boson/fermion processes are obtained. This argument is a realization of the equivalence of ensembles, since resulting processes are considered to describe a grand canonical ensemble of points. Random point processes corresponding to para-particles of order two are discussed as an application of the formulation. Statistics of a system of composite particles at zero temperature are also considered as a model of determinantal random point processes.
A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems
Energy Technology Data Exchange (ETDEWEB)
Factorovich, Matías H.; Scherlis, Damián A. [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA (Argentina); Molinero, Valeria [Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)
2014-02-14
In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.
Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles
Directory of Open Access Journals (Sweden)
A. Fassò
2013-08-01
Full Text Available The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which extent collocation uncertainty is related to environmental factors, height and distance between the trajectories. To do this we introduce a new statistical approach, based on the heteroskedastic functional regression (HFR model which extends the standard functional regression approach and allows us a natural definition of uncertainty profiles. Moreover, using this modelling approach, a five-folded uncertainty decomposition is proposed. Eventually, the HFR approach is illustrated by the collocation uncertainty analysis of relative humidity from two stations involved in GCOS reference upper-air network (GRUAN.
Thermodynamics of the BMN matrix model at strong coupling
Costa, Miguel S.; Greenspan, Lauren; Penedones, João; Santos, Jorge E.
2015-03-01
We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical S 8 horizon. This geometry preserves the SO(9) symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the SO(9) to the SO(6) × SO(3) symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.
Thermodynamics of the BMN matrix model at strong coupling
Costa, Miguel S; Penedones, Joao; Santos, Jorge
2014-01-01
We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical $S^8$ horizon. This geometry preserves the $SO(9)$ symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the $SO(9)$ to the $SO(6)\\times SO(3)$ symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.
Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles
A. Fassò; IGNACCOLO, R.; F. Madonna; B. B. Demoz
2013-01-01
The uncertainty of important atmospheric parameters is a key factor for assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical points of the uncertainty budget is related to the collocation mismatch in space and time among different observations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or LIDAR. In this paper we consider a statistical modelling approach to understand at which exte...
A Model for the Thermodynamics of Globular Proteins
Hansen, Alex; Jensen, Mogens H.; Sneppen, Kim; Zocchi, Giovanni
1999-01-01
Comments: 6 pages RevTeX, 6 Postscript figures. We review a statistical mechanics treatment of the stability of globular proteins based on a simple model Hamiltonian taking into account protein self interactions and protein-water interactions. The model contains both hot and cold folding transitions. In addition it predicts a critical point at a given temperature and chemical potential of the surrounding water. The universality class of this critical point is new.
Reščič, J; Kalyuzhnyi, Y V; Cummings, P T
2016-10-19
The approach developed earlier to describe the dimerizing shielded attractive shell (SAS) primitive model of chemical association due to Cummings and Stell is generalized and extended to include a description of a polymerizing SAS model. Our extension is based on the combination of the resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potential and self consistent scheme, which takes into account the changes in the system free volume due to association. Theoretical results for thermodynamical properties of the model at different bonding length, density and temperature are compared against newly generated computer simulation results. The theory gives very accurate predictions for the model with bonding length L (*) from the range 0 < L (*) < 0.6 at all values of the density and temperature studied, including the limit of infinitely large temperature. PMID:27545613
DEFF Research Database (Denmark)
Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj
2015-01-01
A Thermodynamic model that can predict the behavior of the gas sweetening process over the applicable conditions is of vital importance in industry. In this work, Extended UNIQUAC model parameters optimized for the CO2-MDEA-H2O system are presented. Different types of experimental data consisting...
Experimental investigation and thermodynamic modeling of the Ga–Zr system
International Nuclear Information System (INIS)
Highlights: • Phase equilibria of the Ga–Zr system were investigated by experiment. • ΔfHs for intermetallic compounds were computed via first–principles calculations. • The enthalpy of formation at 298 K for αGaZr was measured by calorimetry. • A set of self-consistent thermodynamic parameters was obtained. -- Abstract: Phase equilibria of the Ga–Zr system were investigated by experiment and thermodynamic modeling. In the experimental part, eleven alloys were prepared by melting the pure elements and annealed. Both the as-cast and annealed samples were analyzed by X-ray diffraction, optical microscopy, and scanning electron microscope. The annealed alloys were investigated by differential thermal analysis and electron probe microanalysis. In order to assist the thermodynamic modeling, the enthalpies of formation at 0 K for the GaZr2, Ga3Zr5, Ga2Zr3, Ga4Zr5, αGaZr, Ga3Zr2, Ga5Zr3, Ga2Zr and Ga3Zr phases were computed via first-principles calculations. The enthalpy of formation at 298 K for the αGaZr was measured by high temperature reaction calorimetry. Based on the experimental phase diagram data from the present work and the literature as well as the present first-principles calculations, the Ga–Zr system was critically assessed by means of CALPHAD approach. The calculated phase diagram and thermodynamic properties agree well with the available experimental data
Quaternion Linear Canonical Transform Application
Bahri, Mawardi
2015-01-01
Quaternion linear canonical transform (QLCT) is a generalization of the classical linear canonical transfom (LCT) using quaternion algebra. The focus of this paper is to introduce an application of the QLCT to study of generalized swept-frequency filter
Realizations of the Canonical Representation
Indian Academy of Sciences (India)
M K Vemuri
2008-02-01
A characterisation of the maximal abelian subalgebras of the bounded operators on Hilbert space that are normalised by the canonical representation of the Heisenberg group is given. This is used to classify the perfect realizations of the canonical representation.
Thermodynamic and mechanical properties of curved interfaces : A discussion of models
Oversteegen, S.M.
2000-01-01
Although relatively much is known about the physics of curved interfaces, several models for these kind of systems seem conflicting or internally inconsistent. It is the aim of this thesis to derive a rigorous framework of thermodynamic and mechanical expressions and study their relation to previous models.In chapter 2 interfaces are described mathematically. It turns out that their curvatures can generally be determined by two independent coefficients, viz. the total and the Gaussian curvatu...
von Bertalanffy 1.0: a COBRA toolbox extension to thermodynamically constrain metabolic models
Fleming, Ronan M. T.; Thiele, Ines(*)
2010-01-01
Motivation: In flux balance analysis of genome scale stoichiometric models of metabolism, the principal constraints are uptake or secretion rates, the steady state mass conservation assumption and reaction directionality. Here, we introduce an algorithmic pipeline for quantitative assignment of reaction directionality in multi-compartmental genome scale models based on an application of the second law of thermodynamics to each reaction. Given experimental or computationally estimated standard...
Thermodynamic modeling of the Sc2O3-MgO phase diagram
International Nuclear Information System (INIS)
The Sc2O3-MgO system consists of one liquid and two solid solutions. A relatively simple approach is used to model the solution phases, which are treated as the regular and the sub-regular solutions of the end-members. The solution parameters are derived from the phase equilibrium data. The thermodynamic calculations using the model allow the determination of the liquidus, solidus, solvus, and metastable liquid miscibility gap. Also the lattice stabilities of the components are evaluated.
The regular conducting fluid model for relativistic thermodynamics
Carter, Brandon
2012-01-01
The "regular" model presented here can be considered to be the most natural solution to the problem of constructing the simplest possible relativistic analogue of the category of classical Fourier--Euler thermally conducting fluid models as characterised by a pair of equations of state for just two dependent variables (an equilibrium density and a conducting scalar). The historically established but causally unsatisfactory solution to this problem due to Eckart is shown to be based on an ansatz that is interpretable as postulating a most unnatural relation between the (particle and entropy) velocities and their associated momenta, which accounts for the well known bad behaviour of that model which has recently been shown to have very pathological mixed-elliptic-hyperbolic comportments. The newer (and more elegant) solution of Landau and Lifshitz has a more mathematically respectable parabolic-hyperbolic comportment, but is still compatible with a well posed initial value problem only in such a restricted limi...
Thermodynamic modeling of chemical equilibria in metal extraction
International Nuclear Information System (INIS)
Models of equilibrium extraction data are being developed for use in computer simulations of metal extraction processes. The correlations are based on chemical mass action principles in which the effects of metal complexation and aqueous phase activity coefficients are considered. Activity coefficients in mixed electrolyte solutions at high ionic strengths are calculated using methods available in the literature. This modeling approach is demonstrated for HNO3 extraction with both the PIREX and TRUEX solvents and for Am3+ extraction by octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide, which is the primary extractant in the TRUEX solvent. 27 refs., 4 figs., 4 tabs
Rhythmic canons and modular tiling
Caure, Hélianthe
2016-01-01
This thesis is a contribution to the study of modulo p tiling. Many mathematical and computational tools were used for the study of rhythmic tiling canons. Recent research has mainly focused in finding tiling without inner periodicity, being called Vuza canons. Those canons are a constructive basis for all rhythmic tiling canons, however, they are really difficult to obtain. Best current method is a brut force exploration that, despite a few recent enhancements, is exponential. Many technics ...
Thermodynamic modeling of Cu–Ni–Y system coupled with key experiments
International Nuclear Information System (INIS)
A complete thermodynamic description of the Cu–Ni–Y ternary system has been obtained using the CALPHAD (CALculation of PHAse Diagram) approach. Ternary solubility of the third element in the binary compounds in the Cu–Ni–Y system is described using sublattice model within the compound energy formalism (CEF) to take into account the recently reported experimental solubility ranges. The modified quasi-chemical model (MQM) has been used to describe the liquid phase in order to account for the presence of short range ordering properly. To study the melting behavior of the Cu–Ni–Y alloys and to verify the consistency of the thermodynamic model with experimental results, 10 key samples were prepared and the phase transformation temperatures were measured using differential scanning calorimeter (DSC). The microstructural characterization and crystallographic analysis of the alloys were carried out using scanning electron microscopy (SEM) coupled with WDS analysis and X-ray diffraction (XRD). Several vertical sections, liquidus projection and isothermal section at 973 K have been calculated and found to be in good agreement with the current experimental data as well as with the literature. - Highlights: • Thermodynamic modeling of the Cu–Ni–Y system has been performed. • Ternary solubilities of the binary compounds have been reproduced. • Modified quasi-chemical model is used to model the liquid phase. • DSC experiments are performed on selected key alloys. • The calculations are consistent with the experimental results
Thermodynamic modeling of Cu–Ni–Y system coupled with key experiments
Energy Technology Data Exchange (ETDEWEB)
Mezbahul-Islam, Mohammad [Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, Montreal H3G 1M8 (Canada); Medraj, Mamoun, E-mail: mmedraj@encs.concordia.ca [Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Blvd West, Montreal, Quebec, Montreal H3G 1M8 (Canada); Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, Masdar City, Abu Dhabi (United Arab Emirates)
2015-03-01
A complete thermodynamic description of the Cu–Ni–Y ternary system has been obtained using the CALPHAD (CALculation of PHAse Diagram) approach. Ternary solubility of the third element in the binary compounds in the Cu–Ni–Y system is described using sublattice model within the compound energy formalism (CEF) to take into account the recently reported experimental solubility ranges. The modified quasi-chemical model (MQM) has been used to describe the liquid phase in order to account for the presence of short range ordering properly. To study the melting behavior of the Cu–Ni–Y alloys and to verify the consistency of the thermodynamic model with experimental results, 10 key samples were prepared and the phase transformation temperatures were measured using differential scanning calorimeter (DSC). The microstructural characterization and crystallographic analysis of the alloys were carried out using scanning electron microscopy (SEM) coupled with WDS analysis and X-ray diffraction (XRD). Several vertical sections, liquidus projection and isothermal section at 973 K have been calculated and found to be in good agreement with the current experimental data as well as with the literature. - Highlights: • Thermodynamic modeling of the Cu–Ni–Y system has been performed. • Ternary solubilities of the binary compounds have been reproduced. • Modified quasi-chemical model is used to model the liquid phase. • DSC experiments are performed on selected key alloys. • The calculations are consistent with the experimental results.
Statistical Mechanics and Thermodynamics of Viral Evolution
Jones, Barbara; Kaufman, James
Using methods drawn from physics we study the life cycle of viruses. We analyze a model of viral infection and evolution using the ``grand canonical ensemble'' and formalisms from statistical mechanics and thermodynamics. Using this approach we determine possible genetic states of a model virus and host as a function of two independent pressures-immune response and system temperature. We show the system has a real thermodynamic temperature, and discover a new phase transition between a positive temperature regime of normal replication and a negative temperature ``disordered'' phase of the virus. We distinguish this from previous observations of a phase transition that arises as a function of mutation rate. From an evolutionary biology point of view, at steady state the viruses naturally evolve to distinct quasispecies. The approach used here could be refined to apply to real biological systems, perhaps providing insight into immune escape, the emergence of novel pathogens and other results of viral evolution.
Dibaryons as canonically quantized biskyrmions
Krupovnickas, T; Riska, D O
2000-01-01
The characteristic feature of the ground state configuration of the Skyrme model description of nuclei is the absence of recognizable individual nucleons. The ground state of the skyrmion with baryon number 2 is axially symmetric, and is well approximated by a simple rational map, which represents a direct generalization of Skyrme's hedgehog ansatz for the nucleon. If the Lagrangian density is canonically quantized this configuration may support excitations that lie close and possible below the threshold for pion decay, and therefore describe dibaryons. The quantum corrections stabilize these solutions, the mass density of which have the correct exponential fall off at large distances.
Thermodynamics of a Simple Three-Dimensional DNA Hairpin Model
Kremer, Kellan; Boggess, Erin; Mask, Walker; Saucedo, Tony; Hansen, JJ; Appelgate, Ian; Jurgensen, Taylor; Santos, Aaron
2016-01-01
We characterize the equation of state for a simple three-dimensional DNA hairpin model using a Metropolis Monte Carlo algorithm. This algorithm was run at constant temperature and fixed separation between the terminal ends of the strand. From the equation of state, we compute the compressibility, thermal expansion coefficient, and specific heat along with adiabatic path.
A THERMODYNAMIC MODEL TO PREDICT WAX FORMATION IN PETROLEUM FLUIDS
Directory of Open Access Journals (Sweden)
Coutinho J.A.P.
2001-01-01
Full Text Available Some years ago the authors proposed a model for the non-ideality of the solid phase, based on the Predictive Local Composition concept. This was first applied to the Wilson equation and latter extended to NRTL and UNIQUAC models. Predictive UNIQUAC proved to be extraordinarily successful in predicting the behaviour of both model and real hydrocarbon fluids at low temperatures. This work illustrates the ability of Predictive UNIQUAC in the description of the low temperature behaviour of petroleum fluids. It will be shown that using Predictive UNIQUAC in the description of the solid phase non-ideality a complete prediction of the low temperature behaviour of synthetic paraffin solutions, fuels and crude oils is achieved. The composition of both liquid and solid phases, the amount of crystals formed and the cloud points are predicted within the accuracy of the experimental data. The extension of Predictive UNIQUAC to high pressures, by coupling it with an EOS/G E model based on the SRK EOS used with the LCVM mixing rule, is proposed and predictions of phase envelopes for live oils are compared with experimental data.
Direct Calculation of Thermodynamic Quantities for Heisenberg Model
Kato, Go; Wadati, Miki
2002-01-01
The XXX Heisenberg model is studied at finite temperature. The free energy is derived without recourse to Thermal Bethe Ansatz method and Quantum Transfer Matrix method. The result perfectly agrees with the free energy derived by Thermal Bethe Ansatz method. An explicit expression of the cluster expansion coefficient in arbitrary order is presented for the first time.
