Generalized second law of thermodynamics for non-canonical scalar field model with corrected-entropy
International Nuclear Information System (INIS)
Das, Sudipta; Mamon, Abdulla Al; Debnath, Ujjal
2015-01-01
In this work, we have considered a non-canonical scalar field dark energy model in the framework of flat FRW background. It has also been assumed that the dark matter sector interacts with the non-canonical dark energy sector through some interaction term. Using the solutions for this interacting non-canonical scalar field dark energy model, we have investigated the validity of generalized second law (GSL) of thermodynamics in various scenarios using first law and area law of thermodynamics. For this purpose, we have assumed two types of horizons viz apparent horizon and event horizon for the universe and using first law of thermodynamics, we have examined the validity of GSL on both apparent and event horizons. Next, we have considered two types of entropy-corrections on apparent and event horizons. Using the modified area law, we have examined the validity of GSL of thermodynamics on apparent and event horizons under some restrictions of model parameters. (orig.)
Canonical operator formulation of nonequilibrium thermodynamics
International Nuclear Information System (INIS)
Mehrafarin, M.
1992-09-01
A novel formulation of nonequilibrium thermodynamics is proposed which emphasises the fundamental role played by the Boltzmann constant k in fluctuations. The equivalence of this and the stochastic formulation is demonstrated. The k → 0 limit of this theory yields the classical deterministic description of nonequilibrium thermodynamics. The new formulation possesses unique features which bear two important results namely the thermodynamic uncertainty principle and the quantisation of entropy production rate. Such a theory becomes indispensable whenever fluctuations play a significant role. (author). 7 refs
Energy Technology Data Exchange (ETDEWEB)
Pogosov, W.V., E-mail: walter.pogosov@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Shapiro, D.S. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); National University of Science and Technology MISIS, Moscow (Russian Federation); Bork, L.V. [N.L. Dukhov All-Russia Research Institute of Automatics, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Onishchenko, A.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)
2017-06-15
We consider an exactly solvable inhomogeneous Dicke model which describes an interaction between a disordered ensemble of two-level systems with single mode boson field. The existing method for evaluation of Richardson–Gaudin equations in the thermodynamical limit is extended to the case of Bethe equations in Dicke model. Using this extension, we present expressions both for the ground state and lowest excited states energies as well as leading-order finite-size corrections to these quantities for an arbitrary distribution of individual spin energies. We then evaluate these quantities for an equally-spaced distribution (constant density of states). In particular, we study evolution of the spectral gap and other related quantities. We also reveal regions on the phase diagram, where finite-size corrections are of particular importance.
Process modelling on a canonical basis[Process modelling; Canonical modelling
Energy Technology Data Exchange (ETDEWEB)
Siepmann, Volker
2006-12-20
Based on an equation oriented solving strategy, this thesis investigates a new approach to process modelling. Homogeneous thermodynamic state functions represent consistent mathematical models of thermodynamic properties. Such state functions of solely extensive canonical state variables are the basis of this work, as they are natural objective functions in optimisation nodes to calculate thermodynamic equilibrium regarding phase-interaction and chemical reactions. Analytical state function derivatives are utilised within the solution process as well as interpreted as physical properties. By this approach, only a limited range of imaginable process constraints are considered, namely linear balance equations of state variables. A second-order update of source contributions to these balance equations is obtained by an additional constitutive equation system. These equations are general dependent on state variables and first-order sensitivities, and cover therefore practically all potential process constraints. Symbolic computation technology efficiently provides sparsity and derivative information of active equations to avoid performance problems regarding robustness and computational effort. A benefit of detaching the constitutive equation system is that the structure of the main equation system remains unaffected by these constraints, and a priori information allows to implement an efficient solving strategy and a concise error diagnosis. A tailor-made linear algebra library handles the sparse recursive block structures efficiently. The optimisation principle for single modules of thermodynamic equilibrium is extended to host entire process models. State variables of different modules interact through balance equations, representing material flows from one module to the other. To account for reusability and encapsulation of process module details, modular process modelling is supported by a recursive module structure. The second-order solving algorithm makes it
The canonical and grand canonical models for nuclear ...
Indian Academy of Sciences (India)
Many observables seen in intermediate energy heavy-ion collisions can be explained on the basis of statistical equilibrium. Calculations based on statistical equilibrium can be implemented in microcanonical ensemble, canonical ensemble or grand canonical ensemble. This paper deals with calculations with canonical ...
Canonical Ensemble Model for Black Hole Radiation Jingyi Zhang
Indian Academy of Sciences (India)
Canonical Ensemble Model for Black Hole Radiation. 575. For entropy, there is no corresponding thermodynamical quantity, without loss of generalization. Let us define an entropy operator. ˆS = −KB ln ˆρ. (11). Then, the mean value of entropy is. S ≡〈ˆS〉 = tr( ˆρ ˆS) = −KBtr( ˆρ ln ˆρ). (12). For ideal gases, let y = V , then the ...
Evaluation of the thermodynamics of a four level system using canonical density matrix method
Directory of Open Access Journals (Sweden)
Awoga Oladunjoye A.
2013-02-01
Full Text Available We consider a four-level system with two subsystems coupled by weak interaction. The system is in thermal equilibrium. The thermodynamics of the system, namely internal energy, free energy, entropy and heat capacity, are evaluated using the canonical density matrix by two methods. First by Kronecker product method and later by treating the subsystems separately and then adding the evaluated thermodynamic properties of each subsystem. It is discovered that both methods yield the same result, the results obey the laws of thermodynamics and are the same as earlier obtained results. The results also show that each level of the subsystems introduces a new degree of freedom and increases the entropy of the entire system. We also found that the four-level system predicts a linear relationship between heat capacity and temperature at very low temperatures just as in metals. Our numerical results show the same trend.
Canonical vs. micro-canonical sampling methods in a 2D Ising model
International Nuclear Information System (INIS)
Kepner, J.
1990-12-01
Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs
A model of individualized canonical microcircuits supporting cognitive operations.
Directory of Open Access Journals (Sweden)
Tim Kunze
Full Text Available Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of basic elements, called canonical microcircuits. In this theoretical study we propose a novel canonical microcircuit model and find that it supports two basic computational operations: a gating mechanism and working memory. By means of bifurcation analysis we systematically investigate the dynamical behavior of the canonical microcircuit with respect to parameters that govern the local network balance, that is, the relationship between excitation and inhibition, and key intrinsic feedback architectures of canonical microcircuits. We relate the local behavior of the canonical microcircuit to cognitive processing and demonstrate how a network of interacting canonical microcircuits enables the establishment of spatiotemporal sequences in the context of syntax parsing during sentence comprehension. This study provides a framework for using individualized canonical microcircuits for the construction of biologically realistic networks supporting cognitive operations.
Directory of Open Access Journals (Sweden)
Alexandre Vallée
2017-05-01
Full Text Available Gliomas cells are the site of numerous metabolic and thermodynamics abnormalities with an increasing entropy rate which is characteristic of irreversible processes driven by changes in Gibbs energy, heat production, intracellular acidity, membrane potential gradient, and ionic conductance. We focus our review on the opposing interactions observed in glioma between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In gliomas, WNT/beta-catenin pathway is upregulated while PPAR gamma is downregulated. Upregulation of WNT/beta-catenin signaling induces changes in key metabolic enzyme that modify their thermodynamics behavior. This leads to activation pyruvate dehydrogenase kinase 1(PDK-1 and monocarboxylate lactate transporter 1 (MCT-1. Consequently, phosphorylation of PDK-1 inhibits pyruvate dehydrogenase complex (PDH. Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and in TCA (tricarboxylic acid cycle. This leads to aerobic glycolysis despite the availability of oxygen, named Warburg effect. Cytoplasmic pyruvate is, in major part, converted into lactate. The WNT/beta-catenin pathway induces also the transcription of genes involved in cell proliferation, cell invasiveness, nucleotide synthesis, tumor growth, and angiogenesis, such as c-Myc, cyclin D1, PDK. In addition, in gliomas cells, PPAR gamma is downregulated, leading to a decrease in insulin sensitivity and an increase in neuroinflammation. Moreover, PPAR gamma contributes to regulate some key circadian genes. Abnormalities in the regulation of circadian rhythms and dysregulation in circadian clock genes are observed in gliomas. Circadian rhythms are dissipative structures, which play a key role in far-from-equilibrium thermodynamics through their interactions with WNT/beta-catenin pathway and PPAR gamma. In gliomas, metabolism, thermodynamics, and circadian rhythms are tightly interrelated.
Thermodynamics of Born-Infeld-anti-de Sitter black holes in the grand canonical ensemble
International Nuclear Information System (INIS)
Fernando, Sharmanthie
2006-01-01
The main objective of this paper is to study thermodynamics and stability of static electrically charged Born-Infeld black holes in AdS space in D=4. The Euclidean action for the grand canonical ensemble is computed with the appropriate boundary terms. The thermodynamical quantities such as the Gibbs free energy, entropy and specific heat of the black holes are derived from it. The global stability of black holes are studied in detail by studying the free energy for various potentials. For small values of the potential, we find that there is a Hawking-Page phase transition between a BIAdS black hole and the thermal-AdS space. For large potentials, the black hole phase is dominant and is preferred over the thermal-AdS space. Local stability is studied by computing the specific heat for constant potentials. The nonextreme black holes have two branches: small black holes are unstable and the large black holes are stable. The extreme black holes are shown to be stable both globally as well as locally. In addition to the thermodynamics, we also show that the phase structure relating the mass M and the charge Q of the black holes is similar to the liquid-gas-solid phase diagram
International Nuclear Information System (INIS)
Luque, Noelia B.; Reinaudi, Luis; Serra, Pablo; Leiva, Ezequiel P.M.
2009-01-01
A thermodynamic analysis is performed on electrochemical metal deposition in the cavity of a foreign substrate. In particular, the deposition of Cu and Ag in nanometer-sized holes on Au(1 1 1) is studied by means of off-lattice atomistic Grand Canonical Monte Carlo simulations, using embedded atom method potentials. The present simulation conditions emulate experiments of electrochemical metal deposition in nanocavities, as performed in the literature. Depending on the system, remarkable differences are found in the way in which the defects are decorated, as well as in their energetics. When the interaction of the adsorbate atoms with the substrate is less favorable than the bulk interaction of the adsorbate, clusters are found that grow stepwise over the level of the surface. In the opposite case, the filling of the cavity occurs stepwise, without the occurrence of cluster growth above the surface level. The results of the simulations present a good qualitative agreement with experimental results from the literature
Emergent symmetries in the canonical tensor model
Obster, Dennis; Sasakura, Naoki
2018-04-01
The canonical tensor model (CTM) is a tensor model proposing a classically and quantum mechanically consistent description of gravity, formulated as a first-class constraint system with structural similarities to the ADM formalism of general relativity. The classical CTM produces a general relativistic system in a formal continuum limit, the emergence of which should be explained by the quantum CTM. In this paper we study the symmetry properties of a wave function that exactly solves the quantum constraints of the CTM. We have found that it has strong peaks at configurations invariant under some Lie groups, as predicted by a mechanism described in our previous paper. A surprising result is the preference for configurations invariant not only under Lie groups with positive definite signature, but also with Lorentzian signature. Such symmetries could characterize the global structures of spacetimes, and our results are encouraging towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the wave function we have also analyzed the asymptotic behavior, which for the most part seems to be well under control.
Dotov, D G; Kim, S; Frank, T D
2015-02-01
We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ch. 33 Modeling: Computational Thermodynamics
International Nuclear Information System (INIS)
Besmann, Theodore M.
2012-01-01
This chapter considers methods and techniques for computational modeling for nuclear materials with a focus on fuels. The basic concepts for chemical thermodynamics are described and various current models for complex crystalline and liquid phases are illustrated. Also included are descriptions of available databases for use in chemical thermodynamic studies and commercial codes for performing complex equilibrium calculations.
Li, Gu-Qiang; Mo, Jie-Xiong
2016-06-01
The phase transition of a four-dimensional charged AdS black hole solution in the R +f (R ) gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in the canonical ensemble. There exists no critical point for T -S curve while in former research critical point was found for both the T -S curve and T -r+ curve when the electric charge of f (R ) black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of f (R ) AdS black hole is fixed. The specific heat CΦ encounters a divergence when 0 b . This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat CQ . To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and derive the analytic expressions for both the Weinhold scalar curvature and Ruppeiner scalar curvature. It is shown that they diverge exactly where the specific heat CΦ diverges.
Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...
Indian Academy of Sciences (India)
Abstract. In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is ...
Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël
2018-03-23
Entropy production rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Irreversible processes are quantified by changes in the entropy production rate. This review is focused on the opposing interactions observed in NDs between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In amyotrophic lateral sclerosis and Huntington's disease, WNT/beta-catenin pathway is upregulated, whereas PPAR gamma is downregulated. In Alzheimer's disease and Parkinson's disease, WNT/beta-catenin pathway is downregulated while PPAR gamma is upregulated. The dysregulation of the canonical WNT/beta-catenin pathway is responsible for the modification of thermodynamics behaviors of metabolic enzymes. Upregulation of WNT/beta-catenin pathway leads to aerobic glycolysis, named Warburg effect, through activated enzymes, such as glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactic dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). Downregulation of WNT/beta-catenin pathway leads to oxidative stress and cell death through inactivation of Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPAR gamma is dysregulated, whereas it contributes to the regulation of several key circadian genes. NDs show many dysregulation in the mediation of circadian clock genes and so of circadian rhythms. Thermodynamics rhythms operate far-from-equilibrium and partly regulate interactions between WNT/beta-catenin pathway and PPAR gamma. In NDs, metabolism, thermodynamics and circadian rhythms are tightly interrelated.
Thermodynamic Model of Spatial Memory
Kaufman, Miron; Allen, P.
1998-03-01
We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.
Currents, charges, and canonical structure of pseudodual chiral models
International Nuclear Information System (INIS)
Curtright, T.; Zachos, C.
1994-01-01
We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which have an infinite number of conservation laws but allow particle production, at variance with naive expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the usual chiral model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model, and we discuss the complete local current algebra for the pseudodual theory. We also exhibit the canonical transformation which connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual theory
THERMODYNAMIC MODEL OF GAS HYDRATES
Недоступ, В. И.; Недоступ, О. В.
2015-01-01
The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...
Quantum statistical model of nuclear multifragmentation in the canonical ensemble method
International Nuclear Information System (INIS)
Toneev, V.D.; Ploszajczak, M.; Parvant, A.S.; Toneev, V.D.; Parvant, A.S.
1999-01-01
A quantum statistical model of nuclear multifragmentation is proposed. The recurrence equation method used the canonical ensemble makes the model solvable and transparent to physical assumptions and allows to get results without involving the Monte Carlo technique. The model exhibits the first order phase transition. Quantum statistics effects are clearly seen on the microscopic level of occupation numbers but are almost washed out for global thermodynamic variables and the averaged observables studied. In the latter case, the recurrence relations for multiplicity distributions of both intermediate-mass and all fragments are derived and the specific changes in the shape of multiplicity distributions in the narrow region of the transition temperature is stressed. The temperature domain favorable to search for the HBT effect is noted. (authors)
Quantum statistical model of nuclear multifragmentation in the canonical ensemble method
Energy Technology Data Exchange (ETDEWEB)
Toneev, V.D.; Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Parvant, A.S. [Institute of Applied Physics, Moldova Academy of Sciences, MD Moldova (Ukraine); Parvant, A.S. [Joint Institute for Nuclear Research, Bogoliubov Lab. of Theoretical Physics, Dubna (Russian Federation)
1999-07-01
A quantum statistical model of nuclear multifragmentation is proposed. The recurrence equation method used the canonical ensemble makes the model solvable and transparent to physical assumptions and allows to get results without involving the Monte Carlo technique. The model exhibits the first order phase transition. Quantum statistics effects are clearly seen on the microscopic level of occupation numbers but are almost washed out for global thermodynamic variables and the averaged observables studied. In the latter case, the recurrence relations for multiplicity distributions of both intermediate-mass and all fragments are derived and the specific changes in the shape of multiplicity distributions in the narrow region of the transition temperature is stressed. The temperature domain favorable to search for the HBT effect is noted. (authors)
Thermodynamics and statistical physics. 2. rev. ed.
International Nuclear Information System (INIS)
Schnakenberg, J.
2002-01-01
This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas
Modeling the thermodynamics of QCD
Energy Technology Data Exchange (ETDEWEB)
Hell, Thomas
2010-07-26
Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)
Thermodynamic modeling of complex systems
DEFF Research Database (Denmark)
Liang, Xiaodong
after an oil spill. Engineering thermodynamics could be applied in the state-of-the-art sonar products through advanced artificial technology, if the speed of sound, solubility and density of oil-seawater systems could be satisfactorily modelled. The addition of methanol or glycols into unprocessed well...... is successfully applied to model the phase behaviour of water, chemical and hydrocarbon (oil) containing systems with newly developed pure component parameters for water and chemicals and characterization procedures for petroleum fluids. The performance of the PCSAFT EOS on liquid-liquid equilibria of water...... with hydrocarbons has been under debate for some vii years. An interactive step-wise procedure is proposed to fit the model parameters for small associating fluids by taking the liquid-liquid equilibrium data into account. It is still far away from a simple task to apply PC-SAFT in routine PVT simulations and phase...
Thermodynamical stability of FRW models with quintessence
Sharif, M.; Ashraf, Sara
2018-03-01
In this paper, we study the thermodynamic stability of quintessence in the background of homogeneous and isotropic universe model. For the evolutionary picture, we consider two different forms of potentials and investigate the behavior of different physical parameters. We conclude that the quintessence model expands adiabatically and this expansion is thermodynamically stable for both potentials with suitable model parameters.
Thermodynamically consistent model calibration in chemical kinetics
Directory of Open Access Journals (Sweden)
Goutsias John
2011-05-01
Full Text Available Abstract Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new
Benchmarking Measures of Network Controllability on Canonical Graph Models
Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.
2018-03-01
The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical
Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking
Kant, Gijs
Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing
Limit order book and its modeling in terms of Gibbs Grand-Canonical Ensemble
Bicci, Alberto
2016-12-01
In the domain of so called Econophysics some attempts have been already made for applying the theory of thermodynamics and statistical mechanics to economics and financial markets. In this paper a similar approach is made from a different perspective, trying to model the limit order book and price formation process of a given stock by the Grand-Canonical Gibbs Ensemble for the bid and ask orders. The application of the Bose-Einstein statistics to this ensemble allows then to derive the distribution of the sell and buy orders as a function of price. As a consequence we can define in a meaningful way expressions for the temperatures of the ensembles of bid orders and of ask orders, which are a function of minimum bid, maximum ask and closure prices of the stock as well as of the exchanged volume of shares. It is demonstrated that the difference between the ask and bid orders temperatures can be related to the VAO (Volume Accumulation Oscillator), an indicator empirically defined in Technical Analysis of stock markets. Furthermore the derived distributions for aggregate bid and ask orders can be subject to well defined validations against real data, giving a falsifiable character to the model.
A thermodynamic model of sliding friction
Directory of Open Access Journals (Sweden)
Lasse Makkonen
2012-03-01
Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.
Thermodynamic properties of gaseous propane from model ...
African Journals Online (AJOL)
A fourth-order virial equation of state was combined with isotropic model potentials to predict accurate volumetric and caloric thermodynamic properties of propane in the gas phase. The parameters in the model were determined in a fit to speed-of-sound data alone; no other data were used. The approximation employed for ...
Thermodynamic and kinetic modelling: creep resistant materials
DEFF Research Database (Denmark)
Hald, John; Korcakova, L.; Danielsen, Hilmar Kjartansson
2008-01-01
The use of thermodynamic and kinetic modelling of microstructure evolution in materials exposed to high temperatures in power plants is demonstrated with two examples. Precipitate stability in martensitic 9–12%Cr steels is modelled including equilibrium phase stability, growth of Laves phase part...
A statistical model for instable thermodynamical systems
International Nuclear Information System (INIS)
Sommer, Jens-Uwe
2003-01-01
A generic model is presented for statistical systems which display thermodynamic features in contrast to our everyday experience, such as infinite and negative heat capacities. Such system are instable in terms of classical equilibrium thermodynamics. Using our statistical model, we are able to investigate states of instable systems which are undefined in the framework of equilibrium thermodynamics. We show that a region of negative heat capacity in the adiabatic environment, leads to a first order like phase transition when the system is coupled to a heat reservoir. This phase transition takes place without a phase coexistence. Nevertheless, all intermediate states are stable due to fluctuations. When two instable system are brought in thermal contact, the temperature of the composed system is lower than the minimum temperature of the individual systems. Generally, the equilibrium states of instable system cannot be simply decomposed into equilibrium states of the individual systems. The properties of instable system depend on the environment, ensemble equivalence is broken
Directory of Open Access Journals (Sweden)
Yu-Bo Ma
2017-01-01
Full Text Available In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.
Successive canonical transformation in model two-body electrodynamics
International Nuclear Information System (INIS)
Raha, S.
1978-10-01
The possibility is investigated of bypassing the no interaction theorum of Currie, Jordan and Sudarshan for direct action Lagrangians. Starting with the field theoretic description of a two-body electrodynamic problem, the field variable is solved for in terms of the particle variables, which paves the way to write an action-at-a-distance Hamiltonian for the problem. A suitable transformation is found which uncouples the field and the particle variables in the interaction up to order e 2 . It is shown that this transformation leaves the statement of Newton's 2nd law unchanged which also agrees with the standard results of electrodynamics. This allows for the identification of canonical variables for the proper action-at-a-distance problem. 19 references
Canonical sampling of a lattice gas
International Nuclear Information System (INIS)
Mueller, W.F.
1997-01-01
It is shown that a sampling algorithm, recently proposed in conjunction with a lattice-gas model of nuclear fragmentation, samples the canonical ensemble only in an approximate fashion. A residual weight factor has to be taken into account to calculate correct thermodynamic averages. Then, however, the algorithm is numerically inefficient. copyright 1997 The American Physical Society
Modeling thermodynamics of Fe-N phases
DEFF Research Database (Denmark)
Pekelharing, Marjon I.; Böttger, Amarante; Somers, Marcel A. J.
1999-01-01
In the present work homogeneous epsilon-nitride powders prepared at 723 K, having nitrogen contents ranging from 26.1 at. % N (z=0.29) to 31.1 at.% N (z=0.10), were investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two possible configur......In the present work homogeneous epsilon-nitride powders prepared at 723 K, having nitrogen contents ranging from 26.1 at. % N (z=0.29) to 31.1 at.% N (z=0.10), were investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two possible...
Hamiltonian and Thermodynamic Modeling of Quantum Turbulence
Grmela, Miroslav
2010-10-01
The state variables in the novel model introduced in this paper are the fields playing this role in the classical Landau-Tisza model and additional fields of mass, entropy (or temperature), superfluid velocity, and gradient of the superfluid velocity, all depending on the position vector and another tree dimensional vector labeling the scale, describing the small-scale structure developed in 4He superfluid experiencing turbulent motion. The fluxes of mass, momentum, energy, and entropy in the position space as well as the fluxes of energy and entropy in scales, appear in the time evolution equations as explicit functions of the state variables and of their conjugates. The fundamental thermodynamic relation relating the fields to their conjugates is left in this paper undetermined. The GENERIC structure of the equations serves two purposes: (i) it guarantees that solutions to the governing equations, independently of the choice of the fundamental thermodynamic relation, agree with the observed compatibility with thermodynamics, and (ii) it is used as a guide in the construction of the novel model.
Thermodynamic modelling of Ag-Zn alloys
International Nuclear Information System (INIS)
Gomez-Acebo, T.; Sundman, B.
1998-01-01
A thermodynamic assessment of the Ag-Zn system has been done using a computerized CALPHAD (calculation of phase diagrams) technique. The liquid, α,β,ε and η phases are described by a regular solution model, the ζ phase by a two-sublattices model, and the γ phase by a four-sublattices model both based on considerations of their crystal structure and compatibility with the same phase in other systems. Some calculated phase and property diagrams are presented. (Author) 27 refs
Modeling the thermodynamic properties of plutonium
International Nuclear Information System (INIS)
Stan, Marius
2000-01-01
The golden dream of any modeling enterprise is to predict the properties of the studied system in a new and often 'hostile' environment. The basis of this kind of work is the careful, accurate assessment of the system properties in normal conditions. What 'normal conditions' means for plutonium is an interesting question itself. This work is dedicated to modeling only a fraction of the remarkable characteristics of this 'mysterious' material, that is the thermodynamic properties of its six allotropic phases (seven under pressure), the liquid phase, and the vapor phase. The goal is to provide valuable information for the calculation of alloyed plutonium phase diagrams
Canonical Probability Distributions for Model Building, Learning, and Inference
National Research Council Canada - National Science Library
Druzdzel, Marek J
2006-01-01
...) improvements of stochastic sampling algorithms based on importance sampling, and (3) practical applications of our general purpose decision modeling environment to diagnosis of complex systems...
Thermodynamic Modeling of Savannah River Evaporators
Energy Technology Data Exchange (ETDEWEB)
Weber, C.F.
2001-08-02
A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.
Single Canonical Model of Reflexive Memory and Spatial Attention
Patel, Saumil S.; Red, Stuart; Lin, Eric; Sereno, Anne B.
2015-01-01
Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey’s task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes. PMID:26493949
Single Canonical Model of Reflexive Memory and Spatial Attention.
Patel, Saumil S; Red, Stuart; Lin, Eric; Sereno, Anne B
2015-10-23
Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey's task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes.
Czech Academy of Sciences Publication Activity Database
Kroupa, Aleš
2013-01-01
Roč. 66, JAN (2013), s. 3-13 ISSN 0927-0256 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Calphad method * phase diagram modelling * thermodynamic database development Subject RIV: BJ - Thermodynamics Impact factor: 1.879, year: 2013
Fermi, Enrico
1956-01-01
Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr
Kumar, Ashish; Kaur, Harmeet; Jain, Abha; Nair, Deepak T; Salunke, Dinakar M
2018-01-12
Sequence and structural homology suggests that MP-4 protein from Mucuna pruriens belongs to Kunitz-type protease inhibitor family. However, biochemical assays showed that this protein is a poor inhibitor of trypsin. To understand the basis of observed poor inhibition, thermodynamics and molecular dynamics (MD) simulation studies on binding of MP-4 to trypsin were carried out. Molecular dynamics simulations revealed that temperature influences the spectrum of conformations adopted by the loop regions in the MP-4 structure. At an optimal temperature, MP-4 achieves maximal binding while above and below the optimum temperature, its functional activity is hampered due to unfavourable flexibility and relative rigidity, respectively. The low activity at normal temperature is due to the widening of the conformational spectrum of the Reactive Site Loop (RSL) that reduces the probability of formation of stabilizing contacts with trypsin. The unique sequence of the RSL enhances flexibility at ambient temperature and thus reduces its ability to inhibit trypsin. This study shows that temperature influences the function of a protein through modulation in the structure of functional domain of the protein. Modulation of function through appearance of new sequences that are more sensitive to temperature may be a general strategy for evolution of new proteins.
Relations between canonical and non-canonical inflation
Energy Technology Data Exchange (ETDEWEB)
Gwyn, Rhiannon [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2012-12-15
We look for potential observational degeneracies between canonical and non-canonical models of inflation of a single field {phi}. Non-canonical inflationary models are characterized by higher than linear powers of the standard kinetic term X in the effective Lagrangian p(X,{phi}) and arise for instance in the context of the Dirac-Born-Infeld (DBI) action in string theory. An on-shell transformation is introduced that transforms non-canonical inflationary theories to theories with a canonical kinetic term. The 2-point function observables of the original non-canonical theory and its canonical transform are found to match in the case of DBI inflation.
Thermodynamic modeling of the Co-Fe-O system
DEFF Research Database (Denmark)
Zhang, Weiwei; Chen, Ming
2013-01-01
As a part of the research project aimed at developing a thermodynamic database of the La-Sr-Co-Fe-O system for applications in Solid Oxide Fuel Cells (SOFCs), the Co-Fe-O subsystem was thermodynamically re-modeled in the present work using the CALPHAD methodology. The solid phases were described...... using the Compound Energy Formalism (CEF) and the ionized liquid was modeled with the ionic two-sublattice model based on CEF. A set of self-consistent thermodynamic parameters was obtained eventually. Calculated phase diagrams and thermodynamic properties are presented and compared with experimental...
A constitutive model for magnetostriction based on thermodynamic framework
International Nuclear Information System (INIS)
Ho, Kwangsoo
2016-01-01
This work presents a general framework for the continuum-based formulation of dissipative materials with magneto–mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature. - Highlights: • A thermodynamically consistent model is proposed to describe the magneto-mechanical coupling effect. • Internal state variables are introduced to capture the dissipative material response. • The evolution rate of the magnetostrictive strain is derived through thermodynamic and dissipation potentials.
Thermodynamics of quantum strings
Morgan, M J
1994-01-01
A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)
Thermodynamic analysis and numerical modeling of supercritical injection
Banuti, Daniel
2015-01-01
Although liquid propellant rocket engines are operational and have been studied for decades, cryogenic injection at supercritical pressures is still considered essentially not understood. This thesis intends to approach this problem in three steps: by developing a numerical model for real gas thermodynamics, by extending the present thermodynamic view of supercritical injection, and finally by applying these methods to the analysis of injection. A new numerical real gas thermodynamics mode...
Thermodynamics of the topological Kondo model
Directory of Open Access Journals (Sweden)
Francesco Buccheri
2015-07-01
Full Text Available Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and derive its free energy for arbitrary (even and odd number of external wires. We then analyse the ground state energy as a function of the number of external wires and of their couplings to the Majorana bound states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of freedom localized within the central region and connected to the external wires. Our exact computation of the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly coupled fixed point.
Thermodynamics of the topological Kondo model
Energy Technology Data Exchange (ETDEWEB)
Buccheri, Francesco, E-mail: buccheri@iip.ufrn.br [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Babujian, Hrachya [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Yerevan Physics Institute, Alikhanian Brothers 2, Yerevan, 375036 (Armenia); Korepin, Vladimir E. [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); C. N. Yang Institute for Theoretical Physics, Stony Brook University, NY 11794 (United States); Sodano, Pasquale [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Departemento de Fisíca Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Trombettoni, Andrea [CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste (Italy)
2015-07-15
Using the thermodynamic Bethe ansatz, we investigate the topological Kondo model, which describes a set of one-dimensional external wires, pertinently coupled to a central region hosting a set of Majorana bound states. After a short review of the Bethe ansatz solution, we study the system at finite temperature and derive its free energy for arbitrary (even and odd) number of external wires. We then analyse the ground state energy as a function of the number of external wires and of their couplings to the Majorana bound states. Then, we compute, both for small and large temperatures, the entropy of the Majorana degrees of freedom localized within the central region and connected to the external wires. Our exact computation of the impurity entropy provides evidence of the importance of fermion parity symmetry in the realization of the topological Kondo model. Finally, we also obtain the low-temperature behaviour of the specific heat of the Majorana bound states, which provides a signature of the non-Fermi-liquid nature of the strongly coupled fixed point.
Thermodynamic Modeling of Sr/TRU Removal
International Nuclear Information System (INIS)
Felmy, A.R.
2000-01-01
This report summarizes the development and application of a thermodynamic modeling capability designed to treat the Envelope C wastes containing organic complexants. A complete description of the model development is presented. In addition, the model was utilized to help gain insight into the chemical processes responsible for the observed levels of Sr, TRU, Fe, and Cr removal from the diluted feed from tank 241-AN-107 which had been treated with Sr and permanganate. Modeling results are presented for Sr, Nd(III)/Eu(III), Fe, Cr, Mn, and the major electrolyte components of the waste (i.e. NO 3 , NO 2 , F,...). On an overall basis the added Sr is predicted to precipitate as SrCO 3 (c) and the MnO 4 - reduced by the NO 2 - and precipitated as a Mn oxide. These effects result in only minor changes to the bulk electrolyte chemistry, specifically, decreases in NO 2 - and CO 3 2- , and increases in NO 3 - and OH - . All of these predictions are in agreement with the experimental observations. The modeling also indicates that the majority of the Sr, TRU's (or Nd(III)/Eu(III)) analogs, and Fe are tied up with the organic complexants. The Sr and permanganate additions are not predicted to effect these chelate complexes significantly owing to the precipitation of insoluble Mn oxides or SrCO 3 . These insoluble phases maintain low dissolved concentrations of Mn and Sr which do not affect any of the other components tied up with the complexants. It appears that the removal of the Fe and TRU'S during the treatment process is most likely as a result of adsorption or occlusion on/into the Mn oxides or SrCO 3 , not as direct displacement from the complexants into precipitates. Recommendations are made for further studies that are needed to help resolve these issues
Comparison of thermodynamic databases used in geochemical modelling
International Nuclear Information System (INIS)
Chandratillake, M.R.; Newton, G.W.A.; Robinson, V.J.
1988-05-01
Four thermodynamic databases used by European groups for geochemical modelling have been compared. Thermodynamic data for both aqueous species and solid species have been listed. When the values are directly comparable any differences between them have been highlighted at two levels of significance. (author)
Simulation of internal transport barriers by means of the canonical profile transport model
International Nuclear Information System (INIS)
Dnestrovskij, Yu. N.; Cherkasov, S. V.; Dnestrovskij, A. Yu.; Lysenko, S. E.; Walsh, M. J.
2006-01-01
Models with critical gradients are widely used to describe energy balance in L-mode discharges. The so-called first critical gradient can be found from the canonical temperature profile. Here, it is suggested that discharge regimes with transport barriers can be described based on the idea of the second critical gradient. If, in a certain plasma region, the pressure gradient exceeds the second critical gradient, then the plasma bifurcates into a new state and a transport barrier forms in this region. This idea was implemented in a modified canonical profile transport model that makes it possible to describe the energy and particle balance in tokamak plasmas with arbitrary cross sections and aspect ratios. The magnitude of the second critical gradient was chosen by comparing the results calculated for several tokamak discharges with the experimental data. It is found that the second critical gradient is related to the magnetic shear s. The criterion of the transport barrier formation has the form (a 2 /r)d/drln(p/p c ) > z 0 (r), where r is the radial coordinate, a is the plasma minor radius, p is the plasma pressure, p c is the canonical pressure profile, and the dimensionless function z O (r) = C O + C 1 s (with C 0i ∼1, C 0e ∼3, and C 1i,e ∼2) describes the difference between the first and second critical gradients. Simulations show that this criterion is close to that obtained experimentally in JET. The model constructed here is used to simulate internal transport barriers in the JET, TFTR, DIII-D, and MAST tokamaks. The possible dependence of the second critical gradient on the plasma parameters is discussed
Directory of Open Access Journals (Sweden)
Hussain Alkharusi
2013-01-01
Full Text Available The present study aims at deriving correlational models of students' perceptions of assessment tasks, motivational orientations, and learning strategies using canonical analyses. Data were collected from 198 Omani tenth grade students. Results showed that high degrees of authenticity and transparency in assessment were associated with positive students' self-efficacy and task value. Also, high degrees of authenticity, transparency, and diversity in assessment were associated with a strong reliance on deep learning strategies; whereas a high degree of congruence with planned learning and a low degree of authenticity were associated with more reliance on surface learning strategies. Implications for classroom assessment practice and research were discussed.
Self-organization of hot plasmas the canonical profile transport model
Dnestrovskij, Yu N
2015-01-01
In this monograph the author presents the Canonical Profile Transport Model or CPTM as a rather general mathematical framework to simulate plasma discharges.The description of hot plasmas in a magnetic fusion device is a very challenging task and many plasma properties still lack a physical explanation. One important property is plasma self-organization.It is very well known from experiments that the radial profile of the plasma pressure and temperature remains rather unaffected by changes of the deposited power or plasma density. The attractiveness of the CPTM is that it includes the effect o
Relating covariant and canonical approaches to triangulated models of quantum gravity
International Nuclear Information System (INIS)
Arnsdorf, Matthias
2002-01-01
In this paper we explore the relation between covariant and canonical approaches to quantum gravity and BF theory. We will focus on the dynamical triangulation and spin-foam models, which have in common that they can be defined in terms of sums over spacetime triangulations. Our aim is to show how we can recover these covariant models from a canonical framework by providing two regularizations of the projector onto the kernel of the Hamiltonian constraint. This link is important for the understanding of the dynamics of quantum gravity. In particular, we will see how in the simplest dynamical triangulation model we can recover the Hamiltonian constraint via our definition of the projector. Our discussion of spin-foam models will show how the elementary spin-network moves in loop quantum gravity, which were originally assumed to describe the Hamiltonian constraint action, are in fact related to the time-evolution generated by the constraint. We also show that the Immirzi parameter is important for the understanding of a continuum limit of the theory
Physical states in the canonical tensor model from the perspective of random tensor networks
Energy Technology Data Exchange (ETDEWEB)
Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)
2015-01-07
Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.
Towards a common thermodynamic database for speciation models
International Nuclear Information System (INIS)
Lee, J. van der; Lomenech, C.
2004-01-01
Bio-geochemical speciation models and reactive transport models are reaching an operational stage, allowing simulation of complex dynamic experiments and description of field observations. For decades, the main focus has been on model performance but at present, the availability and reliability of thermodynamic data is the limiting factor of the models. Thermodynamic models applied to real and complex geochemical systems require much more extended thermodynamic databases with many minerals, colloidal phases, humic and fulvic acids, cementitious phases and (dissolved) organic complexing agents. Here we propose a methodological approach to achieve, ultimately, a common, operational database including the reactions and constants of these phases. Provided they are coherent with the general thermodynamic laws, sorption reactions are included as well. We therefore focus on sorption reactions and parameter values associated with specific sorption models. The case of sorption on goethite has been used to illustrate the way the methodology handles the problem of inconsistency and data quality. (orig.)
International Nuclear Information System (INIS)
Zanchini, E.
1988-01-01
The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions
Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory.
Directory of Open Access Journals (Sweden)
Shashaank Vattikuti
2016-05-01
Full Text Available It has been shown that the same canonical cortical circuit model with mutual inhibition and a fatigue process can explain perceptual rivalry and other neurophysiological responses to a range of static stimuli. However, it has been proposed that this model cannot explain responses to dynamic inputs such as found in intermittent rivalry and rivalry memory, where maintenance of a percept when the stimulus is absent is required. This challenges the universality of the basic canonical cortical circuit. Here, we show that by including an overlooked realistic small nonspecific background neural activity, the same basic model can reproduce intermittent rivalry and rivalry memory without compromising static rivalry and other cortical phenomena. The background activity induces a mutual-inhibition mechanism for short-term memory, which is robust to noise and where fine-tuning of recurrent excitation or inclusion of sub-threshold currents or synaptic facilitation is unnecessary. We prove existence conditions for the mechanism and show that it can explain experimental results from the quartet apparent motion illusion, which is a prototypical intermittent rivalry stimulus.
On the modelling of microsegregation in steels involving thermodynamic databases
International Nuclear Information System (INIS)
You, D; Bernhard, C; Michelic, S; Wieser, G; Presoly, P
2016-01-01
A microsegregation model involving thermodynamic database based on Ohnaka's model is proposed. In the model, the thermodynamic database is applied for equilibrium calculation. Multicomponent alloy effects on partition coefficients and equilibrium temperatures are accounted for. Microsegregation and partition coefficients calculated using different databases exhibit significant differences. The segregated concentrations predicted using the optimized database are in good agreement with the measured inter-dendritic concentrations. (paper)
The canonical ensemble redefined - 1: Formalism
International Nuclear Information System (INIS)
Venkataraman, R.
1984-12-01
For studying the thermodynamic properties of systems we propose an ensemble that lies in between the familiar canonical and microcanonical ensembles. We point out the transition from the canonical to microcanonical ensemble and prove from a comparative study that all these ensembles do not yield the same results even in the thermodynamic limit. An investigation of the coupling between two or more systems with these ensembles suggests that the state of thermodynamical equilibrium is a special case of statistical equilibrium. (author)
Thermodynamic modeling to analyse composition of carbonaceous ...
Indian Academy of Sciences (India)
Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams” have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as ...
Thermodynamic modeling of CO2 mixtures
DEFF Research Database (Denmark)
Bjørner, Martin Gamel
Knowledge of the thermodynamic properties and phase equilibria of mixtures containing carbon dioxide (CO2) is important in several industrial processes such as enhanced oil recovery, carbon capture and storage, and supercritical extractions, where CO2 is used as a solvent. Despite this importance...
Canonical phase diagrams of the 1D Falicov-Kimball model at T = O
Gajek, Z.; Jȩdrzejewski, J.; Lemański, R.
1996-02-01
The Falicov-Kimball model of spinless quantum electrons hopping on a 1-dimensional lattice and of immobile classical ions occupying some lattice sites, with only intrasite coupling between those particles, have been studied at zero temperature by means of well-controlled numerical procedures. For selected values of the unique coupling parameter U the restricted phase diagrams (based on all the periodic configurations of localized particles (ions) with period not greater than 16 lattice constants, typically) have been constructed in the grand-canonical ensemble. Then these diagrams have been translated into the canonical ensemble. Compared to the diagrams obtained in other studies our ones contain more details, in particular they give better insight into the way the mixtures of periodic phases are formed. Our study has revealed several families of new characteristic phases like the generalized most homogeneous and the generalized crenel phases, a first example of a structural phase transition and a tendency to build up an additional symmetry - the hole-particle symmetry with respect to the ions (electrons) only, as U decreases.
IFN signaling: how a non-canonical model led to the development of IFN mimetics
Directory of Open Access Journals (Sweden)
Howard M Johnson
2013-07-01
Full Text Available The classical model of cytokine signaling dominates our view of specific gene activation by cytokines such as the interferons (IFNs. The importance of the model extends beyond cytokines and applies to hormones such as growth hormone (GH and insulin, and growth factors such as epidermal growth factor (EGF and fibroblast growth factor (FGF. According to this model, ligand activates the cell via interaction with the extracellular domain of the receptor. This results in activation of receptor or receptor-associated tyrosine kinases, primarily of the Janus kinase (JAK family, phosphorylation and dimerization of the STAT transcription factors, which dissociate from the receptor cytoplasmic domain and translocate to the nucleus. This view ascribes no further role to the ligand, JAK kinase, or receptor in either specific gene activation or the associated epigenetic events. The presence of dimeric STATs in the nucleus essentially explains it all. Our studies have resulted in the development of a non-canonical, more complex model of IFNγ signaling that is akin to that of steroid hormone/steroid receptor signaling. We have shown that ligand, receptor, activated JAKs and STATs are associated with specific gene activation, where the receptor subunit IFNGR1 functions as a co-transcription factor and the JAKs are involved in associated epigenetic events. We found that the type I IFN system functions similarly. The fact that GH receptor, insulin receptor, EGF receptor, and FGF receptor undergo nuclear translocation upon ligand binding suggests that they may also function similarly. The steroid hormone/steroid receptor nature of type I and II IFN signaling provides insight into the specificity of signaling by members of cytokine families. The non-canonical model could also provide better understanding to more complex cytokine families such as those of IL-2 and IL-12, whose members often use the same JAKs and STATs, but also have different functions and
Evolution of perturbations in distinct classes of canonical scalar field models of dark energy
International Nuclear Information System (INIS)
Jassal, H. K.
2010-01-01
Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modeled by either a scalar field or by a barotropic fluid. The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models. The dark energy equation of state evolves differently in these classes. In freezing models, the equation of state deviates from that of a cosmological constant at early times. For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times. Since the dark energy equation of state evolves differently in these classes, the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model. In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the integrated Sachs-Wolfe effect.
Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM
Directory of Open Access Journals (Sweden)
Nalan Baştürk
2016-03-01
Full Text Available This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of the target density is required. The approximation can be used as a candidate density in Importance Sampling or Metropolis Hastings methods for Bayesian inference on model parameters and probabilities. We present and discuss four canonical econometric models using a Graphics Processing Unit and a multi-core Central Processing Unit version of the MitISEM algorithm. The results show that the parallelization of the MitISEM algorithm on Graphics Processing Units and multi-core Central Processing Units is straightforward and fast to program using MATLAB. Moreover the speed performance of the Graphics Processing Unit version is much higher than the Central Processing Unit one.