Thermodynamic model for bouncing charged particles inside a capacitor
Rezaeizadeh, Amin; Mameghani, Pooya
2013-08-01
We introduce an equation of state for a conducting particle inside a charged parallel-plate capacitor and show that it is similar to the equation of state for an ideal gas undergoing an adiabatic process. We describe a simple experiment that shows reasonable agreement with the theoretical model.
Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.; Kosakowski, Georg; Driesner, Thomas; Thomsen, Kaj
2010-05-01
A consortium of research groups from ETH Zurich, EPF Lausanne, the Paul Scherrer Institut and the University of Bonn collaborates in a comprehensive program of basic research on key aspects of the Enhanced Geothermal Systems (EGSs). As part of this GEOTHERM project (www.geotherm.ethz.ch), we concentrate on the fundamental investigation of thermodynamic models suitable for describing fluid-rock interactions at geothermal conditions. Predictions of the fluid-rock interaction in EGS still face several major challenges. Slight variations in the input thermodynamic and kinetic parameters may result in significant differences in the predicted mineral solubilities and stable assemblage. Realistic modeling of mineral precipitation in turn has implications onto our understanding of the permeability evolution of the geothermal reservoir, as well as the scaling in technical installations. In order to reasonably model an EGS, thermodynamic databases and activity models must be tailored to geothermal conditions. We therefore implemented in GEMS code the Pitzer formalism, which is the standard model used for computing thermodynamic excess properties of brines at elevated temperatures and pressures. This model, however, depends on a vast amount of interaction parameters, which are to a substantial extend unknown. Furthermore, a high order polynomial temperature interpolation makes extrapolation unreliable if not impossible. As an alternative we additionally implemented the EUNIQUAC activity model. EUNIQUAC requires fewer empirical fit parameters (only binary interaction parameters needed) and uses simpler and more stable temperature and pressure extrapolations. This results in an increase in computation speed, which is of crucial importance when performing coupled long term simulations of geothermal reservoirs. To achieve better performance under geothermal conditions, we are currently partly reformulating EUNIQUAC and refitting the existing parameter set. First results of the
Canonical quantization of macroscopic electromagnetism
Philbin, Thomas Gerard
2010-01-01
Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Krame...
Thermodynamics and phase structure of the Polyakov-Quark-Meson model
Energy Technology Data Exchange (ETDEWEB)
Braun, Jens [Institut fuer Kernphysik (Theoriezentrum), Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI (Germany); Fraga, Eduardo S. [Instituto de Fisica, Universidade Federal do Rio de Janeiro (Brazil); Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt (Germany); Haas, Lisa M.; Pawlowski, Jan M. [Institut fuer Theoretische Physik, Universitaet Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI (Germany); Herbst, Tina K.; Stiele, Rainer [Institut fuer Theoretische Physik, Universitaet Heidelberg (Germany); Mintz, Bruno W.; Ramos, Rudnei O. [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro (Brazil); Mitter, Mario [Institut fuer Theoretische Physik, Universitaet Heidelberg (Germany); Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt (Germany); Schaefer, Bernd-Jochen [Institut fuer Theoretische Physik, Justus-Liebig-Universitaet Giessen (Germany); Institut fuer Physik, Karl-Franzens-Universitaet Graz (Austria); Schaffner-Bielich, Juergen [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt (Germany)
2014-07-01
Polyakov-loop extended chiral effective models are important tools to describe the phase structure and thermodynamics of strongly interacting matter. We show that taking into account the backreaction of quarks onto the gauge sector is crucial in such models to achieve results for the order parameters and thermodynamics that are in line with lattice calculations. Achieving a good description of lattice data at zero density, we test the reliability of those models in systems containing other control parameters besides the temperature by confronting its results with lattice data at nonzero isospin. Furthermore, we investigate the phase structure of the three-dimensional T-μ{sub isospin}-μ{sub quark} phase diagram and calculate the surface tension of the first order phase transition at small temperatures and large quark densities.
Thermodynamics and phase structure of the Polyakov-Quark-Meson model
International Nuclear Information System (INIS)
Polyakov-loop extended chiral effective models are important tools to describe the phase structure and thermodynamics of strongly interacting matter. We show that taking into account the backreaction of quarks onto the gauge sector is crucial in such models to achieve results for the order parameters and thermodynamics that are in line with lattice calculations. Achieving a good description of lattice data at zero density, we test the reliability of those models in systems containing other control parameters besides the temperature by confronting its results with lattice data at nonzero isospin. Furthermore, we investigate the phase structure of the three-dimensional T-μisospin-μquark phase diagram and calculate the surface tension of the first order phase transition at small temperatures and large quark densities.
Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys
International Nuclear Information System (INIS)
The mechanical properties and radiation tolerance of nanostructured ferritic alloys rely on a dense population of nanometer-scale Y–Ti oxides. The stability of these nano-oxides during extended service is critical in high temperature applications. Here, a model framework is developed for the thermodynamics and kinetics of Y–Ti oxide nucleation, growth and coarsening. The model, which is based upon available thermodynamic and kinetic data as well as key density functional theory calculations, shows that nano-oxide nucleation and growth are highly driven and that pipe diffusion is the dominant mode of their coarsening, in agreement with previous analyses of experimental high temperature data. The model predicts that the nano-oxides are thermally stable for 80 or more years below 1175 K. This analysis also provides insights into the effect of O and Ti on nano-oxide sizes, and on optimization of alloy microstructure
Gesing, Adam J.; Das, Subodh K.
2016-06-01
With United States Department of Energy Advanced Research Project Agency funding, experimental proof-of-concept was demonstrated for RE-12TM electrorefining process of extraction of desired amount of Mg from recycled scrap secondary Al molten alloys. The key enabling technology for this process was the selection of the suitable electrolyte composition and operating temperature. The selection was made using the FactSage thermodynamic modeling software and the light metal, molten salt, and oxide thermodynamic databases. Modeling allowed prediction of the chemical equilibria, impurity contents in both anode and cathode products, and in the electrolyte. FactSage also provided data on the physical properties of the electrolyte and the molten metal phases including electrical conductivity and density of the molten phases. Further modeling permitted selection of electrode and cell construction materials chemically compatible with the combination of molten metals and the electrolyte.
Folding thermodynamics of model four-strand antiparallel beta-sheet proteins
Jang, H; Zhou, Y; Jang, Hyunbum; Hall, Carol K.; Zhou, Yaoqi
2001-01-01
The thermodynamic properties for three different types of off-lattice four-strand beta-sheet protein models interacting via a hybrid Go-type potential have been investigated. Discontinuous molecular dynamic simulations have been performed for different sizes of the bias gap g, an artificial measure of a model protein's preference for its native state. The thermodynamic transition temperatures are obtained by calculating the squared radius of gyration, the root-mean-squared pair separation fluctuation, the specific heat, the internal energy of the system, and the Lindemann disorder parameter. In spite of the simplicity, the protein-like heteropolymers have shown a complex set of protein transitions as observed in experimental studies. Starting from high temperature, these transitions include a collapse transition, a disordered-to-ordered globule transition, a folding transition, and a liquid-to-solid transition. These transitions strongly depend on the native-state geometry of the model proteins and the size o...
Ignition models and simulation of solid propellant of thermodynamic undersea vehicle
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-jun; QIAN Zhi-bo; YANG Jie; YAN Ping
2007-01-01
The starting characteristics of thermodynamic undersea vehicle systems are determined by the geometry, size and combustion area of solid propellants, which directly effect liquid propellant pipeline design. It is necessary to establish accurate burning models for solid propellants. Based on combustion models using powder tings and two different solid ignition grains, namely star-shaped ignition grains and stuffed ignition grains, a mathematic model of the ignition process of the propulsion system was built.With the help of Matlah, a series of calculations were made to determine the effects of different grains on ignition characteristics. The results show that stuffed ignition grain is best suited to be the ignition grain of a thermodynamic undersea vehicle system.
International Nuclear Information System (INIS)
The numerical results of modeling of shock wave loading of mixtures with the SiO2 component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described
On the ternary Ag – Cu – Ga system: Electromotive force measurement and thermodynamic modeling
Energy Technology Data Exchange (ETDEWEB)
Gierlotka, Wojciech, E-mail: wojtek@mail.ndhu.edu.tw [Materials Science and Engineering Department, National Dong Hwa University, Hualien, Taiwan (China); Jendrzejczyk-Handzlik, Dominika; Fitzner, Krzysztof; Handzlik, Piotr [Non-Ferrous Metals Department, AGH University of Science and Technology, Krakow (Poland)
2015-10-15
The ternary silver–copper–gallium system found application as a solder material in jewel crafting and electronics, thus a phase diagram of this system seems to be important tool, which is necessary for a proper application of different alloys. The activity of gallium in liquid phase was determined by electromotive measurement technique and after that the equilibrium diagram of Ag – Cu – Ga was modeled based on available experimental data using Calphad approach. A set of Gibbs energies was found and used for calculation a phase diagram and thermodynamic properties of liquid phase. The experimental data was reproduced well by calculation. - Highlights: • For the first time activity of Ga in liquid Ag – Cu – Ga alloys was measured. • For the first time the ternary Ag – Cu – Ga system was thermodynamically modeled. • Modeled Ag – Cu – Ga system reproduces experimental data well.
Finite size effects on the phase diagram of the thermodynamical cluster model
Mallik, S; Chaudhuri, G
2016-01-01
The thermodynamical cluster model is known to present a first-order liquid-gas phase transition in the idealized case of an uncharged, infinitely extended medium. However, in most practical applications of this model, the system is finite and charged. In this paper we study how the phase diagram is modified by finite size and Coulomb effects. We show that the thermodynamic anomalies which are associated to the finite system counterpart of first order phase transitions, are correctly reproduced by this effective model. However, approximations in the calculation of the grandcanonical partition sum prevent obtaining the exact mapping between statistical ensembles which should be associated to finite systems. The ensemble inequivalence associated to the transition persists in the presence of Coulomb, but the phase diagram is deeply modified with respect to the simple liquid-gas phase transition characteristic of the neutral system.
Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles
A. Fassò; IGNACCOLO, R.; F. Madonna; B. B. Demoz; Franco-Villoria, M.
2014-01-01
The quantification of measurement uncertainty of atmospheric parameters is a key factor in assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical contributions to the uncertainty budget is related to the collocation mismatch in space and time among observations made at different locations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or lidar. In this paper we propose a st...
Molecular Thermodynamic Modeling of Fluctuation Solution Theory Properties
DEFF Research Database (Denmark)
O’Connell, John P.; Abildskov, Jens
2013-01-01
Fluctuation Solution Theory provides relationships between integrals of the molecular pair total and direct correlation functions and the pressure derivative of solution density, partial molar volumes, and composition derivatives of activity coefficients. For dense fluids, the integrals follow a...... relatively simple corresponding-states behavior even for complex systems, show welldefined relationships for infinite dilution properties in complex and near-critical systems, allow estimation of mixed-solvent solubilities of gases and pharmaceuticals, and can be expressed by simple perturbation models for...
Energy Technology Data Exchange (ETDEWEB)
Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2010-09-01
Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than
Statistical modelling of collocation uncertainty in atmospheric thermodynamic profiles
Fassò, A.; Ignaccolo, R.; Madonna, F.; Demoz, B. B.; Franco-Villoria, M.
2014-06-01
The quantification of measurement uncertainty of atmospheric parameters is a key factor in assessing the uncertainty of global change estimates given by numerical prediction models. One of the critical contributions to the uncertainty budget is related to the collocation mismatch in space and time among observations made at different locations. This is particularly important for vertical atmospheric profiles obtained by radiosondes or lidar. In this paper we propose a statistical modelling approach capable of explaining the relationship between collocation uncertainty and a set of environmental factors, height and distance between imperfectly collocated trajectories. The new statistical approach is based on the heteroskedastic functional regression (HFR) model which extends the standard functional regression approach and allows a natural definition of uncertainty profiles. Along this line, a five-fold decomposition of the total collocation uncertainty is proposed, giving both a profile budget and an integrated column budget. HFR is a data-driven approach valid for any atmospheric parameter, which can be assumed smooth. It is illustrated here by means of the collocation uncertainty analysis of relative humidity from two stations involved in the GCOS reference upper-air network (GRUAN). In this case, 85% of the total collocation uncertainty is ascribed to reducible environmental error, 11% to irreducible environmental error, 3.4% to adjustable bias, 0.1% to sampling error and 0.2% to measurement error.
Revisiting Canonical Quantization
Klauder, John R.
2012-01-01
Conventional canonical quantization procedures directly link various c-number and q-number quantities. Here, we advocate a different association of classical and quantum quantities that renders classical theory a natural subset of quantum theory with \\hbar>0, in conformity with the real world wherein nature has chosen \\hbar>0 rather than \\hbar=0. While keeping the good results of conventional procedures, some examples are presented for which the new procedures offer better results than conven...
Canonical Infinitesimal Deformations
Ran, Ziv
1998-01-01
This paper gives a canonical construction, in terms of additive cohomological functors, of the universal formal deformation of a compact complex manifold without vector fields (more generally of a faithful $g$-module, where $g$ is a sheaf of Lie algebras without sections). The construction is based on a certain (multivariate) Jacobi complex $J(g)$ associatd to $g$: indeed ${\\mathbb C}\\oplus {\\mathbb H}^0(J(g))^*$ is precisely the base ring of the universal deformation.
Thermodynamic modeling of the CeO2–CoO nano-phase diagram
International Nuclear Information System (INIS)
Highlights: • The CeO2–CoO nano-phase diagram was modeled thermodynamically. • The surface energies of the solution phases were modeled with Butler’s equation. • The present work agreed with the experimental work on the nanoparticle sintering. -- Abstract: A nano-phase diagram of the CeO2–CoO system was modeled thermodynamically with experimental data available in the literatures. The surface energies of CeO2 and CoO unavailable in the literatures were estimated reasonably on the thermodynamic basis. Butler’s model was used to describe the surface energy and the surface composition of the solution phases and then the nano interaction parameters on the particle radius were assessed through the multiple linear regression method. A consistent set of optimized interaction parameters in the present system was derived for describing the Gibbs energy of liquid, fluorite, and halite solution phases as a function of particle radius. The eutectic temperatures calculated in the present work interpreted well the experimental data for the unusual low sintering temperature of the nanoparticles with the tri-modal particle size distribution. Furthermore, with the aid of the present result, the microstructure evolution in the CGO–CoO system during the nanoparticle sintering was described reasonably. It is concluded that the present modeling will be a good guide for the condition of the liquid phase sintering to obtain the rapid densification of the nanoparticles at lower temperatures
Thermodynamic interpretation of the generalized gravity models with geometry-matter coupling
Harko, Tiberiu
2014-08-01
Modified gravity theories with geometry-matter coupling, in which the action is an arbitrary function of the Ricci scalar and the matter Lagrangian [f(R,Lm) gravity], and of the Ricci scalar and of the trace of the matter energy-momentum tensor [f(R,T) gravity], respectively, have the intriguing property that the divergence of the matter energy-momentum tensor is nonzero. In the present paper, by using the formalism of open thermodynamic systems, we interpret the generalized conservation equations in these gravitational theories from a thermodynamic point of view as describing irreversible matter creation processes, which could be validated by fundamental particle physics. Thus particle creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents, with the second law of thermodynamics requiring that space-time transforms into matter. The equivalent particle number creation rates, the creation pressure and the entropy production rates are obtained for both f(R,Lm) and f(R,T) gravity theories. The temperature evolution laws of the newly created particles are also obtained. In the case of the f(R,T) gravity theory the open irreversible thermodynamic interpretation of a simple cosmological model is presented in detail. It is also shown that due to the geometry-matter coupling, during the cosmological evolution a large amount of comoving entropy could be produced.