Thermodynamical Aspects of Modified Holographic Dark Energy Model
International Nuclear Information System (INIS)
Li Hui; Zhang Yi
2014-01-01
We investigate the unified first law and the generalized second law in a modified holographic dark energy model. The thermodynamical analysis on the apparent horizon can work and the corresponding entropy formula is extracted from the systematic algorithm. The entropy correction term depends on the extra-dimension number of the brane as expected, but the interplay between the correction term and the extra dimensions is more complicated. With the unified first law of thermodynamics well-founded, the generalized second law of thermodynamics is discussed and it is found that the second law can be violated in certain circumstances. Particularly, if the number of the extra dimensions is larger than one, the generalized law of thermodynamics is always satisfied; otherwise, the validity of the second law can only be guaranteed with the Hubble radius greatly smaller than the crossover scale r c of the 5-dimensional DGP model. (geophysics, astronomy, and astrophysics)
Thermodynamic behavior of particular f(R,T)-gravity models
International Nuclear Information System (INIS)
Sharif, M.; Zubair, M.
2013-01-01
We investigate the thermodynamics at the apparent horizon of the FRW universe in f(R, T) theory in the nonequilibrium description. The laws of thermodynamics are discussed for two particular models of the f(R, T) theory. The first law of thermodynamics is expressed in the form of the Clausius relation T h dS-circumflex h = δ Q , where δQ is the energy flux across the horizon and dS-circumflex is the entropy production term. Furthermore, the conditions for the generalized second law of thermodynamics to be preserved are established with the constraints of positive temperature and attractive gravity. We illustrate our results for some concrete models in this theory
An Overview of a Continuum Mechanic Approach to a Thermodynamic Model of Failure
National Research Council Canada - National Science Library
Palazotto, A
1998-01-01
.... An overview of the thermodynamic definitions, concepts, and principles will be presented. This overview of the thermodynamics is necessary to provided the background needed to understand the damage model, which is based on thermodynamic principles...
Thermodynamic modeling of the Mg-Al-Ca system
Energy Technology Data Exchange (ETDEWEB)
Janz, A.; Groebner, J. [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany); Cao, H.; Zhu, J.; Chang, Y.A. [Department of Materials Science and Engineering, University of Wisconsin, 1509 University Ave., Madison, WI 53706 (United States); Schmid-Fetzer, R. [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld (Germany)], E-mail: schmid-fetzer@tu-clausthal.de
2009-02-15
A thermodynamic model has been developed that provides a quantitative description for a wide area of the Mg-Al-Ca system. All available experimental data plus new key experiments using differential scanning calorimetry/differential thermal analysis have been considered to create a dataset which reproduces the primary crystallizing phases, the extensive ternary solubilities of binary phases and the ternary C36 Laves phase. This enables validated thermodynamic calculations in various areas of this ternary system.
The integrated model of sport confidence: a canonical correlation and mediational analysis.
Koehn, Stefan; Pearce, Alan J; Morris, Tony
2013-12-01
The main purpose of the study was to examine crucial parts of Vealey's (2001) integrated framework hypothesizing that sport confidence is a mediating variable between sources of sport confidence (including achievement, self-regulation, and social climate) and athletes' affect in competition. The sample consisted of 386 athletes, who completed the Sources of Sport Confidence Questionnaire, Trait Sport Confidence Inventory, and Dispositional Flow Scale-2. Canonical correlation analysis revealed a confidence-achievement dimension underlying flow. Bias-corrected bootstrap confidence intervals in AMOS 20.0 were used in examining mediation effects between source domains and dispositional flow. Results showed that sport confidence partially mediated the relationship between achievement and self-regulation domains and flow, whereas no significant mediation was found for social climate. On a subscale level, full mediation models emerged for achievement and flow dimensions of challenge-skills balance, clear goals, and concentration on the task at hand.
Evaluation of the Thermodynamic Models for the Thermal Diffusion Factor
DEFF Research Database (Denmark)
Gonzalez-Bagnoli, Mariana G.; Shapiro, Alexander; Stenby, Erling Halfdan
2003-01-01
Over the years, several thermodynamic models for the thermal diffusion factors for binary mixtures have been proposed. The goal of this paper is to test some of these models in combination with different equations of state. We tested the following models: those proposed by Rutherford and Drickamer...... we applied different thermodynamic models, such as the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The necessity to try different thermo-dynamic models is caused by the high sensitivity of the thermal diffusion factors to the values of the partial molar properties. Two different...... corrections for the determination of the partial molar volumes have been implemented; the Peneloux correction and the correction based on the principle of corresponding states....
Modeling the Thermosphere as a Driven-Dissipative Thermodynamic System
2013-03-01
8 Figure 2: Illustration of the geocentric solar magnetospheric coordinate system............15 Figure 3: Diagram of the...to test new methods of modeling the thermospheric environment. Thermosphere as a Driven-Dissipative Thermodynamic System One approach for modeling... approach uses empirical coupling and relaxation constants to model the 4 input of energy to the thermosphere from the solar wind during
A Prototype Symbolic Model of Canonical Functional Neuroanatomy of the Motor System
Rubin, Daniel L.; Halle, Michael; Musen, Mark; Kikinis, Ron
2008-01-01
Recent advances in bioinformatics have opened entire new avenues for organizing, integrating and retrieving neuroscientific data, in a digital, machine-processable format, which can be at the same time understood by humans, using ontological, symbolic data representations. Declarative information stored in ontological format can be perused and maintained by domain experts, interpreted by machines, and serve as basis for a multitude of decision-support, computerized simulation, data mining, and teaching applications. We have developed a prototype symbolic model of canonical neuroanatomy of the motor system. Our symbolic model is intended to support symbolic lookup, logical inference and mathematical modeling by integrating descriptive, qualitative and quantitative functional neuroanatomical knowledge. Furthermore, we show how our approach can be extended to modeling impaired brain connectivity in disease states, such as common movement disorders. In developing our ontology, we adopted a disciplined modeling approach, relying on a set of declared principles, a high-level schema, Aristotelian definitions, and a frame-based authoring system. These features, along with the use of the Unified Medical Language System (UMLS) vocabulary, enable the alignment of our functional ontology with an existing comprehensive ontology of human anatomy, and thus allow for combining the structural and functional views of neuroanatomy for clinical decision support and neuroanatomy teaching applications. Although the scope of our current prototype ontology is limited to a particular functional system in the brain, it may be possible to adapt this approach for modeling other brain functional systems as well. PMID:18164666
A Thermodynamic Point of View on Dark Energy Models
Directory of Open Access Journals (Sweden)
Vincenzo F. Cardone
2017-07-01
Full Text Available We present a conjugate analysis of two different dark energy models, namely the Barboza–Alcaniz parameterization and the phenomenologically-motivated Hobbit model, investigating both their agreement with observational data and their thermodynamical properties. We successfully fit a wide dataset including the Hubble diagram of Type Ia Supernovae, the Hubble rate expansion parameter as measured from cosmic chronometers, the baryon acoustic oscillations (BAO standard ruler data and the Planck distance priors. This analysis allows us to constrain the model parameters, thus pointing at the region of the wide parameters space, which is worth focusing on. As a novel step, we exploit the strong connection between gravity and thermodynamics to further check models’ viability by investigating their thermodynamical quantities. In particular, we study whether the cosmological scenario fulfills the generalized second law of thermodynamics, and moreover, we contrast the two models, asking whether the evolution of the total entropy is in agreement with the expectation for a closed system. As a general result, we discuss whether thermodynamic constraints can be a valid complementary way to both constrain dark energy models and differentiate among rival scenarios.
Thermodynamic state ensemble models of cis-regulation.
Directory of Open Access Journals (Sweden)
Marc S Sherman
Full Text Available A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1 the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2 the binding constants that describe the affinity of the protein-protein and protein-DNA interactions that occur in each state, and (3 whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence.
Predictions of titanium alloy properties using thermodynamic modeling tools
Zhang, F.; Xie, F.-Y.; Chen, S.-L.; Chang, Y. A.; Furrer, D.; Venkatesh, V.
2005-12-01
Thermodynamic modeling tools have become essential in understanding the effect of alloy chemistry on the final microstructure of a material. Implementation of such tools to improve titanium processing via parameter optimization has resulted in significant cost savings through the elimination of shop/laboratory trials and tests. In this study, a thermodynamic modeling tool developed at CompuTherm, LLC, is being used to predict β transus, phase proportions, phase chemistries, partitioning coefficients, and phase boundaries of multicomponent titanium alloys. This modeling tool includes Pandat, software for multicomponent phase equilibrium calculations, and PanTitanium, a thermodynamic database for titanium alloys. Model predictions are compared with experimental results for one α-β alloy (Ti-64) and two near-β alloys (Ti-17 and Ti-10-2-3). The alloying elements, especially the interstitial elements O, N, H, and C, have been shown to have a significant effect on the β transus temperature, and are discussed in more detail herein.
An introduction to thermodynamics and statistical mechanics
Saxena, A K
2016-01-01
An Introduction to Thermodynamics and Statistical Mechanics aims to serve as a text book for undergraduate hons.and postgraduate students of physics. The book covers First Law of Thermodynamics, Entropy and Second Law ofThermodynamics, Thermodynamic Relations, The Statistical Basis of Thermodynamics, Microcanonical Ensemble,Classical Statistical and Canonical Distribution, Grand Canonical Ensemble, Quantum Statistical Mechanics, PhaseTransitions, Fluctuations, Irreversible Processes and Transport Phenomena (Diffusion).SALIENT FEATURES:iC* Offers students a conceptual development of the subjectiC* Review questions at the end of chapters.NEW TO THE SECOND EDITIONiC* PVT SurfacesiC* Real Heat EnginesiC* Van der Waals Models (Qualitative Considerations)iC* Cluster ExpansioniC* Brownian Motion (Einstein's Theory)
Directory of Open Access Journals (Sweden)
Adolfo Ribeiro
2015-03-01
Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪ Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.
Planck limits on non-canonical generalizations of large-field inflation models
Energy Technology Data Exchange (ETDEWEB)
Stein, Nina K.; Kinney, William H., E-mail: ninastei@buffalo.edu, E-mail: whkinney@buffalo.edu [Dept. of Physics, University at Buffalo, the State University of New York, Buffalo, NY 14260-1500 (United States)
2017-04-01
In this paper, we consider two case examples of Dirac-Born-Infeld (DBI) generalizations of canonical large-field inflation models, characterized by a reduced sound speed, c {sub S} < 1. The reduced speed of sound lowers the tensor-scalar ratio, improving the fit of the models to the data, but increases the equilateral-mode non-Gaussianity, f {sup equil.}{sub NL}, which the latest results from the Planck satellite constrain by a new upper bound. We examine constraints on these models in light of the most recent Planck and BICEP/Keck results, and find that they have a greatly decreased window of viability. The upper bound on f {sup equil.}{sub NL} corresponds to a lower bound on the sound speed and a corresponding lower bound on the tensor-scalar ratio of r ∼ 0.01, so that near-future Cosmic Microwave Background observations may be capable of ruling out entire classes of DBI inflation models. The result is, however, not universal: infrared-type DBI inflation models, where the speed of sound increases with time, are not subject to the bound.
Coppola, Jennifer J; Disney, Anita A
2018-01-01
Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.
Directory of Open Access Journals (Sweden)
Jennifer J. Coppola
2018-01-01
Full Text Available Acetylcholine (ACh is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function—a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.
Zhou, S.; Solana, J. R.
2018-03-01
Monte Carlo NVT simulations have been performed to obtain the thermodynamic and structural properties and perturbation coefficients up to third order in the inverse temperature expansion of the Helmholtz free energy of fluids with potential models proposed in the literature for diamond and wurtzite lattices. These data are used to analyze performance of a coupling parameter series expansion (CPSE). The main findings are summarized as follows, (1) The CPSE provides accurate predictions of the first three coefficient in the inverse temperature expansion of Helmholtz free energy for the potential models considered and the thermodynamic properties of these fluids are predicted more accurately when the CPSE is truncated at second or third order. (2) The Barker-Henderson (BH) recipe is appropriate for determining the effective hard sphere diameter for strongly repulsive potential cores, but its performance worsens with increasing the softness of the potential core. (3) For some thermodynamic properties the first-order CPSE works better for the diamond potential, whose tail is dominated by repulsive interactions, than for the potential, whose tail is dominated by attractive interactions. However, the first-order CPSE provides unsatisfactory results for the excess internal energy and constant-volume excess heat capacity for the two potential models.
Estimating Model Probabilities using Thermodynamic Markov Chain Monte Carlo Methods
Ye, M.; Liu, P.; Beerli, P.; Lu, D.; Hill, M. C.
2014-12-01
Markov chain Monte Carlo (MCMC) methods are widely used to evaluate model probability for quantifying model uncertainty. In a general procedure, MCMC simulations are first conducted for each individual model, and MCMC parameter samples are then used to approximate marginal likelihood of the model by calculating the geometric mean of the joint likelihood of the model and its parameters. It has been found the method of evaluating geometric mean suffers from the numerical problem of low convergence rate. A simple test case shows that even millions of MCMC samples are insufficient to yield accurate estimation of the marginal likelihood. To resolve this problem, a thermodynamic method is used to have multiple MCMC runs with different values of a heating coefficient between zero and one. When the heating coefficient is zero, the MCMC run is equivalent to a random walk MC in the prior parameter space; when the heating coefficient is one, the MCMC run is the conventional one. For a simple case with analytical form of the marginal likelihood, the thermodynamic method yields more accurate estimate than the method of using geometric mean. This is also demonstrated for a case of groundwater modeling with consideration of four alternative models postulated based on different conceptualization of a confining layer. This groundwater example shows that model probabilities estimated using the thermodynamic method are more reasonable than those obtained using the geometric method. The thermodynamic method is general, and can be used for a wide range of environmental problem for model uncertainty quantification.
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-04
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Thermodynamic modelling of alkali-activated slag cements
International Nuclear Information System (INIS)
Myers, Rupert J.; Lothenbach, Barbara; Bernal, Susan A.; Provis, John L.
2015-01-01
Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na 2 SiO 3 - and Na 2 CO 3 -activated slag cements. • Phase diagrams for NaOH-activated and Na 2 SiO 3 -activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO 2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na 2 SiO 3 -activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na 2 SiO 3 -activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na 2 CO 3 -activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags
A Thermodynamic Mixed-Solid Asphaltene Precipitation Model
DEFF Research Database (Denmark)
Lindeloff, Niels; Heidemann, R.A.; Andersen, Simon Ivar
1998-01-01
A simple model for the prediction of asphaltene precipitation is proposed. The model is based on an equation of state and uses standard thermodynamics, thus assuming that the precipitation phenomenon is a reversible process. The solid phase is treated as an ideal multicomponent mixture. An activity...
Thermodynamic modelling of shape memory behaviour: some examples
International Nuclear Information System (INIS)
Stalmans, R.; Humbeeck, J. van; Delaey, L.
1995-01-01
This paper gives a general view of a recently developed thermodynamic model of the thermoelastic martensitic transformation. Unlike existing empirical, mathematical or thermodynamic models, this generalised thermodynamic model can be used to understand and describe quantitatively the overall thermomechanical behaviour of polycrystalline shape memory alloys. Important points of difference between this and previous thermodynamic models are that the contributions of the stored elastic energy and of the crystal defects are also included. In addition, the mathematical approach and the assumptions in this model are selected in such a way that the calculations yield close approximations of the real behaviour and that the final mathematical equations are relatively simple. Several illustrations indicate that this model, in contrast to other models, can be used to understand the shape memory behaviour of complex cases. As an example of quantitative calculations, it is shown that this modelling can be an effective tool in the ''design'' of multifunctional materials consisting of shape memory elements embedded in matrix materials. (orig.)
Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast
Directory of Open Access Journals (Sweden)
Luis L. Fonseca
2012-02-01
Full Text Available Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its integrative multi-level-multi-scale nature, heat adaptation constitutes a complex dynamic process, which has forced most experimental and modeling analyses in the past to focus on just one or a few of its aspects. Here we review the basic components of the heat stress response in yeast and outline what has been done, and what needs to be done, to merge the available information into computational structures that permit comprehensive diagnostics, interrogation, and interpretation. We illustrate the process in particular with the coordination of two metabolic responses, namely the dramatic accumulation of the protective disaccharide trehalose and the substantial change in the profile of sphingolipids, which in turn affect gene expression. The proposed methods primarily use differential equations in the canonical modeling framework of Biochemical Systems Theory (BST, which permits the relatively easy construction of coarse, initial models even in systems that are incompletely characterized.
Thermodynamic modeling of the Sr-Co-Fe-O system
DEFF Research Database (Denmark)
Zhang, Wei Wei; Povoden-Karadeniz, Erwin; Chen, Ming
2016-01-01
This paper reviews and assesses phase equilibria and thermodynamic properties of phases in the Sr-Co-Fe-O system, with a focus on oxides, especially the SrCo1 - xFexO3 - δ perovskite. In our work, the SrCo1 - xFexO3 - δ perovskite was modeled with a three-sublattice model, where the three...... sublattices correspond to the A, B and oxygen sites in an ABO3 perovskite, respectively. A number of other important ternary oxide phases in Sr-Co-O and Sr-Co-Fe-O were also considered. Available thermodynamic and phase diagram data were carefully assessed. A thermodynamic description of Sr-Co-O was derived...
Whose Canon? Culturalization versus Democratization
Directory of Open Access Journals (Sweden)
Erling Bjurström
2012-06-01
Full Text Available Current accounts – and particularly the critique – of canon formation are primarily based on some form of identity politics. In the 20th century a representational model of social identities replaced cultivation as the primary means to democratize the canons of the fine arts. In a parallel development, the discourse on canons has shifted its focus from processes of inclusion to those of exclusion. This shift corresponds, on the one hand, to the construction of so-called alternative canons or counter-canons, and, on the other hand, to attempts to restore the authority of canons considered to be in a state of crisis or decaying. Regardless of the democratic stance of these efforts, the construction of alternatives or the reestablishment of decaying canons does not seem to achieve their aims, since they break with the explicit and implicit rules of canon formation. Politically motivated attempts to revise or restore a specific canon make the workings of canon formation too visible, transparent and calculated, thereby breaking the spell of its imaginary character. Retracing the history of the canonization of the fine arts reveals that it was originally tied to the disembedding of artists and artworks from social and worldly affairs, whereas debates about canons of the fine arts since the end of the 20th century are heavily dependent on their social, cultural and historical reembedding. The latter has the character of disenchantment, but has also fettered the canon debate in notions of “our” versus “their” culture. However, by emphasizing the dedifferentiation of contemporary processes of culturalization, the advancing canonization of popular culture seems to be able to break with identity politics that foster notions of “our” culture in the present thinking on canons, and push it in a more transgressive, syncretic or hybrid direction.
Thermodynamic modeling of the Sr-Co-Fe-O system
DEFF Research Database (Denmark)
Zhang, Wei Wei; Povoden-Karadeniz, Erwin; Chen, Ming
2016-01-01
This paper reviews and assesses phase equilibria and thermodynamic properties of phases in the Sr-Co-Fe-O system, with a focus on oxides, especially the SrCo1 - xFexO3 - δ perovskite. In our work, the SrCo1 - xFexO3 - δ perovskite was modeled with a three-sublattice model, where the three...... sublattices correspond to the A, B and oxygen sites in an ABO3 perovskite, respectively. A number of other important ternary oxide phases in Sr-Co-O and Sr-Co-Fe-O were also considered. Available thermodynamic and phase diagram data were carefully assessed. A thermodynamic description of Sr-Co-O was derived...... using the CALPHAD approach and was further extrapolated to that of Sr-Co-Fe-O. The thermodynamic database of Sr-Co-Fe-O established in this work allows for calculating phase diagrams, thermodynamic properties, cation distribution and defect chemistry properties, and therefore enables material...
A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models
Lau, William K. M.; Wu, H. T.; Kim, K. M.
2012-01-01
Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.
THERMODYNAMIC MODELING AND FIRST-PRINCIPLES CALCULATIONS
Energy Technology Data Exchange (ETDEWEB)
Turchi, P; Abrikosov, I; Burton, B; Fries, S; Grimvall, G; Kaufman, L; Korzhavyi, P; Manga, R; Ohno, M; Pisch, A; Scott, A; Zhang, W
2005-12-15
The increased application of quantum mechanical-based methodologies to the study of alloy stability has required a re-assessment of the field. The focus is mainly on inorganic materials in the solid state. In a first part, after a brief overview of the so-called ab initio methods with their approximations, constraints, and limitations, recommendations are made for a good usage of first-principles codes with a set of qualifiers. Examples are given to illustrate the power and the limitations of ab initio codes. However, despite the ''success'' of these methodologies, thermodynamics of complex multi-component alloys, as used in engineering applications, requires a more versatile approach presently afforded within CALPHAD. Hence, in a second part, the links that presently exist between ab initio methodologies, experiments, and CALPHAD approach are examined with illustrations. Finally, the issues of dynamical instability and of the role of lattice vibrations that still constitute the subject of ample discussions within the CALPHAD community are revisited in the light of the current knowledge with a set of recommendations.
Thermodynamics-based models of transcriptional regulation with gene sequence.
Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing
2015-12-01
Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.
Modelling grain growth in the framework of Rational Extended Thermodynamics
International Nuclear Information System (INIS)
Kertsch, Lukas; Helm, Dirk
2016-01-01
Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena. (paper)
Modelling grain growth in the framework of Rational Extended Thermodynamics
Kertsch, Lukas; Helm, Dirk
2016-05-01
Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena.
Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert
2011-08-25
Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Directory of Open Access Journals (Sweden)
Sorribas Albert
2011-08-01
Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Thermodynamic model of natural, medieval and nuclear waste glass durability
International Nuclear Information System (INIS)
Jantzen, C.M.; Plodinec, M.J.
1983-01-01
A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt from the Hanford Reservation (10 6 years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table
Kinetic modelling and thermodynamic studies on purification of ...
African Journals Online (AJOL)
Adsorbent capacities have been determined by mathematical fitting of equilibrium data using the most common isotherms: Freundlich isotherm and Langmuir isotherm. Several kinetic models have been applied to the process. Thermodynamic parameters: △So, △Ho, △Go and Ea (kJ/mol) have been determined.
THERMODYNAMIC MODEL AND VISCOSITY OF SELECTED ZIRCONIA CONTAINING SILICATE GLASSES
Directory of Open Access Journals (Sweden)
MÁRIA CHROMČÍKOVÁ
2013-03-01
Full Text Available The compositional dependence of viscosity, and viscous flow activation energy of glasses with composition xNa2O∙(15-x K2O∙yCaO∙(10-yZnO∙zZrO2∙(75-zSiO2 (x = 0, 7.5, 15; y = 0, 5, 10; z = 0, 1, 3, 5, 7 was analyzed. The studied glasses were described by the thermodynamic model of Shakhmatkin and Vedishcheva considering the glass as an equilibrium ideal solution of species with stoichiometry given by the composition of stable crystalline phases of respective glass forming system. Viscosity-composition relationships were described by the regression approach considering the viscous flow activation energy and the particular isokome temperature as multilinear function of equilibrium molar amounts of system components. The classical approach where the mole fractions of individual oxides are considered as independent variables was compared with the thermodynamic model. On the basis of statistical analysis there was proved that the thermodynamic model is able to describe the composition property relationships with higher reliability. Moreover, due its better physical justification, thermodynamic model can be even used for predictive purposes.
International Nuclear Information System (INIS)
Sugano, R.; Kimura, T.
1985-01-01
As a model of gauge theory, it is investigated a system of point particles described by a singular Lagrangian from the standpoint of our formulation of constrained dynamical systems which was developed in the series of previous papers. Canonical quantization is carried out by two methods in order to clarify the role of the secondary constraints and their conjugate gauge constraints. The first method is to find a full set of the stationary external constraints and use the Dirac bracket. The other is to fix the gauges and remove unphysical states by imposing subsidiary condition on the state vectors. It is shown that unphysical components associated with a series of primary and secondary constraints are removed by a single subsidiary condition for each gauge degree. There appear an unphysical state with negative norm and a physical state with zero norm. It implies that the appearance of states with indefinite metrics is not due to the metric structure of space-time but is ascribed to gauge properties
DIAGNOSIS OF BANKRUPTCY RISK IN THE FURNITURE INDUSTRY USING THE CANON-HOLDER AND ALTMAN MODELS
Directory of Open Access Journals (Sweden)
Radu MĂRGINEAN
2015-06-01
Full Text Available The financial and economic crisis that started in 2008 caused negative effects felt by the entire European economy, affecting more or less all of the world's economies. This paper aims to study the diagnosis of bankruptcy risk using the Canon-Holder and Altman methods, from a theoretical point of view and with practical examples on a company in the furniture industry in Romania. In a context of economic uncertainty, the relevance of such an analysis designed to quantify the risk of bankruptcy for companies is the default. The financial data used is real and descriptively analyzed, we analyzed a period of eight years, between 2006-2013. As a method of analysis complementary to the financial analysis of the background of companies, the diagnosis of bankruptcy risk using the score method, using the specific models known in the specialty literature, brings relevant information concerning the problem of risk assessment. We concluded in the case study the opportunity of such an analysis for the furniture industry through the results obtained in the case studies, the method is a useful tool, especially for the practitioners in the sector.
WATEQ3 geochemical model: thermodynamic data for several additional solids
International Nuclear Information System (INIS)
Krupka, K.M.; Jenne, E.A.
1982-09-01
Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ΔG 0 /sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs
Development of a Stirling System Dynamic Model with Enhanced Thermodynamics
Regan, Timothy F.; Lewandowski, Edward J.
2005-02-01
The Stirling Convertor System Dynamic Model developed at NASA Glenn Research Center is a software model developed from first principles that includes the mechanical and mounting dynamics, the thermodynamics, the linear alternator, and the controller of a free-piston Stirling power convertor, along with the end user load. As such it represents the first detailed modeling tool for fully integrated Stirling convertor-based power systems. The thermodynamics of the model were originally a form of the isothermal Stirling cycle. In some situations it may be desirable to improve the accuracy of the Stirling cycle portion of the model. An option under consideration is to enhance the SDM thermodynamics by coupling the model with Gedeon Associates' Sage simulation code. The result will be a model that gives a more accurate prediction of the performance and dynamics of the free-piston Stirling convertor. A method of integrating the Sage simulation code with the System Dynamic Model is described. Results of SDM and Sage simulation are compared to test data. Model parameter estimation and model validation are discussed.
Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling
Directory of Open Access Journals (Sweden)
A. S. Almeida
2008-06-01
Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.
Polynyas in a dynamic-thermodynamic sea-ice model
Directory of Open Access Journals (Sweden)
E. Ö. Ólason
2010-04-01
Full Text Available The representation of polynyas in viscous-plastic dynamic-thermodynamic sea-ice models is studied in a simplified test domain, in order to give recommendations about parametrisation choices. Bjornsson et al. (2001 validated their dynamic-thermodynamic model against a polynya flux model in a similar setup and we expand on that work here, testing more sea-ice rheologies and new-ice thickness formulations. The two additional rheologies tested give nearly identical results whereas the two new-ice thickness parametrisations tested give widely different results. Based on our results we argue for using the new-ice thickness parametrisation of Hibler (1979. We also implement a new parametrisation for the parameter h^{0} from Hibler's scheme, based on ideas from a collection depth parametrisation for flux polynya models.
Thermodynamic modeling of direct injection methanol fueled engines
International Nuclear Information System (INIS)
Shen Yuan; Bedford, Joshua; Wichman, Indrek S.
2009-01-01
In-cylinder pressure is an important parameter that is used to investigate the combustion process in internal combustion (IC) engines. In this paper, a thermodynamic model of IC engine combustion is presented and examined. A heat release function and an empirical conversion efficiency factor are introduced to solve the model. The pressure traces obtained by solving the thermodynamic model are compared with measured pressure data for a fully instrumented laboratory IC spark ignition (SI) engine. Derived scaling parameters for time to peak pressure, peak pressure, and maximum rate of pressure rise (among others) are developed and compared with the numerical simulations. The models examined here may serve as pedagogic tools and, when suitably refined, as preliminary design tools.
Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements
Nandy, L.; Dutcher, C. S.
2017-12-01
Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.
Twenty lectures on thermodynamics
Buchdahl, H A
2013-01-01
Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text
Integrated thermodynamic model for ignition target performance
Directory of Open Access Journals (Sweden)
Springer P.T.
2013-11-01
Full Text Available We have derived a 3-dimensional synthetic model for NIF implosion conditions, by predicting and optimizing fits to a broad set of x-ray and nuclear diagnostics obtained on each shot. By matching x-ray images, burn width, neutron time-of-flight ion temperature, yield, and fuel ρr, we obtain nearly unique constraints on conditions in the hotspot and fuel in a model that is entirely consistent with the observables. This model allows us to determine hotspot density, pressure, areal density (ρr, total energy, and other ignition-relevant parameters not available from any single diagnostic. This article describes the model and its application to National Ignition Facility (NIF tritium–hydrogen–deuterium (THD and DT implosion data, and provides an explanation for the large yield and ρr degradation compared to numerical code predictions.
Kinetic and thermodynamic modelling of TBP synthesis processes
International Nuclear Information System (INIS)
Azzouz, A.; Attou, M.
1989-02-01
The present paper deals with kinetic and thermodynamic modellisation of tributylphosphate (TBP) synthesis processes. Its aim consists in a purely comparative study of two different synthesis ways i.e. direct and indirect estirification of butanol. The methodology involves two steps. The first step consists in approximating curves which describe the process evolution and their dependence on the main parameters. The results gave a kinetic model of the process rate yielding in TBP. Further, on the basis of thermodynamic data concerning the various involved compounds a theoretical model was achieved. The calculations were carried out in Basic language and an interpolation mathematical method was applied to approximate the kinetic curves. The thermodynamic calculations were achieved on the basis of GIBBS' free energy using a VAX type computer and a VT240 terminal. The calculations accuracy was reasonable and within the norms. For each process, the confrontation of both models leads to an appreciable accord. In the two processes, the thermodynamic models were similar although the kinetic equations present different reaction orders. Hence the reaction orders were determined by a mathematical method which conists in searching the minimal difference between an empiric relation and a kinetic model with fixed order. This corresponds in fact in testing the model proposed at various reaction order around the suspected value. The main idea which results from such a work is that this kind of processes is well fitting with the model without taking into account the side chain reactions. The process behaviour is like that of a single reaction having a quasi linear dependence of the rate yielding and the reaction time for both processes
DEFF Research Database (Denmark)
Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj
2015-01-01
Aqueous MDEA is the most commonly used solvent for H2S removal from natural gas. A reliable thermodynamic model is required for the proper design of natural gas sweetening processes. In this study, a rigorous thermodynamic model is developed to represent properties of the H2S-MDEA-H2O ternary...
High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME
Otis, Richard A.; Liu, Zi-Kui
2017-05-01
One foundational component of the integrated computational materials engineering (ICME) and Materials Genome Initiative is the computational thermodynamics based on the calculation of phase diagrams (CALPHAD) method. The CALPHAD method pioneered by Kaufman has enabled the development of thermodynamic, atomic mobility, and molar volume databases of individual phases in the full space of temperature, composition, and sometimes pressure for technologically important multicomponent engineering materials, along with sophisticated computational tools for using the databases. In this article, our recent efforts will be presented in terms of developing new computational tools for high-throughput modeling and uncertainty quantification based on high-throughput, first-principles calculations and the CALPHAD method along with their potential propagations to downstream ICME modeling and simulations.
Thermodynamics of a model solid with magnetoelastic coupling
Szałowski, K.; Balcerzak, T.; Jaščur, M.
2018-01-01
In the paper a study of a model magnetoelastic solid system is presented. The system of interest is a mean-field magnet with nearest-neighbour ferromagnetic interactions and the underlying s.c. crystalline lattice with the long-range Morse interatomic potential and the anharmonic Debye model for the lattice vibrations. The influence of the external magnetic field on the thermodynamics is investigated, with special emphasis put on the consequences of the magnetoelastic coupling, introduced by the power-law distance dependence of the magnetic exchange integral. Within the fully self-consistent, Gibbs energy-based formalism such thermodynamic quantities as the entropy, the specific heat as well as the lattice and magnetic response functions are calculated and discussed. To complete the picture, the magnetocaloric effect is characterized by analysis of the isothermal entropy change and the adiabatic temperature change in the presence of the external pressure.
A thermodynamically and microscopically motivated constitutive model for piezoceramics
International Nuclear Information System (INIS)
Kamlah, M.; Wang, Z.
2003-07-01
This progress report presents a thermodynamically and microscopically motivated constitutive model for piezoceramics within the framework of a research project supported by the Deutsche Forschungsgemeinschaft. This project is aimed at developing a finite element tool for the analysis of piezoceramic components taking into account the full range of large signal electromechanical hysteresis effects exhibited by these materials. Such a tool is necessary for the stress analysis being the basis for a reliability assessment of piezoceramic devices subject to domain switching processes. In a first step, the hysteresis phenomena of piezoceramics and their microscopic origin were discussed, and the phenomena to be described were selected. Concerning the balance laws, the simplest form consisting of balance of momentum and Gauss' Law was derived by physically motivated assumptions step by step from nonlinear thermomechanics and Maxwell's Equations. Revision of the current literature revealed that a commonly accepted thermodynamic framework for phenomenological modeling has been established in the international scientific discussion. (orig.)
A thermodynamic model of contact angle hysteresis.
Makkonen, Lasse
2017-08-14
When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.
A Systematic Identification Method for Thermodynamic Property Modelling
DEFF Research Database (Denmark)
Ana Perederic, Olivia; Cunico, Larissa; Sarup, Bent
2017-01-01
In this work, a systematic identification method for thermodynamic property modelling is proposed. The aim of the method is to improve the quality of phase equilibria prediction by group contribution based property prediction models. The method is applied to lipid systems where the Original UNIFAC...... model is used. Using the proposed method for estimating the interaction parameters using only VLE data, a better phase equilibria prediction for both VLE and SLE was obtained. The results were validated and compared with the original model performance...
Modeling the basic superconductor thermodynamical-statistical characteristics
International Nuclear Information System (INIS)
Palenskis, V.; Maknys, K.
1999-01-01
In accordance with the Landau second-order phase transition and other thermodynamical-statistical relations for superconductors, and using the energy gap as an order parameter in the electron free energy presentation, the fundamental characteristics of electrons, such as the free energy, the total energy, the energy gap, the entropy, and the heat capacity dependences on temperature were obtained. The obtained modeling results, in principle, well reflect the basic low- and high-temperature superconductor characteristics
Bhattacharyya, Dhananjay; Halder, Sukanya; Basu, Sankar; Mukherjee, Debasish; Kumar, Prasun; Bansal, Manju
2017-02-01
Comprehensive analyses of structural features of non-canonical base pairs within a nucleic acid double helix are limited by the availability of a small number of three dimensional structures. Therefore, a procedure for model building of double helices containing any given nucleotide sequence and base pairing information, either canonical or non-canonical, is seriously needed. Here we describe a program RNAHelix, which is an updated version of our widely used software, NUCGEN. The program can regenerate duplexes using the dinucleotide step and base pair orientation parameters for a given double helical DNA or RNA sequence with defined Watson-Crick or non-Watson-Crick base pairs. The original structure and the corresponding regenerated structure of double helices were found to be very close, as indicated by the small RMSD values between positions of the corresponding atoms. Structures of several usual and unusual double helices have been regenerated and compared with their original structures in terms of base pair RMSD, torsion angles and electrostatic potentials and very high agreements have been noted. RNAHelix can also be used to generate a structure with a sequence completely different from an experimentally determined one or to introduce single to multiple mutation, but with the same set of parameters and hence can also be an important tool in homology modeling and study of mutation induced structural changes.
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
Thermodynamic modeling of the stacking fault energy of austenitic steels
International Nuclear Information System (INIS)
Curtze, S.; Kuokkala, V.-T.; Oikari, A.; Talonen, J.; Haenninen, H.
2011-01-01
The stacking fault energies (SFE) of 10 austenitic steels were determined in the temperature range 50 ≤ T ≤ 600 K by thermodynamic modeling of the Fe-Cr-Ni-Mn-Al-Si-Cu-C-N system using a modified Olson and Cohen modeling approach (Olson GB, Cohen M. Metall Trans 1976;7A:1897 ). The applied model accounts for each element's contribution to the Gibbs energy, the first-order excess free energies, magnetic contributions and the effect of interstitial nitrogen. Experimental SFE values from X-ray diffraction measurements were used for comparison. The effect of SFE on deformation mechanisms was also studied by electron backscatter diffraction.
Canonical quantization of some midi-superspace models in 3+1 dimensions
International Nuclear Information System (INIS)
Christodoulakis, T; Doulis, G; Terzis, Petros A; Melas, E; Grammenos, Th; Papadopoulos, G O; Spanou, A
2010-01-01
A proposal is put forward which enables the canonical quantization of a family of spherically symmetric geometries in 3+1 dimensions. The proposal consists of a particular renormalization Assumption and an accompanying Requirement and results in a Wheeler- DeWitt equation which is based on a renormalized manifold parametrized by three smooth scalar functionals. The aforementioned equation is analytically solved for the 3+1 case.
Thermodynamic modelling of fast dopant diffusion in Si
Saltas, V.; Chroneos, A.; Vallianatos, F.
2018-04-01
In the present study, nickel and copper fast diffusion in silicon is investigated in the framework of the cBΩ thermodynamic model, which connects point defect parameters with the bulk elastic and expansion properties. All the calculated point defect thermodynamic properties (activation Gibbs free energy, activation enthalpy, activation entropy, and activation volume) exhibit temperature dependence due to the non-linear anharmonic behavior of the isothermal bulk modulus of Si. Calculated activation enthalpies (0.15-0.16 eV for Ni and 0.17-0.19 eV for Cu) are in agreement with the reported experimental results. Small values of calculated activation volumes for both dopants (˜4% of the mean atomic volume) are consistent with the interstitial diffusion of Ni and Cu in Si.
Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition
Czech Academy of Sciences Publication Activity Database
Benešová, Barbora; Kružík, Martin; Roubíček, Tomáš
2013-01-01
Roč. 64, Č. 1 (2013), s. 1-28 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GA106/09/1573; GA ČR GAP201/10/0357 Grant - others:GA ČR(CZ) GA106/08/1397; GA MŠk(CZ) LC06052 Program:GA; LC Institutional support: RVO:67985556 Keywords : ferro-para-magnetism * evolution * thermodynamics Subject RIV: BA - General Mathematics; BA - General Mathematics (UT-L) Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-thermodynamically consistent mesoscopic model of the ferro-paramagnetic transition.pdf
Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P
2010-06-07
The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Konakli, Katerina, E-mail: konakli@ibk.baug.ethz.ch; Sudret, Bruno
2016-09-15
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
International Nuclear Information System (INIS)
Konakli, Katerina; Sudret, Bruno
2016-01-01
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes.
Minelli, Matteo; Sarti, Giulio Cesare
2017-08-19
Solubility and permeability of gases in glassy polymers have been considered with the aim of illustrating the applicability of thermodynamically-based models for their description and prediction. The solubility isotherms are described by using the nonequilibrium lattice fluid (NELF) (model, already known to be appropriate for nonequilibrium glassy polymers, while the permeability isotherms are described through a general transport model in which diffusivity is the product of a purely kinetic factor, the mobility coefficient, and a thermodynamic factor. The latter is calculated from the NELF model and mobility is considered concentration-dependent through an exponential relationship containing two parameters only. The models are tested explicitly considering solubility and permeability data of various penetrants in three glassy polymers, PSf, PPh and 6FDA-6FpDA, selected as the reference for different behaviors. It is shown that the models are able to calculate the different behaviors observed, and in particular the permeability dependence on upstream pressure, both when it is decreasing as well as when it is increasing, with no need to invoke the onset of additional plasticization phenomena. The correlations found between polymer and penetrant properties with the two parameters of the mobility coefficient also lead to the predictive ability of the transport model.
A Zeroth Law Compatible Model to Kerr Black Hole Thermodynamics
Directory of Open Access Journals (Sweden)
Viktor G. Czinner
2017-02-01
Full Text Available We consider the thermodynamic and stability problem of Kerr black holes arising from the nonextensive/nonadditive nature of the Bekenstein–Hawking entropy formula. Nonadditive thermodynamics is often criticized by asserting that the zeroth law cannot be compatible with nonadditive composition rules, so in this work we follow the so-called formal logarithm method to derive an additive entropy function for Kerr black holes also satisfying the zeroth law’s requirement. Starting from the most general, equilibrium compatible, nonadditive entropy composition rule of Abe, we consider the simplest non-parametric approach that is generated by the explicit nonadditive form of the Bekenstein–Hawking formula. This analysis extends our previous results on the Schwarzschild case, and shows that the zeroth law-compatible temperature function in the model is independent of the mass–energy parameter of the black hole. By applying the Poincaré turning point method, we also study the thermodynamic stability problem in the system.
Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun
2016-07-01
In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.
Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando
2015-10-21
The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.
Nonequilibrium thermodynamic models and applications to hydrogen plasma
International Nuclear Information System (INIS)
Cho, K.Y.
1988-01-01
A generalized multithermal equilibrium (GMTE) thermodynamic model is developed and presented with applications to hydrogen. A new chemical equilibrium equation for GMTE is obtained without the ensemble temperature concept, used by a previous MTE model. The effects of the GMTE model on the derivation and calculation of the thermodynamic, transport, and radiative properties are presented and significant differences from local thermal equilibrium (LTE) and two temperature model are discussed. When the electron translational temperature (T e ) is higher than the translational temperature of the heavy particles, the effects of hydrogen molecular species to the properties are significant at high T e compared with LTE results. The density variations of minor species are orders of magnitude with kinetic nonequilibrium at a constant electron temperature. A collisional-radiative model is also developed with the GMTE chemical equilibrium equation to study the effects of radiative transfer and the ambipolar diffusion on the population distribution of the excited atoms. The nonlocal radiative transfer effect is parameterized by an absorption factor, which is defined as a ratio of the absorbed intensity to the spontaneous emission coefficient
Thermodynamical aspects of modeling the mechanical response of granular materials
International Nuclear Information System (INIS)
Elata, D.
1995-01-01
In many applications in rock physics, the material is treated as a continuum. By supplementing the related conservation laws with constitutive equations such as stress-strain relations, a well-posed problem can be formulated and solved. The stress-strain relations may be based on a combination of experimental data and a phenomenological or micromechanical model. If the model is physically sound and its parameters have a physical meaning, it can serve to predict the stress response of the material to unmeasured deformations, predict the stress response of other materials, and perhaps predict other categories of the mechanical response such as failure, permeability, and conductivity. However, it is essential that the model be consistent with all conservation laws and consistent with the second law of thermodynamics. Specifically, some models of the mechanical response of granular materials proposed in literature, are based on intergranular contact force-displacement laws that violate the second law of thermodynamics by permitting energy generation at no cost. This diminishes the usefulness of these models as it invalidates their predictive capabilities. [This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.
A thermodynamic model for growth mechanisms of multiwall carbon nanotubes.
Energy Technology Data Exchange (ETDEWEB)
Kaatz, Forrest H.; Overmyer, Donald L.; Siegal, Michael P.
2006-02-01
Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830 C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60 eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.
Thermodynamic model for growth mechanisms of multiwall carbon nanotubes
Kaatz, F. H.; Siegal, M. P.; Overmyer, D. L.; Provencio, P. P.; Tallant, D. R.
2006-12-01
Multiwall carbon nanotubes are grown via thermal chemical vapor deposition between temperatures of 630 and 830°C using acetylene in nitrogen as the carbon source. This process is modeled using classical thermodynamics to explain the total carbon deposition as a function of time and temperature. An activation energy of 1.60eV is inferred for nanotube growth after considering the carbon solubility term. Scanning electron microscopy shows growth with diameters increasing linearly with time. Transmission electron microscopy and Raman spectroscopy show multiwall nanotubes surrounded by a glassy-carbon sheath, which grows with increasing wall thickness as growth temperatures and times rise.
Thermodynamic model and parametric analysis of a tubular SOFC module
Campanari, Stefano
Solid oxide fuel cells (SOFCs) have been considered in the last years as one of the most promising technologies for very high-efficiency electric energy generation from natural gas, both with simple fuel cell plants and with integrated gas turbine-fuel cell systems. Among the SOFC technologies, tubular SOFC stacks with internal reforming have emerged as one of the most mature technology, with a serious potential for a future commercialization. In this paper, a thermodynamic model of a tubular SOFC stack, with natural gas feeding, internal reforming of hydrocarbons and internal air preheating is proposed. In the first section of the paper, the model is discussed in detail, analyzing its calculating equations and tracing its logical steps; the model is then calibrated on the available data for a recently demonstrated tubular SOFC prototype plant. In the second section of the paper, it is carried out a detailed parametric analysis of the stack working conditions, as a function of the main operating parameters. The discussion of the results of the thermodynamic and parametric analysis yields interesting considerations about partial load SOFC operation and load regulation, and about system design and integration with gas turbine cycles.
One-dimensional thermodynamical model for poling of ferroelectric ceramics
International Nuclear Information System (INIS)
Bassiouny, E.
1990-11-01
In this work, we use a model developed to deduce a one-dimensional model for the description of the poling of ferroelectric ceramics. This is built within the scheme of the thermodynamical theory of internal variables. The model produces both plastic and electric hysteresis effects in the form of ''plasticity'', i.e., rate-independent evolution equations for the plastic strain, and the residual electric polarization and both mechanical and electric hardenings. The influence of stresses on ferroelectric hysteresis loops through piezoelectricity and electrostriction is a natural outcome of this model. Some simple experimental methods for the determination of the material coefficients of the considered ceramics are suggested. (author). 21 refs, 3 figs
Thermodynamic Modeling of Natural Gas Systems Containing Water
DEFF Research Database (Denmark)
Karakatsani, Eirini K.; Kontogeorgis, Georgios M.
2013-01-01
As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...... with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...
A thermodynamic counterpart of the Axelrod model of social influence: The one-dimensional case
Gandica, Y.; Medina, E.; Bonalde, I.
2013-12-01
We propose a thermodynamic version of the Axelrod model of social influence. In one-dimensional (1D) lattices, the thermodynamic model becomes a coupled Potts model with a bonding interaction that increases with the site matching traits. We analytically calculate thermodynamic and critical properties for a 1D system and show that an order-disorder phase transition only occurs at T=0 independent of the number of cultural traits q and features F. The 1D thermodynamic Axelrod model belongs to the same universality class of the Ising and Potts models, notwithstanding the increase of the internal dimension of the local degree of freedom and the state-dependent bonding interaction. We suggest a unifying proposal to compare exponents across different discrete 1D models. The comparison with our Hamiltonian description reveals that in the thermodynamic limit the original out-of-equilibrium 1D Axelrod model with noise behaves like an ordinary thermodynamic 1D interacting particle system.
Thermodynamic study on some alkanediol solutions: Measurement and modeling
International Nuclear Information System (INIS)
Moosavi, Mehrdad; Motahari, Ahmad; Omrani, Abdollah; Rostami, Abbas Ali
2013-01-01
Highlights: • Measuring densities and viscosities for binary mixtures of some alkanediols. • Finding excess molar volume, partial molar volume and thermal expansion coefficient. • Fitting excess molar volume values with PFP and Redlich–Kister polynomial equations. • Deducing excess Gibbs free energy of activation and other thermodynamic parameters. • Predicting viscosity values with different single parameter semi empirical equations. - Abstract: The densities ρ and viscosities η of 1,2-ethanediol with 1,2-propanediol or 1,3-propanediol, and 1,2-propanediol with 1,3-propanediol binary liquid mixtures over the entire concentration range at temperatures (298.15 to 308.15) K with 5 K interval were measured. The experimental data were used to calculate the excess molar volume V m E , partial molar volume V ¯ m,i , partial molar volume at infinite dilution V ¯ i ∞ , apparent molar volume V φi , coefficient of thermal expansion α p , excess coefficient of thermal expansion α p E , excess viscosity η E , excess Gibbs energy of activation ΔG *E , and other thermodynamic parameters. A Redlich–Kister equation and Prigogine–Flory–Patterson (PFP) model was applied to correlate the excess molar volume results. Moreover, the viscosity data were correlated with the Grunberg–Nissan, Tamura–Kurata, Hind–Ubbelohde and Katti–Chaudhary equations. Good agreement was found between experimental data and modeling results
Thermodynamically consistent model of brittle oil shales under overpressure
Izvekov, Oleg
2016-04-01
The concept of dual porosity is a common way for simulation of oil shale production. In the frame of this concept the porous fractured media is considered as superposition of two permeable continua with mass exchange. As a rule the concept doesn't take into account such as the well-known phenomenon as slip along natural fractures, overpressure in low permeability matrix and so on. Overpressure can lead to development of secondary fractures in low permeability matrix in the process of drilling and pressure reduction during production. In this work a new thermodynamically consistent model which generalizes the model of dual porosity is proposed. Particularities of the model are as follows. The set of natural fractures is considered as permeable continuum. Damage mechanics is applied to simulation of secondary fractures development in low permeability matrix. Slip along natural fractures is simulated in the frame of plasticity theory with Drucker-Prager criterion.
On the thermodynamic properties of the generalized Gaussian core model
Directory of Open Access Journals (Sweden)
B.M.Mladek
2005-01-01
Full Text Available We present results of a systematic investigation of the properties of the generalized Gaussian core model of index n. The potential of this system interpolates via the index n between the potential of the Gaussian core model and the penetrable sphere system, thereby varying the steepness of the repulsion. We have used both conventional and self-consistent liquid state theories to calculate the structural and thermodynamic properties of the system; reference data are provided by computer simulations. The results indicate that the concept of self-consistency becomes indispensable to guarantee excellent agreement with simulation data; in particular, structural consistency (in our approach taken into account via the zero separation theorem is obviously a very important requirement. Simulation results for the dimensionless equation of state, β P / ρ, indicate that for an index-value of 4, a clustering transition, possibly into a structurally ordered phase might set in as the system is compressed.
Structure and thermodynamics of core-softened models for alcohols
International Nuclear Information System (INIS)
Munaò, Gianmarco; Urbic, Tomaz
2015-01-01
The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number of CH 2 groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function g ij (r) and static structure factor S ij (k); the latter shows the presence of a low−k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers
DISTRIBUTION OF PARASTATISTICS FUNCTIONS: AN OVERVIEW OF THERMODYNAMICS PROPERTIES
Directory of Open Access Journals (Sweden)
R. Yosi Aprian Sari
2016-05-01
Full Text Available This study aims to determine the thermodynamic properties of the parastatistics system of order two. The thermodynamic properties to be searched include the Grand Canonical Partition Function (GCPF Z, and the average number of particles N. These parastatistics systems is in a more general form compared to quantum statistical distribution that has been known previously, i.e.: the Fermi-Dirac (FD and Bose-Einstein (BE. Starting from the recursion relation of grand canonical partition function for parastatistics system of order two that has been known, recuresion linkages for some simple thermodynamic functions for parastatistics system of order two are derived. The recursion linkages are then used to calculate the thermodynamic functions of the model system of identical particles with limited energy levels which is similar to the harmonic oscillator. From these results we concluded that from the Grand Canonical Partition Function (GCPF, Z, the thermodynamics properties of parastatistics system of order two (paraboson and parafermion can be derived and have similar shape with parastatistics system of order one (Boson and Fermion. The similarity of the graph shows similar thermodynamic properties. Keywords: parastatistics, thermodynamic properties
DEFF Research Database (Denmark)
Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj
2015-01-01
A Thermodynamic model that can predict the behavior of the gas sweetening process over the applicable conditions is of vital importance in industry. In this work, Extended UNIQUAC model parameters optimized for the CO2-MDEA-H2O system are presented. Different types of experimental data consisting...... model accurately represents thermodynamic and thermal properties of the studied systems. The model parameters are valid in the temperature range from -15 to 200 °C, MDEA mass% of 5-75 and CO2 partial pressure of 0-6161.5 kPa....
Thermodynamics of bread baking: A two-state model
Zürcher, Ulrich
2014-03-01
Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.
International Nuclear Information System (INIS)
Garcia-Moliner, F.
1975-01-01
Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions
Thermodynamic modelling and in-situ neutron diffraction investigation of the (Ce + Mg + Zn) system
International Nuclear Information System (INIS)
Zhu, Zhijun; Gharghouri, Michael A.; Medraj, Mamoun; Lee, Soo Yeol; Pelton, Arthur D.
2016-01-01
Highlights: • All phase diagram and thermodynamic data critically assessed for the (Ce + Mg + Zn) system. • All phases described by optimized thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Ce + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Ce + Mg + Zn) system were carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental data were used to refine the thermodynamic model parameters.
Backlund transformations as canonical transformations
International Nuclear Information System (INIS)
Villani, A.; Zimerman, A.H.
1977-01-01
Toda and Wadati as well as Kodama and Wadati have shown that the Backlund transformations, for the exponential lattice equation, sine-Gordon equation, K-dV (Korteweg de Vries) equation and modifies K-dV equation, are canonical transformation. It is shown that the Backlund transformation for the Boussinesq equation, for a generalized K-dV equation, for a model equation for shallow water waves and for the nonlinear Schroedinger equation are also canonical transformations [pt
Thermodynamic study on some alkanediol solutions: Measurement and modeling
Energy Technology Data Exchange (ETDEWEB)
Moosavi, Mehrdad; Motahari, Ahmad; Omrani, Abdollah, E-mail: omrani@umz.ac.ir; Rostami, Abbas Ali
2013-06-10
Highlights: • Measuring densities and viscosities for binary mixtures of some alkanediols. • Finding excess molar volume, partial molar volume and thermal expansion coefficient. • Fitting excess molar volume values with PFP and Redlich–Kister polynomial equations. • Deducing excess Gibbs free energy of activation and other thermodynamic parameters. • Predicting viscosity values with different single parameter semi empirical equations. - Abstract: The densities ρ and viscosities η of 1,2-ethanediol with 1,2-propanediol or 1,3-propanediol, and 1,2-propanediol with 1,3-propanediol binary liquid mixtures over the entire concentration range at temperatures (298.15 to 308.15) K with 5 K interval were measured. The experimental data were used to calculate the excess molar volume V{sub m}{sup E}, partial molar volume V{sup ¯}{sub m,i}, partial molar volume at infinite dilution V{sup ¯}{sub i}{sup ∞}, apparent molar volume V{sub φi}, coefficient of thermal expansion α{sub p}, excess coefficient of thermal expansion α{sub p}{sup E}, excess viscosity η{sup E}, excess Gibbs energy of activation ΔG{sup *E}, and other thermodynamic parameters. A Redlich–Kister equation and Prigogine–Flory–Patterson (PFP) model was applied to correlate the excess molar volume results. Moreover, the viscosity data were correlated with the Grunberg–Nissan, Tamura–Kurata, Hind–Ubbelohde and Katti–Chaudhary equations. Good agreement was found between experimental data and modeling results.
Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited.
Khoshnood, Atefeh; Lukanov, Boris; Firoozabadi, Abbas
2016-03-08
Temperature affects the aggregation of macromolecules such as surfactants, polymers, and proteins in aqueous solutions. The effect on the critical micelle concentration (CMC) is often nonmonotonic. In this work, the effect of temperature on the micellization of ionic and nonionic surfactants in aqueous solutions is studied using a molecular thermodynamic model. Previous studies based on this technique have predicted monotonic behavior for ionic surfactants. Our investigation shows that the choice of tail transfer energy to describe the hydrophobic effect between the surfactant tails and the polar solvent molecules plays a key role in the predicted CMC. We modify the tail transfer energy by taking into account the effect of the surfactant head on the neighboring methylene group. The modification improves the description of the CMC and the predicted micellar size for aqueous solutions of sodium n-alkyl sulfate, dodecyl trimethylammonium bromide (DTAB), and n-alkyl polyoxyethylene. The new tail transfer energy describes the nonmonotonic behavior of CMC versus temperature. In the DTAB-water system, we redefine the head size by including the methylene group, next to the nitrogen, in the head. The change in the head size along with our modified tail transfer energy improves the CMC and aggregation size prediction significantly. Tail transfer is a dominant energy contribution in micellar and microemulsion systems. It also promotes the adsorption of surfactants at fluid-fluid interfaces and affects the formation of adsorbed layer at fluid-solid interfaces. Our proposed modifications have direct applications in the thermodynamic modeling of the effect of temperature on molecular aggregation, both in the bulk and at the interfaces.
A parametric model for the global thermodynamic behavior of fluids in the critical region
International Nuclear Information System (INIS)
Luettmer-Strathmann, J.; Tang, S.; Sengers, J.V.
1992-01-01
The asymptotic thermodynamic behavior of fluids near the critical point is described by scaling laws with universal scaling functions that can be represented by parametric equations. In this paper, we derive a more general parametric model that incorporates the crossover from singular thermodynamic behavior near the critical point to regular classical thermodynamic behavior far away from the critical point. Using ethane as an example, we show that such a parametric crossover model yields an accurate representation of the thermodynamic properties of fluids in a large region around the critical point
Thermodynamic modeling of the Pt-Zr system
International Nuclear Information System (INIS)
Gao Yongliang; Guo Cuiping; Li Changrong; Du Zhenmin
2010-01-01
By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt-Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetallic compounds Pt 4 Zr, Pt 4 Zr 3 , αPtZr and Pt 3 Zr 5 are treated as the formula (Pt,Zr) m (Pt,Zr) n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr) 0.5 (Pt,Zr) 0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order-disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr) 0.75 (Pt,Zr) 0.25 with Ni 3 Ti-type structure (D0 24 ) is applied to describe the compound Pt 3 Zr in order to cope with the order-disorder transition between hexagonal close-packed (A3) and Pt 3 Zr (D0 24 ). The compound Pt 10 Zr 7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt-Zr system was obtained. (orig.)
Modeling and experimental verification of the thermodynamic properties of hydrogen storage materials
Ledovskikh, A.V.; Danilov, D.L.; Vliex, M.F.H.; Notten, P.H.L.
2016-01-01
A new mathematical model has been developed describing the thermodynamics of the hydrogen absorption and desorption process in Metal Hydrides via the gas phase. This model is based on first principles chemical and statistical thermodynamics and takes into account structural changes occurring inside
Statistical thermodynamics and mean-field theory for the alloy under irradiation model
International Nuclear Information System (INIS)
Kamyshendo, V.
1993-01-01
A generalization of statistical thermodynamics to the open systems case, is discussed, using as an example the alloy-under-irradiation model. The statistical properties of stationary states are described with the use of generalized thermodynamic potentials and 'quasi-interactions' determined from the master equation for micro-configuration probabilities. Methods for resolving this equation are illustrated by the mean-field type calculations of correlators, thermodynamic potentials and phase diagrams for disordered alloys
Thermodynamic modeling of iodine and selenium retention in solutions with high salinity
International Nuclear Information System (INIS)
Hagemann, Sven; Moog, Helge C.; Herbert, Horst-Juergen; Erich, Agathe
2012-04-01
The report on iodine and selenium retention in saline solutions includes the following chapters: (1) Introduction and scope of the work. (2) Actual status of knowledge. (3) Experimental and numerical models. (4) Thermodynamic properties of selenite and hydrogen selenite in solutions of oceanic salts. (5) Thermodynamic properties of selenate in solutions of oceanic salts. (6) Thermodynamic properties of iodide in solutions of oceanic salts. (7) Experimental studies on the retention of iodine and selenium in selected sorbents. (8) Summary and conclusions.
Critical, statistical, and thermodynamical properties of lattice models
Energy Technology Data Exchange (ETDEWEB)
Varma, Vipin Kerala
2013-10-15
In this thesis we investigate zero temperature and low temperature properties - critical, statistical and thermodynamical - of lattice models in the contexts of bosonic cold atom systems, magnetic materials, and non-interacting particles on various lattice geometries. We study quantum phase transitions in the Bose-Hubbard model with higher body interactions, as relevant for optical lattice experiments of strongly interacting bosons, in one and two dimensions; the universality of the Mott insulator to superfluid transition is found to remain unchanged for even large three body interaction strengths. A systematic renormalization procedure is formulated to fully re-sum these higher (three and four) body interactions into the two body terms. In the strongly repulsive limit, we analyse the zero and low temperature physics of interacting hard-core bosons on the kagome lattice at various fillings. Evidence for a disordered phase in the Ising limit of the model is presented; in the strong coupling limit, the transition between the valence bond solid and the superfluid is argued to be first order at the tip of the solid lobe.
Critical, statistical, and thermodynamical properties of lattice models
International Nuclear Information System (INIS)
Varma, Vipin Kerala
2013-10-01
In this thesis we investigate zero temperature and low temperature properties - critical, statistical and thermodynamical - of lattice models in the contexts of bosonic cold atom systems, magnetic materials, and non-interacting particles on various lattice geometries. We study quantum phase transitions in the Bose-Hubbard model with higher body interactions, as relevant for optical lattice experiments of strongly interacting bosons, in one and two dimensions; the universality of the Mott insulator to superfluid transition is found to remain unchanged for even large three body interaction strengths. A systematic renormalization procedure is formulated to fully re-sum these higher (three and four) body interactions into the two body terms. In the strongly repulsive limit, we analyse the zero and low temperature physics of interacting hard-core bosons on the kagome lattice at various fillings. Evidence for a disordered phase in the Ising limit of the model is presented; in the strong coupling limit, the transition between the valence bond solid and the superfluid is argued to be first order at the tip of the solid lobe.
Global parameter estimation for thermodynamic models of transcriptional regulation.
Suleimenov, Yerzhan; Ay, Ahmet; Samee, Md Abul Hassan; Dresch, Jacqueline M; Sinha, Saurabh; Arnosti, David N
2013-07-15
Deciphering the mechanisms involved in gene regulation holds the key to understanding the control of central biological processes, including human disease, population variation, and the evolution of morphological innovations. New experimental techniques including whole genome sequencing and transcriptome analysis have enabled comprehensive modeling approaches to study gene regulation. In many cases, it is useful to be able to assign biological significance to the inferred model parameters, but such interpretation should take into account features that affect these parameters, including model construction and sensitivity, the type of fitness calculation, and the effectiveness of parameter estimation. This last point is often neglected, as estimation methods are often selected for historical reasons or for computational ease. Here, we compare the performance of two parameter estimation techniques broadly representative of local and global approaches, namely, a quasi-Newton/Nelder-Mead simplex (QN/NMS) method and a covariance matrix adaptation-evolutionary strategy (CMA-ES) method. The estimation methods were applied to a set of thermodynamic models of gene transcription applied to regulatory elements active in the Drosophila embryo. Measuring overall fit, the global CMA-ES method performed significantly better than the local QN/NMS method on high quality data sets, but this difference was negligible on lower quality data sets with increased noise or on data sets simplified by stringent thresholding. Our results suggest that the choice of parameter estimation technique for evaluation of gene expression models depends both on quality of data, the nature of the models [again, remains to be established] and the aims of the modeling effort. Copyright © 2013 Elsevier Inc. All rights reserved.
Bayesian Regression of Thermodynamic Models of Redox Active Materials
Energy Technology Data Exchange (ETDEWEB)
Johnston, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
Finding a suitable functional redox material is a critical challenge to achieving scalable, economically viable technologies for storing concentrated solar energy in the form of a defected oxide. Demonstrating e ectiveness for thermal storage or solar fuel is largely accomplished by using a thermodynamic model derived from experimental data. The purpose of this project is to test the accuracy of our regression model on representative data sets. Determining the accuracy of the model includes parameter tting the model to the data, comparing the model using di erent numbers of param- eters, and analyzing the entropy and enthalpy calculated from the model. Three data sets were considered in this project: two demonstrating materials for solar fuels by wa- ter splitting and the other of a material for thermal storage. Using Bayesian Inference and Markov Chain Monte Carlo (MCMC), parameter estimation was preformed on the three data sets. Good results were achieved, except some there was some deviations on the edges of the data input ranges. The evidence values were then calculated in a variety of ways and used to compare models with di erent number of parameters. It was believed that at least one of the parameters was unnecessary and comparing evidence values demonstrated that the parameter was need on one data set and not signi cantly helpful on another. The entropy was calculated by taking the derivative in one variable and integrating over another. and its uncertainty was also calculated by evaluating the entropy over multiple MCMC samples. Afterwards, all the parts were written up as a tutorial for the Uncertainty Quanti cation Toolkit (UQTk).
Makahinda, T.
2018-02-01
The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.
The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1
Termonia, Piet; Fischer, Claude; Bazile, Eric; Bouyssel, François; Brožková, Radmila; Bénard, Pierre; Bochenek, Bogdan; Degrauwe, Daan; Derková, Mariá; El Khatib, Ryad; Hamdi, Rafiq; Mašek, Ján; Pottier, Patricia; Pristov, Neva; Seity, Yann; Smolíková, Petra; Španiel, Oldřich; Tudor, Martina; Wang, Yong; Wittmann, Christoph; Joly, Alain
2018-01-01
The ALADIN System is a numerical weather prediction (NWP) system developed by the international ALADIN consortium for operational weather forecasting and research purposes. It is based on a code that is shared with the global model IFS of the ECMWF and the ARPEGE model of Météo-France. Today, this system can be used to provide a multitude of high-resolution limited-area model (LAM) configurations. A few configurations are thoroughly validated and prepared to be used for the operational weather forecasting in the 16 partner institutes of this consortium. These configurations are called the ALADIN canonical model configurations (CMCs). There are currently three CMCs: the ALADIN baseline CMC, the AROME CMC and the ALARO CMC. Other configurations are possible for research, such as process studies and climate simulations. The purpose of this paper is (i) to define the ALADIN System in relation to the global counterparts IFS and ARPEGE, (ii) to explain the notion of the CMCs, (iii) to document their most recent versions, and (iv) to illustrate the process of the validation and the porting of these configurations to the operational forecast suites of the partner institutes of the ALADIN consortium. This paper is restricted to the forecast model only; data assimilation techniques and postprocessing techniques are part of the ALADIN System but they are not discussed here.
A new thermodynamic model for shaftwork targeting on total sites
Energy Technology Data Exchange (ETDEWEB)
Sorin, M.; Hammache, A. [CANMET Energy Technology Centre-Varennes, Quebec (Canada)
2005-05-01
The purpose of the paper is to introduce a targeting model based on a new thermodynamic insight on cogeneration in general and Rankine cycle in particular. The insight permits to express the ideal shaftwork of a cogeneration unit through the outlet heat load and the difference in Carnot factors between the heat source and heat sink for the given inlet temperature of the heat source. The deviation from the ideal shaftwork to the real one is assessed by using the traditionally turbine isentropic efficiency. Finally the new model allows targeting fuel consumption, cooling requirement and shaftwork production with high accuracy and visualizing then directly as special segments on the T-H diagram. A modified Site Utility Grand Composite Curve (SUGCC) diagram is proposed and compared to the original SUGCC. The shape of the right hand side of the diagram above site pinch is the same, however, below site pinch it is shifted to the left by an amount equal to shaftwork production below site pinch. Above site pinch VHP consumption is also corrected to account for shaftwork production above site pinch that is represented by segments rather than areas on the left hand side of the T-H diagram. (author)
Thermodynamic Property Model of Wide-Fluid Phase Propane
Directory of Open Access Journals (Sweden)
I Made Astina
2007-05-01
Full Text Available A new thermodynamic property model for propane is expressed in form of the Helmholtz free energy function. It consists of eight terms of the ideal-gas part and eighteen terms of the residual part. Accurate experimental data of fluid properties and theoretical approach from the intermolecular potential were simultaneously considered in the development to insure accuracy and to improve reliability of the equation of state over wide range of pressures and temperatures. Based on the state range of experimental data used in the model development, the validity range is judged from the triple-point of 85.48 K to temperature of 450 K and pressure up to 60 MPa. The uncertainties with respect to different properties are estimated to be 0.03% in ideal-gas isobaric specific heat, 0.2% in liquid phase density, 0.3% in gaseous phase density 1% in specific heats, 0.1% in vapor-pressure except at very low temperatures, 0.05% in saturated-liquid density, 0.02% in speed of sound of the gaseous phase and 1% in speed of sound of the liquid phase.
Experimental study and thermodynamic modelling of the B-Fe-Mn ternary system
Czech Academy of Sciences Publication Activity Database
Repovský, P.; Homolová, V.; Čiripová, L.; Kroupa, Aleš; Zemanová, Adéla
2016-01-01
Roč. 55, DEC (2016), s. 252-259 ISSN 0364-5916 R&D Projects: GA ČR GA14-15576S Institutional support: RVO:68081723 Keywords : thermodynamic modelling * phase diagram * borides Subject RIV: BJ - Thermodynamic s Impact factor: 1.600, year: 2016
A new self-consistent model for thermodynamics of binary solutions
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Shan, Y. V.; Fischer, F. D.
2015-01-01
Roč. 108, NOV (2015), s. 27-30 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Thermodynamics * Analytical methods * CALPHAD * Phase diagram * Self-consistent model Subject RIV: BJ - Thermodynamics Impact factor: 3.305, year: 2015
A Hamiltonian approach to Thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
A Hamiltonian approach to Thermodynamics
International Nuclear Information System (INIS)
Baldiotti, M.C.; Fresneda, R.; Molina, C.
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
The thermodynamics of enhanced heat transfer: a model study
International Nuclear Information System (INIS)
Hovhannisyan, Karen; Allahverdyan, Armen E
2010-01-01
Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (the human sweating system, enzyme catalysis, facilitated diffusion across biomembranes, industrial heat-exchangers and so on). The thermodynamics of such processes remains, however, open. Here we study enhanced heat transfer by using a model junction immersed between two thermal baths at different temperatures T h and T c (T h > T c ). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process demands consumption and subsequent dissipation of work. The efficiency of the enhancement is defined via the increment in the heat power divided by the amount of work done. We show that this efficiency is bounded from above by T c /(T h − T c ). Formally this is identical to the Carnot bound for the efficiency of ordinary refrigerators which transfer heat from cold to hot bodies. It also shares some (but not all) physical features of the Carnot bound
International Nuclear Information System (INIS)
Soldatova, Je.D.; Snegyir'ov, M.G.
2001-01-01
The thermodynamical method for studing a critical state is illustrated by the example of critical behavior of metallic cerium in the frameworks of the improved Rainford-Edwards model. Thermodynamical stability of the model is investigated, and behavior of the whole complex of thermodynamical characteristics of the system is analyzed. It is concluded that the model has the first type of critical behaviour
Energy confinement in the T-10 tokamak and canonic profile models
International Nuclear Information System (INIS)
Dnestrovskii, Yu.N.; Pereverzev, G.V.
1988-01-01
A classification of experimental results on electron cyclotron resonance heating (ECRH) is that T-10 tokamak is presented. Analysis of the experiments is consistent with two energy balance models. The first is based on the idea of profile consistency of the plasma current and pressure. The on-axis and off-axis ECRH as well as the heat wave propagation in T-10 can be reasonably represented in this way. In addition, this model allows the L to H mode transition to be described as the bifurcation of the solutions of a set of non-linear equations. The second model is based on the idea of a thermal pinch produced by a toroidal electric field. The electron temperature profiles under ohmic heating as well as under ECRH can be described by this model. Furthermore, this approach explains the cause of the confinement degradation under non-ohmic plasma heating (L-mode). (Author)
On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model
Directory of Open Access Journals (Sweden)
Shu-Nan Li
2016-11-01
Full Text Available Thermodynamics problems for the single-phase-lagging (SPL model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation time. Modifying the entropy production rate positive or zero is not enough to avoid the violation of the second law of thermodynamics for the SPL model, because the SPL model could cause breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical energy integral.
Thermodynamic modeling of the Ti-Al-Cr ternary system
International Nuclear Information System (INIS)
Chen Leyi; Qiu Aitao; Liu Lanjie; Jiang Ming; Lu Xionggang; Li Chonghe
2011-01-01
Research highlights: → The full experimental results of the Ti-Al-Cr ternary system and its sub-binary systems are reviewed and analysed in detail. → Based on the latest thermodynamic assessments of the Ti-Al, Ti-Cr and Al-Cr systems and the ternary experimental data in literature, the thermodynamic parameters of the Ti-Al-Cr ternary system are fully assessed by the Calphad method. → The transformation of disorder to order (bcc a 2 to B2) and the new ternary compound L 12T i 25 Cr 8 Al 67 are considered in this work. - Abstract: The Ti-Al-Cr ternary system is one of the most important systems to studying the titanium alloys. Some experimental data of this ternary system are available and a few partial thermodynamic assessments are reported. However, no full thermodynamic descriptions were published. In this study, the previous work on the Ti-Al-Cr system and its related binary systems are reviewed. Based on the thermodynamic descriptions of the Ti-Al, Ti-Cr and Al-Cr systems and the ternary experimental data in literature, the Ti-Al-Cr ternary system is assessed by means of the Calphad method. Several isothermal sections from 1073 K to 1573 K and some invariant reactions are calculated, which are in good agreement with the most of the experimental results.
Thermodynamics of spin chains of Haldane–Shastry type and one-dimensional vertex models
International Nuclear Information System (INIS)
Enciso, Alberto; Finkel, Federico; González-López, Artemio
2012-01-01
We study the thermodynamic properties of spin chains of Haldane–Shastry type associated with the A N−1 root system in the presence of a uniform external magnetic field. To this end, we exactly compute the partition function of these models for an arbitrary finite number of spins. We then show that these chains are equivalent to a suitable inhomogeneous classical Ising model in a spatially dependent magnetic field, generalizing the results of Basu-Mallick et al. for the zero magnetic field case. Using the standard transfer matrix approach, we are able to compute in closed form the free energy per site in the thermodynamic limit. We perform a detailed analysis of the chains’ thermodynamics in a unified way, with special emphasis on the zero field and zero temperature limits. Finally, we provide a novel interpretation of the thermodynamic quantities of spin chains of Haldane–Shastry type as weighted averages of the analogous quantities over an ensemble of classical Ising models. - Highlights: ► Partition function of spin chains of Haldane–Shastry type in magnetic field. ► Equivalence to classical inhomogeneous Ising models. ► Free energy per site, other thermodynamic quantities in thermodynamic limit. ► Zero field, zero temperature limits. ► Thermodynamic equivalence with ensemble of classical Ising models.
Thermodynamic Bethe Ansatz for the Spin-1/2 Staggered XXZ- Model
Mkhitaryan, V. V.; Sedrakyan, A. G.
2003-01-01
We develop the technique of Thermodynamic Bethe Ansatz to investigate the ground state and the spectrum in the thermodynamic limit of the staggered $XXZ$ models proposed recently as an example of integrable ladder model. This model appeared due to staggered inhomogeneity of the anisotropy parameter $\\Delta$ and the staggered shift of the spectral parameter. We give the structure of ground states and lowest lying excitations in two different phases which occur at zero temperature.
Thermodynamic modeling of the power plant based on the SOFC with internal steam reforming of methane
International Nuclear Information System (INIS)
Ivanov, Peter
2007-01-01
Mathematical model based on the thermodynamic modeling of gaseous mixtures is developed for SOFC with internal steam reforming of methane. Macroscopic porous-electrode theory, including non-linear kinetics and gas-phase diffusion, is used to calculate the reforming reaction and the concentration polarization. Provided the data concerning properties and costs of materials the model is fit for wide range of parametric analysis of thermodynamic cycles including SOFC
Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling
International Nuclear Information System (INIS)
Higgs, J.
2005-01-01
The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)
Modeling the Thermodynamic Properties of the Inner Comae of Comets
Boice, Daniel C.
2017-10-01
Introduction: Modeling is central to understand the important properties of the cometary environment. We have developed a comet model, SUISEI, that self-consistently includes the relevant physicochemical processes within a global modeling framework, from the porous subsurface layers of the nucleus to the interaction with the solar wind. Our goal is to gain valuable insights into the intrinsic properties of cometary nuclei so we can better understand observations and in situ measurements. SUISEI includes a multifluid, reactive gas dynamics simulation of the dusty coma (ComChem) and a suite of other coupled numerical simulations. This model has been successfully applied to a variety of comets in previous studies over the past three decades. We present results from a quantitative study of the thermodynamic properties and chemistry of cometary comae as a function of cometocentric and heliocentric distance to aid in interpretation of observations and in situ measurements of comets.Results and Discussion: ComChem solves the fluid dynamic equations for the mass, momentum, and energy of three neutral fluids (H, H2, and the heavier bulk fluid), ions, and electrons. In the inner coma, the gas expands, cools, accelerates, and undergoes many photolytic and gas-phase chemical reactions tracking hundreds of sibling species. The code handles the transition to free molecular flow and describes the spatial distribution of species in the coma of a comet. Variations of neutral gas temperature and velocity with cometocentric distance and heliocentric distance for a comet approaching the Sun from 2.5 to 0.3 AU are presented. Large increases in the gas temperatures (>400 K) due to photolytic heating in the coma within ~0.5 AU are noted, with dramatic effects on the chemistry, optical depth, and other coma properties. Results are compared to observations when available.Conclusions: SUISEI has proven to be a unique and valuable model to understand the relevant physical processes and
Quality Systems. A Thermodynamics-Related Interpretive Model
Directory of Open Access Journals (Sweden)
Stefano A. Lollai
2017-08-01
Full Text Available In the present paper, a Quality Systems Theory is presented. Certifiable Quality Systems are treated and interpreted in accordance with a Thermodynamics-based approach. Analysis is also conducted on the relationship between Quality Management Systems (QMSs and systems theories. A measure of entropy is proposed for QMSs, including a virtual document entropy and an entropy linked to processes and organisation. QMSs are also interpreted in light of Cybernetics, and interrelations between Information Theory and quality are also highlighted. A measure for the information content of quality documents is proposed. Such parameters can be used as adequacy indices for QMSs. From the discussed approach, suggestions for organising QMSs are also derived. Further interpretive thermodynamic-based criteria for QMSs are also proposed. The work represents the first attempt to treat quality organisational systems according to a thermodynamics-related approach. At this stage, no data are available to compare statements in the paper.
Advancing dynamic and thermodynamic modelling of magma oceans
Bower, Dan; Wolf, Aaron; Sanan, Patrick; Tackley, Paul
2017-04-01
The techniques for modelling low melt-fraction dynamics in planetary interiors are well-established by supplementing the Stokes equations with Darcy's Law. But modelling high-melt fraction phenomena, relevant to the earliest phase of magma ocean cooling, necessitates parameterisations to capture the dynamics of turbulent flow that are otherwise unresolvable in numerical models. Furthermore, it requires knowledge about the material properties of both solid and melt mantle phases, the latter of which are poorly described by typical equations of state. To address these challenges, we present (1) a new interior evolution model that, in a single formulation, captures both solid and melt dynamics and hence charts the complete cooling trajectory of a planetary mantle, and (2) a physical and intuitive extension of a "Hard Sphere" liquid equation of state (EOS) to describe silicate melt properties for the pressure-temperature (P-T) range of Earth's mantle. Together, these two advancements provide a comprehensive and versatile modelling framework for probing the far-reaching consequences of magma ocean cooling and crystallisation for Earth and other rocky planets. The interior evolution model accounts for heat transfer by conduction, convection, latent heat, and gravitational separation. It uses the finite volume method to ensure energy conservation at each time-step and accesses advanced time integration algorithms by interfacing with PETSc. This ensures it accurately and efficiently computes the dynamics throughout the magma ocean, including within the ultra-thin thermal boundary layers (modelling capabilities. The thermodynamics of mantle melting are represented using a pseudo-one-component model, which retains the simplicity of a standard one-component model while introducing a finite temperature interval for melting (important for multi-component systems). Our new high P-T liquid EOS accurately captures the energetics and physical properties of the partially molten
Modeling thermodynamic distance, curvature and fluctuations a geometric approach
Badescu, Viorel
2016-01-01
This textbook aims to briefly outline the main directions in which the geometrization of thermodynamics has been developed in the last decades. The textbook is accessible to people trained in thermal sciences but not necessarily with solid formation in mathematics. For this, in the first chapters a summary of the main mathematical concepts is made. In some sense, this makes the textbook self-consistent. The rest of the textbook consists of a collection of results previously obtained in this young branch of thermodynamics. The manner of presentation used throughout the textbook is adapted for ease of access of readers with education in natural and technical sciences.
Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Fischer, F. D.
2014-01-01
Roč. 22, č. 1 (2014), Art . No. 015013 ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : grain boundary segregation * abnormal grain growth * theory * modelling * solute drag Subject RIV: BJ - Thermodynamics Impact factor: 2.167, year: 2014
A Chemically Relevant Model for Teaching the Second Law of Thermodynamics.
Williamson, Bryce E.; Morikawa, Tetsuo
2002-01-01
Introduces a chemical model illustrating the aspects of the second law of thermodynamics which explains concepts such as reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry. Presents a thought experiment using an ideal galvanic electrochemical cell. (YDS)
On lumped models for thermodynamic properties of simulated annealing problems
International Nuclear Information System (INIS)
Andresen, B.; Pedersen, J.M.; Salamon, P.; Hoffmann, K.H.; Mosegaard, K.; Nulton, J.
1987-01-01
The paper describes a new method for the estimation of thermodynamic properties for simulated annealing problems using data obtained during a simulated annealing run. The method works by estimating energy-to-energy transition probabilities and is well adapted to simulations such as simulated annealing, in which the system is never in equilibrium. (orig.)
Arrhenius And Absolute Reaction Rate Models for Thermodynamic ...
African Journals Online (AJOL)
Thermodynamic characterization of linamarase influenced by linamarin substrate purification, pH and temperature were investigated. In the study, recombinant Saccharomyces cerevisiae cells at the stationary phase of growth were recovered, homogenized and centrifuged to obtain crude extracts designated as GELIN0.
Thermodynamics of Paint Related Systems with Engineering Models
DEFF Research Database (Denmark)
Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios
2001-01-01
Paints are complex materials composed of polymers (binders) dissolved in one or more solvents, pigments, and other additives. The thermodynamics of such systems is essential, for example, for selecting improved solvents and understanding a number of phenomena related especially! to adhesion...
The system Ta–V–Si: Thermodynamic modeling
Czech Academy of Sciences Publication Activity Database
Brož, P.; Khan, A.U.; Niu, H.; Chen, X.-Q.; Li, D.; Vřešťál, J.; Buršík, Jiří; Rogl, P.
2013-01-01
Roč. 199, MAR (2013), s. 171-180 ISSN 0022-4596 R&D Projects: GA ČR(CZ) GAP108/10/1908 Institutional support: RVO:68081723 Keywords : ternary alloy system * phase diagram * DFT calculations Subject RIV: BJ - Thermodynamics Impact factor: 2.200, year: 2013
An extended rational thermodynamics model for surface excess fluxes
Sagis, L.M.C.
2012-01-01
In this paper, we derive constitutive equations for the surface excess fluxes in multiphase systems, in the context of an extended rational thermodynamics formalism. This formalism allows us to derive Maxwell–Cattaneo type constitutive laws for the surface extra stress tensor, the surface thermal
Canonical quantisation via conditional symmetries of the closed FLRW model coupled to a scalar field
International Nuclear Information System (INIS)
Zampeli, Adamantia
2015-01-01
We study the classical, quantum and semiclassical solutions of a Robertson-Walker spacetime coupled to a massless scalar field. The Lagrangian of these minisuperspace models is singular and the application of the theory of Noether symmetries is modified to include the conditional symmetries of the corresponding (weakly vanishing) Hamiltonian. These are found to be the simultaneous symmetries of the supermetric and the superpotential. The quantisation is performed adopting the Dirac proposal for constrained systems. The innovation in the approach we use is that the integrals of motion related to the conditional symmetries are promoted to operators together with the Hamiltonian and momentum constraints. These additional conditions imposed on the wave function render the system integrable and it is possible to obtain solutions of the Wheeler-DeWitt equation. Finally, we use the wave function to perform a semiclassical analysis following Bohm and make contact with the classical solution. The analysis starts with a modified Hamilton-Jacobi equation from which the semiclassical momenta are defined. The solutions of the semiclassical equations are then studied and compared to the classical ones in order to understand the nature and behaviour of the classical singularities. (paper)
Energy Technology Data Exchange (ETDEWEB)
Galan, S.F. [Dpto. de Inteligencia Artificial, E.T.S.I. Informatica (UNED), Juan del Rosal, 16, 28040 Madrid (Spain)]. E-mail: seve@dia.uned.es; Mosleh, A. [2100A Marie Mount Hall, Materials and Nuclear Engineering Department, University of Maryland, College Park, MD 20742 (United States)]. E-mail: mosleh@umd.edu; Izquierdo, J.M. [Area de Modelado y Simulacion, Consejo de Seguridad Nuclear, Justo Dorado, 11, 28040 Madrid (Spain)]. E-mail: jmir@csn.es
2007-08-15
The {omega}-factor approach is a method that explicitly incorporates organizational factors into Probabilistic safety assessment of nuclear power plants. Bayesian networks (BNs) are the underlying formalism used in this approach. They have a structural part formed by a graph whose nodes represent organizational variables, and a parametric part that consists of conditional probabilities, each of them quantifying organizational influences between one variable and its parents in the graph. The aim of this paper is twofold. First, we discuss some important limitations of current procedures in the {omega}-factor approach for either assessing conditional probabilities from experts or estimating them from data. We illustrate the discussion with an example that uses data from Licensee Events Reports of nuclear power plants for the estimation task. Second, we introduce significant improvements in the way BNs for the {omega}-factor approach can be constructed, so that parameter acquisition becomes easier and more intuitive. The improvements are based on the use of noisy-OR gates as model of multicausal interaction between each BN node and its parents.
International Nuclear Information System (INIS)
Galan, S.F.; Mosleh, A.; Izquierdo, J.M.
2007-01-01
The ω-factor approach is a method that explicitly incorporates organizational factors into Probabilistic safety assessment of nuclear power plants. Bayesian networks (BNs) are the underlying formalism used in this approach. They have a structural part formed by a graph whose nodes represent organizational variables, and a parametric part that consists of conditional probabilities, each of them quantifying organizational influences between one variable and its parents in the graph. The aim of this paper is twofold. First, we discuss some important limitations of current procedures in the ω-factor approach for either assessing conditional probabilities from experts or estimating them from data. We illustrate the discussion with an example that uses data from Licensee Events Reports of nuclear power plants for the estimation task. Second, we introduce significant improvements in the way BNs for the ω-factor approach can be constructed, so that parameter acquisition becomes easier and more intuitive. The improvements are based on the use of noisy-OR gates as model of multicausal interaction between each BN node and its parents
Three dimensional canonical transformations
International Nuclear Information System (INIS)
Tegmen, A.
2010-01-01
A generic construction of canonical transformations is given in three-dimensional phase spaces on which Nambu bracket is imposed. First, the canonical transformations are defined as based on cannonade transformations. Second, it is shown that determination of the generating functions and the transformation itself for given generating function is possible by solving correspondent Pfaffian differential equations. Generating functions of type are introduced and all of them are listed. Infinitesimal canonical transformations are also discussed as the complementary subject. Finally, it is shown that decomposition of canonical transformations is also possible in three-dimensional phase spaces as in the usual two-dimensional ones.
Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni
2017-01-01
Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.
Thermodynamic modeling of the Ce-Zn and Pr-Zn systems
International Nuclear Information System (INIS)
Wang, C.P.; Chen, X.; Liu, X.J.; Pan, F.S.; Ishida, K.
2008-01-01
In order to develop the thermodynamic database of phase equilibria in the Mg-Zn-Re (Re: rare earth element) base alloys, the thermodynamic assessments of the Ce-Zn and Pr-Zn systems were carried out by using the calculation of phase diagrams (CALPHAD) method on the basis of the experimental data including thermodynamic properties and phase equilibria. Based on the available experimental data, Gibbs free energies of the solution phases (liquid, bcc, fcc, hcp and dhcp) were modeled by the subregular solution model with the Redlich-Kister formula, and those of the intermetallic compounds were described by the sublattice model. A consistent set of thermodynamic parameters has been derived for describing the Gibbs free energies of each solution phase and intermetallic compound in the Ce-Zn and Pr-Zn binary systems. An agreement between the present calculated results and experimental data is obtained
Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions
International Nuclear Information System (INIS)
Mkam Tchouobiap, S E; Mashiyama, H
2011-01-01
Within a framework of a quasi-harmonic model for quantum particles in a local potential of the double Morse type and within the mean-field approximation for interactions between particles, we investigate the thermodynamic properties of ferroelectric materials. A quantum thermodynamic treatment gives analytic expressions for the internal energy, the entropy, the specific heat, and the static susceptibility. The calculated thermodynamic characteristics are studied as a function of temperature and energy barrier, where it is shown that at the proper choice of the theory parameters, particularly the energy barrier, the model system exhibits characteristic features of either second-order tricritical or first-order phase transitions. Our results indicate that the barrier energy seems to be an important criterion for the character of the structural phase transition. The influence of quantum fluctuations manifested on zero-point energy on the phase transition and thermodynamic properties is analyzed and discussed. This leads to several quantum effects, including the existence of a saturation regime at low temperatures, where the order parameter saturates giving thermodynamic saturation of the calculated thermodynamic quantities. It is found that both quantum effects and energy barrier magnitude have an important influence on the thermodynamic properties of the ferroelectric materials and on driving the phase transition at low temperatures. Also, the analytical parameters' effect on the transition temperature is discussed, which seems to give a general insight into the structural phase transition and its nature.