Experimental investigation and thermodynamic modeling of the Gd-Si system
International Nuclear Information System (INIS)
The Gd-Si system has been investigated via experiments and thermodynamic modeling. In the experimental part, alloys were prepared by arc melting pure Gd and Si slugs and annealing at high temperature. The annealed alloys were then investigated by thermal analysis, X-ray diffraction and scanning electron microscopy. Except for the compound with AlB2 structure, the existence of all other compounds was confirmed. In our study, instead of Gd2Si3, the compound with AlB2 structure was found to be Gd3Si5. Although most of the reported invariant reaction temperatures are in good agreement with the present data, the convex liquidus in the composition range of 55-65 at.% Si was not found. The available phase equilibrium and thermodynamic data for the Gd-Si system were used in optimization of thermodynamic parameters by WinPhad software. The calculated phase equilibria and thermodynamic properties were compared to the corresponding experimental data and good agreement was found
Thermodynamical interpretation of statistical semi-inclusive model
International Nuclear Information System (INIS)
A simple picture of high-energy hadron-hadron scattering, consisting of a slight deceleration of the incoming particles followed by thermalization, allows to account for the general features of multihadron production and to derive the main parameters of the empirically developed semi-inclusive statistical model. The dependence exp(-p2T/(P2T)) is expected for pT pion distribution. The picture agrees with the universal properties of hadron production in p-p, deep inelastic and electron-positron scattering
Experimental investigation and thermodynamic modeling of the Se–Sn–Te system
International Nuclear Information System (INIS)
Highlights: • Vertical section at SnSe–Te joint was investigated by DTA, XRD and SEM–EDS. • The saddle point at 703 K in the monovariant liq → αSnSe + hex(Te) was confirmed. • The Se–Sn–Te system was optimized using the CALPHAD technique. - Abstract: Vertical section at the SnSe–Te joint in the Se–Sn–Te system was investigated using X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and differential thermal analysis (DTA). Combined with the present experimental results and experimental information of vertical sections, isothermal sections and liquidus projection in literature, the phase diagram and the thermodynamic property of the Se–Sn–Te system were modeled using the CALPHAD (CALculation of PHAse Diagrams) technique. The liquid was described as (Se, Sn, Te, SnSe, SnTe) through an associate model. The terminal solid solution phases of Se and Te were treated as hex (Se, Te), and Sn as bct (Sn). The intermetallic compounds, α/βSnSe and SnSe2, were treated as (Sn, Te)0.5(Se, Te)0.5 and (Sn, Te)0.3333(Se, Te)0.6667, respectively, on the basis of the thermodynamic model in the Se–Sn binary system in literature and experimental solid solubility of Te in these compounds in Se–Sn–Te system. The compound SnTe was modeled as (Sn, Se)0.5(Se, Te)0.5 according to thermodynamic model in the binary Se–Te system and experimental solid solubility of Se in the Se–Sn–Te system. A set of self-consistent thermodynamic parameters of individual phases was obtained
Thermodynamic Model for Uranium Release from Hanford Site Tank Residual Waste
International Nuclear Information System (INIS)
A thermodynamic model of U phase solubility and paragenesis was developed for Hanford tank residual waste that will remain after tank closure. The model was developed using a combination of waste composition data, waste leach test data, and thermodynamic modeling of the leach test data. The testing and analyses were conducted using actual Hanford tank residual waste. Positive identification of the U phases by X-ray diffraction (XRD) was generally not possible because solids in the waste were amorphous, or below the detection limit of XRD for both as-received residual waste and leached residual waste. Three leachant solutions were used in the studies, dionized water, CaCO3 saturated solution, and Ca(OH)2 saturated solution. Thermodynamic modeling verified that equilibrium between U phases in the initial residual waste samples and the leachants was attained in less than a month. The paragenetic sequence of secondary phases that occur as waste leaching progresses for two closure scenarios was identified. These results have significant implications for tank closure design.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
By introducing a parameter of difference in ferrite formation temperature between binary Fe-C and multicomponent system, and referring to the thermodynamic model for Fe-C binary system, a simplified thermodynamic model for pro-eutectoid ferrite formation in Fe-ΣXi-C multicomponent structural steels (Xi=Mn, Si, Mo, Cr, Ni or Ti, etc) was suggested. The comparison of the calculated Ae3 temperatures with the measured data of steels 42 shows that the relative standard deviation and root-mean-square (RMS) error between them are only 0.71 % and 8.92 K, respectively. However, the deviations between the same measured data and the values calculated from the superelement model are as high as 1.86 % and 23.83 K, respectively. It can be concluded that the simplified thermodynamic model for pro-eutectoid ferrite formation in multicomponent structural steels is acceptable and the calculated Ae3 temperatures are in good agreement with the experimental data.
Study of Thermodynamic Properties of Nonstoichiometric Phase with Compound Energy Model
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Using compound energy model (CEM), the thermodynamic properties of and were evaluated.The evaluation was based on the optimization of ZrO2-CeO2 and ZrO2-CeO1.5 systems, as well as the miscibility gap inCeO1.5-CeO2 system. Except the cubic fluorite structure phase assessed with compound energy model, all the other solutionphases were assessed with subsitutional solution model. The model parameters were evaluated through fitting the selectedexperimental data by means of thermodynamic optimization. A set of parameters with thermodynamics self-consistency wasobtained and satisfactorily described the complex relation between y in and the partial pressure of oxygen atdifferent temperatures, also the interdependence among miscellaneous factors such as temperature, oxygen partial pressure,seem to be reasonable when put into the explanation of pressureless sintering of CeO2-stabilized ZrO2 powder compacts at acontrolled oxygen partial pressure.
Thermodynamic nature of vitrification in a 1D model of a structural glass former
International Nuclear Information System (INIS)
We propose a new spin-glass model with no positional quenched disorder which is regarded as a coarse-grained model of a structural glass-former. The model is analyzed in the 1D case when the number N of states of a primary cell is large. For N → ∞, the model exhibits a sharp freezing transition of the thermodynamic origin. It is shown both analytically and numerically that the glass transition is accompanied by a significant growth of a static length scale ξ pointing to the structural (equilibrium) nature of dynamical slowdown effects in supercooled liquids
Collisional radiative model for heavy atoms in hot non-local-thermodynamical-equilibrium plasmas
Bar-Shalom, A.; Oreg, J.; Klapisch, M.
1997-07-01
A collisional radiative model for calculating non-local-thermodynamical-equilibrium (non-LTE) spectra of heavy atoms in hot plasmas has been developed, taking into account the numerous excited and autoionizing states. This model uses superconfigurations as effective levels with an iterative procedure which converges to the detailed configuration spectrum. The non-LTE opacities and emissivities may serve as a reliable benchmark for simpler on-line models in hydrodynamic code simulations. The model is tested against detailed configuration calculations of selenium and is applied to non-LTE optically thin plasma of lutetium.
A Thermodynamic Approach to Predict Formation Enthalpies of Ternary Systems Based on Miedema's Model
Mousavi, Mahbubeh Sadat; Abbasi, Roozbeh; Kashani-Bozorg, Seyed Farshid
2016-05-01
A novel modification to the thermodynamic semi-empirical Miedema's model has been made in order to provide more precise estimations of formation enthalpy in ternary alloys. The original Miedema's model was modified for ternary systems based on surface concentration function revisions. The results predicted by the present model were found to be in excellent agreement with the available experimental data of over 150 ternary intermetallic compounds. The novel proposed model is capable of predicting formation enthalpies of ternary intermetallics with small discrepancies of ≤20 kJ/mol as well as providing reliable enthalpy variations.
A Thermodynamic Approach to Predict Formation Enthalpies of Ternary Systems Based on Miedema's Model
Mousavi, Mahbubeh Sadat; Abbasi, Roozbeh; Kashani-Bozorg, Seyed Farshid
2016-07-01
A novel modification to the thermodynamic semi-empirical Miedema's model has been made in order to provide more precise estimations of formation enthalpy in ternary alloys. The original Miedema's model was modified for ternary systems based on surface concentration function revisions. The results predicted by the present model were found to be in excellent agreement with the available experimental data of over 150 ternary intermetallic compounds. The novel proposed model is capable of predicting formation enthalpies of ternary intermetallics with small discrepancies of ≤20 kJ/mol as well as providing reliable enthalpy variations.
Phase diagram determination and thermodynamic modeling of the Cu-Mg-Si system
Directory of Open Access Journals (Sweden)
Zhao J.
2016-01-01
Full Text Available 13 ternary Cu-Mg-Si alloys were prepared by means of the powder metallurgy method. Phase equilibria at 500 and 700 oC of the Cu-Mg-Si system were determined using X-ray diffraction analysis (XRD. The existence of 3 ternary compounds in this system was verified: CuMgSi_Sigma (Cu16Mg6Si7, Tau (Cu3Mg2Si, and Laves ((Cu0.8Si0.22(Mg0.88Cu0.12. A thermodynamic modeling for the Cu-Mg-Si system was then conducted on the basis of the experimental data obtained in this work and those critically reviewed from the literature. The complex phase relationship between Laves phase and other phases has been successfully modeled in this work. Comparisons between the calculated and the measured phase diagrams show that most of the experimental data can be reproduced by the presently obtained thermodynamic parameters.
A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces
Energy Technology Data Exchange (ETDEWEB)
Zhang Hongyun [Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education and Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105 (China); Li Wen, E-mail: liwen@xtu.edu.cn [Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education and Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105 (China); Fang Guoping [Department of mechanical Engineering, University of Alberta, Edmonton, AB, T6G 2G8 (Canada)
2012-01-15
Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.
A Thermodynamic Model to Calculate Burning Speed of Methane-Air- Diluent Mixtures
Directory of Open Access Journals (Sweden)
Hameed Metghalchi
2008-12-01
Full Text Available A thermodynamic model to calculate burning speed of methane-air-diluent mixtures from the measured dynamic pressure rise of a combustion process in a chamber has been developed. The effect of automotive exhaust gas on the burning speeds was measured using a mixture of 86 % N2 and 14 % CO2 as the diluent. Photographic observations were made through the end windows in the cylindrical chamber using a high-speed charged coupled device (CCD camera with variable speed of up to 8000 frames/second. The measured values of burning speeds have been compared with laminar burning speeds calculated using the PREMIX flame speed code and the GRI-Mech 3.0 mechanism. This thermodynamic model is valid for a wide range of high temperatures and pressures and the results agree well with the measurements under these conditions when the flames are smooth or cracked and lean or stochiometric.
M3FT-15OR0202212: SUBMIT SUMMARY REPORT ON THERMODYNAMIC EXPERIMENT AND MODELING
Energy Technology Data Exchange (ETDEWEB)
McMurray, Jake W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brese, Robert G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Silva, Chinthaka M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Besmann, Theodore M. [Univ. of South Carolina, Columbia, SC (United States)
2015-09-01
Modeling the behavior of nuclear fuel with a physics-based approach uses thermodynamics for key inputs such as chemical potentials and thermal properties for phase transformation, microstructure evolution, and continuum transport simulations. Many of the lanthanide (Ln) elements and Y are high-yield fission products. The U-Y-O and U-Ln-O ternaries are therefore key subsystems of multi-component high-burnup fuel. These elements dissolve in the dominant urania fluorite phase affecting many of its properties. This work reports on an effort to assess the thermodynamics of the U-Pr-O and U-Y-O systems using the CALPHAD (CALculation of PHase Diagrams) method. The models developed within this framework are capable of being combined and extended to include additional actinides and fission products allowing calculation of the phase equilibria, thermochemical and material properties of multicomponent fuel with burnup.
A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces
International Nuclear Information System (INIS)
Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.
Elements of $\\mu$-calculus and thermodynamics of $\\mu$-Bose gas model
Rebesh, A P; Gavrilik, A M
2014-01-01
We review on and give some further details about the thermodynamical properties of the \\mu-Bose gas model (arXiv:1309.1363) introduced by us recently. This model was elaborated in connection with \\mu-deformed oscillators. Here, we present the necessary concepts and tools from the so-called \\mu-calculus. For the high temperatures, we obtain the virial expansion of the equation of state, as well as five virial coefficients. In the regime of low temperatures, the critical temperature of condensation is inferred. We also obtain the specific heat, internal energy, and entropy for a \\mu-Bose gas for both low and high temperatures. All thermodynamical functions depend on the deformation parameter \\mu. The dependences of the entropy and the specific heat on the deformation parameter are visualized.
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
Energy Technology Data Exchange (ETDEWEB)
Morrison, J.L.
1992-12-01
The objective of this research is to develop a simple, yet accurate, lumped parameter mathematical model for an explosively driven magnetohydrodynamic generator that can predict the pulse power variables of voltage and current from startup through regenerative operation. The inputs to the model will be the plasma properties entering the generator as predicted by the explosive shock model of Reference [1]. The strategy used was to simplify electromagnetic and thermodynamic three dimensional effects into a zero dimensional model. The model will provide a convenient tool for researchers to optimize designs to be used in pulse power applications. The model is validated using experimental data of Reference [1]. An overview of the operation of the explosively driven generator is first presented. Then a simplified electrical circuit model that describes basic performance of the device is developed. Then a lumped parameter model that incorporates the coupled electromagnetic and thermodynamic effects that govern generator performance is described and developed. The model is based on fundamental physical principles and parameters that were either obtained directly from design data or estimated from experimental data. The model was used to obtain parameter sensitivities and predict beyond the limits observed in the experiments to the levels desired by the potential Department of Defense sponsors. The model identifies process limitations that provide direction for future research.
Thermodynamic modeling of the RE–Pb (RE = Sc, Dy, Gd) systems
Energy Technology Data Exchange (ETDEWEB)
Iddaoudi, A., E-mail: iddaoudi19@gmail.com [Laboratoire de Thermodynamique et Energétique, LTE, Université Ibn-Zohr, B.P. 8106 Agadir (Morocco); Servant, C., E-mail: colette.servant@orange.fr [Laboratoire de Physicochimie de l’Etat Solide, ICMMO, Université Paris-Sud, 91405 Orsay Cedex (France); Selhaoui, N.; Kardellass, S.; Mahdouk, K.; Bouirden, L. [Laboratoire de Thermodynamique et Energétique, LTE, Université Ibn-Zohr, B.P. 8106 Agadir (Morocco)
2014-03-15
Highlights: • Rare earth (RE) and Pb alloys or compounds are interesting as magnetic materials. • The phase diagrams and thermodynamic properties of RE–Pb (RE = Sc, Dy, Gd) systems have been assessed. • The CALPHAD method was used with the Redlich–Kister model to optimize the solution phases. • A self-consistent set of thermodynamic parameters has been evaluated. • A good agreement was found between the calculation and experiments. -- Abstract: The phase diagrams and thermodynamic properties of RE–Pb (RE = Sc, Dy, Gd) systems have been assessed by means of the CALPHAD method. The solution phases (liquid, fcc, bcc and hcp) were described by the sublattice formalism and the excess term of the Gibbs energy with the Redlich–Kister equation. The stoichiometric intermetallic compounds (Sc{sub 5}Pb{sub 3}, Sc{sub 6}Pb{sub 5}, Dy{sub 5}Pb{sub 4}, DyPb, DyPb{sub 2}, DyPb{sub 3}, β-Gd{sub 5}Pb{sub 4}, α-Gd{sub 5}Pb{sub 4}, Gd{sub 11}Pb{sub 10}, Gd{sub 6}Pb{sub 7}, GdPb{sub 2} and GdPb{sub 2}) were modeled as line compounds. The non-stoichiometric Dy{sub 5}Pb{sub 3} and Gd{sub 5}Pb{sub 3} phases with a narrow homogeneity range were modeled using a two-sublattice model with substitution. A consistent set of the thermodynamic parameters leading to a reasonable agreement between the calculated results and literature data was obtained.