Jongschaap, R.J.J.; Denneman, A.I.M.; Denneman, A.I.M.; Conrads, W.
1997-01-01
The so-called matrix model is a general thermodynamic framework for microrheological modeling. This model has already been proven to be applicable for a wide class of systems, in particular to models formulated at the configuration tensor level of description. For models formulated at the
Moučka, Filip; Svoboda, Martin; Lísal, Martin
2017-06-28
To address the high salinity of flow-back water during hydraulic fracturing, we have studied the equilibrium partitioning of NaCl and water between the bulk phase and clay pores. In shale rocks, such a partitioning can occur between fractures with a bulk-like phase and clay pores. We use an advanced Grand Canonical Monte Carlo (GCMC) technique based on fractional exchanges of dissolved ions and water molecules. We consider a typical shale gas reservoir condition of a temperature of 365 K and pressure of 275 bar, and we represent clay pores by pyrophyllite and Na-montmorillonite slits of a width ranging from about 7 to 28 Å, covering clay pores from dry clay to clay pores with a bulk-like layer in the middle of the pore. We employ the Joung-Cheatham model for ions, SPC/E model for water and CLAYFF for the clay pores. We first determine the chemical potentials for NaCl and water in the bulk phase using Osmotic Ensemble Monte Carlo simulations. The chemical potentials are then used in GCMC to simulate the adsorption of ions and water molecules in the clay pores, and in turn to predict the salt solubility in confined solutions. Besides the thermodynamic properties, we evaluate the structure and in-plane diffusion of the adsorbed fluids, and ion conductivities.
DEFF Research Database (Denmark)
Faramarzi, Leila; Kontogeorgis, Georgios; Thomsen, Kaj
2009-01-01
The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA-MDEA). F......The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA......) are included in the parameter estimation process. The previously unavailable standard state properties of the alkanolamine ions appearing in this work, i.e. MEA protonate, MEA carbamate and MDEA protonate are determined. The concentration of the species in both MEA and MDEA solutions containing CO2...
Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling
Balcerzak, T.; Szałowski, K.; Jaščur, M.
2018-04-01
Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.
Thermodynamic modeling of the Sc-Zn system coupled with first-principles calculation
Directory of Open Access Journals (Sweden)
Tang C.
2012-01-01
Full Text Available The Sc-Zn system has been critically reviewed and assessed by means of CALPHAD (CALculation of PHAse Diagram approach. By means of first-principles calculation, the enthalpies of formation at 0 K for the ScZn, ScZn2, Sc17Zn58, Sc3Zn17 and ScZn12 have been computed with the desire to assist thermodynamic modeling. A set of self-consistent thermodynamic parameters for the Sc-Zn system is then obtained. The calculated phase diagram and thermodynamic properties agree well with the experimental data and first-principles calculations, respectively.
The dark sector from interacting canonical and non-canonical scalar fields
International Nuclear Information System (INIS)
De Souza, Rudinei C; Kremer, Gilberto M
2010-01-01
In this work general models with interactions between two canonical scalar fields and between one non-canonical (tachyon type) and one canonical scalar field are investigated. The potentials and couplings to the gravity are selected through the Noether symmetry approach. These general models are employed to describe interactions between dark energy and dark matter, with the fields being constrained by the astronomical data. The cosmological solutions of some cases are compared with the observed evolution of the late Universe.
Introduction to thermodynamics of spin models in the Hamiltonian limit
Energy Technology Data Exchange (ETDEWEB)
Berche, Bertrand [Groupe M, Laboratoire de Physique des Materiaux, UMR CNRS No 7556, Universite Henri Poincare, Nancy 1, BP 239, F-54506 Vandoeuvre les Nancy, (France); Lopez, Alexander [Instituto Venezolano de Investigaciones CientIficas, Centro de Fisica, Carr. Panamericana, km 11, Altos de Pipe, Aptdo 21827, 1020-A Caracas, (Venezuela)
2006-01-01
A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices. The targeted students are those of a graduate statistical physics course.
Thermodynamic modeling of the Al-U and Co-U systems
International Nuclear Information System (INIS)
Wang, J.; Liu, X.J.; Wang, C.P.
2008-01-01
The thermodynamic assessments of the Al-U and Co-U systems have been carried out by using the CALPHAD (Calculation of Phase Diagrams) method on the basis of the experimental data including thermodynamic properties and phase equilibria. Gibbs free energies of the solution phases were described by the subregular solution models with the Redlich-Kister equation, and those of the intermetallic compounds described by the sublattice models. A consistent set of thermodynamic parameters has been derived for describing the Gibbs free energies of each solution phase and intermetallic compounds in the Al-U and Co-U binary systems. The calculated phase diagrams and thermodynamic properties in the Al-U and Co-U systems are in good agreement with experimental data
Cantera Integration with the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)
Lavelle, Thomas M.; Chapman, Jeffryes W.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
NASA Glenn Research Center (GRC) has recently developed a software package for modeling generic thermodynamic systems called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a library of building blocks that can be assembled to represent any thermodynamic system in the Simulink (The MathWorks, Inc.) environment. These elements, along with a Newton Raphson solver (also provided as part of the T-MATS package), enable users to create models of a wide variety of systems. The current version of T-MATS (v1.0.1) uses tabular data for providing information about a specific mixture of air, water (humidity), and hydrocarbon fuel in calculations of thermodynamic properties. The capabilities of T-MATS can be expanded by integrating it with the Cantera thermodynamic package. Cantera is an object-oriented analysis package that calculates thermodynamic solutions for any mixture defined by the user. Integration of Cantera with T-MATS extends the range of systems that may be modeled using the toolbox. In addition, the library of elements released with Cantera were developed using MATLAB native M-files, allowing for quicker prototyping of elements. This paper discusses how the new Cantera-based elements are created and provides examples for using T-MATS integrated with Cantera.
Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations
Energy Technology Data Exchange (ETDEWEB)
Jordal, Kristin
1999-02-01
Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency
Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.
Pekař, Miloslav
2018-01-01
Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.
Thermodynamics of protein folding using a modified Wako-Saitô-Muñoz-Eaton model.
Tsai, Min-Yeh; Yuan, Jian-Min; Teranishi, Yoshiaki; Lin, Sheng Hsien
2012-09-01
Herein, we propose a modified version of the Wako-Saitô-Muñoz-Eaton (WSME) model. The proposed model introduces an empirical temperature parameter for the hypothetical structural units (i.e., foldons) in proteins to include site-dependent thermodynamic behavior. The thermodynamics for both our proposed model and the original WSME model were investigated. For a system with beta-hairpin topology, a mathematical treatment (contact-pair treatment) to facilitate the calculation of its partition function was developed. The results show that the proposed model provides better insight into the site-dependent thermodynamic behavior of the system, compared with the original WSME model. From this site-dependent point of view, the relationship between probe-dependent experimental results and model's thermodynamic predictions can be explained. The model allows for suggesting a general principle to identify foldon behavior. We also find that the backbone hydrogen bonds may play a role of structural constraints in modulating the cooperative system. Thus, our study may contribute to the understanding of the fundamental principles for the thermodynamics of protein folding.
Thermodynamic modelling of acid gas removal from natural gas using the Extended UNIQUAC model
DEFF Research Database (Denmark)
Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj
2017-01-01
Thermodynamics of natural gas sweetening process needs to be known for proper design of natural gas treating plants. Absorption with aqueous N-Methyldiethanolamine is currently the most commonly used process for removal of acid gas (CO2 and H2S) impurities from natural gas. Model parameters...... for the Extended UNIQUAC model have already been determined by the same authors to calculate single acid gas solubility in aqueous MDEA. In this study, the model is further extended to estimate solubility of CO2 and H2S and their mixture in aqueous MDEA at high pressures with methane as a makeup gas....
Energy Technology Data Exchange (ETDEWEB)
Yamping, Xiao; Holappa, L [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy
1997-12-31
This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.
Energy Technology Data Exchange (ETDEWEB)
Xiao Yamping; Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy
1996-12-31
This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.
Development of a thermodynamic data base for selected heavy metals
International Nuclear Information System (INIS)
Hageman, Sven; Scharge, Tina; Willms, Thomas
2015-07-01
The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.
Analysis of the Glass-Forming Ability of Fe-Er Alloys, Based on Thermodynamic Modeling
Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; El'nyakov, D. D.; Shaposhnikov, N. G.
2018-05-01
The Fe-Er phase diagram and thermodynamic properties of all its phases are assessed by means of self-consistent analysis. To refine the data on phase equilibria in the Fe-Er system, an investigation is performed in the 10-40 at % range of Er concentrations. The temperature-concentration dependences of the thermodynamic properties of a melt are presented using the model of ideal associated solutions. Thermodynamic parameters of each phase are obtained, and the calculated results are in agreement with available experimental data. The correlation between the thermodynamic properties of liquid Fe-Er alloys and their tendency toward amorphization are studied. It is shown that compositions of amorphous alloys prepared by melt quenching coincide with the ranges of concentration with the predominance of Fe3Er and FeEr2 associative groups that have large negative entropies of formation.
Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential
International Nuclear Information System (INIS)
Moskalenko, V. A.; Dohotaru, L. A.; Cebotari, I. D.
2010-01-01
The diagram approach proposed many years ago for the strongly correlated Hubbard model is developed with the aim to analyze the thermodynamic potential properties. A new exact relation between renormalized quantities such as the thermodynamic potential, the one-particle propagator, and the correlation function is established. This relation contains an additional integration of the one-particle propagator with respect to an auxiliary constant. The vacuum skeleton diagrams constructed from the irreducible Green's functions and tunneling propagator lines are determined and a special functional is introduced. The properties of this functional are investigated and its relation to the thermodynamic potential is established. The stationarity property of this functional with respect to first-order variations of the correlation function is demonstrated; as a consequence, the stationarity property of the thermodynamic potential is proved.
Thermodynamic Model and Experimental Study of Oil-free Scroll Compressor
Peng, Bin; Zhao, Shengxian; Li, Yaohong
2017-10-01
In order to study the performance characteristics of oil-free scroll compressor, this paper is based on the basic equation of circle involute profile, and uses the differential geometry theory to calculate the variation law of pressure with volume. Based on the basic law of thermodynamics, the thermodynamic model of the oil-free scroll compressor is established by considering the heat transfer model and the gas leakage model, considering the mass, energy conservation equation and gas state equation. The change of the mass flow rate of the gas in each chamber is obtained by solving the established model by using the improved Euler method. The experiment results show that with the increase of frequency, the temperature, the displacement and the power show a clear upward trend. The thermodynamic model has some guidance and reference for the development and performance analysis of oil-free scroll compressors.
Directory of Open Access Journals (Sweden)
Carlos García-Bedoya Maguiña
2011-05-01
Full Text Available Canon es un concepto clave en la historia literaria. En el presente artículo,se revisa la evolución histórica del canon literario peruano. Es solo con la llamada República Aristocrática, en las primeras décadas del siglo XX, que cabe hablar en el caso peruano de la formación de un auténtico canon nacional. El autor denomina a esta primera versión del canon literario peruano como canon oligárquico y destaca la importancia de la obra de Riva Agüero y de Ventura García Calderón en su configuración. Es solo más tarde, desde los años 20 y de modo definitivo desde los años 50, que puede hablarse de la emergencia de un nuevo canon literarioal que el autor propone determinar canon posoligárquico.
International Nuclear Information System (INIS)
Moog, Helge C.; Regenspurg, Simona; Voigt, Wolfgang
2015-02-01
The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.
Directory of Open Access Journals (Sweden)
Giacoppo S
2016-10-01
Full Text Available Sabrina Giacoppo,1 Thangavelu Soundara Rajan,1 Gina Rosalinda De Nicola,2 Renato Iori,2 Placido Bramanti,1 Emanuela Mazzon1 1IRCCS Centre Neurolesi “Bonino-Pulejo”, Messina, Italy; 2Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN, Bologna, Italy Abstract: Aberrant canonical Wnt–β-catenin signaling has been reported in multiple sclerosis (MS, although the results are controversial. The present study aimed to examine the role of the Wnt–β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate, resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin–PPARγ axis. Experimental autoimmune encephalomyelitis (EAE, the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35–55. Released moringin (10 mg/kg glucomoringin +5 µL myrosinase/mouse was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt–β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt–β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3, suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2, through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt–β-catenin signaling cascade and as a new potential therapeutic target for MS treatment. Keywords: Wnt
A thermodynamic model of the Z-phase Cr(V, Nb)N
DEFF Research Database (Denmark)
Danielsen, Hilmar Kjartansson; Hald, John
2007-01-01
. A thermodynamic model of the Z-phase has been developed based on the regular solution model. The model predicts Z-phase to be stable and to fully replace the MX particles in most of the new 9%–12% Cr steels, which is in good agreement with experimental observations. The rate of precipitation of Z...
Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models
Vignal, Philippe
2016-01-01
of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure
Thermodynamic modeling of mineralogical phases formed by continuous casting powders
International Nuclear Information System (INIS)
Romo-Castaneda, Julio; Cruz-Ramirez, Alejandro; Romero-Serrano, Antonio; Vargas-Ramirez, Marissa; Hallen-Lopez, Manuel
2011-01-01
A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca 4 Si 2 O 7 F 2 ) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF 2 ). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.
Thermodynamic modeling of mineralogical phases formed by continuous casting powders
Energy Technology Data Exchange (ETDEWEB)
Romo-Castaneda, Julio [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F. (Mexico); Cruz-Ramirez, Alejandro, E-mail: alcruzr@ipn.mx [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F. (Mexico); Romero-Serrano, Antonio; Vargas-Ramirez, Marissa; Hallen-Lopez, Manuel [Metallurgy and Materials Department, Instituto Politecnico Nacional-ESIQIE, Apdo. P. 118-431, 07051 Mexico D.F. (Mexico)
2011-01-10
A great amount of mineralogical phases were predicted and represented in stability phase diagrams, which were obtained by the use of the thermodynamic software FACTSage considering both the chemical composition and the melting temperature of the mould flux. Melting-solidification tests on commercial mould flux glasses for thin slab casting of steel revealed the existence of cuspidine (Ca{sub 4}Si{sub 2}O{sub 7}F{sub 2}) as the main mineralogical phase formed during the flux solidification by X-ray powder diffraction (XRD). This phase directly influences the heat transfer phenomena from the strand to the mould and it is obtained with higher fluorite content (22% CaF{sub 2}). Cuspidine is desirable only in fluxes to produce medium carbon (included peritectic grade) steels, because it reduces the heat flux from the strand to the mould, thus controlling the shrinkage rate during the flux solidification. The experimental results are in agreement with those obtained by the thermodynamic software. The stability phase diagrams could be used as an important tool in the flux design for continuous casting process.
Technical Work Plan for: Thermodynamic Databases for Chemical Modeling
International Nuclear Information System (INIS)
C.F. Jovecolon
2006-01-01
The objective of the work scope covered by this Technical Work Plan (TWP) is to correct and improve the Yucca Mountain Project (YMP) thermodynamic databases, to update their documentation, and to ensure reasonable consistency among them. In addition, the work scope will continue to generate database revisions, which are organized and named so as to be transparent to internal and external users and reviewers. Regarding consistency among databases, it is noted that aqueous speciation and mineral solubility data for a given system may differ according to how solubility was determined, and the method used for subsequent retrieval of thermodynamic parameter values from measured data. Of particular concern are the details of the determination of ''infinite dilution'' constants, which involve the use of specific methods for activity coefficient corrections. That is, equilibrium constants developed for a given system for one set of conditions may not be consistent with constants developed for other conditions, depending on the species considered in the chemical reactions and the methods used in the reported studies. Hence, there will be some differences (for example in log K values) between the Pitzer and ''B-dot'' database parameters for the same reactions or species
Thermodynamic modeling of hydrogen storage capacity in Mg-Na alloys.
Abdessameud, S; Mezbahul-Islam, M; Medraj, M
2014-01-01
Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems.
Thermodynamic Modeling of Hydrogen Storage Capacity in Mg-Na Alloys
Abdessameud, S.; Mezbahul-Islam, M.; Medraj, M.
2014-01-01
Thermodynamic modeling of the H-Mg-Na system is performed for the first time in this work in order to understand the phase relationships in this system. A new thermodynamic description of the stable NaMgH3 hydride is performed and the thermodynamic models for the H-Mg, Mg-Na, and H-Na systems are reassessed using the modified quasichemical model for the liquid phase. The thermodynamic properties of the ternary system are estimated from the models of the binary systems and the ternary compound using CALPHAD technique. The constructed database is successfully used to reproduce the pressure-composition isotherms for MgH2 + 10 wt.% NaH mixtures. Also, the pressure-temperature equilibrium diagram and reaction paths for the same composition are predicted at different temperatures and pressures. Even though it is proved that H-Mg-Na does not meet the DOE hydrogen storage requirements for onboard applications, the best working temperatures and pressures to benefit from its full catalytic role are given. Also, the present database can be used for thermodynamic assessments of higher order systems. PMID:25383361
Canonical Information Analysis
DEFF Research Database (Denmark)
Vestergaard, Jacob Schack; Nielsen, Allan Aasbjerg
2015-01-01
is replaced by the information theoretical, entropy based measure mutual information, which is a much more general measure of association. We make canonical information analysis feasible for large sample problems, including for example multispectral images, due to the use of a fast kernel density estimator......Canonical correlation analysis is an established multivariate statistical method in which correlation between linear combinations of multivariate sets of variables is maximized. In canonical information analysis introduced here, linear correlation as a measure of association between variables...... for entropy estimation. Canonical information analysis is applied successfully to (1) simple simulated data to illustrate the basic idea and evaluate performance, (2) fusion of weather radar and optical geostationary satellite data in a situation with heavy precipitation, and (3) change detection in optical...
Classifying Linear Canonical Relations
Lorand, Jonathan
2015-01-01
In this Master's thesis, we consider the problem of classifying, up to conjugation by linear symplectomorphisms, linear canonical relations (lagrangian correspondences) from a finite-dimensional symplectic vector space to itself. We give an elementary introduction to the theory of linear canonical relations and present partial results toward the classification problem. This exposition should be accessible to undergraduate students with a basic familiarity with linear algebra.
Non-Conventional Thermodynamics and Models of Gradient Elasticity
Directory of Open Access Journals (Sweden)
Hans-Dieter Alber
2018-03-01
Full Text Available We consider material bodies exhibiting a response function for free energy, which depends on both the strain and its gradient. Toupin–Mindlin’s gradient elasticity is characterized by Cauchy stress tensors, which are given by space-like Euler–Lagrange derivative of the free energy with respect to the strain. The present paper aims at developing a first version of gradient elasticity of non-Toupin–Mindlin’s type, i.e., a theory employing Cauchy stress tensors, which are not necessarily expressed as Euler–Lagrange derivatives. This is accomplished in the framework of non-conventional thermodynamics. A one-dimensional boundary value problem is solved in detail in order to illustrate the differences of the present theory with Toupin–Mindlin’s gradient elasticity theory.
Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling
Directory of Open Access Journals (Sweden)
Mahadevan Radhakrishnan
2010-05-01
Full Text Available Abstract Background Geobacter sulfurreducens is a member of the Geobacter species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for Geobacter sulfurreducens. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of G. sulfurreducens using thermodynamic variability analysis. Findings As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in E. coli by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of G. sulfurreducens that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility is significant for these reactions. Conclusions Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of ΔrG' of every reaction in the model
Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines
Energy Technology Data Exchange (ETDEWEB)
Formosa, F., E-mail: fabien.formosa@univ-savoie.f [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France)
2011-05-15
Research highlights: {yields} The free piston Stirling behaviour relies on its thermal and dynamic features. {yields} A global semi-analytical model for preliminary design is developed. {yields} The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.
Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines
International Nuclear Information System (INIS)
Formosa, F.
2011-01-01
Research highlights: → The free piston Stirling behaviour relies on its thermal and dynamic features. → A global semi-analytical model for preliminary design is developed. → The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.
Energy Technology Data Exchange (ETDEWEB)
Lai Wei, E-mail: laiwei@msu.ed [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Ciucci, Francesco [Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, University of Heidelberg, INF 368 D - 69120 Heidelberg (Germany)
2010-12-15
Thermodynamics and kinetics of phase transformation in intercalation battery electrodes are investigated by phenomenological models which include a mean-field lattice-gas thermodynamic model and a generalized Poisson-Nernst-Planck equation set based on linear irreversible thermodynamics. The application of modeling to a porous intercalation electrode leads to a hierarchical equivalent circuit with elements of explicit physical meanings. The equivalent circuit corresponding to the intercalation particle of planar, cylindrical and spherical symmetry is reduced to a diffusion equation with concentration dependent diffusivity. The numerical analysis of the diffusion equation suggests the front propagation behavior during phase transformation. The present treatment is also compared with the conventional moving boundary and phase field approaches.
Directory of Open Access Journals (Sweden)
Chellaboina Vijaysekhar
2005-01-01
Full Text Available We develop thermodynamic models for discrete-time large-scale dynamical systems. Specifically, using compartmental dynamical system theory, we develop energy flow models possessing energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation principles for discrete-time, large-scale dynamical systems. Furthermore, we introduce a new and dual notion to entropy; namely, ectropy, as a measure of the tendency of a dynamical system to do useful work and grow more organized, and show that conservation of energy in an isolated thermodynamic system necessarily leads to nonconservation of ectropy and entropy. In addition, using the system ectropy as a Lyapunov function candidate, we show that our discrete-time, large-scale thermodynamic energy flow model has convergent trajectories to Lyapunov stable equilibria determined by the system initial subsystem energies.
The Second Law of Thermodynamics in a Quantum Heat Engine Model
International Nuclear Information System (INIS)
Zhang Ting; Cai Lifeng; Chen Pingxing; Li Chengzu
2006-01-01
The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.
Thermodynamic modeling of the Eu–Te and Te–Yb systems
Energy Technology Data Exchange (ETDEWEB)
Ghamri, H., E-mail: ghamri.houda@hotmail.fr; Djaballah, Y.; Belgacem-Bouzida, A.
2015-09-15
Highlights: • The Eu–Te and Te–Yb binary systems were not previously thermodynamically assessed. • The Eu–Te and Te–Yb systems were assessed by using the CALPHAD technique. • A coherent set of thermodynamic parameters was obtained for both systems. • An agreement between the calculated results and experimental data was obtained for both systems. - Abstract: In this work, thermodynamic assessments of the Eu–Te and Te–Yb binary systems were carried out by using the CALculation of PHase Diagrams (CALPHAD) method based on the available experimental data including thermodynamic properties and phase equilibria. Reasonable models were constructed for all the phases of the two systems. The liquid phases were described by the substitutional solution model with the Redlich–Kister polynomial. The three intermetallic compounds, Eu{sub 4}Te{sub 7}, Eu{sub 3}Te{sub 7} and TeYb in the two systems, were treated as stoichiometric phases, while the non-stoichiometric phase (EuTe), which has an homogeneity range, was treated by a two-sublattice model following the schema: (Eu,Te){sub 0.5}(Te){sub 0.5}. A consistent set of thermodynamic parameters leading to reasonable agreement between the calculated results and experimental data was obtained.
Thermodynamic modeling of the U–Zr system – A revisit
International Nuclear Information System (INIS)
Xiong, Wei; Xie, Wei; Shen, Chao; Morgan, Dane
2013-01-01
Graphical abstract: Display Omitted -- Abstract: A new thermodynamic description of the U–Zr system is developed using the CALPHAD (CALculation of PHAse Diagrams) method with the aid of ab initio calculations. Thermodynamic properties, such as heat capacity, activities, and enthalpy of mixing, are well predicted using the improved thermodynamic description in this work. The model-predicted enthalpies of formation for the bcc and δ phases are in good agreement with the results from DFT + U ab initio calculations. The calculations in this work show better agreements with experimental data comparing with the previous assessments. Using the integrated method of ab initio and CALPHAD modeling, an unexpected relation between the enthalpy of formation of the δ phase and energy of Zr with hexagonal structure is revealed and the model improved by fitting these energies together. The present work has demonstrated that ab initio calculations can help support a successful thermodynamic assessment of actinide systems, for which the thermodynamic properties are often difficult to measure
Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet
2010-10-24
Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary
International Nuclear Information System (INIS)
Sutton, S.B.; Stein, W.; Reitter, T.A.; Hindmarsh, A.C.
1983-01-01
A numerical model for calculating the thermodynamic behavior of the MFTF-B cryogenic cooling system is described. Nine component types are discussed with governing equations given. The algorithm for solving the coupled set of algebraic and ordinary differential equations is described. The model and its application to the MFTF-B cryogenic cooling system has not been possible due to lack of funding
Thermodynamic modelling of phase equilibria in Al–Ga–P–As system
Indian Academy of Sciences (India)
A generalized thermodynamic expression of the liquid Al–Ga–P–As alloys is used in conjunction with the solid solution model in determining the solid–liquid equilibria at 1173 K and 1273 K. The liquid solution model contains thirtyseven parameters. Twentyfour of them pertain to those of the six constituent binaries, twelve ...
Thermodynamic admissibility of the extended Pom-Pom model for branched polymers
Soulages, J.; Hütter, M.; Öttinger, H.C.
2006-01-01
The thermodynamic consistency of the eXtended Pom-Pom (XPP) model for branched polymers of Verbeeten et al. [W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model, J. Rheol. 45 (4) (2001) 823–843; W.M.H. Verbeeten, G.W.M.
The Matrix model, a driven state variables approach to non-equilibrium thermodynamics
Jongschaap, R.J.J.
2001-01-01
One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC
Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications
Thompson, W. R.; Zollweg, John A.; Gabis, David H.
1992-01-01
A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.
Multiplicity distributions in a thermodynamical model of hadron production in e+e- collisions
International Nuclear Information System (INIS)
Becattini, F.; Giovannini, A.; Lupia, S.
1996-01-01
Predictions of a thermodynamical model of hadron production for multiplicity distributions in e + e - annihilations at LEP and PEP-PETRA centre of mass energies are shown. The production process is described as a two-step process in which primary hadrons emitted from the thermal source decay into final observable particles. The final charged track multiplicity distributions turn out to be of negative binomial type and are in quite good agreement with experimental observations. The average number of clans calculated from fitted negative binomial coincides with the average number of primary hadrons predicted by the thermodynamical model, suggesting that clans should be identified with primary hadrons. (orig.)
Thermodynamic DFT analysis of natural gas.
Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C
2017-08-01
Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.
Extending canonical Monte Carlo methods
International Nuclear Information System (INIS)
Velazquez, L; Curilef, S
2010-01-01
In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model
International Nuclear Information System (INIS)
Manes, L.; Mari, C.; Ray, I.
1979-01-01
The tetrahedral defect consisting of one oxygen vacancy bonded to two reduced cations - is an important concept, which, as shown in the present work, can explain both the thermodynamic properties and the structures of the phases of the PuO 2 -x and CeO 2 -x systems. Based on this concept a statistical thermodynamic model has been developed and this model is described along with some preliminary calculations. A relatively good agreement with experimental thermodynamic data was obtained in this calculation. Using the exclusion principle, defect complexes each containing one tetrahedral defect are derived and it is shown that a systematic packing of these gives a good description both of the non-stoichiometric and the ordered phases observed for these oxide systems. (orig.) [de
Thermodynamic modeling of the Na-X (X = Si, Ag, Cu, Cr systems
Directory of Open Access Journals (Sweden)
Hao D.
2012-01-01
Full Text Available The Na-X (X = Si, Ag, Cu, Cr systems have been critically reviewed and modeled by means of the CALPHAD approach. The two compounds, NaSi and Ag2Na, are treated as stoichiometric ones. By means of first-principles calculations, the enthalpies of formation at 0 K for the LT-NaSi (low temperature form of NaSi and Ag2Na have been computed to be -5210 and -29821.8 Jmol-1, respectively, with the desire to assist thermodynamic modeling. One set of self-consistent thermodynamic parameters is obtained for each of these binary systems. Comparisons between calculated and measured phase diagrams show that most of the experimental information can be satisfactorily accounted for by the present thermodynamic descriptions.
Quantum thermodynamics of the resonant-level model with driven system-bath coupling
Haughian, Patrick; Esposito, Massimiliano; Schmidt, Thomas L.
2018-02-01
We study nonequilibrium thermodynamics in a fermionic resonant-level model with arbitrary coupling strength to a fermionic bath, taking the wide-band limit. In contrast to previous theories, we consider a system where both the level energy and the coupling strength depend explicitly on time. We find that, even in this generalized model, consistent thermodynamic laws can be obtained, up to the second order in the drive speed, by splitting the coupling energy symmetrically between system and bath. We define observables for the system energy, work, heat, and entropy, and calculate them using nonequilibrium Green's functions. We find that the observables fulfill the laws of thermodynamics, and connect smoothly to the known equilibrium results.
Thermodynamic modeling and kinetics simulation of precipitate phases in AISI 316 stainless steels
International Nuclear Information System (INIS)
Yang, Y.; Busby, J.T.
2014-01-01
This work aims at utilizing modern computational microstructural modeling tools to accelerate the understanding of phase stability in austenitic steels under extended thermal aging. Using the CALPHAD approach, a thermodynamic database OCTANT (ORNL Computational Thermodynamics for Applied Nuclear Technology), including elements of Fe, C, Cr, Ni, Mn, Mo, Si, and Ti, has been developed with a focus on reliable thermodynamic modeling of precipitate phases in AISI 316 austenitic stainless steels. The thermodynamic database was validated by comparing the calculated results with experimental data from commercial 316 austenitic steels. The developed computational thermodynamics was then coupled with precipitation kinetics simulation to understand the temporal evolution of precipitates in austenitic steels under long-term thermal aging (up to 600,000 h) at a temperature regime from 300 to 900 °C. This study discusses the effect of dislocation density and difusion coefficients on the precipitation kinetics at low temperatures, which shed a light on investigating the phase stability and transformation in austenitic steels used in light water reactors
Canonical quantization of some midi-superspace models in 2+1 and 3+1 dimensions
International Nuclear Information System (INIS)
Christodoulakis, T; Doulis, G; Terzis, P A; Melas, E; Grammenos, T H; Papadopoulos, G O; Spanou, A
2009-01-01
A proposal is put forward which enables the canonical quantization of a family of axially symmetric geometries in 2+1 dimensions and a corresponding spherically symmetric family in 3+1 dimensions. The proposal consists of a particular renormalization assumption and an accompanying requirement and results in a Wheeler-DeWitt equation which is based on a renormalized manifold parametrized by three smooth scalar functionals. The aforementioned equation is analytically solved for both the 2+1 and 3+1 case.
Thermodynamics for scientists and engineers
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2011-02-01
This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.
International Nuclear Information System (INIS)
Barjaneh, Afshin; Sayyaadi, Hoseyn
2015-01-01
Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.
Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing
Liu, Huachu; He, Yanlin; Li, Lin
2009-12-01
Firstly in this paper, the influence of H 2 and water vapor content on selective oxidation occurred in continuous hot-dip galvanizing has been studied by thermodynamics and Wagner model, then, the Gibbs energy of each possible aluminothermic reducing reaction in zinc bath was calculated in order to judge the possibility of these reactions. It was found that oxides' amounts and oxidation type were greatly related to the H 2 and water content in the annealing atmosphere. And from the view of thermodynamics, surface oxides (MnO, Cr 2O 3, SiO 2 etc.) can be reduced by the effective Al in Zn bath.
Thermodynamic and Process Modelling of Gas Hydrate Systems in CO2 Capture Processes
DEFF Research Database (Denmark)
Herslund, Peter Jørgensen
A novel gas separation technique based on gas hydrate formation (solid precipitation) is investigated by means of thermodynamic modeling and experimental investigations. This process has previously been proposed for application in post-combustion carbon dioxide capture from power station flue gases...... formation may be performed at pressures of approximately 20 MPa and temperatures below 280 K. Thermodynamic promoters are needed, to reduce the pressure requirement of the process, thereby making it competitive to existing capture technologies. A literature study is presented focusing mainly...... on thermodynamic gas hydrate promotion by hydrate formers stabilising the classical gas clathrate hydrate structures (sI, sII and sH) at low to moderate pressures. Much literature is available on this subject. Both experimental and theoretical studies presented in the literature have pointed out cyclopentane...
International Nuclear Information System (INIS)
Terzyk, Artur P; Furmaniak, Sylwester; Gauden, Piotr A; Harris, Peter J F; Wloch, Jerzy
2008-01-01
Using the plausible model of activated carbon proposed by Harris and co-workers and grand canonical Monte Carlo simulations, we study the applicability of standard methods for describing adsorption data on microporous carbons widely used in adsorption science. Two carbon structures are studied, one with a small distribution of micropores in the range up to 1 nm, and the other with micropores covering a wide range of porosity. For both structures, adsorption isotherms of noble gases (from Ne to Xe), carbon tetrachloride and benzene are simulated. The data obtained are considered in terms of Dubinin-Radushkevich plots. Moreover, for benzene and carbon tetrachloride the temperature invariance of the characteristic curve is also studied. We show that using simulated data some empirical relationships obtained from experiment can be successfully recovered. Next we test the applicability of Dubinin's related models including the Dubinin-Izotova, Dubinin-Radushkevich-Stoeckli, and Jaroniec-Choma equations. The results obtained demonstrate the limits and applications of the models studied in the field of carbon porosity characterization
Thermodynamic Model for the Ammonia-Water System
DEFF Research Database (Denmark)
Thomsen, Kaj; Rasmussen, Peter
2000-01-01
The ammonia-water system is described by the Extended UNIQUAC model, which is an electrolyte model, formed by combining the original UNIQUAC model, the Debye-Hückel law and the Soave-Redlich-Kwong equation of state. The model is limited to temperatures below the critical temperature of ammonia. V...
Network Thermodynamic Curation of Human and Yeast Genome-Scale Metabolic Models
Martínez, Verónica S.; Quek, Lake-Ee; Nielsen, Lars K.
2014-01-01
Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. PMID:25028891
Mean spherical model for hard ions and dipoles: Thermodynamics and correlation functions
International Nuclear Information System (INIS)
Vericat, F.; Blum, L.
1980-01-01
The solution of the mean spherical model of a mixture of equal-size hard ions and dipoles is reinvestigated. Simple expressions for the coefficients of the Laplace transform of the pair correlation function and the other thermodynamic properties are given
Thermodynamic and mechanical properties of curved interfaces : a discussion of models
Oversteegen, M.
2000-01-01
Although relatively much is known about the physics of curved interfaces, several models for these kind of systems seem conflicting or internally inconsistent. It is the aim of this thesis to derive a rigorous framework of thermodynamic and mechanical expressions and study their relation to
Thermodynamic potential with condensate fields in an SU(2) model of QCD
International Nuclear Information System (INIS)
Ebert, D.
1996-06-01
We calculate the thermodynamic potential of the quark-gluon plasma in an SU(2) model of QCD, taking into account the gluon condensate configuration with a constant A 4 -potential and a uniform chromomagnetic field H. Within this scheme the interplay of condensate fields, as well as the role of quarks in the possible dynamical stabilization of the system is investigated. (orig.)
Vakalis, Stergios; Patuzzi, Francesco; Baratieri, Marco
2016-04-01
Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes. The reactants are distributed in different phases and the products from each zone influence the following process steps and thus the composition of the final products. The present study aims to improve the conventional 'Black-Box' thermodynamic modeling by means of developing multiple intermediate 'boxes' that calculate two phase (solid-vapor) equilibriums in small scale gasifiers. Therefore the model is named ''Multi-Box''. Experimental data from a small scale gasifier have been used for the validation of the model. The returned results are significantly closer with the actual case study measurements in comparison to single-stage thermodynamic modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
A development of multi-Species mass transport model considering thermodynamic phase equilibrium
DEFF Research Database (Denmark)
Hosokawa, Yoshifumi; Yamada, Kazuo; Johannesson, Björn
2008-01-01
) variation in solid-phase composition when using different types of cement, (ii) physicochemical evaluation of steel corrosion initiation behaviour by calculating the molar ratio of chloride ion to hydroxide ion [Cl]/[OH] in pore solution, (iii) complicated changes of solid-phase composition caused......In this paper, a multi-species mass transport model, which can predict time dependent variation of pore solution and solid-phase composition due to the mass transport into the hardened cement paste, has been developed. Since most of the multi-species models established previously, based...... on the Poisson-Nernst-Planck theory, did not involve the modeling of chemical process, it has been coupled to thermodynamic equilibrium model in this study. By the coupling of thermodynamic equilibrium model, the multi-species model could simulate many different behaviours in hardened cement paste such as: (i...
Polarized quark distributions in bound nucleon and polarized EMC effect in Thermodynamical Bag Model
Energy Technology Data Exchange (ETDEWEB)
Ganesamurthy, Kuppusamy, E-mail: udckgm@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India); Sambasivam, Raghavan, E-mail: udcsam@sify.co [Research Department of Physics, Urumu Dhanalakshmi College, Trichy 620019 (India)
2011-04-15
The polarized parton distribution functions (PDFs) and nuclear structure functions are evaluated by the phenomenological Thermodynamical Bag Model for nuclear media {sup 7}Li and {sup 27}Al. The Fermi statistical distribution function which includes the spin degree of freedom is used in this statistical model. We predict a sizeable polarized EMC effect. The results of quark spin sum and axial coupling constant of bound nucleons are compared with theoretical predictions of modified Nambu-Jona-Lasinio (NJL) model by Bentz et al.
Modern Canonical Quantum General Relativity
Thiemann, Thomas
2008-11-01
Preface; Notation and conventions; Introduction; Part I. Classical Foundations, Interpretation and the Canonical Quantisation Programme: 1. Classical Hamiltonian formulation of general relativity; 2. The problem of time, locality and the interpretation of quantum mechanics; 3. The programme of canonical quantisation; 4. The new canonical variables of Ashtekar for general relativity; Part II. Foundations of Modern Canonical Quantum General Relativity: 5. Introduction; 6. Step I: the holonomy-flux algebra [P]; 7. Step II: quantum-algebra; 8. Step III: representation theory of [A]; 9. Step IV: 1. Implementation and solution of the kinematical constraints; 10. Step V: 2. Implementation and solution of the Hamiltonian constraint; 11. Step VI: semiclassical analysis; Part III. Physical Applications: 12. Extension to standard matter; 13. Kinematical geometrical operators; 14. Spin foam models; 15. Quantum black hole physics; 16. Applications to particle physics and quantum cosmology; 17. Loop quantum gravity phenomenology; Part IV. Mathematical Tools and their Connection to Physics: 18. Tools from general topology; 19. Differential, Riemannian, symplectic and complex geometry; 20. Semianalytical category; 21. Elements of fibre bundle theory; 22. Holonomies on non-trivial fibre bundles; 23. Geometric quantisation; 24. The Dirac algorithm for field theories with constraints; 25. Tools from measure theory; 26. Elementary introduction to Gel'fand theory for Abelean C* algebras; 27. Bohr compactification of the real line; 28. Operatir -algebras and spectral theorem; 29. Refined algebraic quantisation (RAQ) and direct integral decomposition (DID); 30. Basics of harmonic analysis on compact Lie groups; 31. Spin network functions for SU(2); 32. + Functional analytical description of classical connection dynamics; Bibliography; Index.
Cao, Yuansheng; Gong, Zongping; Quan, H T
2015-06-01
Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012)] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013)], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.
A primer on thermodynamic-based models for deciphering transcriptional regulatory logic.
Dresch, Jacqueline M; Richards, Megan; Ay, Ahmet
2013-09-01
A rigorous analysis of transcriptional regulation at the DNA level is crucial to the understanding of many biological systems. Mathematical modeling has offered researchers a new approach to understanding this central process. In particular, thermodynamic-based modeling represents the most biophysically informed approach aimed at connecting DNA level regulatory sequences to the expression of specific genes. The goal of this review is to give biologists a thorough description of the steps involved in building, analyzing, and implementing a thermodynamic-based model of transcriptional regulation. The data requirements for this modeling approach are described, the derivation for a specific regulatory region is shown, and the challenges and future directions for the quantitative modeling of gene regulation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Thermodynamic Model for Updraft Gasifier with External Recirculation of Pyrolysis Gas
Directory of Open Access Journals (Sweden)
Fajri Vidian
2016-01-01
Full Text Available Most of the thermodynamic modeling of gasification for updraft gasifier uses one process of decomposition (decomposition of fuel. In the present study, a thermodynamic model which uses two processes of decomposition (decomposition of fuel and char is used. The model is implemented in modification of updraft gasifier with external recirculation of pyrolysis gas to the combustion zone and the gas flowing out from the side stream (reduction zone in the updraft gasifier. The goal of the model obtains the influences of amount of recirculation pyrolysis gas fraction to combustion zone on combustible gas and tar. The significant results of modification updraft are that the increases amount of recirculation of pyrolysis gas will increase the composition of H2 and reduce the composition of tar; then the composition of CO and CH4 is dependent on equivalence ratio. The results of the model for combustible gas composition are compared with previous study.
Cao, Yuansheng; Gong, Zongping; Quan, H. T.
2015-06-01
Motivated by the recent proposed models of the information engine [Proc. Natl. Acad. Sci. USA 109, 11641 (2012), 10.1073/pnas.1204263109] and the information refrigerator [Phys. Rev. Lett. 111, 030602 (2013), 10.1103/PhysRevLett.111.030602], we propose a minimal model of the information pump and the information eraser based on enzyme kinetics. This device can either pump molecules against the chemical potential gradient by consuming the information to be encoded in the bit stream or (partially) erase the information initially encoded in the bit stream by consuming the Gibbs free energy. The dynamics of this model is solved exactly, and the "phase diagram" of the operation regimes is determined. The efficiency and the power of the information machine is analyzed. The validity of the second law of thermodynamics within our model is clarified. Our model offers a simple paradigm for the investigating of the thermodynamics of information processing involving the chemical potential in small systems.
Cometary models - excitation of molecules at radio wavelengths and thermodynamics of the coma
International Nuclear Information System (INIS)
Crovisier, J.
1987-01-01
Models for molecular excitation under physical conditions of cometary atmospheres are obviously a requisite for interpreting radio spectroscopic observations of comets. A review of such models is presented. The prevailing excitation mechanism for the rotational lines of parent molecules is pumping of the fundamental vibrational bands by the solar infrared radiation field, followed by spontaneous decay; the molecular rotational population is then at fluorescence equilibrium. Another competing mechanism in the inner coma is thermal excitation by collisions. Its evaluation needs the knowledge of the coma kinetic temperature law, which up to now can only be achieved by modeling the coma thermodynamics. A review of cometary thermodynamical models is also given here, and the relations between such models and cometary molecular observations are discussed. 50 references
Concepts, challenges, and successes in modeling thermodynamics of metabolism.
Cannon, William R
2014-01-01
The modeling of the chemical reactions involved in metabolism is a daunting task. Ideally, the modeling of metabolism would use kinetic simulations, but these simulations require knowledge of the thousands of rate constants involved in the reactions. The measurement of rate constants is very labor intensive, and hence rate constants for most enzymatic reactions are not available. Consequently, constraint-based flux modeling has been the method of choice because it does not require the use of the rate constants of the law of mass action. However, this convenience also limits the predictive power of constraint-based approaches in that the law of mass action is used only as a constraint, making it difficult to predict metabolite levels or energy requirements of pathways. An alternative to both of these approaches is to model metabolism using simulations of states rather than simulations of reactions, in which the state is defined as the set of all metabolite counts or concentrations. While kinetic simulations model reactions based on the likelihood of the reaction derived from the law of mass action, states are modeled based on likelihood ratios of mass action. Both approaches provide information on the energy requirements of metabolic reactions and pathways. However, modeling states rather than reactions has the advantage that the parameters needed to model states (chemical potentials) are much easier to determine than the parameters needed to model reactions (rate constants). Herein, we discuss recent results, assumptions, and issues in using simulations of state to model metabolism.
Unified correspondence and canonicity
Zhao, Z.
2018-01-01
Correspondence theory originally arises as the study of the relation between modal formulas and first-order formulas interpreted over Kripke frames. We say that a modal formula and a first-order formula correspond to each other if they are valid on the same class of Kripke frames. Canonicity theory
Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations
DEFF Research Database (Denmark)
Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing
2007-01-01
Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...
Modeling the thermodynamic response of metallic first walls
International Nuclear Information System (INIS)
Merrill, B.J.; Jones, J.L.
1982-01-01
The first wall material of a fusion device must have a high resistance to the erosion resulting from plasma disruptions. This erosion is a consequence of melting and surface vaporization produced by the energy deposition of the disrupting plasma. Predicting the extent of erosion has been the subject of various investigations, and as a result, the thermal modeling has evolved to include material melting, kinetics of surface evaporation, vaporized material transport, and plasma-vaporized material interactions. The significance of plasma-vapor interaction has yet to be fully resolved. The model presented by Hassanein suggests that the vapor attenuates the plasma ions, thereby shielding the wall surface and reducing the extent of vaporization. The erosion model developed by EG and G Idaho, Inc., has been extended to include a detailed model for plasma-vaporized material interaction. This paper presents the model, as well as predictions for plasma, vaporized material and first wall conditions during a disruption
A thermodynamic model for aqueous solutions of liquid-like density
Energy Technology Data Exchange (ETDEWEB)
Pitzer, K.S.
1987-06-01
The paper describes a model for the prediction of the thermodynamic properties of multicomponent aqueous solutions and discusses its applications. The model was initially developed for solutions near room temperature, but has been found to be applicable to aqueous systems up to 300/sup 0/C or slightly higher. A liquid-like density and relatively small compressibility are assumed. A typical application is the prediction of the equilibrium between an aqueous phase (brine) and one or more solid phases (minerals). (ACR)
Thermodynamically consistent description of criticality in models of correlated electrons
Czech Academy of Sciences Publication Activity Database
Janiš, Václav; Kauch, Anna; Pokorný, Vladislav
2017-01-01
Roč. 95, č. 4 (2017), s. 1-14, č. článku 045108. ISSN 2469-9950 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : conserving approximations * Anderson model * Hubbard model * parquet equations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016
Xia, Ke; Shen, Guang-Bin; Zhu, Xiao-Qing
2015-06-14
32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.
Generalization of first-principles thermodynamic model: Application to hexagonal close-packed ε-Fe3N
DEFF Research Database (Denmark)
Bakkedal, Morten B.; Shang, Shu- Li; Liu, Zi-Kui
2016-01-01
A complete first-principles thermodynamic model was developed and applied to hexagonal close-packed structure ε-Fe3N. The electronic structure was calculated using density functional theory and the quasiharmonic phonon approximation to determine macroscopic thermodynamic properties at finite...
Modeling for thermodynamic activities of components in simulated reprocessing solutions
International Nuclear Information System (INIS)
Sasahira, Akira; Hoshikawa, Tadahiro; Kawamura, Fumio
1992-01-01
Analyses of chemical reactions have been widely carried out for soluble fission products encountered in nuclear fuel reprocessing. For detailed analyses of reactions, a prediction of the activity or activity coefficient for nitric acid, water, and several nitrates of fission products is needed. An idea for the predicted nitric acid activity was presented earlier. The model, designated the hydration model, does not predict the nitrate activity. It did, however, suggest that the activity of water would be a function of nitric acid activity but not the molar fraction of water. If the activities of nitric acid and water are accurately predicted, the activity of the last component, nitrate, can be calculated using the Gibbs-Duhem relation for chemical potentials. Therefore, in this study, the earlier hydration model was modified to evaluate the water activity more accurately. The modified model was experimentally examined in stimulated reprocessing solutions. It is concluded that the modified model was suitable for water activity, but further improvement was needed for the activity evaluation of nitric acid in order to calculate the nitrate activity
A molecular-thermodynamic model for polyelectrolyte solutions
Energy Technology Data Exchange (ETDEWEB)
Jiang, J.; Liu, H.; Hu, Y. [Thermodynamics Research Laboratory, East China University of Science and Technology, Shanghai 200237 (China); Prausnitz, J.M. [Department of Chemical Engineering, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)
1998-01-01
Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity {var_epsilon}. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter {Gamma} that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results. {copyright} {ital 1998 American Institute of Physics.}
SAHA-S thermodynamic model of solar plasma
International Nuclear Information System (INIS)
Gryaznov, V.K.; Iosilevskiy, I.L.; Fortov, V.E.; Starostin, A.N.; Roerich, V.K.; Baturin, V.A.; Ayukov, S.V.
2013-01-01
The model SAHA-S based on the chemical picture for the equation of state of the solar plasma is presented. The effects of Coulomb interaction, exchange and diffraction effects, free electron degeneracy, relativistic corrections, radiation pressure contributions are taken into account. The solar model based on SAHA-S taking into account extended element composition and variation of heavy element abundance is represented and discussed. The comparison of the SAHA-S equation of state data for a hydrogen plasma with the results of other models applicable to the description of the solar plasma equation of state and the results obtained with the first principle methods are demonstrated and discussed. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2010-09-01
Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than
International Nuclear Information System (INIS)
Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter
2010-01-01
Permanent storage of anthropogenic CO 2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO 2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO 2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO 2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO 2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO 2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO 2 sequestration. A review of thermodynamic data for CO 2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO 2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO 2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO 2 and CH 4 gases, carbonate aqueous species, and carbonate minerals. Values of Δ f G 298 o and/or log K r,298 o are available for essentially all of these compounds. However, log K r,T o or heat capacity values at temperatures above 298 K exist
A statistical-thermodynamic model for ordering phenomena in thin film intermetallic structures
International Nuclear Information System (INIS)
Semenova, Olga; Krachler, Regina
2008-01-01
Ordering phenomena in bcc (110) binary thin film intermetallics are studied by a statistical-thermodynamic model. The system is modeled by an Ising approach that includes only nearest-neighbor chemical interactions and is solved in a mean-field approximation. Vacancies and anti-structure atoms are considered on both sublattices. The model describes long-range ordering and simultaneously short-range ordering in the thin film. It is applied to NiAl thin films with B2 structure. Vacancy concentrations, thermodynamic activity profiles and the virtual critical temperature of order-disorder as a function of film composition and thickness are presented. The results point to an important role of vacancies in near-stoichiometric and Ni-rich NiAl thin films
On the ternary Ag – Cu – Ga system: Electromotive force measurement and thermodynamic modeling
International Nuclear Information System (INIS)
Gierlotka, Wojciech; Jendrzejczyk-Handzlik, Dominika; Fitzner, Krzysztof; Handzlik, Piotr
2015-01-01
The ternary silver–copper–gallium system found application as a solder material in jewel crafting and electronics, thus a phase diagram of this system seems to be important tool, which is necessary for a proper application of different alloys. The activity of gallium in liquid phase was determined by electromotive measurement technique and after that the equilibrium diagram of Ag – Cu – Ga was modeled based on available experimental data using Calphad approach. A set of Gibbs energies was found and used for calculation a phase diagram and thermodynamic properties of liquid phase. The experimental data was reproduced well by calculation. - Highlights: • For the first time activity of Ga in liquid Ag – Cu – Ga alloys was measured. • For the first time the ternary Ag – Cu – Ga system was thermodynamically modeled. • Modeled Ag – Cu – Ga system reproduces experimental data well
DEFF Research Database (Denmark)
Nguyen, Tuong-Van; Elmegaard, Brian
2016-01-01
of their performance. However, the thermodynamic models used for this purpose are characterised by different mathematical formulations, ranges of application and levels of accuracy. This may lead to inconsistent results when estimating hydrocarbon properties and assessing the efficiency of a given process. This paper...... are related to the prediction of the energy flows (up to 7%) and to the heat exchanger conductances (up to 11%), and they are not systematic errors. The results illustrate the superiority of using the GERG-2008 model for designing gas processes in real applications, with the aim of reducing their energy use....... They demonstrate as well that particular caution should be exercised when extrapolating the results of the conventional thermodynamic models to the actual conception of the gas liquefaction chain....
International Nuclear Information System (INIS)
Lothenbach, Barbara; Matschei, Thomas; Moeschner, Goeril; Glasser, Fred P.
2008-01-01
The composition of the phase assemblage and the pore solution of Portland cements hydrated between 0 and 60 deg. C were modelled as a function of time and temperature. The results of thermodynamic modelling showed a good agreement with the experimental data gained at 5, 20, and 50 deg. C. At 5 and at 20 deg. C, a similar phase assemblage was calculated to be present, while at approximately 50 deg. C, thermodynamic calculations predicted the conversion of ettringite and monocarbonate to monosulphate. Modelling showed that in Portland cements which have an Al 2 O 3 /SO 3 ratio of > 1.3 (bulk weight), above 50 deg. C monosulphate and monocarbonate are present. In Portland cements which contain less Al (Al 2 O 3 /SO 3 < 1.3), above 50 deg. C monosulphate and small amounts of ettringite are expected to persist. A good correlation between calculated porosity and measured compressive strength was observed
International Nuclear Information System (INIS)
Maevskii, K. K.; Kinelovskii, S. A.
2015-01-01
The numerical results of modeling of shock wave loading of mixtures with the SiO 2 component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described
Molecular Thermodynamic Modeling of Fluctuation Solution Theory Properties
DEFF Research Database (Denmark)
O’Connell, John P.; Abildskov, Jens
2013-01-01
for densities and gas solubilities, including ionic liquids and complex mixtures such as coal liquids. The approach is especially useful in systems with strong nonidealities. This chapter describes successful application of such modeling to a wide variety of systems treated over several decades and suggests how...
A thermodynamically consistent model of shape-memory alloys
Czech Academy of Sciences Publication Activity Database
Benešová, Barbora
2011-01-01
Roč. 11, č. 1 (2011), s. 355-356 ISSN 1617-7061 R&D Projects: GA ČR GAP201/10/0357 Institutional research plan: CEZ:AV0Z20760514 Keywords : slape memory alloys * model based on relaxation * thermomechanic coupling Subject RIV: BA - General Mathematics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201110169/abstract
International Nuclear Information System (INIS)
Zaghloul, Mofreh R.
2003-01-01
Flibe (2LiF-BeF2) is a molten salt that has been chosen as the coolant and breeding material in many design studies of the inertial confinement fusion (ICF) chamber. Flibe plasmas are to be generated in the ICF chamber in a wide range of temperatures and densities. These plasmas are more complex than the plasma of any single chemical species. Nevertheless, the composition and thermodynamic properties of the resulting flibe plasmas are needed for the gas dynamics calculations and the determination of other design parameters in the ICF chamber. In this paper, a simple consistent model for determining the detailed plasma composition and thermodynamic functions of high-temperature, fully dissociated and partially ionized flibe gas is presented and used to calculate different thermodynamic properties of interest to fusion applications. The computed properties include the average ionization state; kinetic pressure; internal energy; specific heats; adiabatic exponent, as well as the sound speed. The presented results are computed under the assumptions of local thermodynamic equilibrium (LTE) and electro-neutrality. A criterion for the validity of the LTE assumption is presented and applied to the computed results. Other attempts in the literature are assessed with their implied inaccuracies pointed out and discussed
Thermodynamic modeling of the formation and stability of small tin clusters and their ions
International Nuclear Information System (INIS)
Kodlaa, A.; Suliman, A.
2005-01-01
Based on the results of previous quantum-chemical study of electronic structure properties for neutral and single positively and negatively charged thin clusters in the size range of N 2-17 atoms, and on the thermodynamic laws, we have studied the thermodynamic properties of tin clusters and their ions. The characteristic amounts (cohesive enthalpy, formation enthalpy, fragmentation enthalpy, entropy and free enthalpy) for the formation and stability of these clusters at different temperatures were calculated. From the results, which are presented and discussed in this work, one can observe the following: The tin clusters Sn N (N=2-17) and their cations Sn + N and anions Sn - N are formed in the gas phase, and this agrees with experimental results. The clusters Sn 3 and Sn 1 0 are the most stable clusters of all. Here we also, find a correspondence with the results of the experimental studies. Our results go beyond that since we have found Sn 1 5 is also specially stable. By this thermodynamic study we could evaluate approximately the formation and stability of small neutral, single positively and negatively charged tin clusters. It has also allowed us to study the effects of the temperature on the formation and stability of these clusters. The importance of such study is not only what mentioned above, but it is also the first thermodynamic study for modeling the formation and stability of small tin clusters. (author)
Quaternion Linear Canonical Transform Application
Bahri, Mawardi
2015-01-01
Quaternion linear canonical transform (QLCT) is a generalization of the classical linear canonical transfom (LCT) using quaternion algebra. The focus of this paper is to introduce an application of the QLCT to study of generalized swept-frequency filter
Canonical transformations and generating functionals
Broer, L.J.F.; Kobussen, J.A.
1972-01-01
It is shown that canonical transformations for field variables in hamiltonian partial differential equations can be obtained from generating functionals in the same way as classical canonical transformations from generating functions. A simple proof of the relation between infinitesimal invariant
Quantum canonical ensemble: A projection operator approach
Magnus, Wim; Lemmens, Lucien; Brosens, Fons
2017-09-01
Knowing the exact number of particles N, and taking this knowledge into account, the quantum canonical ensemble imposes a constraint on the occupation number operators. The constraint particularly hampers the systematic calculation of the partition function and any relevant thermodynamic expectation value for arbitrary but fixed N. On the other hand, fixing only the average number of particles, one may remove the above constraint and simply factorize the traces in Fock space into traces over single-particle states. As is well known, that would be the strategy of the grand-canonical ensemble which, however, comes with an additional Lagrange multiplier to impose the average number of particles. The appearance of this multiplier can be avoided by invoking a projection operator that enables a constraint-free computation of the partition function and its derived quantities in the canonical ensemble, at the price of an angular or contour integration. Introduced in the recent past to handle various issues related to particle-number projected statistics, the projection operator approach proves beneficial to a wide variety of problems in condensed matter physics for which the canonical ensemble offers a natural and appropriate environment. In this light, we present a systematic treatment of the canonical ensemble that embeds the projection operator into the formalism of second quantization while explicitly fixing N, the very number of particles rather than the average. Being applicable to both bosonic and fermionic systems in arbitrary dimensions, transparent integral representations are provided for the partition function ZN and the Helmholtz free energy FN as well as for two- and four-point correlation functions. The chemical potential is not a Lagrange multiplier regulating the average particle number but can be extracted from FN+1 -FN, as illustrated for a two-dimensional fermion gas.
Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis
International Nuclear Information System (INIS)
Kwon, Hyukjoon; Sprengel, Michael; Ivantysynova, Monika
2016-01-01
Hybrid vehicles have become a popular alternative to conventional powertrain architectures by offering improved fuel efficiency along with a range of environmental benefits. Hydraulic Hybrid Vehicles (HHV) offer one approach to hybridization with many benefits over competing technologies. Among these benefits are lower component costs, more environmentally friendly construction materials, and the ability to recover a greater quantity of energy during regenerative braking which make HHVs partially well suited to urban environments. In order to further the knowledge base regarding HHVs, this paper explores the thermodynamic characteristics of such a system. A system model is detailed for both the hydraulic and thermal components of a closed circuit hydraulic hybrid transmission following the FTP-72 driving cycle. Among the new techniques proposed in this paper is a novel method for capturing rapid thermal transients. This paper concludes by comparing the results of this model with experimental data gathered on a Hardware-in-the-Loop (HIL) transmission dynamometer possessing the same architecture, components, and driving cycle used within the simulation model. This approach can be used for several applications such as thermal stability analysis of HHVs, optimal thermal management, and analysis of the system's thermodynamic efficiency. - Highlights: • Thermal modeling for HHVs is introduced. • A model for the hydraulic and thermal system is developed for HHVs. • A novel method for capturing rapid thermal transients is proposed. • The thermodynamic system diagram of a series HHV is predicted.
Estimation model for evaporative emissions from gasoline vehicles based on thermodynamics.
Hata, Hiroo; Yamada, Hiroyuki; Kokuryo, Kazuo; Okada, Megumi; Funakubo, Chikage; Tonokura, Kenichi
2018-03-15
In this study, we conducted seven-day diurnal breathing loss (DBL) tests on gasoline vehicles. We propose a model based on the theory of thermodynamics that can represent the experimental results of the current and previous studies. The experiments were performed using 14 physical parameters to determine the dependence of total emissions on temperature, fuel tank fill, and fuel vapor pressure. In most cases, total emissions after an apparent breakthrough were proportional to the difference between minimum and maximum environmental temperatures during the day, fuel tank empty space, and fuel vapor pressure. Volatile organic compounds (VOCs) were measured using a Gas Chromatography Mass Spectrometer and Flame Ionization Detector (GC-MS/FID) to determine the Ozone Formation Potential (OFP) of after-breakthrough gas emitted to the atmosphere. Using the experimental results, we constructed a thermodynamic model for estimating the amount of evaporative emissions after a fully saturated canister breakthrough occurred, and a comparison between the thermodynamic model and previous models was made. Finally, the total annual evaporative emissions and OFP in Japan were determined and compared by each model. Copyright © 2017 Elsevier B.V. All rights reserved.
Thermodynamic Bethe ansatz for boundary sine-Gordon model
International Nuclear Information System (INIS)
Lee, Taejun; Rim, Chaiho
2003-01-01
(R-channel) TBA is elaborated to find the effective central charge dependence on the boundary parameters for the massless boundary sine-Gordon model with the coupling constant (8π)/β 2 =1+λ with λ a positive integer. Numerical analysis of the massless boundary TBA demonstrates that at an appropriate boundary parameter range (cusp point) there exists a singularity crossing phenomena and this effect should be included in TBA to have the right behavior of the effective central charge
Thermodynamic model of binding of flexible bivalent haptens to antibody
Energy Technology Data Exchange (ETDEWEB)
Dembo, M; Goldstein, B
1978-01-01
Studies by Wilder et al. of the binding of Fab' fragments to small haptens have shown that the cross-linking constant (the equilibrium constant for binding an additional Fab' fragment to a hapten-Fab' complex) is strongly dependent on the length of the hapten. We present a simple model for predicting the relationship between the intermolecular cross-linking constant and the monovalent hapten-antibody binding constant. In particular we used the model to obtain the dependence of the cross-linking constant on the length of th hapten, the depth to which the hapten fills th Fab' binding site, and the size of the Fab' fragment. To test the model, we devised expressions which allowed us to analyze the data of Wilder et al. From their data we determined the values of two parameters which we took to be unknown in the theory, the size of the Fab' fragment and the depth to which the hapten fills the Fab' binding site. The values arrived at in this way agreed well with published measurements of these parameters.
Canonical transformations of Kepler trajectories
International Nuclear Information System (INIS)
Mostowski, Jan
2010-01-01
In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these transformations change the eccentricity of the orbit. A method of obtaining elliptic trajectories from the circular ones with the help of canonical trajectories is discussed.
Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview
International Nuclear Information System (INIS)
Verhelst, S.; Sheppard, C.G.W.
2009-01-01
'Multi-zone thermodynamic engine model' is a generic term adopted here for the type of model also referred to as quasi-dimensional, two-zone, three-zone, etc.; based on the laws of mass and energy conservation and using a mass burning rate sub-model (as opposed to a prescribed mass burning rate) to predict the in-cylinder pressure and temperature throughout the power cycle. Such models have been used for about three decades and provide valuable tools for rapid evaluation of the influence of key engine parameters. Numerous papers have been published on the development of models of varying complexity and their application. The current work is not intended as a comprehensive review of all these works, but presents an overview of multi-zone thermodynamic models for spark-ignition engines, their pros and cons, the model equations and sub-models used to account for various processes such as turbulent wrinkling, flame development, flame geometry, heat transfer, etc. It is suggested that some past terminology adopted to distinguish combustion models (e.g. 'entrainment' versus 'flamelet') is artificial and confusing; it can also be difficult to compare the different models used. Naturally, different models use varying underlying assumptions; however, the influence of several physical processes has frequently been incorporated into one term, not always well documented or clearly described. The authors propose a unified framework that can be used to compare different sub-models on the same basis, with particular focus on turbulent combustion models.
Atomistic modeling of thermodynamic equilibrium and polymorphism of iron
International Nuclear Information System (INIS)
Lee, Tongsik; Baskes, Michael I; Valone, Steven M; Doll, J D
2012-01-01
We develop two new modified embedded-atom method (MEAM) potentials for elemental iron, intended to reproduce the experimental phase stability with respect to both temperature and pressure. These simple interatomic potentials are fitted to a wide variety of material properties of bcc iron in close agreement with experiments. Numerous defect properties of bcc iron and bulk properties of the two close-packed structures calculated with these models are in reasonable agreement with the available first-principles calculations and experiments. Performance at finite temperatures of these models has also been examined using Monte Carlo simulations. We attempt to reproduce the experimental iron polymorphism at finite temperature by means of free energy computations, similar to the procedure previously pursued by Müller et al (2007 J. Phys.: Condens. Matter 19 326220), and re-examine the adequacy of the conclusion drawn in the study by addressing two critical aspects missing in their analysis: (i) the stability of the hcp structure relative to the bcc and fcc structures and (ii) the compatibility between the temperature and pressure dependences of the phase stability. Using two MEAM potentials, we are able to represent all of the observed structural phase transitions in iron. We discuss that the correct reproductions of the phase stability among three crystal structures of iron with respect to both temperature and pressure are incompatible with each other due to the lack of magnetic effects in this class of empirical interatomic potential models. The MEAM potentials developed in this study correctly predict, in the bcc structure, the self-interstitial in the 〈110〉 orientation to be the most stable configuration, and the screw dislocation to have a non-degenerate core structure, in contrast to many embedded-atom method potentials for bcc iron in the literature. (paper)
Bona Fide Thermodynamic Temperature in Nonequilibrium Kinetic Ising Models
Sastre, Francisco; Dornic, Ivan; Chaté, Hugues
2003-01-01
We show that a nominal temperature can be consistently and uniquely defined everywhere in the phase diagram of large classes of nonequilibrium kinetic Ising spin models. In addition, we confirm the recent proposal that, at critical points, the large-time ``fluctuation-dissipation ratio'' $X_\\infty$ is a universal amplitude ratio and find in particular $X_\\infty \\approx 0.33(2)$ and $X_\\infty = 1/2$ for the magnetization in, respectively, the two-dimensional Ising and voter universality classes.
The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model
Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.
2018-02-01
By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.
International Nuclear Information System (INIS)
Hoh, Y.C.
1977-03-01
Chemically based thermodynamic models to predict the distribution coefficients and the separation factors for the liquid--liquid extraction of lanthanides-organophosphorus compounds were developed by assuming that the quotient of the activity coefficients of each species varies slightly with its concentrations, by using aqueous lanthanide or actinide complexes stoichiometric stability constants expressed as its degrees of formation, by making use of the extraction mechanism and the equilibrium constant for the extraction reaction. For a single component system, the thermodynamic model equations which predict the distribution coefficients, are dependent on the free organic concentration, the equilibrated ligand and hydrogen ion concentrations, the degree of formation, and on the extraction mechanism. For a binary component system, the thermodynamic model equation which predicts the separation factors is the same for all cases. This model equation is dependent on the degrees of formation of each species in their binary system and can be used in a ternary component system to predict the separation factors for the solutes relative to each other
A new model for thermodynamic analysis on wetting behavior of superhydrophobic surfaces
International Nuclear Information System (INIS)
Zhang Hongyun; Li Wen; Fang Guoping
2012-01-01
Superhydrophobic surfaces have shown inspiring applications in microfluidics, and self-cleaning coatings owing to water-repellent and low-friction properties. However, thermodynamic mechanism responsible for contact angle hysteresis (CAH) and free energy barrier (FEB) have not been understood completely yet. In this work, we propose an intuitional 3-dimension (3D) droplet model along with a reasonable thermodynamic approach to gain a thorough insight into the physical nature of CAH. Based on this model, the relationships between radius of three-phase contact line, change in surface free energy (CFE), average or local FEB and contact angle (CA) are established. Moreover, a thorough theoretical consideration is given to explain the experimental phenomena related to the superhydrophobic behavior. The present study can therefore provide some guidances for the practical fabrications of the superhydrophobic surfaces.
M3FT-15OR0202212: SUBMIT SUMMARY REPORT ON THERMODYNAMIC EXPERIMENT AND MODELING
Energy Technology Data Exchange (ETDEWEB)
McMurray, Jake W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brese, Robert G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Silva, Chinthaka M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Besmann, Theodore M. [Univ. of South Carolina, Columbia, SC (United States)
2015-09-01
Modeling the behavior of nuclear fuel with a physics-based approach uses thermodynamics for key inputs such as chemical potentials and thermal properties for phase transformation, microstructure evolution, and continuum transport simulations. Many of the lanthanide (Ln) elements and Y are high-yield fission products. The U-Y-O and U-Ln-O ternaries are therefore key subsystems of multi-component high-burnup fuel. These elements dissolve in the dominant urania fluorite phase affecting many of its properties. This work reports on an effort to assess the thermodynamics of the U-Pr-O and U-Y-O systems using the CALPHAD (CALculation of PHase Diagrams) method. The models developed within this framework are capable of being combined and extended to include additional actinides and fission products allowing calculation of the phase equilibria, thermochemical and material properties of multicomponent fuel with burnup.
Thermodynamics of QCD from Sakai-Sugimoto model
International Nuclear Information System (INIS)
Isono, Hiroshi; Mandal, Gautam; Morita, Takeshi
2015-01-01
Till date, the only consistent description of the deconfinement phase of the Sakai-Sugimoto model appears to be provided by the analysis of http://dx.doi.org/10.1007/JHEP09(2011)073. The current version of the analysis, however, has a subtlety regarding the monodromy of quarks around the Euclidean time circle. In this note, we revisit and resolve this issue by considering the effect of an imaginary baryon chemical potential on quark monodromies. With this ingredient, the proposal of http://dx.doi.org/10.1007/JHEP09(2011)073 for investigating finite temperature QCD using holography is firmly established. Additionally, our technique allows a holographic computation of the free energy as a function of the imaginary chemical potential in the deconfinement phase; we show that our result agrees with the corresponding formula obtained from perturbative QCD, namely the Roberge-Weiss potential.
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-02-01
In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.
Network thermodynamic curation of human and yeast genome-scale metabolic models.
Martínez, Verónica S; Quek, Lake-Ee; Nielsen, Lars K
2014-07-15
Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Litt, Jonathan S. (Compiler)
2018-01-01
NASA Glenn Research Center hosted a Users' Workshop on the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) on August 21, 2017. The objective of this workshop was to update the user community on the latest features of T-MATS, and to provide a forum to present work performed using T-MATS. Presentations highlighted creative applications and the development of new features and libraries, and emphasized the flexibility and simulation power of T-MATS.
Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter
International Nuclear Information System (INIS)
Martin, R.
1977-01-01
The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermi's equation. Approximate calculus methods are found from analytic study of the T-Fermi's equation for non zero temperature. T-Fermi's equation is solved with the code ''Golem''written in Fortran V (Univac). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (author) [es
International Nuclear Information System (INIS)
Minelli, Matteo; Doghieri, Ferruccio
2014-01-01
Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps
A thermodynamical model for stress-fiber organization in contractile cells
Foucard, Louis; Vernerey, Franck J.
2012-01-01
Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell’s mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and dif...
Thermodynamic model for the elastic form factor in diffraction scattering of protons
International Nuclear Information System (INIS)
Grashin, A.F.; Evstratenko, A.S.; Lepeshkin, M.V.
1988-01-01
An explicit expression is obtained for the differential pp(p-bar)-scattering cross section in the diffraction-cone region by employing the thermodynamic model for the elastic form factor previously proposed in Ref. 4. Data for the energy region 16.3≤(s)/sup 1/2/ ≤546 GeV have been analyzed and significant deviations have been discovered from the commonly used approximations in the form of linear or quadratic exponentials
Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter
International Nuclear Information System (INIS)
Martin, R.
1977-01-01
The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermis equation. Approximate calculus methods are found from analytic study of the T-Fermis equation for non zero temperature. T-Fermis equation is solved with the code GOLEM written in FORTRAN V (UNIVAC). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (Author) 24 refs
Thermodynamic modeling of phase relations and metasomatism in shear zones
Goncalves, P.; Oliot, E.; Marquer, D.
2009-04-01
Ductile shear zones have been recognized for a long time as privileged sites of intense fluid-rock interactions in the crust. In most cases they induce focused changes in mineralogy and bulk chemical composition (metasomatism) which in turn may control the deformation and fluid-migration processes. Therefore understanding these processes requires in a first step to be able to model phase relations in such open system. In this contribution, emphasizes in placed on metasomatic aspects of the problem. Indeed , in many ductile shear zones reported in metagranites, deformation and fluid-rock interactions are associated with gain in MgO and losses of CaO and Na2O (K2O is also a mobile component but it can be either gained or lost). Although the mineralogical consequences of this so-called Mg-metasomatism are well-documented (replacement of K-feldspar into phengite, breakdown of plagioclase into ab + ep, crystallization of chlorite), the origin of this coupled mass-transfer is still unknown. We have performed a forward modeling of phase relationships using petrogenetic grids and pseudosections that consider variations in chemical potential (μ) of the mobile elements (MgO, CaO, Na2O). Chemical potential gradients being the driving force of mass transfer, μ-μ diagrams are the most appropriate diagrams to model open systems where fluid-rock interactions are prominent. Chemical potential diagrams are equivalent to activity diagrams but our approach differs from previous work because (1) solid solutions are taken into account (2) phase relations are modeled in a more realistic chemical system (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) and (3) the use of pseudosections allows to predict changes of the mineralogy (modes, composition) for the specific bulk composition studied. A particular attention is paid to the relationships between component concentrations and chemical potentials, which is not obvious in multi-component system. The studied shear zone is located in the Grimsel
Thermodynamical modeling of nuclear glasses: coexistence of amorphous phases
International Nuclear Information System (INIS)
Adjanor, G.
2007-11-01
Investigating the stability of borosilicate glasses used in the nuclear industry with respect to phase separation requires to estimate the Gibbs free energies of the various phases appearing in the material. In simulation, using current computational resources, a direct state-sampling of a glassy system with respect to its ensemble statistics is not ergodic and the estimated ensemble averages are not reliable. Our approach consists in generating, at a given cooling rate, a series of quenches, or paths connecting states of the liquid to states of the glass, and then in taking into account the probability to generate the paths leading to the different glassy states in ensembles averages. In this way, we introduce a path ensemble formalism and calculate a Landau free energy associated to a glassy meta-basin. This method was validated by accurately mapping the free energy landscape of a 38-atom glassy cluster. We then applied this approach to the calculation of the Gibbs free energies of binary amorphous Lennard-Jones alloys, and checked the correlation between the observed tendencies to order or to phase separate and the computed Gibbs free energies. We finally computed the driving force to phase separation in a simplified three-oxide nuclear glass modeled by a Born-Mayer-Huggins potential that includes a three-body term, and we compared the estimated quantities to the available experimental data. (author)
Directory of Open Access Journals (Sweden)
Wei Wang
2013-01-01
Full Text Available The precipitation of wax/solid paraffin during production, transportation, and processing of crude oil is a serious problem. It is essential to have a reliable model to predict the wax appearance temperature and the amount of solid precipitated at different conditions. This paper presents a work to predict the solid precipitation based on solid-liquid equilibrium with regular solution-molecular thermodynamic theory and characterization of the crude oil plus fraction. Due to the differences of solubility characteristics between solid and liquid phase, the solubility parameters of liquid and solid phase are calculated by a modified model. The heat capacity change between solid and liquid phase is considered and estimated in the thermodynamic model. An activity coefficient based thermodynamic method combined with two characteristic methods to calculate wax precipitation in crude oil, especially heavy oil, has been tested with experimental data. The results show that the wax appearance temperature and the amount of weight precipitated can be predicted well with the experimental data.
Thermodynamic data base needs for modeling studies of the Yucca Mountain project
International Nuclear Information System (INIS)
Palmer, C.E.A.; Silva, R.J.; Bucher, J.J.
1996-01-01
This document is the first in a series of documents outlining the thermodynamic data needs for performing geochemical modeling calculations in support of various waste package performance assessment activities for the Yucca Mountain Project. The documents are intended to identify and justify the critical thermodynamic data needs for the data base to be used with the models. The Thermodynamic Data Determinations task supplies data needed to resolve performance or design issues and the development of the data base will remain an iterative process as needs change or data improve. For example, data are needed to predict: (1) major ion groundwater chemistry and its evolution, (2) mineral stabilities and evolution, (3) engineered barrier near-field transport and retardation properties, (4) changes in geochemical conditions and processes, (5) solubilities, speciation and transport of waste radionuclides and (6) the dissolution of corrosion of construction and canister materials and the effect on groundwater chemistry and radionuclide solubilities and transport. The system is complex and interactive, and data need to be supplied in order to model the changes and their effect on other components of the system, e.g., temperature, pH and redox conditions (Eh). Through sensitivity and uncertainty analyses, the critical data and system parameters will be identified and the acceptable variations in them documented
Liquidus Projection and Thermodynamic Modeling of a Sn-Ag-Zn System
Chen, Sinn-wen; Chiu, Wan-ting; Gierlotka, Wojciech; Chang, Jui-shen; Wang, Chao-hong
2017-12-01
Sn-Ag-Zn alloys are promising Pb-free solders. In this study, the Sn-Ag-Zn liquidus projection was determined, and the Sn-Ag-Zn thermodynamic modeling was developed. Various Sn-Ag-Zn alloys were prepared. Their as-cast microstructures and primary solidification phases were examined. The invariant reaction temperatures of the ternary Sn-Ag-Zn system were determined. The liquidus projection of the Sn-Ag-Zn ternary system was constructed. It was found that the Sn-Ag-Zn ternary system has eight primary solidification phases: ɛ2-AgZn3, γ-Ag5Zn8, β-AgZn, ζ-Ag4Sn, (Ag), ɛ1-Ag3Sn, β-(Sn) and (Zn) phases. There are eight ternary invariant reactions, and the liquid + (Ag) = β-AgZn + ζ-Ag4Sn reaction is of the highest temperature at 935.5 K. Thermodynamic modeling of the ternary Sn-Ag-Zn system was also carried out in this study based on the thermodynamic models of the three constituent binary systems and the experimentally determined liquidus projection. The liquidus projection and the isothermal sections are calculated. The calculated and experimentally determined liquidus projections are in good agreement.
Directory of Open Access Journals (Sweden)
Xuan L Liu
Full Text Available The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT and phase-equilibria experiments that led to X-ray diffraction (XRD and electron probe micro-analysis (EPMA measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS calculations predict a large bcc-A2 (disordered/B2 (ordered miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.
International Nuclear Information System (INIS)
Cascella, Franco; Sorin, Mikhail; Formosa, Fabien; Teyssedou, Alberto
2017-01-01
Highlights: • A model based on the electrical analogy theory has been developed to predict the operation of a Stirling engine. • The models takes into account the continuity, the momentum and the energy conservation equations. • The model predicts the operating conditions of the RE100 Free piston Stirling engine. • The model is sensible to the modeling of the effects of the machine load. - Abstract: The Stirling engines are inherently efficient; their thermodynamic cycles reach the Carnot efficiency. These technologies are suitable to operate under any low temperature difference between the hot and the cold sources. For these reasons, these engines can be considered as reliable power conversion systems to promote the conversion of low-grade waste heat generated by industrial plants. The need of a model to predict the behavior of these engines is of primary importance. Nevertheless, a great difficulty is encountered in developing such a model since it is not simple to take into account coupled thermodynamic and dynamic effects. This is the main reason why several models make use of electrical analogies to describe Stirling engines (in particular, free-piston machines): by assuming the pressure equivalent to a voltage and the flow rate to an electrical current, a coupled dynamic-thermodynamic analysis of the engine can be performed. In this paper, an electrical circuit whose behavior is equivalent to that of the engine is derived from the electrical analogy theory. To this aim, we propose an electrical analogy model based on the three conservation laws (mass, momentum and energy). Since limited experimental information is available in the open literature, the results obtained with the proposed model are compared with the experimental data collected at the NASA Lewis Research center for a free-piston Stirling engine i.e., the RE-1000 engine.
Decreasing Kd uncertainties through the application of thermodynamic sorption models
International Nuclear Information System (INIS)
Domènech, Cristina; García, David; Pękala, Marek
2015-01-01
Radionuclide retardation processes during transport are expected to play an important role in the safety assessment of subsurface disposal facilities for radioactive waste. The linear distribution coefficient (K d ) is often used to represent radionuclide retention, because analytical solutions to the classic advection–diffusion-retardation equation under simple boundary conditions are readily obtainable, and because numerical implementation of this approach is relatively straightforward. For these reasons, the K d approach lends itself to probabilistic calculations required by Performance Assessment (PA) calculations. However, it is widely recognised that K d values derived from laboratory experiments generally have a narrow field of validity, and that the uncertainty of the K d outside this field increases significantly. Mechanistic multicomponent geochemical simulators can be used to calculate K d values under a wide range of conditions. This approach is powerful and flexible, but requires expert knowledge on the part of the user. The work presented in this paper aims to develop a simplified approach of estimating K d values whose level of accuracy would be comparable with those obtained by fully-fledged geochemical simulators. The proposed approach consists of deriving simplified algebraic expressions by combining relevant mass action equations. This approach was applied to three distinct geochemical systems involving surface complexation and ion-exchange processes. Within bounds imposed by model simplifications, the presented approach allows radionuclide K d values to be estimated as a function of key system-controlling parameters, such as the pH and mineralogy. This approach could be used by PA professionals to assess the impact of key geochemical parameters on the variability of radionuclide K d values. Moreover, the presented approach could be relatively easily implemented in existing codes to represent the influence of temporal and spatial changes in
International Nuclear Information System (INIS)
Nguyen, Tuong-Van; Elmegaard, Brian
2016-01-01
Highlights: • Six thermodynamic models used for evaluating gas liquefaction systems are compared. • Three gas liquefaction systems are modelled, assessed and optimised for each equation of state. • The predictions of thermophysical properties and energy flows are significantly different. • The GERG-2008 model is the only consistent one, while cubic, virial and statistical equations are unsatisfying. - Abstract: Natural gas liquefaction systems are based on refrigeration cycles – they consist of the same operations such as heat exchange, compression and expansion, but they have different layouts, components and working fluids. The design of these systems requires a preliminary simulation and evaluation of their performance. However, the thermodynamic models used for this purpose are characterised by different mathematical formulations, ranges of application and levels of accuracy. This may lead to inconsistent results when estimating hydrocarbon properties and assessing the efficiency of a given process. This paper presents a thorough comparison of six equations of state widely used in the academia and industry, including the GERG-2008 model, which has recently been adopted as an ISO standard for natural gases. These models are used to (i) estimate the thermophysical properties of a Danish natural gas, (ii) simulate, and (iii) optimise liquefaction systems. Three case studies are considered: a cascade layout with three pure refrigerants, a single mixed-refrigerant unit, and an expander-based configuration. Significant deviations are found between all property models, and in all case studies. The main discrepancies are related to the prediction of the energy flows (up to 7%) and to the heat exchanger conductances (up to 11%), and they are not systematic errors. The results illustrate the superiority of using the GERG-2008 model for designing gas processes in real applications, with the aim of reducing their energy use. They demonstrate as well that
Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions
International Nuclear Information System (INIS)
Kurepin, V. A.; Kulik, D. A.; Hitpold, A.; Nicolet, M.
2002-03-01
In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO 2 by incremental additions of O 2 in H 2 O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni phase, maintaining
Thermal effect on water retention curve of bentonite: experiment and thermodynamic modeling
International Nuclear Information System (INIS)
Qin Bing; Chen Zhenghai; Sun Faxin; Liu Yuemiao; Wang Ju
2012-01-01
The thermal effects on water retention curve of GMZ bentonite were investigated experimentally and theoretically. Water retention tests were conducted on GMZ bentonite at five temperatures ranging from 20℃ to 100℃. Test results showed that the water retention capacity and the hysteresis of the water retention curve decreased with increasing temperature, and that the water retention curves at different temperatures were almost parallel to each other. Based on the thermodynamics of sorption, a model was established to describe the temperature influence on the water retention curve. The model was validated by comparing the model predictions and the test results. (authors)
A new thermodynamic model of energetic molten fuel-coolant interactions
International Nuclear Information System (INIS)
Hall, A.N.
1987-01-01
A new thermodynamic model of energetic molten fuel-coolant interactions is presented, in which the response of fluid around the interaction zone is treated explicitly. By assuming that this fluid is compressed reversibly and adiabatically, a qualified lower limit to the efficiency of conversion of thermal energy to mechanical work is obtained. A detailed comparison of the model predictions with the results of the SUW series of experiments at AEE Winfrith is made. The predicted efficiencies are found to be in close agreement with those determined experimentally. Model predictions for a system of infinite volume are also presented. (author)
Directory of Open Access Journals (Sweden)
Stuart P Wilson
2017-01-01
Full Text Available A thermodynamic model of thermoregulatory huddling interactions between endotherms is developed. The model is presented as a Monte Carlo algorithm in which animals are iteratively exchanged between groups, with a probability of exchanging groups defined in terms of the temperature of the environment and the body temperatures of the animals. The temperature-dependent exchange of animals between groups is shown to reproduce a second-order critical phase transition, i.e., a smooth switch to huddling when the environment gets colder, as measured in recent experiments. A peak in the rate at which group sizes change, referred to as pup flow, is predicted at the critical temperature of the phase transition, consistent with a thermodynamic description of huddling, and with a description of the huddle as a self-organising system. The model was subjected to a simple evolutionary procedure, by iteratively substituting the physiologies of individuals that fail to balance the costs of thermoregulation (by huddling in groups with the costs of thermogenesis (by contributing heat. The resulting tension between cooperative and competitive interactions was found to generate a phenomenon called self-organised criticality, as evidenced by the emergence of avalanches in fitness that propagate across many generations. The emergence of avalanches reveals how huddling can introduce correlations in fitness between individuals and thereby constrain evolutionary dynamics. Finally, a full agent-based model of huddling interactions is also shown to generate criticality when subjected to the same evolutionary pressures. The agent-based model is related to the Monte Carlo model in the way that a Vicsek model is related to an Ising model in statistical physics. Huddling therefore presents an opportunity to use thermodynamic theory to study an emergent adaptive animal behaviour. In more general terms, huddling is proposed as an ideal system for investigating the interaction
A re-examination of thermodynamic modelling of U-Ru binary phase diagram
Energy Technology Data Exchange (ETDEWEB)
Wang, L.C.; Kaye, M.H., E-mail: matthew.kaye@uoit.ca [University of Ontario Institute of Technology, Oshawa, ON (Canada)
2015-07-01
Ruthenium (Ru) is one of the more abundant fission products (FPs) both in fast breeder reactors and thermal reactors. Post irradiation examinations (PIE) show that both 'the white metallic phase' (MoTc-Ru-Rh-Pd) and 'the other metallic phase' (U(Pd-Rh-Ru)3) are present in spent nuclear fuels. To describe this quaternary system, binary subsystems of uranium (U) with Pd, Rh, and Ru are necessary. Presently, only the U-Ru system has been thermodynamically described but with some problems. As part of research on U-Ru-Rh-Pd quaternary system, an improved consistent thermodynamic model describing the U-Ru binary phase diagram has been obtained. (author)
International Nuclear Information System (INIS)
Qin Shaojin; Yu Lu.
1996-03-01
The critical exponent of the momentum distribution near k F , 3k F and 5k F are studied numerically for one-dimensional U → ∞ Hubbard model, using finite size systems and extrapolating them to the thermodynamic limit. Results at k F agree with earlier calculations, while at 3k F exponents less than 1 are obtained for finite size systems with extrapolation to 1 (regular behaviour) in the thermodynamic limit, in contrast to earlier analytic prediction 9/8. The distribution is regular at 5k F even for finite systems. The singularity near 3k F is interpreted as due to low energy excitations near 3k F in finite systems. (author). 18 refs, 4 figs, 1 tab
Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution
Directory of Open Access Journals (Sweden)
Ghaemi Ahad
2017-09-01
Full Text Available In this research, thermodynamic and absorption rate of carbon dioxide in monoethanolamine (MEA solution was investigated. A correlation based on both liquid and a gas phase variable for carbon dioxide absorption rate was presented using the π-Buckingham theorem. The correlation was constructed based on dimensionless numbers, including carbon dioxide loading, carbon dioxide partial pressure, film parameter and the ratio of liquid phase film thickness and gas phase film thickness. The film parameter is used to apply the effect of chemical reactions on absorption rate. A thermodynamic model based on the extended-UNIQUAC equations for the activity coefficients coupled with the Virial equation of state for representing the non-ideality of the vapor phase was used to predict the CO2 solubility in the CO2-MEA-H2O system. The average absolute error of the results for the correlation was 6.4%, which indicates the accuracy of the proposed correlation.
Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing
Energy Technology Data Exchange (ETDEWEB)
Liu Huachu; He Yanlin [School of Material Science and Engineering, Shanghai University, No.149 Yanchang Road Shanghai 200072 (China); Li Lin, E-mail: liling@shu.edu.cn [School of Material Science and Engineering, Shanghai University, No.149 Yanchang Road Shanghai 200072 (China)
2009-12-15
Firstly in this paper, the influence of H{sub 2} and water vapor content on selective oxidation occurred in continuous hot-dip galvanizing has been studied by thermodynamics and Wagner model, then, the Gibbs energy of each possible aluminothermic reducing reaction in zinc bath was calculated in order to judge the possibility of these reactions. It was found that oxides' amounts and oxidation type were greatly related to the H{sub 2} and water content in the annealing atmosphere. And from the view of thermodynamics, surface oxides (MnO, Cr{sub 2}O{sub 3}, SiO{sub 2} etc.) can be reduced by the effective Al in Zn bath.
International Nuclear Information System (INIS)
Dufour, C.; Toulemonde, M.; Paumier, E.; Lesellier de Chezelles, B.; Delignon, V.
1991-01-01
Latent tracks have been observed in amorphous semi-conductors after heavy ion irradiation in the electronic stopping power regime. A transient thermodynamic model is developed including energy diffusion on the electron gas and on the atomic lattice and energy exchange between these two systems. A set of two non linear differential equations is solved numerically in cylindrical geometry in order to predict the radii of the latent tracks observed in amorphous germanium and silicon. A good agreement is obtained for the two materials using the same set of input parameters for the energy diffusion on the electronic system and the same coupling constant for the energy exchange between electron and lattice atoms despite the large differences in the macroscopic lattice thermodynamical parameters of the two materials
Thermodynamic model of a diesel engine to work with gas produced from biomass gasification
International Nuclear Information System (INIS)
Lesme Jaén, René; Silva Jardines, Fernando; Rodríguez Ortíz, Leandro Alexei; García Faure, Luis Gerónimo; Peralta Campos, Leonel Grave de; Oliva Ruiz, Luis; Iglesias Vaillant, Yunier
2017-01-01
The poor gas, obtained from the gasification of the biomass with air, has a high content of volatile substances, high stability to the ignition and can be used in internal combustion engines. In the present work the results of a thermodynamic model for a Diesel engine AshokLeyland, installed in 'El Brujo' sawmill of the Gran Piedra Baconao Forestry Company of Santiago de Cuba. From the composition and the combustion equation of the poor gas, the thermodynamic cycle calculation and the energy balance of the engine for different loads. Cycle parameters, fuel air ratio, CO2 emissions, engine power and performance were determined. As the main result of the work, the engine had an effective efficiency of 22.3%, consumed 3605.5 grams of fuel / KWh and emits 2055 grams of CO2 / kWh. (author)
Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model
Borcherding, Daniel; Frahm, Holger
2018-05-01
The contribution of anyonic degrees of freedom emerging in the non-Abelian spin sector of a one-dimensional system of interacting fermions carrying both spin and SU(N f ) orbital degrees of freedom to the thermodynamic properties of the latter is studied based on the exact solution of the model. For sufficiently small temperatures and magnetic fields the anyons appear as zero energy modes localized at the massive kink excitations (Tsvelik 2014 Phys. Rev. Lett. 113 066401). From their quantum dimension they are identified as spin- anyons. The density of kinks (and anyons) can be controlled by an external magnetic field leading to the formation of a collective state of these anyons described by a parafermion conformal field theory for large fields. Based on the numerical analysis of the thermodynamic Bethe ansatz equations we propose a phase diagram for the anyonic modes.
Characterization and modelling of the thermodynamic behavior of SFR fuel under irradiation
International Nuclear Information System (INIS)
Pham-Thi, Tam-Ngoc
2014-01-01
For a burn-up higher than 7 at%, the volatile FP like Cs, I and Te or metallic (Mo) are partially released from the fuel pellet in order to form a layer of compounds between the outer surface of the fuel and the inner surface of the stainless cladding. This layer is called the JOG, french acronym for Joint-Oxyde-Gaine. My subject is focused on two topics: the thermodynamic study of the (Cs-I-Te-Mo-O) system and the migration of those FP towards the gap to form the JOG. The thermodynamic study was the first step of my work. On the basis of critical literature survey, the following systems have been optimized by the CALPHAD method: Cs-Te, Cs-I and Cs-Mo-O. In parallel, an experimental study is undertaken in order to validate our CALPHAD modelling of the Cs-Te system. In a second step, the thermodynamic data coming from the CALPHAD modelling have been introduced into the database that we use with the thermochemical computation code ANGE (CEA code derived from the SOLGASMIX software) in order to calculate the chemical composition of the irradiated fuel versus burn-up and temperature. In a third and last step, the thermochemical computation code ANGE (Advanced Numeric Gibbs Energy minimizer) has been coupled with the fuel performance code GERMINAL V2, which simulates the thermo-mechanical behavior of SFR fuel. (author) [fr
Modeling thermodynamics of Fe-N phases; characterisation of e-Fe2N1-z
DEFF Research Database (Denmark)
Pekelharing, M.I.; Böttger, A.; Somers, Marcel A.J.
1999-01-01
In order to arrive at modeling the thermodynamics of Fe-N phases, including long-range (LRO) and short-range ordering (SRO) of the N atoms, it is important to understand the role of N interstitially dissolved in an Fe-host lattice. The crystal structure of -Fe2N1-z consists of an h.c.p. iron...... sublattice and a hexagonal nitrogen sublattice formed by octahedral interstices of the Fe sublattice [1]. Two ground-state structures have been proposed for the ordered arrangement of the N atoms on their own sublattice [1], which were shown to be thermodynamically favourable [2]: configuration A for Fe2N1...... investigated with X-ray diffraction (XRD) and Mössbauer spectroscopy. A thermodynamic model accounting for the two configurations of LRO of the N atoms [2,3] was fitted to the N-absorption isotherm at 723 K and resulted in the occupancies of the sites of the nitrogen sublattice. A miscibility gap between...
A thermodynamic model for the attack behaviour in stainless steel clad oxide fuel pins
International Nuclear Information System (INIS)
Goetzmann, O.
1979-01-01
So far, post irradiation examination of burnt fuel pins has not revealed a clear cut picture of the cladding attack situation. For seemingly same conditions sometimes attack occurs, sometimes not. This model tries to depict the reaction possibilities along the inner cladding wall on the basis of thermodynamic facts in the fuel pin. It shows how the thermodynamic driving force for attack changes along the fuel column, and with different initial and operational conditions. Two criteria for attack are postulated: attack as a result of the direct reaction of reactive elements with cladding components; and attack as a result of the action of a special agent (CsOH). In defining a reaction potenial the oxygen potential, the temperature conditions (cladding temperature and fuel surface temperature), and the fission products are involved. For the determination of the oxygen potential at the cladding, three models for the redistribution of oxygen across the fuel/clad gap are offered. The effect of various parameters, like rod power, gap conductance, oxygen potential, inner wall temperature, on the thermodynamic potential for attack is analysed. (Auth.)
DEFF Research Database (Denmark)
Herslund, Peter Jørgensen; Daraboina, Nagu; Thomsen, Kaj
2014-01-01
This work documents both experimental data, and by thermodynamic modelling, the synergistic effect occurring in promoted carbon dioxide hydrate systems at the simultaneous presence of tetrahydrofuran and cyclopentane.Cyclopentane has previously been considered a reference among gas hydrate promot...
International Nuclear Information System (INIS)
Ohno, M.; Kozlov, A.; Arroyave, R.; Liu, Z.K.; Schmid-Fetzer, R.
2006-01-01
The thermodynamic model of the Ca-Sn system was obtained, utilizing the first-principles total energies and heat capacities calculated from 0 K to the melting points of the major phases. Since the first-principles result for the formation energy of the dominating Ca 2 Sn intermetallic phase is drastically different from the reported experimental data, we performed two types of thermodynamic modeling: one based on the first-principles output and the other based on the experimental data. In the former modeling, the Gibbs energies of the intermetallic compounds were fully quantified from the first-principles finite temperature properties and the superiority of the former thermodynamic description is demonstrated. It is shown that it is the combination of finite temperature first-principle calculations and the Calphad modeling tool that provides a sound basis for identifying and deciding on conflicting key thermodynamic data in the Ca-Sn system
Experimental investigation and thermodynamic modeling of the Ga–Zr system
Energy Technology Data Exchange (ETDEWEB)
Luo, Wei [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Shuhong, E-mail: shhliu@csu.edu.cn [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Tang, Ying [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Yin, Ming [Thermal Processing Technology Center, Illinois Institute of Technology (IIT), 10 West 32nd Street, Chicago, IL 60616 (United States); Sundman, Bosse [INSTN, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Du, Yong [School of Material Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Nash, Philip [Thermal Processing Technology Center, Illinois Institute of Technology (IIT), 10 West 32nd Street, Chicago, IL 60616 (United States); Tao, Huijin [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)
2014-02-25
Highlights: • Phase equilibria of the Ga–Zr system were investigated by experiment. • Δ{sub f}Hs for intermetallic compounds were computed via first–principles calculations. • The enthalpy of formation at 298 K for αGaZr was measured by calorimetry. • A set of self-consistent thermodynamic parameters was obtained. -- Abstract: Phase equilibria of the Ga–Zr system were investigated by experiment and thermodynamic modeling. In the experimental part, eleven alloys were prepared by melting the pure elements and annealed. Both the as-cast and annealed samples were analyzed by X-ray diffraction, optical microscopy, and scanning electron microscope. The annealed alloys were investigated by differential thermal analysis and electron probe microanalysis. In order to assist the thermodynamic modeling, the enthalpies of formation at 0 K for the GaZr{sub 2}, Ga{sub 3}Zr{sub 5}, Ga{sub 2}Zr{sub 3}, Ga{sub 4}Zr{sub 5}, αGaZr, Ga{sub 3}Zr{sub 2}, Ga{sub 5}Zr{sub 3}, Ga{sub 2}Zr and Ga{sub 3}Zr phases were computed via first-principles calculations. The enthalpy of formation at 298 K for the αGaZr was measured by high temperature reaction calorimetry. Based on the experimental phase diagram data from the present work and the literature as well as the present first-principles calculations, the Ga–Zr system was critically assessed by means of CALPHAD approach. The calculated phase diagram and thermodynamic properties agree well with the available experimental data.
International Nuclear Information System (INIS)
Fang Zheng; Qiu Guanzhou
2007-01-01
A metallic solution model with adjustable parameter k has been developed to predict thermodynamic properties of ternary systems from those of its constituent three binaries. In the present model, the excess Gibbs free energy for a ternary mixture is expressed as a weighted probability sum of those of binaries and the k value is determined based on an assumption that the ternary interaction generally strengthens the mixing effects for metallic solutions with weak interaction, making the Gibbs free energy of mixing of the ternary system more negative than that before considering the interaction. This point is never considered in the models currently reported, where the only difference in a geometrical definition of molar values of components is considered that do not involve thermodynamic principles but are completely empirical. The current model describes the results of experiments very well, and by adjusting the k value also agrees with those from models used widely in the literature. Three ternary systems, Mg-Cu-Ni, Zn-In-Cd, and Cd-Bi-Pb are recalculated to demonstrate the method of determining k and the precision of the model. The results of the calculations, especially those in Mg-Cu-Ni system, are better than those predicted by the current models in the literature
International Nuclear Information System (INIS)
Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi
1987-01-01
The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.
Expansion of thermodynamic model of solute permeation through reverse osmosis membrane
International Nuclear Information System (INIS)
Nishimaki, Kenzo; Koyama, Akio
1994-01-01
Many studies have been performed on permeation mechanism of solute and solvent in membrane separation process like reverse osmosis or ultrafiltration, and several models of solute/solvent permeation through membrane are proposed. Among these models, Kedem and Katchalsky, based on the theory of thermodynamics of irreversible processes, formulated the one-solute permeation process in their mathematical model, which treats membrane as a black box, not giving consideration to membrane structure and to interaction between membrane material and permeates, viz. solute and solvent. According to this theory, the driving force of solute/solvent permeation through membrane is the difference of their chemical potential between both sides of membrane, and the linear phenomenological equation is applied to describing the relation between driving force and flux of solute/solvent. This equation can be applied to the irreversible process only when the process is almost in equilibrium. This condition is supposed to be satisfied in the solute/solvent permeation process through compact membrane with fine pores like reverse osmosis membrane. When reverse osmosis is applied to treatment process for liquid waste, which usually contains a lot of solutes as contaminants, we can not predict the behavior of contaminants by the above one-solute process model. In the case of multi-solutes permeation process for liquid waste, the number of parameter in thermodynamic model increases rapidly with the number of solute, because of coupling phenomenon among solutes. In this study, we expanded the above thermodynamic model to multi-solute process applying operational calculus to the differential equations which describe the irreversible process of the system, and expressed concisely solute concentration vector as a matrix product. In this way, we predict the behavior of solutes in multi-solutes process, using values of parameters obtained in two-solutes process. (author)
International Nuclear Information System (INIS)
Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der; Bouaziz, Olivier
2009-01-01
Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate (∼ 10 4 s -1 ) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10 -5 to 10 6 s -1 showing good agreement with experimental results.
Directory of Open Access Journals (Sweden)
Magda Waldemar
2017-12-01
Full Text Available This paper deals with mathematical modelling of a seabed layer in the thermodynamic analysis of a submarine pipeline buried in seabed sediments. The existing seabed soil models: a “soil ring” and a semi-infinite soil layer are discussed in a comparative analysis of the shape factor of a surrounding soil layer. The meaning of differences in the heat transfer coefficient of a soil layer is illustrated based on a computational example of the longitudinal temperaturę profile of a -kilometer long crude oil pipeline buried in seabed sediments.
Thermodynamic curvature for a two-parameter spin model with frustration.
Ruppeiner, George; Bellucci, Stefano
2015-01-01
Microscopic models of realistic thermodynamic systems usually involve a number of parameters, not all of equal macroscopic relevance. We examine a decorated (1+3) Ising spin chain containing two microscopic parameters: a stiff parameter K mediating the long-range interactions, and a sloppy J operating within local spin groups. We show that K dominates the macroscopic behavior, with varying J having only a weak effect, except in regions where J brings about transitions between phases through its conditioning of the local spin groups with which K interacts. We calculate the heat capacity C(H), the magnetic susceptibility χ(T), and the thermodynamic curvature R. For large |J/K|, we identify four magnetic phases: ferromagnetic, antiferromagnetic, and two ferrimagnetic, according to the signs of K and J. We argue that for characterizing these phases, the strongest picture is offered by the thermodynamic geometric invariant R, proportional to the correlation length ξ. This picture has correspondences to other cases, such as fluids.
A thermodynamic/mass-transport model for the release of ruthenium from irradiated fuel
International Nuclear Information System (INIS)
Garisto, F.; Iglesias, F.C.; Hunt, C.E.L.
1990-01-01
Some postulated nuclear reactor accidents lead to fuel failures and hence release of fission products into the primary heat transport system (PHTS). To determine the consequences of such accidents, it is important to understand the behavior of fission products both in the PHTS and in the reactor containment building. Ruthenium metal has a high boiling point and is nonvolatile under reducing conditions. However, under oxidizing conditions ruthenium can form volatile oxides at relatively low temperatures and, hence, could escape from failed fuel and enter the containment building. The ruthenium radioisotope Ru-106 presents a potentially significant health risk if it is released outside the reactor containment building. Consequently, it is important to understand the behavior of ruthenium during a nuclear reactor accident. The authors review the thermodynamic behavior of ruthenium at high temperatures. The qualitative behavior of ruthenium, predicted using thermodynamic calculations, is then compared with experimental results from the Chalk River Nuclear Laboratories (CRNL). Finally, a simple thermodynamic/mass-transport model is proposed to explain the release behavior of ruthenium in a steam atmosphere
Eichhorn, Ralf; Aurell, Erik
2014-04-01
'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response
Generalized Canonical Time Warping.
Zhou, Feng; De la Torre, Fernando
2016-02-01
Temporal alignment of human motion has been of recent interest due to its applications in animation, tele-rehabilitation and activity recognition. This paper presents generalized canonical time warping (GCTW), an extension of dynamic time warping (DTW) and canonical correlation analysis (CCA) for temporally aligning multi-modal sequences from multiple subjects performing similar activities. GCTW extends previous work on DTW and CCA in several ways: (1) it combines CCA with DTW to align multi-modal data (e.g., video and motion capture data); (2) it extends DTW by using a linear combination of monotonic functions to represent the warping path, providing a more flexible temporal warp. Unlike exact DTW, which has quadratic complexity, we propose a linear time algorithm to minimize GCTW. (3) GCTW allows simultaneous alignment of multiple sequences. Experimental results on aligning multi-modal data, facial expressions, motion capture data and video illustrate the benefits of GCTW. The code is available at http://humansensing.cs.cmu.edu/ctw.
Thermodynamic and kinetics models of hydrogen absorption bound to phase transformations
International Nuclear Information System (INIS)
Gondor, G.; Lexcellent, Ch.
2007-01-01
In order to design hydrogen gaseous pressure tanks, the absorption (desorption) of hydrogen has to be described and modelled. The equilibrium state can be described by the 'H 2 gas pressure - H 2 composition in the intermetallic compounds - isotherms' (PCI) curves. Several models of PCI curves already exist. At the beginning of the absorption, the hydrogen atoms and the intermetallic compounds form a solid solution (α phase). When the hydrogen concentration increases, a phase transformation appears changing the α solid solution into an hydride (β phase) (solid solution + H 2 ↔ hydride). When all the solid solution has been transformed into hydride, the absorbed hydrogen atoms are in β phase. A new thermodynamic model has been developed in order to take into account this transition phase. The equilibrium state is then given by a relation between the H 2 gas pressure and the H 2 concentration in the intermetallic compound for a fixed external temperature. Two kinetics models have been developed too; at first has been considered that the kinetics depend only of the entire concentration in the intermetallic compound and of the difference between the applied pressure and the equilibrium pressure. Then, has been considered that the hydrogen concentration changes in the metallic matrix. In this last case, for each hydrogenation process, the absorption velocity is calculated to determine the slowest local process which regulates the local evolution of the hydrogen concentration. These two models are based on the preceding thermodynamic model of the PCI curves. (O.M.)
Hess, Julian; Wang, Yongqi
2016-11-01
A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.
Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans
2009-02-01
For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.
de la Fuente, Alberto; Meruane, Carolina
2017-09-01
Altiplanic wetlands are unique ecosystems located in the elevated plateaus of Chile, Argentina, Peru, and Bolivia. These ecosystems are under threat due to changes in land use, groundwater extractions, and climate change that will modify the water balance through changes in precipitation and evaporation rates. Long-term prediction of the fate of aquatic ecosystems imposes computational constraints that make finding a solution impossible in some cases. In this article, we present a spectral model for long-term simulations of the thermodynamics of shallow wetlands in the limit case when the water depth tends to zero. This spectral model solves for water and sediment temperature, as well as heat, momentum, and mass exchanged with the atmosphere. The parameters of the model (water depth, thermal properties of the sediments, and surface albedo) and the atmospheric downscaling were calibrated using the MODIS product of the land surface temperature. Moreover, the performance of the daily evaporation rates predicted by the model was evaluated against daily pan evaporation data measured between 1964 and 2012. The spectral model was able to correctly represent both seasonal fluctuation and climatic trends observed in daily evaporation rates. It is concluded that the spectral model presented in this article is a suitable tool for assessing the global climate change effects on shallow wetlands whose thermodynamics is forced by heat exchanges with the atmosphere and modulated by the heat-reservoir role of the sediments.
Kou, Jisheng
2017-12-09
A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive alternative recently over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of multiple fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.
Some universal trends of the Mie(n,m) fluid thermodynamics
International Nuclear Information System (INIS)
Orea, Pedro; Reyes-Mercado, Yuri; Duda, Yurko
2008-01-01
By using canonical Monte Carlo simulation, the liquid-vapor phase diagram, surface tension, interface width, and pressure for the Mie(n,m) model fluids are calculated for six pairs of parameters m and n. It is shown that after certain re-scaling of fluid density the corresponding states rule can be applied for the calculations of the thermodynamic properties of the Mie model fluids, and for some real substances
Madurga, Sergio; Rey-Castro, Carlos; Pastor, Isabel; Vilaseca, Eudald; David, Calin; Garcés, Josep Lluís; Puy, Jaume; Mas, Francesc
2011-11-14
In this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs. pH curves at different background salt concentrations. As the charge of the titrated surface changes during the simulation, a procedure to keep the electroneutrality of the system is required. Here, two approaches are used with the choice depending on the ion selected to maintain electroneutrality: counterion or coion procedures. We compare and discuss the difference between the procedures. The simulations also provided a microscopic description of the electrostatic double layer (EDL) structure as a function of pH and ionic strength. The results allow us to quantify the effect of the size of the background salt ions and of the surface functional groups on the degree of dissociation. The non-homogeneous structure of the EDL was revealed by plotting the counterion density profiles around charged and neutral surface functional groups. © 2011 American Institute of Physics
Thermodynamic modeling of Al–U–X (X = Si,Zr)
International Nuclear Information System (INIS)
Rabin, Daniel; Shneck, Roni Z.; Rafailov, Gennady; Dahan, Isaac; Meshi, Louisa; Brosh, Eli
2015-01-01
Highlights: • Thermodynamic models of the U–Al–Si and U–Al–Zr systems were constructed. • The extrapolation methods of the ternary liquid phase were explored. • The order–disorder transition of the U(Al,Si) 3 phase was modeled. • New experiments fix the composition of U(Al,Si) 3 in equilibrium with Al and Si. • Effects of Si on microstructures of solidified U–Al alloys are clarified. - Abstract: Thermodynamic models are constructed for the U–Al–Si and U–A–Zr ternary alloy systems using the CALPHAD (CALculation of PHAse Diagrams) method. For the U–Al–Zr system the modeling covers only the aluminum-rich corner (from 100 at% to 67 at% Al) and is based only on literature data. For the U–Al–Si system, the whole range of compositions is covered and new key experiments were done in the uranium-poor region of the U–Al–Si system. These experiments have shown that under conditions of equilibrium with Al and Si, the Si-content of the U(Al,Si) 3 is significantly higher than reported by earlier works. Different extrapolation methods were tried for the Gibbs energy of the liquid phase. However, it was found that for the U–Al–Si and U–Al–Zr systems, symmetric Muggianu method and the asymmetric method by Hillert give similar predictions. The constructed thermodynamic database was investigated by calculating isothermal sections, vertical sections and the liquidus projection. The calculated diagrams are in reasonable agreement with experimental data. Finally, solidification simulation (Scheil simulation) was done in order to assess the phases obtained in solidification as a function of the silicon addition to U–Al alloys
Thermodynamic modeling of Al–U–X (X = Si,Zr)
Energy Technology Data Exchange (ETDEWEB)
Rabin, Daniel; Shneck, Roni Z. [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Rafailov, Gennady [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); NRCN, P.O. Box 9001, Beer-Sheva 84190 (Israel); Dahan, Isaac [NRCN, P.O. Box 9001, Beer-Sheva 84190 (Israel); Meshi, Louisa [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Brosh, Eli, E-mail: ebrosh1@gmail.com [NRCN, P.O. Box 9001, Beer-Sheva 84190 (Israel)
2015-09-15
Highlights: • Thermodynamic models of the U–Al–Si and U–Al–Zr systems were constructed. • The extrapolation methods of the ternary liquid phase were explored. • The order–disorder transition of the U(Al,Si){sub 3} phase was modeled. • New experiments fix the composition of U(Al,Si){sub 3} in equilibrium with Al and Si. • Effects of Si on microstructures of solidified U–Al alloys are clarified. - Abstract: Thermodynamic models are constructed for the U–Al–Si and U–A–Zr ternary alloy systems using the CALPHAD (CALculation of PHAse Diagrams) method. For the U–Al–Zr system the modeling covers only the aluminum-rich corner (from 100 at% to 67 at% Al) and is based only on literature data. For the U–Al–Si system, the whole range of compositions is covered and new key experiments were done in the uranium-poor region of the U–Al–Si system. These experiments have shown that under conditions of equilibrium with Al and Si, the Si-content of the U(Al,Si){sub 3} is significantly higher than reported by earlier works. Different extrapolation methods were tried for the Gibbs energy of the liquid phase. However, it was found that for the U–Al–Si and U–Al–Zr systems, symmetric Muggianu method and the asymmetric method by Hillert give similar predictions. The constructed thermodynamic database was investigated by calculating isothermal sections, vertical sections and the liquidus projection. The calculated diagrams are in reasonable agreement with experimental data. Finally, solidification simulation (Scheil simulation) was done in order to assess the phases obtained in solidification as a function of the silicon addition to U–Al alloys.
A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding
International Nuclear Information System (INIS)
Stout, R.B.
1989-10-01
Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs
Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel
International Nuclear Information System (INIS)
Lewis, B.J.; Thompson, W.T.; Akbari, F.; Thompson, D.M.; Thurgood, C.; Higgs, J.
2004-01-01
A theoretical treatment has been developed to predict the fuel oxidation behaviour in operating defective nuclear fuel elements. The equilibrium stoichiometry deviation in the hyper-stoichiometric fuel has been derived from thermodynamic considerations using a self-consistent set of thermodynamic properties for the U-O system, which emphasizes replication of solubilities and three-phase invariant conditions displayed in the U-O binary phase diagram. The kinetics model accounts for multi-phase transport including interstitial oxygen diffusion in the solid and gas-phase transport of hydrogen and steam in the fuel cracks. The fuel oxidation model is further coupled to a heat conduction model to account for the feedback effect of a reduced thermal conductivity in the hyper-stoichiometric fuel. A numerical solution has been developed using a finite-element technique with the FEMLAB software package. The model has been compared to available data from several in-reactor X-2 loop experiments with defective fuel conducted at the Chalk River Laboratories. The model has also been benchmarked against an O/U profile measurement for a spent defective fuel element discharged from a commercial reactor
Mohanty, Itishree; Chintha, Appa Rao; Kundu, Saurabh
2018-06-01
The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.
Dictionary-Based Tensor Canonical Polyadic Decomposition
Cohen, Jeremy Emile; Gillis, Nicolas
2018-04-01
To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.
International Nuclear Information System (INIS)
Bencze, L.; Henriques, D.; Motalov, V.; Markus, T.
2014-01-01
Highlights: • The experimental KEMS data fit well with the Redlich–Kister sub-regular solution model applied to Li–Sn melt. • The Redlich–Kister binary interaction L-parameters of the Li–Sn melt were provided in this work. • The experimental KEMS data fit well with the ideally associated mixture model, too. • The quantitative associate composition of the Li–Sn melt was given. • The thermodynamic properties of the associate-forming reactions were also provided. - Abstract: The mixing thermodynamic properties of liquid Li–Sn system, determined previously by Knudsen effusion mass spectrometry (KEMS), were successfully fitted to both Redlich–Kister (RK) sub-regular mixture and ideally associated mixture (IAMT) models. The RK binary interaction L parameters, as a function of temperature in the CALPHAD-type functional form, were obtained as follows: L (0) =-(108580±0.00171)+(16.4±1.6·10 -5 )·T+(1.96496·10 -9 ±2.03133·10 -6 ) ·T·ln(T) L (1) =-(96600±4700)+(3.3±43.0)·T+(4.4±5.6)·T·ln(T) L (2) =-(64670±190)-(44.4±1.7)·T+(8.44±0.22)·T·ln(T) L (3) =-(20900±1500)-(29±14)·T+(4.3±1.8)·T·ln(T) The former literature data provided only qualitative information on possible liquid associates but no quantitative associate composition was given as a function of the sample composition and temperature. The experimental KEMS data in the composition range X Li = 0 to ∼0.7 fit well with the Li(l) + Sn(l) + LiSn(l) + LiSn 2 (l) + Li 2 Sn(l) associate model. At X Li > 0.7 no associate variations – including further associate variants such as Li 4 Sn(l) etc. – could be fitted to the KEMS data. Nevertheless, in this work the Li(l) + Sn(l) + LiSn(l) + LiSn 2 (l) + Li 2 Sn(l) + Li 4 Sn(l) + Li 9 Sn(l) associate model was successfully fitted to the thermodynamic data of a selected literature study over the complete composition range. The thermodynamic data of the associate-forming reactions were also given in this paper
Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling
Marker, Cassie
An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database
Thermodynamic modelling of a recompression CO_2 power cycle for low temperature waste heat recovery
International Nuclear Information System (INIS)
Banik, Shubham; Ray, Satyaki; De, Sudipta
2016-01-01
Highlights: • Thermodynamic model for recompression T-CO_2 is developed. • Energetic and exergetic analysis compared with S-CO_2 and Reg. Brayton cycle. • Maximum efficiency of 13.6% is obtained for T-CO_2 cycle. • Optimum recompression ratio of 0.48 is obtained for minimum irreversibility. • Reg. Brayton has better efficiency, T-CO_2 offers minimum irreversibility. - Abstract: Due to the rising prices of conventional fossil fuels, increasing the overall thermal efficiency of a power plant is essential. One way of doing this is waste heat recovery. This recovery is most difficult for low temperature waste heat, below 240 °C, which also covers majority of the waste heat source. Carbon dioxide, with its low critical temperature and pressure, offers an advantage over ozone-depleting refrigerants used in Organic Rankine Cycles (ORCs) and hence is most suitable for the purpose. This paper introduces parametric optimization of a transcritical carbon dioxide (T-CO_2) power cycle which recompresses part of the total mass flow of working fluid before entering the precooler, thereby showing potential for higher cycle efficiency. Thermodynamic model for a recompression T-CO_2 power cycle has been developed with waste heat source of 2000 kW and at a temperature of 200 °C. Results obtained from this model are analysed to estimate effects on energetic and exergetic performances of the power cycle with varying pressure and mass recompression ratio. Higher pressure ratio always improves thermodynamic performance of the cycle – both energetic and exergetic. Higher recompression ratio also increases exergetic efficiency of the cycle. However, it increases energy efficiency, only if precooler inlet temperature remains constant. Maximum thermal efficiency of the T-CO_2 cycle with a recompression ratio of 0.26 has been found to be 13.6%. To minimize total irreversibility of the cycle, an optimum ratio of 0.48 was found to be suitable.
M. M. Clark; T. H. Fletcher; R. R. Linn
2010-01-01
The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixtureâ fraction model relying on thermodynamic...
McGinitie, Teague M; Harynuk, James J
2012-09-14
A method was developed to accurately predict both the primary and secondary retention times for a series of alkanes, ketones and alcohols in a flow-modulated GC×GC system. This was accomplished through the use of a three-parameter thermodynamic model where ΔH, ΔS, and ΔC(p) for an analyte's interaction with the stationary phases in both dimensions are known. Coupling this thermodynamic model with a time summation calculation it was possible to accurately predict both (1)t(r) and (2)t(r) for all analytes. The model was able to predict retention times regardless of the temperature ramp used, with an average error of only 0.64% for (1)t(r) and an average error of only 2.22% for (2)t(r). The model shows promise for the accurate prediction of retention times in GC×GC for a wide range of compounds and is able to utilize data collected from 1D experiments. Copyright © 2012 Elsevier B.V. All rights reserved.
Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations
Gilligan, Patrick; Tomsik, Thomas
2016-01-01
As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.
Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations
Gilligan, Ryan P.; Tomsik, Thomas M.
2017-01-01
As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.
A molecular thermodynamic model for the stability of hepatitis B capsids
Kim, Jehoon; Wu, Jianzhong
2014-06-01
Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.
A molecular thermodynamic model for the stability of hepatitis B capsids
Energy Technology Data Exchange (ETDEWEB)
Kim, Jehoon; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States)
2014-06-21
Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.
A thermodynamic model for C-(N-)A-S-H gel: CNASHss. Derivation and validation
International Nuclear Information System (INIS)
Myers, Rupert J.; Bernal, Susan A.; Provis, John L.
2014-01-01
The main reaction product in Ca-rich alkali-activated cements and hybrid Portland cement (PC)-based materials is a calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H) gel. Thermodynamic models without explicit definitions of structurally-incorporated Al species have been used in numerous past studies to describe this gel, but offer limited ability to simulate the chemistry of blended PC materials and alkali-activated cements. Here, a thermodynamic model for C-(N-)A-S-H gel is derived and parameterised to describe solubility data for the CaO–(Na 2 O,Al 2 O 3 )–SiO 2 –H 2 O systems and alkali-activated slag (AAS) cements, and chemical composition data for C-A-S-H gels. Simulated C-(N-)A-S-H gel densities and molar volumes are consistent with the corresponding values reported for AAS cements, meaning that the model can be used to describe chemical shrinkage in these materials. Therefore, this model can provide insight into the chemistry of AAS cements at advanced ages, which is important for understanding the long-term durability of these materials
IUS CONNUBII: Canonical Dimension
Directory of Open Access Journals (Sweden)
Silma Mendes Berti
2018-03-01
Full Text Available anon Law, in regulating under Can.1058 the "ius connubii", lays down that: "All those who are not prohibited from doing so by law may contract matrimony." This disposition, although apparently simple, has a wide and deep range of implications, questionings and possibilities for investigation, especially as it involves an extremely delicate relationship. A perfect combination of law and sacrament, the "ius connubii", in its close relationship with the constitution of the family, which is the sanctuary of Love, is an important problem, which faces the legislator, both in the legislation of the State, specifically in Civil Law, and in that of the Church. As the general principle of the canonical matrimonial system, "ius connubii' is the source of interpretation of all rules concerning matrimony, especially when it comes to the distinction between sacramental reality and liturgical ceremony. This is the fact, which is the basis of our reflections.
Algebra of orthofermions and equivalence of their thermodynamics to the infinite U Hubbard model
International Nuclear Information System (INIS)
Kishore, R.; Mishra, A.K.
2006-01-01
The equivalence of thermodynamics of independent orthofermions to the infinite U Hubbard model, shown earlier for the one-dimensional infinite lattice, has been extended to a finite system of two lattice sites. Regarding the algebra of orthofermions, the algebraic expressions for the number operator for a given spin and the spin raising (lowering) operators in the form of infinite series are rearranged in such a way that the ith term, having the form of an infinite series, of the number (spin raising (lowering)) operator represents the number (spin raising (lowering)) operator at the ith lattice site
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Perez, Alfredo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)], E-mail: alf@usc.es; Ruso, Juan M. [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero, Maria J. [Department of Inorganic Chemistry, Faculty of Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Blanco, Elena [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Prieto, Gerardo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Sarmiento, Felix [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)
2005-06-27
Sodium perfluoroalkyl carboxylates (CnFONa) with n = 6, 9, 10 have been studied by conductivity measurements at different temperatures. The Krafft point was determined for C9FONa and C10FONa at the highest concentration studied by measuring the temperature dependence of the specific conductivity. The critical micelle concentration (cmc) and the ionization degree of the micelle ({beta}) were estimated from conductivity vs. molality plots at different temperatures. Using these data and previous results on temperature dependence of cmc and {beta} of sodium perfluoroheptanoate and perfluorooctanoate, different models were applied to obtain the thermodynamic properties of micellization. The results are discussed in terms of alkyl chain length.
International Nuclear Information System (INIS)
Gonzalez-Perez, Alfredo; Ruso, Juan M.; Romero, Maria J.; Blanco, Elena; Prieto, Gerardo; Sarmiento, Felix
2005-01-01
Sodium perfluoroalkyl carboxylates (CnFONa) with n = 6, 9, 10 have been studied by conductivity measurements at different temperatures. The Krafft point was determined for C9FONa and C10FONa at the highest concentration studied by measuring the temperature dependence of the specific conductivity. The critical micelle concentration (cmc) and the ionization degree of the micelle (β) were estimated from conductivity vs. molality plots at different temperatures. Using these data and previous results on temperature dependence of cmc and β of sodium perfluoroheptanoate and perfluorooctanoate, different models were applied to obtain the thermodynamic properties of micellization. The results are discussed in terms of alkyl chain length
Thermodynamic modeling of liquid–liquid phase change solvents for CO2 capture
DEFF Research Database (Denmark)
Waseem Arshad, Muhammad; von Solms, Nicolas; Thomsen, Kaj
2016-01-01
A thermodynamic model based on Extended UNIQUAC framework has been developed in this work for the de-mixing liquid–liquid phase change solvents, DEEA (2-(diethylamino)ethanol) and MAPA (3-(methylamino)propylamine). Parameter estimation was performed for two ternary systems, H2O-DEEA-CO2 and H2O......-MAPA-CO2, and a quaternary system, H2O-DEEA-MAPA-CO2 (phase change system), by using different types of experimental data (equilibrium and thermal) consisting of pure amine vapor pressure, vapor-liquid equilibrium, solid-liquid equilibrium, liquid–liquid equilibrium, excess enthalpy, and heat of absorption...
A thermodynamical model for stress-fiber organization in contractile cells.
Foucard, Louis; Vernerey, Franck J
2012-01-02
Cell mechanical adaptivity to external stimuli is vital to many of its biological functions. A critical question is therefore to understand the formation and organization of the stress fibers from which emerge the cell's mechanical properties. By accounting for the mechanical aspects and the viscoelastic behavior of stress fibers, we here propose a thermodynamic model to predict the formation and orientation of stress fibers in contractile cells subjected to constant or cyclic stretch and different substrate stiffness. Our results demonstrate that the stress fibers viscoelastic behavior plays a crucial role in their formation and organization and shows good consistency with various experiments.
Thermodiffusion in Multicomponent Mixtures Thermodynamic, Algebraic, and Neuro-Computing Models
Srinivasan, Seshasai
2013-01-01
Thermodiffusion in Multicomponent Mixtures presents the computational approaches that are employed in the study of thermodiffusion in various types of mixtures, namely, hydrocarbons, polymers, water-alcohol, molten metals, and so forth. We present a detailed formalism of these methods that are based on non-equilibrium thermodynamics or algebraic correlations or principles of the artificial neural network. The book will serve as single complete reference to understand the theoretical derivations of thermodiffusion models and its application to different types of multi-component mixtures. An exhaustive discussion of these is used to give a complete perspective of the principles and the key factors that govern the thermodiffusion process.
Thermodynamic aspect in using modified Boltzmann model as an acoustic probe for URu2Si2
Kwang-Hua, Chu Rainer
2018-05-01
The approximate system of equations describing ultrasonic attenuation propagating in many electrons of the heavy-fermion materials URu2Si2 under high magnetic fields were firstly derived and then calculated based on the modified Boltzmann model considering the microscopic contributions due to electronic fluids. A system of nonlinear partial differential coupled with integral equations were linearized firstly and approximately solved considering the perturbed thermodynamic equilibrium states. Our numerical data were compared with previous measurements using non-dimensional or normalized physical values. The rather good fit of our numerical calculations with experimental measurements confirms our present approach.
Horvath, C.; Leeflang, P.S.H.; Otter, P.W.
Dynamic multivariate models ha e become popular in analyzing the behavior of competitive marketing systems because they are capable of incorporating all the relationships in a competitive marketing environment. In this paper we consider VAR models, the most frequently used dynamic multivariate
Conformal constraint in canonical quantum gravity
t Hooft, G.
2010-01-01
Perturbative canonical quantum gravity is considered, when coupled to a renormalizable model for matter fields. It is proposed that the functional integral over the dilaton field should be disentangled from the other integrations over the metric fields. This should generate a conformally invariant
THE TOPOLOGY OF CANONICAL FLUX TUBES IN FLARED JET GEOMETRY
Energy Technology Data Exchange (ETDEWEB)
Lavine, Eric Sander; You, Setthivoine, E-mail: Slavine2@uw.edu, E-mail: syou@aa.washington.edu [University of Washington, 4000 15th Street, NE Aeronautics and Astronautics 211 Guggenheim Hall, Box 352400, Seattle, WA 98195 (United States)
2017-01-20
Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). We outline here a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of the species’ canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. A flared, current-carrying magnetic flux tube in an ion-electron plasma with finite ion momentum is thus equivalent to either a pair of electron and ion flow flux tubes, a pair of electron and ion canonical momentum flux tubes, or a pair of electron and ion canonical vorticity flux tubes. We examine the morphology of all these flux tubes for increasing electrical currents, different radial current profiles, different electron Mach numbers, and a fixed, flared, axisymmetric magnetic geometry. Calculations of gauge-invariant relative canonical helicities track the evolution of magnetic, cross, and kinetic helicities in the system, and show that ion flow fields can unwind to compensate for an increasing magnetic twist. The results demonstrate that including a species’ finite momentum can result in a very long collimated canonical vorticity flux tube even if the magnetic flux tube is flared. With finite momentum, particle density gradients must be normal to canonical vorticities, not to magnetic fields, so observations of collimated astrophysical jets could be images of canonical vorticity flux tubes instead of magnetic flux tubes.
A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics
Tsimouri, Ioanna Ch.; Stephanou, Pavlos S.; Mavrantzas, Vlasis G.
2018-03-01
Red blood cells tend to aggregate in the presence of plasma proteins, forming structures known as rouleaux. Here, we derive a constitutive rheological model for human blood which accounts for the formation and dissociation of rouleaux using the generalized bracket formulation of nonequilibrium thermodynamics. Similar to the model derived by Owens and co-workers ["A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow," J. Fluid Mech. 617, 327-354 (2008)] through polymer network theory, each rouleau in our model is represented as a dumbbell; the corresponding structural variable is the conformation tensor of the dumbbell. The kinetics of rouleau formation and dissociation is treated as in the work of Germann et al. ["Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions," J. Non-Newton. Fluid Mech. 196, 51-57 (2013)] by assuming a set of reversible reactions, each characterized by a forward and a reverse rate constant. The final set of evolution equations for the microstructure of each rouleau and the expression for the stress tensor turn out to be very similar to those of Owens and co-workers. However, by explicitly considering a mechanism for the formation and breakage of rouleaux, our model further provides expressions for the aggregation and disaggregation rates appearing in the final transport equations, which in the kinetic theory-based network model of Owens were absent and had to be specified separately. Despite this, the two models are found to provide similar descriptions of experimental data on the size distribution of rouleaux.
Experimental investigation and thermodynamic modeling of the Ni-Al-Ru ternary system
International Nuclear Information System (INIS)
Zhu, J.; Zhang, C.; Cao, W.; Yang, Y.; Zhang, F.; Chen, S.; Morgan, D.; Chang, Y.A.
2009-01-01
In this study, a thermodynamic description of the Ni-Al-Ru system was obtained in terms of experimental phase equilibrium data as well as first-principles-calculated energetics. The calculated isotherms and liquidus projection using this description are in accord with the experimental data obtained in the present study as well as those previously reported in the literature, and the model-calculated enthalpies of formation agree with subsequent first-principles-calculated values. During the thermodynamic modeling of the Ni-Al-Ru system, we encountered great challenges initially to account for one of the experimentally determined isotherms reported in the literature. To reconcile these discrepancies, additional experiments were carried out and the results obtained supported the phase equilibrium data reported in the literature. The model-calculated enthalpies agree with subsequent first-principles-calculated values. The approach adopted in this study using phase equilibrium data of Ni-Al-Ru and the descriptions of Ni-Al and Ni-Ru to identify errors in the enthalpy of AlRu could be a general tool that could be used for other systems
Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy
International Nuclear Information System (INIS)
Young, Sung; Nam, Tae-Hyun
2013-01-01
Graphical abstract: - Highlights: • Thermodynamic calculation model for martensitic transformation of shape memory alloy was proposed. • Evolution of the self-accommodation was considered independently by a rate-dependent kinetic equation. • Finite element calculation was conducted for B2–B19′ transformation of Ti–44.5Ni–5Cu–0.5 V (at.%). • Three-dimensional numerical results predict the macroscopic strain under bias loading accurately. - Abstract: This paper presents a three-dimensional calculation model for martensitic phase transformation of shape memory alloy. Constitutive model based on thermodynamic theory was provided. The average behavior was accounted for by considering the volume fraction of each martensitic variant in the material. Evolution of the volume fraction of each variant was determined by a rate-dependent kinetic equation. We assumed that nucleation rate is faster for the self-accommodation than for the stress-induced variants. Three-dimensional finite element analysis was conducted and the results were compared with the experimental data of Ti–44.5Ni–5Cu–0.5 V (at.%) alloy under bias loading
Tomar, Dheeraj S; Weber, Valéry; Pettitt, B Montgomery; Asthagiri, D
2014-04-17
The hydration thermodynamics of the amino acid X relative to the reference G (glycine) or the hydration thermodynamics of a small-molecule analog of the side chain of X is often used to model the contribution of X to protein stability and solution thermodynamics. We consider the reasons for successes and limitations of this approach by calculating and comparing the conditional excess free energy, enthalpy, and entropy of hydration of the isoleucine side chain in zwitterionic isoleucine, in extended penta-peptides, and in helical deca-peptides. Butane in gauche conformation serves as a small-molecule analog for the isoleucine side chain. Parsing the hydrophobic and hydrophilic contributions to hydration for the side chain shows that both of these aspects of hydration are context-sensitive. Furthermore, analyzing the solute-solvent interaction contribution to the conditional excess enthalpy of the side chain shows that what is nominally considered a property of the side chain includes entirely nonobvious contributions of the background. The context-sensitivity of hydrophobic and hydrophilic hydration and the conflation of background contributions with energetics attributed to the side chain limit the ability of a single scaling factor, such as the fractional solvent exposure of the group in the protein, to map the component energetic contributions of the model-compound data to their value in the protein. But ignoring the origin of cancellations in the underlying components the group-transfer model may appear to provide a reasonable estimate of the free energy for a given error tolerance.