Cristian F. Costa; Paulo C. Corrêa; Jaime D. B. Vanegas; Fernanda M. Baptestini; Renata C. Campos; Lara S. Fernandes
2016-01-01
ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba) were collected and pulped manually. Drying was carried out in a forced-air circulatio...
Menard, Y.
2008-01-01
The present dissertation describes experimental and theoretical investigations undertaken for the mathematical modelling of municipal solid waste (MSW) incineration in a grate furnace and the thermodynamic study of the speciation of heavy metals (HM), originally contained into MSW, during combustion. Thermogravimetric and gaseous analysis (mass spectrometry and gas chromatography) experiments were performed on MSW samples to get pyrolysis kinetics and to quantify the gaseous species that evol...
A simple thermodynamic model of diluted hydrogen gas/plasma for CFD applications
Quartapelle, L.; Muzzio, A.
2015-06-01
This work describes a simple thermodynamic model of the hydrogen gas at low densities and for temperatures going from those involving quantum rotations of ortho- and para-hydrogen up to the fully ionized state. The closed-form energy levels of Morse rotating oscillator given [D.C. Harris, M.D. Bertolucci, Symmetry and Spectroscopy (Dover, New York, 1989)] (but not those in Morse's original paper) are shown to provide an internal partition function of H2 that is a sufficiently accurate representation of that exploiting the state-of-the-art spectrum of roto-vibrational levels calculated by Pachucki and Komasa [K. Pachucki, J. Komasa, J. Chem. Phys. 130, 164113 (2009)]. A system of two coupled quadratic equations for molecular dissociation and atomic ionization at thermodynamical and chemical equilibrium is derived according to the statistical mechanics by assuming that the system is an ideal mixture containing molecules, neutral atoms and noninteracting protons and electrons. The system of two equations reduces to a single quartic equation for the ionization unknown, with the coefficients dependent on the temperature and the specific volume. Explicit relations for specific energy and entropy of the hydrogen ideal gas/plasma model are derived. These fully compatible equations of state provide a complete thermodynamic description of the system, uniformly valid from low temperatures up to a fully ionized state, with electrons and ions relaxed to one and the same temperature. The comparison with results of other models developed in the framework of the physical and chemical pictures shows that the proposed elementary model is adequate for computational fluid dynamics purposes, in applications with the hydrogen gas under diluted conditions and when the dissociation and ionization can be assumed at thermodynamical and chemical equilibrium.
Czech Academy of Sciences Publication Activity Database
Klika, Václav; Maršík, František
Lublin : Agatka, 2009, s. 148-151. ISBN 978-83-60783-18-4. [Sympozjum Naukowe.Sympozjum w ramach 40-lecia Katedry Ortopedii Dzieciecej UM i 60-lecia Uniwersytetu Medycznego w Lublinie. Lublin (PL), 17.09.2009-19.09.2009] R&D Projects: GA ČR(CZ) GA106/08/0557 Institutional research plan: CEZ:AV0Z20760514 Keywords : bone remodeling * vibrating plates * thermodynamic model Subject RIV: FI - Traumatology, Orthopedics
Lanzetta, F.; Vaudrey, A.; Baucour, P.
2016-01-01
Different economical configurations, due for instance to the relative cost of the fuel it consumes, can push a heat engine into operating whether at maximum efficiency or at maximum power produced. Any relevant design of such system hence needs to be based, at least partly, on the knowledge of its specific "power vs. efficiency" characteristic curve. However, even when a simple model is used to describe the engine, obtained for example thanks to Finite Dimensions Thermodynamics, such characte...
Thermodynamics second law and $\\omega=-1$ crossing(s) in interacting holographic dark energy model
Sadjadi, H. Mohseni; Honardoost, M.
2006-01-01
By the assumption that the thermodynamics second law is valid, we study the possibility of $\\omega=-1$ crossing in interacting holographic dark energy model. Depending on the choice of the horizon and the interaction, the transition from quintessence to phantom regime and subsequently from phantom to quintessence phase may be possible. The second transition avoids the big rip singularity. We compute the dark energy density at transition time and show that by choosing appropriate parameters we...
Setare, M. R.
2007-01-01
In the present paper we consider the interacting holographic model of dark energy to investigate the validity of the generalized second laws of thermodynamics in non-flat (closed) universe enclosed by the event horizon measured from the sphere of the horizon named $L$. We show that for $L$ as the system's IR cut-off the generalized second law is respected for the special range of the deceleration parameter.
Perez, Michel; Courtois, E.; Acevedo, D.; T. Epicier; Maugis, Philippe
2007-01-01
High-resolution transmission electron microscopy and electron-energy loss spectroscopy have been used to characterize the structure and chemical composition of niobium carbonitrides in the ferrite of a Fe–Nb–C–N model alloy at different precipitation stages. Experiments seem to indicate the coexistence of two types of precipitates: pure niobium nitrides and mixed substoichiometric niobium carbonitrides. In order to understand the chemical composition of these precipitates, a thermodynamic for...
Thermodynamic modeling of ternary liquid-liquid systems with forming immiscibility islands
Directory of Open Access Journals (Sweden)
Andre Zuber
2013-12-01
Full Text Available The aim of this work was to study the application of a stochastic algorithm to correlate the experimental data of island-type systems in ternary systems. Thermodynamic NRTL and UNIQUAC models were used to evaluate the activity coefficients. Results regarding the application of the stochastic algorithm were in good agreement with those presented in the current literature. However, generalization of the method proposed in the present work remained an intriguing and complex task so as to reach broad conclusions.
Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter
International Nuclear Information System (INIS)
The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermis equation. Approximate calculus methods are found from analytic study of the T-Fermis equation for non zero temperature. T-Fermis equation is solved with the code GOLEM written in FORTRAN V (UNIVAC). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (Author) 24 refs
Decreasing Kd uncertainties through the application of thermodynamic sorption models
International Nuclear Information System (INIS)
Radionuclide retardation processes during transport are expected to play an important role in the safety assessment of subsurface disposal facilities for radioactive waste. The linear distribution coefficient (Kd) is often used to represent radionuclide retention, because analytical solutions to the classic advection–diffusion-retardation equation under simple boundary conditions are readily obtainable, and because numerical implementation of this approach is relatively straightforward. For these reasons, the Kd approach lends itself to probabilistic calculations required by Performance Assessment (PA) calculations. However, it is widely recognised that Kd values derived from laboratory experiments generally have a narrow field of validity, and that the uncertainty of the Kd outside this field increases significantly. Mechanistic multicomponent geochemical simulators can be used to calculate Kd values under a wide range of conditions. This approach is powerful and flexible, but requires expert knowledge on the part of the user. The work presented in this paper aims to develop a simplified approach of estimating Kd values whose level of accuracy would be comparable with those obtained by fully-fledged geochemical simulators. The proposed approach consists of deriving simplified algebraic expressions by combining relevant mass action equations. This approach was applied to three distinct geochemical systems involving surface complexation and ion-exchange processes. Within bounds imposed by model simplifications, the presented approach allows radionuclide Kd values to be estimated as a function of key system-controlling parameters, such as the pH and mineralogy. This approach could be used by PA professionals to assess the impact of key geochemical parameters on the variability of radionuclide Kd values. Moreover, the presented approach could be relatively easily implemented in existing codes to represent the influence of temporal and spatial changes in geochemistry
INDISIM-Paracoccus, an individual-based and thermodynamic model for a denitrifying bacterium.
Araujo Granda, Pablo; Gras, Anna; Ginovart, Marta; Moulton, Vincent
2016-08-21
We have developed an individual-based model for denitrifying bacteria. The model, called INDISIM-Paracoccus, embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM, and is designed to simulate the bacterial cell population behavior and the product dynamics within the culture. The INDISIM-Paracoccus model assumes a culture medium containing succinate as a carbon source, ammonium as a nitrogen source and various electron acceptors such as oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to simulate in continuous or batch culture the different nutrient-dependent cell growth kinetics of the bacterium Paracoccus denitrificans. The individuals in the model represent microbes and the individual-based model INDISIM gives the behavior-rules that they use for their nutrient uptake and reproduction cycle. Three previously described metabolic pathways for P. denitrificans were selected and translated into balanced chemical equations using a thermodynamic model. These stoichiometric reactions are an intracellular model for the individual behavior-rules for metabolic maintenance and biomass synthesis and result in the release of different nitrogen oxides to the medium. The model was implemented using the NetLogo platform and it provides an interactive tool to investigate the different steps of denitrification carried out by a denitrifying bacterium. The simulator can be obtained from the authors on request. PMID:27179457
Thermodynamic modelling of the C-U and B-U binary systems
International Nuclear Information System (INIS)
The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B2O3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory
Liu, Xuan L; Gheno, Thomas; Lindahl, Bonnie B; Lindwall, Greta; Gleeson, Brian; Liu, Zi-Kui
2015-01-01
The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT) and phase-equilibria experiments that led to X-ray diffraction (XRD) and electron probe micro-analysis (EPMA) measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD) method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS) calculations predict a large bcc-A2 (disordered)/B2 (ordered) miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings. PMID:25875037
Thermodynamic data base needs for modeling studies of the Yucca Mountain project
Energy Technology Data Exchange (ETDEWEB)
Palmer, C.E.A.; Silva, R.J. [Lawrence Livermore National Lab., CA (United States). Nuclear Chemistry Div.; Bucher, J.J. [Lawrence Berkeley Lab., CA (United States). Materials and Chemical Sciences Div.
1996-07-12
This document is the first in a series of documents outlining the thermodynamic data needs for performing geochemical modeling calculations in support of various waste package performance assessment activities for the Yucca Mountain Project. The documents are intended to identify and justify the critical thermodynamic data needs for the data base to be used with the models. The Thermodynamic Data Determinations task supplies data needed to resolve performance or design issues and the development of the data base will remain an iterative process as needs change or data improve. For example, data are needed to predict: (1) major ion groundwater chemistry and its evolution, (2) mineral stabilities and evolution, (3) engineered barrier near-field transport and retardation properties, (4) changes in geochemical conditions and processes, (5) solubilities, speciation and transport of waste radionuclides and (6) the dissolution of corrosion of construction and canister materials and the effect on groundwater chemistry and radionuclide solubilities and transport. The system is complex and interactive, and data need to be supplied in order to model the changes and their effect on other components of the system, e.g., temperature, pH and redox conditions (Eh). Through sensitivity and uncertainty analyses, the critical data and system parameters will be identified and the acceptable variations in them documented.
Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine
International Nuclear Information System (INIS)
A theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine is presented in this study. Without a displacer and its link, the thermal-lag engine contains only a moving part (piston) and a static part (regenerative heater) in engine's cylinder and hence, is regarded as a unique type of Stirling engines that featuring rather simple mechanical structure. In this study, a numerical simulation of thermodynamic behavior of the thermal-lag Stirling engine is performed based on the theoretical model developed. Transient variations of temperatures, pressures, pressure difference, and working fluid masses in the individual working spaces of the engine are predicted. Dependence of indicated power and thermal efficiency on engine speed has been investigated. Then, optimal engine speeds at which the engine may reach its maximum power output and/or maximum thermal efficiency is determined. Furthermore, effects of geometrical and operating parameters, such as heating and cooling temperatures, volumes of the chambers, thermal resistances, stroke of piston, and bore size on indicated power output and thermal efficiency are also evaluated. -- Highlights: ► Original paper presenting an efficient model for analysis of thermal-lag Stirling engine. ► Geometrical and operating parameters of a prototype thermal-lag Stirling engine are discussed. ► Predictions of thermodynamic behavior of the thermal-lag Stirling engine are presented. ► A comprehensive study of the effects of the influential parameters is attempted.
Thermodynamic data base needs for modeling studies of the Yucca Mountain project
International Nuclear Information System (INIS)
This document is the first in a series of documents outlining the thermodynamic data needs for performing geochemical modeling calculations in support of various waste package performance assessment activities for the Yucca Mountain Project. The documents are intended to identify and justify the critical thermodynamic data needs for the data base to be used with the models. The Thermodynamic Data Determinations task supplies data needed to resolve performance or design issues and the development of the data base will remain an iterative process as needs change or data improve. For example, data are needed to predict: (1) major ion groundwater chemistry and its evolution, (2) mineral stabilities and evolution, (3) engineered barrier near-field transport and retardation properties, (4) changes in geochemical conditions and processes, (5) solubilities, speciation and transport of waste radionuclides and (6) the dissolution of corrosion of construction and canister materials and the effect on groundwater chemistry and radionuclide solubilities and transport. The system is complex and interactive, and data need to be supplied in order to model the changes and their effect on other components of the system, e.g., temperature, pH and redox conditions (Eh). Through sensitivity and uncertainty analyses, the critical data and system parameters will be identified and the acceptable variations in them documented
Greco, Cristina; Yiang, Ying; Kremer, Kurt; Chen, Jeff; Daoulas, Kostas
Polymer liquid crystals, apart from traditional applications as high strength materials, are important for new technologies, e.g. Organic Electronics. Their studies often invoke mesoscale models, parameterized to reproduce thermodynamic properties of the real material. Such top-down strategies require advanced simulation techniques, predicting accurately the thermodynamics of mesoscale models as a function of characteristic features and parameters. Here a recently developed model describing nematic polymers as worm-like chains interacting with soft directional potentials is considered. We present a special thermodynamic integration scheme delivering free energies in particle-based Monte Carlo simulations of this model, avoiding thermodynamic singularities. Conformational and structural properties, as well as Helmholtz free energies are reported as a function of interaction strength. They are compared with state-of-art SCF calculations invoking a continuum analog of the same model, demonstrating the role of liquid-packing and fluctuations.
Thermodynamics of amyloid formation and the role of intersheet interactions
International Nuclear Information System (INIS)
The self-assembly of proteins into β-sheet-rich amyloid fibrils has been observed to occur with sigmoidal kinetics, indicating that the system initially is trapped in a metastable state. Here, we use a minimal lattice-based model to explore the thermodynamic forces driving amyloid formation in a finite canonical (NVT) system. By means of generalized-ensemble Monte Carlo techniques and a semi-analytical method, the thermodynamic properties of this model are investigated for different sets of intersheet interaction parameters. When the interactions support lateral growth into multi-layered fibrillar structures, an evaporation/condensation transition is observed, between a supersaturated solution state and a thermodynamically distinct state where small and large fibril-like species exist in equilibrium. Intermediate-size aggregates are statistically suppressed. These properties do not hold if aggregate growth is one-dimensional
Thermodynamics of amyloid formation and the role of intersheet interactions
Irbäck, Anders
2016-01-01
The self-assembly of proteins into $\\beta$-sheet-rich amyloid fibrils has been observed to occur with sigmoidal kinetics, indicating that the system initially is trapped in a metastable state. Here, we use a minimal lattice-based model to explore the thermodynamic forces driving amyloid formation in a finite canonical ($NVT$) system. By means of generalized-ensemble Monte Carlo techniques and a semi-analytical method, the thermodynamic properties of this model are investigated for different sets of intersheet interaction parameters. When the interactions support lateral growth into multi-layered fibrillar structures, an evaporation/condensation transition is observed, between a supersaturated solution state and a thermodynamically distinct state where small and large fibril-like species exist in equilibrium. Intermediate-size aggregates are statistically suppressed. These properties do not hold if aggregate growth is one-dimensional.
Functional linear regression via canonical analysis
He, Guozhong; Wang, Jane-Ling; Yang, Wenjing; 10.3150/09-BEJ228
2011-01-01
We study regression models for the situation where both dependent and independent variables are square-integrable stochastic processes. Questions concerning the definition and existence of the corresponding functional linear regression models and some basic properties are explored for this situation. We derive a representation of the regression parameter function in terms of the canonical components of the processes involved. This representation establishes a connection between functional regression and functional canonical analysis and suggests alternative approaches for the implementation of functional linear regression analysis. A specific procedure for the estimation of the regression parameter function using canonical expansions is proposed and compared with an established functional principal component regression approach. As an example of an application, we present an analysis of mortality data for cohorts of medflies, obtained in experimental studies of aging and longevity.
Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions
International Nuclear Information System (INIS)
In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO2 by incremental additions of O2 in H2O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni phase, maintaining
Vrabec, J.; Kedia, G. K.; Buchhauser, U.; Meyer-Pittroff, R.; Hasse, H.
2009-01-01
For the design and optimization of CO2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N2+O2+CO2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to exper...
Thermal effect on water retention curve of bentonite: experiment and thermodynamic modeling
International Nuclear Information System (INIS)
The thermal effects on water retention curve of GMZ bentonite were investigated experimentally and theoretically. Water retention tests were conducted on GMZ bentonite at five temperatures ranging from 20℃ to 100℃. Test results showed that the water retention capacity and the hysteresis of the water retention curve decreased with increasing temperature, and that the water retention curves at different temperatures were almost parallel to each other. Based on the thermodynamics of sorption, a model was established to describe the temperature influence on the water retention curve. The model was validated by comparing the model predictions and the test results. (authors)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves
2013-04-01
Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of
Parallel Grand Canonical Monte Carlo (ParaGrandMC) Simulation Code
Yamakov, Vesselin I.
2016-01-01
This report provides an overview of the Parallel Grand Canonical Monte Carlo (ParaGrandMC) simulation code. This is a highly scalable parallel FORTRAN code for simulating the thermodynamic evolution of metal alloy systems at the atomic level, and predicting the thermodynamic state, phase diagram, chemical composition and mechanical properties. The code is designed to simulate multi-component alloy systems, predict solid-state phase transformations such as austenite-martensite transformations, precipitate formation, recrystallization, capillary effects at interfaces, surface absorption, etc., which can aid the design of novel metallic alloys. While the software is mainly tailored for modeling metal alloys, it can also be used for other types of solid-state systems, and to some degree for liquid or gaseous systems, including multiphase systems forming solid-liquid-gas interfaces.
Characterization and modelling of the thermodynamic behavior of SFR fuel under irradiation
International Nuclear Information System (INIS)
For a burn-up higher than 7 at%, the volatile FP like Cs, I and Te or metallic (Mo) are partially released from the fuel pellet in order to form a layer of compounds between the outer surface of the fuel and the inner surface of the stainless cladding. This layer is called the JOG, french acronym for Joint-Oxyde-Gaine. My subject is focused on two topics: the thermodynamic study of the (Cs-I-Te-Mo-O) system and the migration of those FP towards the gap to form the JOG. The thermodynamic study was the first step of my work. On the basis of critical literature survey, the following systems have been optimized by the CALPHAD method: Cs-Te, Cs-I and Cs-Mo-O. In parallel, an experimental study is undertaken in order to validate our CALPHAD modelling of the Cs-Te system. In a second step, the thermodynamic data coming from the CALPHAD modelling have been introduced into the database that we use with the thermochemical computation code ANGE (CEA code derived from the SOLGASMIX software) in order to calculate the chemical composition of the irradiated fuel versus burn-up and temperature. In a third and last step, the thermochemical computation code ANGE (Advanced Numeric Gibbs Energy minimizer) has been coupled with the fuel performance code GERMINAL V2, which simulates the thermo-mechanical behavior of SFR fuel. (author)
Measurement of the oxygen partial pressure and thermodynamic modeling of the U-Nd-O system
Lee, Seung Min; Knight, Travis W.; McMurray, Jacob W.; Besmann, Theodore M.
2016-05-01
Fission products greatly impact the properties of fuel necessitating a thorough understanding of the thermochemical properties of oxide fuels with fission products. However, thermochemical data for the U-Nd-O system is insufficient even though neodymium is a major fission product. As neodymium will likely be present as a solute in UO2, this research focuses on the study of (U1-yNdy)O2±x. Experimental measurements and analyses of the oxygen partial pressure (pO2)-temperature-oxygen to metal ratio (O/M ratio) relationships were performed using a thermogravimetric analyzer (TGA) and an oxygen analyzer. Thermodynamic computational modeling was performed using the CALPHAD (CALculation of PHAse Diagrams) method with the FactSage software. The Gibbs energy of the (U1-yNdy)O2±x solid solution was described by the compound energy formalism (CEF), which is based on earlier thermodynamic modeling data of the binary U-O system from Guéneau et al.. The thermodynamic and phase diagram data of the U-Nd-O system produced in this work show good agreement with the experimental data.
International Nuclear Information System (INIS)
This paper presents the thermodynamic frameworks to describe the dynamic uptakes of water vapor on various sizes and layers of silica gels for adsorption cooling applications. The proposed kinetic formulation is developed from the rigor of the partition function of each adsorptive sites and the kinetics theory of adsorbate molecules with the analogy of Langmuir kinetics. The simulation results calculated from the proposed formulation are compared with experimentally measured kinetics data of various single and multi layers configuration of silica gels–water systems. An interesting and useful finding has been established that the proposed model is thermodynamically consistent from the Henry's region to the saturated pressure, and also is connected with the surface structural heterogeneity factors of adsorbents. - Highlights: • Thermodynamic frameworks of adsorption kinetics. • Statistical partition functions of adsorptive sites. • Valid from the Henry's region to the saturated pressure. • Dynamic uptakes of water vapor on silica gels. • Model is connected with the pore structure of adsorbents
Khajepor, Sorush; Wen, John; Chen, Baixin
2015-02-01
Pseudopotential lattice Boltzmann (LB) models have been recognized as efficient numerical tools to simulate complex fluid systems, including those at thermodynamic equilibrium states and with phase transitions. However, when the equation of state (EOS) of real fluids is implemented, the existing pseudopotential LB models suffer from thermodynamic inconsistency. This study presents a multipseudopotential interparticle interaction (MPI) scheme, which is fully consistent with thermodynamics and applicable to engineering applications. In this framework, multiple pseudopotentials are employed to represent dominant interaction potentials at different extents of the mean free path of particles. By simulating van der Waals and Carnahan-Starling fluids, it is demonstrated that the MPI scheme can correctly simulate the physical nature of two-phase systems on the lattice including the continuum predictions of liquid-vapor coexistence states and the sound speeds in liquid and vapor phases. It is also shown that the lattice interactions of the MPI scheme represent underlying molecular interactions as they vary in a broad range from strong short-distance repulsions to weak long-distance attractions during phase transitions. Consequently, the MPI is proved to be a reliable LB scheme as it avoids generating unphysical potentials in implementing the EOSs of real fluids and limiting the spurious velocities at the interface of two-phase systems. Additionally, a straightforward procedure is suggested and discussed to preset the MPI system with the two-phase properties of a selected fluid.
Gelbstein, M.; Edry, I.; Froumin, N.; Frage, N.
2009-04-01
The stability of alumina-coated graphite couples in liquid Al is investigated in the 1373 to 1573 K temperature range. A thermodynamic model was carried out to determine the mechanisms controlling the couple stability and the effect of alloying Al with high melting point element for instance U (up to 3 at. pct). It was established that the dissolved uranium dose not play any role in the interfacial interactions and that the couple stability is governed by the interactions with Al resulting in the release of gaseous products. The experiments focused on wetting kinetics under conditions allowing for an in-situ reduction of the alumina coating by the liquid Al. The experimental results confirm the predictions of the thermodynamic analysis.
Jacobs, M. H.; Van Den Berg, A. P.
2013-12-01
Thermodynamic databases are indispensable tools in materials science and mineral physics to derive thermodynamic properties in regions of pressure-temperature-composition space for which experimental data are not available or scant. Because the amount of phases and substances in a database is arbitrarily large, thermodynamic formalisms coupled to these databases are often kept as simple as possible to sustain computational efficiency. Although formalisms based on parameterizations of 1 bar thermodynamic data, commonly used in Calphad methodology, meet this requirement, physically unrealistic behavior in properties hamper the application in the pressure regime prevailing in the Earth's lower mantle. The application becomes especially cumbersome when they are applied to planetary mantles of massive super earth exoplanets or in the development of pressure scales, where Hugoniot data at extreme conditions are involved. Methods based on the Mie-Grüneisen-Debye formalism have the advantage that physically unrealistic behavior in thermodynamic properties is absent, but due to the simple construction of the vibrational density of states (VDoS), they lack engineering precision in the low-pressure regime, especially at 1 bar pressure, hampering application of databases incorporating such formalism to industrial processes. To obtain a method that is generally applicable in the complete stability range of a material, we developed a method based on an alternative use of Kieffer's lattice vibrational formalism. The method requires experimental data to constrain the model parameters and is therefore semi-empirical. It has the advantage that microscopic properties for substances, such as the VDoS, Grüneisen parameters and electronic and static lattice properties resulting from present-day ab-initio methods can be incorporated to constrain a thermodynamic analysis of experimental data. It produces results free from physically unrealistic behavior at high pressure and temperature
Bonduelle, M
1987-01-01
The Canon Law (Codex Iuris Canonici), promulgated in 1917, was a classification of laws and jurisprudence which ruled the early Church, governed the ecclesiastical condition of Roman Church until its reorganisation in 1983. It forbade to be ordained or to exercise orders already received to "those who are or were epileptics either not quite in their right mind or possessed by the Evil One". All the context and in particular the paragraph which treated of bodily lacks, indicated that between these three conditions, there was juxtaposition and no confusion. The texts specified the foundations of these dispositions, not in a malefic view of epilepsy inherited from Morbus Sacer of Antiquity, but in decency and on account of risk incured by Eucharist in case of fit. Some derogations could attenuate the severity of these dispositions--as jurisprudence had taken progresses of Epileptology and therapeutics into consideration. In the new Code of Canon Law (1983) physical disabilities were removed from the text and also possessed evil and epilepsy, the only impediment being "insanity or other psychic defect" appreciation of which is done by experts. Concerning poorly controlled epilepsies, we believe that experts will be allowed to express their opinion and a new jurisprudence will make up for the silence of the law. PMID:3310183
Expansion of thermodynamic model of solute permeation through reverse osmosis membrane
International Nuclear Information System (INIS)
Many studies have been performed on permeation mechanism of solute and solvent in membrane separation process like reverse osmosis or ultrafiltration, and several models of solute/solvent permeation through membrane are proposed. Among these models, Kedem and Katchalsky, based on the theory of thermodynamics of irreversible processes, formulated the one-solute permeation process in their mathematical model, which treats membrane as a black box, not giving consideration to membrane structure and to interaction between membrane material and permeates, viz. solute and solvent. According to this theory, the driving force of solute/solvent permeation through membrane is the difference of their chemical potential between both sides of membrane, and the linear phenomenological equation is applied to describing the relation between driving force and flux of solute/solvent. This equation can be applied to the irreversible process only when the process is almost in equilibrium. This condition is supposed to be satisfied in the solute/solvent permeation process through compact membrane with fine pores like reverse osmosis membrane. When reverse osmosis is applied to treatment process for liquid waste, which usually contains a lot of solutes as contaminants, we can not predict the behavior of contaminants by the above one-solute process model. In the case of multi-solutes permeation process for liquid waste, the number of parameter in thermodynamic model increases rapidly with the number of solute, because of coupling phenomenon among solutes. In this study, we expanded the above thermodynamic model to multi-solute process applying operational calculus to the differential equations which describe the irreversible process of the system, and expressed concisely solute concentration vector as a matrix product. In this way, we predict the behavior of solutes in multi-solutes process, using values of parameters obtained in two-solutes process. (author)
Thermodynamic modeling of donor splice site recognition in pre-mRNA
Garland, Jeffrey A.; Aalberts, Daniel P.
2004-04-01
When eukaryotic genes are edited by the spliceosome, the first step in intron recognition is the binding of a U1 small nuclear RNA with the donor ( 5' ) splice site. We model this interaction thermodynamically to identify splice sites. Applied to a set of 65 annotated genes, our “finding with binding” method achieves a significant separation between real and false sites. Analyzing binding patterns allows us to discard a large number of decoy sites. Our results improve statistics-based methods for donor site recognition, demonstrating the promise of physical modeling to find functional elements in the genome.
Thermodynamic modeling of the UO2-ThO2 phase diagram
Kim, Jinwon; Kim, Sung S.
2016-02-01
The phase diagram in the UO2-ThO2 system has been assessed by thermodynamic modeling with existing data from the literature. The subregular solution model was used to represent the Gibbs free energies of the liquid and the solid phases. By considering the liquidus, solidus and miscibility gap data, the interaction parameters of the liquid and the solid phases were optimized through a multiple linear regression method. A consistent set of interaction parameters were derived for describing the miscibility gap as well as the liquidus/solidus. The phase diagram calculated in the present work is in good agreement with experimental data in the literature.
DEFF Research Database (Denmark)
Puig Arnavat, Maria; Bruno, Juan Carlos; Coronas, Alberto
2012-01-01
This paper presents a mathematical model for biomass gasification processes developed in the equation solver program Engineering Equation Solver (EES) with an implemented user-friendly interface. It is based on thermodynamic equilibrium calculations and includes some modifications to be adapted...... data from different authors for downdraft, fluidized-bed gasifiers and different biomasses, showing good agreement between reported data and modeled values. In addition, it has been used to evaluate the influence of different operating parameters [equivalence ratio (ER), air preheating, steam injection...
Vrabec, J; Buchhauser, U; Meyer-Pittroff, R; Hasse, H
2009-01-01
For the design and optimization of CO2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N2+O2+CO2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N2 and O2 in CO2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO2-rich region.
Some universal trends of the Mie(n,m) fluid thermodynamics
International Nuclear Information System (INIS)
By using canonical Monte Carlo simulation, the liquid-vapor phase diagram, surface tension, interface width, and pressure for the Mie(n,m) model fluids are calculated for six pairs of parameters m and n. It is shown that after certain re-scaling of fluid density the corresponding states rule can be applied for the calculations of the thermodynamic properties of the Mie model fluids, and for some real substances
Thermodynamic modeling and experimental investigation of the magnesium–zinc–samarium alloys
Energy Technology Data Exchange (ETDEWEB)
Xia, Xiangyu, E-mail: xxia5@wisc.edu [Materials Science Program, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Sanaty-Zadeh, Amirreza [Materials Science Program, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Zhang, Chuan [Computherm LLC, 437 S. Yellowstone Dr., Suite217, Madison, WI 53719 (United States); Luo, Alan A. [Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, The Ohio State University, 116 W. 19th Ave., Columbus, OH 43210 (United States); Zeng, Xiaoqin [Department of Materials Science and Engineering, Shanghai Jiaotong University, 800, Dongchuan Road, Shanghai (China); Austin Chang, Y.; Stone, Donald S. [Materials Science Program, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States); Department of Materials Science and Engineering, University of Wisconsin – Madison, 1509 University Ave., Madison, WI 53706 (United States)
2014-04-01
Highlights: • Ternary phases in Mg–Zn–Sm alloy system were experimentally determined. • One previously-reported ternary phase is determined as Mg{sub 3}Sm binary phase. • Phase relationships of Mg–Zn–Sm system near Mg corner are obtained experimentally. • A thermodynamic description of this system was developed using CALPHAD method. - Abstract: Magnesium (Mg)–Zinc (Zn)–Samarium (Sm) alloy system is being considered for the development of high-strength novel Mg alloys for structural applications. In this work, ternary phases in Mg–Zn–Sm system at Mg-rich corner were identified experimentally, based upon the investigation of five key alloys. Phase relationships at 350, 400 and 450 °C of this system were also established. Furthermore, a self-consistent thermodynamic description of Mg–Zn–Sm system at Mg-rich corner was developed for the first time using the CALPHAD (CALculation of PHAse Diagram) method. Good agreement between the calculated phase diagrams and the experimentally measured data from both this study and literature validated the thermodynamic modeling approach used in this work.
Harrold, Z.; Hertel, M.; Gorman-Lewis, D.
2012-12-01
Dissolved uranium speciation, mobility, and remediation are increasingly important topics given continued and potential uranium (U) release from mining operations and nuclear waste. Vegetative bacterial cell surfaces are known to adsorb uranium and may influence uranium speciation in the environment. Previous investigations regarding U(VI) adsorption to bacterial spores, a differentiated and dormant cell type with a tough proteinaceous coat, include U adsorption affinity and XAFS data. We investigated the thermodynamic stability of aerobic, pH dependent uranium adsorption to bacterial spore surfaces using purified Bacillus subtilis spores in solution with 5ppm uranium. Adsorption reversibility and kinetic experiments indicate that uranium does not precipitate over the duration of the experiments and equilibrium is reached within 20 minutes. Uranium-spore adsorption edges exhibited adsorption at all pH measured between 2 and 10. Maximum adsorption was achieved around pH 7 and decreased as pH increased above 7. We used surface complexation modeling (SCM) to quantify uranium adsorption based on balanced chemical equations and derive thermodynamic stability constants for discrete uranium-spore adsorption reactions. Site specific thermodynamic stability constants provide insight on interactions occurring between aqueous uranium species and spore surface ligands. The uranium adsorption data and SCM parameters described herein, also provide a basis for predicting the influence of bacterial spores on uranium speciation in natural systems and investigating their potential as biosorption agents in engineered systems.
Thermodynamic modeling and experimental investigation of the magnesium–zinc–samarium alloys
International Nuclear Information System (INIS)
Highlights: • Ternary phases in Mg–Zn–Sm alloy system were experimentally determined. • One previously-reported ternary phase is determined as Mg3Sm binary phase. • Phase relationships of Mg–Zn–Sm system near Mg corner are obtained experimentally. • A thermodynamic description of this system was developed using CALPHAD method. - Abstract: Magnesium (Mg)–Zinc (Zn)–Samarium (Sm) alloy system is being considered for the development of high-strength novel Mg alloys for structural applications. In this work, ternary phases in Mg–Zn–Sm system at Mg-rich corner were identified experimentally, based upon the investigation of five key alloys. Phase relationships at 350, 400 and 450 °C of this system were also established. Furthermore, a self-consistent thermodynamic description of Mg–Zn–Sm system at Mg-rich corner was developed for the first time using the CALPHAD (CALculation of PHAse Diagram) method. Good agreement between the calculated phase diagrams and the experimentally measured data from both this study and literature validated the thermodynamic modeling approach used in this work
Experimental investigation and thermodynamic modeling of the Zr-Y system
Directory of Open Access Journals (Sweden)
Bu M.J.
2010-01-01
Full Text Available Based on the critical review of all the available experimental data in the literature, 8 key alloys were prepared by arc melting to investigate the phase equilibria in the Zr-Y system, These alloys, which were annealed at 5 different temperatures (800°C, 1000°C, 1100°C, 1120°C, 1160°C, were analyzed by means of X-ray diffraction, differential scanning calorimetry, optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The results showed that a peritectoid reaction (βZr + (αY = (αZr occurs at 886°C ± 5°C, and an eutectic reaction L = (βZr + (αY occurs at 1313°C ± 5°C. Taking into account the experimental data obtained both from this work and the literature, the Zr-Y system was thermodynamically modeled. The previously reported temperature for the peritectic reaction of (βY + L = (αY at about 1490 °C is supported by our thermodynamic calculation. Comparison between the calculated and measured phase diagrams shows that the thermodynamic calculation can well account for the experimental data.
Beretta, Gian Paolo
2014-10-01
By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium
A set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data
Eckl, Bernhard; Hasse, Hans
2009-01-01
A parameterization strategy for molecular models on the basis of force fields is proposed, which allows a rapid development of models for small molecules by using results from quantum mechanical (QM) ab initio calculations and thermodynamic data. The geometry of the molecular models is specified according to the atom positions determined by QM energy minimization. The electrostatic interactions are modeled by reducing the electron density distribution to point dipoles and point quadrupoles located in the center of mass of the molecules. Dispersive and repulsive interactions are described by Lennard-Jones sites, for which the parameters are iteratively optimized to experimental vapor-liquid equilibrium (VLE) data, i.e. vapor pressure, saturated liquid density, and enthalpy of vaporization of the considered substance. The proposed modeling strategy was applied to a sample set of ten molecules from different substance classes. New molecular models are presented for iso-butane, cyclohexane, formaldehyde, dimethyl...
Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow
Hendi, S. H.; Panahiyan, S.; Panah, B. Eslam; Momennia, M.
2016-03-01
Motivated by the violation of Lorentz invariance in quantum gravity, we study black hole solutions in gravity's rainbow in the context of Einstein gravity coupled with various models of nonlinear electrodynamics. We regard an energy dependent spacetime and obtain the related metric functions and electric fields. We show that there is an essential singularity at the origin which is covered by an event horizon. We also compute the conserved and thermodynamical quantities and examine the validity of the first law of thermodynamics in the presence of rainbow functions. Finally, we investigate the thermal stability conditions for these black hole solutions in the context of canonical ensemble. We show that the thermodynamical structure of the solutions depends on the choices of nonlinearity parameters, charge, and energy functions.
International Nuclear Information System (INIS)
Highlights: • The effect of oxygen on the surface tension of liquid Cu was investigated. • The adsorption behavior of oxygen is presented with a thermodynamic model. • This model assumes a hypothetical binary system of Cu-“Cu2O”. • “Cu2O” is considered as an associate molecule. • Ideal adsorption model exhibits the best fit of the experimental results. - Abstract: The effect of oxygen adsorption on surface tension of liquid copper at two different temperatures (1390 and 1440 K) has been investigated. A combination of specially designed crucibles, He-Ne laser, and high-resolution photography in a highly controlled gas atmosphere was used for accurate measurements. Experimental data exhibits decreasing surface tension with increasing oxygen partial pressure. Discussion on the adsorption behavior of oxygen is presented based on thermodynamic models by assuming a hypothetical binary system of Cu-“Cu2O”, in which “Cu2O” is considered as an associate molecule. Ideal adsorption model which assumes insignificant interactions between Cu and Cu2O on the surface exhibits the best fit to the experimental results
Thermodynamic modeling of Al–U–X (X = Si,Zr)
Energy Technology Data Exchange (ETDEWEB)
Rabin, Daniel; Shneck, Roni Z. [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Rafailov, Gennady [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); NRCN, P.O. Box 9001, Beer-Sheva 84190 (Israel); Dahan, Isaac [NRCN, P.O. Box 9001, Beer-Sheva 84190 (Israel); Meshi, Louisa [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Brosh, Eli, E-mail: ebrosh1@gmail.com [NRCN, P.O. Box 9001, Beer-Sheva 84190 (Israel)
2015-09-15
Highlights: • Thermodynamic models of the U–Al–Si and U–Al–Zr systems were constructed. • The extrapolation methods of the ternary liquid phase were explored. • The order–disorder transition of the U(Al,Si){sub 3} phase was modeled. • New experiments fix the composition of U(Al,Si){sub 3} in equilibrium with Al and Si. • Effects of Si on microstructures of solidified U–Al alloys are clarified. - Abstract: Thermodynamic models are constructed for the U–Al–Si and U–A–Zr ternary alloy systems using the CALPHAD (CALculation of PHAse Diagrams) method. For the U–Al–Zr system the modeling covers only the aluminum-rich corner (from 100 at% to 67 at% Al) and is based only on literature data. For the U–Al–Si system, the whole range of compositions is covered and new key experiments were done in the uranium-poor region of the U–Al–Si system. These experiments have shown that under conditions of equilibrium with Al and Si, the Si-content of the U(Al,Si){sub 3} is significantly higher than reported by earlier works. Different extrapolation methods were tried for the Gibbs energy of the liquid phase. However, it was found that for the U–Al–Si and U–Al–Zr systems, symmetric Muggianu method and the asymmetric method by Hillert give similar predictions. The constructed thermodynamic database was investigated by calculating isothermal sections, vertical sections and the liquidus projection. The calculated diagrams are in reasonable agreement with experimental data. Finally, solidification simulation (Scheil simulation) was done in order to assess the phases obtained in solidification as a function of the silicon addition to U–Al alloys.
Thermodynamic modeling of Al–U–X (X = Si,Zr)
International Nuclear Information System (INIS)
Highlights: • Thermodynamic models of the U–Al–Si and U–Al–Zr systems were constructed. • The extrapolation methods of the ternary liquid phase were explored. • The order–disorder transition of the U(Al,Si)3 phase was modeled. • New experiments fix the composition of U(Al,Si)3 in equilibrium with Al and Si. • Effects of Si on microstructures of solidified U–Al alloys are clarified. - Abstract: Thermodynamic models are constructed for the U–Al–Si and U–A–Zr ternary alloy systems using the CALPHAD (CALculation of PHAse Diagrams) method. For the U–Al–Zr system the modeling covers only the aluminum-rich corner (from 100 at% to 67 at% Al) and is based only on literature data. For the U–Al–Si system, the whole range of compositions is covered and new key experiments were done in the uranium-poor region of the U–Al–Si system. These experiments have shown that under conditions of equilibrium with Al and Si, the Si-content of the U(Al,Si)3 is significantly higher than reported by earlier works. Different extrapolation methods were tried for the Gibbs energy of the liquid phase. However, it was found that for the U–Al–Si and U–Al–Zr systems, symmetric Muggianu method and the asymmetric method by Hillert give similar predictions. The constructed thermodynamic database was investigated by calculating isothermal sections, vertical sections and the liquidus projection. The calculated diagrams are in reasonable agreement with experimental data. Finally, solidification simulation (Scheil simulation) was done in order to assess the phases obtained in solidification as a function of the silicon addition to U–Al alloys
International Nuclear Information System (INIS)
The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.
A complete 0D thermodynamic predictive model for direct injection diesel engines
International Nuclear Information System (INIS)
Highlights: → A model to predict pressure evolution in a diesel engine has been proposed. → Specific sub-models for heat transfer, heat release, blow-by, fuel injection, deformations and gas properties are considered. → Model fitting and validation carried out with a complete experimental matrix in a 2-l engine. → Good agreement between experimental and simulated pressure traces was found. → The effect of sub-model in the final results has been analysed. -- Abstract: Ideal models provide the simplest way to reproduce internal combustion engine (ICE) cycles, but they usually do not represent with sufficient accuracy the actual behaviour of an ICE. A suitable alternative for research and development applications is provided by zero-dimensional (0D) thermodynamic models. Such models are very useful for predicting the instantaneous pressure and temperature in the combustion chamber, which in turn allows the prediction of engine operation characteristics. However, they use simplifying hypotheses which lead, in some cases, to a lack of accuracy or a limited predictive capability. This paper describes a 0D single-zone thermodynamic model that takes into account the heat transfer to the chamber walls, the blow-by leakage, the fuel injection and engine deformations, along with the instantaneous change in gas properties. Special attention has been paid to the description of the specific sub-models that have been used for the calculation of the energy and mass equations terms. The procedures followed for the estimation of some mechanical and heat transfer parameters and the combustion model fitting are also detailed. After the fitting, the model was validated in different operation points in a 4-cylinder 2-l DI diesel engine, showing a good capability for accurate predictions of engine performance and the gas state in the closed cycle.
Canonical curves with low apolarity
Ballico, Edoardo; Notari, Roberto
2010-01-01
Let $k$ be an algebraically closed field and let $C$ be a non--hyperelliptic smooth projective curve of genus $g$ defined over $k$. Since the canonical model of $C$ is arithmetically Gorenstein, Macaulay's theory of inverse systems allows to associate to $C$ a cubic form $f$ in the divided power $k$--algebra $R$ in $g-2$ variables. The apolarity of $C$ is the minimal number $t$ of linear form in $R$ needed to write $f$ as sum of their divided power cubes. It is easy to see that the apolarity of $C$ is at least $g-2$ and P. De Poi and F. Zucconi classified curves with apolarity $g-2$ when $k$ is the complex field. In this paper, we give a complete, characteristic free, classification of curves $C$ with apolarity $g-1$ (and $g-2$).
Methods to Increase the Robustness of Finite-Volume Flow Models in Thermodynamic Systems
Directory of Open Access Journals (Sweden)
Sylvain Quoilin
2014-03-01
Full Text Available This paper addresses the issues linked to simulation failures during integration in finite-volume flow models, especially those involving a two-phase state. This kind of model is particularly useful when modeling 1D heat exchangers or piping, e.g., in thermodynamic cycles involving a phase change. Issues, such as chattering or stiff systems, can lead to low simulation speed, instabilities and simulation failures. In the particular case of two-phase flow models, they are usually linked to a discontinuity in the density derivative between the liquid and two-phase zones. In this work, several methods to tackle numerical problems are developed, described, implemented and compared. In addition, methods available in the literature are also implemented and compared to the proposed approaches. Results suggest that the robustness of the models can be significantly increased with these different methods, at the price of a small increase of the error in the mass and energy balances.
Institute of Scientific and Technical Information of China (English)
PallabGhosh
2003-01-01
Nanofiltration separation has become a popular technique for removing large organic molecules and inorganic substances from water. It is achieved by a combination of three mechanisms: electrostatic repulsion,sieving and diffusion. In the present work, a model based on irreversible thermodynamics is extended and used to estimate rejection of inorganic salts and organic substances. Binary systems are modeled, where the feed contains an ion that is much less permeable to the membrane as compared with the other ion. The two model parameters are estimated by fitting the model to the experimental data. Variation of these parameters with the composition of the feed is described by an empirical correlation. This work attempts to describe transport through the nanofiltration membranes bv a simple model.
Resolution of conflicting views on thermodynamics of glass transition: A unified model
Indian Academy of Sciences (India)
K T Jacob; Sagar Prabhudev; R M Mallya
2010-10-01
Classical description of thermodynamic properties during glass transition has been questioned by the entropy-loss model. The uncompensated loss of entropy at the glass transition temperature and zero residual entropy is at the heart of the controversy. Both the models are critically reviewed. A unified model is presented which incorporates features of both entropy loss and residual entropy. It implies two different types of contributions to the entropy of the supercooled liquid, one of which vanishes at the transition and the other which contributes to residual entropy. Entropy gain during spontaneous relaxation of glass, and the nature of heat capacity ‘hysteresis’ during cooling and heating through the glass transition range support the proposed model. Experiments are outlined for differentiating between the models.
International Nuclear Information System (INIS)
Highlights: • The experimental KEMS data fit well with the Redlich–Kister sub-regular solution model applied to Li–Sn melt. • The Redlich–Kister binary interaction L-parameters of the Li–Sn melt were provided in this work. • The experimental KEMS data fit well with the ideally associated mixture model, too. • The quantitative associate composition of the Li–Sn melt was given. • The thermodynamic properties of the associate-forming reactions were also provided. - Abstract: The mixing thermodynamic properties of liquid Li–Sn system, determined previously by Knudsen effusion mass spectrometry (KEMS), were successfully fitted to both Redlich–Kister (RK) sub-regular mixture and ideally associated mixture (IAMT) models. The RK binary interaction L parameters, as a function of temperature in the CALPHAD-type functional form, were obtained as follows: L(0)=-(108580±0.00171)+(16.4±1.6·10-5)·T+(1.96496·10-9±2.03133·10-6) ·T·ln(T) L(1)=-(96600±4700)+(3.3±43.0)·T+(4.4±5.6)·T·ln(T) L(2)=-(64670±190)-(44.4±1.7)·T+(8.44±0.22)·T·ln(T) L(3)=-(20900±1500)-(29±14)·T+(4.3±1.8)·T·ln(T) The former literature data provided only qualitative information on possible liquid associates but no quantitative associate composition was given as a function of the sample composition and temperature. The experimental KEMS data in the composition range XLi = 0 to ∼0.7 fit well with the Li(l) + Sn(l) + LiSn(l) + LiSn2(l) + Li2Sn(l) associate model. At XLi > 0.7 no associate variations – including further associate variants such as Li4Sn(l) etc. – could be fitted to the KEMS data. Nevertheless, in this work the Li(l) + Sn(l) + LiSn(l) + LiSn2(l) + Li2Sn(l) + Li4Sn(l) + Li9Sn(l) associate model was successfully fitted to the thermodynamic data of a selected literature study over the complete composition range. The thermodynamic data of the associate-forming reactions were also given in this paper
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
Thermodynamic re-modelling of the ternary Al–Cr–Ti system with refined Al–Cr description
Energy Technology Data Exchange (ETDEWEB)
Witusiewicz, V.T., E-mail: v.vitusevych@access-technology.de [ACCESSe.V., Intzestr. 5, D-52072 Aachen (Germany); Bondar, A.A. [Frantsevich Institute for Problems of Materials Science, Krzhyzhanovsky Str. 3, 03680 Kyiv (Ukraine); Hecht, U. [ACCESSe.V., Intzestr. 5, D-52072 Aachen (Germany); Velikanova, T.Ya. [Frantsevich Institute for Problems of Materials Science, Krzhyzhanovsky Str. 3, 03680 Kyiv (Ukraine)
2015-09-25
Highlights: • Thermodynamic refinement of the Al–Cr system. • Key experimental investigations of the ternary Al–Cr–Ti alloys. • Thermodynamic modelling of the complete Al–Cr–Ti system. - Abstract: In the present paper, the ternary Al–Cr–Ti and binary constituent Al–Cr systems are thermodynamically re-modelled based on new experimental information reported in the literature within the past few years. Few key experiments were performed with selected ternary alloys in order to complement data on phase equilibria in the composition range of common TiAl-based alloys. Six sample compositions were prepared and analyzed in the as-cast and annealed conditions by means of SEM/EDS, XRD and DTA techniques. The elaborated thermodynamic description was applied to calculate selected phase equilibria as to provide a comparison between calculated and experimental results. The calculations are shown to reproduce the experimental data reasonably well.
Thermodynamic re-modelling of the ternary Al–Cr–Ti system with refined Al–Cr description
International Nuclear Information System (INIS)
Highlights: • Thermodynamic refinement of the Al–Cr system. • Key experimental investigations of the ternary Al–Cr–Ti alloys. • Thermodynamic modelling of the complete Al–Cr–Ti system. - Abstract: In the present paper, the ternary Al–Cr–Ti and binary constituent Al–Cr systems are thermodynamically re-modelled based on new experimental information reported in the literature within the past few years. Few key experiments were performed with selected ternary alloys in order to complement data on phase equilibria in the composition range of common TiAl-based alloys. Six sample compositions were prepared and analyzed in the as-cast and annealed conditions by means of SEM/EDS, XRD and DTA techniques. The elaborated thermodynamic description was applied to calculate selected phase equilibria as to provide a comparison between calculated and experimental results. The calculations are shown to reproduce the experimental data reasonably well
Application of Thermodynamic Models for Better Understanding and Optimizing the Hall-Heroult Process
Coursol, Pascal; Dufour, Gilles; Coté, Jules; Chartrand, Patrice; Mackey, Phillip
2012-11-01
During the last decade, important improvements have been made in the application of thermodynamic models for studying the molten cryolite system used in the Hall-Heroult process. This approach allows a better understanding and paves the way for furthering developments in bath chemistry and molten metal processing. In this article, thermodynamic modeling is used to explore the operating windows in the reduction of alumina in molten cryolite. The impact of a range of concentrations of AlF3, CaF2, and Al2O3 in conventional or "lithium-free" baths is also discussed. Subsequently, the model was also used to evaluate the impact of additions of lithium fluoride to the bath. Conditions allowing an operation at lower cell voltages and lower bath temperatures were identified. The modeling approach described in this article is considered as an important innovation to revisit fundamentals, to constantly re-examine paradigms, and to identify potential modifications in bath chemistry for improving energy efficiency and productivity of modern prebaked Hall-Heroult cells.
A molecular thermodynamic model for the stability of hepatitis B capsids
Energy Technology Data Exchange (ETDEWEB)
Kim, Jehoon; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States)
2014-06-21
Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.
Yao, Y.; Huang, J.; Luo, Y.; Zhao, Z.
2015-12-01
Sea ice plays an important role in the air-ice-ocean interaction, but it is often represented simply in many regional atmospheric models. The Noah sea ice model, which has been widely used in the Weather Research and Forecasting (WRF) model, exhibits cold bias in simulating the Arctic sea ice temperature when validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) in situ observations. According to sensitivity tests, this bias is attributed not only to the simulation of snow depth and turbulent fluxes but also to the heat conduction within snow and ice. Compared with the Noah sea ice model, the high-resolution thermodynamic snow and ice model (HIGHTSI) has smaller bias in simulating the sea ice temperature. HIGHTSI is further coupled with the WRF model to evaluate the possible added value from better resolving the heat transport and solar penetration in sea ice from a complex thermodynamic sea ice model. The cold bias in simulating the surface temperature over sea ice in winter by the original Polar WRF is reduced when HIGHTSI rather than Noah is coupled with the WRF model, and this also leads to a better representation of surface upward longwave radiation and 2 m air temperature. A discussion on the impact of specifying sea ice thickness in the WRF model is presented. Consistent with previous research, prescribing the sea ice thickness with observational information would result in the best simulation among the available methods. If no observational information is available, using an empirical method based on the relationship between sea ice concentration and sea ice thickness could mimic the large-scale spatial feature of sea ice thickness. The potential application of a thermodynamic sea ice model in predicting the change in sea ice thickness in a RCM is limited by the lack of sea ice dynamic processes in the model and the coarse assumption on the initial value of sea ice thickness.
Thermodynamic database development-modeling and phase diagram calculations in oxide systems
Institute of Scientific and Technical Information of China (English)
Arthur D. Pelton
2006-01-01
The databases of the FactSage thermodynamic computer system have been under development for 30 years. These databases contain critically evaluated and optimized data for thousands of compounds and hundreds of multicomponent solutions of solid and liquid metals, oxides, salts, sulfides, etc. The databases are automatically accessed by user-friendly software that calculates complex multiphase equilibria in large multicomponent systems for a wide variety of possible input/output constraints. The databases for solutions have been developed by critical evaluation/optimization of all available phase equilibrium and thermodynamic data. The databases contain parameters of models specifically developed for different types of solutions involving sublattices, ordering, etc. Through the optimization process, model parameters are found which reproduce all thermodynamic and phase equilibrium data within experimental error limits and permit extrapolation into regions of temperature and composition where data are unavailable. The present article focuses on the databases for solid and liquid oxide phases involving 25 elements. A short review of the available databases is presented along with the models used for the molten slag and the solid solutions such as spinel, pyroxene, olivine, monoxide, corundum, etc. The critical evaluation/optimization procedure is outlined using examples from the A12O3-SiO2-CaO-FeO-Fe2O3 system. Sample calculations are presented in which the oxide databases are used in conjunction with the FactSage databases for metallic and other phases. In particular, the use of the FactSage module for the calculation of multicomponent phase diagrams is illustrated.
Thermodynamic modelling of miscibility in (InAs) x (GaAs)1-x solid solutions
Adhikari, Jhumpa
2013-05-01
Current methods used to model the solution thermodynamics of III-V compound semiconductors involve the use of the valence force field as the molecular model and the regular solution model (with the temperature independent interaction parameter and underlying assumption of random mixing) as the engineering model. In this study, excess free energy models (with three or less adjustable parameters) are investigated to predict the solid-solid miscibility of (InAs) x (GaAs)1- x . The models investigated include the Porter/one-constant Margules (OCM) model, the two-constant Margules (TCM) model and the non-random two liquid (NRTL) model. These models are fit to excess free energy values derived from free energy change of mixing (variation with composition) data available from molecular simulations at different temperatures. The parameters in all the models have been found to be temperature dependent. The coexistence compositions are best predicted by the NRTL model, indicating the need to consider non-random mixing effects present in these solid solutions. The TCM model predicts better equilibrium composition data as compared to the OCM model.
Thermal conductivity of tubular nanowire composites based on a thermodynamical model
Lebon, Georgy; Machrafi, Hatim
2015-07-01
A formula for the effective heat conductivity of a nanocomposite with cylindrical nanowire inclusions is derived. Both transversal and longitudinal heating along the wires are investigated. Several effects are examined: the volume fraction and sizes of the nanowires, the type of scattering at the particle-matrix interface and temperature. As illustration, silicon nanowires inclusions in a germanium matrix is considered; the results are shown to be in good agreement with other models and numerical solutions of the Boltzmann transport equation. Our main contribution consists of using extended irreversible thermodynamics to cope with the nano dimensions of the wires.
Thermodynamic modeling of chemical equilibria in liquid-liquid extraction of lutetium
International Nuclear Information System (INIS)
The extraction equilibrium data of lutetium from sodium succinate solution with Aliquat 336 in benzene is systematically investigated. The aqueous phase metal complexation and polymerization in the organic phase are taken into account in obtaining extraction coefficients, stability constants, hydrolysis constants, solubility product, and extraction constants. A thermodynamic model of the above equilibrium extraction data is developed for use in computer simulation of the extraction process. The correlations are based on chemical mass action principles in which the metal complexation in the aqueous phase, polymerization in the organic phase, precipitation in the aqueous phase, and aqueous phase activity coefficients are considered. Extraction behavior of other lanthanides from a succinate medium is also discussed
Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models
Srinivasan, Seshasai
2013-01-01
Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.
Thermodynamic model of the magnetocaloric effect near the first-order magnetic phase transitions
Energy Technology Data Exchange (ETDEWEB)
Spichkin, Y.I. [Advanced Magnetic Technologies and Consulting, Ltd., Moscow 115114 (Russian Federation)]. E-mail: spichkin@ndfeb.ru; Tishin, A.M. [Physics Faculty of M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)
2005-04-15
Magnetocaloric effect (MCE) arising in the materials with the first-order magnetic phase transitions (such as heavy rare earth metals, FeRh and GdSiGe alloys, lanthanides) has been considered in the framework of thermodynamic approach. The exchange, magnetoelastic, anisotropic and magnetic energy contributions to the MCE and their temperature dependences were calculated in the vicinity of the first-order transition. It was shown that the model adequately describes the MCE and gives the values of the adiabatic temperature change and isothermal magnetic entropy change, which are in accord with direct experimental measurements. Possible mechanisms of the MCE near the first-order transitions are discussed.
Emitted High Energy Light Particle Data Base Development Using a Thermodynamic Coalescence Model
Arsalan, M. P.; Townsend, L. W.
2013-03-01
In many applications, double-differential (energy and angle) secondary light particle production cross sections must be known for ion energies from tens of MeV/nucleon to tens of GeV/nucleon. Incorporating high energy light particle spectral and angular distribution cross section databases in the transport codes enable them to transport nearly any radiation field, in three dimensions, that humans and instruments might be exposed to in space, near accelerators or during charged particle radiotherapy. In this work a thermodynamics coalescence model is used to estimate the coalescence and emitting source radii for both symmetric and asymmetric heavy ion collision systems.
Institute of Scientific and Technical Information of China (English)
CHENG Yan; HU CuiE; ZENG Zhao-Yi; GONG Min; GOU Qing-Quan
2009-01-01
The phonon and thermodynamics properties of face-centered cubic CaF2 at high pressure and high tem-perature are investigated by using the shell model interatomic pair potential within General Utility Lattice Program (GULP). The phonon dispersion curves and the corresponding density of state (PDOS) in this work are consistent with the experimental data and other theoretical results. The transverse optical (TO) and longitudinal optical (LO) mode splitting as well as heat capacity at constant volume Cv and entropy S versus pressure and temperature are also obtained.
Phase diagram determination and thermodynamic modeling of the Cu-Mg-Si system
Zhao J; Zhou J.; Liu S.; Du Y.; Tang S.; Yang Y
2016-01-01
13 ternary Cu-Mg-Si alloys were prepared by means of the powder metallurgy method. Phase equilibria at 500 and 700 oC of the Cu-Mg-Si system were determined using X-ray diffraction analysis (XRD). The existence of 3 ternary compounds in this system was verified: CuMgSi_Sigma (Cu16Mg6Si7), Tau (Cu3Mg2Si), and Laves ((Cu0.8Si0.2)2(Mg0.88Cu0.12)). A thermodynamic modeling for the Cu-Mg-Si system was then conducted on the basis of the experimental data obtained...
Thermodynamic modeling of the CeO2-CoO phase diagram
International Nuclear Information System (INIS)
A thermodynamic modeling of the CeO2-CoO phase diagram was performed with recent experimental data. The excess Gibbs energies of the solution phases were described on the basis of the simple regular solution. A consistent set of optimized interaction parameters was derived for describing the Gibbs energy of each phase in this system leading to a good fit between calculation and experimental data. The liquidus, solidus, and solvus curves were calculated and also the lattice stabilities of the components were evaluated
A reduced thermodynamic model on the formation of the Nansha warm water
Institute of Scientific and Technical Information of China (English)
CAI Shuqun; GAN Zijun; LI Chiwai; LONG Xiaomin; DONG Danpeng
2004-01-01
A reduced vertically integrated upper mixed layer model is set up to numerically study the thermodynamic process of the formation of the "Nansha warm water"(NWW) in the Nansha Islands sea areas in spring. According to the numerical experiments, it is shown that, in spring, the formation of the NWW is mainly due to the sea surface net heat flux and the local weak current strength; the contribution from temperature advection transport and warm water exchange with the outer seas (Sulu Sea or south of Sunda shelf) is very little. In the sea areas where the current is strong, the advection may also play an important role in the temperature field.
Regularized Generalized Canonical Correlation Analysis
Tenenhaus, Arthur; Tenenhaus, Michel
2011-01-01
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…
Model calculations of thermodynamic functions of crystallization of Co-B amorphous alloys
International Nuclear Information System (INIS)
A model of perfectly associated solution is used for the approximation of the properties of metal melts. The calculation programs are prepared for modelling thermodynamic properties of solutions on the basis of the model of perfectly associated solution, which programs can enable optimizational calculation relying on the results of several series of experiments. Co-B liquid alloys are modelled using all available in the literature experimental data. Estimated values ΔcrH = 10 kJ/mol; ΔcrS = -2 J/(K mol); ΔcrG = -9 kJ/mol are obtained for the crystallization of amorphous Co0.815B0.185 alloy. The calculated value of amorphous alloy crystallization enthalpy is compared with the literature data. 17 refs., 1 tab
Lanzetta, F; Baucour, P
2016-01-01
Different economical configurations, due for instance to the relative cost of the fuel it consumes, can push a heat engine into operating whether at maximum efficiency or at maximum power produced. Any relevant design of such system hence needs to be based, at least partly, on the knowledge of its specific "power vs. efficiency" characteristic curve. However, even when a simple model is used to describe the engine, obtained for example thanks to Finite Dimensions Thermodynamics, such characteristic curve is often difficult to obtain and takes an explicit form only for the simplest of these models. When more realistic models are considered, including complex internal subsystems or processes, an explicit expression for this curve is practically impossible to obtain. In this paper, we propose to use the called Graham's scan algorithm in order to directly obtain the power vs. efficiency curve of a realistic Stirling engine model, which includes heat leakage, regenerator effectiveness, as well as internal and exte...
Thermodynamic modelling of phase equilibria in Al–Ga–P–As system
Indian Academy of Sciences (India)
S Acharya; J P Hajra
2005-04-01
A generalized thermodynamic expression of the liquid Al–Ga–P–As alloys is used in conjunction with the solid solution model in determining the solid–liquid equilibria at 1173 K and 1273 K. The liquid solution model contains thirtyseven parameters. Twentyfour of them pertain to those of the six constituent binaries, twelve refer to the specific ternary interactions. Additionally the liquid solution model also contains a specific quaternary interaction parameter. The latter has been evaluated here based on the experimental data available in the literature. The present research shows an excellent agreement between the derived and experimental values at 1173 K and 1273 K for the system. The article also presents a comparison between the evaluated values with those based on the regular solution model for the liquid alloys.
Müller, Hannes; Föt, Annika; Haberlandt, Uwe
2016-04-01
Rainfall time series with a high temporal resolution are needed in many hydrological and water resources management fields. Unfortunately, future climate projections are often available only in low temporal resolutions, e.g. daily values. A possible solution is the disaggregation of these time series using information of high-resolution time series of recording stations. Often, the required parameters for the disaggregation process are applied to future climate without any change, because the change is unknown. For this investigation a multiplicative random cascade model is used. The parameters can be estimated directly from high-resolution time series. Here, time series with hourly resolution generated by the ECHAM5-model and dynamically downscaled with the REMO-model (UBA-, BfG- & ENS-realisation) are used for parameter estimation. The parameters are compared between the past (1971-20000), near-term (2021-2050) and long-term future (2071-2100) for temporal resolutions of 1 h and 8 h. Additionally, the parameters of each period are used for the disaggregation of the other two periods. Afterwards the disaggregated time series are analyzed concerning extreme values representation, event specific characteristics (average wet spell duration and amount) and overall time series characteristics (average intensity and fraction of dry spell events). The aim of the investigation is a) to detect and quantify parameter changes and b) to analyze the influence on the disaggregated time series. The investigation area is Lower Saxony, Germany.
Energy Technology Data Exchange (ETDEWEB)
Jung, In-Ho [Research Institute of Industrial Science and Technology (RIST), P.O. Box 135, Pohang, Kyungbuk 790-330 (Korea, Republic of)
2006-03-15
A complete critical evaluation and thermodynamic modeling of the phase diagrams and thermodynamic properties of the Mn-Cr-O system at 1 bar total pressure are presented. Optimized equations for the thermodynamic properties of all phases are obtained, which reproduce all available and reliable thermodynamic and phase equilibrium data within experimental error limits from 25C to above the liquidus temperatures at all compositions and oxygen partial pressures. As results of optimization, the Gibbs energy function of MnCr{sub 2}O{sub 4} is for the first time properly estimated and the discrepancies of the phase diagram experiments of the Mn-Cr-O system are resolved. In particular, unexplored phase diagrams and thermodynamic properties of the Mn-Cr-O system of importance for the oxidation of SOFC interconnect are predicted on the basis of the optimized model parameters. The database of the model parameters can be used along with software for Gibbs energy minimization in order to calculate any type of phase diagram sections and thermodynamic properties. (author)
Response of an ocean general circulation model to wind and thermodynamic forcings
Indian Academy of Sciences (India)
A Chakraborty; H C Upadhyaya; O P Sharma
2000-09-01
The stretched-coordinate ocean general circulation model has been designed to study the observed variability due to wind and thermodynamic forcings. The model domain extends from 60°N to 60°S and cyclically continuous in the longitudinal direction. The horizontal resolution is 5° × 5° and 9 discrete vertical levels. First a spin-up experiment has been done with ECMWF-AMIP 1979 January mean fields. The wind stress, ambient atmospheric temperature, evaporation and precipitation have been used in order to derive mechanical and thermodynamical surface forcings. Next, the experiment has been extended for another 30 years (3 cycles each of 10 year period) with varying surface boundary conditions (from January 1979 to December 1988 of ECMWF-AMIP monthly fields for each cycle) along with 120 years extended spin-up control run's results as initial conditions. The results presented here are for the last 10 years simulations. The preliminary results of this experiment show that the model is capable of simulating some of the general features and the pattern of interannual variability of the ocean.
International Nuclear Information System (INIS)
Highlights: • The solubility increased with increasing temperature. • The solubility decreased with the rise of the ratio of the methanol. • The solubility data were fitted using Apelblat equation, CNIBS/R–K and JA model. • The Gibbs free energy, enthalpy and entropy were calculated by the van’t Hoff analysis. - Abstract: In this paper, we focused on solubility and solution thermodynamics of dibenzothiophene. By the gravimetric method, the solubility of dibenzothiophene was measured in (methanol + acetonitrile) binary solvent mixtures at temperatures from (278.15 to 333.15) K under atmosphere pressure. The solubility data were fitted using a modified Apelblat equation, a variant of the combined nearly ideal binary solvent/Redich–Kister (CNIBS/R–K) model and Jouyban–Acree model. Computational results showed that the modified Apelblat equation was superior to the other two equations. In addition, the thermodynamic properties of the solution process, including the Gibbs free energy, enthalpy, and entropy, were calculated by the van’t Hoff analysis. The experimental results showed that methanol could be used as effective anti-solvents in the crystallization process
Experimental investigation and thermodynamic modeling of the Ni-Al-Ru ternary system
International Nuclear Information System (INIS)
In this study, a thermodynamic description of the Ni-Al-Ru system was obtained in terms of experimental phase equilibrium data as well as first-principles-calculated energetics. The calculated isotherms and liquidus projection using this description are in accord with the experimental data obtained in the present study as well as those previously reported in the literature, and the model-calculated enthalpies of formation agree with subsequent first-principles-calculated values. During the thermodynamic modeling of the Ni-Al-Ru system, we encountered great challenges initially to account for one of the experimentally determined isotherms reported in the literature. To reconcile these discrepancies, additional experiments were carried out and the results obtained supported the phase equilibrium data reported in the literature. The model-calculated enthalpies agree with subsequent first-principles-calculated values. The approach adopted in this study using phase equilibrium data of Ni-Al-Ru and the descriptions of Ni-Al and Ni-Ru to identify errors in the enthalpy of AlRu could be a general tool that could be used for other systems
International Nuclear Information System (INIS)
Radionuclide sorption on mineral-water interfaces can be thermodynamically modelled, similar to solid-solution aqueous-solution systems (only in chemical elemental stoichiometry), if definitions of the standard and reference states, surface activity terms (SAT), and elemental stoichiometries of surface-bound species are unequivocally established. A pre-requisite is that a unique common value of the reference (site) density (Γo) must be part of the definitions of standard and reference states, while the sample- and surface-specific maximum density parameters (Γmax) be included into the SAT corrections to reproduce saturation of physically available adsorption sites instead of introducing the additional mass balance constraints. Subsequently, the standard partial molal properties of surface complexes at multiple surface types on different sorbents can be found, comparable with the standard molar properties of solids, gases and aqueous species. Using surface complexation models (SCM) of U(VI) adsorption on quartz and amorphous silica (SiO2) phases in GEM (Gibbs energy minimization) implementation, a feasible way is shown how to construct a uniform, internally consistent thermodynamic dataset for surface species of radionuclides; to use standard partial molal Gibbs energies G298o of surface species in sorption modelling; how to convert G298o values from/to log K or intrinsic adsorption constants log Kint to use in the law-of-mass action (LMA) speciation codes, and finally, into ''smart Kd'' values for the applications related to waste repository performance assessment. (orig.)
International Nuclear Information System (INIS)
Fuel irradiation in pressurized water reactors lead to the formation of fission products and minor actinides (Np, Am, Cm) which can be transmuted in fast neutrons reactors. In this context, the aim of this work was to study the fabrication conditions of the U1-yAmyO2+x fuels which exhibit particular thermodynamical properties requiring an accurate monitoring of the oxygen potential during the sintering step. For this reason, a thermodynamical model was developed to assess the optimum sintering conditions for these materials. From these calculations, U1-yAmyO2+x (y=0.10; 0.15; 0.20; 0.30) were sintered in two range of atmosphere. In hyper-stoichiometric conditions at low temperature, porous and multiphasic compounds are obtained whereas in reducing conditions at high temperature materials are dense and monophasic. XAFS analyses were performed in order to obtain additional experimental data for the thermodynamical modeling refinement. These characterizations also showed the reduction of Am(+IV) to Am(+III) and the partial oxidation of U(+IV) to U(+V) due to a charge compensation mechanism occurring during the sintering. Finally, taking into account the high - activity of Am, self-irradiation effects were studied for two types of microstructures and two Am contents (10 and 15%). For each composition, a lattice parameter increase was observed without structural change coupled with a macroscopic swelling of the pellet diameter up to 1.2% for the dense compounds and 0.6% for the tailored porosity materials. (author)
Canonical Entropy and Phase Transition of Rotating Black Hole
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun
2008-01-01
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.
Ball, Joseph A
2011-01-01
We develop a $d$-variable analog of the two-component de Bran-ges-Rovnyak reproducing kernel Hilbert space associated with a Schur-class function on the unit disk. In this generalization, the unit disk is replaced by the unit ball in $d$-dimensional complex Euclidean space, and the Schur class becomes the class of contractive multipliers on the Drury-Arveson space over the ball. We also develop some results on a model theory for commutative row contractions which are not necessarily completely noncoisometric (the case considered in earlier work of Bhattacharyya, Eschmeier and Sarkar)
International Nuclear Information System (INIS)
The report on tools and data for the geochemical modeling covers the following issues: experimental methods and theoretical models, design of a thermodynamic model for reduced sulfur species, thermodynamic models for background salts, tools for the uncertainty and sensitivity analyses of geochemical equilibrium modeling.
REE Zonation in Garnet: new insights from combined Thermodynamic and Diffusion Modelling
Witte, C.; Konrad-Schmolke, M.
2013-12-01
Compositional variation in garnet provides an excellent record of element transport within their host rocks, as it precisely reflects the interplay between thermodynamically-controlled nutrient demand and kinetically-constrained element availability during growth. Element availability is controlled by (1) the thermodynamically controlled element distribution among co-existing phases and (2) by matrix transport properties. Our task is to distinguish between factors controlling the availability of major- and trace-elements and to quantify their diffusion length scales but this is hindered by the fact that the interplay of different rate-limiting factors on garnet growth and composition are not fully understood. These processes comprise: (1) fractional garnet crystallisation, which continuously changes the effective, i.e. reacting, bulk rock chemistry (EBC), which in turn influences garnet proportion, growth rate and composition; (2) kinetically-controlled element availability, such that grain boundary diffusion in the host rock's interconnecting transport matrix (ITM) or surface processes in reacting phases cannot keep pace with the material required for garnet nucleation and growth in homogeneous thermodynamic equilibrium with the coexisting phase assemblage and (3) reaction-controlled trace element availability in the host rock, which is often reflected in discontinuous trace element zoning patterns in garnet. A 1D diffusion and reaction model was developed to investigate REE distribution patterns in garnet. It combines PERPLEX thermodynamic forward modelling for a bulk rock composition along a P-T-path with control of diffusion rates in the matrix fluid which acts as a transport medium in the intergranular space. Initial REE distribution is controlled by standard distribution coefficients. Reactant phases are the source of REE and product minerals fractionate REE from the transport medium. Thus the uptake of REE in garnet is regulated by: (1) thermodynamically
International Nuclear Information System (INIS)
The isolation capacity of a repository system for radionuclides is described by geochemical modeling. The models for interpretation of experimental findings and for long-term extrapolation of experimental results are based on thermodynamic approaches. The geochemical models include dissolution reactions of waste forms, the evolution of the geochemical milieu, interactions of radionuclides with constituents of the groundwater (brines) and the precipitation of new solid phases. Reliable thermodynamic data, understanding of radionuclide complexation in aqueous multi-electrolyte solutions at the relevant ionic strength and knowledge on the formation of pure and mixed solids and on sorption processes are urgently needed for such model calculations. (author)
Thermodynamic modeling of a hybrid solar gas-turbine power plant
International Nuclear Information System (INIS)
Highlights: • A complete analytical model for a hybrid solar driven gas-turbine plant is presented. • Each subsystem is modeled: combustion chamber, solar collector, and gas turbine. • Main irreversibility losses for the subsystems are accounted. • The model validation by comparing with real prototype plants is very satisfactory. • The output records are analyzed with respect the main losses parameters, and the temperature and pressure ratios. - Abstract: A thermodynamic model for a hybrid solar gas-turbine power plant is presented. All the subsystems of the plant are modeled, taking into account the most important losses sources: those coming from heat losses in the solar subsystem, those in the combustion chamber, those associated to the Brayton cycle, and those heat losses in the heat exchangers connecting subsystems. Analytical expressions for the overall plant efficiency and its power output are obtained in a general form, for whichever solar share: from the pure combustion mode when solar irradiance is null or small, to the eventual case in which only solar heat input would be enough to ensure that the working fluid reaches the turbine inlet temperature. The gas-turbine model is validated by direct comparison of the model predictions with the output parameters of a commercial turbine. Results are very promising. The real parameters of an existing experimental thermosolar plant are considered and its performance records in stationary irradiance conditions are obtained. A sensitivity analysis of the influence of several turbine losses is performed: recuperator, turbine, compressor, and pressure losses. Finally, the influence of the pressure and temperature ratios on the overall plant efficiency and the fuel conversion rate is discussed. This kind of thermodynamic analysis is necessary in order to design efficient as well as commercially interesting new generations of plants of this type
International Nuclear Information System (INIS)
In a sugar refinery, the juice is concentrated through evaporation, with the objective of concentrating the juice to syrup as rapidly as possible. Because the heat of vaporization of water is relatively high, the evaporation process can be highly energy intensive, and therefore the economical use of steam is important in the refinery. This paper reports on the development of a simulation model for the evaporation sections of two Mauritian sugar refineries. The first objective was to use the simulation model to carry out an energy balance over the evaporators in order to assess the economy of steam usage over the refinery. The second objective was to examine to what extent a fundamental steady state model, based on thermodynamics (not kinetics) was capable of predicting the material and energy flows in two operating sugar refineries and thereby to evaluate the applicability of the modelling framework. The simulation model was validated using historical data as well as data from the plant DCS system. The simulation results generally correlated well with the measured values, except for one of the evaporators on one refinery. Some suggestions were made as to the cause of the discrepancy. On balance, it was found that both refineries are extremely efficient in terms of steam and equipment usage and that there is not much scope for energy optimisation within the present configuration - nor for much spare steam capacity for an additional refinery. It was also shown that steady state process simulation, using thermodynamic models, can generate a very useful representation of a working refinery. Besides being able to use the model to 'benchmark' the operation and thus evaluate its performance as a whole as well as across individual units, it could also be used to evaluate refinery performance across refineries, nationally as well as globally.