International Nuclear Information System (INIS)
Prieur, D.
2011-01-01
Fuel irradiation in pressurized water reactors lead to the formation of fission products and minor actinides (Np, Am, Cm) which can be transmuted in fast neutrons reactors. In this context, the aim of this work was to study the fabrication conditions of the U 1-y Am y O 2+x fuels which exhibit particular thermodynamical properties requiring an accurate monitoring of the oxygen potential during the sintering step. For this reason, a thermodynamical model was developed to assess the optimum sintering conditions for these materials. From these calculations, U 1-y Am y O 2+x (y=0.10; 0.15; 0.20; 0.30) were sintered in two range of atmosphere. In hyper-stoichiometric conditions at low temperature, porous and multiphasic compounds are obtained whereas in reducing conditions at high temperature materials are dense and monophasic. XAFS analyses were performed in order to obtain additional experimental data for the thermodynamical modeling refinement. These characterizations also showed the reduction of Am(+IV) to Am(+III) and the partial oxidation of U(+IV) to U(+V) due to a charge compensation mechanism occurring during the sintering. Finally, taking into account the high - activity of Am, self-irradiation effects were studied for two types of microstructures and two Am contents (10 and 15%). For each composition, a lattice parameter increase was observed without structural change coupled with a macroscopic swelling of the pellet diameter up to 1.2% for the dense compounds and 0.6% for the tailored porosity materials. (author) [fr
Towards a functional model of mental disorders incorporating the laws of thermodynamics.
Murray, George C; McKenzie, Karen
2013-05-01
The current paper presents the hypothesis that the understanding of mental disorders can be advanced by incorporating the laws of thermodynamics, specifically relating to energy conservation and energy transfer. These ideas, along with the introduction of the notion that entropic activities are symptomatic of inefficient energy transfer or disorder, were used to propose a model of understanding mental ill health as resulting from the interaction of entropy, capacity and work (environmental demands). The model was applied to Attention Deficit Hyperactivity Disorder, and was shown to be compatible with current thinking about this condition, as well as emerging models of mental disorders as complex networks. A key implication of the proposed model is that it argues that all mental disorders require a systemic functional approach, with the advantage that it offers a number of routes into the assessment, formulation and treatment for mental health problems. Copyright © 2013 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Kienzler, B.
2000-01-01
The isolation capacity of a repository system for radionuclides is described by geochemical modeling. The models for interpretation of experimental findings and for long-term extrapolation of experimental results are based on thermodynamic approaches. The geochemical models include dissolution reactions of waste forms, the evolution of the geochemical milieu, interactions of radionuclides with constituents of the groundwater (brines) and the precipitation of new solid phases. Reliable thermodynamic data, understanding of radionuclide complexation in aqueous multi-electrolyte solutions at the relevant ionic strength and knowledge on the formation of pure and mixed solids and on sorption processes are urgently needed for such model calculations. (author)
Escort entropies and divergences and related canonical distribution
International Nuclear Information System (INIS)
Bercher, J.-F.
2011-01-01
We discuss two families of two-parameter entropies and divergences, derived from the standard Renyi and Tsallis entropies and divergences. These divergences and entropies are found as divergences or entropies of escort distributions. Exploiting the nonnegativity of the divergences, we derive the expression of the canonical distribution associated to the new entropies and a observable given as an escort-mean value. We show that this canonical distribution extends, and smoothly connects, the results obtained in nonextensive thermodynamics for the standard and generalized mean value constraints. -- Highlights: → Two-parameter entropies are derived from q-entropies and escort distributions. → The related canonical distribution is derived. → This connects and extends known results in nonextensive statistics.
Canonical Entropy and Phase Transition of Rotating Black Hole
International Nuclear Information System (INIS)
Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang
2008-01-01
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein–Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole. (general)
International Nuclear Information System (INIS)
Lewis, A.E.; Khodabocus, F.; Dhokun, V.; Khalife, M.
2010-01-01
In a sugar refinery, the juice is concentrated through evaporation, with the objective of concentrating the juice to syrup as rapidly as possible. Because the heat of vaporization of water is relatively high, the evaporation process can be highly energy intensive, and therefore the economical use of steam is important in the refinery. This paper reports on the development of a simulation model for the evaporation sections of two Mauritian sugar refineries. The first objective was to use the simulation model to carry out an energy balance over the evaporators in order to assess the economy of steam usage over the refinery. The second objective was to examine to what extent a fundamental steady state model, based on thermodynamics (not kinetics) was capable of predicting the material and energy flows in two operating sugar refineries and thereby to evaluate the applicability of the modelling framework. The simulation model was validated using historical data as well as data from the plant DCS system. The simulation results generally correlated well with the measured values, except for one of the evaporators on one refinery. Some suggestions were made as to the cause of the discrepancy. On balance, it was found that both refineries are extremely efficient in terms of steam and equipment usage and that there is not much scope for energy optimisation within the present configuration - nor for much spare steam capacity for an additional refinery. It was also shown that steady state process simulation, using thermodynamic models, can generate a very useful representation of a working refinery. Besides being able to use the model to 'benchmark' the operation and thus evaluate its performance as a whole as well as across individual units, it could also be used to evaluate refinery performance across refineries, nationally as well as globally.
Thermodynamic Modelling of Fe-Cr-Ni-Spinel Formation at the Light-Water Reactor Conditions
Energy Technology Data Exchange (ETDEWEB)
Kurepin, V.A.; Kulik, D.A.; Hitpold, A.; Nicolet, M
2002-03-01
In the light water reactors (LWR), the neutron activation and transport of corrosion products is of concern in the context of minimizing the radiation doses received by the personnel during maintenance works. A practically useful model for transport and deposition of the stainless steel corrosion products in LWR can only be based on an improved understanding of chemical processes, in particular, on the attainment of equilibrium in this hydrothermal system, which can be described by means of a thermodynamic solid-solution -aqueous-solution (SSAS) model. In this contribution, a new thermodynamic model for a Fe-Cr-Ni multi-component spinel solid solutions was developed that considers thermodynamic consequences of cation interactions in both spinel sub-Iattices. The obtained standard thermodynamic properties of two ferrite and two chromite end-members and their mixing parameters at 90 bar pressure and 290 *c temperature predict a large miscibility gap between (Fe,Ni) chromite and (Fe,Ni) ferrite phases. Together with the SUPCRT92-98 thermo- dynamic database for aqueous species, the 'spinel' thermodynamic dataset was applied to modeling oxidation of austenitic stainless steel in hydrothermal water at 290*C and 90 bar using the Gibbs energy minimization (GEM) algorithm, implemented in the GEMS-PSI code. Firstly, the equilibrium compositions of steel oxidation products were modelIed as function of oxygen fugacity .fO{sub 2} by incremental additions of O{sub 2} in H{sub 2}O-free system Cr-Fe- Ni-O. Secondly, oxidation of corrosion products in the Fe-Cr-Ni-O-H aquatic system was modelIed at different initial solid/water ratios. It is demonstrated that in the transition region from hydrogen regime to oxygen regime, the most significant changes in composition of two spinel-oxide phases (chromite and ferrite) and hematite must take place. Under more reduced conditions, the Fe-rich ferrite (magnetite) and Ni-poor chromite phases co-exist at equilibrium with a metal Ni
Nathoo, Jeeten; Randall, Dyllon Garth
2016-01-01
Membrane distillation (MD) could be applicable in zero liquid discharge applications. This is due to the fact that MD is applicable at high salinity ranges which are generally outside the scope of reverse osmosis (RO) applications, although this requires proper management of precipitating salts to avoid membrane fouling. One way of managing these salts is with MD crystallisation (MDC). This paper focuses on the applicability of MDC for the treatment of mining wastewater by thermodynamically modelling the aqueous chemistry of the process at different temperatures. The paper is based on the typical brine generated from an RO process in the South African coal mining industry and investigates the effect water recovery and operating temperature have on the salts that are predicted to crystallise out, the sequence in which they will crystallise out and purities as a function of the water recovery. The study confirmed the efficacy of using thermodynamic modelling as a tool for investigating and predicting the crystallisation aspects of the MDC process. The key finding from this work was that, for an MDC process, a purer product can be obtained at higher operating temperatures and recoveries because of the inverse solubility of calcium sulphate.
A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling
Shapiro, B.; Jin, Q.
2015-12-01
Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.
Thermodynamic and structural models compared with the initial dissolution rates of SON glass samples
International Nuclear Information System (INIS)
Tovena, I.; Advocat, T.; Ghaleb, D.; Vernaz, E.
1993-01-01
The experimentally determined initial dissolution rate R 0 of nuclear glass was correlated with thermodynamic parameters and structural parameters. The initial corrosion rates of six ''R7T7'' glass samples measured at 100 deg C in a Soxhlet device were correlated with the glass free hydration energy and the glass formation enthalpy. These correlations were then tested with a group of 26 SON glasses selected for their wide diversity of compositions. The thermodynamic models provided a satisfactory approximation of the initial dissolution rate determined under Soxhlet conditions for SON glass samples that include up to 15 wt% of boron and some alumina. Conversely, these models are inaccurate if the boron concentration exceeds 15 wt% and the glass contains no alumina. Possible correlations between R 0 and structural parameters, such as the boron coordination number and the number of nonbridging oxygen atoms, were also investigated. The authors show that R 0 varies inversely with the number of 4-coordinate boron atoms; conversely, the results do not substantiate published reports of a correlation between R 0 and the number of nonbridging oxygen atoms. (authors). 13 refs., 2 figs., 4 tabs
A thermodynamic approach to model the caloric properties of semicrystalline polymers
Lion, Alexander; Johlitz, Michael
2016-05-01
It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented.
The wet compression technology for gas turbine power plants: Thermodynamic model
International Nuclear Information System (INIS)
Bracco, Stefano; Pierfederici, Alessandro; Trucco, Angela
2007-01-01
This paper examines from a thermodynamic point of view the effects of wet compression on gas turbine power plants, particularly analysing the influence of ambient conditions on the plant performance. The results of the mathematical model, implemented in 'Matlab' software, have been compared with the simulation results presented in literature and in particular the values of the 'evaporative rate', proposed in Araimo et al. [L. Araimo, A. Torelli, Thermodynamic analysis of the wet compression process in heavy duty gas turbine compressors, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1249-1263; L. Araimo, A. Torelli, Wet compression technology applied to heavy duty gas turbines - GT power augmentation and efficiency upgrade, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1265-1277] by 'Gas Turbines Department' of Ansaldo Energia S.p.A., have been taken into account to validate the model. The simulator permits to investigate the effects of the fogging and wet compression techniques and estimate the power and efficiency gain of heavy duty gas turbines operating in hot and arid conditions
Naumis, Gerardo G
2012-06-01
When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.
Extended soft wall model with background related to features of QCD thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Zoellner, R.; Kaempfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, Dresden (Germany)
2017-06-15
The soft wall model is extended to accommodate at the same time i) approximately linear ρ meson Regge trajectories at zero temperature T, ii) various options for the thermodynamics with reference to QCD (cross-over or second-order transition or first-order transition at T{sub c}), and iii) the appearance of vector meson states at T
Are Young Children's Drawings Canonically Biased?
Picard, Delphine; Durand, Karine
2005-01-01
In a between-subjects design, 4-to 6-year-olds were asked to draw from three-dimensional (3D) models, two-and-a-half-dimensional (212D) models with or without depth cues, or two-dimensional (2D) models of a familiar object (a saucepan) in noncanonical orientations (handle at the back or at the front). Results showed that canonical errors were…
Staquicini, Fernanda I.; Ozawa, Michael G.; Moya, Catherine A.; Driessen, Wouter H.P.; Barbu, E. Magda; Nishimori, Hiroyuki; Soghomonyan, Suren; Flores, Leo G.; Liang, Xiaowen; Paolillo, Vincenzo; Alauddin, Mian M.; Basilion, James P.; Furnari, Frank B.; Bogler, Oliver; Lang, Frederick F.; Aldape, Kenneth D.; Fuller, Gregory N.; Höök, Magnus; Gelovani, Juri G.; Sidman, Richard L.; Cavenee, Webster K.; Pasqualini, Renata; Arap, Wadih
2010-01-01
The management of CNS tumors is limited by the blood-brain barrier (BBB), a vascular interface that restricts the passage of most molecules from the blood into the brain. Here we show that phage particles targeted with certain ligand motifs selected in vivo from a combinatorial peptide library can cross the BBB under normal and pathological conditions. Specifically, we demonstrated that phage clones displaying an iron-mimic peptide were able to target a protein complex of transferrin and transferrin receptor (TfR) through a non-canonical allosteric binding mechanism and that this functional protein complex mediated transport of the corresponding viral particles into the normal mouse brain. We also showed that, in an orthotopic mouse model of human glioblastoma, a combination of TfR overexpression plus extended vascular permeability and ligand retention resulted in remarkable brain tumor targeting of chimeric adeno-associated virus/phage particles displaying the iron-mimic peptide and carrying a gene of interest. As a proof of concept, we delivered the HSV thymidine kinase gene for molecular-genetic imaging and targeted therapy of intracranial xenografted tumors. Finally, we established that these experimental findings might be clinically relevant by determining through human tissue microarrays that many primary astrocytic tumors strongly express TfR. Together, our combinatorial selection system and results may provide a translational avenue for the targeted detection and treatment of brain tumors. PMID:21183793
Thermodynamic model of social influence on two-dimensional square lattice: Case for two features
Genzor, Jozef; Bužek, Vladimír; Gendiar, Andrej
2015-02-01
We propose a thermodynamic multi-state spin model in order to describe equilibrial behavior of a society. Our model is inspired by the Axelrod model used in social network studies. In the framework of the statistical mechanics language, we analyze phase transitions of our model, in which the spin interaction J is interpreted as a mutual communication among individuals forming a society. The thermal fluctuations introduce a noise T into the communication, which suppresses long-range correlations. Below a certain phase transition point Tt, large-scale clusters of the individuals, who share a specific dominant property, are formed. The measure of the cluster sizes is an order parameter after spontaneous symmetry breaking. By means of the Corner transfer matrix renormalization group algorithm, we treat our model in the thermodynamic limit and classify the phase transitions with respect to inherent degrees of freedom. Each individual is chosen to possess two independent features f = 2 and each feature can assume one of q traits (e.g. interests). Hence, each individual is described by q2 degrees of freedom. A single first-order phase transition is detected in our model if q > 2, whereas two distinct continuous phase transitions are found if q = 2 only. Evaluating the free energy, order parameters, specific heat, and the entanglement von Neumann entropy, we classify the phase transitions Tt(q) in detail. The permanent existence of the ordered phase (the large-scale cluster formation with a non-zero order parameter) is conjectured below a non-zero transition point Tt(q) ≈ 0.5 in the asymptotic regime q → ∞.
A model for the thermodynamic analysis in a batch type fluidized bed dryer
International Nuclear Information System (INIS)
Özahi, Emrah; Demir, Hacımurat
2013-01-01
An original model for thermodynamic analysis of a batch type fluidized bed dryer is proposed herein considering two separate systems comprised of drying air medium as a control volume and particles to be dried as a control mass. By means of the proposed model, energetic and exergetic analyses of a drying column of a batch type fluidized bed dryer are carried out as an original contribution to literature since there is no such like model in which the analyses are performed considering two separate systems. The energetic efficiencies evaluated by means of the proposed model using the data in literature are compared with those in literature and a good conformity is satisfied with an acceptable error margin of ±9%. A new correlation is also developed with a mean deviation of ±10% in order to evaluate the energetic efficiency for not only corn drying process but also drying processes of other particles at inlet air temperature of 50 °C. Effects of air mass flow rate, mass of particle and ambient temperature on energetic and exergetic efficiencies are analyzed and some concluding remarks are highlighted for further studies. - Highlights: • Energetic and exergetic analyses of a batch type fluidized bed dryer are developed. • An original model is proposed for thermodynamic analyses in a fluidized bed dryer. • The proposed model is compared with the data in literature with an accuracy of ±9%. • Effect of air mass flow rate is more significant than that of ambient temperature. • Effect of mass of particle is more significant than that of ambient temperature
Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions
Energy Technology Data Exchange (ETDEWEB)
Haghtalab, Ali, E-mail: haghtala@modares.ac.i [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Shojaeian, Abolfazl; Mazloumi, Seyed Hossein [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)
2011-03-15
An electrolyte activity coefficient model is proposed by combining non-electrolyte NRTL-NRF local composition model and Pitzer-Debye-Hueckel equation as short-range and long-range contributions, respectively. With two adjustable parameters per each electrolyte, the present model is applied to correlation of the mean activity coefficients of more than 150 strong aqueous electrolyte solutions at 298.15 K. Also the results of the present model are compared with the other local composition models such as electrolyte-NRTL, electrolyte-NRTL-NRF and electrolyte-Wilson-NRF models. Moreover, the present model is used for prediction of the osmotic coefficient of several aqueous binary electrolytes systems at 298.15 K. Also the present activity coefficient model is adopted for representation of nonideality of the acid gases, as weak gas electrolytes, soluble in alkanolamine solutions. The model is applied for calculation of solubility and heat of absorption (enthalpy of solution) of acid gas in the two {l_brace}(H{sub 2}O + MDEA + CO{sub 2}) and (H{sub 2}O + MDEA + H{sub 2}S){r_brace} systems at different conditions. The results demonstrate that the present model can be successfully applied to study thermodynamic properties of both strong and weak electrolyte solutions.
International Nuclear Information System (INIS)
Duthil, P
2014-01-01
The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered
Energy Technology Data Exchange (ETDEWEB)
Duthil, P [Orsay, IPN (France)
2014-07-01
The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.
Directory of Open Access Journals (Sweden)
Paul Chun
2003-01-01
Full Text Available We have shown in our published work the existence of a thermodynamic switch in biological systems wherein a change of sign in ΔCp°(Treaction leads to a true negative minimum in the Gibbs free energy change of reaction, and hence, a maximum in the related Keq. We have examined 35 pair-wise, sequence-specific hydrophobic interactions over the temperature range of 273–333 K, based on data reported by Nemethy and Scheraga in 1962. A closer look at a single example, the pair-wise hydrophobic interaction of leucine-isoleucine, will demonstrate the significant differences when the data are analyzed using the Nemethy-Scheraga model or treated by the Planck-Benzinger methodology which we have developed. The change in inherent chemical bond energy at 0 K, ΔH°(T0 is 7.53 kcal mol-1 compared with 2.4 kcal mol-1, while ‹ts› is 365 K as compared with 355 K, for the Nemethy-Scheraga and Planck-Benzinger model, respectively. At ‹tm›, the thermal agitation energy is about five times greater than ΔH°(T0 in the Planck-Benzinger model, that is 465 K compared to 497 K in the Nemethy-Scheraga model. The results imply that the negative Gibbs free energy minimum at a well-defined ‹ts›, where TΔS° = 0 at about 355 K, has its origin in the sequence-specific hydrophobic interactions, which are highly dependent on details of molecular structure. The Nemethy-Scheraga model shows no evidence of the thermodynamic molecular switch that we have found to be a universal feature of biological interactions. The Planck-Benzinger method is the best known for evaluating the innate temperature-invariant enthalpy, ΔH°(T0, and provides for better understanding of the heat of reaction for biological molecules.
Torque-coupled thermodynamic model for FoF1 -ATPase
Ai, Guangkuo; Liu, Pengfei; Ge, Hao
2017-05-01
FoF1 -ATPase is a motor protein complex that utilizes transmembrane ion flow to drive the synthesis of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and phosphate (Pi). While many theoretical models have been proposed to account for its rotary activity, most of them focus on the Fo or F1 portions separately rather than the complex as a whole. Here, we propose a simple but new torque-coupled thermodynamic model of FoF1 -ATPase. Solving this model at steady state, we find that the monotonic variation of each portion's efficiency becomes much more robust over a wide range of parameters when the Fo and F1 portions are coupled together, as compared to cases when they are considered separately. Furthermore, the coupled model predicts the dependence of each portion's kinetic behavior on the parameters of the other. Specifically, the power and efficiency of the F1 portion are quite sensitive to the proton gradient across the membrane, while those of the Fo portion as well as the related Michaelis constants for proton concentrations respond insensitively to concentration changes in the reactants of ATP synthesis. The physiological proton gradient across the membrane in the Fo portion is also shown to be optimal for the Michaelis constants of ADP and phosphate in the F1 portion during ATP synthesis. Together, our coupled model is able to predict key dynamic and thermodynamic features of the FoF1 -ATPase in vivo semiquantitatively, and suggests that such coupling approach could be further applied to other biophysical systems.
Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C
2008-01-01
As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.
Energy Technology Data Exchange (ETDEWEB)
De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr [MINES ParisTech, PSL Research University, Centre de Géosciences, 35 Rue St-Honoré, 77305 Fontainebleau Cedex (France); Bertron, Alexandra; Larreur-Cayol, Steeves; Escadeillas, Gilles [University of Toulouse, UPS/INSA/LMDC, 135 Av. de Rangueil, 31077 Toulouse Cedex 04 (France)
2015-03-15
Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelating effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.
International Nuclear Information System (INIS)
Lima, R.A.T. de.
1982-01-01
Within the variational method in statistical mechanics, dynamical and thermodynamical properties of anharmonic crystal are discussed, in particular the thermal behavior of the crystalline expasion, phonons spectrum, specific heat and Debye-Weller factor (which satisfctorily describes the experimental data). Through the temperature dependent Green functions framework, dynamical and thermodynamical properties associated with the spin-Peierls transition in the magnetostrictive XY model (with one-dimensional magnetic interactions but structurally three-dimensional) are also discussed. Emphasis is given to the influence of an external magnetic field (along the z-axis) on the structural order parameter, phase diagram, specific heat, magnetization, magnetic susceptibility and phonons spectrun (acoustic and optic branches). Results are extended and new ons are exhibited such as: a) a structural Lifshitz point, which separates the uniform (U), dimerized (D) and modulated (M) phases in the T-H phase diagram; b) another special point is detected for high magnetic fields; c) the D-M first-order frontier and the metastability limits are obtained; d) for high elastic constants, fixed temperature and increasing magnetic field, the unusual sequence non uniform-uniform - non uniform-uniform is possible; e) the thermal dependence of the sound velocity presents a gap at the critical temperature. The present results have provided a quite satisfactory qualitative (and partially quantitative) description of the experiments on the TTF-BDT and MEM-(TCNQ) 2 ; this fact enables us to hope that several of our predictions indeed occur in nature. (Author) [pt
Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.
Khantuleva, Tatiana A; Shalymov, Dmitry S
2017-03-06
The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
Su, Ji Guo; Qi, Li Sheng; Li, Chun Hua; Zhu, Yan Ying; Du, Hui Jing; Hou, Yan Xue; Hao, Rui; Wang, Ji Hua
2014-08-01
Allostery is a rapid and efficient way in many biological processes to regulate protein functions, where binding of an effector at the allosteric site alters the activity and function at a distant active site. Allosteric regulation of protein biological functions provides a promising strategy for novel drug design. However, how to effectively identify the allosteric sites remains one of the major challenges for allosteric drug design. In the present work, a thermodynamic method based on the elastic network model was proposed to predict the allosteric sites on the protein surface. In our method, the thermodynamic coupling between the allosteric and active sites was considered, and then the allosteric sites were identified as those where the binding of an effector molecule induces a large change in the binding free energy of the protein with its ligand. Using the proposed method, two proteins, i.e., the 70 kD heat shock protein (Hsp70) and GluA2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, were studied and the allosteric sites on the protein surface were successfully identified. The predicted results are consistent with the available experimental data, which indicates that our method is a simple yet effective approach for the identification of allosteric sites on proteins.
Donnet, Marcel; Bowen, Paul; Lemaître, Jacques
2009-12-15
Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann's approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thus possible equilibrium precipitation pathways can be evaluated by calculating the evolution of surface charge, particle size and/or interfacial energy during the ongoing reaction. The approach includes the use of the Kelvin's law to express the influence of particle size on the solubility constant of precipitates, the use of Nernst's law to calculate surface potentials from solubility calculations and relate this to experimentally measured zeta potentials. Calcium carbonate precipitation and zeta potential measurements of well characterised high purity calcite have been used as a model system to validate the calculated values. The clarification of the change in zeta potential on titration illustrates the power of this approach as a tool for reaction pathway prediction and hence knowledge based tailoring of precipitation reactions.
Energy Technology Data Exchange (ETDEWEB)
Hageman, Sven; Scharge, Tina; Willms, Thomas
2015-07-15
The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.
FINITE TIME THERMODYNAMIC MODELING AND ANALYSIS FOR AN IRREVERSIBLE ATKINSON CYCLE
Directory of Open Access Journals (Sweden)
Yanlin Ge
2010-01-01
Full Text Available Performance of an air-standard Atkinson cycle is analyzed by using finite-time thermodynamics. The irreversible cycle model which is more close to practice is founded. In this model, the non-linear relation between the specific heats of working fluid and its temperature, the friction loss computed according to the mean velocity of the piston, the internal irreversibility described by using the compression and expansion efficiencies, and heat transfer loss are considered. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle are derived by detailed numerical examples. Moreover, the effects of internal irreversibility, heat transfer loss and friction loss on the cycle performance are analyzed. The results obtained in this paper may provide guidelines for the design of practical internal combustion engines.
A thermodynamic model of an air-independent IDI diesel engine system
International Nuclear Information System (INIS)
Zheng, M.; Reader, G.T.; Potter, I.J.; Gustafson, R.W.
1992-01-01
Synthetic atmosphere diesel (SAD) engines have been and are still being developed as air-independent power systems for use in naval and commercial underwater vehicles. Although the basic concept of such a system is relatively simple, its practical implementation is somewhat complicated and normally involves expensive and time consuming prototype development. If an analytical method existed which could be used to compare the overall performance of different configurations or highlight essential control aspects, system optimization could be attempted more readily and a close-to-optimum design produced prior to any subsequent practical development. Consequently, a thermodynamic simulation model has been formulated so that the performance and/or design of such systems can be investigated, and the effects of the various system variables can be identified. In this paper the development of the model and the associated experimental investigation is described
Combining thermodynamic principles with Preisach models for superelastic shape memory alloy wires
International Nuclear Information System (INIS)
Doraiswamy, S; Rao, A; Srinivasa, A R
2011-01-01
We present a simple model for simulating the response of a superelastic shape memory alloy wire based on the thermodynamics of irreversible processes, which can simulate the full thermomechanical response including internal hysteresis loops, at different temperatures, with minimal data input. The key idea is to separate the dissipative response and the elastic response of shape memory alloys using a Gibbs potential based formulation, and then use a Preisach model for the dissipative part of the response. This enables better handling of the features observed in the superelastic response such as those due to changes in temperature and internal hysteresis loops. We compare the predicted response with experiments performed on 0.75 mm NiTi shape memory alloy wires at three different temperatures
Kou, Jisheng
2016-11-25
A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest alternative over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of two fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.
A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.
Directory of Open Access Journals (Sweden)
Susanne Gerber
2016-01-01
Full Text Available Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport or by ATP consumption (ATPases. The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.
International Nuclear Information System (INIS)
Kaushik, S.C.; Rawat, Rahul; Manikandan, S.
2017-01-01
Highlights: • A novel thermodynamic modelling of photovoltaic energy system has been proposed. • The entropy, optical, thermal, spectral and fill factor losses are assessed. • The expression of energetic and exergetic efficiencies have been derived. • Reversible, endoreversible, exoreversible and irreversible systems are presented. - Abstract: The photovoltaic energy conversion is a thermodynamic system which converts the solar energy to the electrical and thermal energy. In this paper, a novel thermodynamic model of photovoltaic energy conversion system has been proposed on the basis of the first and second law of thermodynamics including entropy generation, optical, thermal, spectral and fill factor losses. Based on the irreversibilities, the proposed model has been classified into four cases i.e. reversible, endoreversible, exoreversible and irreversible systems, for which, the expressions of energetic and exergetic efficiencies have been derived. The upper limit efficiency of an ideal photovoltaic module placed in an irreversible environment, i.e. endoreversible system, is determined to be 82.8%. The effect of wind speed and module temperature on the energetic and exergetic efficiencies, thermodynamic losses and irreversibilities has also been presented.
Energy Technology Data Exchange (ETDEWEB)
Becattini, F. [Florence Univ. (Italy)]|[Istituto Nazionale di Fisica Nucleare, Florence (Italy); Giovannini, A. [Turin Univ. (Italy). Ist. di Fisica Teorica]|[Istituto Nazionale di Fisica Nucleare, Turin (Italy); Lupia, S. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut
1996-10-01
Predictions of a thermodynamical model of hadron production for multiplicity distributions in e{sup +}e{sup -} annihilations at LEP and PEP-PETRA centre of mass energies are shown. The production process is described as a two-step process in which primary hadrons emitted from the thermal source decay into final observable particles. The final charged track multiplicity distributions turn out to be of negative binomial type and are in quite good agreement with experimental observations. The average number of clans calculated from fitted negative binomial coincides with the average number of primary hadrons predicted by the thermodynamical model, suggesting that clans should be identified with primary hadrons. (orig.)
International Nuclear Information System (INIS)
2012-01-01
A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity
Directory of Open Access Journals (Sweden)
Wassim M. Haddad
2014-07-01
Full Text Available Advances in neuroscience have been closely linked to mathematical modeling beginning with the integrate-and-fire model of Lapicque and proceeding through the modeling of the action potential by Hodgkin and Huxley to the current era. The fundamental building block of the central nervous system, the neuron, may be thought of as a dynamic element that is “excitable”, and can generate a pulse or spike whenever the electrochemical potential across the cell membrane of the neuron exceeds a threshold. A key application of nonlinear dynamical systems theory to the neurosciences is to study phenomena of the central nervous system that exhibit nearly discontinuous transitions between macroscopic states. A very challenging and clinically important problem exhibiting this phenomenon is the induction of general anesthesia. In any specific patient, the transition from consciousness to unconsciousness as the concentration of anesthetic drugs increases is very sharp, resembling a thermodynamic phase transition. This paper focuses on multistability theory for continuous and discontinuous dynamical systems having a set of multiple isolated equilibria and/or a continuum of equilibria. Multistability is the property whereby the solutions of a dynamical system can alternate between two or more mutually exclusive Lyapunov stable and convergent equilibrium states under asymptotically slowly changing inputs or system parameters. In this paper, we extend the theory of multistability to continuous, discontinuous, and stochastic nonlinear dynamical systems. In particular, Lyapunov-based tests for multistability and synchronization of dynamical systems with continuously differentiable and absolutely continuous flows are established. The results are then applied to excitatory and inhibitory biological neuronal networks to explain the underlying mechanism of action for anesthesia and consciousness from a multistable dynamical system perspective, thereby providing a
Botter, C. D.; Prada, M.; Fullea, J.
2017-12-01
The Porcupine is a North-South oriented basin located southwest of Ireland, along the North Atlantic continental margin, formed by several rifting episodes during Late Carboniferous to Early Cretaceous. The sedimentary cover is underlined by a very thin continental crust in the center of the basin (10 in the South. In spite of the abundant literature, most of the oil and gas exploration in the Porcupine Basin has been targeting its northern part and is mostly restricted to relatively shallow depths, giving a restrained overview of the basin structure. Therefore, studying the thermodynamic and composition of the deep and broader structures is needed to understand the processes linked to the formation and the symmetry signature of the basin. Here, we model the present-day thermal and compositional structure of the continental crust and lithospheric mantle underneath the Porcupine basin using gravity, seismic, heat flow and elevation data. We use an integrated geophysical-petrological framework where most relevant rock properties (density, seismic velocities) are determined as a function of temperature, pressure and composition. Our modelling approach solves simultaneously the heat transfer, thermodynamic, geopotential, seismic and isostasy equations, and fit the results to all available geophysical and petrological observables (LitMod software). In this work we have implemented a module to compute self-consistently a laterally variable lithospheric elastic thickness based on mineral physics rheological laws (yield strength envelopes over the 3D volume). An appropriate understanding of local and flexural isostatic behavior of the basin is essential to unravel its tectonic history (i.e. stretching factors, subsidence etc.). Our Porcupine basin 3D model is defined by four lithological layers, representing properties from post- and syn-rift sequences to the lithospheric mantle. The computed yield strength envelopes are representative of hyperextended lithosphere and
International Nuclear Information System (INIS)
Fang Zheng; Zhang Quanru
2006-01-01
A model has been derived to predict thermodynamic properties of ternary metallic systems from those of its three binaries. In the model, the excess Gibbs free energies and the interaction parameter ω 123 for three components of a ternary are expressed as a simple sum of those of the three sub-binaries, and the mole fractions of the components of the ternary are identical with the sub-binaries. This model is greatly simplified compared with the current symmetrical and asymmetrical models. It is able to overcome some shortcomings of the current models, such as the arrangement of the components in the Gibbs triangle, the conversion of mole fractions between ternary and corresponding binaries, and some necessary processes for optimizing the various parameters of these models. Two ternary systems, Mg-Cu-Ni and Cd-Bi-Pb are recalculated to demonstrate the validity and precision of the present model. The calculated results on the Mg-Cu-Ni system are better than those in the literature. New parameters in the Margules equations expressing the excess Gibbs free energies of three binary systems of the Cd-Bi-Pb ternary system are also given
Energy Technology Data Exchange (ETDEWEB)
Venson, Giuliano Gardolinski [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], e-mail: venson@ufmg.br; Barros, Jose Eduardo Mautone; Pereira, Josemar Figueiredo [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)], e-mail: mautone@des.cefetmg.br, e-mail: josemar_cefet@yahoo.com.br
2006-07-01
This work presents the modeling of a gas microturbine power generator. The microturbine consists in a small thermo-electrical power unit, design for combined heat and power generation. The unit has an electric generator, coaxially connected with a turbocharger, which one is driven by a fuel burner. The system also incorporates an air regenerator, used for pre-heat the combustion air, and a heat exchanger, used for water heating. The objective of the modeling is the attainment of the electrical performance and the operational limits for the microturbine in function of the subsystems operational conditions. The modeling is based on the first law of the thermodynamic, using specific models for each component. In the combustion chamber is used a model that takes the fuel injection properties, as absolute pressure and temperature. A semi-empirical model, based in the modified Euler equation, is used in the turbocharger. In the air regenerator and heat exchanger, the method of mean logarithmic temperature difference is used. Through the modeling of a commercial microturbine, reference values obtained were used in some subsystems of a new microturbine. The results for this new microturbine in development, based in automotive turbochargers, indicate a nominal electrical power of 38 kW with electrical efficiency of 33% and global efficiency of 73%. (author)
Canonical cortical circuits: current evidence and theoretical implications
Directory of Open Access Journals (Sweden)
Capone F
2016-04-01
Full Text Available Fioravante Capone,1,2 Matteo Paolucci,1,2 Federica Assenza,1,2 Nicoletta Brunelli,1,2 Lorenzo Ricci,1,2 Lucia Florio,1,2 Vincenzo Di Lazzaro1,2 1Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; 2Fondazione Alberto Sordi – Research Institute for Aging, Rome, ItalyAbstract: Neurophysiological and neuroanatomical studies have found that the same basic structural and functional organization of neuronal circuits exists throughout the cortex. This kind of cortical organization, termed canonical circuit, has been functionally demonstrated primarily by studies involving visual striate cortex, and then, the concept has been extended to different cortical areas. In brief, the canonical circuit is composed of superficial pyramidal neurons of layers II/III receiving different inputs and deep pyramidal neurons of layer V that are responsible for cortex output. Superficial and deep pyramidal neurons are reciprocally connected, and inhibitory interneurons participate in modulating the activity of the circuit. The main intuition of this model is that the entire cortical network could be modeled as the repetition of relatively simple modules composed of relatively few types of excitatory and inhibitory, highly interconnected neurons. We will review the origin and the application of the canonical cortical circuit model in the six sections of this paper. The first section (The origins of the concept of canonical circuit: the cat visual cortex reviews the experiments performed in the cat visual cortex, from the origin of the concept of canonical circuit to the most recent developments in the modelization of cortex. The second (The canonical circuit in neocortex and third (Toward a canonical circuit in agranular cortex sections try to extend the concept of canonical circuit to other cortical areas, providing some significant examples of circuit functioning in different cytoarchitectonic
Directory of Open Access Journals (Sweden)
O.Ya.Farenyuk
2006-01-01
Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.
Canonical Labelling of Site Graphs
Directory of Open Access Journals (Sweden)
Nicolas Oury
2013-06-01
Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.
International Nuclear Information System (INIS)
Pierson, K.L.; Meinert, F.L.
2012-01-01
Two notable modeling efforts within the Hanford Tank Waste Operations Simulator (HTWOS) are currently underway to (1) increase the robustness of the underlying chemistry approximations through the development and implementation of an aqueous thermodynamic model, and (2) add enhanced planning capabilities to the HTWOS model through development and incorporation of the lifecycle cost model (LCM). Since even seemingly small changes in apparent waste composition or treatment parameters can result in large changes in quantities of high-level waste (HLW) and low-activity waste (LAW) glass, mission duration or lifecycle cost, a solubility model that more accurately depicts the phases and concentrations of constituents in tank waste is required. The LCM enables evaluation of the interactions of proposed changes on lifecycle mission costs, which is critical for decision makers.
Pini, Maria Gloria; Rettori, Angelo
1993-08-01
The thermodynamical properties of an alternating spin (S,s) one-dimensional (1D) Ising model with competing nearest- and next-nearest-neighbor interactions are exactly calculated using a transfer-matrix technique. In contrast to the case S=s=1/2, previously investigated by Harada, the alternation of different spins (S≠s) along the chain is found to give rise to two-peaked static structure factors, signaling the coexistence of different short-range-order configurations. The relevance of our calculations with regard to recent experimental data by Gatteschi et al. in quasi-1D molecular magnetic materials, R (hfac)3 NITEt (R=Gd, Tb, Dy, Ho, Er, . . .), is discussed; hfac is hexafluoro-acetylacetonate and NlTEt is 2-Ethyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl-3-oxide.
Shi, Kaile; Jiang, Wei; Guo, Anbang; Wang, Kai; Wu, Chuang
2018-06-01
The magnetic and thermodynamic properties of borophene structure have been studied for the first time by Monte Carlo simulation. Two-dimensional borophene structure consisting of seven hexagonal B36 units is described by Ising model. Each B36 basic unit includes three benzene-like with spin-3/2. The general formula for the borophene structure is given. The numerical results of the magnetization, the magnetic susceptibility, the internal energy and the specific heat are studied with various parameters. The possibility to test the predicted magnetism in experiment are illustrated, for instance, the maximum on the magnetization curve. The multiple hysteresis loops and the magnetization plateaus are sensitive to the ferromagnetic or ferrimagnetic exchange coupling in borophene structure. The results show the borophene structure could have applications in spintronics, which deserves further studies in experiments.
Modification of Pawlow's thermodynamical model for the melting of small single-component particles
Barybin, Anatoly; Shapovalov, Victor
2011-02-01
A new approach to the melting of small particles is proposed to modify the known Pawlow's model by taking into account the transfer of material from solid spherical particles to liquid ones through a gas phase. Thermodynamical analysis gives rise to a differential equation for the melting point Tm involving such size-dependent and temperature-dependent parameters of a material as the surface tensions σs(l ), molar heat of fusion ΔHm and molar volumes vs(l ). Solution of this equation has shown that all the limiting cases for size-independent situations coincide with results known in the literature and our analysis of size-dependent situations gives results close to the experimental data previously obtained by other authors for some metallic particles.
A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation
Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian
2017-07-01
The extracellular matrix (ECM) of a solid tumor not only affords scaffolding to support tumor architecture and integrity but also plays an essential role in tumor growth, invasion, metastasis, and therapeutics. In this paper, a non-equilibrium thermodynamic theory is established to study the chemo-mechanical behaviors of tumor ECM, which is modeled as a poroelastic polyelectrolyte consisting of a collagen network and proteoglycans. By using the principle of maximum energy dissipation rate, we deduce a set of governing equations for drug transport and mechanosensitive enzymatic degradation in ECM. The results reveal that osmosis is primarily responsible for the compression resistance of ECM. It is suggested that a well-designed ECM degradation can effectively modify the tumor microenvironment for improved efficiency of cancer therapy. The theoretical predictions show a good agreement with relevant experimental observations. This study aimed to deepen our understanding of tumor ECM may be conducive to novel anticancer strategies.
Ab-initio modelling of thermodynamics and kinetics of point defects in indium oxide
International Nuclear Information System (INIS)
Agoston, Peter; Klein, Andreas; Albe, Karsten; Erhart, Paul
2008-01-01
The electrical and optical properties of indium oxide films strongly vary with the processing parameters. Especially the oxygen partial pressure and temperature determine properties like electrical conductivity, composition and transparency. Since this material owes its remarkable properties like the intrinsic n-type conductivity to its defect chemistry, it is important to understand both, the equilibrium defect thermodynamics and kinetics of the intrinsic point defects. In this contribution we present a defect model based on DFT total energy calculations using the GGA+U method. Further, the nudged elastic band method is employed in order to obtain a set of migration barriers for each defect species. Due to the complicated crystal structure of indium oxide a Kinetic Monte-Carlo algorithm was implemented, which allows to determine diffusion coefficients. The bulk tracer diffusion constant is predicted as a function of oxygen partial pressure, Fermi level and temperature for the pure material
Leege, Brian J.
The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.
On the formal equivalence of the TAP and thermodynamic methods in the SK model
International Nuclear Information System (INIS)
Cavagna, Andrea; Giardina, Irene; Parisi, Giorgio; Mezard, Marc
2003-01-01
We revisit two classic Thouless-Anderson-Palmer (TAP) studies of the Sherrington-Kirkpatrick model (Bray A J and Moore M A 1980 J. Phys. C: Solid State Phys. 13 L469; De Dominicis C and Young A P 1983 J. Phys. A: Math. Gen. 16 2063). By using the Becchi-Rouet-Stora-Tyutin (BRST) supersymmetry, we prove the general equivalence of TAP and replica partition functions, and show that the annealed calculation of the TAP complexity is formally identical to the quenched thermodynamic calculation of the free energy at one step level of replica symmetry breaking. The complexity we obtain by means of the BRST symmetry turns out to be considerably smaller than the previous non-symmetric value
Nonlinear integral equations for thermodynamics of the sl(r + 1) Uimin-Sutherland model
International Nuclear Information System (INIS)
Tsuboi, Zengo
2003-01-01
We derive traditional thermodynamic Bethe ansatz (TBA) equations for the sl(r+1) Uimin-Sutherland model from the T-system of the quantum transfer matrix. These TBA equations are identical to the those from the string hypothesis. Next we derive a new family of nonlinear integral equations (NLIEs). In particular, a subset of these NLIEs forms a system of NLIEs which contains only a finite number of unknown functions. For r=1, this subset of NLIEs reduces to Takahashi's NLIE for the XXX spin chain. A relation between the traditional TBA equations and our new NLIEs is clarified. Based on our new NLIEs, we also calculate the high-temperature expansion of the free energy
Thermodynamic modeling of La2O3-SrO-Mn2O3-Cr2O3 for solid oxide fuel cell applications
DEFF Research Database (Denmark)
Povoden-Karadeniz, E.; Chen, Ming; Ivas, Toni
2012-01-01
The thermodynamic La–Sr–Mn–Cr–O oxide database is obtained as an extension of thermodynamic descriptions of oxide subsystems using the calculation of phase diagrams approach. Concepts of the thermodynamic modeling of solid oxide phases are discussed. Gibbs energy functions of SrCrO4, Sr2.67Cr2O8......, Sr2CrO4, and SrCr2O4 are presented, and thermodynamic model parameters of La–Sr–Mn–Chromite perovskite are given. Experimental solid solubilities and nonstoichiometries in La1xSrxCrO3d and LaMn1xCrxO3d are reproduced by the model. The presented oxide database can be used for applied computational...... thermodynamics of traditional lanthanum manganite cathode with Cr-impurities. It represents the fundament for extensions to higher orders, aiming on thermodynamic calculations in noble symmetric solid oxide fuel cells...
Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model
International Nuclear Information System (INIS)
Nikpey Somehsaraei, Homam; Mansouri Majoumerd, Mohammad; Breuhaus, Peter; Assadi, Mohsen
2014-01-01
This study focuses on an investigation of the fuel flexibility and performance analysis of micro gas turbines (MGTs) in biogas application. For this purpose, a steady state thermodynamic model of an MGT was developed and validated by experimental data obtained from a 100 kW MGT test rig. Quite good agreement was obtained between the measurements and the simulation results. A wide range of biogas compositions with varying methane content was simulated for this study. Necessary minor modifications to fuel valves and compressor were assumed to allow engine operation with the simulated biogas composition. The effects of biogas on the engine performance were fully analyzed at various operational conditions by changing the power demand and also the ambient temperature. Compared to the natural gas fueled case, the mass flow and pressure ratio in the MGT decreased, which resulted in a slight reduction of the surge margin. This effect became more severe, however, at low power loads and/or low ambient temperatures. For all operational conditions, the electrical efficiency decreased with decreasing methane content of the biogas. The results also indicated the negative effect of the biogas on the heat recovery in the recuperator, which lowered as the methane content of the fuel decreased. - Highlights: •The MGT performance and fuel flexibility were investigated in biogas application. •A thermodynamic model of the MGT was developed and validated with experimental data. •Changes in performance and operating conditions of components were studied. •The results showed the viability of the MGT for use in biogas application
Confidence interval of intrinsic optimum temperature estimated using thermodynamic SSI model
Institute of Scientific and Technical Information of China (English)
Takaya Ikemoto; Issei Kurahashi; Pei-Jian Shi
2013-01-01
The intrinsic optimum temperature for the development of ectotherms is one of the most important factors not only for their physiological processes but also for ecological and evolutional processes.The Sharpe-Schoolfield-Ikemoto (SSI) model succeeded in defining the temperature that can thermodynamically meet the condition that at a particular temperature the probability of an active enzyme reaching its maximum activity is realized.Previously,an algorithm was developed by Ikemoto (Tropical malaria does not mean hot environments.Journal of Medical Entomology,45,963-969) to estimate model parameters,but that program was computationally very time consuming.Now,investigators can use the SSI model more easily because a full automatic computer program was designed by Shi et al.(A modified program for estimating the parameters of the SSI model.Environmental Entomology,40,462-469).However,the statistical significance of the point estimate of the intrinsic optimum temperature for each ectotherm has not yet been determined.Here,we provided a new method for calculating the confidence interval of the estimated intrinsic optimum temperature by modifying the approximate bootstrap confidence intervals method.For this purpose,it was necessary to develop a new program for a faster estimation of the parameters in the SSI model,which we have also done.
Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy
Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.
2016-09-01
Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.
Nuclear thermodynamics below particle threshold
International Nuclear Information System (INIS)
Schiller, A.; Agvaanluvsan, U.; Algin, E.; Bagheri, A.; Chankova, R.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Voinov, A.
2005-01-01
From a starting point of experimentally measured nuclear level densities, we discuss thermodynamical properties of nuclei below the particle emission threshold. Since nuclei are essentially mesoscopic systems, a straightforward generalization of macroscopic ensemble theory often yields unphysical results. A careful critique of traditional thermodynamical concepts reveals problems commonly encountered in mesoscopic systems. One of which is the fact that microcanonical and canonical ensemble theory yield different results, another concerns the introduction of temperature for small, closed systems. Finally, the concept of phase transitions is investigated for mesoscopic systems
Il canone linguistico boccacciano, non senza dissenso
Directory of Open Access Journals (Sweden)
Cecilia Casini
2015-06-01
Full Text Available Author of prose’s greatest masterpiece of medieval literature in the vernacular, Giovanni Boccaccio was crucial to defining the Italian language canon, especially since Pietro Bembo proposed its coding in the sixteenth century. Not without controversy, however, since shortly after the publication of Prose Della Volgar Language, Bembo presents the first contrasting theories that support the linguistic model presented by Machiavelli
Afkhamipour, Morteza; Mofarahi, Masoud; Borhani, Tohid Nejad Ghaffar; Zanganeh, Masoud
2018-03-01
In this study, artificial neural network (ANN) and thermodynamic models were developed for prediction of the heat capacity ( C P ) of amine-based solvents. For ANN model, independent variables such as concentration, temperature, molecular weight and CO2 loading of amine were selected as the inputs of the model. The significance of the input variables of the ANN model on the C P values was investigated statistically by analyzing of correlation matrix. A thermodynamic model based on the Redlich-Kister equation was used to correlate the excess molar heat capacity ({C}_P^E) data as function of temperature. In addition, the effects of temperature and CO2 loading at different concentrations of conventional amines on the C P values were investigated. Both models were validated against experimental data and very good results were obtained between two mentioned models and experimental data of C P collected from various literatures. The AARD between ANN model results and experimental data of C P for 47 systems of amine-based solvents studied was 4.3%. For conventional amines, the AARD for ANN model and thermodynamic model in comparison with experimental data were 0.59% and 0.57%, respectively. The results showed that both ANN and Redlich-Kister models can be used as a practical tool for simulation and designing of CO2 removal processes by using amine solutions.
International Nuclear Information System (INIS)
T. J. Wolery; C.F. Jove-Colon
2004-01-01
The purpose of this analysis report is to qualify the thermochemical database data0.ymp.R2 (DTN: MO0302SPATHDYN.000 [DIRS 161756], qualified by this report) and supporting calculations (DTNs: MO0302SPATHDYN.001 [DIRS 161886], and MO0303SPASPEQ2.000 [DIRS 162278]), which were originally documented in ''Data Qualification: Update and Revision of the Geochemical Thermodynamic Database, Data0.ymp'' (Steinborn et al. 2003 [DIRS 161956]). This original document still serves as the record of development of the data0.ymp.R2 database (DTN: MO0302SPATHDYN.000 [DIRS 161756]). The data0.ymp.R2 thermodynamic database (DTN: MO0302SPATHDYN.000 [DIRS 161756]) was developed for use with software code EQ3/6 (EQ3/6 V8.0, STN: 10813-8.0-00) (BSC 2003 [DIRS 162228]) and software code EQ6 (EQ6 V7.2bLV, STN: 10075-7.2bLV-02) (BSC 2002 [DIRS 159731]) to conduct geochemical modeling of mineral-fluid interactions involving aqueous solutions (ionic strengths of up to one molal; see Section 6.5) and temperatures of up to 300 C along the liquid-vapor saturation curve of pure water. The data0.ymp.R2 database (DTN: MO0302SPATHDYN.000 [DIRS 161756]) is an update of the previously qualified predecessor database data0.ymp.R0 (DTN: MO0009THRMODYN.001 [DIRS 152576]). The scope of this report is limited to qualification of the updates, as well as identification and evaluation of certain errors and discrepancies as discussed
Druhan, J. L.; Giannetta, M.; Sanford, R. A.
2017-12-01
In recent years, reactive transport principles have expanded from early applications, largely based in contaminant hydrology, to a wide range of biologically mediated redox environments including marine sedimentary diagenesis, terrestrial metal ore deposits, soils, and critical zone weathering profiles. A common observation across this diversity of systems is that they often function under energetically limited conditions in comparison to those typical of contaminated aquifers subject to engineered remediation techniques. As a result, the kinetic rate expressions traditionally employed within reactive transport frameworks to simulate microbially mediated redox transformations have required modification. This was recognized in a series of seminal papers by Jin and Bethke (2005, 2007) in which the authors expanded upon a Monod rate law to include a thermodynamic potential factor `Ft' which exerts a limitation on the overall rate based on the thermodynamic driving force of the electron transfer reaction. This new rate expression is now commonly implemented within many of the major reactive transport software packages, though appropriate application has yet to be thoroughly demonstrated. Notably, the characteristically large partitioning of stable isotopes during microbially mediated reactions, which is extensively utilized to identify and quantify these redox transformations, has yet to be simulated under conditions in which the Ft term may be expected to exert a significant mass dependent influence. Here, we develop a series of simplified simulations for the microbially mediated reduction of sulfate based on the datasets reported by Jin and Bethke, and apply appropriate mass-bias within the Ft term to consider the extent to which the resulting isotopic fractionation is consistent with that observed in energetically limited systems. We show that the Ft term can exert a significant influence on the observed fractionation factor under common environmental conditions
International Nuclear Information System (INIS)
Perlovich, German L.; Ryzhakov, Alex M.; Strakhova, Nadezda N.; Kazachenko, Vladimir P.; Schaper, Klaus-Jürgen; Raevsky, Oleg A.
2014-01-01
Highlights: • Solubility processes of some sulfonamide isomers in water and 1-octanol were investigated. • Transfer processes from water to 1-octanol were evaluated by analysis of enthalpic and entropic terms. • Impact of various substituents in phenyl rings on solubility and transfer processes was studied. -- Abstract: The thermodynamic aspects of solubility processes of sulfonamides (SAs) with the general structures 4-NH 2 –C 6 H 4 –SO 2 NH–C 6 H 2 (R 1 )(R 2 )-R 3 (R 1 = 2-CH 3 , 2-Cl; R 2 = 4-CH 3 , 4-Cl; R 3 =5-H, 5-Cl), 4-NH 2 -2-Cl–C 6 H 3 –SO 2 NH–C 6 H 3 (R 1 )-R 2 (R 1 = 2-H, 2-Cl; R 2 = 4-H, 4-Cl) and 4-NH 2 -2-CH 3 –C 6 H 3 –SO 2 NH–C 6 H 3 (R 1 )-R 2 (R 1 = 2-H, 2-Cl, 2-NO 2 ; R 2 = 4-H, 4-Cl) in water and 1-octanol (as phases modeling various drug delivery pathways) were studied using the isothermal saturation method. For the sulfonamides with various substituents in phenyl rings the processes of transfer from water to 1-octanol were studied by a diagram method combined with analysis of enthalpic and entropic terms. Distinguishing between enthalpy and entropy, as is possible through the present approach, leads to the insight that the contribution of these terms is different for different molecules (entropy- or enthalpy-determined). Thus, in contrast to the interpretation of only the Gibbs energy of transfer (extensively used for pharmaceuticals in the form of the partition coefficient, logP), the analysis of thermodynamic functions of the transfer process provides additional mechanistic information. This may be important for further evaluation of the physiological distribution of drug molecules and may provide a better understanding of biopharmaceutical properties of drugs
Solution chemistry of Mo(III) and Mo(IV): Thermodynamic foundation for modeling localized corrosion
International Nuclear Information System (INIS)
Wang Peiming; Wilson, Leslie L.; Wesolowski, David J.; Rosenqvist, Joergen; Anderko, Andrzej
2010-01-01
To investigate the behavior of molybdenum dissolution products in systems that approximate localized corrosion environments, solubility of Mo(III) in equilibrium with solid MoO 2 has been determined at 80 deg. C as a function of solution acidity, chloride concentration and partial pressure of hydrogen. The measurements indicate a strong increase in solubility with acidity and chloride concentration and a weak effect of hydrogen partial pressure. The obtained results have been combined with literature data for systems containing Mo(III), Mo(IV), and Mo(VI) in solutions to develop a comprehensive thermodynamic model of aqueous molybdenum chemistry. The model is based on a previously developed framework for simulating the properties of electrolyte systems ranging from infinite dilution to solid saturation or fused salt limit. To reproduce the measurements, the model assumes the presence of a chloride complex of Mo(III) (i.e., MoCl 2+ ) and hydrolyzed species (MoOH 2+ , Mo(OH) 2 + , and Mo(OH) 3 0 ) in addition to the Mo 3+ ion. The model generally reproduces the experimental data within experimental scattering and provides a tool for predicting the phase behavior and speciation in complex, concentrated aqueous solutions. Thus, it provides a foundation for simulating the behavior of molybdenum species in localized corrosion environments.
Directory of Open Access Journals (Sweden)
Cristian F. Costa
2016-06-01
Full Text Available ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.
International Nuclear Information System (INIS)
Mizia, R.E.; Clark, D.E.; Glazoff, M.V.; Lister, Tedd E.; Trowbridge, T.L.
2011-01-01
A research effort was made to evaluate the usefulness of modern thermodynamic and diffusion computational tools, Thermo-Calc(copyright) and Dictra(copyright), in optimizing the parameters for diffusion welding of Alloy 800H. This would achieve a substantial reduction in the overall number of experiments required to achieve optimal welding and post-weld heat treatment conditions. This problem is important because diffusion welded components of Alloy 800H are being evaluated for use in assembling compact, micro-channel heat exchangers that are being proposed in the design of a high temperature gas-cooled reactor by the US Department of Energy. The modeling was done in close contact with experimental work. The latter included using the Gleeble 3500 System(reg sign) for welding simulation, mechanical property measurement, and light optical and Scanning Electron Microscopy. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using a 15 μm Ni foil as a joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved, and model refinements to account for the complexity of actual alloy materials are suggested.
A thermodynamic model of plasma generation by pulsed laser irradiation in vacuum
Tosto, S
2003-01-01
This paper introduces a thermodynamic model to determine composition, temperature and pressure of the plasma cloud induced by pulsed laser irradiation in the case where a relevant thermal sputtering mechanism is operating at the surface of a molten layer. The model concerns in particular pulse lengths of the order of several nanoseconds and completes the results of a previous paper concerning the physics of the evaporation and boiling driven thermal sputtering (Tosto S 2002 J. Phys. D: Appl. Phys. 35); the recession rate and temperature at the molten surface are linked to the pulse fluence and plasma properties in the frame of a unique physical model. This paper shows that the plasma properties depend critically on the non-equilibrium character of the surface evaporation and boiling mechanisms. The extension of the model to the case of continuous laser irradiation is also discussed. Some examples of computer simulation aim to show the results available in the particular case of a metal target; the comparison ...
Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.
1988-05-01
Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.
International Nuclear Information System (INIS)
Faghihi, M.; Scheffel, J.; Spies, G.O.
1988-01-01
Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure
DEFF Research Database (Denmark)
Shi, Zhenguo; Geiker, Mette Rica; Lothenbach, Barbara
2017-01-01
Thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and thermodynamic modelling have been used to obtain Friedel's salt profiles for saturated mortar cylinders exposed to a 2.8 M NaCl solution. Comparison of the measured Friedel's salt profiles with the total chloride profiles...
Milosevic, M.; Hendriks, I.; Smits, R.E.R.; Schuur, B.; Haan, de A.B.
2013-01-01
Liquid–liquid extraction using ethers as solvents is a potentially energy saving alternative for the concentration of aqueous ferric chloride solutions. Adequate thermodynamic models that describe the behavior of the resulting quaternary systems (FeCl3, ether, acid and water) are not available in
A self-consistent model for thermodynamics of multicomponent solid solutions
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Fischer, F. D.
2016-01-01
Roč. 123, OCT (2016), s. 154-157 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Thermodynamics * Bonding * Analytical methods Subject RIV: BJ - Thermodynamics Impact factor: 3.747, year: 2016
Thermodynamic modeling using BINGO-ANTIDOTE: A new strategy to investigate metamorphic rocks
Lanari, Pierre; Duesterhoeft, Erik
2016-04-01
BINGO-ANTIDOTE is a new program, combing the achievements of the two petrological software packages XMAPTOOLS[1] and THERIAK-DOMINO[2]. XMAPTOOLS affords information about compositional zoning in mineral and local bulk composition of domains at the thin sections scale. THERIAK-DOMINO calculates equilibrium phase assemblages from given bulk rock composition, temperature T and pressure P. Primarily BINGO-ANTIDOTE can be described as an inverse THERIAK-DOMINO, because it uses the information provided by XMAPTOOLS to calculate the probable P-T equilibrium conditions of metamorphic rocks. Consequently, the introduced program combines the strengths of forward Gibbs free energy minimization models with the intuitive output of inverse thermobarometry models. In order to get "best" P-T equilibrium conditions of a metamorphic rock sample and thus estimating the degree of agreement between the observed and calculated mineral assemblage, it is critical to define a reliable scoring strategy. BINGO uses the THERIAKD ADD-ON[3] (Duesterhoeft and de Capitani, 2013) and is a flexible model scorer with 3+1 evaluation criteria. These criteria are the statistical agreement between the observed and calculated mineral-assemblage, -proportions (vol%) and -composition (mol). Additionally, a total likelihood, consisting of the first three criteria, allows the user an evaluation of the most probable equilibrium P-T condition. ANTIDOTE is an interactive user interface, displaying the 3+1 evaluation criteria as probability P-T-maps. It can be used with and without XMAPTOOLS. As a stand-alone program, the user is able to give the program macroscopic observations (i.e., mineral names and proportions), which ANTIDOTE converts to a readable BINGO input. In this manner, the use of BINGO-ANTIDOTE opens up thermodynamics to students and people with only a basic knowledge of phase diagrams and thermodynamic modeling techniques. This presentation introduces BINGO-ANTIDOTE and includes typical examples
Canonical quantum gravity and consistent discretizations
Indian Academy of Sciences (India)
Abstract. This paper covers some developments in canonical quantum gravity that ... derstanding the real Ashtekar variables four dimensionally [4], or the recent work ... Traditionally, canonical formulations of general relativity considered as canonical variables the metric on a spatial slice qab and a canonically conjugate.
International Nuclear Information System (INIS)
Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.
2014-01-01
expansion and compression work; the pressure drop and heat flow through the heat exchangers; the conductive, shuttle effect and regenerator thermal losses; the temperature and mass flow distribution along the system; and the power output and efficiency of the engine. These results show that the model allows an extensive study of different parameters of the engine and thus it is suitable for design optimization studies. In addition, it also presents the capability for the integration into overall Stirling engine combined heat and power systems and therefore will allow the performance evaluation of the engine integrated on these systems. - Highlights: • A numerical thermodynamic model for Stirling engine systems was developed. • Thermodynamic equations were coupled with the heat transfer governing equations. • The model was validated with experimental and numerical data. • The brake power and engine efficiency at different conditions were calculated. • Additional model results provide a deeper insight into the engine operation
DEFF Research Database (Denmark)
Dyekjær, Jane Dannow; Jonsdottir, Svava Osk
2003-01-01
Quantitative Structure-Property Relationship (QSPR) models for prediction of various thermodynamic properties of simple organic compounds have been developed. A number of new descriptors are proposed and used alongside with descriptors available within the Codessa program. An important feature...... for alkanes, alcohols, diols, ethers, and oxyalcohols, including cyclic alkanes and alcohols. Several good models, having good predictability, have been developed. To enhance the applicability of the QSPR models, simpler expressions for each descriptor have also been developed. This allows for the prediction...
Interrelations between different canonical descriptions of dissipative systems
International Nuclear Information System (INIS)
Schuch, D; Guerrero, J; López-Ruiz, F F; Aldaya, V
2015-01-01
There are many approaches for the description of dissipative systems coupled to some kind of environment. This environment can be described in different ways; only effective models are being considered here. In the Bateman model, the environment is represented by one additional degree of freedom and the corresponding momentum. In two other canonical approaches, no environmental degree of freedom appears explicitly, but the canonical variables are connected with the physical ones via non-canonical transformations. The link between the Bateman approach and those without additional variables is achieved via comparison with a canonical approach using expanding coordinates, as, in this case, both Hamiltonians are constants of motion. This leads to constraints that allow for the elimination of the additional degree of freedom in the Bateman approach. These constraints are not unique. Several choices are studied explicitly, and the consequences for the physical interpretation of the additional variable in the Bateman model are discussed. (paper)
Interrelations between different canonical descriptions of dissipative systems
Schuch, D.; Guerrero, J.; López-Ruiz, F. F.; Aldaya, V.
2015-04-01
There are many approaches for the description of dissipative systems coupled to some kind of environment. This environment can be described in different ways; only effective models are being considered here. In the Bateman model, the environment is represented by one additional degree of freedom and the corresponding momentum. In two other canonical approaches, no environmental degree of freedom appears explicitly, but the canonical variables are connected with the physical ones via non-canonical transformations. The link between the Bateman approach and those without additional variables is achieved via comparison with a canonical approach using expanding coordinates, as, in this case, both Hamiltonians are constants of motion. This leads to constraints that allow for the elimination of the additional degree of freedom in the Bateman approach. These constraints are not unique. Several choices are studied explicitly, and the consequences for the physical interpretation of the additional variable in the Bateman model are discussed.
A numerical model on thermodynamic analysis of free piston Stirling engines
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.
Modeling of thermodynamic properties of refrigerant/absorbent couples using data mining process
International Nuclear Information System (INIS)
Sencan, Arzu
2007-01-01
In this paper, in order to determine thermodynamic properties of two alternative refrigerant/absorbent couples (methanol/LiBr and methanol/LiCl), a data mining process was used. These fluid couples can be used in absorption heat pump systems, and their main advantage is that they do not cause ozone depletion. In order to train the network, limited experimental measurements were used as training and test data. In the present study, linear regression (LR), pace regression (PR), sequential minimal optimization (SMO), M5 model tree, M5'Rules and back propagation neural network (BPNN) models are applied within the data mining process for determining the specific volume of the methanol/LiBr and methanol/LiCl fluid couples. The best result was obtained by using the back propagation model. A new formulation is presented for determination of the specific volumes of the two refrigerant/absorbent couples. The use of this new formulation, which can be employed with any programming language or spreadsheet program for estimation of the specific volumes of fluid couples, as described in this paper, may make the use of dedicated BPNN software unnecessary
Quasiparticles and thermodynamical consistency
International Nuclear Information System (INIS)
Shanenko, A.A.; Biro, T.S.; Toneev, V.D.
2003-01-01
A brief and simple introduction into the problem of the thermodynamical consistency is given. The thermodynamical consistency relations, which should be taken into account under constructing a quasiparticle model, are found in a general manner from the finite-temperature extension of the Hellmann-Feynman theorem. Restrictions following from these relations are illustrated by simple physical examples. (author)
Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models
Vignal, Philippe
2016-02-11
Phase-field models are emerging as a promising strategy to simulate interfacial phenomena. Rather than tracking interfaces explicitly as done in sharp interface descriptions, these models use a diffuse order parameter to monitor interfaces implicitly. This implicit description, as well as solid physical and mathematical footings, allow phase-field models to overcome problems found by predecessors. Nonetheless, the method has significant drawbacks. The phase-field framework relies on the solution of high-order, nonlinear partial differential equations. Solving these equations entails a considerable computational cost, so finding efficient strategies to handle them is important. Also, standard discretization strategies can many times lead to incorrect solutions. This happens because, for numerical solutions to phase-field equations to be valid, physical conditions such as mass conservation and free energy monotonicity need to be guaranteed. In this work, we focus on the development of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure evolution. The algorithm developed conserves, guarantees energy stability and is second order accurate in time. The second part of the thesis presents two numerical schemes that generalize literature regarding energy-stable methods for conserved and non-conserved phase-field models. The time discretization strategies can conserve mass if needed, are energy-stable, and second order accurate in time. We also develop an adaptive time-stepping strategy, which can be applied to any second-order accurate scheme. This time-adaptive strategy relies on a backward approximation to give an accurate error estimator. The spatial discretization, in both parts, relies on a mixed finite element formulation and isogeometric analysis. The codes are
Yang, Sam
The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in
International Nuclear Information System (INIS)
Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.
2011-01-01
Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.
Development of a Thermodynamic Model for the Hanford Tank Waste Operations Simulator - 12193
Energy Technology Data Exchange (ETDEWEB)
Carter, Robert; Seniow, Kendra [Washington River Protection Solutions, LLC, Richland, Washington (United States)
2012-07-01
The Hanford Tank Waste Operations Simulator (HTWOS) is the current tool used by the Hanford Tank Operations Contractor for system planning and assessment of different operational strategies. Activities such as waste retrievals in the Hanford tank farms and washing and leaching of waste in the Waste Treatment and Immobilization Plant (WTP) are currently modeled in HTWOS. To predict phase compositions during these activities, HTWOS currently uses simple wash and leach factors that were developed many years ago. To improve these predictions, a rigorous thermodynamic framework has been developed based on the multi-component Pitzer ion interaction model for use with several important chemical species in Hanford tank waste. These chemical species are those with the greatest impact on high-level waste glass production in the WTP and whose solubility depends on the processing conditions. Starting with Pitzer parameter coefficients and species chemical potential coefficients collated from open literature sources, reconciliation with published experimental data led to a self-consistent set of coefficients known as the HTWOS Pitzer database. Using Gibbs energy minimization with the Pitzer ion interaction equations in Microsoft Excel,1 a number of successful predictions were made for the solubility of simple mixtures of the chosen species. Currently, this thermodynamic framework is being programmed into HTWOS as the mechanism for determining the solid-liquid phase distributions for the chosen species, replacing their simple wash and leach factors. Starting from a variety of open literature sources, a collection of Pitzer parameters and species chemical potentials, as functions of temperature, was tested for consistency and accuracy by comparison with available experimental thermodynamic data (e.g., osmotic coefficients and solubility). Reconciliation of the initial set of parameter coefficients with the experimental data led to the development of the self-consistent set known
A comprehensive scenario of the thermodynamic anomalies of water using the TIP4P/2005 model
Energy Technology Data Exchange (ETDEWEB)
González, Miguel A. [Departamento Química Física I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Department of Chemistry, Imperial College London, London SW7 2AZ (United Kingdom); Valeriani, Chantal [Departamento Química Física I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Departamento Física Aplicada I, Facultad Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Caupin, Frédéric [Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Abascal, José L. F. [Departamento Química Física I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)
2016-08-07
The striking behavior of water has deserved it to be referred to as an “anomalous” liquid. The water anomalies are greatly amplified in metastable (supercooled and/or stretched) regions. This makes difficult a complete experimental description since, beyond certain limits, the metastable phase necessarily transforms into the stable one. Theoretical interpretation of the water anomalies could then be based on simulation results of well validated water models. But the analysis of the simulations has not yet reached a consensus. In particular, one of the most popular theoretical scenarios—involving the existence of a liquid-liquid critical point (LLCP)—is disputed by several authors. In this work, we propose to use a number of exact thermodynamic relations which may shed light on this issue. Interestingly, these relations may be tested in a region of the phase diagram which is outside the LLCP thus avoiding the problems associated to the coexistence region. The central property connected to other water anomalies is the locus of temperatures at which the density along isobars attain a maximum (TMD line) or a minimum (TmD). We have performed computer simulations to evaluate the TMD and TmD for a successful water model, namely, TIP4P/2005. We have also evaluated the vapor-liquid (VL) spinodal in the region of large negative pressures. The shape of these curves and their connection to the extrema of some response functions, in particular the isothermal compressibility and heat capacity at constant pressure, provides very useful information which may help to elucidate the validity of the theoretical proposals. In this way, we are able to present for the first time a comprehensive scenario of the thermodynamic water anomalies for TIP4P/2005 and their relation to the vapor-liquid spinodal. The overall picture shows a remarkable similarity with the corresponding one for the ST2 water model, for which the existence of a LLCP has been demonstrated in recent years. It
Directory of Open Access Journals (Sweden)
Leng Fei
2008-09-01
Full Text Available This paper discusses the seismic analysis of concrete dams with consideration of material nonlinearity. Based on a consistent rate-dependent model and two thermodynamics-based models, two thermodynamics-based rate-dependent constitutive models were developed with consideration of the influence of the strain rate. They can describe the dynamic behavior of concrete and be applied to nonlinear seismic analysis of concrete dams taking into account the rate sensitivity of concrete. With the two models, a nonlinear analysis of the seismic response of the Koyna Gravity Dam and the Dagangshan Arch Dam was conducted. The results were compared with those of a linear elastic model and two rate-independent thermodynamics-based constitutive models, and the influences of constitutive models and strain rate on the seismic response of concrete dams were discussed. It can be concluded from the analysis that, during seismic response, the tensile stress is the control stress in the design and seismic safety evaluation of concrete dams. In different models, the plastic strain and plastic strain rate of concrete dams show a similar distribution. When the influence of the strain rate is considered, the maximum plastic strain and plastic strain rate decrease.
International Nuclear Information System (INIS)
Wanner, H.; Wersin, P.; Sierro, N.
1992-11-01
Predictions of near field geochemistry are made using a thermodynamic model for bentonite/ground interaction. This model is a refinement and extension of the model developed by the senior author. It is based on recent experiments performed at high solid/water ratio and adapted to the Swedish type of HLW repository design. Thus, from the obtained experimental results on solution composition, the model includes chemical reactions resulting from both the impurities and the main clay fraction within the bentonite. Ion exchange reactions are treated both with and without the contribution of edge sites. Due to its thermodynamic basis, the model exhibits prediction capability over a wide range of conditions in terms of solid/water ratio. The modelling of repository conditions implies, due to the lack of experimental information, simplifications with regard to thermodynamic properties of the bentonite. This mainly involves the non-consideration of the temperature effects and of the acid/base properties of the solid. Nevertheless, our results yield insight into important processes affecting porewater chemistry. Thus, the model suggests that proton exchange reactions may exert a strong control on calcite dissolution within highly compacted bentonite. Estimations of chemical changes over time in the bentonite were done in the basis of a mixing tank model. These results indicate transformation of Na-bentonite to Ca-bentonite over time. The extent of this process, however, critically depends on the amount of carbonate present in the bentonite. (authors) (34 refs.)
International Nuclear Information System (INIS)
Morrison, J.D.; Barley, M.H.; Parker, I.B.
1995-01-01
This paper reports on the development and application of a thermodynamic model based on the second-order Modified Huron Vidal equation of state (MHV-2) to predict the properties of ternary mixtures of the refrigerants R32, R125, and R134a. The mixing rules of this equation of state have been used to incorporate directly an activity-coefficient model for the excess Gibbs free energy. The parameters for the activity-coefficient model have been derived from experimental VLE data for binary mixtures. This methodology has enabled the production of a thermodynamically consistent model which can be used to predict the phase equilibria of R32/R125/R134a mixtures. The input data used in the model are presented in the paper and the predictions of the model are compared with available experimental data. The model has been used to predict the behavior of ternary refrigerant blends of R32/R125/R134a in fractionation scenarios, such as liquid charging and vapor leakage, which are of direct interest to the refrigeration industry. Details of these applications and comparisons with experimental data are discussed, along with other general uses of the thermodynamic model
Thermodynamic model of Ni(II) solubility, hydrolysis and complex formation with ISA
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Siso, Maria Rosa; Duro, Lara; Bruno, Jordi [Amphos21, Barcelona (Spain); Gaona, Xavier; Altmaier, Marcus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal
2018-04-01
The solubility of β-Ni(OH){sub 2}(cr) was investigated at T=(22±2) C in the absence and presence of α-isosaccharinic acid (ISA), the main degradation product of cellulose under alkaline pH conditions. Batch solubility experiments were performed from undersaturation conditions under inert gas (Ar) atmosphere. Solubility experiments in the absence of ISA were conducted in 0.5 and 3.0 M NaCl-NaOH solutions at 7.5 ≤ pH{sub m} ≤ 13 (with pH{sub m} = -log{sub 10}[H{sup +}]). XRD analyses of selected solid phases collected after completing the solubility experiments (∼300 days) confirmed that β-Ni(OH){sub 2}(cr) remains as solid phase controlling the solubility of Ni(II) in all investigated conditions. Based on the slope analysis (log{sub 10}[Ni] vs. pH{sub m}) of the solubility data and solid phase characterization, the equilibrium reactions β-Ni(OH){sub 2}(cr)+2 H{sup +} <=> Ni{sup 2+}+2 H{sub 2}O(l) and β-Ni(OH){sub 2}(cr) <=> Ni(OH){sub 2}(aq) were identified as controlling the solubility of Ni(II) within the investigated pH{sub m} region. The conditional equilibrium constants determined from the solubility experiments at different ionic strengths were evaluated with the specific ion interaction theory (SIT). In contrast to the current thermodynamic selection in the NEA-TDB, solubility data collected in the present work does not support the formation of the anionic hydrolysis species Ni(OH){sub 3}{sup -} up to pH{sub m} ≤ 13.0. Solubility experiments in the presence of ISA were conducted in 0.5 M NaCl-NaOH-NaISA solutions with 0.01 M ≤ [NaISA] ≤ 0.2 M and 9 ≤ pH{sub m} ≤ 13. XRD analyses confirmed that β-Ni(OH){sub 2}(cr) is also the solid phase controlling the solubility of Ni(II) in the presence of ISA. Solubility data of all investigated systems can be properly explained with chemical and thermodynamic models including the formation of the complexes NiOHISA(aq), Ni(OH){sub 2}ISA{sup -} and Ni(OH){sub 3}ISA{sup 2-}. The reported data confirm
Periodicity, the Canon and Sport
Directory of Open Access Journals (Sweden)
Thomas F. Scanlon
2015-10-01
Full Text Available The topic according to this title is admittedly a broad one, embracing two very general concepts of time and of the cultural valuation of artistic products. Both phenomena are, in the present view, largely constructed by their contemporary cultures, and given authority to a great extent from the prestige of the past. The antiquity of tradition brings with it a certain cachet. Even though there may be peripheral debates in any given society which question the specifics of periodization or canonicity, individuals generally accept the consensus designation of a sequence of historical periods and they accept a list of highly valued artistic works as canonical or authoritative. We will first examine some of the processes of periodization and of canon-formation, after which we will discuss some specific examples of how these processes have worked in the sport of two ancient cultures, namely Greece and Mesoamerica.
A pseudo-equilibrium thermodynamic model of information processing in nonlinear brain dynamics.
Freeman, Walter J
2008-01-01
Computational models of brain dynamics fall short of performance in speed and robustness of pattern recognition in detecting minute but highly significant pattern fragments. A novel model employs the properties of thermodynamic systems operating far from equilibrium, which is analyzed by linearization near adaptive operating points using root locus techniques. Such systems construct order by dissipating energy. Reinforcement learning of conditioned stimuli creates a landscape of attractors and their basins in each sensory cortex by forming nerve cell assemblies in cortical connectivity. Retrieval of a selected category of stored knowledge is by a phase transition that is induced by a conditioned stimulus, and that leads to pattern self-organization. Near self-regulated criticality the cortical background activity displays aperiodic null spikes at which analytic amplitude nears zero, and which constitute a form of Rayleigh noise. Phase transitions in recognition and recall are initiated at null spikes in the presence of an input signal, owing to the high signal-to-noise ratio that facilitates capture of cortex by an attractor, even by very weak activity that is typically evoked by a conditioned stimulus.
International Nuclear Information System (INIS)
Wassilew, C.
1989-11-01
This report gives an overall evaluation of several in-reactor deformation and creep-rupture experiments performed in BR-2, FFTF, and Rapsodie on pressurised tubes of the stabilized austenitic stainless steels 1.4970, 1.4981, 1.4988, and the nickel base alloy Hastelloy-X. The irradiation induced deformation processes observed in the components operating in a neutron environment can be divided into two main groups: 1. volume conserving creep and 2. volumetric swelling. Since the observed deformation as well as damage accumulating phenomena are caused by the same constrained generated and free disposable point defects and helium atoms, it is obvious and advisable to analyze, and to model simultaneously the ensemble of the elementary mechanisms and processes effective at the same time. Phenomenological models based on the thermodynamics of irreversible processes have been developed, with the aim of: 1. grasping the partial relationships between the external variables and the response functions (creep, swelling, creep driven swelling, and time to rupture), 2. fathoming the rate-controlling mechanisms, 3. providing insight into the structural details and changes occurring during the deformation and the damage accumulating processes, 4. integrating the damage accumulating processes comprehensively, and 5. formulating the constitutive equations required to describe the elementary processes that generate plastic deformations as well as damage accumulation. (orig./MM)
Modeling of thermodynamic non-equilibrium flows around cylinders and in channels
Sinha, Avick; Gopalakrishnan, Shiva
2017-11-01
Numerical simulations for two different types of flash-boiling flows, namely shear flow (flow through a de-Laval nozzle) and free shear flow (flow past a cylinder) are carried out in the present study. The Homogenous Relaxation Model (HRM) is used to model the thermodynamic non-equilibrium process. It was observed that the vaporization of the fluid stream, which was initially maintained at a sub-cooled state, originates at the nozzle throat. This is because the fluid accelerates at the vena-contracta and subsequently the pressure falls below the saturation vapor pressure, generating a two-phase mixture in the diverging section of the nozzle. The mass flow rate at the nozzle was found to decrease with the increase in fluid inlet temperature. A similar phenomenon also occurs for the free shear case due to boundary layer separation, causing a drop in pressure behind the cylinder. The mass fraction of vapor is maximum at rear end of the cylinder, where the size of the wake is highest. As the back pressure is reduced, severe flashing behavior was observed. The numerical simulations were validated against available experimental data. The authors gratefully acknowledge funding from the public-private partnership between DST, Confederation of Indian Industry and General Electric Pvt. Ltd.
Clark, Douglas; Jorde, Doris
2004-01-01
This study analyzes the impact of an integrated sensory model within a thermal equilibrium visualization. We hypothesized that this intervention would not only help students revise their disruptive experientially supported ideas about why objects feel hot or cold, but also increase their understanding of thermal equilibrium. The analysis synthesizes test data and interviews to measure the impact of this strategy. Results show that students in the experimental tactile group significantly outperform their control group counterparts on posttests and delayed posttests, not only on tactile explanations, but also on thermal equilibrium explanations. Interview transcripts of experimental and control group students corroborate these findings. Discussion addresses improving the tactile model as well as application of the strategy to other science topics. The discussion also considers possible incorporation of actual kinetic or thermal haptic feedback to reinforce the current audio and visual feedback of the visualization. This research builds on the conceptual change literature about the nature and role of students' experientially supported ideas as well as our understanding of curriculum and visualization design to support students in learning about thermodynamics, a science topic on which students perform poorly as shown by the National Assessment of Educational Progress (NAEP) and Third International Mathematics and Science Study (TIMSS) studies.
International Nuclear Information System (INIS)
Destrigneville, Christine
1991-01-01
The alteration processes occurring in the volcanics of Mururoa have been studied using petrological data on secondary minerals, chemical analyses of the interstitial fluids and isotopic analyses on both minerals and fluids. Chemical and isotopic exchanges were first modelled, then thermodynamical modeling characterized the chemical evolution during the alteration of the secondary assemblage and of the fluid. The main secondary sequences which have been observed in Mururoa volcanics result from the alteration occurring during the lavas setting. Two different processes have been evidenced. The first one is the deuteric alteration with the CO_2-rich magmatic fluid exsolved from the magma and trapped in the vesicles and the olivine microcracks of the lava intrusions. This alteration in a closed system is dominated by the solid phases when the CO_2 molar fraction in the fluid is higher than 0.25. The second process is the alteration of the lavas by seawater or a meteoric fluid. The basaltic flows present alteration assemblages composed of clay minerals and zeolites whose chemical composition has been forced by the fluid composition. Shallowness emissions of lavas result in completely argillized levels. The present interstitial fluids chemistry result from the percolation of seawater in the volcano. In the argillized levels the fluids have interacted with the clay minerals and their chemical compositions have been modified. The important chemical changes in the present interstitial fluids show that the present alteration in the volcano is higher than the fluids circulation. (author) [fr
Directory of Open Access Journals (Sweden)
Abdul Ghafoor Memon
2014-03-01
Full Text Available In this study, thermodynamic and statistical analyses were performed on a gas turbine system, to assess the impact of some important operating parameters like CIT (Compressor Inlet Temperature, PR (Pressure Ratio and TIT (Turbine Inlet Temperature on its performance characteristics such as net power output, energy efficiency, exergy efficiency and fuel consumption. Each performance characteristic was enunciated as a function of operating parameters, followed by a parametric study and optimization. The results showed that the performance characteristics increase with an increase in the TIT and a decrease in the CIT, except fuel consumption which behaves oppositely. The net power output and efficiencies increase with the PR up to certain initial values and then start to decrease, whereas the fuel consumption always decreases with an increase in the PR. The results of exergy analysis showed the combustion chamber as a major contributor to the exergy destruction, followed by stack gas. Subsequently, multiple regression models were developed to correlate each of the response variables (performance characteristic with the predictor variables (operating parameters. The regression model equations showed a significant statistical relationship between the predictor and response variables.
Thermodynamic and kinetic modelling of the reduction of concentrated nitric acid
International Nuclear Information System (INIS)
Sicsic, David
2011-01-01
This research thesis aimed at determining and quantifying the different stages of the reduction mechanism in the case of concentrated nitric acid. After having reported the results of a bibliographical study on the chemical and electrochemical behaviour of concentrated nitric media (generalities, chemical equilibriums, NOx reactivity, electrochemical reduction of nitric acid), the author reports the development and discusses the results of a thermodynamic simulation of a nitric environment at 25 C. This allowed the main species to be identified in the liquid and gaseous phases of nitric acid solutions. The author reports an experimental electrochemical investigation coupled with analytic techniques (infrared and UV-visible spectroscopy) and shows that the reduction process depends on the cathodic overvoltage, and identifies three potential areas. A kinetic modelling of the stationary state and of the impedance is then developed in order to better determine, discuss and quantify the reduction process. The application of this kinetic model to the preliminary results of an electrochemical study performed on 304 L steel is then discussed [fr
QCD thermodynamics from an imaginary μB: Results on the four flavor lattice model
International Nuclear Information System (INIS)
D'Elia, Massimo; Lombardo, Maria-Paola
2004-01-01
We study four flavor QCD at nonzero temperature and density by analytic continuation from an imaginary chemical potential. The explored region is T=0.95T c c , and the baryochemical potentials range from 0 to ≅500 MeV. Observables include the number density, the order parameter for chiral symmetry, and the pressure, which is calculated via an integral method at fixed temperature and quark mass. The simulations are carried out on a 16 3 x4 lattice, and the mass dependence of the results is estimated by exploiting the Maxwell relations. In the hadronic region, we confirm that the results are consistent with a simple resonance hadron gas model, and we estimate the critical density by combining the results for the number density with those for the critical line. In the hot phase, above the end point of the Roberge-Weiss transition T E ≅1.1T c , the results are consistent with a free lattice model with a fixed effective number of flavor slightly different from four. We confirm that confinement and chiral symmetry are coincident by a further analysis of the critical line, and we discuss the interrelation between thermodynamics and critical behavior. We comment on the strength and weakness of the method, and propose further developments
Dutcher, Cari S; Ge, Xinlei; Wexler, Anthony S; Clegg, Simon L
2013-04-18
In previous studies (Dutcher et al. J. Phys. Chem. C 2011, 115, 16474-16487; 2012, 116, 1850-1864), we derived equations for the Gibbs energy, solvent and solute activities, and solute concentrations in multicomponent liquid mixtures, based upon expressions for adsorption isotherms that include arbitrary numbers of hydration layers on each solute. In this work, the long-range electrostatic interactions that dominate in dilute solutions are added to the Gibbs energy expression, thus extending the range of concentrations for which the model can be used from pure liquid solute(s) to infinite dilution in the solvent, water. An equation for the conversion of the reference state for solute activity coefficients to infinite dilution in water has been derived. A number of simplifications are identified, notably the equivalence of the sorption site parameters r and the stoichiometric coefficients of the solutes, resulting in a reduction in the number of model parameters. Solute concentrations in mixtures conform to a modified Zdanovskii-Stokes-Robinson mixing rule, and solute activity coefficients to a modified McKay-Perring relation, when the effects of the long-range (Debye-Hückel) term in the equations are taken into account. Practical applications of the equations to osmotic and activity coefficients of pure aqueous electrolyte solutions and mixtures show both satisfactory accuracy from low to high concentrations, together with a thermodynamically reasonable extrapolation (beyond the range of measurements) to extreme concentration and to the pure liquid solute(s).
Ando, Tadashi; Yu, Isseki; Feig, Michael; Sugita, Yuji
2016-11-23
The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.
Thomas, Dennis G; Jaramillo-Riveri, Sebastian; Baxter, Douglas J; Cannon, William R
2014-12-26
We have applied a new stochastic simulation approach to predict the metabolite levels, material flux, and thermodynamic profiles of the oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on modeling states using statistical thermodynamics and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the self-organization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow, and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals.