WorldWideScience

Sample records for cannabinoid receptor activation

  1. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release.

    Science.gov (United States)

    Oleson, Erik B; Cachope, Roger; Fitoussi, Aurelie; Tsutsui, Kimberly; Wu, Sharon; Gallegos, Jacqueline A; Cheer, Joseph F

    2014-05-01

    The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55,212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration--suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55,212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner--suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55,212-2. PMID:24345819

  2. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  3. Detecting constitutive activity and protean agonism at cannabinoid-2 receptor.

    Science.gov (United States)

    Beltramo, Massimiliano; Brusa, Rossella; Mancini, Isabella; Scandroglio, Paola

    2010-01-01

    Since the cannabinoid system is involved in regulating several physiological functions such as locomotor activity, cognition, nociception, food intake, and inflammatory reaction, it has been the subject of intense study. Research on the pharmacology of this system has enormously progressed in the last 20years. One intriguing aspect that emerged from this research is that cannabinoid receptors (CBs) express a high level of constitutive activity. Investigation on this particular aspect of receptor pharmacology has largely focused on CB1, the CB subtype highly expressed in several brain regions. More recently, research on constitutive activity on the other CB subtype, CB2, was stimulated by the increasing interest on its potential as target for the treatment of various pathologies (e.g., pain and inflammation). There are several possible implications of constitutive activity on the therapeutic action of both agonists and antagonists, and consequently, it is important to have valuable methods to study this aspect of CB2 pharmacology. In the present chapter, we describe three methods to study constitutive activity at CB2: two classical methods relying on the detection of changes in cAMP level and GTPγS binding and a new one based on cell impedance measurement. In addition, we also included a section on detection of protean agonism, which is an interesting pharmacological phenomenon strictly linked to constitutive activity. PMID:21036225

  4. Effect of Cannabinoid Receptor Activation on Spreading Depression

    OpenAIRE

    Kazemi, Hadi; Rahgozar, Mehdi; Speckmann, Erwin-Josef; Gorji, Ali

    2012-01-01

    Objective(s):The objective of this study was to evaluate the effect of cannabinoid on cortical spreading depression (CSD) in rat brain. Cannabis has been used for centuries for both symptomatic and prophylactic treatment of different types of headaches including migraine. CSD is believed to be a putative neuronal mechanism underlying migraine aura and subsequent pain. Materials and Methods:The effects of Delta9-tetrahydrocannabinol (THC), as well as, cannabinoid CB1 and CB2 receptor agonists ...

  5. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    Science.gov (United States)

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. PMID:26795018

  6. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta

    DEFF Research Database (Denmark)

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li;

    2007-01-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow...

  7. (+)-Cannabidiol analogues which bind cannabinoid receptors but exert peripheral activity only.

    Science.gov (United States)

    Fride, Ester; Feigin, Cfir; Ponde, Datta E; Breuer, Aviva; Hanus, Lumír; Arshavsky, Nina; Mechoulam, Raphael

    2004-12-15

    Delta9-Tetrahydrocannabinol (Delta9-THC) and (-)-cannabidiol are major constituents of the Cannabis sativa plant with different pharmacological profiles: (-)-Delta9-tetrahydrocannabinol, but not (-)-cannabidiol, activates cannabinoid CB1 and CB2 receptors and induces psychoactive and peripheral effects. We have tested a series of (+)-cannabidiol derivatives, namely, (+)-cannabidiol-DMH (DMH-1,1-dimethylheptyl-), (+)-7-OH-cannabidiol-DMH, (+)-7-OH- cannabidiol, (+)-7-COOH- cannabidiol and (+)-7-COOH-cannabidiol-DMH, for central and peripheral (intestinal, antiinflammatory and peripheral pain) effects in mice. Although all (+)-cannabidiols bind to cannabinoid CB1 and CB2 receptors, only (+)-7-OH-cannabidiol-DMH was centrally active, while all (+)-cannabidiol analogues completely arrested defecation. The effects of (+)-cannabidiol-DMH and (+)-7-OH-cannabidiol-DMH were partially antagonized by the cannabinoid CB1 receptor antagonist N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716), but not by the cannabinoid CB2 receptor antagonist N-[-(1S)-endo-1,3,3-trimethil bicyclo [2.2.1] heptan-2-yl-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), and had no effect on CB1(-/-) receptor knockout mice. (+)-Cannabidiol-DMH inhibited the peripheral pain response and arachidonic-acid-induced inflammation of the ear. We conclude that centrally inactive (+)-cannabidiol analogues should be further developed as antidiarrheal, antiinflammatory and analgesic drugs for gastrointestinal and other peripheral conditions. PMID:15588739

  8. Cannabinoid Receptor Activation Shifts Temporally Engendered Patterns of Dopamine Release

    OpenAIRE

    Oleson, Erik B.; Cachope, Roger; Fitoussi, Aurelie; Tsutsui, Kimberly; Wu, Sharon; Gallegos, Jacqueline A; Cheer, Joseph F.

    2014-01-01

    The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce b...

  9. Signaling Mechanism of Cannabinoid Receptor-2 Activation-Induced β-Endorphin Release.

    Science.gov (United States)

    Gao, Fang; Zhang, Ling-Hong; Su, Tang-Feng; Li, Lin; Zhou, Rui; Peng, Miao; Wu, Cai-Hua; Yuan, Xiao-Cui; Sun, Ning; Meng, Xian-Fang; Tian, Bo; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-08-01

    Activation of cannabinoid receptor-2 (CB2) results in β-endorphin release from keratinocytes, which then acts on primary afferent neurons to inhibit nociception. However, the underlying mechanism is still unknown. The CB2 receptor is generally thought to couple to Gi/o to inhibit cAMP production, which cannot explain the peripheral stimulatory effects of CB2 receptor activation. In this study, we found that in a keratinocyte cell line, the Gβγ subunits from Gi/o, but not Gαs, were involved in CB2 receptor activation-induced β-endorphin release. Inhibition of MAPK kinase, but not PLC, abolished CB2 receptor activation-induced β-endorphin release. Also, CB2 receptor activation significantly increased intracellular Ca(2+). Treatment with BAPTA-AM or thapsigargin blocked CB2 receptor activation-induced β-endorphin release. Using a rat model of inflammatory pain, we showed that the MAPK kinase inhibitor PD98059 abolished the peripheral effect of the CB2 receptor agonist on nociception. We thus present a novel mechanism of CB2 receptor activation-induced β-endorphin release through Gi/o-Gβγ-MAPK-Ca(2+) signaling pathway. Our data also suggest that stimulation of MAPK contributes to the peripheral analgesic effect of CB2 receptor agonists. PMID:26108183

  10. Converging action of alcohol consumption and cannabinoid receptor activation on adult hippocampal neurogenesis.

    Science.gov (United States)

    Alén, Francisco; Mouret, Aurélie; Viveros, Maria-Paz; Llorente, Ricardo; Lepousez, Gabriel; Lledo, Pierre-Marie; López-Moreno, José Antonio

    2010-03-01

    Alcoholism is characterized by successive periods of abstinence and relapse, resulting from long-lasting changes in various circuits of the central nervous system. Accumulating evidence points to the endocannabinoid system as one of the most relevant biochemical systems mediating alcohol addiction. The endocannabinoid system regulates adult neurogenesis, a form of long-lasting adult plasticity that occurs in a few areas of the brain, including the dentate gyrus. Because exposure to psychotropic drugs regulates adult neurogenesis, it is possible that neurogenesis might be implicated in the pathophysiology, and hence treatment, of neurobiological illnesses related to drugs of abuse. Here, we investigated the sensitivity of adult hippocampal neurogenesis to alcohol and the cannabinoid receptor agonist WIN 55,212-2 (WIN). Specifically, we analysed the potential link between alcohol relapse, cannabinoid receptor activation, and adult neurogenesis. Adult rats were exposed to subchronic alcohol binge intoxication and received the cannabinoid receptor agonist WIN. Another group of rats were subjected to an alcohol operant self-administration task. Half of these latter animals had continuous access to alcohol, while the other half were subjected to alcohol deprivation, with or without WIN administration. WIN treatment, when administered during alcohol deprivation, resulted in the greatest increase in alcohol consumption during relapse. Together, forced alcohol binge intoxication and WIN administration dramatically reduced hippocampal neurogenesis. Furthermore, adult neurogenesis inversely correlated with voluntary consumption of alcohol. These findings suggest that adult hippocampal neurogenesis is a key factor involved in drug abuse and that it may provide a new strategy for the treatment of alcohol addiction and dependence.

  11. Cannabinoid receptor localization in brain

    Energy Technology Data Exchange (ETDEWEB)

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  12. Constitutive cannabinoid 1 and mu opioid receptor activity in the ventral tegmental area: occurrence, function and therapeutic relevance

    NARCIS (Netherlands)

    Meye, F.J.

    2012-01-01

    Cannabinoid 1 receptors (CB1Rs) play a crucial role in regulating systems dedicated to processing rewards and emotions. It was known that in artificial systems, CB1Rs can exhibit activity that is independent of the typical agonist-driven form. However, it remained largely unclear whether this consti

  13. Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Guyllaume Coiret

    Full Text Available Astrocytes are integral functional components of synapses, regulating transmission and plasticity. They have also been implicated in the pathogenesis of epilepsy, although their precise roles have not been comprehensively characterized. Astrocytes integrate activity from neighboring synapses by responding to neuronally released neurotransmitters such as glutamate and ATP. Strong activation of astrocytes mediated by these neurotransmitters can promote seizure-like activity by initiating a positive feedback loop that induces excessive neuronal discharge. Recent work has demonstrated that astrocytes express cannabinoid 1 (CB1 receptors, which are sensitive to endocannabinoids released by nearby pyramidal cells. In this study, we tested whether this mechanism also contributes to epileptiform activity. In a model of 4-aminopyridine induced epileptic-like activity in hippocampal slice cultures, we show that pharmacological blockade of astrocyte CB1 receptors did not modify the initiation, but significantly reduced the maintenance of epileptiform discharge. When communication in astrocytic networks was disrupted by chelating astrocytic calcium, this CB1 receptor-mediated modulation of epileptiform activity was no longer observed. Thus, endocannabinoid signaling from neurons to astrocytes represents an additional significant factor in the maintenance of epileptiform activity in the hippocampus.

  14. Effects of cannabinoids and their receptors on viral infections.

    Science.gov (United States)

    Tahamtan, Alireza; Tavakoli-Yaraki, Masoumeh; Rygiel, Tomasz P; Mokhtari-Azad, Talat; Salimi, Vahid

    2016-01-01

    Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis. There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication. The present study reviews current insights into the role of cannabinoids and their receptors on viral infections. The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection. Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections. PMID:26059175

  15. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Directory of Open Access Journals (Sweden)

    Nicola H. Morgan

    2008-01-01

    Full Text Available Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM, increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

  16. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    Science.gov (United States)

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  17. Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System

    Science.gov (United States)

    Naguib, Mohamed; Xu, Jijun J.; Diaz, Philippe; Brown, David L.; Cogdell, David; Bie, Bihua; Hu, Jianhua; Craig, Suzanne; Hittelman, Walter N.

    2012-01-01

    Background Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB2) receptors are expressed in the microglia in neurodegenerative disease models. Methods To explore the potential of CB2 agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB2-selective agonist, namely MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB2+/+ and CB2–/– mice. We hypothesize that the CB2 receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. Results We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB2-/- mice and was blocked by CB2 antagonists, suggesting that MDA7's action directly involves CB2 receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced Toll-like receptor and CB2 expression in the lumbar spinal cord, reduced levels of extracellular signal regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. Conclusions Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae

  18. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity.

    Directory of Open Access Journals (Sweden)

    Lisa K Brents

    Full Text Available BACKGROUND: K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R. METHODS/PRINCIPAL FINDINGS: JWH-018, five potential monohydroxylated metabolites (M1-M5, and one carboxy metabolite (M6 were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i values that were lower than or equivalent to Δ(9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251. CONCLUSIONS/SIGNIFICANCE: Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations

  19. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat.

    Science.gov (United States)

    Mohammadmirzaei, Negin; Rezayof, Ameneh; Ghasemzadeh, Zahra

    2016-09-01

    The ventral hippocampus (VH) has a high distribution of cannabinoid CB1 receptors which are important in modulating stress responses. Stress exposure activates the hypothalamic-pituitary-adrenal axis (HPA) which can impact hippocampal formation to change hippocampus-based memories. The purpose of the present study was to determine the possible role of the VH cannabinoid CB1 receptors in stress-induced amnesia using a step-through passive avoidance procedure in male Wistar rats. In order to induce acute stress, the animals were placed on an elevated platform for different time periods (10, 20 and 30min). Our results indicated that post-training 20 and 30min exposure to stress, but not 10min, induced amnesia. Post-training microinjection of a cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 2.5-7.5ng/rat) into the VH (intra-VH) induced amnesia. Interestingly, post-training intra-VH microinjection of the same doses of ACPA improved stress-induced amnesia. On the other hand, post-training intra-VH microinjection of a selective CB1 receptor antagonist, AM-251 (20-50ng/rat) with exposure to an ineffective stress (10min) potentiated the effect of stress on memory consolidation and induced amnesia. It should be noted that post-training intra-VH microinjection of the same doses of AM-251 alone had no effect on memory consolidation. Our results revealed that post-training intra-VH microinjection of AM-251, prior to ACPA microinjection, inhibited the reversal effect of ACPA on acute elevated platform stress. Taken together, it can be concluded that exposure to post-training inescapable stress impaired memory consolidation. The impairing effects of stress on memory retrieval may be mediated by the VH cannabinoid CB1 receptors.

  20. Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice.

    Science.gov (United States)

    Hsu, Yung-Chien; Lei, Chen-Chou; Shih, Ya-Hsueh; Ho, Cheng; Lin, Chun-Liang

    2015-02-01

    Proteinuria is not only a sign of kidney damage but is also involved in the progression of renal disease as an independent pathologic factor. Although patients with mutated type 1 cannabinoid receptors (CB1) polymorphism are associated with renal microvascular damage, the biologic role of CB1 signaling in proteinuria remains uncharacterized till now. Herein, we investigate whether CB1 participates in glomerular proteinuria in CB1 transgenic mice and treatment with CB1 agonist WIN55212-2 rat, neither of which are diabetic models. The CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher kidney weight and urinary protein concentrations but not blood glucose levels compared with the wild-type group. A combination of laser-capture microsdissection, quantitative reverse transcription-polymerase chain reaction, immunoblotting and immunohistochemical validation revealed that CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher vascular endothelial growth factor (VEGF) expression in renal glomeruli than that of the wild-type group. Geneticorpharmacological activation of CB1 by transgenic CB1 mice or treatment with WIN55212-2 reduced nephrin expression in the renal glomeruli compared with that of the wild-type group in the glomerular mesanglium. Taken together, CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 induced proteinuria with upregulation of CB1 resulting in impaired nephrin expression, by inducing excess VEGF reaction in the renal glomeruli. Genetic and pharmacological manipulation of CB1 signaling revealed VEGF-dependent nephrin depression of glomerulopathy. Controlling CB1 activity can be used an alternative strategy for sustaining renal function in the presence of CB1 activation.

  1. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    Science.gov (United States)

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  2. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor

    International Nuclear Information System (INIS)

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-δ (PPAR-δ)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-δ. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-δ. Furthermore, selective silencing of PPAR-δ by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 ± 0.06 (n = 3) to 1.91 ± 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-δ significantly reduced CB1 expression to 0.39 ± 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-δ. Both CB1 and PPAR-δ are intimately involved in therapeutic interventions against a most important cardiovascular risk factor

  3. Constitutive cannabinoid 1 and mu opioid receptor activity in the ventral tegmental area: occurrence, function and therapeutic relevance

    OpenAIRE

    Meye, F J

    2012-01-01

    Cannabinoid 1 receptors (CB1Rs) play a crucial role in regulating systems dedicated to processing rewards and emotions. It was known that in artificial systems, CB1Rs can exhibit activity that is independent of the typical agonist-driven form. However, it remained largely unclear whether this constitutive activity also occurred in native tissue (e.g. the brain), and if so, what role it plays in neurotransmission and behavior. In this thesis we have taken a multi-disciplinary approach to show ...

  4. Control of Inhibition by the Direct Action of Cannabinoids on GABAA Receptors

    NARCIS (Netherlands)

    Golovko, Tatiana; Min, R.; Lozovaya, Natalia; Falconer, Caroline; Yatsenko, Natalia; Tsintsadze, Timur; Tsintsadze, Vera; Ledent, Catherine; Harvey, Robert J; Belelli, Delia; Lambert, Jeremy J; Rozov, Andrei; Burnashev, Nail

    2015-01-01

    Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents a

  5. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta.

    Science.gov (United States)

    Yan, Zhen Cheng; Liu, Dao Yan; Zhang, Li Li; Shen, Chen Yi; Ma, Qun Li; Cao, Ting Bing; Wang, Li Juan; Nie, Hai; Zidek, Walter; Tepel, Martin; Zhu, Zhi Ming

    2007-03-01

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each pAdipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each padipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; padipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; padipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor. PMID:17223076

  6. Cannabinoid receptor-2 selective antagonist negatively regulates receptor activator of nuclear factor kappa B ligand mediated osteoclastogenesis

    Institute of Scientific and Technical Information of China (English)

    GENG De-chun; XU Yao-zeng; YANG Hui-lin; ZHU Guang-ming; WANG Xian-bin; ZHU Xue-song

    2011-01-01

    Background The cannabinoid receptor-2 (CB2) is important for bone remodeling. In this study, we investigated the effects of CB2 selective antagonist (AM630) on receptor activator of nuclear factor kappa B (RANK) ligand (RANKL)induced osteoclast differentiation and the underlying signaling pathway using a monocyte-macrophage cell line-RAW264.7.Methods RAW264.7 was cultured with RANKL for 6 days and then treated with AM630 for 24 hours. Mature osteoclasts were measured by tartrate-resistant acid phosphatase (TRAP) staining using a commercial kit. Total ribonucleic acid (RNA)was isolated and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was done to examine the expression of RANK, cathepsin K (CPK) and nuclear factor kappa B (NF-κB). The extracellular signal-regulated kinase (ERK),phosphorylation of ERK (P-ERK) and NF-κB production were tested by Western blotting. The effect of AM630 on RAW264.7 viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay.Results AM630 did not affect the viability of RAW264.7. However, this CB2 selective antagonist markedly inhibited osteoclast formation and the inhibition rate was dose-dependent. The dose of >100 nmol/L could reduce TRAP positive cells to the levels that were significantly lower than the control. AM630 suppressed the expression of genes associated with osteoclast differentiation and activation, such as RANK and CPK. An analysis of a signaling pathway showed that AM630 inhibited the RANKL-induced activation of ERK, but not NF-κB.Conclusion AM630 could inhibit the osteoclastogenesis from RAW264.7 induced with RANKL.

  7. Cannabinoid-receptor expression in human leukocytes.

    Science.gov (United States)

    Bouaboula, M; Rinaldi, M; Carayon, P; Carillon, C; Delpech, B; Shire, D; Le Fur, G; Casellas, P

    1993-05-15

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS), probably through the cannabinoid receptor, which has recently been cloned in rat and human. While numerous reports have also described effects of cannabinoids on the immune system, the observation of both mRNA and cannabinoid receptor has hitherto been exclusively confined to the brain, a reported detection in the testis being the sole example of its presence at the periphery. Here we report the expression of the cannabinoid receptor on human immune tissues using a highly sensitive polymerase-chain-reaction-based method for mRNA quantification. We show that, although present in a much lower abundance than in brain, cannabinoid receptor transcripts are found in human spleen, tonsils and peripheral blood leukocytes. The distribution pattern displays important variations of the mRNA level for the cannabinoid receptor among the main human blood cell subpopulations. The rank order of mRNA levels in these cells is B cells > natural killer cells > or = polymorphonuclear neutrophils > or = T8 cells > monocytes > T4 cells. Cannabinoid-receptor mRNA, which is also found in monocytic, as well as T and B leukemia cell lines but not in Jurkat cells, presents a great diversity of expression on these cells as well, B-cell lines expressing a much higher level than T-cell lines. The cannabinoid receptor PCR products from leukocytes and brain are identical both in size and sequence suggesting a strong similarity between central and peripheral cannabinoid receptors. The expression of this receptor was demonstrated on membranes of the myelomonocytic U937 cells using the synthetic cannabinoid [3H]CP-55940 as ligand. The Kd determined from Scatchard analysis was 0.1 nM and the Bmax for membranes was 525 fmol/mg protein. The demonstration of cannabinoid-receptor expression at both mRNA and protein levels on human leukocytes provides a molecular basis for cannabinoid action on these cells. PMID

  8. The discovery of a cannabinoid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Devane, W.A.

    1989-01-01

    A tritiated form of CP-55,940, a Pfizer cannabinoid analog that is 20- to 100-fold more potent than {Delta}{sup 9}-tetrahydrocannabinol in various in vivo and in vitro models of cannabimimetric activity, was used as the tool with which to probe for a cannabinoid receptor in rat cortical membranes. The bound and free ligand were successfully separated using a centrifugation assay. Specific binding was saturable, rapidly attained, and completely reversible. The K{sub D}'s derived from kinetic analysis of binding agreed well with the K{sub D}'s derived from saturation and displacement analysis. The ({sup 3}H)CP-55,940 binding site exhibited high affinity with a K{sub D} of 68 pM as determined by LIGAND analysis of homologous displacement studies. The ability of other cannabinoid drugs to displace ({sup 3}H)CP-55,940 binding correlated well with the potency of these drugs in in vivo and in vitro models of cannabimimetic activity. The K{sub i} of {Delta}{sup 9}-THC was 1.6 nM. Cannabidiol and cannabigerol, which both lack psychoactivity in man, displaced specific binding by less than 50% at 1 {mu}M.

  9. Activation of Cannabinoid CB2 receptors Reduces Hyperalgesia in an Experimental Autoimmune Encephalomyelitis Mouse Model of Multiple Sclerosis

    OpenAIRE

    Fu, Weisi; Taylor, Bradley K.

    2015-01-01

    Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. 4 weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10–100 μg...

  10. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes. PMID:25833102

  11. Pharmacological activation of cannabinoid 2 receptor attenuates inflammation, fibrogenesis, and promotes re-epithelialization during skin wound healing.

    Science.gov (United States)

    Wang, Lin-Lin; Zhao, Rui; Li, Jiao-Yong; Li, Shan-Shan; Liu, Min; Wang, Meng; Zhang, Meng-Zhou; Dong, Wen-Wen; Jiang, Shu-Kun; Zhang, Miao; Tian, Zhi-Ling; Liu, Chang-Sheng; Guan, Da-Wei

    2016-09-01

    Previous studies showed that cannabinoid 2 (CB2) receptor is expressed in multiple effector cells during skin wound healing. Meanwhile, its functional involvement in inflammation, fibrosis, and cell proliferation in other organs and skin diseases implied CB2 receptor might also regulate skin wound healing. To verify this hypothesis, mice excisional wounds were created and treated with highly selective CB2 receptor agonist GP1a (1-(2,4-dichlorophenyl)-6-methyl- N-piperidin-1-yl-4H-indeno[1,2-c]pyrazole-3-carboxamide) and antagonist AM630 ([6-iodo-2- methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone) respectively. The inflammatory infiltration, cytokine expression, fibrogenesis, and wound re-epithelialization were analyzed. After CB2 receptor activation, neutrophil and macrophage infiltrations were reduced, and expressions of monocyte chemotactic protein (MCP)-1, stromal cell-derived factor (SDF)-1, Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF)-A were decreased. Keratinocyte proliferation and migration were enhanced. Wound re-epithelialization was accelerated. Fibroblast accumulation and fibroblast-to-myofibroblast transformation were attenuated, and expression of pro-collagen I was decreased. Furthermore, HaCaT cells in vitro were treated with GP1a or AM630, which revealed that CB2 receptor activation promoted keratinocyte migration by inducing the epithelial to mesenchymal transition. These results, taken together, indicate that activating CB2 receptor could ameliorate wound healing by reducing inflammation, accelerating re-epithelialization, and attenuating scar formation. Thus, CB2 receptor agonist might be a novel perspective for skin wound therapy. PMID:27268717

  12. Derivados de cromenopirazoles como ligandos de receptores de cannabinoides

    OpenAIRE

    Jagerovic, Nadine; Cumella Montánchez, José María; Goya, Pilar; Fernández, Javier; Gómez, María; Rodríguez, Patricia

    2009-01-01

    Derivados de cromenopirazoles como ligandos de receptores de cannabinoides. Compuestos derivados de cromenopirazoles que son ligandos de receptores de cannabinoides, su uso para la fabricación de un medicamento, uso de este medicamento para el tratamiento y/o la prevención de trastornos asociados a los receptores de cannabinoides, uso de dicho compuesto como reactivo en ensayos biológicos relacionados con receptores de cannabinoides y procedimiento de obtención de l...

  13. Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons.

    Science.gov (United States)

    Palomba, Letizia; Silvestri, Cristoforo; Imperatore, Roberta; Morello, Giovanna; Piscitelli, Fabiana; Martella, Andrea; Cristino, Luigia; Di Marzo, Vincenzo

    2015-05-29

    The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2'-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL(-/-) mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.

  14. Capsaicin and N-arachidonoyl-dopamine (NADA) decrease tension by activating both cannabinoid and vanilloid receptors in fast skeletal muscle fibers of the frog.

    Science.gov (United States)

    Trujillo, Xóchitl; Ortiz-Mesina, Mónica; Uribe, Tannia; Castro, Elena; Montoya-Pérez, Rocío; Urzúa, Zorayda; Feria-Velasco, Alfredo; Huerta, Miguel

    2015-02-01

    Previous studies have indicated that vanilloid receptor (VR1) mRNA is expressed in muscle fibers. In this study, we evaluated the functional effects of VR1 activation. We measured caffeine-induced contractions in bundles of the extensor digitorum longus muscle of Rana pipiens. Isometric tension measurements showed that two VR1 agonists, capsaicin (CAP) and N-arachidonoyl-dopamine (NADA), reduced muscle peak tension to 57 ± 4 % and 71 ± 3% of control, respectively. The effect of CAP was partially blocked by a VR1 blocker, capsazepine (CPZ), but the effect of NADA was not changed by CPZ. Because NADA is able to act on cannabinoid receptors, which are also present in muscle fibers, we tested the cannabinoid antagonist AM281. We found that AM281 antagonized both CAP and NADA effects. AM281 alone reduced peak tension to 80 ± 6 % of control. With both antagonists, the CAP effect was completely blocked, and the NADA effect was partially blocked. These results provide pharmacological evidence of the functional presence of the VR1 receptor in fast skeletal muscle fibers of the frog and suggest that capsaicin and NADA reduce tension by activating both cannabinoid and vanilloid receptors.

  15. Striatal but not frontal cortical up-regulation of the epidermal growth factor receptor in rats exposed to immune activation in utero and cannabinoid treatment in adolescence.

    Science.gov (United States)

    Idrizi, Rejhan; Malcolm, Peter; Weickert, Cynthia Shannon; Zavitsanou, Katerina; Suresh Sundram

    2016-06-30

    In utero maternal immune activation (MIA) and cannabinoid exposure during adolescence constitute environmental risk factors for schizophrenia. We investigated these risk factors alone and in combination ("two-hit") on epidermal growth factor receptor (EGFR) and neuregulin-1 receptor (ErbB4) levels in the rat brain. EGFR but not ErbB4 receptor protein levels were significantly increased in the nucleus accumbens and striatum of "two-hit" rats only, with no changes seen at the mRNA level. These findings support region specific EGF-system dysregulation as a plausible mechanism in this animal model of schizophrenia pathogenesis. PMID:27138815

  16. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages.

    Science.gov (United States)

    Ke, Ping; Shao, Bo-Zong; Xu, Zhe-Qi; Wei, Wei; Han, Bin-Ze; Chen, Xiong-Wen; Su, Ding-Feng; Liu, Chong

    2016-01-01

    Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.

  17. EFFECTS OF SYNTETIC CANNABINOID RECEPTOR LIGANDS WIN 55.212-2 AND ANANDAMID UPON IN VITRO ACTIVITY OF IMMUNOCOMPETENT CELLS

    Directory of Open Access Journals (Sweden)

    E. G. Lobanova

    2009-01-01

    Full Text Available Abstract. Ability of cannabinoid receptor ligands WIN 55.212-2 and anandamid to inhibit synthesis of TNFα and IL-8 was studied in healthy donors and men with allergic disorders. To establish mechanism of action for investigated substances, the selective antagonists of the СВ1-receptor (SR141716A and for СВ2 - receptor (SR144528 were applied. Studies with whole blood dilutions allowed of approximating in vivo conditions when investigating biological properties of WIN-55.212-2 and anandamid. The synthetic cannabinoids WIN - 55.212-2 and anandamid at a concentration of 3-10 μМ were capable of reducing synthesis of TNFα and IL-8 in lipopolysaccharide-stimulated blood leukocytes, both from healthy donors and subjects with allergic disorders. It was revealed that the antagonist of СВ1-receptor (SR141716A did not exert a receptor-mediated effect for WIN-55.212-2 and anandamid. Meanwhile, a СВ2-receptor antagonist (SR144528 entirely eliminated completely the blocking effect of anandamid and WIN-55.212-2.

  18. Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity.

    Science.gov (United States)

    Esain, Virginie; Kwan, Wanda; Carroll, Kelli J; Cortes, Mauricio; Liu, Sarah Y; Frechette, Gregory M; Sheward, Lea M V; Nissim, Sahar; Goessling, Wolfram; North, Trista E

    2015-08-01

    Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion, or migration of embryonic HSCs is currently uncharacterized. Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development. During HSC specification in the aorta-gonad-mesonephros (AGM) region, CNR2 stimulation by AM1241 increased runx1;cmyb(+) HSPCs, through heightened proliferation, whereas CNR2 antagonism decreased HSPC number; FACS analysis and absolute HSC counts confirmed and quantified these effects. Epistatic investigations showed AM1241 significantly upregulated PGE2 synthesis in a Ptgs2-dependent manner to increase AGM HSCs. During the phases of HSC production and colonization of secondary niches, AM1241 accelerated migration to the caudal hematopoietic tissue (CHT), the site of embryonic HSC expansion, and the thymus; however these effects occurred independently of PGE2. Using a candidate approach for HSC migration and retention factors, P-selectin was identified as the functional target of CNR2 regulation. Epistatic analyses confirmed migration of HSCs into the CHT and thymus was dependent on CNR2-regulated P-selectin activity. Together, these data suggest CNR2-signaling optimizes the production, expansion, and migration of embryonic HSCs by modulating multiple downstream signaling pathways. PMID:25931248

  19. Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity.

    Science.gov (United States)

    Esain, Virginie; Kwan, Wanda; Carroll, Kelli J; Cortes, Mauricio; Liu, Sarah Y; Frechette, Gregory M; Sheward, Lea M V; Nissim, Sahar; Goessling, Wolfram; North, Trista E

    2015-08-01

    Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion, or migration of embryonic HSCs is currently uncharacterized. Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development. During HSC specification in the aorta-gonad-mesonephros (AGM) region, CNR2 stimulation by AM1241 increased runx1;cmyb(+) HSPCs, through heightened proliferation, whereas CNR2 antagonism decreased HSPC number; FACS analysis and absolute HSC counts confirmed and quantified these effects. Epistatic investigations showed AM1241 significantly upregulated PGE2 synthesis in a Ptgs2-dependent manner to increase AGM HSCs. During the phases of HSC production and colonization of secondary niches, AM1241 accelerated migration to the caudal hematopoietic tissue (CHT), the site of embryonic HSC expansion, and the thymus; however these effects occurred independently of PGE2. Using a candidate approach for HSC migration and retention factors, P-selectin was identified as the functional target of CNR2 regulation. Epistatic analyses confirmed migration of HSCs into the CHT and thymus was dependent on CNR2-regulated P-selectin activity. Together, these data suggest CNR2-signaling optimizes the production, expansion, and migration of embryonic HSCs by modulating multiple downstream signaling pathways.

  20. CB1 Cannabinoid Receptor-Dependent Activation of mTORC1/Pax6 Signaling Drives Tbr2 Expression and Basal Progenitor Expansion in the Developing Mouse Cortex.

    Science.gov (United States)

    Díaz-Alonso, Javier; Aguado, Tania; de Salas-Quiroga, Adán; Ortega, Zaira; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-09-01

    The CB1 cannabinoid receptor regulates cortical progenitor proliferation during embryonic development, but the molecular mechanism of this action remains unknown. Here, we report that CB1-deficient mouse embryos show premature cell cycle exit, decreased Pax6- and Tbr2-positive cell number, and reduced mammalian target of rapamycin complex 1 (mTORC1) activation in the ventricular and subventricular cortical zones. Pharmacological stimulation of the CB1 receptor in cortical slices and progenitor cell cultures activated the mTORC1 pathway and increased the number of Pax6- and Tbr2-expressing cells. Likewise, acute CB1 knockdown in utero reduced mTORC1 activation and cannabinoid-induced Tbr2-positive cell generation. Luciferase reporter and chromatin immunoprecipitation assays revealed that the CB1 receptor drives Tbr2 expression downstream of Pax6 induction in an mTORC1-dependent manner. Altogether, our results demonstrate that the CB1 receptor tunes dorsal telencephalic progenitor proliferation by sustaining the transcriptional activity of the Pax6-Tbr2 axis via the mTORC1 pathway, and suggest that alterations of CB1 receptor signaling, by producing the missexpression of progenitor identity determinants may contribute to neurodevelopmental alterations.

  1. Derivados de cromenopirazoles como ligandos de receptores de cannabinoides.

    OpenAIRE

    Jagerovic, Nadine; Cumella Montánchez, José María; Goya, Pilar; Fernández, Javier; Gómez, María; Rodríguez, Patricia

    2009-01-01

    [ES] Compuestos derivados de cromenopirazoles que son ligandos de receptores de cannabinoides, su uso para la fabricación de un medicamento, uso de este medicamento para el tratamiento y/o la prevención de trastornos asociados a los receptores de cannabinoides, uso de dicho compuesto como reactivo en ensayos biológicos relacionados con receptores de cannabinoides y procedimiento de obtención de los mismos.

  2. Activation of type 1 cannabinoid receptor (CB1R promotes neurogenesis in murine subventricular zone cell cultures.

    Directory of Open Access Journals (Sweden)

    Sara Xapelli

    Full Text Available The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive, neurons and astrocytes. Stimulation of the CB1R by (R-(+-Methanandamide (R-m-AEA increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation, at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca(2+]i in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.

  3. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno;

    2013-01-01

    Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action ...... CB2R's implication in retinothalamic development. Overall, this study demonstrates that the contribution of endocannabinoids to brain development is not solely mediated by CB1R, but also involves CB2R....

  4. Contribution of hypothermia and CB1 receptor activation to protective effects of TAK-937, a cannabinoid receptor agonist, in rat transient MCAO model.

    Directory of Open Access Journals (Sweden)

    Noriko Suzuki

    Full Text Available BACKGROUND: Cannabinoid (CB receptor agonists are expected to alleviate ischemic brain damage by modulating neurotransmission and neuroinflammatory responses via CB(1 and CB(2 receptors, respectively. In a previous study, TAK-937, a novel potent and selective CB(1 and CB(2 receptor agonist, was shown to exert significant cerebroprotective effects accompanied by hypothermia after transient middle cerebral artery occlusion (MCAO in rats. Sustained hypothermia itself induces significant neuroprotective effects. In the present studies, we examined the relative contribution of hypothermia and CB(1 receptor activation to the cerebroprotective effects of TAK-937. METHODOLOGY/PRINCIPAL FINDINGS: Using a multichannel brain temperature controlling system we developed, the brain temperature of freely moving rats was telemetrically monitored and maintained between 37 and 38°C during intravenous infusion of TAK-937 (100 µg/kg/h or vehicle for 24 h after 2 h MCAO. AM251, a selective CB(1 receptor antagonist, was administered intraperitoneally at 30 mg/kg 30 min before starting intravenous infusion of TAK-937 (100 µg/kg/h for 24 h. Rats were sacrificed and their brains were isolated 26 h after MCAO in both experiments. When the hypothermic effect of TAK-937 was completely reversed by a brain temperature controlling system, the infarct-reducing effect of TAK-937 was attenuated in part, but remained significant. On the other hand, concomitant AM251 treatment with TAK-937 completely abolished the hypothermic and infarct-reducing effects of TAK-937. CONCLUSIONS/SIGNIFICANCE: We conclude that the cerebroprotective effects of TAK-937 were at least in part mediated by induction of hypothermia, and mainly mediated by CB(1 receptor activation.

  5. MAM-2201, a synthetic cannabinoid drug of abuse, suppresses the synaptic input to cerebellar Purkinje cells via activation of presynaptic CB1 receptors.

    Science.gov (United States)

    Irie, Tomohiko; Kikura-Hanajiri, Ruri; Usami, Makoto; Uchiyama, Nahoko; Goda, Yukihiro; Sekino, Yuko

    2015-08-01

    Herbal products containing synthetic cannabinoids-initially sold as legal alternatives to marijuana-have become major drugs of abuse. Among the synthetic cannabinoids, [1-(5-fluoropentyl)-1H-indol-3-yl](4-methyl-1-naphthalenyl)-methanone (MAM-2201) has been recently detected in herbal products and has psychoactive and intoxicating effects in humans, suggesting that MAM-2201 alters brain function. Nevertheless, the pharmacological actions of MAM-2201 on cannabinoid receptor type 1 (CB1R) and neuronal functions have not been elucidated. We found that MAM-2201 acted as an agonist of human CB1Rs expressed in AtT-20 cells. In whole-cell patch-clamp recordings made from Purkinje cells (PCs) in slice preparations of the mouse cerebellum, we also found that MAM-2201 inhibited glutamate release at parallel fiber-PC synapses via activation of presynaptic CB1Rs. MAM-2201 inhibited neurotransmitter release with an inhibitory concentration 50% of 0.36 μM. MAM-2201 caused greater inhibition of neurotransmitter release than Δ(9)-tetrahydrocannabinol within the range of 0.1-30 μM and JWH-018, one of the most popular and potent synthetic cannabinoids detected in the herbal products, within the range of 0.03-3 μM. MAM-2201 caused a concentration-dependent suppression of GABA release onto PCs. Furthermore, MAM-2201 induced suppression of glutamate release at climbing fiber-PC synapses, leading to reduced dendritic Ca(2+) transients in PCs. These results suggest that MAM-2201 is likely to suppress neurotransmitter release at CB1R-expressing synapses in humans. The reduction of neurotransmitter release from CB1R-containing synapses could contribute to some of the symptoms of synthetic cannabinoid intoxication including impairments in cerebellum-dependent motor coordination and motor learning. PMID:25747605

  6. Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.

    Science.gov (United States)

    Hu, Jianping; Feng, Zhiwei; Ma, Shifan; Zhang, Yu; Tong, Qin; Alqarni, Mohammed Hamed; Gou, Xiaojun; Xie, Xiang-Qun

    2016-06-27

    Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse. The lack of an experimental three-dimensional CB2 structure has hindered not only the development of studies of conformational differences between the inactive and active CB2 but also the rational discovery of novel functional compounds targeting CB2. In this work, we constructed models of both inactive and active CB2 by homology modeling. Then we conducted two comparative 100 ns molecular dynamics (MD) simulations on the two systems-the active CB2 bound with both the agonist and G protein and the inactive CB2 bound with inverse agonist-to analyze the conformational difference of CB2 proteins and the key residues involved in molecular recognition. Our results showed that the inactive CB2 and the inverse agonist remained stable during the MD simulation. However, during the MD simulations, we observed dynamical details about the breakdown of the "ionic lock" between R131(3.50) and D240(6.30) as well as the outward/inward movements of transmembrane domains of the active CB2 that bind with G proteins and agonist (TM5, TM6, and TM7). All of these results are congruent with the experimental data and recent reports. Moreover, our results indicate that W258(6.48) in TM6 and residues in TM4 (V164(4.56)-L169(4.61)) contribute greatly to the binding of the agonist on the basis of the binding energy decomposition, while residues S180-F183 in extracellular loop 2 (ECL2) may be of importance in recognition of the inverse agonist. Furthermore, pharmacophore modeling and virtual screening were carried out for the inactive and active CB2 models in parallel. Among all 10 hits, two compounds exhibited novel scaffolds and can be used as novel chemical probes for future studies of CB2. Importantly, our studies show that the hits obtained from the inactive CB2 model mainly act as inverse agonist(s) or neutral

  7. Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.

    Science.gov (United States)

    Hu, Jianping; Feng, Zhiwei; Ma, Shifan; Zhang, Yu; Tong, Qin; Alqarni, Mohammed Hamed; Gou, Xiaojun; Xie, Xiang-Qun

    2016-06-27

    Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse. The lack of an experimental three-dimensional CB2 structure has hindered not only the development of studies of conformational differences between the inactive and active CB2 but also the rational discovery of novel functional compounds targeting CB2. In this work, we constructed models of both inactive and active CB2 by homology modeling. Then we conducted two comparative 100 ns molecular dynamics (MD) simulations on the two systems-the active CB2 bound with both the agonist and G protein and the inactive CB2 bound with inverse agonist-to analyze the conformational difference of CB2 proteins and the key residues involved in molecular recognition. Our results showed that the inactive CB2 and the inverse agonist remained stable during the MD simulation. However, during the MD simulations, we observed dynamical details about the breakdown of the "ionic lock" between R131(3.50) and D240(6.30) as well as the outward/inward movements of transmembrane domains of the active CB2 that bind with G proteins and agonist (TM5, TM6, and TM7). All of these results are congruent with the experimental data and recent reports. Moreover, our results indicate that W258(6.48) in TM6 and residues in TM4 (V164(4.56)-L169(4.61)) contribute greatly to the binding of the agonist on the basis of the binding energy decomposition, while residues S180-F183 in extracellular loop 2 (ECL2) may be of importance in recognition of the inverse agonist. Furthermore, pharmacophore modeling and virtual screening were carried out for the inactive and active CB2 models in parallel. Among all 10 hits, two compounds exhibited novel scaffolds and can be used as novel chemical probes for future studies of CB2. Importantly, our studies show that the hits obtained from the inactive CB2 model mainly act as inverse agonist(s) or neutral

  8. A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation.

    Directory of Open Access Journals (Sweden)

    Alessandro Tozzi

    Full Text Available BACKGROUND: Cocaine increases the level of endogenous dopamine (DA in the striatum by blocking the DA transporter. Endogenous DA modulates glutamatergic inputs to striatal neurons and this modulation influences motor activity. Since D2 DA and A2A-adenosine receptors (A2A-Rs have antagonistic effects on striatal neurons, drugs targeting adenosine receptors such as caffeine-like compounds, could enhance psychomotor stimulant effects of cocaine. In this study, we analyzed the electrophysiological effects of cocaine and A2A-Rs antagonists in striatal slices and the motor effects produced by this pharmacological modulation in rodents. PRINCIPAL FINDINGS: Concomitant administration of cocaine and A2A-Rs antagonists reduced glutamatergic synaptic transmission in striatal spiny neurons while these drugs failed to produce this effect when given in isolation. This inhibitory effect was dependent on the activation of D2-like receptors and the release of endocannabinoids since it was prevented by L-sulpiride and reduced by a CB1 receptor antagonist. Combined application of cocaine and A2A-R antagonists also reduced the firing frequency of striatal cholinergic interneurons suggesting that changes in cholinergic tone might contribute to this synaptic modulation. Finally, A2A-Rs antagonists, in the presence of a sub-threshold dose of cocaine, enhanced locomotion and, in line with the electrophysiological experiments, this enhanced activity required activation of D2-like and CB1 receptors. CONCLUSIONS: The present study provides a possible synaptic mechanism explaining how caffeine-like compounds could enhance psychomotor stimulant effects of cocaine.

  9. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Müller Anke

    2010-06-01

    Full Text Available Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC and Cannabidiol (CBD fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferation and maturation of neuronal progenitor cells and spatial learning performance. In addition we used cannabinoid receptor 1 (CB1 deficient mice and treatment with CB1 antagonist AM251 in Nestin-GFP-reporter mice to investigate the role of the CB1 receptor in adult neurogenesis in detail. Results THC and CBD differed in their effects on spatial learning and adult neurogenesis. CBD did not impair learning but increased adult neurogenesis, whereas THC reduced learning without affecting adult neurogenesis. We found the neurogenic effect of CBD to be dependent on the CB1 receptor, which is expressed over the whole dentate gyrus. Similarly, the neurogenic effect of environmental enrichment and voluntary wheel running depends on the presence of the CB1 receptor. We found that in the absence of CB1 receptors, cell proliferation was increased and neuronal differentiation reduced, which could be related to CB1 receptor mediated signaling in Doublecortin (DCX-expressing intermediate progenitor cells. Conclusion CB1 affected the stages of adult neurogenesis that involve intermediate highly proliferative progenitor cells and the survival and maturation of new neurons. The pro-neurogenic effects of CBD might explain some of the positive therapeutic features of CBD-based compounds.

  10. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    Science.gov (United States)

    Pertwee, Roger G

    2012-12-01

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'. PMID:23108552

  11. Peripheral cannabinoid receptor, CB2, regulates bone mass

    Science.gov (United States)

    Ofek, Orr; Karsak, Meliha; Leclerc, Nathalie; Fogel, Meirav; Frenkel, Baruch; Wright, Karen; Tam, Joseph; Attar-Namdar, Malka; Kram, Vardit; Shohami, Esther; Mechoulam, Raphael; Zimmer, Andreas; Bab, Itai

    2006-01-01

    The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2–/– phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming cells), increased osteoclast (the bone-resorbing cell) number, and a markedly decreased number of diaphyseal osteoblast precursors. CB2 is expressed in osteoblasts, osteocytes, and osteoclasts. A CB2-specific agonist that does not have any psychotropic effects enhances endocortical osteoblast number and activity and restrains trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors and receptor activator of NF-κB ligand expression in bone marrow-derived osteoblasts/stromal cells. The same agonist attenuates ovariectomy-induced bone loss and markedly stimulates cortical thickness through the respective suppression of osteoclast number and stimulation of endocortical bone formation. These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries. PMID:16407142

  12. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai P.; Singh, Narendra P. [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Singh, Balwan [National Primate Research Center, Emory University, Atlanta GA 30329 (United States); Price, Robert L. [Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Mitzi [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Prakash S., E-mail: Prakash.Nagarkatti@uscmed.sc.edu [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)

    2012-01-15

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and

  13. Structure of a cannabinoid receptor and functional expression of the cloned cDNA.

    Science.gov (United States)

    Matsuda, L A; Lolait, S J; Brownstein, M J; Young, A C; Bonner, T I

    1990-08-01

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana. PMID:2165569

  14. Inhibition of guinea-pig and human sensory nerve activity and the cough reflex in guinea-pigs by cannabinoid (CB2) receptor activation

    OpenAIRE

    Patel, Hema J; Birrell, Mark A; Crispino, Natascia; Hele, David J.; Venkatesan, Priya; Barnes, Peter J; Yacoub, Magdi H.; Belvisi, Maria G.

    2003-01-01

    There is considerable interest in novel therapies for cough, since currently used agents such as codeine have limited beneficial value due to the associated side effects. Sensory nerves in the airways mediate the cough reflex via activation of C-fibres and RARs. Evidence suggests that cannabinoids may inhibit sensory nerve-mediated responses.We have investigated the inhibitory actions of cannabinoids on sensory nerve depolarisation mediated by capsaicin, hypertonic saline and PGE2 on isolated...

  15. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor.

    Science.gov (United States)

    Calandra, B; Portier, M; Kernéis, A; Delpech, M; Carillon, C; Le Fur, G; Ferrara, P; Shire, D

    1999-06-25

    It has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant. Treatment of Chinese hamster ovary (CHO) cells expressing the cannabinoid CB1 receptor with the cannabinoid CP 55,940, {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl) cyclohexan-1-ol} resulted in cyclic AMP accumulation in a dose-response manner, an accumulation blocked by the cannabinoid CB1 receptor-specific antagonist SR 141716A, {N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride}. In CHO cells coexpressing the cannabinoid CB1 receptor and a cyclic AMP response element (CRE)-luciferase reporter gene system, CP 55,940 induced luciferase expression by a pathway blocked by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89). Under the same conditions the peripheral cannabinoid CB2 receptor proved to be incapable of inducing cAMP accumulation or luciferase activity. This incapacity allowed us to study the luciferase activation mediated by CB /CB2 chimeric constructs, from which we determined that the first and second internal loop regions of the cannabinoid CB1 receptor were involved in transducing the pathway leading to luciferase gene expression. PMID:10422789

  16. Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence.

    Science.gov (United States)

    Abboussi, Oualid; Said, Nadia; Fifel, Karim; Lakehayli, Sara; Tazi, Abdelouahhab; El Ganouni, Soumaya

    2016-04-01

    Chronic exposure to cannabinoids during adolescence results in long-lasting behavioral deficits that match some symptomatologic aspects of schizophrenia. The aim of this study was to investigate the reversibility of the emotional and the cognitive effects of chronic exposure to cannabinoids during adolescence, via subsequent modulation of the serotoninergic 5-HT4 and dopaminergic D3 receptors. RS67333 as a 5-HT4 agonist and U-99194A as a D3 antagonist were administered separately at 1 mg/kg and 20 mg/kg, and in combination at 0.5 mg/kg and 10 mg/kg to adult animals undergoing chronic treatment with the synthetic cannabinoid receptor agonist WIN55,212-2 (1 mg/kg) during adolescence. Animals were tested for anxiety-like behavior and episodic-like memory in the open field and novel object recognition tests respectively 30 minutes after the last drug administration. Chronic WIN55,212-2 treated animals exhibited a lasting disruption of episodic memory and increased anxiety levels. The effect on episodic-like memory were partially restored by acute administration of RS67333 and U-99194A and completely by administration of both drugs in combination at lower doses. However, only RS67333 (20 mg/kg) improved the anxiogenic-like effect of WIN55,212-2. These findings give further support that chronic exposure to cannabinoids during adolescence may be used as an animal model for schizophrenia, and highlight D3 and 5-HT4 receptors as potential targets for an enhanced treatment of the cognitive aspect of this disease. PMID:26497809

  17. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    Science.gov (United States)

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action.

  18. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    Science.gov (United States)

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action. PMID:27179908

  19. Type-2 cannabinoid receptors in neurodegeneration.

    Science.gov (United States)

    Bisogno, Tiziana; Oddi, Sergio; Piccoli, Alessandra; Fazio, Domenico; Maccarrone, Mauro

    2016-09-01

    Based on its wide expression in immune cells, type-2 cannabinoid (CB2) receptors were traditionally thought to act as "peripheral receptors" with an almost exclusively immunomodulatory function. However, their recent identification in mammalian brain areas, as well as in distinct neuronal cells, has opened the way to a re-consideration of CB2 signaling in the context of brain pathophysiology, synaptic plasticity and neuroprotection. To date, accumulated evidence from several independent preclinical studies has offered new perspectives on the possible involvement of CB2 signaling in brain and spinal cord traumatic injury, as well as in the most relevant neurodegenerative disorders like Alzheimer's disease, Parkinson's disease and Huntington's chorea. Here, we will review available information on CB2 in these disease conditions, along with data that support also its therapeutic potential to treat them. PMID:27450295

  20. The neuronal distribution of cannabinoid receptor type 1 in the trigeminal ganglion of the rat.

    Science.gov (United States)

    Price, T J; Helesic, G; Parghi, D; Hargreaves, K M; Flores, C M

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of the adult rat through combined in situ hybridization (ISH) and immunohistochemistry (IHC). CB1 receptor mRNA was localized mainly to medium and large diameter neurons of the maxillary and mandibular branches of the TG. Consistent with this distribution, in a de facto nociceptive sensory neuron population that exhibited vanilloid receptor type 1 immunoreactivity, colocalization with CB1 mRNA was also sparse (CB1 mRNA. In contrast, and consistent with the neuron-size distribution for CB1, nearly 75% of CB1-positive neurons exhibited N52-immunoreactivity, a marker of myelinated axons. These results indicate that in the rat TG, CB1 receptors are expressed predominantly in neurons that are not thought to subserve nociceptive neurotransmission in the noninjured animal. Taken together with the absence of an above background in situ signal for CB2 mRNA in TG neurons, these findings suggest that the peripherally mediated antinociceptive effects of cannabinoids may involve either as yet unidentified receptors or interaction with afferent neuron populations that normally subserve non-nociceptive functions.

  1. The Role of Cannabinoid Receptors in the Descending Modulation of Pain

    Directory of Open Access Journals (Sweden)

    Francesco Rossi

    2010-08-01

    Full Text Available The endogenous antinociceptive descending pathway represents a circuitry of the supraspinal central nervous system whose task is to counteract pain. It includes the periaqueductal grey (PAG-rostral ventromedial medulla (RVM-dorsal horn (DH axis, which is the best characterized pain modulation system through which pain is endogenously inhibited. Thus, an alternative rational strategy for silencing pain is the activation of this anatomical substrate. Evidence of the involvement of cannabinoid receptors (CB in the supraspinal modulation of pain can be found in several studies in which intra-cerebral microinjections of cannabinoid ligands or positive modulators have proved to be analgesic in different pain models, whereas cannabinoid receptor antagonists or antisense nucleotides towards CB1 receptors have facilitated pain. Like opioids, cannabinoids produce centrally-mediated analgesia by activating a descending pathway which includes PAG and its projection to downstream RVM neurons, which in turn send inhibitory projections to the dorsal horn of the spinal cord. Indeed, several studies underline a supraspinal regulation of cannabinoids on g-aminobutyric acid (GABA and glutamate release which inhibit and enhance the antinociceptive descending pathway, respectively. Cannabinoid receptor activation expressed on presynaptic GABAergic terminals reduces the probability of neurotransmitter release thus dis-inhibiting the PAG-RVM-dorsal horn antinociceptive pathway. Cannabinoids seem to increase glutamate release (maybe as consequence of GABA decrease and to require glutamate receptor activation to induce antinociception. The consequent outcome is behavioral analgesia, which is reproduced in several pain conditions, from acute to chronic pain models such as inflammatory and neuropathic pain. Taken together these findings would suggest that supraspinal cannabinoid receptors have broad applications, from pain control to closely related central nervous system

  2. Arachidonic acid mediates non-capacitative calcium entry evoked by CB1-cannabinoid receptor activation in DDT1 MF-2 smooth muscle cells

    NARCIS (Netherlands)

    Demuth, D.G.; Gkoumassi, Effimia; Droge, M.J.; Dekkers, B.G.J.; Esselink, H.J.; van Ree, Rutger; Parsons, M.E.; Zaagsma, Hans; Molleman, A; Nelemans, Herman

    2005-01-01

    Cannabinoid CB1-receptor stimulation in DDT1 MF-2 smooth muscle cells induces a rise in [Ca2+](i), which is dependent on extracellular Ca2+ and modulated by thapsigargin-sensitive stores, suggesting capacitative Ca2+ entry (CCE), and by MAP kinase. Non-capacitative Ca2+ entry (NCCE) stimulated by ar

  3. Cannabinoid Receptors Are Overexpressed in CLL but of Limited Potential for Therapeutic Exploitation.

    Science.gov (United States)

    Freund, Patricia; Porpaczy, Edit A; Le, Trang; Gruber, Michaela; Pausz, Clemens; Staber, Philipp; Jäger, Ulrich; Vanura, Katrina

    2016-01-01

    The cannabinoid receptors 1 and 2 (CNR1&2) are overexpressed in a variety of malignant diseases and cannabinoids can have noteworthy impact on tumor cell viability and tumor growth. Patients diagnosed with chronic lymphocytic leukemia (CLL) present with very heterogeneous disease characteristics translating into highly differential risk properties. To meet the urgent need for refinement in risk stratification at diagnosis and the search for novel therapies we studied CNR expression and response to cannabinoid treatment in CLL. Expression levels of CNR1&2 were determined in 107 CLL patients by real-time PCR and analyzed with regard to prognostic markers and survival. Cell viability of primary CLL cells was determined in suspension and co-culture after incubation in increasing cannabinoid concentrations under normal and reduced serum conditions and in combination with fludarabine. Impact of cannabinoids on migration of CLL cells towards CXCL12 was determined in transwell plates. We found CNR1&2 to be overexpressed in CLL compared to healthy B-cells. Discriminating between high and low expressing subgroups, only high CNR1 expression was associated with two established high risk markers and conferred significantly shorter overall and treatment free survival. Viability of CLL primary cells was reduced in a dose dependent fashion upon incubation with cannabinoids, however, healthy cells were similarly affected. Under serum reduced conditions, no significant differences were observed within suspension and co-culture, respectively, however, the feeder layer contributed significantly to the survival of CLL cells compared to suspension culture conditions. No significant differences were observed when treating CLL cells with cannabinoids in combination with fludarabine. Interestingly, biologic activity of cannabinoids was independent of both CNR1&2 expression. Finally, we did not observe an inhibition of CXCL12-induced migration by cannabinoids. In contrast to other tumor

  4. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids.

    Science.gov (United States)

    Kuramoto, Kenta; Wang, Nan; Fan, Yuying; Zhang, Weiran; Schoenen, Frank J; Frankowski, Kevin J; Marugan, Juan; Zhou, Yifa; Huang, Sui; He, Congcong

    2016-09-01

    Cannabinoids and related drugs generate profound behavioral effects (such as analgesic effects) through activating CNR1 (cannabinoid receptor 1 [brain]). However, repeated cannabinoid administration triggers lysosomal degradation of the receptor and rapid development of drug tolerance, limiting the medical use of marijuana in chronic diseases. The pathogenic mechanisms of cannabinoid tolerance are not fully understood, and little is known about its prevention. Here we show that a protein involved in macroautophagy/autophagy (a conserved lysosomal degradation pathway), BECN2 (beclin 2), mediates cannabinoid tolerance by preventing CNR1 recycling and resensitization after prolonged agonist exposure, and deletion of Becn2 rescues CNR1 activity in mouse brain and conveys resistance to analgesic tolerance to chronic cannabinoids. To target BECN2 therapeutically, we established a competitive recruitment model of BECN2 and identified novel synthetic, natural or physiological stimuli of autophagy that sequester BECN2 from its binding with GPRASP1, a receptor protein for CNR1 degradation. Co-administration of these autophagy inducers effectively restores the level and signaling of brain CNR1 and protects mice from developing tolerance to repeated cannabinoid usage. Overall, our findings demonstrate the functional link among autophagy, receptor signaling and animal behavior regulated by psychoactive drugs, and develop a new strategy to prevent tolerance and improve medical efficacy of cannabinoids by modulating the BECN2 interactome and autophagy activity. PMID:27305347

  5. Cannabinoid receptor 2 expression modulates Gβ(1)γ(2) protein interaction with the activator of G protein signalling 2/dynein light chain protein Tctex-1.

    Science.gov (United States)

    Nagler, Marina; Palkowitsch, Lysann; Rading, Sebastian; Moepps, Barbara; Karsak, Meliha

    2016-01-01

    The activator of G protein signalling AGS2 (Tctex-1) forms protein complexes with Gβγ, and controls cell proliferation by regulating cell cycle progression. A direct interaction of Tctex-1 with various G protein-coupled receptors has been reported. Since the carboxyl terminal portion of CB2 carries a putative Tctex-1 binding motif, we investigated the potential interplay of CB2 and Tctex-1 in the absence and presence of Gβγ. The supposed interaction of cannabinoid receptor CB2 with Tctex-1 and the influence of CB2 on the formation of Tctex-1-Gβγ-complexes were studied by co- and/or immunoprecipitation experiments in transiently transfected HEK293 cells. The analysis on Tctex-1 protein was performed in the absence and presence of the ligands JWH 133, 2-AG, and AM 630, the protein biosynthesis inhibitor cycloheximide or the protein degradation blockers MG132, NH4Cl/leupeptin or bafilomycin. Our results show that CB2 neither directly nor indirectly via Gβγ interacts with Tctex-1, but competes with Tctex-1 in binding to Gβγ. The Tctex-1-Gβγ protein interaction was disrupted by CB2 receptor expression resulting in a release of Tctex-1 from the complex, and its degradation by the proteasome and partly by lysosomes. The decrease in Tctex-1 protein levels is induced by CB2 expression "dose-dependently" and is independent of stimulation by agonist or blocking by an inverse agonist treatment. The results suggest that CB2 receptor expression independent of its activation by agonists is sufficient to competitively disrupt Gβγ-Tctex-1 complexes, and to initiate Tctex-1 degradation. These findings implicate that CB2 receptor expression modifies the stability of intracellular protein complexes by a non-canonical pathway.

  6. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xuqin [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China); Sun, Tao [Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province 210002 (China); Wang, Xiaodong, E-mail: xdwang666@hotmail.com [Department of Endocrinology, First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province 210029 (China)

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcription of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  7. Activity of muscarinic, galanin and cannabinoid receptors in the prodromal and advanced stages in the triple transgenic mice model of Alzheimer's disease.

    Science.gov (United States)

    Manuel, Iván; Lombardero, Laura; LaFerla, Frank M; Giménez-Llort, Lydia; Rodríguez-Puertas, Rafael

    2016-08-01

    Neurochemical alterations in Alzheimer's disease (AD) include cholinergic neuronal loss in the nucleus basalis of Meynert (nbM) and a decrease in densities of the M2 muscarinic receptor subtype in areas related to learning and memory. Neuromodulators present in the cholinergic pathways, such as neuropeptides and neurolipids, control these cognitive processes and have become targets of research in order to understand and treat the pathophysiological and clinical stages of the disease. This is the case of the endocannabinoid and galaninergic systems, which have been found to be up-regulated in AD, and could therefore have a neuroprotective role. In the present study, the functional coupling of Gi/o protein-coupled receptors to GalR1, and the CB1 receptor subtype for endocannabinoids were analyzed in the 3xTg-AD mice model of AD. In addition, the activity mediated by Gi/o protein-coupled M2/4 muscarinic receptor subtypes was also analyzed in brain areas involved in anxiety and cognition. Thus, male mice were studied at 4 and 15months of age (prodromal and advanced stages, respectively) and compared to age-matched non-transgenic (NTg) mice (adult and old, respectively). In 4-month-old 3xTg-AD mice, the [(35)S]GTPγS binding stimulated by galanin was significantly increased in the hypothalamus, but a decrease of functional M2/4 receptors was observed in the posterior amygdala. The CB1 cannabinoid receptor activity was up-regulated in the anterior thalamus at that age. In 15-month-old 3xTg-AD mice, muscarinic receptor activity was found to be increased in motor cortex, while CB1 activity was decreased in nbM. No changes were found in GalR1-mediated activity at this age. Our results provide further evidence of the relevance of limbic areas in the prodromal stage of AD, the profile of which is characterized by anxiety. The up-regulation of galaninergic and endocannabinoid systems support the hypothesis of their neuroprotective roles, and these are established prior to the

  8. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis

    OpenAIRE

    Müller Anke; Tauber Svantje; Ramirez-Rodriguez Gerardo; Leal-Galicia Perla; Fabel Klaus; Bick-Sander Anika; Wolf Susanne A; Melnik Andre; Waltinger Tim P; Ullrich Oliver; Kempermann Gerd

    2010-01-01

    Abstract Background Adult neurogenesis is a particular example of brain plasticity that is partially modulated by the endocannabinoid system. Whereas the impact of synthetic cannabinoids on the neuronal progenitor cells has been described, there has been lack of information about the action of plant-derived extracts on neurogenesis. Therefore we here focused on the effects of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) fed to female C57Bl/6 and Nestin-GFP-reporter mice on proliferatio...

  9. Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain.

    Science.gov (United States)

    Jhaveri, Maulik D; Sagar, Devi R; Elmes, Steven J R; Kendall, David A; Chapman, Victoria

    2007-08-01

    The endocannabinoid system consists of cannabinoid CB(1) and CB(2) receptors, endogenous ligands and their synthesising/metabolising enzymes. Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information. The analgesic effects of cannabinoids have been well documented. The usefulness of nonselective cannabinoid agonists can, however, be limited by psychoactive side effects associated with activation of CB(1) receptors. Following the recent evidence for CB(2) receptors existing in the nervous system and reports of their up-regulation in chronic pain states and neurodegenerative diseases, much research is now aimed at shedding light on the role of the CB(2) receptor in human disease. Recent studies have demonstrated anti-nociceptive effects of selective CB(2) receptor agonists in animal models of pain in the absence of CNS side effects. This review focuses on the analgesic potential of CB(2) receptor agonists for inflammatory, post-operative and neuropathic pain states and discusses their possible sites and mechanisms of action.

  10. Lipid Bilayer Molecular Dynamics Study of Lipid-Derived Agonists of the Putative Cannabinoid Receptor, GPR55

    OpenAIRE

    Kotsikorou, Evangelia; Lynch, Diane L.; Abood, Mary E.; Reggio, Patricia H.

    2010-01-01

    Both L-α-lysophosphatidylinositol (LPI) and 2-arachidonoyl-sn-glycero-3-phosphoinositol (2-AGPI) have been reported to activate the putative cannabinoid receptor, GPR55. Recent microsecond time-scale molecular dynamics (MD) simulations and isothiocyanate covalent labeling studies have suggested that a transmembrane helix 6/7 (TMH6/7) lipid pathway for ligand entry may be necessary for interaction with cannabinoid receptors. Because LPI and 2-AGPI are lipid-derived ligands, conformations that ...

  11. Motivational effects of cannabinoids are mediated by ??-opioid and k-opioid receptor

    OpenAIRE

    Ghozland, Sandy; Matthes, Hans W.D.; Simonin, Frederic; Filliol, Dominique; Kieffer, Brigitte L.; Maldonado, Rafael

    2002-01-01

    Repeated THC administration produces motivational and somatic adaptive changes leading to dependence in rodents. To investigate the molecular basis for cannabinoid dependence and its possible relationship with the endogenous opioid system, we explored ??9-tetrahydrocannabinol (THC) activity in mice lacking ??-, ??- or ??-opioid receptor genes. Acute THCinduced hypothermia, antinociception, and ypolocomotion remained unaffected in these mice, whereas THC tolerance and withdrawal...

  12. Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications.

    Science.gov (United States)

    Onaivi, Emmanuel S

    2009-01-01

    Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use. Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease. This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the

  13. Cannabinoids on the Brain

    Directory of Open Access Journals (Sweden)

    Andrew J. Irving

    2002-01-01

    Full Text Available Cannabis has a long history of consumption both for recreational and medicinal uses. Recently there have been significant advances in our understanding of how cannabis and related compounds (cannabinoids affect the brain and this review addresses the current state of knowledge of these effects. Cannabinoids act primarily via two types of receptor, CB1 and CB2, with CB1 receptors mediating most of the central actions of cannabinoids. The presence of a new type of brain cannabinoid receptor is also indicated. Important advances have been made in our understanding of cannabinoid receptor signaling pathways, their modulation of synaptic transmission and plasticity, the cellular targets of cannabinoids in different central nervous system (CNS regions and, in particular, the role of the endogenous brain cannabinoid (endocannabinoid system. Cannabinoids have widespread actions in the brain: in the hippocampus they influence learning and memory; in the basal ganglia they modulate locomotor activity and reward pathways; in the hypothalamus they have a role in the control of appetite. Cannabinoids may also be protective against neurodegeneration and brain damage and exhibit anticonvulsant activity. Some of the analgesic effects of cannabinoids also appear to involve sites within the brain. These advances in our understanding of the actions of cannabinoids and the brain endocannabinoid system have led to important new insights into neuronal function which are likely to result in the development of new therapeutic strategies for the treatment of a number of key CNS disorders.

  14. Cannabinoid receptor-interacting protein 1a modulates CB1 receptor signaling and regulation.

    Science.gov (United States)

    Smith, Tricia H; Blume, Lawrence C; Straiker, Alex; Cox, Jordan O; David, Bethany G; McVoy, Julie R Secor; Sayers, Katherine W; Poklis, Justin L; Abdullah, Rehab A; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R; Howlett, Allyn C; Selley, Dana E

    2015-04-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca(2+) channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide-binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [(35)S]GTPγS (guanylyl-5'-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA-mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [(35)S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  15. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  16. Pharmacology of cannabinoids.

    Science.gov (United States)

    Grotenhermen, Franjo

    2004-01-01

    Dronabinol (Delta 9-tetrahydocannabinol, THC), the main source of the pharmacological effects caused by the use of cannabis, is an agonist to both the CB1 and the CB2 subtype of cannabinoid receptors. It is available on prescription in several countries. The non-psychotropic cannabidiol (CBD), some analogues of natural cannabinoids and their metabolites, antagonists at the cannabinoid receptors and modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues including spleen, leukocytes; reproductive, urinary and gastrointestinal tracts; endocrine glands, arteries and heart. Five endogenous cannabinoids have been detected so far, of whom anandamide and 2-arachidonylglycerol are best characterized. There is evidence that besides the two cannabinoid receptor subtypes cloned so far additional cannabinoid receptor subtypes and vanilloid receptors are involved in the complex physiological functions of the cannabinoid system that include motor coordination, memory procession, control of appetite, pain modulation and neuroprotection. Strategies to modulate their activity include inhibition of re-uptake into cells and inhibition of their degradation to increase concentration and duration of action. Properties of cannabinoids that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, anti-inflammation, anti-allergic effects, sedation, improvement of mood, stimulation of appetite, anti-emesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects. PMID:15159677

  17. Distribution of cannabinoid receptor 1 in the CNS of zebrafish.

    Science.gov (United States)

    Lam, C S; Rastegar, S; Strähle, U

    2006-01-01

    The cannabinoid receptor 1 (Cb1) mediates the psychoactive effect of marijuana. In mammals, there is abundant evidence advocating the importance of cannabinoid signaling; activation of Cb1 exerts diverse functions, chiefly by its ability to modulate neurotransmission. Thus, much attention has been devoted to understand its role in health and disease and to evaluate its therapeutic potential. Here, we have cloned zebrafish cb1 and investigated its expression in developing and adult zebrafish brain. Sequence analysis showed that there is a high degree of conservation, especially in residues demonstrated to be critical for function in mammals. In situ hybridization revealed that zebrafish cb1 appears first in the preoptic area at 24 hours post-fertilization. Subsequently, transcripts are detected in the dorsal telencephalon, hypothalamus, pretectum and torus longitudinalis. A similar pattern of expression is recapitulated in the adult brain. While cb1 is intensively stained in the medial zone of the dorsal telencephalon, expression elsewhere is weak by comparison. In particular, localization of cb1 in the telencephalic periventricular matrix is suggestive of the involvement of Cb1 in neurogenesis, bearing strong resemblance in terms of expression and function to the proliferative mammalian hippocampal formation. In addition, a gradient-like expression of cb1 is detected in the torus longitudinalis, a teleost specific neural tissue. In relation to dopaminergic neurons in the diencephalic posterior tuberculum (considered to be the teleostean homologue of the mammalian midbrain dopaminergic system), both cb1 and tyrosine hydroxylase-expressing cells occupy non-overlapping domains. However there is evidence that they are co-localized in the caudal zone of the hypothalamus, implying a direct modulation of dopamine release in this particular region. Collectively, our data indicate the propensity of zebrafish cb1 to participate in multiple neurological processes.

  18. Frequency-Dependent Cannabinoid Receptor-Independent Modulation of Glycine Receptors by Endocannabinoid 2-AG

    OpenAIRE

    Natalia eLozovaya; Marat eMukhtarov; Timur eTsintsadze; Catherine eLedent; Nail eBurnashev; Piotr eBregestovski

    2011-01-01

    Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB) receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG), ...

  19. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

    Science.gov (United States)

    Hashemizadeh, Shiva; Sardari, Maryam; Rezayof, Ameneh

    2014-06-01

    In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats. A conditioned place preference (CPP) apparatus was used for the assessment of rewarding effects of the drugs in adult male Wistar rats. Subcutaneous (s.c.) administration of nicotine (0.2mg/kg) induced a significant CPP, without any effect on the locomotor activity during the testing phase. Intra-BLA microinjection of a non-selective cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.1-0.5 μg/rat) with an ineffective dose of nicotine (0.1mg/kg, s.c.) induced a significant place preference. On the other hand, intra-BLA administration of AM251 (20-60 ng/rat), a selective cannabinoid CB1 receptor antagonist inhibited the acquisition of nicotine-induced place preference. It should be considered that the microinjection of the same doses of WIN 55,212-2 or AM251 into the BLA, by itself had no effect on the CPP score. The administration of a higher dose of AM251 (60 ng/rat) during the acquisition decreased the locomotor activity of animals on the testing phase. Interestingly, the microinjection of AM251 (20 and 40 ng/rat), but not WIN55,212-2 (0.1-0.5 μg/rat), into the BLA inhibited the expression of nicotine-induced place preference without any effect on the locomotor activity. Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.

  20. Cannabinoid receptor 1 signaling in cardiovascular regulating nuclei in the brainstem: A review

    OpenAIRE

    Badr M. Ibrahim; Abdel-Rahman, Abdel A.

    2013-01-01

    Cannabinoids elicit complex hemodynamic responses in experimental animals that involve both peripheral and central sites. Centrally administered cannabinoids have been shown to predominantly cause pressor response. However, very little is known about the mechanism of the cannabinoid receptor 1 (CB1R)-centrally evoked pressor response. In this review, we provided an overview of the contemporary knowledge regarding the cannabinoids centrally elicited cardiovascular responses and the possible un...

  1. Hippocampal Cannabinoid Transmission Modulates Dopamine Neuron Activity: Impact on Rewarding Memory Formation and Social Interaction

    OpenAIRE

    Loureiro, Michael; Renard, Justine; Zunder, Jordan; Laviolette, Steven R

    2015-01-01

    Disturbances in cannabinoid type 1 receptor (CB1R) signaling have been linked to emotional and cognitive deficits characterizing neuropsychiatric disorders, including schizophrenia. Thus, there is growing interest in characterizing the relationship between cannabinoid transmission, emotional processing, and dopamine (DA)-dependent behavioral deficits. The CB1R is highly expressed in the mammalian nervous system, particularly in the hippocampus. Activation of the ventral hippocampal subregion ...

  2. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Happiness has been viewed as a temporary emotional state (e.g., pleasure and a relatively stable state of being happy (subjective happiness level. As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater

  3. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  4. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: implications in psychosis and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Pilar eSánchez-Blázquez

    2014-01-01

    Full Text Available The endocannabinoid system is widespread throughout the central nervous system and its type 1 receptor (CB1 plays a crucial role in preventing the neurotoxicity caused by activation of glutamate N-methyl-D-aspartate receptors (NMDARs. Indeed, it is the activity of NMDARs themselves that provides the demands on the endogenous cannabinoids in order to control their calcium currents. Therefore, a physiological role of this system is to maintain NMDAR activity within safe limits, thereby protecting neural cells from excitotoxicity. Thus, cannabinoids may be able to control NMDAR overactivation-related neural dysfunctions; however the major obstacles to the therapeutic utilization of these compounds are their psychotropic effects and negative influence on cognitive performance. Studies in humans have indicated that abuse of smoked cannabis can promote psychosis and even circumstantially precipitate symptoms of schizophrenia, although the latter appears to require a prior vulnerability in the individual. It is possible that cannabinoids provoke psychosis/schizophrenia reflecting a mechanism common to neuroprotection the reduction of NMDAR activity. Cannabinoids are proposed to produce such effect by reducing the pre-synaptic release of glutamate or interfering with postsynaptic NMDAR-regulated signaling pathways. The efficacy of such control requires the endocannabinoid system to apply its negative influence in a manner that is proportional to the strength of NMDAR signaling. Thus, cannabinoids acting at the wrong time or exerting an inappropriate influence on their receptors may cause NMDAR hypofunction. The purpose of the present review is to draw the attention of the reader to the newly described functional and physical CB1-NMDAR association, which may elucidate the scenario required for the rapid and efficacious control of NMDAR activity. Whether alterations in these mechanisms may increase NMDAR hypofunction leading to vulnerability to

  5. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  6. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    International Nuclear Information System (INIS)

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB1Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB2Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB2Rs (hCB2Rs). The affinity of cannabinoids for hCB2Rs was determined by competition binding studies employing CHO-hCB2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB2Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB2Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ9-tetrahydrocannabinol (Δ9-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB2R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB2Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB2Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB1 and CB2Rs. - Highlights: • JWH-018 and JWH-073 are synthetic cannabinoids present in abused K2 products. • JWH-018, JWH-073 and

  7. Expresión de receptores cannabinoides en el desarrollo embrionario del pez cebra

    OpenAIRE

    Florido García, Virginia

    2009-01-01

    [ES]Este trabajo trata sobre la expresión de receptores cannabinoides en el desarrollo embrionario del pez cebra [EN]This paper deals with the expression of cannabinoid receptors in the embryonic development of zebrafish Trabajo de Fin de Máster del Máster en Neurociencias, curso 2008-2009.

  8. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways.

    Science.gov (United States)

    del Río, Carmen; Navarrete, Carmen; Collado, Juan A; Bellido, M Luz; Gómez-Cañas, María; Pazos, M Ruth; Fernández-Ruiz, Javier; Pollastro, Federica; Appendino, Giovanni; Calzado, Marco A; Cantarero, Irene; Muñoz, Eduardo

    2016-02-18

    Scleroderma is a group of rare diseases associated with early and transient inflammation and vascular injury, followed by fibrosis affecting the skin and multiple internal organs. Fibroblast activation is the hallmark of scleroderma, and disrupting the intracellular TGFβ signaling may provide a novel approach to controlling fibrosis. Because of its potential role in modulating inflammatory and fibrotic responses, both PPARγ and CB2 receptors represent attractive targets for the development of cannabinoid-based therapies. We have developed a non-thiophilic and chemically stable derivative of the CBD quinol (VCE-004.8) that behaves as a dual agonist of PPARγ and CB2 receptors, VCE-004.8 inhibited TGFβ-induced Col1A2 gene transcription and collagen synthesis. Moreover, VCE-004.8 inhibited TGFβ-mediated myofibroblast differentiation and impaired wound-healing activity. The anti-fibrotic efficacy in vivo was investigated in a murine model of dermal fibrosis induced by bleomycin. VCE-004.8 reduced dermal thickness, blood vessels collagen accumulation and prevented mast cell degranulation and macrophage infiltration in the skin. These effects were impaired by the PPARγ antagonist T0070907 and the CB2 antagonist AM630. In addition, VCE-004.8 downregulated the expression of several key genes associated with fibrosis, qualifying this semi-synthetic cannabinoid as a novel compound for the management of scleroderma and, potentially, other fibrotic diseases.

  9. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum

    Directory of Open Access Journals (Sweden)

    Ralph J Oude-Ophuis

    2014-03-01

    Full Text Available The striatum harbors two neuronal populations that enable action selection. One population represents the striatonigral pathway, expresses the dopamine receptor D1 (DRD1 and promotes the execution of motor programs, while the other population represents the striatopallidal pathway, expresses the dopamine receptor D2 (DRD2 and suppresses voluntary activity. The two populations integrate distinct sensorimotor, cognitive and emotional information streams and their combined activity enables the selection of adaptive behaviors. Characterization of these populations is critical to the understanding of their role in action selection, because it aids the identification of the molecular mechanisms that separate them. To that end, we used fluorescent in-situ hybridization to quantify the percentage of striatal cells that (coexpress dopaminergic receptors and receptors of the cannabinoid, melanocortin or opioid neurotransmitters systems. Our main findings are that the cannabinoid 1 receptor is equally expressed on both populations with a gradient from dorsal to ventral striatum, that the opioid receptors have a preference for expression with either the DRD1 or DRD2 and that the melanocortin 4 receptor (MC4R is predominantly expressed in ventral parts of the striatum. In addition, we find that the level of MC4R expression determines its localization to either the DRD1 or the DRD2 population. Thereby, we provide insight into the sensitivity of the two dopaminoceptive populations to these neurotransmitters and progress the understanding of the mechanisms that enable action selection.

  10. Stabilization of functional recombinant cannabinoid receptor CB(2 in detergent micelles and lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Krishna Vukoti

    Full Text Available Elucidation of the molecular mechanisms of activation of G protein-coupled receptors (GPCRs is among the most challenging tasks for modern membrane biology. For studies by high resolution analytical methods, these integral membrane receptors have to be expressed in large quantities, solubilized from cell membranes and purified in detergent micelles, which may result in a severe destabilization and a loss of function. Here, we report insights into differential effects of detergents, lipids and cannabinoid ligands on stability of the recombinant cannabinoid receptor CB(2, and provide guidelines for preparation and handling of the fully functional receptor suitable for a wide array of downstream applications. While we previously described the expression in Escherichia coli, purification and liposome-reconstitution of multi-milligram quantities of CB(2, here we report an efficient stabilization of the recombinant receptor in micelles - crucial for functional and structural characterization. The effects of detergents, lipids and specific ligands on structural stability of CB(2 were assessed by studying activation of G proteins by the purified receptor reconstituted into liposomes. Functional structure of the ligand binding pocket of the receptor was confirmed by binding of (2H-labeled ligand measured by solid-state NMR. We demonstrate that a concerted action of an anionic cholesterol derivative, cholesteryl hemisuccinate (CHS and high affinity cannabinoid ligands CP-55,940 or SR-144,528 are required for efficient stabilization of the functional fold of CB(2 in dodecyl maltoside (DDM/CHAPS detergent solutions. Similar to CHS, the negatively charged phospholipids with the serine headgroup (PS exerted significant stabilizing effects in micelles while uncharged phospholipids were not effective. The purified CB(2 reconstituted into lipid bilayers retained functionality for up to several weeks enabling high resolution structural studies of this GPCR at

  11. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    2016-01-01

    Full Text Available The expression patterns of the cannabinoid receptor type 1 (CB1R and the cannabinoid receptor type 2 (CB2R are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells and CB2R is exclusively found in the retinal glia (Müller cells. However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp. in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function.

  12. Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors.

    Science.gov (United States)

    López Rodríguez, Ana Belén; Mateos Vicente, Beatriz; Romero-Zerbo, Silvana Y; Rodriguez-Rodriguez, Noé; Bellini, María José; Rodriguez de Fonseca, Fernando; Bermudez-Silva, Francisco Javier; Azcoitia, Iñigo; Garcia-Segura, Luis M; Viveros, María-Paz

    2011-09-01

    The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.

  13. Cannabinoid receptor 1 signaling in embryo neurodevelopment.

    Science.gov (United States)

    Psychoyos, Delphine; Vinod, K Yaragudri; Cao, Jin; Xie, Shan; Hyson, Richard L; Wlodarczyk, Bogdan; He, Weimin; Cooper, Thomas B; Hungund, Basalingappa L; Finnell, Richard H

    2012-04-01

    In utero exposure to tetrahydrocannabinol, the psychoactive component of marijuana, is associated with an increased risk for neurodevelopmental defects in the offspring by interfering with the functioning of the endocannabinoid (eCB) system. At the present time, it is not clearly known whether the eCB system is present before neurogenesis. Using an array of biochemical techniques, we analyzed the levels of CB1 receptors, eCBs (AEA and 2-AG), and the enzymes (NAPE-PLD, DAGLα, DAGLβ, MAGL, and FAAH) involved in the metabolism of the eCBs in chick and mouse models during development. The findings demonstrate the presence of eCB system in early embryo before neurogenesis. The eCB system might play a critical role in early embryogenesis and there might be adverse developmental consequences of in utero exposure to marijuana and other drugs of abuse during this period.

  14. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity in vivo, via activation of CB1 receptors: Involvement of PI3K/Akt and MEK/ERK signaling pathways.

    Science.gov (United States)

    Kokona, Despina; Thermos, Kyriaki

    2015-07-01

    Cannabinoids have been suggested to protect retinal ganglion cells in different models of toxicity, but their effects on other retinal neurons are poorly known. We investigated the neuroprotective actions of the endocannabinoid N-arachidonoyl ethanolamine (Anandamide/AEA) and the synthetic cannabinoids R1-Methanandamide (MethAEA) and HU-210, in an in vivo retinal model of AMPA excitotoxicity, and the mechanisms involved in the neuroprotection. Sprague-Dawley rats were intravitreally injected with PBS or AMPA in the absence or presence of the cannabinoid agonists. Brain nitric oxide synthase (bNOS) and choline acetyltransferase (ChAT) immunoreactivity (IR), as well as TUNEL staining, assessed the AMPA-induced retinal amacrine cell loss and the dose-dependent neuroprotection afforded by cannabinoids. The CB1 receptor selective antagonist AM251 and the PI3K/Akt inhibitor wortmannin reversed the cannabinoid-induced neuroprotection, suggesting the involvement of CB1 receptors and the PI3K/Akt pathway in cannabinoids' actions. Experiments with the CB2 agonist JWH015 and [(3)H]CP55940 radioligand binding suggested that the CB2 receptor is not involved in the neuroprotection. AEA and HU-210 induced phosphorylation of Akt but only AEA induced phosphorylation of ERK1/2 kinases, as revealed by western blot analysis. To investigate the role of caspase-3 in the AMPA-induced cell death, the caspase-3 inhibitor Z-DEVD-FMK was co-injected with AMPA. Z-DEVD-FMK had no effect on AMPA excitotoxicity. Moreover, no difference was observed in the phosphorylation of SAPK/JNK kinases between PBS- and AMPA-treated retinas. These results suggest that endogenous and synthetic cannabinoids protect retinal amacrine neurons from AMPA excitotoxicity in vivo via a mechanism involving the CB1 receptors, and the PI3K/Akt and/or MEK/ERK1/2 signaling pathways.

  15. Biphasic Effects of Cannabinoids in Anxiety Responses: CB1 and GABAB Receptors in the Balance of GABAergic and Glutamatergic Neurotransmission

    Science.gov (United States)

    Rey, Alejandro Aparisi; Purrio, Martin; Viveros, Maria-Paz; Lutz, Beat

    2012-01-01

    Biphasic effects of cannabinoids have been shown in processes such as feeding behavior, motor activity, motivational processes and anxiety responses. Using two different tests for the characterization of anxiety-related behavior (elevated plus-maze and holeboard), we first identified in wild-type C57BL/6N mice, two doses of the synthetic CB1 cannabinoid receptor agonist CP-55,940 with anxiolytic (1 μg/kg) and anxiogenic properties (50 μg/kg), respectively. To clarify the role of CB1 receptors in this biphasic effect, both doses were applied to two different conditional CB1 receptor knockout (KO) mouse lines, GABA-CB1-KO (CB1 receptor inactivation in forebrain GABAergic neurons) and Glu-CB1-KO (CB1 receptor inactivation in cortical glutamatergic neurons). We found that the anxiolytic-like effects of the low dose of cannabinoids are mediated via the CB1 receptor on cortical glutamatergic terminals, because this anxiolytic-like response was abrogated only in Glu-CB1-KO mice. On the contrary, the CB1 receptor on the GABAergic terminals is required to induce an anxiogenic-like effect under a high-dose treatment because of the fact that this effect was abolished specifically in GABA-CB1-KO mice. These experiments were carried out in both sexes, and no differences occurred with the doses tested in the mutant mice. Interestingly, the positive allosteric modulation of GABAB receptor with GS-39783 was found to largely abrogate the anxiogenic-like effect of the high dose of CP-55,940. Our results shed new light in further understanding the biphasic effects of cannabinoids at the molecular level and, importantly, pave the way for the development of novel anxiolytic cannabinoid drugs, which may have favorable effect profiles targeting the CB1 receptor on glutamatergic terminals. PMID:22850737

  16. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes.

    Science.gov (United States)

    Bosier, Barbara; Bellocchio, Luigi; Metna-Laurent, Mathilde; Soria-Gomez, Edgar; Matias, Isabelle; Hebert-Chatelain, Etienne; Cannich, Astrid; Maitre, Marlène; Leste-Lasserre, Thierry; Cardinal, Pierre; Mendizabal-Zubiaga, Juan; Canduela, Miren Josune; Reguero, Leire; Hermans, Emmanuel; Grandes, Pedro; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Type-1 cannabinoid (CB1) and leptin (ObR) receptors regulate metabolic and astroglial functions, but the potential links between the two systems in astrocytes were not investigated so far. Genetic and pharmacological manipulations of CB1 receptor expression and activity in cultured cortical and hypothalamic astrocytes demonstrated that cannabinoid signaling controls the levels of ObR expression. Lack of CB1 receptors also markedly impaired leptin-mediated activation of signal transducers and activators of transcription 3 and 5 (STAT3 and STAT5) in astrocytes. In particular, CB1 deletion determined a basal overactivation of STAT5, thereby leading to the downregulation of ObR expression, and leptin failed to regulate STAT5-dependent glycogen storage in the absence of CB1 receptors. These results show that CB1 receptors directly interfere with leptin signaling and its ability to regulate glycogen storage, thereby representing a novel mechanism linking endocannabinoid and leptin signaling in the regulation of brain energy storage and neuronal functions.

  17. Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking.

    Science.gov (United States)

    Gamaleddin, Islam; Wertheim, Carrie; Zhu, Andy Z X; Coen, Kathleen M; Vemuri, Kiran; Makryannis, Alex; Goldberg, Steven R; Le Foll, Bernard

    2012-01-01

    The cannabinoid system appears to play a critical facilitative role in mediating the reinforcing effects of nicotine and relapse to nicotine-seeking behaviour in abstinent subjects based on the actions of cannabinoid (CB) receptor antagonists. However, the effects of CB receptor stimulation on nicotine self-administration and reinstatement have not been systematically studied. Here, we studied the effects of WIN 55,212-2, a CB1/2 agonist, on intravenous nicotine self-administration under fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement in rats. The effects of WIN 55,212-2 on responding for food under similar schedules were also studied. In addition, the effects of WIN 55,212-2 on nicotine- and cue-induced reinstatement of nicotine seeking were also studied, as well as the effects of WIN 55,212-2 on nicotine discrimination. WIN 55,212-2 decreased nicotine self-administration under the FR schedule. However, co-administration of WIN 55,212-2 with nicotine decreased responding for food, which suggests that this effect was non-selective. In contrast, WIN 55,212-2 increased both nicotine self-administration and responding for food under the PR schedule, produced dose-dependent reinstatement of nicotine seeking, and enhanced the reinstatement effects of nicotine-associated cues. Some of these effects were reversed by the CB1 antagonist rimonabant, but not by the CB2 antagonist AM630. In the drug discrimination tests between saline and 0.4 mg/kg nicotine, WIN 55,212-2 produced no nicotine-like discriminative effects but significantly potentiated discriminative stimulus effects of nicotine at the low dose through a CB1-receptor-dependent mechanism. These findings indicate that cannabinoid CB1-receptor stimulation increases the reinforcing effects of nicotine and precipitates relapse to nicotine-seeking behaviour in abstinent subjects. Thus, modulating CB1-receptor signalling might have therapeutic value for treating nicotine dependence. PMID:21521420

  18. Cannabinoid receptor 1 signaling in cardiovascular regulating nuclei in the brainstem: A review

    Directory of Open Access Journals (Sweden)

    Badr M. Ibrahim

    2014-03-01

    Full Text Available Cannabinoids elicit complex hemodynamic responses in experimental animals that involve both peripheral and central sites. Centrally administered cannabinoids have been shown to predominantly cause pressor response. However, very little is known about the mechanism of the cannabinoid receptor 1 (CB1R-centrally evoked pressor response. In this review, we provided an overview of the contemporary knowledge regarding the cannabinoids centrally elicited cardiovascular responses and the possible underlying signaling mechanisms. The current review focuses on the rostral ventrolateral medulla (RVLM as the primary brainstem nucleus implicated in CB1R-evoked pressor response.

  19. Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients' cells.

    Science.gov (United States)

    Ciaglia, Elena; Torelli, Giovanni; Pisanti, Simona; Picardi, Paola; D'Alessandro, Alba; Laezza, Chiara; Malfitano, Anna Maria; Fiore, Donatella; Pagano Zottola, Antonio Christian; Proto, Maria Chiara; Catapano, Giuseppe; Gazzerro, Patrizia; Bifulco, Maurizio

    2015-06-20

    Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas. Functional studies, using U251MG glioma cells and primary tumor cell lines derived from glioma patients expressing different levels of CB1, highlighted SR141716 efficacy in inducing apoptosis via G1 phase stasis and block of TGF-β1 secretion through a mechanism that involves STAT3 inhibition. According to the multivariate role of STAT3 in the immune escape too, interestingly SR141716 lead also to the functional and selective expression of MICA/B on the surface of responsive malignant glioma cells, but not on NHA. This makes SR141716 treated-glioma cells potent targets for allogeneic NK cell-mediated recognition through a NKG2D restricted mechanism, thus priming them for NK cell antitumor reactivity. These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction.

  20. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus

    DEFF Research Database (Denmark)

    Soni, Neeraj; Satpathy, Shankha; Kohlmeier, Kristi Anne

    2014-01-01

    Marijuana, which acts within the endocannabinoid (eCB) system as an agonist of the cannabinoid type 1 receptor (CB1R), exhibits addictive properties and has powerful actions on the state of arousal of an organism. The laterodorsal tegmental nucleus (LDT), as a component of the reticular activating...... the firing frequency and synaptic activity of neurons in this nucleus. Therefore, endogenous eCB transmission could play a role in processes involving the LDT, such as cortical activation and motivated behaviours and, further, behavioural actions of marijuana are probably mediated, in part, via cellular...

  1. Loss of cannabinoid receptor CB1 induces preterm birth.

    Directory of Open Access Journals (Sweden)

    Haibin Wang

    Full Text Available BACKGROUND: Preterm birth accounting approximate 10% of pregnancies in women is a tremendous social, clinical and economic burden. However, its underlying causes remain largely unknown. Emerging evidence suggests that endocannabinoid signaling via cannabinoid receptor CB1 play critical roles in multiple early pregnancy events in both animals and humans. Since our previous studies demonstrated that loss of CB1 defers the normal implantation window in mice, we surmised that CB1 deficiency would influence parturition events. METHODS AND FINDINGS: Exploiting mouse models with targeted deletion of Cnr1, Cnr2 and Ptgs1 encoding CB1, CB2 and cyclooxygenase-1, respectively, we examined consequences of CB1 or CB2 silencing on the onset of parturition. We observed that genetic or pharmacological inactivation of CB1, but not CB2, induced preterm labor in mice. Radioimmunoassay analysis of circulating levels of ovarian steroid hormones revealed that premature birth resulting from CB1 inactivation is correlated with altered progesterone/estrogen ratios prior to parturition. More strikingly, the phenotypic defects of prolonged pregnancy length and parturition failure in mice missing Ptgs1 were corrected by introducing CB1 deficiency into Ptgs1 null mice. In addition, loss of CB1 resulted in aberrant secretions of corticotrophin-releasing hormone and corticosterone during late gestation. The pathophysiological significance of this altered corticotrophin-releasing hormone-driven endocrine activity in the absence of CB1 was evident from our subsequent findings that a selective corticotrophin-releasing hormone antagonist was able to restore the normal parturition timing in Cnr1 deficient mice. In contrast, wild-type females receiving excessive levels of corticosterone induced preterm birth. CONCLUSIONS: CB1 deficiency altering normal progesterone and estrogen levels induces preterm birth in mice. This defect is independent of prostaglandins produced by

  2. Celastrol Attenuates Inflammatory and Neuropathic Pain Mediated by Cannabinoid Receptor Type 2

    Directory of Open Access Journals (Sweden)

    Longhe Yang

    2014-08-01

    Full Text Available Celastrol, a major active ingredient of Chinese herb Tripterygium wilfordii Hook. f. (thunder god vine, has exhibited a broad spectrum of pharmacological activities, including anti-inflammation, anti-cancer and immunosuppression. In the present study, we used animal models of inflammatory pain and neuropathic pain, generated by carrageenan injection and spared nerve injury (SNI, respectively, to evaluate the effect of celastrol and to address the mechanisms underlying pain processing. Intraperitoneal (i.p. injection of celastrol produced a dose-dependent inhibition of carrageenan-induced edema and allodynia. Real-time PCR analysis showed that celastrol (0.3 mg/kg, i.p. significantly reduced mRNA expressions of inflammatory cytokines, TNF-α, IL-6, IL-1β, in carrageenan-injected mice. In SNI mice, pain behavior studies showed that celastrol (1 mg/kg, i.p. effectively prevented the hypersensitivity of mechanical nociceptive response on the third day post-surgery and the seventh day post-surgery. Furthermore, the anti-hyperalgesic effects of celastrol in carrageenan-injected mice and SNI mice were reversed by SR144528 (1 mg/kg, i.p., a specific cannabinoid receptor-2 (CB2 receptor antagonist, but not by SR141716 (1 mg/kg, i.p., a specific cannabinoid receptor-1 (CB1 receptor antagonist. Taken together, our results demonstrate the analgesia effects of celastrol through CB2 signaling and propose the potential of exploiting celastrol as a novel candidate for pain relief.

  3. CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies

    NARCIS (Netherlands)

    E. Zurolo; A.M. Iyer; W.G.M. Spliet; P.C. van Rijen; D. Troost; J.A. Gorter; E. Aronica

    2010-01-01

    Recent data support the involvement of the endocannabinoid signaling in early brain development, as well as a key role of cannabinoid receptors (CBR) in pathological conditions associated with unbalanced neuronal excitability and inflammation. Using immunocytochemistry, we explored the expression an

  4. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation.

    Science.gov (United States)

    McCoy, Kathleen L

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  5. CB1 cannabinoid receptor-mediated modulation of food intake in mice

    OpenAIRE

    Wiley, Jenny L; Burston, James J.; Leggett, Darnica C; Alekseeva, Olga O; Razdan, Raj K.; Mahadevan, Anu; Martin, Billy R

    2005-01-01

    Marijuana's appetite-increasing effects have long been known. Recent research suggests that the CB1 cannabinoid receptor antagonist SR141716A may suppress appetite. This study represents a further, systematic investigation of the role of CB1 cannabinoid receptors in the pharmacological effects of cannabinoids on food intake.Mice were food-restricted for 24 h and then allowed access to their regular rodent chow for 1 h. Whereas the CB1 antagonist SR141716A dose-dependently decreased food consu...

  6. Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells.

    Science.gov (United States)

    Valk, P; Verbakel, S; Vankan, Y; Hol, S; Mancham, S; Ploemacher, R; Mayen, A; Löwenberg, B; Delwel, R

    1997-08-15

    We recently demonstrated that the gene encoding the peripheral cannabinoid receptor (Cb2) may be a proto-oncogene involved in murine myeloid leukemias. We show here that Cb2 may have a role in hematopoietic development. RNAse protection analysis showed that Cb2 is normally expressed in spleen and thymus. Cb2 mRNA is also expressed in 45 of 51 cell lines of distinct hematopoietic lineages, ie, myeloid, macrophage, mast, B-lymphoid, T-lymphoid, and erythroid cells. The effect of the fatty acid anandamide, an endogenous ligand for cannabinoid receptors, on primary murine marrow cells and hematopoietic growth factor (HGF)-dependent cell lines was then investigated. In vitro colony cultures of normal mouse bone marrow cells showed anandamide to potentiate interleukin-3 (IL-3)-induced colony growth markedly. Whereas HGFs alone stimulate proliferation of the various cell lines in serum-free culture only weakly, anandamide enhances the proliferative response of the cell lines to HGFs profoundly. This was apparent for responses induced by IL-3, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, and erythropoietin. Anandamide was already effective at concentrations as low as 0.1 to 0.3 micromol/L and plateau effects were reached at 0.3 to 3 micromol/L. The addition of anandamide as single growth factor had no effect. The costimulatory effect of anandamide was not evident when cells were cultured with fetal calf serum (FCS), suggesting that FCS contains anandamide or another ligand capable of activating the peripheral cannabinoid receptor. Other cannabinoid ligands did not enhance the proliferative responsiveness of hematopoietic cells to HGFs. Transfection experiments of Cb2 in myeloid 32D cells showed that anandamide specifically activates proliferation through activation of the peripheral cannabinoid receptor. Anandamide appears to be a novel and synergistic growth stimulator for hematopoietic cells. PMID:9269762

  7. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135.

    Science.gov (United States)

    De Luca, Maria Antonietta; Castelli, M Paola; Loi, Barbara; Porcu, Alessandra; Martorelli, Mariella; Miliano, Cristina; Kellett, Kathryn; Davidson, Colin; Stair, Jacqueline L; Schifano, Fabrizio; Di Chiara, Gaetano

    2016-06-01

    In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 μM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.

  8. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    OpenAIRE

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alter...

  9. Pharmacological blockade of either, cannabinoid CB1 or CB2 receptors, prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rats.

    OpenAIRE

    EDUARDO eBLANCO-CALVO; PATRICIA eRIVERA; SERGIO eARRABAL; ANTONIO eVARGAS; FRANCISCO JAVIER ePAVON; ANTONIA eSERRANO; PABLO eGALEANO; LETICIA eRUBIO; JUAN eSUAREZ; FERNANDO eRODRIGUEZ DE FONSECA

    2014-01-01

    Addiction to major drugs of abuse such as cocaine has been recently linked to alterations on adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulated this proliferative response since pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors by modulating not only neurogenesis but also cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation . To this...

  10. Cannabinoids enhance gastric X/A-like cells activity.

    Directory of Open Access Journals (Sweden)

    Bogusław Sawicki

    2008-06-01

    Full Text Available It has been reported that cannabinoids may cause overeating in humans and in laboratory animals. Although, endogenous cannabinoids and their receptors (CB1 have been found in the hypothalamus, and recently also in gastrointestinal tract, the precise mechanism of appetite control by cannabinoids remains unknown. Recently, ghrelin--a hormone secreted mainly from the stomach X/A-like cells was proposed to be an appetite stimulating agent. The aim of this study was the evaluation of the influence of a single ip injection of a stable analogue of endogenous cannabinoid--anandamide, R-(+-methanandamide (2.5 mg/kg and CP 55,940 (0.25 mg/kg, an exogenous agonist of CB1 receptors, on ghrelin plasma concentration and on ghrelin immunoreactivity in the gastric mucosa of male Wistar rats. Four hours after a single injection of both cannabinoids or vehicle, the animals were anaesthetized and blood was taken from the abdominal aorta to determinate plasma ghrelin concentration by RIA. Subsequently, the animals underwent resection of distal part of stomach. Immunohistochemical study of gastric mucosa, using the EnVision method and specific monoclonal antibodies against ghrelin was performed. The intensity of ghrelin immunoreactivity in X/A-like cells was analyzed using Olympus Cell D image analysis system. The attenuation of ghrelin-immunoreactivity of gastric mucosa, after a single injection of R-(+-methanandamide and CP 55,940 was accompanied by a significant increase of ghrelin plasma concentration. These results indicate that stimulation of appetite exerted by cannabinoids may be connected with an increase of ghrelin secretion from gastric X/A-like cells.

  11. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.C.R.; Romero, T.R.L.; Guzzo, L.S.; Duarte, I.D.G. [Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-09-21

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E{sub 2} (PGE{sub 2}, 2 µg/paw) in the rat's hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE{sub 2}, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 µg/paw) and AM-630 (100 µg/paw) were used as CB{sub 1} and CB{sub 2} cannabinoid receptor antagonists, respectively. Ipl injection of 40 µg dipyrone (mean = 5.825 ± 2.842 g), 20 µg diclofenac (mean = 4.825 ± 3.850 g) and 40 µg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB{sub 1} cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB{sub 2} cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of

  12. Participation of cannabinoid receptors in peripheral nociception induced by some NSAIDs

    Directory of Open Access Journals (Sweden)

    L.C.R. Silva

    2012-12-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group. Hyperalgesia was induced by a subcutaneous intraplantar (ipl injection of prostaglandin E2 (PGE2, 2 μg/paw in the rat’s hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g. AM-251 (80 μg/paw and AM-630 (100 μg/paw were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 μg dipyrone (mean = 5.825 ± 2.842 g, 20 μg diclofenac (mean = 4.825 ± 3.850 g and 40 μg indomethacin (mean = 6.650 ± 3.611 g elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g, diclofenac (mean = 2.50 ± 0.8337 g and indomethacin (mean = 6.650 ± 4.069 g or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g, diclofenac (mean = 6.675 ± 1.368 g and indomethacin (mean = 2.85 ± 5.01 g. Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and

  13. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  14. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system.

    Directory of Open Access Journals (Sweden)

    Blerina Kola

    Full Text Available INTRODUCTION: Ghrelin and cannabinoids stimulate appetite, this effect possibly being mediated by the activation of hypothalamic AMP-activated protein kinase (AMPK, a key enzyme in appetite and metabolism regulation. The cannabinoid receptor type 1 (CB1 antagonist rimonabant can block the orexigenic effect of ghrelin. In this study, we have elucidated the mechanism of the putative ghrelin-cannabinoid interaction. METHODS: The effects of ghrelin and CB1 antagonist rimonabant in wild-type mice, and the effect of ghrelin in CB1-knockout animals, were studied on food intake, hypothalamic AMPK activity and endogenous cannabinoid content. In patch-clamp electrophysiology experiments the effect of ghrelin was assessed on the synaptic inputs in parvocellular neurons of the hypothalamic paraventricular nucleus, with or without the pre-administration of a CB1 antagonist or of cannabinoid synthesis inhibitors. RESULTS AND CONCLUSIONS: Ghrelin did not induce an orexigenic effect in CB1-knockout mice. Correspondingly, both the genetic lack of CB1 and the pharmacological blockade of CB1 inhibited the effect of ghrelin on AMPK activity. Ghrelin increased the endocannabinoid content of the hypothalamus in wild-type mice and this effect was abolished by rimonabant pre-treatment, while no effect was observed in CB1-KO animals. Electrophysiology studies showed that ghrelin can inhibit the excitatory inputs on the parvocellular neurons of the paraventricular nucleus, and that this effect is abolished by administration of a CB1 antagonist or an inhibitor of the DAG lipase, the enzyme responsible for 2-AG synthesis. The effect is also lost in the presence of BAPTA, an intracellular calcium chelator, which inhibits endocannabinoid synthesis in the recorded parvocellular neuron and therefore blocks the retrograde signaling exerted by endocannabinoids. In summary, an intact cannabinoid signaling pathway is necessary for the stimulatory effects of ghrelin on AMPK

  15. Targeting cannabinoid receptor CB(2) in cardiovascular disorders: promises and controversies.

    Science.gov (United States)

    Steffens, Sabine; Pacher, Pál

    2012-09-01

    Cardiovascular disease is the leading cause of death and disability worldwide, which can be largely attributed to atherosclerosis, a chronic inflammation of the arteries characterized by lesions containing immune and smooth muscle cells, lipids and extracellular matrix. In recent years, the lipid endocannabinoid system has emerged as a new therapeutic target in variety of disorders associated with inflammation and tissue injury, including those of the cardiovascular system. The discovery that Δ-9-tetrahydrocannabinol (Δ9-THC), the main active constituent of marijuana, inhibited atherosclerotic plaque progression via a cannabinoid 2 (CB(2) ) receptor-dependent anti-inflammatory mechanism, and that certain natural and synthetic cannabinoid ligands could modulate the myocardial or cerebral ischaemia-reperfusion-induced tissue damage, have stimulated impetus for a growing number of studies investigating the implication of CB(2) receptors in atherosclerosis, restenosis, stroke, myocardial infarction and heart failure. The aim of this review is to update on recent findings and controversies on the role of CB(2) receptors in cardiovascular disease. Particular emphasis will be placed on novel insights in the potential cellular targets of CB(2) stimulation in cardiovascular system (e.g. endothelial and vascular smooth muscle cells, cardiomyocytes, infiltrating and/or resident monocytes/macrophages and leukocytes, etc.), their interplay and intracellular signalling mechanisms identified, as well as on experimental and clinical studies. PMID:22612332

  16. Bi-directional CB1 receptor-mediated cardiovascular effects of cannabinoids in anaesthetized rats: role of the paraventricular nucleus.

    Science.gov (United States)

    Grzeda, E; Schlicker, E; Luczaj, W; Harasim, E; Baranowska-Kuczko, M; Malinowska, B

    2015-06-01

    The activation of cannabinoid CB1 receptors decreases and increases blood pressure (BP) in anaesthetized and conscious rats, respectively. The aim of our study was to check the possible involvement of CB1 receptors in the paraventricular nucleus of the hypothalamus (PVN) in the cardiovascular effects of cannabinoids in rats. Methanandamide (metabolically stable analogue of the endocannabinoid anandamide) and the synthetic cannabinoid receptor agonist CP55940 were microinjected into the PVN of urethane-anaesthetized rats twice (S1 and S2, 20 min apart). Receptor antagonists were administered intravenously (i.v.) 5 min before S1. Methanandamide and CP55940 decreased blood pressure by 15 - 20%. The CB1 receptor antagonist AM251 reversed the depressor effect into a pressor response of 20 - 30%. The pressor effect of CP55940 observed in the presence of AM251 i.v. was reduced by AM251 given additionally into the PVN but not by the i.v. injection of the CB2 antagonist SR144528 or the vanilloid TRPV1 antagonist ruthenium red. In the presence of the peripherally restricted CB1 receptor antagonist AM6545, CP55940 given into the PVN increased BP by 40%. AM6545 reversed the decrease in BP induced by CP55940 i.v. into a marked increase. Bilateral chemical lesion of the PVN by kainic acid abolished all cardiovascular effects of CP55940 i.v. In conclusion, the cannabinoid CP55940 administered to the PVN of urethane-anaesthetized rats can induce depressor and pressor effects. The direction of the response probably depends on the sympathetic tone. The centrally induced hypertensive response of CP55940 can, in addition, be masked by peripheral CB1 receptors.

  17. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils

    Institute of Scientific and Technical Information of China (English)

    Nariman A B Balenga; Maria Waldhoer; Elma Aflaki; Julia Kargl; Wolfgang Platzer; Ralf Schr(o)der; Stefanie Bl(a)ttermann; Evi Kostenis; Andrew J Brown; Akos Heinemann

    2011-01-01

    The directional migration of neutrophils towards inflammatory mediators,such as chemokines and cannabinoids,occurs via the activation of seven transmembrane G protein coupled receptors (7TM/GPCRs) and is a highly organized process.A crucial role for controlling neutrophil migration has been ascribed to the cannabinoid CB2 receptor (CB2R),but additional modulatory sites distinct from CB2R have recently been suggested to impact CB2R-mediated effector functions in neutrophils.Here,we provide evidence that the recently de-orphanized 7TM/GPCR GPR55potently modulates CB2R-mediated responses.We show that GPR55 is expressed in human blood neutrophils and its activation augments the migratory response towards the CB2R agonist 2-arachidonoylglycerol (2-AG),while inhibiting neutrophil degranulation and reactive oxygen species (ROS) production.Using HEK293 and HL60 cell lines,along with primary neutrophils,we show that GPR55 and CB2R interfere with each other's signaling pathways at the level of small GTPases,such as Rac2 and Cdc42.This ultimately leads to cellular polarization and efficient migration as well as abrogation of degranulation and ROS formation in neutrophils.Therefore,GPR55 limits the tissueinjuring inflammatory responses mediated by CB2R,while it synergizes with CB2R in recruiting neutrophils to sites of inflammation.

  18. Design, synthesis and evaluation of fluorescent CB2 cannabinoid receptor ligands

    OpenAIRE

    Holt, Christopher James

    2009-01-01

    Cannabis has been used as a medicinal and natural product for thousands of years. Whether it has been used to make rope or paper, or been used to treat pain or depression, cannabis has always had a place in human civilisation. With the isolation of the psychoactive compounds responsible for cannabis’ effects, the discovery of two human cannabinoid receptors and an expanding knowledge of the therapeutic uses of cannabis, interest in the development of novel cannabinoids grew. The CB2 cann...

  19. The maintenance of cisplatin- and paclitaxel-induced mechanical and cold allodynia is suppressed by cannabinoid CB2 receptor activation and independent of CXCR4 signaling in models of chemotherapy-induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Deng Liting

    2012-09-01

    Full Text Available Abstract Background Chemotherapeutic agents produce dose-limiting peripheral neuropathy through mechanisms that remain poorly understood. We previously showed that AM1710, a cannabilactone CB2 agonist, produces antinociception without producing central nervous system (CNS-associated side effects. The present study was conducted to examine the antinociceptive effect of AM1710 in rodent models of neuropathic pain evoked by diverse chemotherapeutic agents (cisplatin and paclitaxel. A secondary objective was to investigate the potential contribution of alpha-chemokine receptor (CXCR4 signaling to both chemotherapy-induced neuropathy and CB2 agonist efficacy. Results AM1710 (0.1, 1 or 5 mg/kg i.p. suppressed the maintenance of mechanical and cold allodynia in the cisplatin and paclitaxel models. Anti-allodynic effects of AM1710 were blocked by the CB2 antagonist AM630 (3 mg/kg i.p., but not the CB1 antagonist AM251 (3 mg/kg i.p., consistent with a CB2-mediated effect. By contrast, blockade of CXCR4 signaling with its receptor antagonist AMD3100 (10 mg/kg i.p. failed to attenuate mechanical or cold hypersensitivity induced by either cisplatin or paclitaxel. Moreover, blockade of CXCR4 signaling failed to alter the anti-allodynic effects of AM1710 in the paclitaxel model, further suggesting distinct mechanisms of action. Conclusions Our results indicate that activation of cannabinoid CB2 receptors by AM1710 suppresses both mechanical and cold allodynia in two distinct models of chemotherapy-induced neuropathic pain. By contrast, CXCR4 signaling does not contribute to the maintenance of chemotherapy-induced established neuropathy or efficacy of AM1710. Our studies suggest that CB2 receptors represent a promising therapeutic target for the treatment of toxic neuropathies produced by cisplatin and paclitaxel chemotherapeutic agents.

  20. Frequency-dependent cannabinoid receptor-independent modulation of glycine receptors by endocannabinoid 2-AG

    Directory of Open Access Journals (Sweden)

    Natalia eLozovaya

    2011-07-01

    Full Text Available Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG, on the functional properties of glycine receptor channels (GlyRs and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1-1 µM, 2-AG directly affected the functions of recombinant homomeric alpha1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ~300 milliseconds. Addition of 1 µM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4-10 Hz application of short (2-ms duration pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor-knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10-20 Hz stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.

  1. Evaluation of the specificity of antibodies raised against cannabinoid receptor type 2 in the mouse retina

    DEFF Research Database (Denmark)

    Cécyre, Bruno; Thomas, Sébastien; Ptito, Maurice;

    2014-01-01

    Cannabinoid receptors (CB1R and CB2R) are among the most abundant G protein-coupled receptors in the central nervous system. The endocannabinoid system is an attractive therapeutic target for immune system modulation and peripheral pain management. While CB1R is distributed in the nervous system...

  2. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans

    Science.gov (United States)

    Reis Rodrigues, Pedro; Kaul, Tiffany K.; Ho, Jo-Hao; Lucanic, Mark; Burkewitz, Kristopher; Mair, William B.; Held, Jason M.; Bohn, Laura M.; Gill, Matthew S.

    2016-01-01

    Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans. PMID:27172180

  3. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina.

    Science.gov (United States)

    Wang, Xiao-Han; Wu, Yi; Yang, Xiao-Fang; Miao, Yanying; Zhang, Chuan-Qiang; Dong, Ling-Dan; Yang, Xiong-Li; Wang, Zhongfeng

    2016-01-01

    In the inner retina, ganglion cells (RGCs) integrate and process excitatory signal from bipolar cells (BCs) and inhibitory signal from amacrine cells (ACs). Using multiple labeling immunohistochemistry, we first revealed the expression of the cannabinoid CB1 receptor (CB1R) at the terminals of ACs and BCs in rat retina. By patch-clamp techniques, we then showed how the activation of this receptor dichotomously regulated miniature inhibitory postsynaptic currents (mIPSCs), mediated by GABAA receptors and glycine receptors, and miniature excitatory postsynaptic currents (mEPSCs), mediated by AMPA receptors, of RGCs in rat retinal slices. WIN55212-2 (WIN), a CB1R agonist, reduced the mIPSC frequency due to an inhibition of L-type Ca(2+) channels no matter whether AMPA receptors were blocked. In contrast, WIN reduced the mEPSC frequency by suppressing T-type Ca(2+) channels only when inhibitory inputs to RGCs were present, which could be in part due to less T-type Ca(2+) channels of cone BCs, presynaptic to RGCs, being in an inactivation state under such condition. This unique feature of CB1R-mediated retrograde regulation provides a novel mechanism for modulating excitatory synaptic transmission in the inner retina. Moreover, depolarization of RGCs suppressed mIPSCs of these cells, an effect that was eliminated by the CB1R antagonist SR141716, suggesting that endocannabinoid is indeed released from RGCs.

  4. Synthesis and Biological Evaluation of Thiophene-Based Cannabinoid Receptor Type 2 Radiotracers for PET Imaging

    Directory of Open Access Journals (Sweden)

    Ahmed Haider

    2016-07-01

    Full Text Available Over the past two decades, our understanding of the endocannabinoid system has greatly improved due to the wealth of results obtained from exploratory studies. Currently, two cannabinoid receptor subtypes have been well characterized. The cannabinoid receptor type 1 (CB1 is widely expressed in the central nervous system, while the levels of the cannabinoid receptor type 2 (CB2 in the brain and spinal cord of healthy individuals are relatively low. However, recent studies demonstrated a CB2 upregulation on activated microglia upon neuroinflammation, an indicator of neurodegeneration. Our research group aims to develop a suitable positron emission tomography (PET tracer to visualize the CB2 receptor in patients suffering from neurodegenerative diseases. Herein we report two novel thiophene-based 11C-labeled PET ligands designated [11C]AAT-015 and [11C]AAT-778. The reference compounds were synthesized using Gewald reaction conditions to obtain the aminothiophene intermediates, followed by amide formation. Saponification of the esters provided their corresponding precursors. Binding affinity studies revealed Ki values of 3.3 ± 0.5 nM (CB2 and 1.0 ± 0.2 µM (CB1 for AAT-015. AAT-778 showed similar Ki values of 4.3 ± 0.7 nM (CB2 and 1.1 ± 0.1 µM (CB1. Radiosynthesis was carried out under basic conditions using [11C]iodomethane as methylating agent. After semi-preparative HPLC purification both radiolabeled compounds were obtained in 99% radiochemical purity and the radiochemical yields ranged from 12 to 37%. Specific activity was between 96 - 449 GBq/µmol for both tracers. In order to demonstrate CB2 specificity of [11C]AAT-015 and [11C]AAT-778, we carried out autoradiography studies using CB2-positive mouse/rat spleen tissues. The obtained results revealed unspecific binding in spleen tissue that was not blocked by an excess of CB2-specific ligand GW402833. For in vivo analysis, [11C]AAT-015 was administered to healthy rats via tail

  5. Synthesis and Biological Evaluation of Thiophene-Based Cannabinoid Receptor Type 2 Radiotracers for PET Imaging

    Science.gov (United States)

    Haider, Ahmed; Müller Herde, Adrienne; Slavik, Roger; Weber, Markus; Mugnaini, Claudia; Ligresti, Alessia; Schibli, Roger; Mu, Linjing; Mensah Ametamey, Simon

    2016-01-01

    Over the past two decades, our understanding of the endocannabinoid system has greatly improved due to the wealth of results obtained from exploratory studies. Currently, two cannabinoid receptor subtypes have been well-characterized. The cannabinoid receptor type 1 (CB1) is widely expressed in the central nervous system, while the levels of the cannabinoid receptor type 2 (CB2) in the brain and spinal cord of healthy individuals are relatively low. However, recent studies demonstrated a CB2 upregulation on activated microglia upon neuroinflammation, an indicator of neurodegeneration. Our research group aims to develop a suitable positron emission tomography (PET) tracer to visualize the CB2 receptor in patients suffering from neurodegenerative diseases. Herein we report two novel thiophene-based 11C-labeled PET ligands designated [11C]AAT-015 and [11C]AAT-778. The reference compounds were synthesized using Gewald reaction conditions to obtain the aminothiophene intermediates, followed by amide formation. Saponification of the esters provided their corresponding precursors. Binding affinity studies revealed Ki-values of 3.3 ± 0.5 nM (CB2) and 1.0 ± 0.2 μM (CB1) for AAT-015. AAT-778 showed similar Ki-values of 4.3 ± 0.7 nM (CB2) and 1.1 ± 0.1 μM (CB1). Radiosynthesis was carried out under basic conditions using [11C]iodomethane as methylating agent. After semi-preparative HPLC purification both radiolabeled compounds were obtained in 99% radiochemical purity and the radiochemical yields ranged from 12 to 37%. Specific activity was between 96 and 449 GBq/μmol for both tracers. In order to demonstrate CB2 specificity of [11C]AAT-015 and [11C]AAT-778, we carried out autoradiography studies using CB2-positive mouse/rat spleen tissues. The obtained results revealed unspecific binding in spleen tissue that was not blocked by an excess of CB2-specific ligand GW402833. For in vivo analysis, [11C]AAT-015 was administered to healthy rats via tail-vein injection

  6. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors.

    Science.gov (United States)

    Mateos, B; Borcel, E; Loriga, R; Luesu, W; Bini, V; Llorente, R; Castelli, M P; Viveros, M-P

    2011-12-01

    We have analysed the long-term effects of adolescent (postnatal day 28-43) exposure of male and female rats to nicotine (NIC, 1.4 mg/kg/day) and/or the cannabinoid agonist CP 55,940 (CP, 0.4 mg/kg/day) on the following parameters measured in the adulthood: (1) the memory ability evaluated in the object location task (OL) and in the novel object test (NOT); (2) the anxiety-like behaviour in the elevated plus maze; and (3) nicotinic and CB(1) cannabinoid receptors in cingulated cortex and hippocampus. In the OL, all pharmacological treatments induced significant decreases in the DI of females, whereas no significant effects were found among males. In the NOT, NIC-treated females showed a significantly reduced DI, whereas the effect of the cannabinoid agonist (a decrease in the DI) was only significant in males. The anxiety-related behaviour was not changed by any drug. Both, nicotine and cannabinoid treatments induced a long-lasting increase in CB(1) receptor activity (CP-stimulated GTPγS binding) in male rats, and the nicotine treatment also induced a decrease in nicotinic receptor density in the prefrontal cortex of females. The results show gender-dependent harmful effects of both drugs and long-lasting changes in CB(1) and nicotinic receptors.

  7. [Progress in study on endocannabinoids and cannabinoid receptors in the treatment for neuropathic pain].

    Science.gov (United States)

    Liu, Peng; Zhang, Wei; Zhang, Shaobo; Zhang, Yibao; Wang, Jing

    2016-08-01

    Endocannabinoids and cannabinoid receptors are expressed in various central pain modulation regions. They maintain in dynamic changes in the expression level and distribution under different pathological and physiological conditions. These changes possess advantage as well as disadvantage. Exogenous administration of endocannabinoids exerts analgesic effect in different pain models, which is mainly mediated by the cannabinoid CB1 and CB2 receptors. Inhibition of enzymes for degrading endocannabinoids in different pain models also shows analgesic effect due to the increased local levels of endocannabinoids. PMID:27600019

  8. The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail.

    Science.gov (United States)

    Stadel, Rebecca; Ahn, Kwang H; Kendall, Debra A

    2011-04-01

    The cannabinoid type-1 (CB(1)) receptor is a G protein-coupled receptor that binds the main active ingredient of marijuana, Δ(9)-tetrahydrocannabinol, and has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. In the two decades since the discovery of CB(1), studies at the molecular level have centered on the transmembrane core. This interest has now expanded as we discover that other regions of CB(1), including the CB(1) carboxyl-terminus, have critical structures that are important for CB(1) activity and regulation. Following the recent description of the three dimensional structure of the full-length CB(1) carboxyl-terminal tail [Biopolymers (2009) vol. 91, pp. 565-573], several residues and structural motifs including two α-helices (termed H8 and H9) have been postulated to interact with common G protein-coupled receptor accessory proteins, such as G-proteins and β-arrestins. This discourse will focus on the CB(1) carboxyl-terminus; our current understanding of the structural features of this region, evidence for its interaction with proteins, and the impact of structure on the binding and regulatory function of CB(1) accessory proteins. The involvement of the carboxyl-terminus in the receptor life cycle including activation, desensitization, and internalization will be highlighted.

  9. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders

    Science.gov (United States)

    Navarro, Gemma; Morales, Paula; Rodríguez-Cueto, Carmen; Fernández-Ruiz, Javier; Jagerovic, Nadine; Franco, Rafael

    2016-01-01

    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators. PMID:27679556

  10. Cannabinoids for Symptom Management and Cancer Therapy: The Evidence.

    Science.gov (United States)

    Davis, Mellar P

    2016-07-01

    Cannabinoids bind not only to classical receptors (CB1 and CB2) but also to certain orphan receptors (GPR55 and GPR119), ion channels (transient receptor potential vanilloid), and peroxisome proliferator-activated receptors. Cannabinoids are known to modulate a multitude of monoamine receptors. Structurally, there are 3 groups of cannabinoids. Multiple studies, most of which are of moderate to low quality, demonstrate that tetrahydrocannabinol (THC) and oromucosal cannabinoid combinations of THC and cannabidiol (CBD) modestly reduce cancer pain. Dronabinol and nabilone are better antiemetics for chemotherapy-induced nausea and vomiting (CINV) than certain neuroleptics, but are not better than serotonin receptor antagonists in reducing delayed emesis, and cannabinoids have largely been superseded by neurokinin-1 receptor antagonists and olanzapine; both cannabinoids have been recommended for breakthrough nausea and vomiting among other antiemetics. Dronabinol is ineffective in ameliorating cancer anorexia but does improve associated cancer-related dysgeusia. Multiple cancers express cannabinoid receptors directly related to the degree of anaplasia and grade of tumor. Preclinical in vitro and in vivo studies suggest that cannabinoids may have anticancer activity. Paradoxically, cannabinoid receptor antagonists also have antitumor activity. There are few randomized smoked or vaporized cannabis trials in cancer on which to judge the benefits of these forms of cannabinoids on symptoms and the clinical course of cancer. Smoked cannabis has been found to contain Aspergillosis. Immunosuppressed patients should be advised of the risks of using "medical marijuana" in this regard. PMID:27407130

  11. Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis

    OpenAIRE

    Fukuda, Shin; Kohsaka, Hitoshi; Takayasu, Aiko; Yokoyama, Waka; Miyabe, Chie; Miyabe, Yoshishige; Harigai, Masayoshi; Miyasaka, Nobuyuki; Nanki, Toshihiro

    2014-01-01

    Background Some of cannabinoids, which are chemical compounds contained in marijuana, are immunosuppressive. One of the receptors, CB receptor 1 (CB1), is expressed predominantly by the cells in the central nervous system, whereas CB receptor 2 (CB2) is expressed primarily by immune cells. Theoretically, selective CB2 agonists should be devoid of psychoactive effects. In this study, we investigated therapeutic effects of a selective CB2 agonist on arthritis. Methods The expression of CB2 was ...

  12. Molecular-Interaction and Signaling Profiles of AM3677, a Novel Covalent Agonist Selective for the Cannabinoid 1 Receptor

    OpenAIRE

    David R Janero; Yaddanapudi, Suma; Zvonok, Nikolai; Subramanian, Kumar V.; Shukla, Vidyanand G.; Stahl, Edward; Zhou, Lei; Hurst, Dow; Wager-Miller, James; Bohn, Laura M.; Reggio, Patricia H.; Mackie, Ken; Makriyannis, Alexandros

    2015-01-01

    The cannabinoid 1 receptor (CB1R) is one of the most abundant G protein-coupled receptors (GPCRs) in the central nervous system. CB1R involvement in multiple physiological processes, especially neurotransmitter release and synaptic function, has made this GPCR a prime drug discovery target, and pharmacological CB1R activation has been demonstrated to be a tenable therapeutic modality. Accordingly, the design and profiling of novel, drug-like CB1R modulators to inform the receptor’s ligand-int...

  13. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey, E-mail: carey.pope@okstate.edu

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  14. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission.

    Science.gov (United States)

    Rey, Alejandro Aparisi; Purrio, Martin; Viveros, Maria-Paz; Lutz, Beat

    2012-11-01

    Biphasic effects of cannabinoids have been shown in processes such as feeding behavior, motor activity, motivational processes and anxiety responses. Using two different tests for the characterization of anxiety-related behavior (elevated plus-maze and holeboard), we first identified in wild-type C57BL/6N mice, two doses of the synthetic CB1 cannabinoid receptor agonist CP-55,940 with anxiolytic (1 μg/kg) and anxiogenic properties (50 μg/kg), respectively. To clarify the role of CB1 receptors in this biphasic effect, both doses were applied to two different conditional CB1 receptor knockout (KO) mouse lines, GABA-CB1-KO (CB1 receptor inactivation in forebrain GABAergic neurons) and Glu-CB1-KO (CB1 receptor inactivation in cortical glutamatergic neurons). We found that the anxiolytic-like effects of the low dose of cannabinoids are mediated via the CB1 receptor on cortical glutamatergic terminals, because this anxiolytic-like response was abrogated only in Glu-CB1-KO mice. On the contrary, the CB1 receptor on the GABAergic terminals is required to induce an anxiogenic-like effect under a high-dose treatment because of the fact that this effect was abolished specifically in GABA-CB1-KO mice. These experiments were carried out in both sexes, and no differences occurred with the doses tested in the mutant mice. Interestingly, the positive allosteric modulation of GABA(B) receptor with GS-39783 was found to largely abrogate the anxiogenic-like effect of the high dose of CP-55,940. Our results shed new light in further understanding the biphasic effects of cannabinoids at the molecular level and, importantly, pave the way for the development of novel anxiolytic cannabinoid drugs, which may have favorable effect profiles targeting the CB1 receptor on glutamatergic terminals.

  15. Cannabinoid CB1 receptor calibrates excitatory synaptic balance in the mouse hippocampus.

    Science.gov (United States)

    Monory, Krisztina; Polack, Martin; Remus, Anita; Lutz, Beat; Korte, Martin

    2015-03-01

    The endocannabinoid system negatively regulates the release of various neurotransmitters in an activity-dependent manner, thereby influencing the excitability of neuronal circuits. In the hippocampus, cannabinoid type 1 (CB1) receptor is present on both GABAergic and glutamatergic axon terminals. CB1 receptor-deficient mice were previously shown to have increased hippocampal long-term potentiation (LTP). In this study, we have investigated the consequences of cell-type-specific deletion of the CB1 receptor on the induction of hippocampal LTP and on CA1 pyramidal cell morphology. Deletion of CB1 receptor in GABAergic neurons in GABA-CB1-KO mice leads to a significantly decreased hippocampal LTP compared with WT controls. Concomitantly, CA1 pyramidal neurons have a significantly reduced dendritic branching both on the apical and on the basal dendrites. Moreover, the average spine density on the apical dendrites of CA1 pyramidal neurons is significantly diminished. In contrast, in mice lacking CB1 receptor in glutamatergic cells (Glu-CB1-KO), hippocampal LTP is significantly enhanced and CA1 pyramidal neurons show an increased branching and an increased spine density in the apical dendritic region. Together, these results indicate that the CB1 receptor signaling system both on inhibitory and excitatory neurons controls functional and structural synaptic plasticity of pyramidal neurons in the hippocampal CA1 region to maintain an appropriate homeostatic state upon neuronal activation. Consequently, if the CB1 receptor is lost in either neuronal population, an allostatic shift will occur leading to a long-term dysregulation of neuronal functions.

  16. Deficits in Sensory-Specific Devaluation Task Performance Following Genetic Deletions of Cannabinoid (CB1) Receptor

    Science.gov (United States)

    Crombag, Hans S.; Johnson, Alexander W.; Zimmer, Anne M.; Zimmer, Andreas; Holland, Peter C.

    2010-01-01

    Cannabinoid CB1 receptor is abundantly expressed throughout the CNS and is implicated in numerous physiological and behavioral functions, including appetite and feeding. In the present study, wild-type and CB1 heterozygous and homozygous knockout mice were tested on an instrumental outcome-selective devaluation task to assess changes in acquired…

  17. Effect of the cannabinoid receptor-1 antagonist rimonabant on lipolysis in rats

    DEFF Research Database (Denmark)

    Mølhøj, Signe; Hansen, Harald S; Schweiger, Martina;

    2010-01-01

    The cannabinoid receptor 1 antagonist, rimonabant, reduces food intake and body weight, but contradictory findings have been reported as to whether the weight-reducing effect is fully accounted for by the reduced food intake or if rimonabant also mediates a lipolytic effect. In the present study...

  18. Regulative effect of anandamide-mediated cannabinoid receptor in rats with visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Yu-qin HE

    2012-11-01

    Full Text Available Objective  To investigate the role of anandamide(ANA-mediated cannabinoid receptor 1(CB1 on the acquisition of visceral hypersensitivity in rats, and explore its underlying mechanism. Methods  The visceral hypersensitivity non-noxious/noxious colorectal distension (NNCRD/NCRD model of rat was reproduced by ovalbumin (OVA sensitization combined with NNCRD/NCRD. Fifty-four rats were randomly divided into control group (n=7, saline+CRD group (n=7, OVA+CRD+dimethyl sulfoxide (DMSO group (n=8, OVA+CRD+different concentrations of ANA (0.5, 5.0, 10.0mg/kg groups (8 each, and OVA+CRD+ANA+AM251 group (n=8. The expression and quantitative assessment of CB1 were monitored by immunoflurorescence and laser scanning confocal analysis. The visceral sensitivity was evaluated by the area under curve (AUC of myoelectrical activity of abdominal wall muscle. Results  By NCRD at 80mmHg, the density of CB1 immunofluorescence intensity was significantly higher in L4–L6 of the spinal cord of the rats in saline+CRD group compared with that in control group (P 0.05. By NCRD at 80mmHg, the VMR-AUC increased obviously in OVA+CRD+DMSO group as compared with that of saline+CRD group, but it decreased significantly in OVA+CRD+high concentration ANA group (P < 0.05. When AM251 was intravenously given, VMR-AUC increased significantly in OVA+CRD+ANA+AM251 group compared with that in OVA+CRD+different concentrations of ANA groups (P < 0.05. Conclusions Intravenous administration of ANA may mitigate the visceral nociception induced by basic OVAsensitization combined with NCRD stimulation in CB1-mediated manner. It indicated that anandamide-mediated CB1 cannabinoid receptor may regulate the development and maintenance of visceral hypersensitivity.

  19. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

    Science.gov (United States)

    Di Giacomo, Daniele; De Domenico, Emanuela; Sette, Claudio; Geremia, Raffaele; Grimaldi, Paola

    2016-04-01

    Type 2 cannabinoid receptor (CB2) has been proposed to play a pivotal role in meiotic entry of male germ cells, similar to retinoic acid (RA). In this study, we showed that activation of CB2with the specific agonist JWH133 [3-(1',1'-dimethylbutyl)-1-deoxy-8-THC] (IC5010(-6)M) mimics epigenetic events induced by RA (IC5010(-7)M) in spermatogonia. Both JWH133 and RA treatments stimulate the expression of the meiotic genes c-KitandStra8, by up-regulating H3K4me3 and down-regulating H3K9me2 levels in genomic regions flanking the transcription start site. Moreover, both agents increase the expression ofPrdm9, the gene encoding a meiosis-specific histone, H3K4me3 methyltransferase, which marks hotspots of recombination in prophase I, thus resulting in a global increase in H3K4me3. Notably, prolonged administration of JWH133 to immature 7 dpp CD-1 mice induced an acceleration of the onset of spermatogenesis, whereas the specific CB2antagonist delayed germ cell differentiation. Thus, both hyper- and hypostimulation of CB2disrupted the temporal dynamics of the spermatogenic cycle. These findings highlight the importance of proper CB2signaling for the maintenance of a correct temporal progression of spermatogenesis and suggest a possible adverse effect of cannabis in deregulating this process.-Di Giacomo, D., De Domenico, E., Sette, C., Geremia, R., Grimaldi, P. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis. PMID:26671998

  20. Cannabinoid receptor type-1: breaking the dogmas [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Arnau Busquets Garcia

    2016-05-01

    Full Text Available The endocannabinoid system (ECS is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids, and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB1. In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells and intracellular compartments (e.g., mitochondria. Interestingly, cellular and molecular effects are differentially mediated by CB1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons. Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.

  1. Behavioral phenotypes of mice lacking cannabinoid CB1 receptors in different neuronal subpopulations

    OpenAIRE

    Bernardes Terzian, Ana Luisa

    2014-01-01

    Abnormalities in social behavior are found in almost all psychiatric disorders, such as anxiety, depression, autism and schizophrenia. Thus, comprehension of the neurobiological basis of social interaction is important to better understand numerous pathologies and improve treatments. Several evidences suggest that an alteration of cannabinoid CB1 receptor function could be involved in the pathophysiology of such disorders. However, the role of CB1 receptor is still unclear and its localizatio...

  2. Electroacupuncture Inhibition of Hyperalgesia in Rats with Adjuvant Arthritis: Involvement of Cannabinoid Receptor 1 and Dopamine Receptor Subtypes in Striatum

    Directory of Open Access Journals (Sweden)

    Yin Shou

    2013-01-01

    Full Text Available Electroacupuncture (EA has been regarded as an alternative treatment for inflammatory pain for several decades. However, the molecular mechanisms underlying the antinociceptive effect of EA have not been thoroughly clarified. Previous studies have shown that cannabinoid CB1 receptors are related to pain relief. Accumulating evidence has shown that the CB1 and dopamine systems sometimes interact and may operate synergistically in rat striatum. To our knowledge, dopamine D1/D2 receptors are involved in EA analgesia. In this study, we found that repeated EA at Zusanli (ST36 and Kunlun (BL60 acupoints resulted in marked improvements in thermal hyperalgesia. Both western blot assays and FQ-PCR analysis results showed that the levels of CB1 expression in the repeated-EA group were much higher than those in any other group (P=0.001. The CB1-selective antagonist AM251 inhibited the effects of repeated EA by attenuating the increases in CB1 expression. The two kinds of dopamine receptors imparted different actions on the EA-induced CB1 upregulation in AA rat model. These results suggested that the strong activation of the CB1 receptor after repeated EA resulted in the concomitant phenomenon of the upregulation of D1 and D2 levels of gene expression.

  3. Effect of synthetic cannabinoids on spontaneous neuronal activity: Evaluation using Ca(2+) spiking and multi-electrode arrays.

    Science.gov (United States)

    Tauskela, Joseph S; Comas, Tanya; Hewitt, Melissa; Aylsworth, Amy; Zhao, Xigeng; Martina, Marzia; Costain, Willard J

    2016-09-01

    Activation of cannabinoid receptor 1 (CB1) inhibits synaptic transmission in hippocampal neurons. The goal of this study was to evaluate the ability of benchmark and emerging synthetic cannabinoids to suppress neuronal activity in vitro using two complementary techniques, Ca(2+) spiking and multi-electrode arrays (MEAs). Neuron culture and fluorescence imaging conditions were extensively optimized to provide maximum sensitivity for detection of suppression of neural activity by cannabinoids. The neuronal Ca(2+) spiking frequency was significantly suppressed within 10min by the prototypic aminoalkylindole cannabinoid, WIN 55,212-2 (10µM). Suppression by WIN 55,212-2 was not improved by pharmacological intervention with signaling pathways known to interfere with CB1 signaling. The naphthoylindole CB1 agonist, JWH-018 suppressed Ca(2+) spiking at a lower concentration (2.5µM), and the CB1 antagonist rimonabant (5µM), reversed this suppression. In the MEA assay, the ability of synthetic CB1 agonists to suppress spontaneous electrical activity of hippocampal neurons was evaluated over 80min sessions. All benchmark (WIN 55,212-2, HU-210, CP 55,940 and JWH-018) and emerging synthetic cannabinoids (XLR-11, JWH-250, 5F-PB-22, AB-PINACA and MAM-2201) suppressed neural activity at a concentration of 10µM; furthermore, several of these compounds also significantly suppressed activity at 1µM concentrations. Rimonabant partially reversed spiking suppression of 5F-PB-22 and, to a lesser extent, of MAM-2201, supporting CB1-mediated involvement, although the inactive WIN 55,212-3 also partially suppressed activity. Taken together, synthetic cannabinoid CB1-mediated suppression of neuronal activity was detected using Ca(2+) spiking and MEAs. PMID:27262380

  4. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands

    DEFF Research Database (Denmark)

    Pertwee, R G; Howlett, A C; Abood, M E;

    2010-01-01

    or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some...... deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2...

  5. Experimental Cannabinoid 2 Receptor-Mediated Immune Modulation in Sepsis

    Directory of Open Access Journals (Sweden)

    J. Sardinha

    2014-01-01

    Full Text Available Sepsis is a complex condition that results from a dysregulated immune system in response to a systemic infection. Current treatments lack effectiveness in reducing the incidence and mortality associated with this disease. The endocannabinoid system offers great promise in managing sepsis pathogenesis due to its unique characteristics. The present study explored the effect of modulating the CB2 receptor pathway in an acute sepsis mouse model. Endotoxemia was induced by intravenous injection of lipopolysaccharide (LPS in mice and intestinal microcirculation was assessed through intravital microscopy. We found that HU308 (CB2 receptor agonist reduced the number of adherent leukocytes in submucosal venules but did not restore muscular and mucosal villi FCD in endotoxemic mice. AM630 (CB2 receptor antagonist maintained the level of adherent leukocytes induced by LPS but further reduced muscular and mucosal villi FCD. URB597 (FAAH inhibitor and JZL184 (MAGL inhibitor both reduced the number of adherent leukocytes in submucosal venules but did not restore the mucosal villi FCD. Using various compounds we have shown different mechanisms of activating CB2 receptors to reduce leukocyte endothelial interactions in order to prevent further inflammatory damage during sepsis.

  6. Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area.

    Science.gov (United States)

    Simonnet, Amelie; Cador, Martine; Caille, Stephanie

    2013-11-01

    Cannabinoid type 1 (CB1) receptors control the motivational properties and reinforcing effects of nicotine. Indeed, peripheral administration of a CB1 receptor antagonist dramatically decreases both nicotine taking and seeking. However, the neural substrates through which the cannabinoid CB1 receptors regulate the voluntary intake of nicotine remain to be elucidated. In the present study, we sought to determine whether central injections of a CB1 receptor antagonist delivered either into the ventral tegmental area (VTA) or the nucleus accumbens (NAC) may alter nicotine intravenous self-administration (IVSA). Rats were first trained to self-administer nicotine (30 μg/kg/0.1 ml). The effect of central infusions of the CB1 antagonist AM 251 (0, 1 and 10 μg/0.5 μl/side) on nicotine-taking behavior was then tested. Intra-VTA infusions of AM 251 dose dependently reduced IVSA with a significant decrease for the dose 10 μg/0.5 μl/side. Moreover, operant responding for water was unaltered by intra-VTA AM 251 at the same dose. Surprisingly, intra-NAC delivery of AM 251 did not alter nicotine behavior at all. These data suggest that in rats chronically exposed to nicotine IVSA, the cannabinoid CB1 receptors located in the VTA rather than in the NAC specifically control nicotine reinforcement and, subsequently, nicotine-taking behavior. PMID:22784230

  7. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    Directory of Open Access Journals (Sweden)

    Charu Sharma

    2015-01-01

    Full Text Available The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2 which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics.

  8. Regulation of MMP-9 by a WIN-binding site in the monocyte-macrophage system independent from cannabinoid receptors.

    Directory of Open Access Journals (Sweden)

    Svantje Tauber

    Full Text Available The cannabinoid system is known to be involved in the regulation of inflammatory processes. Therefore, drugs targeting cannabinoid receptors are considered as candidates for anti-inflammatory and tissue protective therapy. We demonstrated that the prototypical cannabinoid agonist R(+WIN55,212-2 (WIN reduced the secretion of matrix metalloproteinase-9 (MMP-9 in a murine model of cigarette-smoke induced lung inflammation. In experiments using primary cells and cell lines of the monocyte-macrophage-system we found that binding of the cannabinoid-receptor agonist WIN to a stereo-selective, specific binding site in cells of the monocyte-macrophage-system induced a significant down-regulation of MMP-9 secretion and disturbance of intracellular processing, which subsequently down-regulated MMP-9 mRNA expression via a ERK1/2-phosphorylation-dependent pathway. Surprisingly, the anti-inflammatory effect was independent from classical cannabinoid receptors. Our experiments supposed an involvement of TRPV1, but other yet unidentified sites are also possible. We conclude that cannabinoid-induced control of MMP-9 in the monocyte-macrophage system via a cannabinoid-receptor independent pathway represents a general option for tissue protection during inflammation, such as during lung inflammation and other diseases associated with inflammatory tissue damage.

  9. Impaired Excitatory Neurotransmission in the Urinary Bladder from the Obese Zucker Rat: Role of Cannabinoid Receptors

    Science.gov (United States)

    Blaha, Igor; Recio, Paz; Martínez, María Pilar; López-Oliva, María Elvira; Ribeiro, Ana S. F.; Agis-Torres, Ángel; Martínez, Ana Cristina; Benedito, Sara; García-Sacristán, Albino; Fernandes, Vítor S.; Hernández, Medardo

    2016-01-01

    Metabolic syndrome (MS) is a known risk factor for lower urinary tract symptoms. This study investigates whether functional and expression changes of cannabinoid CB1 and CB2 receptors are involved in the bladder dysfunction in an obese rat model with insulin resistance. Bladder samples from obese Zucker rat (OZR) and their respective controls lean Zucker rat (LZR) were processed for immunohistochemistry and western blot for studying the cannabinoid receptors expression. Detrusor smooth muscle (DSM) strips from LZR and OZR were also mounted in myographs for isometric force recordings. Neuronal and smooth muscle CB1 and CB2 receptor expression and the nerve fiber density was diminished in the OZR bladder. Electrical field stimulation (EFS) and acetylcholine (ACh) induced frequency- and concentration-dependent contractions of LZR and OZR DSM. ACh contractile responses were similar in LZR and OZR. EFS-elicited contractions, however, were reduced in OZR bladder. Cannabinoid receptor agonists and antagonists failed to modify the DSM basal tension in LZR and OZR In LZR bladder, EFS responses were inhibited by ACEA and SER-601, CB1 and CB2 receptor agonists, respectively, these effects being reversed by ACEA plus the CB1 antagonist, AM-251 or SER-601 plus the CB2 antagonist, AM-630. In OZR bladder, the inhibitory action of ACEA on nerve-evoked contractions was diminished, whereas that SER-601 did not change EFS responses. These results suggest that a diminished function and expression of neuronal cannabinoid CB1 and CB2 receptors, as well as a lower nerve fiber density is involved in the impaired excitatory neurotransmission of the urinary bladder from the OZR. PMID:27285468

  10. The interaction between ghrelin and cannabinoid systems in penicillin-induced epileptiform activity in rats.

    Science.gov (United States)

    Arslan, Gokhan; Ayyildiz, Mustafa; Agar, Erdal

    2014-12-01

    The majority of experimental and clinical studies show that ghrelin and cannabinoids are potent inhibitors of epileptic activity in various models of epilepsy. A number of studies have attempted to understand the connection between ghrelin and cannabinoid signalling in the regulation of food intake. Since no data show a functional interaction between ghrelin and cannabinoids in epilepsy, we examined the relationship between these systems via penicillin-induced epileptiform activity in rats. Doses of the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA) (2.5 and 7.5 µg), the CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide (AM-251) (0.25 and 0.5 µg) and ghrelin (0.5 and 1 µg) were administered intracerebroventricularly (i.c.v.) 30 minutes after the intracortical (i.c.) application of penicillin. In the interaction groups, the animals received either an effective dose of ACEA (7.5 µg, i.c.v.) or a non-effective dose of ACEA (2.5 µg, i.c.v.) or effective doses of AM-251 (0.25, 0.5 µg, i.c.v.) 10 minutes after ghrelin application. A 1 µg dose of ghrelin suppressed penicillin-induced epileptiform activity. The administration of a 0.25 µg dose of AM-251 increased the frequency of penicillin-induced epileptiform activity by producing status epilepticus-like activity. A 7.5 µg dose of ACEA decreased the frequency of epileptiform activity, whereas a non-effective dose of ACEA (2.5 µg) did not change it. Effective doses of AM-251 (0.25, 0.5 µg) reversed the ghrelin's anticonvulsant activity. The application of non-effective doses of ACEA (2.5 µg) together with ghrelin (0.5 µg) within 10 minutes caused anticonvulsant activity, which was reversed by the administration of AM-251 (0.25 µg). The electrophysiological evidence from this study suggests a possible interaction between ghrelin and cannabinoid CB1 receptors in the experimental model of epilepsy. PMID

  11. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Onaivi

    Full Text Available BACKGROUND: Addiction and major depression are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of cannabinoid CB2 receptors (CB2-Rs in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R but not (H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. We report for the using electron microscopy the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity.

  12. Preparation of iodine-123 labeled AM251: a potential SPECT radioligand for the brain cannabinoid CB1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ruoxi; Makriyannis, Alexandros [Connecticut Univ., Molecular and Cell Biology Dept., Storrs, CT (United States); Gatley, S.J. [Brookhaven National Lab., Medical Dept., Upton, NY (United States)

    1996-10-01

    We report the synthesis and labeling with iodine-123 of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). This compound is an analog of the recently described cannabinoid receptor antagonist, SR141716A, in which a 4-chlorophenyl group is replaced by 4-iodophenyl. Labeling in good yield (62%) and radiochemical purity (> 95%), and high specific activity (> 2500 Ci/mmol) was achieved by an iododestannylation reaction using the tributyltin precursor, no carrier added I-123 iodide, and chloramine-T. (author).

  13. Preparation of iodine-123 labeled AM251: a potential SPECT radioligand for the brain cannabinoid CB1 receptor

    International Nuclear Information System (INIS)

    We report the synthesis and labeling with iodine-123 of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). This compound is an analog of the recently described cannabinoid receptor antagonist, SR141716A, in which a 4-chlorophenyl group is replaced by 4-iodophenyl. Labeling in good yield (62%) and radiochemical purity (> 95%), and high specific activity (> 2500 Ci/mmol) was achieved by an iododestannylation reaction using the tributyltin precursor, no carrier added I-123 iodide, and chloramine-T. (author)

  14. Cannabinoid CB2 receptor activation inhibits mechanically evoked responses of wide dynamic range dorsal horn neurons in naïve rats and in rat models of inflammatory and neuropathic pain.

    Science.gov (United States)

    Elmes, Steven J R; Jhaveri, Maulik D; Smart, Darren; Kendall, David A; Chapman, Victoria

    2004-11-01

    Peripheral cannabinoid 2 receptors (CB2 receptors) modulate immune responses and attenuate nociceptive behaviour in models of acute and persistent pain. The aim of the present study was to investigate whether peripheral CB2 receptors modulate spinal processing of innocuous and noxious responses and to determine whether there are altered roles of CB2 receptors in models of persistent pain. Effects of local administration of the CB2 receptor agonist JWH-133 (5 and 15 microg/50 microL) on mechanically evoked responses of spinal wide dynamic range (WDR) neurons in noninflamed rats, rats with carrageenan-induced hindpaw inflammation, sham operated rats and spinal nerve-ligated (SNL) rats were determined in anaesthetized rats in vivo. Mechanical stimulation (von Frey filaments, 6-80 g) of the peripheral receptive field evoked firing of WDR neurons. Mechanically evoked responses of WDR neurons were similar in noninflamed, carrageenan-inflamed, sham-operated and SNL rats. Intraplantar injection of JWH-133 (15 microg), but not vehicle, significantly (P pain.

  15. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  16. CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin.

    Science.gov (United States)

    Cardinal, Pierre; André, Caroline; Quarta, Carmelo; Bellocchio, Luigi; Clark, Samantha; Elie, Melissa; Leste-Lasserre, Thierry; Maitre, Marlene; Gonzales, Delphine; Cannich, Astrid; Pagotto, Uberto; Marsicano, Giovanni; Cota, Daniela

    2014-10-01

    Metabolic flexibility allows rapid adaptation to dietary change, however, little is known about the CNS mechanisms regulating this process. Neurons in the hypothalamic ventromedial nucleus (VMN) participate in energy balance and are the target of the metabolically relevant hormone leptin. Cannabinoid type-1 (CB1) receptors are expressed in VMN neurons, but the specific contribution of endocannabinoid signaling in this neuronal population to energy balance regulation is unknown. Here we demonstrate that VMN CB1 receptors regulate metabolic flexibility and actions of leptin. In chow-fed mice, conditional deletion of CB1 in VMN neurons (expressing the steroidogenic factor 1, SF1) decreases adiposity by increasing sympathetic activity and lipolysis, and facilitates metabolic effects of leptin. Conversely, under high-fat diet, lack of CB1 in VMN neurons produces leptin resistance, blunts peripheral use of lipid substrates and increases adiposity. Thus, CB1 receptors in VMN neurons provide a molecular switch adapting the organism to dietary change.

  17. Cannabinoid-1 receptor antagonists in type-2 diabetes.

    Science.gov (United States)

    Scheen, André J

    2007-12-01

    Type-2 diabetes is closely related to abdominal obesity and is generally associated with other cardiometabolic risk factors, resulting in a risk of major cardiovascular disease. Several animal and human observations suggest that the endocannabinoid system is over-active in the presence of abdominal obesity and/or diabetes. Both central and peripheral endocannabinoid actions, via the activation of CB1 receptors, promote weight gain and associated metabolic changes. Rimonabant, the first selective CB(1) receptor blocker in clinical use, has been shown to reduce body weight, waist circumference, triglycerides, blood pressure, insulin resistance index and C-reactive protein levels, and to increase high-density lipoprotein (HDL) cholesterol and adiponectin concentrations in both non-diabetic and diabetic overweight/obese patients. In addition, a 0.5-0.7% reduction in HbA1c levels was observed in metformin- or sulphonylurea-treated patients with type-2 diabetes and in drug-naïve diabetic patients. Almost half of the metabolic changes, including HbA1c reduction, could not be explained by weight loss, suggesting that there are direct peripheral effects. Rimonabant was generally well-tolerated, and the safety profile was similar in diabetic and non-diabetic patients, with a higher incidence of depressed mood disorders, nausea and dizziness. In conclusion, the potential role of rimonabant in overweight/obese patients with type-2 diabetes and at high risk of cardiovascular disease deserves much consideration.

  18. Candidate PET radioligands for cannabinoid CB{sub 1} receptors: [{sup 18}F]AM5144 and related pyrazole compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li Zizhong [Center for Translational Neuroimaging, Brookhaven National Laboratory, Upton, NY 11973 (United States); Gifford, Andrew [Center for Translational Neuroimaging, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liu Qian [Center for Drug Discovery, Northeastern University, Boston, MA 02115 (United States); Thotapally, Rajesh [Center for Drug Discovery, Northeastern University, Boston, MA 02115 (United States); Ding Yushin [Center for Translational Neuroimaging, Brookhaven National Laboratory, Upton, NY 11973 (United States); Makriyannis, Alexandros [Center for Drug Discovery, Northeastern University, Boston, MA 02115 (United States); Gatley, S. John [Center for Translational Neuroimaging, Brookhaven National Laboratory, Upton, NY 11973 (United States) and Center for Drug Discovery, Northeastern University, Boston, MA 02115 (United States)]. E-mail: s.gatley@neu.edu

    2005-05-01

    Introduction: The mammalian brain contains abundant G protein-coupled cannabinoid CB{sub 1} receptors that respond to {delta}{sup 9}-tetrahydrocannabinol, the active ingredient of cannabis. The availability of a positron emission tomography (PET) radioligand would facilitate studies of the addictive and medicinal properties of compounds that bind to this receptor. Among the known classes of ligands for CB{sub 1} receptors, the pyrazoles are attractive targets for radiopharmaceutical development because they are antagonists and are generally less lipophilic than the other classes. Methods: A convenient high-yield synthesis of N-(4-[{sup 18}F]fluorophenyl)-5-(4-bromophenyl)-1-(2,4-dichlorophenyl)- 1H-pyrazole-3-carboxamide (AM5144) was devised by coupling the appropriate pyrazole-3-carboxyl chloride compound with 4-[{sup 18}F]fluoroaniline. The labeled precursor was synthesized from 1-[{sup 18}F]fluoro-4-nitrobenzene in 60% radiochemical yield for 10 min using an improved procedure involving sodium borohydride reduction with cobalt chloride catalysis. The product was purified by HPLC to give a specific activity >400 mCi/{mu}mol and a radiochemical purity >95%, and a PET study was conducted in a baboon. Results: Although the regional uptake of AM5144 in baboon brain was consistent with binding to cannabinoid CB{sub 1} receptors, absolute uptake at <0.003% injected radioactivity per cubic centimeter was lower than the previously reported uptake of the radioiodinated pyrazole AM281. Conclusions: The relatively poor brain uptake of AM5144 and other pyrazole CB{sub 1} receptor ligands is not surprising because of their high lipophilicity as compared with most brain PET radiotracers. However, for nine pyrazole compounds for which rodent data are available, brain uptake and calculated logP values are not correlated. Thus, high logP values should not preclude evaluation of radiotracers for targets such as the CB{sub 1} receptor that may require very lipophilic ligands.

  19. Interaction between orexin A and cannabinoid system in the lateral hypothalamus of rats and effects of subchronic intraperitoneal administration of cannabinoid receptor inverse agonist on food intake and the nutritive utilization of protein.

    Science.gov (United States)

    Merroun, I; El Mlili, N; Martinez, R; Porres, J M; Llopis, J; Ahabrach, H; Aranda, P; Sanchez Gonzalez, C; Errami, M; Lopez-Jurado, M

    2015-04-01

    Crosstalk may occur between cannabinoids and other systems controlling appetite, since cannabinoid receptors are present in hypothalamic circuits involved in feeding regulation, and likely to interact with orexin. In this study, an immunohistochemical approach was used to examine the effect of the intracerebroventricular administration of cannabinoid receptor inverse agonist AM 251 on orexin neuropeptide in the hypothalamic system. AM-activated neurons were identified using c-Fos as a marker of neuronal activity. The results obtained show that AM 251 decreases orexin A immunoreactivity, and that it increases c-Fos-immunoreactive neurons within the hypothalamus when compared with the vehicle-injected control group. We also studied the effects of subchronic intraperitoneal administration of AM 251 on food intake, body weight, and protein utilization. The administration of AM 251 at 1, 2, or 5 mg/kg led to a significant reduction in food intake, along with a significant decrease in the digestive utilization of protein in the groups injected with 1 and 2 mg/kg. There was a dose-related slowdown in weight gain, especially at the doses of 2 and 5 mg/kg, during the initial days of the trial. The absence of this effect in the pair-fed group reveals that any impairment to digestibility was the result of administering AM 251. These data support our conclusion that hypothalamic orexigenic neuropeptides are involved in the reduction of appetite and mediated by the cannabinoid receptor inverse agonist. Furthermore, the subchronic administration of AM 251, in addition to its effect on food intake, has significant effects on the digestive utilization of protein. PMID:25903949

  20. Δ9-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling

    International Nuclear Information System (INIS)

    We recently reported that Δ9-tetrahydrocannabinol (Δ9-THC) has the ability to stimulate the proliferation of human breast carcinoma MCF-7 cells. However, the mechanism of action remains to be clarified. The present study focused on the relationship between receptor expression and the effects of Δ9-THC on cell proliferation. RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells. In accordance with this, no effects of cannabinoid 1/2 (CB1/2) receptor antagonists and pertussis toxin on cell proliferation were observed. Although MCF-7 cell proliferation is suggested to be suppressed by Δ9-THC in the presence of CB receptors, it was revealed that Δ9-THC could exert upregulation of living cells in the absence of the receptors. Interestingly, Δ9-THC upregulated human epithelial growth factor receptor type 2 (HER2) expression, which is known to be a predictive factor of human breast cancer and is able to stimulate cancer cells as well as MCF-7 cells. Actinomycin D-treatment interfered with the upregulation of HER2 and cell proliferation by cannabinoid. Taken together, these studies suggest that, in the absence of CB receptors, Δ9-THC can stimulate the proliferation of MCF-7 cells by modulating, at least in part, HER2 transcription

  1. Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes.

    Science.gov (United States)

    Lu, Dai; Dopart, Rachel; Kendall, Debra A

    2016-01-01

    Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM). The endocannabinoid system is composed of at least two Gprotein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2). Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors. Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity. Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists. Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes. This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.

  2. The CB₁ cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway.

    Science.gov (United States)

    Blázquez, C; Chiarlone, A; Bellocchio, L; Resel, E; Pruunsild, P; García-Rincón, D; Sendtner, M; Timmusk, T; Lutz, B; Galve-Roperh, I; Guzmán, M

    2015-10-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective activity. Here, by using an array of pharmacological, genetic and pharmacogenetic (designer receptor exclusively activated by designer drug) approaches, we show that (1) CB1 receptor engagement protects striatal cells from excitotoxic death via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin complex 1 pathway, which, in turn, (2) induces brain-derived neurotrophic factor (BDNF) expression through the selective activation of BDNF gene promoter IV, an effect that is mediated by multiple transcription factors. To assess the possible functional impact of the CB1/BDNF axis in a neurodegenerative-disease context in vivo, we conducted experiments in the R6/2 mouse, a well-established model of Huntington's disease, in which the CB1 receptor and BDNF are known to be severely downregulated in the dorsolateral striatum. Adeno-associated viral vector-enforced re-expression of the CB1 receptor in the dorsolateral striatum of R6/2 mice allowed the re-expression of BDNF and the concerted rescue of the neuropathological deficits in these animals. Collectively, these findings unravel a molecular link between CB1 receptor activation and BDNF expression, and support the relevance of the CB1/BDNF axis in promoting striatal neuron survival. PMID:25698444

  3. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses.

    Science.gov (United States)

    Sylantyev, Sergiy; Jensen, Thomas P; Ross, Ruth A; Rusakov, Dmitri A

    2013-03-26

    G protein-coupled receptor (GPR) 55 is sensitive to certain cannabinoids, it is expressed in the brain and, in cell cultures, it triggers mobilization of intracellular Ca(2+). However, the adaptive neurobiological significance of GPR55 remains unknown. Here, we use acute hippocampal slices and combine two-photon excitation Ca(2+) imaging in presynaptic axonal boutons with optical quantal analysis in postsynaptic dendritic spines to find that GPR55 activation transiently increases release probability at individual CA3-CA1 synapses. The underlying mechanism involves Ca(2+) release from presynaptic Ca(2+) stores, whereas postsynaptic stores (activated by spot-uncaging of inositol 1,4,5-trisphosphate) remain unaffected by GPR55 agonists. These effects are abolished by genetic deletion of GPR55 or by the GPR55 antagonist cannabidiol, a constituent of Cannabis sativa. GPR55 shows colocalization with synaptic vesicle protein vesicular glutamate transporter 1 in stratum radiatum. Short-term potentiation of CA3-CA1 transmission after a short train of stimuli reveals a presynaptic, Ca(2+) store-dependent component sensitive to cannabidiol. The underlying cascade involves synthesis of phospholipids, likely in the presynaptic cell, but not the endocannabinoids 2-arachidonoylglycerol or anandamide. Our results thus unveil a signaling role for GPR55 in synaptic circuits of the brain.

  4. Inhibition of monoacylglycerol lipase mediates a cannabinoid 1-receptor dependent delay of kindling progression in mice.

    Science.gov (United States)

    von Rüden, E L; Bogdanovic, R M; Wotjak, C T; Potschka, H

    2015-05-01

    Endocannabinoids, including 2-arachidonoylglycerol (2-AG), activate presynaptic cannabinoid type 1 receptors (CB1R) on inhibitory and excitatory neurons, resulting in a decreased release of neurotransmitters. The event-specific activation of the endocannabinoid system by inhibition of the endocannabinoid degrading enzymes may offer a promising strategy to selectively activate CB1Rs at the site of excessive neuronal activation with the overall goal to prevent the development epilepsy. The aim of this study was to investigate the impact of monoacylglycerol lipase (MAGL) inhibition on the development and progression of epileptic seizures in the kindling model of temporal lobe epilepsy. Therefore, we selectively blocked MAGL by JZL184 (8mg/kg, i.p.) in mice to analyze the effects of increased 2-AG levels on kindling acquisition and to exclude an anticonvulsive potential. Our results showed that JZL184 treatment significantly delayed the development of generalized seizures (p=0.0066) and decreased seizure (pkindling model of temporal lobe epilepsy, but caused only modest effects in fully kindled mice. Moreover, we proved that JZL184 treatment had no effects in conditional CB1R knockout mice lacking expression of the receptor in principle neurons of the forebrain. In conclusion, the data demonstrate that indirect CB1R agonism delays the development of generalized epileptic seizures but has no relevant acute anticonvulsive effects. Furthermore, we confirmed that the effects of JZL184 on kindling progression are CB1R mediated. Thus, the data indicate that the endocannabinoid 2-AG might be a promising target for an anti-epileptogenic approach.

  5. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.

    Science.gov (United States)

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean-François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-08-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.

  6. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors.

    Science.gov (United States)

    Martín-García, Elena; Bourgoin, Lucie; Cathala, Adeline; Kasanetz, Fernando; Mondesir, Miguel; Gutiérrez-Rodriguez, Ana; Reguero, Leire; Fiancette, Jean-François; Grandes, Pedro; Spampinato, Umberto; Maldonado, Rafael; Piazza, Pier Vincenzo; Marsicano, Giovanni; Deroche-Gamonet, Véronique

    2016-08-01

    The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology. PMID:26612422

  7. Evidence for association between polymorphisms in the Cannabinoid Receptor 1 (CNR1) gene and cannabis dependence

    OpenAIRE

    Agrawal, Arpana; Wetherill, Leah; Dick, Danielle M; Xuei, Xiaoling; Hinrichs, Anthony; Hesselbrock, Victor; Kramer, John; Nurnberger, John I.; Schuckit, Marc; Laura J Bierut; Edenberg, Howard J.; Foroud, Tatiana

    2009-01-01

    Genomic studies of cannabis use disorders have been limited. The cannabinoid receptor 1 gene (CNR1) on chromosome 6q14–15 is an excellent candidate gene for cannabis dependence due to the important role of the G-protein coupled receptor encoded by this gene in the rewarding effects of Δ9-tetrahydrocannabinol. Previous studies have found equivocal evidence for an association between SNPs in CNR1 and a general vulnerability to substance use disorders. We investigate the association between 9 SN...

  8. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2'-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide

    International Nuclear Information System (INIS)

    Arachidonylethanolamide (anandamide, AEA) has been identified as an endogenous ligand for cannabinoid receptors CB1 and CB2. Characterization of the direct cannabimimetic actions of anandamide has been hampered by its short duration of action and rapid degradation in in vivo and in vitro systems to arachidonic acid, a precursor in the biosynthesis of a broad range of biologically active molecules. In the present studies, we utilized 2-methylarachidonyl-(2'-fluoroethyl)amide (F-Me-AEA), an analog of anandamide resistant to enzymatic degradation, to determine whether F-Me-AEA modulated T cell function similar to that of plant-derived cannabinoids. Indeed, F-Me-AEA at low micromolar concentrations exhibited a marked inhibition of phorbol ester plus calcium ionophore (PMA/Io)-induced IL-2 protein secretion and steady state mRNA expression. Likewise, a modest suppression of the mixed lymphocyte response was observed in the presence of F-Me-AEA indicating an alteration in T cell responsiveness to allogeneic MHC class II antigens. F-Me-AEA was also found to modestly inhibit forskolin-stimulated adenylate cyclase activity in thymocytes and splenocytes, a hallmark of cannabinoid receptor agonists. Further characterization of the influence of F-Me-AEA on the cAMP signaling cascade revealed an inhibition of CREB-1/ATF-1 phosphorylation and subsequently, an inhibition of CRE DNA binding activity. Characterization of nuclear binding proteins further revealed that NF-AT and, to a lesser extent, NF-κB DNA binding activities were also suppressed. These studies demonstrate that F-Me-AEA modulates T cell function in a similar manner to plant-derived and endogenous cannabinoids and therefore can be utilized as an amidase- and hydrolysis-resistant endogenous cannabinoid

  9. The discovery of taranabant, a selective cannabinoid-1 receptor inverse agonist for the treatment of obesity.

    Science.gov (United States)

    Hagmann, William K

    2008-07-01

    The cannabinoid-1 receptor (CB1R) has emerged as one of the most important targets for the treatment of obesity. Pioneering studies with rimonabant helped to validate animal models of food intake reduction and weight loss and made the connection to weight loss in the clinic. A novel, acyclic amide was identified from a high throughput screen (HTS) of the Merck sample collection and found to be a potent and selective CB1R inhibitor. Further optimization led to more potent compounds that were orally active in reducing food intake and weight loss in diet-induced obese (DIO) rats. However, many of these analogues exhibited a high potential for bioactivation and the formation of reactive intermediates and covalent protein binding. Identification of the products of oxidative metabolism guided medicinal chemistry efforts to minimize the formation of these unwanted products. These efforts resulted in the identification of the CB1R inverse agonist, taranabant, which is currently in Phase-III clinical studies for the treatment of obesity. This mini-review will describe some of the medicinal chemistry strategies that were followed from the original high throughput screen hit to the discovery of taranabant. PMID:18574849

  10. Cannabinoid type-1 receptors in the paraventricular nucleus of the hypothalamus inhibit stimulated food intake.

    Science.gov (United States)

    Soria-Gómez, E; Massa, F; Bellocchio, L; Rueda-Orozco, P E; Ciofi, P; Cota, D; Oliet, S H R; Prospéro-García, O; Marsicano, G

    2014-03-28

    Cannabinoid receptor type 1 (CB1)-dependent signaling in the brain is known to modulate food intake. Recent evidence has actually shown that CB1 can both inhibit and stimulate food intake in fasting/refeeding conditions, depending on the specific neuronal circuits involved. However, the exact brain sites where this bimodal control is exerted and the underlying neurobiological mechanisms are not fully understood yet. Using pharmacological and electrophysiological approaches, we show that local CB1 blockade in the paraventricular nucleus of the hypothalamus (PVN) increases fasting-induced hyperphagia in rats. Furthermore, local CB1 blockade in the PVN also increases the orexigenic effect of the gut hormone ghrelin in animals fed ad libitum. At the electrophysiological level, CB1 blockade in slices containing the PVN potentiates the decrease of the activity of PVN neurons induced by long-term application of ghrelin. Hence, the PVN is (one of) the site(s) where signals associated with the body's energy status determine the direction of the effects of endocannabinoid signaling on food intake.

  11. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  12. Pharmacological benefits of selective modulation of cannabinoid receptor type 2 (CB2) in experimental Alzheimer's disease.

    Science.gov (United States)

    Jayant, Shalini; Sharma, Brij Mohan; Bansal, Rani; Sharma, Bhupesh

    2016-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that pervasively affects the population across the world. Currently, there is no effective treatment available for this and existing drugs merely slow the progression of cognitive function decline. Thus, massive effort is required to find an intended therapeutic target to overcome this condition. The present study has been framed to investigate the ameliorative role of selective modulator of cannabinoid receptor type 2 (CB2), 1-phenylisatin in experimental AD condition. We have induced experimental AD in mice by using two induction models viz., intracerebroventricular (i.c.v.) administration of streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose. Morris water maze (MWM) and attentional set shifting test (ASST) were used to assess learning and memory. Hematoxylin-eosin and Congo red staining were used to examine the structural variation in brain. Brain oxidative stress (thiobarbituric acid reactive substance and glutathione), nitric oxide levels (nitrites/nitrates), acetyl cholinesterase activity, myeloperoxidase and calcium levels were also estimated. i.c.v. STZ as well as AlCl3+d-galactose have impaired spatial and reversal learning with executive functioning, increased brain oxidative and nitrosative stress, cholinergic activity, inflammation and calcium levels. Furthermore, these agents have also enhanced the burden of Aβ plaque in the brain. Treatment with 1-phenylisatin and donepezil attenuated i.c.v. STZ as well as AlCl3+d-galactose induced impairment of learning-memory, brain biochemistry and brain damage. Hence, this study concludes that CB2 receptor modulation can be a potential therapeutic target for the management of AD. PMID:26577751

  13. Global Fold of Human Cannabinoid Type 2 Receptor Probed by Solid-State 13C-, 15N-MAS NMR and Molecular Dynamics Simulations

    OpenAIRE

    Kimura, Tomohiro; Vukoti, Krishna; Lynch, Diane L.; Hurst, Dow P.; Grossfield, Alan; Pitman, Michael C.; Reggio, Patricia H.; Yeliseev, Alexei A.; Gawrisch, Klaus

    2013-01-01

    The global fold of human cannabinoid type 2 (CB2) receptor in the agonist-bound active state in lipid bilayers was investigated by solid-state 13C- and 15N magic-angle spinning (MAS) NMR, in combination with chemical-shift prediction from a structural model of the receptor obtained by microsecond-long molecular dynamics (MD) simulations. Uniformly 13C-, and 15N-labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into l...

  14. Biologically active cannabinoids from high-potency Cannabis sativa.

    Science.gov (United States)

    Radwan, Mohamed M; Elsohly, Mahmoud A; Slade, Desmond; Ahmed, Safwat A; Khan, Ikhlas A; Ross, Samir A

    2009-05-22

    Nine new cannabinoids (1-9) were isolated from a high-potency variety of Cannabis sativa. Their structures were identified as (+/-)-4-acetoxycannabichromene (1), (+/-)-3''-hydroxy-Delta((4'',5''))-cannabichromene (2), (-)-7-hydroxycannabichromane (3), (-)-7R-cannabicoumarononic acid A (4), 5-acetyl-4-hydroxycannabigerol (5), 4-acetoxy-2-geranyl-5-hydroxy-3-n-pentylphenol (6), 8-hydroxycannabinol (7), 8-hydroxycannabinolic acid A (8), and 2-geranyl-5-hydroxy-3-n-pentyl-1,4-benzoquinone (9) through 1D and 2D NMR spectroscopy, GC-MS, and HRESIMS. The known sterol beta-sitosterol-3-O-beta-d-glucopyranosyl-6'-acetate was isolated for the first time from cannabis. Compounds 6 and 7 displayed significant antibacterial and antifungal activities, respectively, while 5 displayed strong antileishmanial activity. PMID:19344127

  15. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    NARCIS (Netherlands)

    Oosterveer, Maaike H.; Koolman, Anniek H.; de Boer, Pieter T.; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induc

  16. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.;

    2002-01-01

    The ability of cannabinoid CB, receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB rec...

  17. Inhibitory effects of synthetic cannabinoid WIN55, 212-2 on nicotine-activated currents in rat trigeminal ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    Yongli Lu; Changjin Liu; Hongwei Yang

    2011-01-01

    Cannabinoid and nicotinic acetylcholine receptors are strongly associated with algesia. Previous studies in our laboratory have reported inhibitory effects of synthetic cannabinoid WIN55, 212-2 on nicotine-activated currents (/nic), but the underlying mechanisms remain poorly understood. The present study used whole-cell patch clamp techniques to investigate the modulatory effects of synthetic cannabinoid WIN55, 212-2 on /nic in cultured rat trigeminal ganglion neurons. The results revealed several major findings: WIN55, 212-2 inhibited /nic in rat trigeminal ganglion neurons. In addition, when WIN55, 212-2 (3 μmol/L) was applied simultaneously with nicotine (100 μmol/L), the inhibition of WIN55, 212-2 on /nic was reversible, concentration-dependent and voltage-independent. This effect was not mediated by CB1, CB2 or VR1 receptors; neither the selective CB1 receptor antagonist AM281, CB2 receptor antagonist AM630 nor VR1 receptor antagonist capsazepine reduced the inhibitory effect of WIN55, 212-2. Further, the inhibition of nicotinic responses by WIN55, 212-2 was not sensitive to the membrane permeable cyclic adenosine monophosphate (cAMP) analog 8-Br-cAMP. The G-protein inhibitor GDP-β-S (1 mmol/L) did not block the inhibitory effects of WIN55, 212-2 on /nic, excluding the involvement of G-protein mediation. The results suggested that WIN55, 212-2 inhibits/nic directly via the neuronal nicotinic acetylcholine receptor, and that this inhibition is non-competitive. WIN55, 212-2 did not act as an open channel blocker of the neuronal nicotinic acetylcholine receptor, and did not affect the desensitization of /nic. The results suggest that nicotine receptors may be physically plugged from outside the membrane by drugs containing WIN55, 212-2.

  18. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making.

    Science.gov (United States)

    Khani, Abbas; Kermani, Mojtaba; Hesam, Soghra; Haghparast, Abbas; Argandoña, Enrike G; Rainer, Gregor

    2015-06-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test days, the rats received local injections of either vehicle or ACEA, a cannabinoid type-1 receptor (CB1R) agonist in the ACC or OFC. We measured spontaneous locomotor activity following the same treatments and characterized CB1Rs localization on different neuronal populations within these regions using immunohistochemistry. We showed that CB1R activation in the ACC impaired decision making such that rats were less willing to invest physical effort to gain high reward. Similarly, CB1R activation in the OFC induced impulsive pattern of choice such that rats preferred small immediate rewards to large delayed rewards. Control tasks ensured that the effects were specific for differential cost-benefit tasks. Furthermore, we characterized widespread colocalizations of CB1Rs on GABAergic axonal ends but few colocalizations on glutamatergic, dopaminergic, and serotonergic neuronal ends. These results provide first direct evidence that the cannabinoid system plays a critical role in regulating cost-benefit decision making in the ACC and OFC and implicate cannabinoid modulation of synaptic ends of predominantly interneurons and to a lesser degree other neuronal populations in these two frontal regions. PMID:25529106

  19. The endocannabinoid N-arachidonoyldopamine (NADA) exerts neuroprotective effects after excitotoxic neuronal damage via cannabinoid receptor 1 (CB(1)).

    Science.gov (United States)

    Grabiec, Urszula; Koch, Marco; Kallendrusch, Sonja; Kraft, Robert; Hill, Kerstin; Merkwitz, Claudia; Ghadban, Chalid; Lutz, Beat; Straiker, Alex; Dehghani, Faramarz

    2012-03-01

    Endocannabinoids exert numerous effects in the CNS under physiological and pathological conditions. The aim of the present study was to examine whether the endocannabinoid N-arachidonoyldopamine (NADA) may protect neurons in excitotoxically lesioned organotypic hippocampal slice cultures (OHSC). OHSC were excitotoxically lesioned by application of N-methyl-d-aspartate (NMDA, 50 μM) for 4 h and subsequently treated with different NADA concentrations (0.1 pM-50 μM) alone or in combination with cannabinoid receptor antagonists. NADA protected dentate gyrus granule cells and caused a slight reduction in the number of microglial cells. The number of degenerated neurons significantly decreased between 100 pM and 10 μM NADA (p NADA mediated neuroprotection, we applied the cannabinoid (CB) receptor 1 (CB(1)) inverse agonist/antagonist AM251, CB(2) inverse agonist/antagonist AM630, abnormal-cannabidiol (abn-CBD)-sensitive receptor antagonist O-1918, transient receptor potential channel V1 (TRPV1) antagonist 6-iodonordihydrocapsaicin and A1 (TRPA1) antagonist HC-030031. Neuroprotective properties of low (1 nM) but not high (10 μM) NADA concentrations were solely blocked by AM251 and were absent in CB(1)(-/-) mice. AM630, O-1918, 6-iodonordihydrocapsaicin and HC-030031 showed no effects at all NADA concentrations applied. Our findings demonstrate that NADA protects dentate gyrus granule cells by acting via CB(1). NADA reduced the number of microglial cells at distinct concentrations. TRPV1 and TRPA1 were not involved in NADA mediated neuroprotection. Thus, our data implicate that NADA mediated activation of neuronal CB(1) may serve as a novel pharmacological target to mitigate symptoms of neuronal damage.

  20. Localization and function of the cannabinoid CB1 receptor in the anterolateral bed nucleus of the stria terminalis.

    Directory of Open Access Journals (Sweden)

    Nagore Puente

    Full Text Available BACKGROUND: The bed nucleus of the stria terminalis (BNST is involved in behaviors related to natural reward, drug addiction and stress. In spite of the emerging role of the endogenous cannabinoid (eCB system in these behaviors, little is known about the anatomy and function of this system in the anterolateral BNST (alBNST. The aim of this study was to provide a detailed morphological characterization of the localization of the cannabinoid 1 (CB1 receptor a necessary step toward a better understanding of the physiological roles of the eCB system in this region of the brain. METHODOLOGY/PRINCIPAL FINDINGS: We have combined anatomical approaches at the confocal and electron microscopy level to ex-vivo electrophysiological techniques. Here, we report that CB1 is localized on presynaptic membranes of about 55% of immunopositive synaptic terminals for the vesicular glutamate transporter 1 (vGluT1, which contain abundant spherical, clear synaptic vesicles and make asymmetrical synapses with alBNST neurons. About 64% of vGluT1 immunonegative synaptic terminals show CB1 immunolabeling. Furthermore, 30% and 35% of presynaptic boutons localize CB1 in alBNST of conditional mutant mice lacking CB1 mainly from GABAergic neurons (GABA-CB1-KO mice and mainly from cortical glutamatergic neurons (Glu-CB1-KO mice, respectively. Extracellular field recordings and whole cell patch clamp in the alBNST rat brain slice preparation revealed that activation of CB1 strongly inhibits excitatory and inhibitory synaptic transmission. CONCLUSIONS/SIGNIFICANCE: This study supports the anterolateral BNST as a potential neuronal substrate of the effects of cannabinoids on stress-related behaviors.

  1. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Directory of Open Access Journals (Sweden)

    Sergio Arrabal

    Full Text Available Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD, a flavoprotein component (E3 of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1, 14 days on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI, triosephosphate isomerase (TPI, enolase (Eno3, lactate dehydrogenase (LDHa, glyoxalase-1 (Glo1 and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  2. Pharmacological Blockade of Cannabinoid CB1 Receptors in Diet-Induced Obesity Regulates Mitochondrial Dihydrolipoamide Dehydrogenase in Muscle.

    Science.gov (United States)

    Arrabal, Sergio; Lucena, Miguel Angel; Canduela, Miren Josune; Ramos-Uriarte, Almudena; Rivera, Patricia; Serrano, Antonia; Pavón, Francisco Javier; Decara, Juan; Vargas, Antonio; Baixeras, Elena; Martín-Rufián, Mercedes; Márquez, Javier; Fernández-Llébrez, Pedro; De Roos, Baukje; Grandes, Pedro; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.

  3. [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users.

    Science.gov (United States)

    Ceccarini, Jenny; Kuepper, Rebecca; Kemels, Dieter; van Os, Jim; Henquet, Cécile; Van Laere, Koen

    2015-03-01

    Δ(9) -Tetrahydrocannabinol, the main psychoactive component of cannabis, exerts its central effects through activation of the cerebral type 1 cannabinoid (CB1 ) receptor. Pre-clinical studies have provided evidence that chronic cannabis exposure is linked to decreased CB1 receptor expression and this is thought to be a component underlying drug tolerance and dependence. In this study, we make first use of the selective high-affinity positron emission tomography (PET) ligand [(18) F]MK-9470 to obtain in vivo measurements of cerebral CB1 receptor availability in 10 chronic cannabis users (age = 26.0 ± 4.1 years). Each patient underwent [(18) F]MK-9470 PET within the first week following the last cannabis consumption. A population of 10 age-matched healthy subjects (age = 23.0 ± 2.9 years) was used as control group. Parametric modified standardized uptake value images, reflecting CB1 receptor availability, were calculated. Statistical parametric mapping and volume-of-interest (VOI) analyses of CB1 receptor availability were performed. Compared with controls, cannabis users showed a global decrease in CB1 receptor availability (-11.7 percent). VOI-based analysis demonstrated that the CB1 receptor decrease was significant in the temporal lobe (-12.7 percent), anterior (-12.6 percent) and posterior cingulate cortex (-13.5 percent) and nucleus accumbens (-11.2 percent). Voxel-based analysis confirmed this decrease and regional pattern in CB1 receptor availability in cannabis users. These findings revealed that chronic cannabis use may alter specific regional CB1 receptor expression through neuroadaptive changes in CB1 receptor availability, opening the way for the examination of specific CB1 -cannabis addiction interactions which may predict future cannabis-related treatment outcome.

  4. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint.

    Science.gov (United States)

    Burston, James J; Sagar, Devi Rani; Shao, Pin; Bai, Mingfeng; King, Emma; Brailsford, Louis; Turner, Jenna M; Hathway, Gareth J; Bennett, Andrew J; Walsh, David A; Kendall, David A; Lichtman, Aron; Chapman, Victoria

    2013-01-01

    Osteoarthritis (OA) of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies. Inhibitory cannabinoid 2 (CB2) receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy. These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation of chronic OA

  5. Cannabinoid CB2 receptors regulate central sensitization and pain responses associated with osteoarthritis of the knee joint.

    Directory of Open Access Journals (Sweden)

    James J Burston

    Full Text Available Osteoarthritis (OA of the joint is a prevalent disease accompanied by chronic, debilitating pain. Recent clinical evidence has demonstrated that central sensitization contributes to OA pain. An improved understanding of how OA joint pathology impacts upon the central processing of pain is crucial for the identification of novel analgesic targets/new therapeutic strategies. Inhibitory cannabinoid 2 (CB2 receptors attenuate peripheral immune cell function and modulate central neuro-immune responses in models of neurodegeneration. Systemic administration of the CB2 receptor agonist JWH133 attenuated OA-induced pain behaviour, and the changes in circulating pro- and anti-inflammatory cytokines exhibited in this model. Electrophysiological studies revealed that spinal administration of JWH133 inhibited noxious-evoked responses of spinal neurones in the model of OA pain, but not in control rats, indicating a novel spinal role of this target. We further demonstrate dynamic changes in spinal CB2 receptor mRNA and protein expression in an OA pain model. The expression of CB2 receptor protein by both neurones and microglia in the spinal cord was significantly increased in the model of OA. Hallmarks of central sensitization, significant spinal astrogliosis and increases in activity of metalloproteases MMP-2 and MMP-9 in the spinal cord were evident in the model of OA pain. Systemic administration of JWH133 attenuated these markers of central sensitization, providing a neurobiological basis for analgesic effects of the CB2 receptor in this model of OA pain. Analysis of human spinal cord revealed a negative correlation between spinal cord CB2 receptor mRNA and macroscopic knee chondropathy. These data provide new clinically relevant evidence that joint damage and spinal CB2 receptor expression are correlated combined with converging pre-clinical evidence that activation of CB2 receptors inhibits central sensitization and its contribution to the manifestation

  6. Novel Method for Synthesis of Diarylpyrazole Derivatives as Cannabinoid CB1 Receptor Antagonists

    Institute of Scientific and Technical Information of China (English)

    WU Ying-qiu; ZHENG Guo-jun; WANG Ya-ping; WANG Xiang-jing; XIANG Wen-sheng

    2011-01-01

    A novel and efficient method was developed for the synthesis of diarylpyrazole derivatives as cannabinoid CB1 receptor antagonist via four step reactions. The key step was the synthesis of a diarylpyrazole skeleton, which involved initial condensation of the sodium salt of compound 12 with diazonium compounds, and further cyclization by heating at reflux in acetic acid. Eight diarylpyrazole derivatives and nine new synthesized compounds were cha racterized by 1H NMRy IR, MS, and elemental analysis. The reaction conditions were mild and the overall yields of the target compounds ranged from 26% to 44%.

  7. Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission.

    Science.gov (United States)

    Fawley, Jessica A; Hofmann, Mackenzie E; Andresen, Michael C

    2014-06-11

    Action potentials trigger synaptic terminals to synchronously release vesicles, but some vesicles release spontaneously. G-protein-coupled receptors (GPCRs) can modulate both of these processes. At cranial primary afferent terminals, the GPCR cannabinoid 1 (CB1) is often coexpressed with transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel present on most afferents. Here we tested whether CB1 activation modulates synchronous, action potential-evoked (eEPSCs) and/or spontaneous (sEPSCs) EPSCs at solitary tract nucleus neurons. In rat horizontal brainstem slices, activation of solitary tract (ST) primary afferents generated ST-eEPSCs that were rapidly and reversibly inhibited from most afferents by activation of CB1 with arachidonyl-2'-chloroethylamide (ACEA) or WIN 55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate]. The CB1 antagonist/inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] blocked these responses. Despite profound depression of ST-eEPSCs during CB1 activation, sEPSCs in these same neurons were unaltered. Changes in temperature changed sEPSC frequency only from TRPV1(+) afferents (i.e., thermal sEPSC responses only occurred in TRPV1(+) afferents). CB1 activation failed to alter these thermal sEPSC responses. However, the endogenous arachidonate metabolite N-arachidonyldopamine (NADA) promiscuously activated both CB1 and TRPV1 receptors. NADA inhibited ST-eEPSCs while simultaneously increasing sEPSC frequency, and thermally triggered sEPSC increases in neurons with TRPV1(+) afferents. We found no evidence for CB1/TRPV1 interactions suggesting independent regulation of two separate vesicle pools. Together, these data demonstrate that action potential-evoked synchronous glutamate release is modulated separately from TRPV1-mediated glutamate release despite coexistence

  8. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    Science.gov (United States)

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-12-04

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions.

  9. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells.

    Science.gov (United States)

    Wilhelmsen, Kevin; Khakpour, Samira; Tran, Alphonso; Sheehan, Kayla; Schumacher, Mark; Xu, Fengyun; Hellman, Judith

    2014-05-01

    Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.

  10. Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys.

    Science.gov (United States)

    Schindler, Charles W; Redhi, Godfrey H; Vemuri, Kiran; Makriyannis, Alexandros; Le Foll, Bernard; Bergman, Jack; Goldberg, Steven R; Justinova, Zuzana

    2016-08-01

    Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence. PMID:26888056

  11. Identification of naphthoylindoles acting on cannabinoid receptors based on their fragmentation patterns under ESI-QTOFMS.

    Science.gov (United States)

    Sekuła, Karolina; Zuba, Dariusz; Stanaszek, Roman

    2012-05-01

    'Herbal highs' have been advertised as legal and natural substitutes to cannabis, but a detailed examination of these products has revealed that the herbal matrix is laced with synthetic substances that mimic the effects of marijuana. Producers select the ingredients based on the results of scientific studies on the affinities of different chemicals to cannabinoid receptors. Naphthoylindoles have turned out to be the most popular class of substances identified in the products. Legal actions taken in order to tackle the problem of uncontrolled access to one substance have usually resulted in the marketing of derivatives or analogues. In the study, the mass spectral behavior of twelve synthetic cannabinoids from the naphthoylindole family under electrospray ionization (ESI) was investigated. LC-QTOFMS experiments were performed in three modes (low fragmentor voltage, high fragmentor voltage with/without collision energy), and they enabled the identification of protonated molecules and main ions. A general fragmentation pattern under this ionization method was proposed, and mechanisms of ion formation were discussed. The developed procedure allowed the determination of substituent groups of the core naphthoylindole structure and distinction between positional isomers. The obtained results were used for the prediction of the ESI-MS spectra for many naphthoylindoles with a high affinity to cannabinoid receptors. Similarities and differences between ESI-MS and electron impact-MS spectra of naphthoylindoles were discussed. The developed identification process was presented on an example of an analysis of an unknown herbal material, in which JWH-007 was finally identified. Knowledge of the fragmentation mechanisms of naphthoylindoles could also be used by other researchers for identification of unknown substances in this chemical family. PMID:22576877

  12. Evaluation of the abuse potential of AM281, a new synthetic cannabinoid CB1 receptor antagonist.

    Science.gov (United States)

    Botanas, Chrislean Jun; de la Peña, June Bryan; Dela Pena, Irene Joy; Tampus, Reinholdgher; Kim, Hee Jin; Yoon, Seong Shoon; Seo, Joung-Wook; Jeong, Eun Ju; Cheong, Jae Hoon

    2015-11-01

    AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) is a new synthetic cannabinoid CB1 receptor antagonist. Similar to other cannabinoid antagonists, AM281 has been suggested to have therapeutic indications. However, recent reports have suggested that cannabinoid CB1 receptor antagonists may share similar behavioral effects with other drugs of abuse such as cocaine and amphetamine. These reports cast doubts on the safety profile of AM281. Thus, in the present study we evaluated the abuse potential (rewarding and reinforcing effects) of AM281 through two of the most widely used animal models for assessing the abuse potential of drugs: the conditioned place preference (CPP) and self-administration (SA) tests. Experiments were performed in Sprague-Dawley rats in various dosages [CPP (0.1, 0.5 or 2.5mg/kg), SA (0.005, 0.025 or 0.1mg/kg/infusion)]. We also delved into the consequences of repeated drug exposure on the subsequent response to the drug. Thus, parallel experiments were carried out in rats pretreated with AM281 for 7 or 14 days. Our findings indicated that AM281, at any dose, did not induce CPP and SA in drug-naïve rats. Interestingly, significant CPP (0.5mg/kg of AM281), but not SA, was observed in 14 days pretreated rats. These observations suggest that AM281 per se has no or minimal rewarding and reinforcing properties, but alterations in neuronal functions and behavior due to repeated AM281 exposure may contribute in part to the abuse potential of this drug. In view of this finding, we advocate the careful use, monitoring, and dispensation of AM281.

  13. Endocannabinoids Anandamide and Its Cannabinoid Receptors in Liver Fibrosis after Murine Schistosomiasis

    Institute of Scientific and Technical Information of China (English)

    Hongyan LIU; Xiao GAO; Ruixian DUAN; Qiao YANG; Yaowen ZHANG; Yongwei CHENG; Yan GUO; Wangxian TANG

    2009-01-01

    This study examined endogenous cannabinoid (ECB)-anandamide (AEA) and its can-nabinoid receptors (CBR) in mice liver with the development of schistosomajaponicum.Mice were infected with schistosoma by means of pasting the cercaria onto their abdomens.Liver fibrosis was pathologically confirmed nine weeks after the infection.High performance liquid chromatography (HPLC) was employed to determine the concentration of AEA in the plasma of mice.Immunofluorescence was used to detect the expression of CBR 1 and CBR2 in liver tissue.Morphological examination showed typical pathological changes,with worm tubercles of schistosoma deposited in the liver tissue,fibrosis around the worm tubercles and infiltration or soakage ofinfiammatory cells.Also,CBRI and CBR2 were present in hepatocytes and hepatic sinusoids of the two groups,but they were obviously enhanced in the schistosoma-infected mice.However,the average optical density of CBR1 in the negative control and fibrosis group was 13.28±7.32 and 30.55±7.78,and CBR2 were 28.13±6.42 and 52.29±4.24 (P<0.05).The levels of AEA in the fibrosis group were significantly increased as compared with those of the control group.The concentrations of AEA were (0.37±0.07) and (5.67±1.34) ng/mL (P<0.05).It is concluded that the expression of endocannabinoids AEA and its cannabinoid receptor CBR were significantly increased in schistosoma-infected mice.Endogenous endocannabinoids may be involved in the development of schistosoma-induced liver fibrosis.

  14. Pharmacological activation/inhibition of the cannabinoid system affects alcohol withdrawal-induced neuronal hypersensitivity to excitotoxic insults.

    Directory of Open Access Journals (Sweden)

    Marina Rubio

    Full Text Available Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic challenge. Ethanol withdrawal increased N-methyl-D-aspartate (NMDA-evoked neuronal death, probably by altering the ratio between GluN2A and GluN2B NMDA receptor subunits. The stimulation of the endocannabinoid system with the cannabinoid agonist HU-210 decreased NMDA-induced neuronal death exclusively in ethanol-withdrawn neurons. This neuroprotection could be explained by a decrease in NMDA-stimulated calcium influx after the administration of HU-210, found exclusively in ethanol-withdrawn neurons. By contrast, the inhibition of the cannabinoid system with the CB1 receptor antagonist rimonabant (SR141716 during ethanol withdrawal increased death of ethanol-withdrawn neurons without any modification of NMDA-stimulated calcium influx. Moreover, chronic administration of rimonabant increased NMDA-stimulated toxicity not only in withdrawn neurons, but also in control neurons. In summary, we show for the first time that the stimulation of the endocannabinoid system is protective against the hyperexcitability developed during alcohol withdrawal. By contrast, the blockade of the endocannabinoid system is highly counterproductive during alcohol withdrawal.

  15. Cannabinoid Type-1 Receptor Gene Polymorphisms Are Associated with Central Obesity in a Southern Brazilian Population

    Directory of Open Access Journals (Sweden)

    Janaína P. Jaeger

    2008-01-01

    Full Text Available The CB1 cannabinoid receptor and its endogenous ligands, the endocannabinoids, are involved in energy balance control, stimulating appetite and increasing body weight in wasting syndromes. Different studies have investigated the relationship between polymorphisms of the cannabinoid receptor 1 (CNR1 gene and obesity with conflicting results. In the present study, we investigated the 1359G/A (rs1049353, 3813A/G (rs12720071 and 4895A/G (rs806368 polymorphisms in the CNR1 gene in a Brazilian population of European descent. To verify the association between these variants and obesity-related traits in this population, 756 individuals were genotyped by PCR-RFLP methods. The 4895G allele was associated with waist to hip ratio (WHR (P = 0.014; P = 0.042 after Bonferroni correction. An additive effect with the GAA haplotype was associated with WHR (P = 0.028, although this statistical significance disappeared after Bonferroni correction (P = 0.084. No significant association was observed between the genotypes of the 1359G/A and 3813A/G polymorphisms and any of the quantitative variables investigated. Our findings suggest that CNR1 gene polymorphism is associated with central obesity in this Brazilian population of European ancestry.

  16. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    Science.gov (United States)

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-01

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  17. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    Science.gov (United States)

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders. PMID:27528659

  18. 大麻受体激动剂对肺癌A549细胞凋亡和增殖的影响%Effect of Cannabinoid Receptor Activation by THC on Proliferation and Apoptosis of Lung Cancer A549 Cells

    Institute of Scientific and Technical Information of China (English)

    朱晓琴; 胡景鑫; 周于婷; 白红波; 赵青

    2011-01-01

    目的 研究大麻受体激动剂(delta9-tetrahydrocannabinol,THC)对肺癌A549细胞凋亡和增殖的影响.方法 MTT法测定THC对A549细胞增殖的影响;苏木精-伊红染色、扫描电镜观察细胞的形态学变化;Western blot 法分析大麻受体CB1、CB2的蛋白表达;DNA梯度电泳检测A549细胞凋亡;流式细胞仪分析细胞凋亡率变化.结果 THC预处理后,MTT检测表明THC对A549细胞增殖有明显抑制作用,随着药物浓度增大,抑制作用更加明显;苏木精-伊红染色、扫描电镜观察显示:肺癌A549细胞有典型的细胞凋亡形态;Western blot检测显示:A549细胞大麻受体CB1、CB2水平较正常气道上皮细胞株16HBE升高;DNA梯度电泳法及流式细胞仪检测显示:THC能抑制A549细胞生长,诱导其凋亡,并具有剂量依赖性.结论 大麻受体激动剂THC能抑制肺癌细胞的增殖,并诱导肺癌细胞凋亡,此效应可能与大麻受体CB1、CB2作用有关.%Objective To study the effect of the cannabinoid receptor activation by THC on the proliferation and apoptosis of lung cancer A549 cells- Methods The effects of THC on proliferation of A549 cells were measured by using MTT assay,and morphological changes of A549 cells after HE staining were observed under an electron microscopy. Protein expression of can nabinoid receptors CB1 and CB2 was detected by using Western blot. Apoptosis of A549 cells was examined by using DNA gra dient gel electrophoresis,and the change of apoptosis rate was analyzed by using flow cytometry. Results After pretreatment with THC,MTT assay revealed that THC could significantly suppress proliferation of A549 cells in a dose dependent man ner. HE staining and electron microscopy displayed that A549 cells had the typical apoptotic morphology. Western blot showed that cannabinoid receptors CB1 and CB2 were increased A549 cells as compared with those in normal airway epithelial cells 16HBE. DNA gradient electrophoresis and flow cytometry demonstrated

  19. Functional Selectivity of CB2 Cannabinoid Receptor Ligands at a Canonical and Noncanonical Pathway.

    Science.gov (United States)

    Dhopeshwarkar, Amey; Mackie, Ken

    2016-08-01

    The CB2 cannabinoid receptor (CB2) remains a tantalizing, but unrealized therapeutic target. CB2 receptor ligands belong to varied structural classes and display extreme functional selectivity. Here, we have screened diverse CB2 receptor ligands at canonical (inhibition of adenylyl cyclase) and noncanonical (arrestin recruitment) pathways. The nonclassic cannabinoid (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940) was the most potent agonist for both pathways, while the classic cannabinoid ligand (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran JWH133) was the most efficacious agonist among all the ligands profiled in cyclase assays. In the cyclase assay, other classic cannabinoids showed little [(-)-trans-Δ(9)-tetrahydrocannabinol and (-)-(6aR,7,10,10aR)-tetrahydro-6,6,9-trimethyl-3-(1-methyl-1-phenylethyl)-6H-dibenzo[b,d]pyran-1-ol] (KM233) to no efficacy [(6aR,10aR)-1-methoxy-6,6,9-trimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromene(L759633) and (6aR,10aR)-3-(1,1-dimethylheptyl)-6a,7,8,9,10,10a-hexahydro-1-methoxy-6,6-dimethyl-9-methylene-6H-dibenzo[b,d]pyran]L759656. Most aminoalkylindoles, including [(3R)-​2,​3-​dihydro-​5-​methyl-​3-​(4-​morpholinylmethyl)pyrrolo[1,​2,​3-​de]-​1,​4-​benzoxazin-​6-​yl]-​1-​naphthalenyl-​methanone,​ monomethanesulfonate (WIN55212-2), were moderate efficacy agonists. The cannabilactone 3-(1,1-dimethyl-heptyl)-1-hydroxy-9-methoxy-benzo(c)chromen-6-one (AM1710) was equiefficacious to CP55940 to inhibit adenylyl cyclase, albeit with lower potency. In the arrestin recruitment assays, all classic cannabinoid ligands failed to recruit arrestins, indicating a bias toward G-protein coupling for this class of compound. All aminoalkylindoles tested, except for WIN55212-2 and (1-​pentyl-​1H-​indol-​3-​yl)(2,​2,​3,​3-​tetramethylcyclopropyl)-​methanone (UR144), failed

  20. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors

    International Nuclear Information System (INIS)

    Highlights: • OX1 and OX2 orexin and CB1 cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX1, OX2 and CB1 receptors, C-terminally fused with either Renilla luciferase or GFP2 green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP2 to CB1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX1–OX2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for

  1. Müller cells express the cannabinoid CB2 receptor in the vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian;

    2013-01-01

    The presence of the cannabinoid receptor type 1 (CB1R) has been largely documented in the rodent and primate retinae in recent years. There is, however, some controversy concerning the presence of the CB2 receptor (CB2R) within the central nervous system. Only recently, CB2R has been found...... in the rodent retina, but its presence in the primate retina has not yet been demonstrated. The aim of this study was twofold: 1) to characterize the distribution patterns of CB2R in the monkey retina and compare this distribution with that previously reported for CB1R and 2) to resolve the controversy...... on the presence of CB2R in the neural component of the retina. We therefore thoroughly examined the cellular localization of CB2R in the vervet monkey (Chlorocebus sabeus) retina, using confocal microscopy. Our results demonstrate that CB2R, like CB1R, is present throughout the retinal layers, but with striking...

  2. Synthesis and Preliminary Evaluation of a 2-Oxoquinoline Carboxylic Acid Derivative for PET Imaging the Cannabinoid Type 2 Receptor

    Directory of Open Access Journals (Sweden)

    Linjing Mu

    2014-03-01

    Full Text Available Cannabinoid receptor subtype 2 (CB2 has been shown to be up-regulated in activated microglia and therefore plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer’s disease. The CB2 receptor is therefore considered as a very promising target for therapeutic approaches as well as for imaging. A promising 2-oxoquinoline derivative designated KP23 was synthesized and radiolabeled and its potential as a ligand for PET imaging the CB2 receptor was evaluated. [11C]KP23 was obtained in 10%–25% radiochemical yield (decay corrected and 99% radiochemical purity. It showed high stability in phosphate buffer, rat and mouse plasma. In vitro autoradiography of rat and mouse spleen slices, as spleen expresses a high physiological expression of CB2 receptors, demonstrated that [11C]KP23 exhibits specific binding towards CB2. High spleen uptake of [11C]KP23 was observed in dynamic in vivo PET studies with Wistar rats. In conclusion, [11C]KP23 showed promising in vitro and in vivo characteristics. Further evaluation with diseased animal model which has higher CB2 expression levels in the brain is warranted.

  3. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  4. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela, E-mail: daniela.parolaro@uninsubria.it [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  5. Effect of the cannabinoid receptor-1 antagonist rimonabant on inflammation in mice with diet-induced obesity

    Science.gov (United States)

    We studied whether cannabinoid receptor (CB1) blockade with rimonabant has an anti-inflammatory effect in obese mice, and whether this effect depends on weight loss and/or diet consumption. High-fat diet (HFD)-induced obese mice were treated orally with rimonabant (HFD-R) or vehicle (HFD-V) for 4 we...

  6. Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling.

    Science.gov (United States)

    Kopach, Olga; Vats, Juliana; Netsyk, Olga; Voitenko, Nana; Irving, Andrew; Fedirko, Nataliya

    2012-04-15

    Cannabinoid receptors (CBRs) belong to the G protein-coupled receptor superfamily, and activation of CBRs in salivary cells inhibits agonist-stimulated salivation and modifies saliva content. However, the role of different CBR subtypes in acinar cell physiology and in intracellular signalling remains unclear. Here, we uncover functional CB(1)Rs and CB(2)Rs in acinar cells of rat submandibular gland and their essential role in saliva secretion. Pharmacological activation of CB(1)Rs and CB(2)Rs in the submandibular gland suppressed saliva outflow and modified saliva content produced by the submandibular gland in vivo. Using Na(+)-selective microelectrodes to record secretory Na(+) responses in the lumen of acini, we observed a reduction in Na(+) transport following the activation of CBRs, which was counteracted by the selective CB(1)R antagonist AM251. In addition, activation of CB(1)Rs or CB Rs caused inhibition of Na(+)-K(+) 2 -ATPase activity in microsomes derived from the gland tissue as well as in isolated acinar cells. Using a Ca(2+) imaging technique, we showed that activation of CB(1)Rs and CB(2)Rs alters [Ca(2+)](cyt) signalling in acinar cells by distinct pathways, involving Ca(2+) release from the endoplasmic reticulum (ER) and store-operated Ca(2+) entry (SOCE), respectively. Our data demonstrate the expression of CB(1)Rs and CB(2)Rs in acinar cells, and their involvement in the regulation of salivary gland functioning.

  7. Benzyl-1,2,4-triazoles as CB1 Cannabinoid Receptor Ligands: Preparation and In Vitro Pharmacological Evaluation

    Science.gov (United States)

    Hernandez-Folgado, Laura; Decara, Juan; Rodríguez de Fonseca, Fernando; Goya, Pilar; Jagerovic, Nadine

    2016-01-01

    In a previous study, we have identified 3-alkyl-1,5-diaryl-1H-1,2,4-triazoles to be a novel class of cannabinoid type 1 receptor (CB1R) antagonists. In order to expand the number of cannabinoid ligands with a central 1,2,4-triazole scaffold, we have synthesized a novel series of 1-benzyl-1H-1,2,4-triazoles, and some of them were evaluated by CB1R radioligand binding assays. Compound 12a showed the most interesting pharmacological properties, possessing a CB1R affinity in the nanomolar range. PMID:27127651

  8. The Cannabinoid Receptor CB1 Interacts with the WAVE1 Complex and Plays a Role in Actin Dynamics and Structural Plasticity in Neurons.

    Science.gov (United States)

    Njoo, Christian; Agarwal, Nitin; Lutz, Beat; Kuner, Rohini

    2015-10-01

    The molecular composition of the cannabinoid type 1 (CB1) receptor complex beyond the classical G-protein signaling components is not known. Using proteomics on mouse cortex in vivo, we pulled down proteins interacting with CB1 in neurons and show that the CB1 receptor assembles with multiple members of the WAVE1 complex and the RhoGTPase Rac1 and modulates their activity. Activation levels of CB1 receptor directly impacted on actin polymerization and stability via WAVE1 in growth cones of developing neurons, leading to their collapse, as well as in synaptic spines of mature neurons, leading to their retraction. In adult mice, CB1 receptor agonists attenuated activity-dependent remodeling of dendritic spines in spinal cord neurons in vivo and suppressed inflammatory pain by regulating the WAVE1 complex. This study reports novel signaling mechanisms for cannabinoidergic modulation of the nervous system and demonstrates a previously unreported role for the WAVE1 complex in therapeutic applications of cannabinoids.

  9. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    OpenAIRE

    Oosterveer, Maaike H.; Koolman, Anniek H; de Boer, Pieter T; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

    2011-01-01

    Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods: We evaluated adipose tissue differentiation/proliferation markers and q...

  10. Regulation of transient receptor potential channels of melastatin type 8 (TRPM8): effect of cAMP, cannabinoid CB(1) receptors and endovanilloids.

    Science.gov (United States)

    De Petrocellis, Luciano; Starowicz, Katarzyna; Moriello, Aniello Schiano; Vivese, Marta; Orlando, Pierangelo; Di Marzo, Vincenzo

    2007-05-15

    The transient receptor potential channel of melastatin type 8 (TRPM8), which is gated by low (<25 degrees C) temperature and chemical compounds, is regulated by protein kinase C-mediated phosphorylation in a way opposite to that observed with the transient receptor potential channel of vanilloid type 1 (TRPV1), i.e. by being desensitized and not sensitized. As TRPV1 is sensitized also by protein kinase A (PKA)-mediated phosphorylation, we investigated the effect of two activators of the PKA pathway, 8-Br-cAMP and forskolin, on the activity of menthol and icilin at TRPM8 in HEK-293 cells stably overexpressing the channel (TRPM8-HEK-293 cells). We also studied the effect on TRPM8 of: (1) a series of compounds previously shown to activate or antagonize TRPV1, and (2) co-stimulation of transiently co-expressed cannabinoid CB(1) receptors. Both 8-Br-cAMP (100 microM) and forskolin (10 microM) right-shifted the dose-response curves for the TRPM8-mediated effect of icilin and menthol on intracellular Ca(2+). The inhibitory effects of 8-Br-cAMP and forskolin were attenuated by the selective PKA inhibitor Rp-cAMP-S. Stimulation of human CB(1) receptors transiently co-expressed in TRPM8-HEK-293 cells also inhibited TRPM8 response to icilin. Finally, some TRPV1 agonists and antagonists, but not iodinated antagonists, antagonized icilin- and much less so menthol-, induced TRPM8 activation. Importantly, the endovanilloids/endocannabinoids, anandamide and NADA, also antagonized TRPM8 at submicromolar concentrations. Although these findings need to be confirmed by experiments directly measuring TRPM8 activity in natively TRPM8-expressing cells, they support the notion that the same regulatory events have opposing actions on TRPM8 and TRPV1 receptors and identify anandamide and NADA as the first potential endogenous functional antagonists of TRPM8 channels.

  11. Cannabinoid WIN-55,212-2 mesylate inhibits ADAMTS-4 activity in human osteoarthritic articular chondrocytes by inhibiting expression of syndecan-1

    Science.gov (United States)

    KONG, YING; WANG, WANCHUN; ZHANG, CHANGJIE; WU, YI; LIU, YANG; ZHOU, XIAORONG

    2016-01-01

    A central feature of osteoarthritis (OA) is the loss of articular cartilage, which is primarily attributed to cartilage breakdown. A group of metalloproteinases termed the A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family are reported to be important in cartilage breakdown. Recent studies have suggested that ADAMTS-4 is a major contributor to the pathogenesis of OA and that syndecan-1 is closely associated with activation of ADAMTS-4 in human chondrocytes. Accumulating evidence also suggests that cannabinoids have chondroprotective effects. The current study explored the effects of synthetic cannabinoid WIN-55,212-2 mesylate (WIN-55) on the expression of syndecan-1 and ADAMTS-4, as well as ADAMTS-4 activity, in unstimulated and interleukin (IL)-1β-stimulated OA chondrocytes. Primary human OA articular chondrocytes were treated with WIN-55 in the presence or absence of IL-1β and cannabinoid receptor antagonists. The results of the present study demonstrated that WIN-55 inhibited ADAMTS-4 activity in unstimulated and IL-1β-stimulated primary human OA articular chondrocytes in a concentration-dependent manner. Cannabinoid receptor type 1 (CB1) and 2 (CB2) were constitutively expressed in human OA articular chondrocytes. Furthermore, selective CB2 antagonist, JTE907, but not selective CB1 antagonist, MJ15, abolished the inhibitory effect of WIN-55 on ADAMTS-4 activity. WIN55 inhibited the expression of syndecan-1 but not ADAMTS-4, and overexpression of syndecan-1 reversed the inhibitory effect of WIN-55 on the ADAMTS-4 activity in unstimulated and IL-1β-stimulated human OA articular chondrocytes. Despite having no significant effect on syndecan-1 gene promoter activity, WIN-55 markedly decreased the stability of syndecan-1 mRNA via CB2. In conclusion, to the best of our knowledge, the present study provides the first in vitro evidence supporting that the synthetic cannabinoid WIN-55 inhibits ADAMTS-4 activity in unstimulated and IL-1

  12. Diarylureas as allosteric modulators of the cannabinoid CB1 receptor: structure-activity relationship studies on 1-(4-chlorophenyl)-3-{3-[6-(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1).

    Science.gov (United States)

    German, Nadezhda; Decker, Ann M; Gilmour, Brian P; Gay, Elaine A; Wiley, Jenny L; Thomas, Brian F; Zhang, Yanan

    2014-09-25

    The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl substitution at the 2-aminopyridine moiety and electron deficient aromatic groups at the 4-chlorophenyl position for activity at the CB1 receptor, resulting in several analogs with comparable potency to 4. These compounds increased the specific binding of [(3)H]CP55,940, in agreement with previous reports. Importantly, 4 and two analogs dose-dependently reduced the Emax of the agonist curve in the CB1 calcium mobilization assays, confirming their negative allosteric modulator characteristics. Given the side effects associated with CB1 receptor orthosteric antagonists, negative allosteric modulators provide an alternative approach to modulate the pharmacologically important CB1 receptor.

  13. 大麻素受体在肝星状细胞活化中的作用及姜黄素干预效应%Research on the role of cannabinoid receptors in hepaticstellate cell activation and interfering effects of curcumin

    Institute of Scientific and Technical Information of China (English)

    张自力; 张涉; 郭瑶; 王妤清; 倪雯霞; 张衍; 孔德松; 郑仕中

    2013-01-01

    Aim To explore the role of cannabinoid receptors in the activation of hepatic stellate cells ( HSCs ) and the interfering effects of curcumin in the hope of providing basis for elucidating the mechanism of liver fibrosis and curcumin inhibition of liver fibro-sis. Methods Influence of CBR1 agonist NADA and antagonist AM630, CBR2 agonist JWH015 and antagonist AM251 on the proliferation of HSCs was evaluated by MTT assay. Western blot assays were used to detect the expression of ERK, JNK and p38 and their phos-phorylation levels in HSCs treated with AM251. The effect of curcumin on the expression of two types of cannabinoid receptors CBR1 and CBR2 in HSCs was determined by Western blot and immunofluorescence. The effect of curcumin on extracellular matrix ( ECM ) components α1 ( Ⅰ ) collagen and fibronectin in HSCs stimulating by CBR1 agonist and antagonist was also examined by Western blot. Results Activating CBR1 promoted the proliferation of HSCs; on the contrary, CBR1 antagonism inhibited HSCs proliferation ( P 0. 05 ). CBR1 antagonist AM251 significantly inhibited the phosphorylation of ERK and JNK in a dose-dependent manner ( P 0. 05 ). Curcumin inhibited the expression of CBR1 ( P 0. 05 ). Curcumin inhibited the expression of ECM components upregulated by CBR1 agonist dose-depend-ently in HSCs, and collaboratively inhibited the expression of ECM components in HSCs exposed to CBR1 antagonist ( P 0.05).CBR1拮抗剂AM251能够明显抑制ERK与JNK的磷酸化,并呈剂量依赖性的关系(P0.05).姜黄素可抑制HSCs中CBR1的表达(P0.05).姜黄素可呈剂量依赖性的抑制CBR1激动剂导致的ECM成分表达的上升,并可协同 CBR1拮抗剂抑制HSCs表达ECM成分的作用(P<0.05,P<0.01).结论 大麻素受体在HSCs的增殖活化过程中具有重要作用,姜黄素可能通过干预大麻素受体信号通路这一途径达到治疗肝纤维化的目的.

  14. The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusion-induced cardiomyopathy.

    Science.gov (United States)

    Defer, Nicole; Wan, Jinghong; Souktani, Richard; Escoubet, Brigitte; Perier, Magali; Caramelle, Philippe; Manin, Sylvie; Deveaux, Vanessa; Bourin, Marie-Claude; Zimmer, Andreas; Lotersztajn, Sophie; Pecker, Françoise; Pavoine, Catherine

    2009-07-01

    Post-myocardial infarction (MI) heart failure is a major public health problem in Western countries and results from ischemia/reperfusion (IR)-induced cell death, remodeling, and contractile dysfunction. Ex vivo studies have demonstrated the cardioprotective anti-inflammatory effect of the cannabinoid type 2 (CB2) receptor agonists within hours after IR. Herein, we evaluated the in vivo effect of CB2 receptors on IR-induced cell death, fibrosis, and cardiac dysfunction and investigated the target role of cardiac myocytes and fibroblasts. The infarct size was increased 24 h after IR in CB2(-/-) vs. wild-type (WT) hearts and decreased when WT hearts were injected with the CB2 agonist JWH133 (3 mg/kg) at reperfusion. Compared with WT hearts, CB2(-/-) hearts showed widespread injury 3 d after IR, with enhanced apoptosis and remodeling affecting the remote myocardium. Finally, CB2(-/-) hearts exhibited exacerbated fibrosis, associated with left ventricular dysfunction 4 wk after IR, whereas their WT counterparts recovered normal function. Cardiac myocytes and fibroblasts isolated from CB2(-/-) hearts displayed a higher H(2)O(2)-induced death than WT cells, whereas 1 microM JWH133 triggered survival effects. Furthermore, H(2)O(2)-induced myofibroblast activation was increased in CB2(-/-) fibroblasts but decreased in 1 microM JWH133-treated WT fibroblasts, compared with that in WT cells. Therefore, CB2 receptor activation may protect against post-IR heart failure through direct inhibition of cardiac myocyte and fibroblast death and prevention of myofibroblast activation.

  15. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    Science.gov (United States)

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  16. The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus

    Directory of Open Access Journals (Sweden)

    Irit eAkirav

    2011-06-01

    Full Text Available Cannabinoid agonists generally have a disruptive effect on memory, learning, and operant behavior that is considered to be hippocampus-dependent. Nevertheless, under certain conditions, cannabinoid receptor activation may facilitate neuronal learning processes. For example, CB1 receptors are essential for the extinction of conditioned fear associations, indicating an important role for this receptor in neuronal emotional learning and memory. This review examines the diverse effects of cannabinoids on hippocampal memory and plasticity. It shows how the effects of cannabinoid receptor activation may vary depending on the route of administration, the nature of the task (aversive or not, and whether it involves emotional memory formation (e.g. conditioned fear and extinction learning or non-emotional memory formation (e.g. spatial learning. It also examines the memory stage under investigation (acquisition, consolidation, retrieval, extinction, and the brain areas involved. Differences between the effects of exogenous and endogenous agonists are also discussed. The apparently biphasic effects of cannabinoids on anxiety is noted as this implies that the effects of cannabinoid receptor agonists on hippocampal learning and memory may be attributable to a general modulation of anxiety or stress levels and not to memory per se. The review concludes that cannabinoids have diverse effects on hippocampal memory and plasticity that cannot be categorized simply into an impairing or an enhancing effect. A better understanding of the involvement of cannabinoids in memory processes will help determine whether the benefits of the clinical use of cannabinoids outweigh the risks of possible memory impairments.

  17. The Structure–Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation

    Science.gov (United States)

    Bow, Eric W.; Rimoldi, John M.

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (−)-Δ9-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure–CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure–activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure–activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  18. The Structure-Function Relationships of Classical Cannabinoids: CB1/CB2 Modulation.

    Science.gov (United States)

    Bow, Eric W; Rimoldi, John M

    2016-01-01

    The cannabinoids are members of a deceptively simple class of terpenophenolic secondary metabolites isolated from Cannabis sativa highlighted by (-)-Δ(9)-tetrahydrocannabinol (THC), eliciting distinct pharmacological effects mediated largely by cannabinoid receptor (CB1 or CB2) signaling. Since the initial discovery of THC and related cannabinoids, synthetic and semisynthetic classical cannabinoid analogs have been evaluated to help define receptor binding modes and structure-CB1/CB2 functional activity relationships. This perspective will examine the classical cannabinoids, with particular emphasis on the structure-activity relationship of five regions: C3 side chain, phenolic hydroxyl, aromatic A-ring, pyran B-ring, and cyclohexenyl C-ring. Cumulative structure-activity relationship studies to date have helped define the critical structural elements required for potency and selectivity toward CB1 and CB2 and, more importantly, ushered the discovery and development of contemporary nonclassical cannabinoid modulators with enhanced physicochemical and pharmacological profiles. PMID:27398024

  19. Mead ethanolamide, a novel eicosanoid, is an agonist for the central (CB1) and peripheral (CB2) cannabinoid receptors.

    Science.gov (United States)

    Priller, J; Briley, E M; Mansouri, J; Devane, W A; Mackie, K; Felder, C C

    1995-08-01

    The recently discovered endogenous agonist for the cannabinoid receptor, anandamide (arachidonylethanolamide), can be formed enzymatically by the condensation of arachidonic acid with ethanolamine. 5Z,8Z,11Z-Eicosatrienoic acid (mead acid) has been found to substitute for arachidonic acid in the sn-2 position of phospholipids and accumulate during periods of dietary fatty acid deprivation in rats. In the present study, the chemically synthesized ethanolamide of mead acid was evaluated as a potential agonist at the two known subtypes of cannabinoid receptor: CB1 (central) and CB2 (peripheral). This compound was equipotent to anandamide in competing with [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the human CB1 receptor and from ATt-20 cells expressing the human CB2 receptor. Mead ethanolamide was also equipotent to anandamide in inhibiting forskolin-stimulated cAMP accumulation in cells expressing the CB1 receptor. It inhibited N-type calcium currents with a lower potency than anandamide. Mead and arachidonic acid were equally efficacious as substrates for the enzymatic synthesis of their respective ethanolamides in rat and adult human hippocampal P2 membranes. Palmitic acid was not an effective substrate for the enzymatic synthesis of palmitoyl ethanolamide. Mead ethanolamide exhibits several characteristics of a novel agonist to CB1 and CB2 receptors and may represent another candidate endogenous ligand for the CB1 receptor. Due to the anticonvulsant properties of GABA and the positional similarity of L-serine to ethanolamine in membrane phospholipids, these compounds were synthetically coupled to arachidonic acid, and their resulting arachidonamides were tested as potential cannabinoid agonists. The arachidonamides of GABA and L-serine were inactive in both binding and functional assays at the CB1 receptor. PMID:7651362

  20. Novel selective cannabinoid CB1 receptor antagonist MJ08 with potent in vivo bioactivity and inverse agonistic effects

    Institute of Scientific and Technical Information of China (English)

    Wei CHEN; Cheng XU; Hong-ying LIU; Long LONG; Wei ZHANG; Zhi-bing ZHENG; Yun-de XIE; Li-li WANG; Song LI

    2011-01-01

    To characterize the biological profiles of M J08,a novel selective CB1 receptor antagonist.Methods:Radioligand binding assays were performed using rat brain and spleen membrane preparations.CB1 and CB2 receptor redistribution and intracellular Ca2+ ([Ca2+]1) assays were performed with IN CELL Analyzer.Inverse agonism was studied using intracellular cAMP assays,and in guinea-pig ileum and mouse vas deferens smooth muscle preparations.In vivo pharmacologic profile was assessed in diet-induced obesity (DIO) mice.Results:In radioligand binding assay,M J08 selectively antagonized CB1 receptor (IC50=99.9 nmol/L).In EGFP-CB1_U20S cells,its IC50 value against CB1 receptor activation was 30.23 nmol/L (SR141716A:32.16 nmol/L).WIN 55,212-2 (1 μmol/L) increased [Ca2+]1 in the primary cultured hippocampal neuronal cells and decreased cAMP accumulation in CHO-hCB1 cells.M J08 (10 nmol/L-1O μmol/L)blocked both the WIN 55,212-2-induced effects.Furthermore,M J08 reversed the inhibition of electrically evoked twitches of mouse vas deferens by WIN 55,212-2 (pA2=10.29±1.05).M J08 and SR141716A both showed an inverse agonism activity by markedly promoting the contraction force and frequency of guinea pig ileum muscle.M J08 significantly increased the cAMP level in CHO-hCB1 cells with an EC50 value of 78.6 nmol/L,which was lower than the EC50 value for SR141716A (159.2 nmol/L).Besides the more potent pharmacological effects of cannabinoid CB1 receptor antagonism in DIO mice,such as reducing food intake,decreasing body weight,and ameliorating dyslipidemia,M J08 (10 mg/kg) unexpectedly raised the fasted blood glucose in vivo.Conclusion:M J08 is a novel,potent and selective CB1 receptor antagonist/inverse agonist with potent bioactive responses in vitro and in vivo that may be useful for disclosure the versatile nature of CB1 receptors.

  1. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    Directory of Open Access Journals (Sweden)

    Xavier Viñals

    2015-07-01

    Full Text Available Activation of cannabinoid CB1 receptors (CB1R by delta9-tetrahydrocannabinol (THC produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  2. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jäntti, Maria H., E-mail: maria.jantti@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland); Mandrika, Ilona, E-mail: ilona@biomed.lu.lv [Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga LV 1067 (Latvia); Kukkonen, Jyrki P., E-mail: jyrki.kukkonen@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland)

    2014-03-07

    Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1}, OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way

  3. Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs

    Science.gov (United States)

    Turcotte, Caroline; Blanchet, Marie-Renée; Laviolette, Michel; Flamand, Nicolas

    2016-01-01

    Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids. PMID:27695418

  4. The Role of Phosphatidylinositol-3-Kinase and AMP-Activated Kinase in the Rapid Estrogenic Attenuation of Cannabinoid-Induced Changes in Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Edward J. Wagner

    2011-04-01

    Full Text Available We sought to determine the involvement of phosphatidyl inositol 3-kinase (PI3K and AMP-activated protein kinase (AMPK in the estrogenic antagonism of the cannabinoid regulation of energy homeostasis. Food intake and body weight were evaluated in ovariectomized female guinea pigs treated s.c. with estradiol benzoate (EB or its sesame oil vehicle, or the CB1 receptor antagonist AM251 or its cremephor/ethanol/0.9% saline vehicle. AMPK catalytic subunit, PI3K p85α regulatory subunit and proopiomelanocortin (POMC gene expression was assessed via quantitative RT-PCR in microdissected hypothalamic tissue. Whole-cell patch clamp recordings were performed in hypothalamic slices. Both EB and AM251 decreased food intake and weight gain, and increased AMPKα1, AMPKα2 and PI3K p85α gene expression in the mediobasal hypothalamus. 17β-Estradiol rapidly and markedly attenuated the decreases in glutamatergic miniature excitatory postsynaptic current (mEPSC frequency caused by the cannabinoid receptor agonist WIN 55,212-2 in POMC neurons. This rapid estrogenic diminution of cannabinoid-induced decreases in mEPSC frequency was blocked by the estrogen receptor (ER antagonist ICI 182,780 and the PI3K inhibitor PI 828, the latter of which also prevented the AM251-induced increase in mEPSC frequency. In addition, the AMPK activator metformin reversed the EB-induced decreases in food intake and weight gain and restored the ability of WIN 55,212-2 to reduce mEPSC frequency. These data reveal that estrogens physiologically antagonize cannabinoid-induced changes in appetite and POMC neuronal activity by activating PI3K and inhibiting AMPK. As such, they provide insight into the neuroanatomical substrates and signal transduction mechanisms upon which these counter-regulatory factors converge in the control of energy homeostasis.

  5. CB1 cannabinoid receptors are involved in neuroleptic-induced enhancement of brain neurotensin

    Directory of Open Access Journals (Sweden)

    Parichehr Hassanzadeh

    2014-03-01

    Full Text Available Objective(s: Targeting the neuropeptide systems has been shown to be useful for the development of more effective antipsychotic drugs. Neurotensin, an endogenous neuropeptide, appears to be involved in the mechanism of action of antipsychotics. However, the available data provide conflicting results and the mechanism(s by which antipsychotics affect brain neurotensin neurotransmission have not been identified. Therefore, we aimed to investigate the effects of fluphenazine and amisulpride on brain regional contents of neurotensin considering the role of cannabinoid CB1 receptors which interact with neurotensin neurotransmission. Materials and Methods:Fluphenazine (0.5, 1, and 3 mg/kg or amisulpride (3, 5, and 10 mg/kg were administered intraperitoneally to male Wistar rats either for one day or 28 consecutive days.Twenty four hours after the last injection of drug or vehicle, neurotensin contents were determined in the mesocorticolimbic and nigrostriatal dopamine regions by radioimmunoassay. In the case of any significant change, the effect of pre-treatment with CB1 receptor antagonist, AM251 was investigated. Results:Chronic, but not acute, treatment with the highest dose of fluphenazine or amisulpride resulted in significant enhancement of neurotensin contents in the prefronatal cortex and nucleus accumbens. Fluphenazine also elevated neurotensin levels in the anterior and posterior caudate nuclei and substantia nigra. Neither amisulpride nor fluphenazine affected neurotensin contents in the amygdala or hippocampus. Pre-treatment with AM251 (3 mg/kg prevented the neuroleptic-induced elevation of neurotensin. AM251 showed no effect by itself. Conclusion:The brain neurotensin under the regulatory action of CB1 receptors is involved in[T1]  the effects of amisulpride and fluphenazine.

  6. Structural analogs of pyrazole and sulfonamide cannabinoids: Effects on acute food intake in mice

    OpenAIRE

    Wiley, Jenny L; Marusich, Julie A.; Zhang, Yanan; Fulp, Alan; Maitra, Rangan; Thomas, Brian F.; Mahadevan, Anu

    2012-01-01

    Obesity contributes to a multitude of serious health problems. Given the demonstrated role of the endogenous cannabinoid system in appetite regulation, the purpose of the present study was to evaluate structural analogs of two cannabinoids, rimonabant (cannabinoid CB1 receptor antagonist) and O-2050 (sulfonamide analog of Δ8-tetrahydrocannabinol), that showed appetite suppressant effects in previous studies. Structure–activity relationships of these two lead compounds were examined in several...

  7. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders.

  8. Long-term consequences of URB597 administration during adolescence on cannabinoid CB1 receptor binding in brain areas.

    Science.gov (United States)

    Marco, Eva María; Rubino, Tiziana; Adriani, Walter; Viveros, María-Paz; Parolaro, Daniela; Laviola, Giovanni

    2009-02-27

    Despite the alarming increment in the use and abuse of cannabis preparations among young people, little is known about possible long-term consequences of targeting the endocannabinoid system during the critical developmental period of adolescence. Therefore, we aimed to analyze possible long-lasting neurobiological consequences of enhancing endocannabinoid signalling during adolescence, by means of blocking anandamide (AEA) hydrolysis. Adolescent Wistar male rats were administered an inhibitor of AEA hydrolysis, i.e. URB597 (0, 0.1 or 0.5 mg/kg/day from postnatal days 38 to 43). The expression of brain cannabinoid receptor type 1 (CB1R) was then analyzed by [(3)H]CP-55,940 auto-radiographic binding at adulthood. Repeated URB597 administration during adolescence persistently modified CB1R binding in a region-dependent manner. A long-lasting decrease of CB1R binding levels was found in caudate-putamen, nucleus accumbens, ventral tegmental area and hippocampus, while an opposite increment was observed in the locus coeruleus. Present results provide evidence for long-lasting effects of adolescent URB597 administration. Activation of endocannabinoid transmission during the still plastic phase of adolescence may have implications for the maturational end-point of the endocannabinoid system itself, which could lead to permanent alterations in neuronal brain circuits and behavioural responses. Insights into the developmental trajectories of this neuromodulatory system may help us to better understand and prevent outcomes of neonatal and adolescent cannabis exposure.

  9. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    Science.gov (United States)

    Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.; Kunos, George

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1−/− but not in nos2−/− mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.

  10. The Neuroprotective Effect of Cannabinoid Receptor Agonist (WIN55,212-2 in Paraoxon Induced Neurotoxicity in PC12 Cells and N-methyl-D-aspartate Receptor Interaction

    Directory of Open Access Journals (Sweden)

    Hedayat Sahraei

    2010-01-01

    Full Text Available Objective: Considering that cannabinoids protect neurons against neurodegeneration, inthis study, the neuroprotective effect of WIN55,212-2 in paraoxon induced neurotoxicity inPC12 cells and the role of the N-methyl-D-aspartate (NMDA receptor were evaluated.Materials and Methods: In this study PC12 cells were maintained in Dulbecco's modifiedeagle’s medium (DMEM+F12 culture medium supplemented with 10% fetal bovineserum. The cells were treated with paraoxon (200 μM in the presence or absence ofWIN55,212-2 (0.1 μM, NMDA receptor agonist NMDA (100 μM, cannabinoid receptorantagonist AM251 and NMDA receptor antagonist MK801 (1 μM at 15 minutes intervals.After 48 hours of exposure, cellular viability and protein expression of the CB1 receptorwere evaluated in PC12 cells.Results: Following the exposure of PC12 cells to paraoxon (200 μM, a reduction in cellsurvival and protein level of the CB1 receptor was observed (p<0.01. Treatment of thecells with WIN55,212-2 (0.1 μM and NMDA (100 μM prior to paraoxon exposure significantlyelevated cell survival and protein level of the CB1 receptor (p<0.01. Also, AM251(1μM did not inhibit the cell survival and protein level of the CB1 receptor increase inducedby WIN55,212-2 (p<0.001. However, MK801 (1 μM did inhibit cell survival andprotein expression of the CB1 receptor increase induced by NMDA (p<0.001.Conclusion: The results indicate that WIN55,212-2 and NMDA protect PC12 cellsagainst paraoxon induced toxicity. In addition, the neuroprotective effect of WIN55,212-2and NMDA was cannabinoid receptor-independent and NMDA receptor dependent, respectively.

  11. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Directory of Open Access Journals (Sweden)

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  12. Therapeutic Potentials and uses of Cannabinoid Agonists in Health and Disease Conditions

    Directory of Open Access Journals (Sweden)

    A.O. Ibegbu

    2012-04-01

    Full Text Available Cannabis and its derivatives have great therapeutic potential and have been used for centuries for medicinal purposes. The side effects of cannabinoids include euphoric mood changes, acute psychotic episodes, initiation and exacerbation of schizophrenic psychosis in predisposed persons, impaired cognitive and psychomotor performance, tachycardia and hypotension. The production of complex behavioural effects by cannabinoids are mediated by cannabinoid receptors (CB1 and CB2 and by interactions with other neurochemical systems. It has been shown that the therapeutic and physiological effects of cannabinoids are dependent upon whether the administration is acute or chronic and on the route of administration. The physiological effects of cannabis and its derivatives include: reduction in psychomotor coordination and performance, alterations in thermoregulation, endocrine and reproductive functions and gut motility. There is also evidence of agonist selectivity for CB1 receptors coupled to different subtypes of Gi proteins or to Gi versus Go proteins. Cannabinoid-activated receptors distinct from CB1 or CB2 exist in the central nervous system. Cannabinoids are known to inhibit GABA-mediated inhibitory postsynaptic currents in the hippocampus via a presynaptic action at CB1 receptors located on GABAergic terminals. CB1 receptors have also been implicated in the inhibition of glutamatergic excitatory postsynaptic currents. The synthetic cannabinoid, Win 55,212-2, a mixed CB1-CB2 cannabinoid receptor agonist, was found to attenuate hyperalgesia in a rat model of neuropathic pain and suppress opioid-induced emesis in ferrets.

  13. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: effect of ovarian hormones.

    Science.gov (United States)

    Castelli, Maria Paola; Fadda, Paola; Casu, Angelo; Spano, Maria Sabrina; Casti, Alberto; Fratta, Walter; Fattore, Liana

    2014-01-01

    Sex-dependent differences are frequently observed in the biological and behavioural effects of substances of abuse, including cannabis. We recently demonstrated a modulating effect of sex and oestrous cycle on cannabinoid-taking and seeking behaviours. Here, we investigated the influence of sex and oestrogen in the regulation of cannabinoid CB1 receptor density and function, measured by [(3)H]CP55940 and CP55940-stimulated [(35)S]GTPγS binding autoradiography, respectively, in the prefrontal cortex (Cg1 and Cg3), caudate- putamen, nucleus accumbens, amygdala and hippocampus of male and cycling female rats, as well as ovariectomised (OVX) rats and OVX rats primed with oestradiol (10 µg/rat) (OVX+E). CB1 receptor density was significantly lower in the prefrontal cortex and amygdala of cycling females than in males and in OVX females, a difference that appeared to be oestradiol-dependent, because it was no more evident in the OVX+E group. CP55940-stimulated [(35)S]GTPγS binding was significantly higher in the Cg3 of OVX rats relative to cycling and OVX+E rats. No difference was observed in CB1 receptor density or function in any of the other brain areas analysed. Finally, sex and oestradiol were also found to affect motor activity, social behaviour and sensorimotor gating in rats tested in locomotor activity boxes, social interaction and prepulse inhibition tasks, respectively. Our findings provide biochemical evidence for sex- and hormone- dependent differences in the density and function of CB1 receptors in selected brain regions, and in behaviours associated with greater vulnerability to drug addiction, revealing a more vulnerable behavioural phenotype in female than in male rats. PMID:23829370

  14. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing.

    Science.gov (United States)

    Shire, D; Carillon, C; Kaghad, M; Calandra, B; Rinaldi-Carmona, M; Le Fur, G; Caput, D; Ferrara, P

    1995-02-24

    The cDNA sequences encoding the central cannabinoid receptor, CB1, are known for two species, rat and human. However, little information concerning the flanking, noncoding regions is presently available. We have isolated two overlapping clones from a human lung cDNA library with CB1 cDNA inserts. One of these, cann7, contains a short stretch of the CB1 coding region and 4 kilobase pairs (kb) of the 3'-untranslated region (UTR), including two polyadenylation signals. The other, cann6, is identical to cann7 upstream from the first polyadenylation signal, and in addition, it contains the whole coding region and extends for 1.8 kb into the 5'-UTR. Comparison of cann6 with the published sequence (Gérard, C. M., Mollereau, C., Vassart, G., and Parmentier, M. (1991) Biochem. J. 279, 129-134) shows the coding regions to be identical, but reveals important differences in the flanking regions. Notably, the cann6 sequence appears to be that of an immature transcript, containing 1.8 kb of an intronic sequence in the 5'-UTR. In addition, polymerase chain reaction amplification of the CB1 coding region in the IM-9 cell line cDNA resulted in two fragments, one containing the whole CB1 coding region and the second lacking a 167-base pair intron within the sequence encoding the amino-terminal tail of the receptor. This alternatively spliced form would translate to an NH2-terminal modified isoform (CB1A) of the receptor, shorter than CB1 by 61 amino acids. In addition, the first 28 amino acids of the putative truncated receptor are completely different from those of CB1, containing more hydrophobic residues. Rat CB1 mRNA is similarly alternatively spliced. A study of the distribution of the human CB1 and CB1A mRNAs by reverse transcription-polymerase chain reaction analysis showed the presence of both CB1 and CB1A throughout the brain and in all the peripheral tissues examined, with CB1A being present in amounts of up to 20% of CB1. PMID:7876112

  15. Cannabinoid receptor agonist protects cultured dopaminergic neurons from the death by the proteasomal dysfunction

    OpenAIRE

    Jeon, Posung; Yang, Sungjun; Jeong, Hojoong; Kim, Hyun

    2011-01-01

    Cannabinoids have been proposed to possess neuroprotective properties; though their mechanism of action remains contentious, they are posited to prevent neurodegenerative disorders, including Parkinson's disease, the pathogenesis of which has not been established. Recent studies have demonstrated that induction of proteasomal dysfunction in animal models results in a phenotype similar to Parkinson's disease. Here, we investigated the neuroprotective function of a synthetic cannabinoid-recepto...

  16. Subchronic nicotine exposure in adolescence induces long-term effects on hippocampal and striatal cannabinoid-CB1 and mu-opioid receptors in rats.

    Science.gov (United States)

    Marco, Eva M; Granstrem, Oleg; Moreno, Enrique; Llorente, Ricardo; Adriani, Walter; Laviola, Giovanni; Viveros, Maria-Paz

    2007-02-14

    There is evidence for the existence of functional interactions between nicotine and cannabinoids and opioid compounds in adult experimental animals. However, there is scarce information about these relationships in young animals. In the present study we evaluated short and long-term effects of a subchronic nicotine treatment [0.4 mg/kg daily i.p. injections from postnatal day (PND) 34 to PND 43], upon hippocampal and striatal cannabinoid-CB(1) and mu-opioid receptors in Wistar rats of both genders. Rats were sacrificed 2 h after the last nicotine injection (short-term effects, PND 43) or one month later (long-term effects, PND 75). Hippocampal and striatal cannabinoid CB(1) and mu-opioid receptors were quantified by Western blotting. The subchronic nicotine treatment induced a region-dependent long-lasting effect in cannabinoid CB(1) receptor: a significant increase in hippocampal cannabinoid CB(1) receptors and a significant decrease in striatal cannabinoid CB(1) receptors, with these effects being similar in males and females. With respect to mu-opioid receptors, subchronic nicotine induced a significant down-regulation in hippocampal and striatal mu-opioid receptors in the long-term, and within the striatum the effects were more marked in adult males than in females. The present results indicate that juvenile nicotine taking may have implications for the endocannabinoid and endogenous opioid function and for the behaviors served by those systems, this includes possible modification of the response of adults to different psychotropic drugs, i.e. cannabis and morphine/heroin when taken later in life.

  17. Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk

    Science.gov (United States)

    Chen, Jie; Varga, Angelika; Selvarajah, Srikumaran; Jenes, Agnes; Dienes, Beatrix; Sousa-Valente, Joao; Kulik, Akos; Veress, Gabor; Brain, Susan D.; Baker, David; Urban, Laszlo; Mackie, Ken; Nagy, Istvan

    2016-01-01

    The cannabinoid type 1 (CB1) receptor and the capsaicin receptor (TRPV1) exhibit co-expression and complex, but largely unknown, functional interactions in a sub-population of primary sensory neurons (PSN). We report that PSN co-expressing CB1 receptor and TRPV1 form two distinct sub-populations based on their pharmacological properties, which could be due to the distribution pattern of the two receptors. Pharmacologically, neurons respond either only to capsaicin (COR neurons) or to both capsaicin and the endogenous TRPV1 and CB1 receptor ligand anandamide (ACR neurons). Blocking or deleting the CB1 receptor only reduces both anandamide- and capsaicin-evoked responses in ACR neurons. Deleting the CB1 receptor also reduces the proportion of ACR neurons without any effect on the overall number of capsaicin-responding cells. Regarding the distribution pattern of the two receptors, neurons express CB1 and TRPV1 receptors either isolated in low densities or in close proximity with medium/high densities. We suggest that spatial distribution of the CB1 receptor and TRPV1 contributes to the complexity of their functional interaction. PMID:27653550

  18. Involvement of a non-CB1/CB2 cannabinoid receptor in the aqueous humor outflow-enhancing effects of abnormal-cannabidiol

    Science.gov (United States)

    Qiao, Zhuanhong; Kumar, Akhilesh; Kumar, Pritesh; Song, Zhao-Hui

    2016-01-01

    The purpose of this study was to investigate the effects of abnormal-cannabidiol (abn-cbd), a non-psychoactive cannabinoid agonist, on aqueous humor outflow via the trabecular meshwork (TM) of porcine eye, and to examine the involvement of a non-CB1/CB2 cannabinoid receptor and the p42/44 mitogen-activated protein kinase (p42/44 MAPK) pathway. The effects of abn-cbd on aqueous humor outflow were measured using a porcine anterior segment perfused organ culture model. The activation of p42/44 MAPK by abn-cbd was determined in cultured TM cells with western blot analysis using an anti-phospho-p42/44 MAPK antibody. Administration of abn-cbd caused a concentration-dependent enhancement of aqueous humor outflow facility with a maximum effect (155.0 ± 11.7% of basal outflow facility) after administration of 30 nM abn-cbd. Pretreatment with 1 μM of O-1918, a cannabidiol analog that acts as a selective antagonist at the non-CB1/CB2 receptor, produced a full antagonism of 30 nM abn-cbd induced increase of aqueous humor outflow facility. Pretreatment with 1 μM of CB1 antagonist SR141716A partially blocked, whereas pretreatment with either 1 μM of CB1 antagonist AM251 or 1 μM of CB2 antagonist SR144528 had no effect on abn-cbd induced enhancement of outflow facility. Treatment of TM cells with 30 nM of abn-cbd activated p42/44 MAPK, which was blocked completely by pretreatment with O-1918, and partially by pretreatment with SR141716A, but not by either AM251 or SR144528. In addition, PD98059, an inhibitor of p42/44 MAPK pathway, blocked completely the abn-cbd induced p42/44 MAPK activation and blocked partially the abn-cbd induced enhancement of outflow facility. In conclusion, the results from this study demonstrate that abn-cbd increases aqueous humor outflow through the TM pathway of the eye, and this effect is mediated by a non-CB1/CB2 cannabinoid receptor, with an involvement of p42/44 MAPK signaling pathway. PMID:22580290

  19. The role of the cannabinoid receptor in adolescents' processing of facial expressions.

    Science.gov (United States)

    Ewald, Anais; Becker, Susanne; Heinrich, Angela; Banaschewski, Tobias; Poustka, Luise; Bokde, Arun; Büchel, Christian; Bromberg, Uli; Cattrell, Anna; Conrod, Patricia; Desrivières, Sylvane; Frouin, Vincent; Papadopoulos-Orfanos, Dimitri; Gallinat, Jürgen; Garavan, Hugh; Heinz, Andreas; Walter, Henrik; Ittermann, Bernd; Gowland, Penny; Paus, Tomáš; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Smolka, Michael N; Vetter, Nora; Whelan, Rob; Schumann, Gunter; Flor, Herta; Nees, Frauke

    2016-01-01

    The processing of emotional faces is an important prerequisite for adequate social interactions in daily life, and might thus specifically be altered in adolescence, a period marked by significant changes in social emotional processing. Previous research has shown that the cannabinoid receptor CB1R is associated with longer gaze duration and increased brain responses in the striatum to happy faces in adults, yet, for adolescents, it is not clear whether an association between CBR1 and face processing exists. In the present study we investigated genetic effects of the two CB1R polymorphisms, rs1049353 and rs806377, on the processing of emotional faces in healthy adolescents. They participated in functional magnetic resonance imaging during a Faces Task, watching blocks of video clips with angry and neutral facial expressions, and completed a Morphed Faces Task in the laboratory where they looked at different facial expressions that switched from anger to fear or sadness or from happiness to fear or sadness, and labelled them according to these four emotional expressions. A-allele versus GG-carriers in rs1049353 displayed earlier recognition of facial expressions changing from anger to sadness or fear, but not for expressions changing from happiness to sadness or fear, and higher brain responses to angry, but not neutral, faces in the amygdala and insula. For rs806377 no significant effects emerged. This suggests that rs1049353 is involved in the processing of negative facial expressions with relation to anger in adolescence. These findings add to our understanding of social emotion-related mechanisms in this life period. PMID:26527537

  20. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces

    Directory of Open Access Journals (Sweden)

    Chakrabarti Bhismadev

    2011-06-01

    Full Text Available Abstract Background From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC. However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1 gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking. Methods A total of 30 volunteers (13 males and 17 females from the general population observed dynamic emotional expressions on a screen while their eye movements were recorded. They were genotyped for the identical four single-nucleotide polymorphisms (SNPs in the CNR1 gene tested in our earlier fMRI study. Results Two SNPs (rs806377 and rs806380 were associated with differential gaze duration for happy (but not disgust faces. Importantly, the allelic groups associated with a greater striatal response to happy faces in the fMRI study were associated with longer gaze duration at happy faces. Conclusions These results suggest that CNR1 variations modulate the striatal function that underlies the perception of signals of social reward, such as happy faces. This suggests that CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing

  1. Effects of cannabinoid CB(1) receptor agonism and antagonism on SKF81297-induced dyskinesia and haloperidol-induced dystonia in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Madsen, Morten V; Peacock, Linda P; Werge, Thomas;

    2011-01-01

    . Endocannabinoids modulate striatal dopamine activity via type 1 cannabinoid (CB(1)) receptors, and studies in rats and humans suggest beneficial effects of CB(1) ligands on EPS. The present study explored the effects of CB(1) receptor ligands on oral dyskinesia induced by the dopamine D(1) receptor agonist SKF......81297 (SKF) and acute dystonia induced by the dopamine D(2) receptor antagonist haloperidol in Cebus apella monkeys. The monkeys were sensitised to EPS by prior exposure to D(2) receptor antagonists. SKF (0.3 mg/kg) was administered alone and in combination with the CB(1) agonist CP55,940 (0.......0025-0.01 mg/kg) or the CB(1) antagonist SR141716A (0.25-0.75 mg/kg). Haloperidol (individual doses at 0.01-0.02 mg/kg) was administered alone and in combination with CP55,940 (0.005 or 0.01 mg/kg) or SR141716A (0.5 or 0.75 mg/kg). Subsequently, the monkeys were videotaped, and the recordings were rated...

  2. Residues accessible in the binding-site crevice of transmembrane helix 6 of the CB2 cannabinoid receptor.

    Science.gov (United States)

    Nebane, Ntsang M; Hurst, Dow P; Carrasquer, Carl A; Qiao, Zhuanhong; Reggio, Patricia H; Song, Zhao-Hui

    2008-12-30

    We have used the substituted-cysteine accessibility method (SCAM) to map the residues in the sixth membrane-spanning segment of the CB2 cannabinoid receptor that contribute to the surface of the water-accessible binding-site crevice. Using a background of the mutant C2.59S which is relatively insensitive to the methanethiosulfonate (MTS) reagents, we mutated to cysteine, one at a time, 34 consecutive residues in TMH6 of the CB2 receptor. These mutant receptors were then expressed in HEK293 cells. By incubating HEK293 cells stably transfected with CB2 receptors with the small, charged, hydrophilic, thiol-specific reagent methanethiosulfonate ethylammonium (MTSEA), [(3)H]CP55940 binding was significantly inhibited for six mutant receptors. All six of the mutants that reacted with MTSEA were protected from the reaction when pretreated with the cannabinoid agonist WIN55212-2, suggesting that MTSEA modification occurred within the binding crevice. Therefore, the side chains of the residues at these reactive loci (V6.51, L6.52, L6.54, M6.55, L6.59, and T6.62) are on the water-accessible surface of the binding-site crevice. These residues are extracellular to the TMH6 CWXP hinge motif. The pattern of accessibility is consistent with a alpha-helical conformation for this segment of TMH6. Molecular modeling studies performed in the context of the CB2 model show that V6.51, L6.52, L6.54, M6.55, L6.59, and T6.62 face into the CB2 binding pocket, further confirming our SCAM results. These results are similar to the accessibility patterns determined by SCAM studies of TMH6 in the opioid and dopamine D2 receptors. PMID:19053233

  3. Pharmacological blockade of either, cannabinoid CB1 or CB2 receptors, prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rats.

    Directory of Open Access Journals (Sweden)

    EDUARDO eBLANCO-CALVO

    2014-01-01

    Full Text Available Addiction to major drugs of abuse such as cocaine has been recently linked to alterations on adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulated this proliferative response since pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors by modulating not only neurogenesis but also cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation . To this end we examined if pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg or CB2 receptors (AM630, 3 mg/kg affects cell proliferation (labeled with BrdU, found in the subventricular zone (SVZ of the lateral ventricles and the dentate subgranular zone (SGZ. In addition, we measured cell apoptosis (monitored by the expression of cleaved caspase-3 and glial activation ( by analizing the expression of GFAP and Iba-1 in the striatum and hippocampus, during acute or repeated (4 days cocaine administration (20 mg/kg. Results showed that acute cocaine decreased the number of BrdU+ cells in SVZ and SGZ. In contrast, repeated cocaine reduced the number of BrdU+ cells in SVZ only. Both acute and repeated cocaine increased the number of cleaved caspase-3+, GFAP+ and Iba1+ cells in the hippocampus, an effect counteracted by AM630 or Rimonabant that increased the number of BrdU+, GFAP+ and Iba1+ cells in the hippocampus. These results indicate that changes on neurogenic, apoptotic and gliosis processes, which were produced as a consequence of repeated cocaine administration, were normalized by the pharmacological blockade of CB1 and CB2. The restoring effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with a prevention of the induction of conditioned locomotion, but not of cocaine-induced sensitization.

  4. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders. PMID:24055595

  5. A study of cannabinoid-1 receptors during the early phase of excitotoxic damage to rat spinal locomotor networks in vitro.

    Science.gov (United States)

    Veeraraghavan, Priyadharishini; Dekanic, Ana; Nistri, Andrea

    2016-10-01

    Endocannabinoids acting on cannabinoid-1 receptors (CB1Rs) are proposed to protect brain and spinal neurons from excitotoxic damage. The ability to recover from spinal cord injury (SCI), in which excitotoxicity is a major player, is usually investigated at late times after modulation of CB1Rs whose role in the early phases of SCI remains unclear. Using the rat spinal cord in vitro as a model for studying SCI initial pathophysiology, we investigated if agonists or antagonists of CB1Rs might affect SCI induced by the excitotoxic agent kainate (KA) within 24h from a transient (1h) application of this glutamate agonist. The CB1 agonist anandamide (AEA or pharmacological block of its degradation) did not limit excitotoxic depolarization of spinal networks: cyclic adenosine monophosphate (cAMP) assay demonstrated that CB1Rs remained functional 24h later and similarly expressed among dead or survived cells. Locomotor-like network activity recorded from ventral roots could not recover with such treatments and was associated with persistent depression of synaptic transmission. Motoneurons, that are particularly vulnerable to KA, were not protected by AEA. Application of 2-arachidonoylglycerol also did not attenuate the electrophysiological and histological damage. The intensification of damage by the CB1 antagonist AM251 suggested that endocannabinoids were operative after excitotoxic stimulation, yet insufficient to contrast it efficiently. The present data indicate that the early phases of excitotoxic SCI could not be arrested by pharmacologically exploiting the endocannabinoid system, consistent with the notion that AEA and its derivatives are more useful to treat late SCI phases. PMID:27450568

  6. Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence.

    Science.gov (United States)

    Lisboa, Sabrina F; Borges, Anna A; Nejo, Priscila; Fassini, Aline; Guimarães, Francisco S; Resstel, Leonardo B

    2015-06-01

    Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC). Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic. However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP). Therefore, in the present paper we have attempted to verify if directly interfering with ECB metabolism/reuptake in the prelimbic (PL) portion of the medial PFC (MPFC) and dHIP would produce different effects in two conceptually distinct animal models: the elevated plus maze (EPM) and the Vogel conflict test (VCT). We observed that drugs which interfere with ECB reuptake/metabolism in both the PL and in the dentate gyrus of the dHIP induced anxiolytic-like effect, in both the EPM and in the VCT via CB1 receptors, suggesting that CB1 signaling in these brain regions modulates defensive responses to both innate and learned threatening stimuli. This data further strengthens previous results indicating modulation of hippocampal and MPFC activity via CB1 by ECBs, which could be therapeutically targeted to treat anxiety disorders.

  7. Cannabinoid receptor agonism suppresses tremor, cognition disturbances and anxiety-like behaviors in a rat model of essential tremor.

    Science.gov (United States)

    Abbassian, Hassan; Esmaeili, Parisa; Tahamtan, Mahshid; Aghaei, Iraj; Vaziri, Zohreh; Sheibani, Vahid; Whalley, Benjamin J; Shabani, Mohammad

    2016-10-01

    Cognitive and motor disturbances are serious consequences of tremor induced by motor disorders. Despite a lack of effective clinical treatment, some potential therapeutic agents have been used to alleviate the cognitive symptoms in the animal models of tremor. In the current study, the effects of WIN55, 212-2 (WIN), a cannabinoid receptor (CBR) agonist, on harmaline-induced motor and cognitive impairments were studied. Adult rats were treated with WIN (0.5mg/kg; i.p.) 15min before harmaline administration (10mg/kg; ip) after which exploratory and anxiety related behaviors, and cognitive function were assessed using open-field behavior and shuttle box tests. Rats that received harmaline only exhibited a markedly reduced number of central square entries when compared to harmaline vehicle-treated controls, whereas those treated with WIN and harmaline showed a significant increase in central square entries, compared to harmaline only treated. The passive avoidance memory impairments observed in harmaline treated rats, was reversed somewhat by administration of WIN. The neuroprotective and anxiolytic effects of WIN demonstrated in the current study can be offered cannabinoid receptor (CBR) agonism as a potential neuroprotective agent in the treatment of patients with tremor that manifest mental dysfunctions. PMID:27317835

  8. Cannabinoids and haemostasis.

    Science.gov (United States)

    Zakrzeska, Agnieszka; Grędziński, Tomasz; Kisiel, Wioleta; Chabielska, Ewa

    2016-01-01

    Elements of the endocannabinoid system (cannabinoid receptors CB1, CB2, CBPT and CBED, endocannabinoids, enzymes involved in the synthesis and metabolism of endocannabinoids) are located on the structures involved in the process of hemostasis. An increasing level of endocannabinoids was also observed in some pathological conditions, which may occur in disorders of hemostasis. At the same time, disconcertingly, there is an increased number of reports about incidents of cardiovascular events in smokers of marijuana. Experimental and clinical studies demonstrated multidirectional, often contradictory, effects of cannabinoids on hemostasis, including effects of the compounds on platelets, vascular endothelium, fibrinolysis and plasma coagulation systems. The mechanisms of action of cannabinoids on homeostasis depend on the cannabinoid receptors CB1, CB2, CBPT and CBED, receptors of other systems stimulated by endocannabinoids, as well as metabolites of endocannabinoids and nitrogen oxide. The range of biological functions of endo- and plant cannabinoids, expanded to include the process of hemostasis, may constitute a condition for their recognition as a new factor responsible for thromboembolism in smokers of marijuana, in pathological disorders with increased levels of endocannabinoids and in individuals with polymorphisms of FAAH C385A and A385A. On the other hand, there are compelling reasons for anti‑hemostatic action of cannabinoids. PMID:27383573

  9. Cannabinoid regulation of brain reward processing with an emphasis on the role of CB1 receptors: a step back into the future

    OpenAIRE

    George ePanagis; Brian eMackey; Styliani eVlachou

    2014-01-01

    Over the last decades the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain reward circuits and the regulation of motivational processes. Importantly, behavioural studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine and heroin, although the conditions under which cannabinoids exert their rewarding effects may b...

  10. CB1 cannabinoid receptor participates in the vascular hyporeactivity resulting from hemorrhagic shock in rats

    Institute of Scientific and Technical Information of China (English)

    HOU Li-chao; LI Nan; ZHENG Li-na; LU Yan; XIE Ke-liang; WANG Yue-min; JI Gen-lin; XIONG Li-ze

    2009-01-01

    Background Vascular hyporeactivity, which occurs in the terminal stage of hemorrhagic shock, is believed to be critical for treating hemorrhagic shock. The present study was designed to examine whether the CB1 cannabinoid receptor (CB1R) was involved in the development of vascular hyporeactivity in rats suffering from hemorrhagic shock.Methods Sixteen animals were randomly divided into two groups (n=8 in each group): sham-operated (Sham) and hemorrhagic shock (HS) groups. Hemorrhagic shock was induced by bleeding. The mean arterial pressure (MAP) was reduced to and stabilized at (25±5) mmHg for 2 hours. The vascular reactivity was determined by the response of MAP to norepinephrine (NE). In later experiments another twelve animals were used in which the changes of CB1R mRNA and protein in aorta and superior mesenteric artery (SMA) were analyzed by RT-PCR and Western blotting. In addition, we investigated the effects of a CB1R antagonist on the vascular hyporeactivity and survival rates in rats with hemorrhagic shock. Survival rates were analyzed by the Fisher's exact probability test. The MAP response was analyzed by one-way analysis of variance (ANOVA).Results Vascular hyporeactivity developed in all animals suffering from hemorrhagic shock. The expression of CB1R mRNA and protein in aorta and 2-3 branches of the SMA were significantly increased in the HS group after the development of vascular hyporeactivity when compared to those in Sham group. When SR141716A or AM251 was administered, the MAP response to NE was (41.75±4.08) mmHg or (44.78±1.80) mmHg respectively, which was higher than that in saline groups with (4.31±0.36) mmHg (P<0.01). We also showed an increased 4-hour survival rate in the SR141716A or AM251-treated group with 20% or 30%, but with a statistically significant difference present between the AM251-treated and saline groups (P<0.05).Conclusions CB1R is involved in vascular hyporeactivity resulting from hemorrhagic shock in rats, and CB1R

  11. Cannabinoids and their medicinal potential

    Directory of Open Access Journals (Sweden)

    Deepika Tikoo

    2012-04-01

    Full Text Available Cannabis sativa L preparations have been used therapeutically since many years. Inspite of their medicinal value, the danger of its abusive potential led to the ban on its use in clinical practice in many countries. The recent research and in depth knowledge about the cannabinoid system which throw a light on their disease management potential has paved way for the cannabinoids to become a new therapeutic focus of attention. Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors which include CB1, predominantly expressed in the brain and CB2 which is primarily found in the cells of the immune system. Despite the addictive properties of cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases such as anorexia, pain, inflammation, obesity, cardiovascular disorders, neurodegenerative diseases, cancer, gastrointestinal diseases, hepatic disorders, skin related diseases, respiratory disorders like asthma and eye diseases like glaucoma have suggested cannabinoid agonists/ antagonists/ cannabinoids related compounds as potential treatment options. Developments of new specific ligands for the cannabinoid receptors are now underway and it needs to be seen, if in future, they can prove to be a boon for the medical world. The paper reviews the current understanding of the cannabinoid receptors, their ligands and their possible role in various diseases supported by preclinical and clinical studies. [Int J Basic Clin Pharmacol 2012; 1(2.000: 48-59

  12. CB2 cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis.

    Directory of Open Access Journals (Sweden)

    Balázs Csóka

    Full Text Available BACKGROUND: Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens. It was recently proposed that endogenous mediators produced during sepsis can contribute to the immune dysfunction that is observed in sepsis. Endocannabinoids that are produced excessively in sepsis are potential factors leading to immune dysfunction, because they suppress immune cell function by binding to G-protein-coupled CB(2 receptors on immune cells. Here we examined the role of CB(2 receptors in regulating the host's response to sepsis. METHODS AND FINDINGS: The role of CB(2 receptors was studied by subjecting CB(2 receptor wild-type and knockout mice to bacterial sepsis induced by cecal ligation and puncture. We report that CB(2 receptor inactivation by knockout decreases sepsis-induced mortality, and bacterial translocation into the bloodstream of septic animals. Furthermore, CB(2 receptor inactivation decreases kidney and muscle injury, suppresses splenic nuclear factor (NF-kappaB activation, and diminishes the production of IL-10, IL-6 and MIP-2. Finally, CB(2 receptor deficiency prevents apoptosis in lymphoid organs and augments the number of CD11b(+ and CD19(+ cells during CLP. CONCLUSIONS: Taken together, our results establish for the first time that CB(2 receptors are important contributors to septic immune dysfunction and mortality, indicating that CB(2 receptors may be therapeutically targeted for the benefit of patients suffering from sepsis.

  13. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol : conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Stelt, M. van der; Kuik, J.A. van; Zadelhoff, G. van; Leeflang, B.R.; Veldink, G.A.; Finazzi Agrò, A.; Maccarrone, M.

    2002-01-01

    This study was aimed at finding structural requirements for the interaction of the acyl chain of endocannabinoids with cannabinoid receptors, membrane transporter protein, and fatty acid amide hydrolase (FAAH). To this end, the flexibility of the acyl chain was restricted by introduction of an 1-hyd

  14. Human lung-resident macrophages express CB1 and CB2 receptors whose activation inhibits the release of angiogenic and lymphangiogenic factors.

    Science.gov (United States)

    Staiano, Rosaria I; Loffredo, Stefania; Borriello, Francesco; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Orlando, Pierangelo; Secondo, Agnese; Granata, Francescopaolo; Lepore, Maria Teresa; Fiorelli, Alfonso; Varricchi, Gilda; Santini, Mario; Triggiani, Massimo; Di Marzo, Vincenzo; Marone, Gianni

    2016-04-01

    Macrophages are pivotal effector cells in immune responses and tissue remodeling by producing a wide spectrum of mediators, including angiogenic and lymphangiogenic factors. Activation of cannabinoid receptor types 1 and 2 has been suggested as a new strategy to modulate angiogenesis in vitro and in vivo. We investigated whether human lung-resident macrophages express a complete endocannabinoid system by assessing their production of endocannabinoids and expression of cannabinoid receptors. Unstimulated human lung macrophage produce 2-arachidonoylglycerol,N-arachidonoyl-ethanolamine,N-palmitoyl-ethanolamine, andN-oleoyl-ethanolamine. On LPS stimulation, human lung macrophages selectively synthesize 2-arachidonoylglycerol in a calcium-dependent manner. Human lung macrophages express cannabinoid receptor types 1 and 2, and their activation induces ERK1/2 phosphorylation and reactive oxygen species generation. Cannabinoid receptor activation by the specific synthetic agonists ACEA and JWH-133 (but not the endogenous agonist 2-arachidonoylglycerol) markedly inhibits LPS-induced production of vascular endothelial growth factor-A, vascular endothelial growth factor-C, and angiopoietins and modestly affects IL-6 secretion. No significant modulation of TNF-α or IL-8/CXCL8 release was observed. The production of vascular endothelial growth factor-A by human monocyte-derived macrophages is not modulated by activation of cannabinoid receptor types 1 and 2. Given the prominent role of macrophage-assisted vascular remodeling in many tumors, we identified the expression of cannabinoid receptors in lung cancer-associated macrophages. Our results demonstrate that cannabinoid receptor activation selectively inhibits the release of angiogenic and lymphangiogenic factors from human lung macrophage but not from monocyte-derived macrophages. Activation of cannabinoid receptors on tissue-resident macrophages might be a novel strategy to modulate macrophage-assisted vascular remodeling

  15. CB1 Cannabinoid Receptor-Dependent and -Independent Inhibition of Depolarization-Induced Calcium Influx in Oiigodendrocytes

    Institute of Scientific and Technical Information of China (English)

    SUSANA MATO; ELENA ALBERDI; CATHERINE LEDENT; MASAHIKO WATANABE; AND CARLOS MATUTE

    2009-01-01

    Regulation of Ca2+ homeostasis plays a critical role in oligodendrocyte function and survival. Canna-binoid CB2 and CB2 receptors have been shown to regulate Ca2+ levels and/or K+ currents in a variety of cell types. In this study we investigated the effect of cannabinoid compounds on the Ca2+ influx elicited in cultured oligodendro-cytes by transient membrane depolarization with an elevated extracellular K+ concentration (50 mM). The CB2 re-ceptor agonist arachidonoyl-chloro-ethanolamide (ACEA) elicited a concentration-dependent inhibition of depolariza-tion-evoked Ca2+ transients in oligodendroglial somata with a maximal effect (94 ± 3)% and an EC50 of 1.3 ±0.03 μM. This activity was mimicked by the CB2/CB2 agonist CP55,940, as well as by the endocannabinoids N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), whereas the CB2 receptor se-lective agonist JWH133 was ineffective. The CB2 receptor antagonist AM251 (1 μM) also reduced the Ca2+ response evoked by high extracellular K+ and did not prevent the inhibition elicited by ACEA (3 μM). Nevertheless, the a-bility of ACEA and AEA to reduce depolarization-evoked Ca2+ transients was significantly reduced in oligodendro-cytes from CB2 receptor knockout mice, as well as by pretreatment with pertussis toxin. Bath application of the in-wardly rectifying K+ channels (Kir channels) blockers BaCl2 (300 μM) and CsCl2 (1 mM) reduced the size of volt-age-induced Ca2+ influx and partially prevented the inhibitory effect of ACEA. Our results indicate that eannabinoids inhibit depolarization-evoked Ca2+ transients in oligodendrocytes via CB2 receptor-independent and -dependent mech-anisms that involve the activation of PTX-sensitive Gi/o proteins and the blockade of Kir channels. C 2008 Wiley-Liss, Inc.%Ca2+稳态平衡的调节在少突胶质细胞功能和存活中起重要作用.大麻素CB1和CB2受体在许多细胞中调节Ca2+水平和/或K+电流.本文利用培养的少突胶质细

  16. Involvement of Central Endothelin ETA and Cannabinoid CB1 Receptors and Arginine Vasopressin Release in Sepsis Induced by Cecal Ligation and Puncture in Rats.

    Science.gov (United States)

    Leite-Avalca, Mariane C G; Lomba, Luis A; Bastos-Pereira, Amanda L; Brito, Haissa O; Fraga, Daniel; Zampronio, Aleksander R

    2016-09-01

    We previously reported that endothelin-1 (ET-1) reduced the frequency of spontaneous excitatory currents in vasopressinergic magnocellular cells through the activation of endothelin ETA receptors in rat brain slices. This effect was abolished by a cannabinoid CB1 receptor antagonist, suggesting the involvement of endocannabinoids. The present study investigated whether the blockade of ETA or CB1 receptors during the phase of increased levels of ET-1 after severe sepsis increases the survival rate of animals concomitantly with an increase in plasma arginine vasopressin (AVP) levels. Sepsis was induced in male Wistar rats by cecal ligation and puncture (CLP). Treatment with the CB1 receptor antagonist rimonabant (Rim; 10 and 20 mg/kg, orally) 4 h after CLP (three punctures) significantly increased the survival rate compared with the CLP per vehicle group. Intracerebroventricular treatment with the ETA receptor antagonist BQ123 (100 pmol) or with Rim (2 μg) 4 and 8 h after CLP but not the ETB receptor antagonist BQ788 (100 pmol), also significantly improved the survival rate. Sham-operated and CLP animals that were treated with Rim had significantly lower core temperature than CLP animals. However, oral treatment with Rim did not change bacterial count in the peritoneal exudate, neutrophil migration to the peritoneal cavity, leucopenia or increased plasma interleukin-6 levels induced by CLP. Both Rim and BQ123 also increased AVP levels 12 h after CLP. The blockade of central CB1 and ETA receptors in the late phase of sepsis increased the survival rate, reduced body temperature and increased the circulating AVP levels. PMID:26925810

  17. Spontaneous Cannabinoid Receptor 2 (CB2) Expression in the Cochlea of Adult Albino Rat and Its Up-Regulation after Cisplatin Treatment.

    Science.gov (United States)

    Martín-Saldaña, Sergio; Trinidad, Almudena; Ramil, Elvira; Sánchez-López, Antonio J; Coronado, Maria José; Martínez-Martínez, Esther; García, José Miguel; García-Berrocal, José Ramón; Ramírez-Camacho, Rafael

    2016-01-01

    We provide evidence for the presence of cannabinoid CB2 receptors in some cellular types of the cochlea of the adult albino rat. Cannabinoids and their receptors are increasingly being studied because of their high potential for clinical use. As a hyperspecialized portion of the peripheral nervous system, study of the expression and function of cannabinoid receptors in the hearing organ is of high interest. Stria vascularis and inner hair cells express CB2 receptor, as well as neurites and cell bodies of the spiral ganglion. Cellular types such as supporting cells and outer hair cells, in which the expression of other types of functional receptors has been reported, do not significantly express CB2 receptors in this study. An up-regulation of CB2 gene expression was detected after an ototoxic event such as cisplatin treatment, probably due to pro-inflammatory events triggered by the drug. That fact suggests promising potential of CB2 receptor as a therapeutic target for new treatments to palliate cisplatin-induced hearing loss and other ototoxic events which triggers inflammatory pathways. PMID:27564061

  18. 大麻素CB1受体对大鼠视网膜神经节细胞诱发动作电位的作用%Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    蒋淑霞; 李倩; 王霄汉; 李芳; 王中峰

    2013-01-01

    Activation of cannabinoid CB1 receptors (CB 1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels.The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques.The results showed that under current-clamped condition perfusing WIN55212-2 (WIN,5 μmol/L),a CB1R agonist,did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs.In the presence of cocktail synaptic blockers,including excitatory postsynaptic receptor blockers CNQX and D-APV,and inhibitory receptor blockers bicuculline and strychnine,perfusion of WIN (5 μmol/L)hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA).Phaseplane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN.However,WIN significantly decreased +dV/dtmax and-dV/dtmax of action potentials,suggestive of reduced rising and descending velocities of action potentials.The effects of WIN were reversed by co-application of SR141716,a CB1R selective antagonist.Moreover,WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked.These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.%激活大麻素CB1受体(CB1Rs)通过调控多种离子通道,从而调节脊椎动物视网膜的功能.本文旨在利用膜片钳全细胞记录技术,在大鼠视网膜薄片上研究CB1Rs对神经节细胞兴奋性的作用.结果显示,在电流钳制状态下,灌流CB1R激动剂WIN55212-2 (WIN,5μmol/L)对神经节细胞的自发动作电位发放频率和静息膜电位均没有显著影响.在灌流液中加入CNQX,D-APV,bicuculline

  19. Possible Therapeutic Doses of Cannabinoid Type 1 Receptor Antagonist Reverses Key Alterations in Fragile X Syndrome Mouse Model.

    Science.gov (United States)

    Gomis-González, Maria; Matute, Carlos; Maldonado, Rafael; Mato, Susana; Ozaita, Andrés

    2016-01-01

    Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability. The cognitive deficits in the mouse model for this disorder, the Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mouse, have been restored by different pharmacological approaches, among those the blockade of cannabinoid type 1 (CB1) receptor. In this regard, our previous study showed that the CB1 receptor antagonist/inverse agonist rimonabant normalized a number of core features in the Fmr1 knockout mouse. Rimonabant was commercialized at high doses for its anti-obesity properties, and withdrawn from the market on the bases of mood-related adverse effects. In this study we show, by using electrophysiological approaches, that low dosages of rimonabant (0.1 mg/kg) manage to normalize metabotropic glutamate receptor dependent long-term depression (mGluR-LTD). In addition, low doses of rimonabant (from 0.01 mg/kg) equally normalized the cognitive deficit in the mouse model of FXS. These doses of rimonabant were from 30 to 300 times lower than those required to reduce body weight in rodents and to presumably produce adverse effects in humans. Furthermore, NESS0327, a CB1 receptor neutral antagonist, was also effective in preventing the novel object-recognition memory deficit in Fmr1 KO mice. These data further support targeting CB1 receptors as a relevant therapy for FXS. PMID:27589806

  20. Possible Therapeutic Doses of Cannabinoid Type 1 Receptor Antagonist Reverses Key Alterations in Fragile X Syndrome Mouse Model

    Science.gov (United States)

    Gomis-González, Maria; Busquets-Garcia, Arnau; Matute, Carlos; Maldonado, Rafael; Mato, Susana; Ozaita, Andrés

    2016-01-01

    Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability. The cognitive deficits in the mouse model for this disorder, the Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mouse, have been restored by different pharmacological approaches, among those the blockade of cannabinoid type 1 (CB1) receptor. In this regard, our previous study showed that the CB1 receptor antagonist/inverse agonist rimonabant normalized a number of core features in the Fmr1 knockout mouse. Rimonabant was commercialized at high doses for its anti-obesity properties, and withdrawn from the market on the bases of mood-related adverse effects. In this study we show, by using electrophysiological approaches, that low dosages of rimonabant (0.1 mg/kg) manage to normalize metabotropic glutamate receptor dependent long-term depression (mGluR-LTD). In addition, low doses of rimonabant (from 0.01 mg/kg) equally normalized the cognitive deficit in the mouse model of FXS. These doses of rimonabant were from 30 to 300 times lower than those required to reduce body weight in rodents and to presumably produce adverse effects in humans. Furthermore, NESS0327, a CB1 receptor neutral antagonist, was also effective in preventing the novel object-recognition memory deficit in Fmr1 KO mice. These data further support targeting CB1 receptors as a relevant therapy for FXS. PMID:27589806

  1. Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB1.

    Science.gov (United States)

    Fay, Jonathan F; Farrens, David L

    2015-07-01

    G protein-coupled receptors (GPCRs) are surprisingly flexible molecules that can do much more than simply turn on G proteins. Some even exhibit biased signaling, wherein the same receptor preferentially activates different G-protein or arrestin signaling pathways depending on the type of ligand bound. Why this behavior occurs is still unclear, but it can happen with both traditional ligands and ligands that bind allosterically outside the orthosteric receptor binding pocket. Here, we looked for structural mechanisms underlying these phenomena in the marijuana receptor CB1. Our work focused on the allosteric ligand Org 27569, which has an unusual effect on CB1-it simultaneously increases agonist binding, decreases G--protein activation, and induces biased signaling. Using classical pharmacological binding studies, we find that Org 27569 binds to a unique allosteric site on CB1 and show that it can act alone (without need for agonist cobinding). Through mutagenesis studies, we find that the ability of Org 27569 to bind is related to how much receptor is in an active conformation that can couple with G protein. Using these data, we estimated the energy differences between the inactive and active states. Finally, site-directed fluorescence labeling studies show the CB1 structure stabilized by Org 27569 is different and unique from that stabilized by antagonist or agonist. Specifically, transmembrane helix 6 (TM6) movements associated with G-protein activation are blocked, but at the same time, helix 8/TM7 movements are enhanced, suggesting a possible mechanism for the ability of Org 27569 to induce biased signaling.

  2. The combined inhibitory effect of the adenosine A1 and cannabinoid CB1 receptors on cAMP accumulation in the hippocampus is additive and independent of A1 receptor desensitization.

    Science.gov (United States)

    Serpa, André; Correia, Sara; Ribeiro, Joaquim A; Sebastião, Ana M; Cascalheira, José F

    2015-01-01

    Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3-30 μM) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6±2.7 μM and an Emax of 31%±2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10-150 nM), an EC50 of 35±19 nM, and an Emax of 29%±5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM) and CPA (100 nM) on cAMP accumulation was 41%±6% (n=4), which did not differ (P>0.7) from the sum of the individual effects of each agonist (43%±8%) but was different (PCB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.

  3. Delta(9)-tetrahydrocannabinol prolongs the immobility time in the mouse forced swim test: involvement of cannabinoid CB(1) receptor and serotonergic system.

    Science.gov (United States)

    Egashira, Nobuaki; Matsuda, Tomomi; Koushi, Emi; Higashihara, Fuminori; Mishima, Kenichi; Chidori, Shozo; Hasebe, Nobuyoshi; Iwasaki, Katsunori; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-07-28

    In the present study, we investigated the effect of Delta(9)-tetrahydrocannabinol (THC), the principal psychoactive component of marijuana, on immobility time during the forced swim test. THC (2 and 6 mg/kg, i.p.) significantly prolonged the immobility time. In addition, THC at the same doses did not significantly affect locomotor activity in the open-field test. The selective cannabinoid CB(1) receptor antagonist rimonabant (3 mg/kg, i.p.) significantly reduced the enhancement of immobility by THC (6 mg/kg). Similarly, the selective serotonin (5-HT) reuptake inhibitor (SSRI) citalopram (10 mg/kg, i.p.) and 5-HT(1A/7) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.3 mg/kg, i.p.) significantly reduced this THC-induced effect. Moreover, the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide dihydrochloride (WAY100635, 1 mg/kg, i.p.) and the postsynaptic 5-HT(1A) receptor antagonist MM-77 (0.1 mg/kg, i.p.) reversed this reduction effect of 8-OH-DPAT (0.3 mg/kg). In contrast, the selective 5-HT(7) receptor antagonist (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulfonyl]phenol hydrochloride (SB269970) had no effect on this reduction effect of 8-OH-DPAT. WAY100635 (1 mg/kg) also reversed the reduction effect of citalopram (10 mg/kg). These findings suggest that the 5-HT(1A) receptors are involved in THC-induced enhancement of immobility.

  4. Role of cannabinoids in chronic liver diseases

    Institute of Scientific and Technical Information of China (English)

    Anna Parfieniuk; Robert Flisiak

    2008-01-01

    Cannabinoids are a group of compounds acting primarily via CB1 and CB2 receptors. The expression of cannabinoid receptors in normal liver is low or absent. However, many reports have proven up-regulation of the expression of CB1 and CB2 receptors in hepatic myofibroblasts and vascular endothelial cells, as well as increased concentration of endocannabinoids in liver in the course of chronic progressive liver diseases. It has been shown that CB1 receptor signalling exerts profibrogenic and proinflammatory effects in liver tissue, primarily due to the stimulation of hepatic stellate cells, whereas the activation of CB2 receptors inhibits or even reverses liver fibrogenesis. Similarly, CB1 receptor stimulation contributes to progression of liver steatosis. In end-stage liver disease, the endocannabi-noid system has been shown to contribute to hepatic encephalopathy and vascular effects, such as portal hypertension, splanchnic vasodilatation, relative pe-ripheral hypotension and probably cirrhotic cardiomy-opathy. So far, available evidence is based on cellular cultures or animal models. Clinical data on the effects of cannabinoids in chronic liver diseases are limited. However, recent studies have shown the contribution of cannabis smoking to the progression of liver fibrosis and steatosis. Moreover, controlling CB1 or CB2 signal-ling appears to be an attractive target in managing liver diseases.

  5. Peripheral Cannabinoid-1 Receptor Inverse Agonism Reduces Obesity by Reversing Leptin Resistance

    OpenAIRE

    Tam, Joseph; Cinar, Resat; Liu, Jie; Godlewski, Grzegorz; Wesley, Daniel; Jourdan, Tony; Szanda, Gergö; Mukhopadhyay, Bani; Chedester, Lee; Liow, Jeih-San; Innis, Robert B.; Cheng, Kejun; Rice, Kenner C.; Deschamps, Jeffrey R.; Chorvat, Robert J.

    2012-01-01

    Obesity-related leptin resistance manifests in loss of leptin’s ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB1 receptor (CB1R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB1R inverse agonist...

  6. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  7. Cannabinoids and atherosclerotic coronary heart disease.

    Science.gov (United States)

    Singla, Sandeep; Sachdeva, Rajesh; Mehta, Jawahar L

    2012-06-01

    Marijuana is the most abused recreational drug in the United States. Cannabinoids, the active ingredients of marijuana, affect multiple organ systems in the human body. The pharmacologic effects of marijuana, based on stimulation of cannabinoid receptors CB1 and CB2, which are widely distributed in the cardiovascular system, have been well described. Activation of these receptors modulates the function of various cellular elements of the vessel wall, and may contribute to the pathogenesis of atherosclerosis. Clinically, there are reports linking marijuana smoking to the precipitation of angina and acute coronary syndromes. Recently, large published clinical trials with CB1 antagonist rimonabant did not show any significant benefit of this agent in preventing progression of atherosclerosis. In light of these findings and emerging data on multiple pathways linking cannabinoids to atherosclerosis, we discuss the literature on the role of cannabinoids in the pathophysiology of atherosclerosis. We also propose a marijuana paradox, which implies that inhalation of marijuana may be linked to precipitation of acute coronary syndromes, but modulation of the endocannabinoid system by a noninhalation route may have a salutary effect on the development of atherosclerosis. PMID:22278660

  8. Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony

    OpenAIRE

    Sales-Carbonell, C.; Rueda-Orozco, P E; Soria-Gomez, E.; Buzsaki, G.; Marsicano, G.; ROBBE, D

    2013-01-01

    Activation of type 1 cannabinoid receptors (CB1R) decreases GABA and glutamate release in cortical and subcortical regions, with complex outcomes on cortical network activity. To date there have been few attempts to disentangle the region- and cell-specific mechanisms underlying the effects of cannabinoids on cortical network activity in vivo. Here we addressed this issue by combining in vivo electrophysiological recordings with local and systemic pharmacological manipulations in conditional ...

  9. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion.

    Science.gov (United States)

    López-Gallardo, M; López-Rodríguez, A B; Llorente-Berzal, Á; Rotllant, D; Mackie, K; Armario, A; Nadal, R; Viveros, M-P

    2012-03-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9-10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28-42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug "per se" induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments.

  10. Effects of WIN 55,212-2 (a non-selective cannabinoid CB1 and CB2 receptor agonist) on the protective action of various classical antiepileptic drugs in the mouse 6 Hz psychomotor seizure model

    OpenAIRE

    Florek-Luszczki, Magdalena; Wlaz, Aleksandra; Kondrat-Wrobel, Maria W.; Tutka, Piotr; Jarogniew J Luszczki

    2014-01-01

    The aim of this study was to characterize the influence of WIN 55,212-2 (WIN—a non-selective cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant effects of various classical antiepileptic drugs (clobazam, clonazepam, phenobarbital and valproate) in the mouse 6 Hz-induced psychomotor seizure model. Limbic (psychomotor) seizure activity was evoked in albino Swiss mice by a current (32 mA, 6 Hz, 3 s stimulus duration) delivered via ocular electrodes. Drug-related adverse effects were...

  11. Involvement of TRPV1 channels in the activity of the cannabinoid WIN 55,212-2 in an acute rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Carletti, Fabio; Gambino, Giuditta; Rizzo, Valerio; Ferraro, Giuseppe; Sardo, Pierangelo

    2016-05-01

    The exogenous cannabinoid agonist WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone (WIN), has revealed to play a role on modulating the hyperexcitability phenomena in the hippocampus. Cannabinoid-mediated mechanisms of neuroprotection have recently been found to imply the modulation of transient receptor potential vanilloid 1 (TRPV1), a cationic channel subfamily that regulate synaptic excitation. In our study, we assessed the influence of pharmacological manipulation of TRPV1 function, alone and on WIN antiepileptic activity, in the Maximal Dentate Activation (MDA) acute model of temporal lobe epilepsy. Our results showed that the TRPV1 agonist, capsaicin, increased epileptic outcomes; whilst antagonizing TRPV1 with capsazepine exerts a protective role on paroxysmal discharge. When capsaicin is co-administered with WIN effective dose of 10mg/kg is able to reduce its antiepileptic strength, especially on the triggering of MDA response. Accordingly, capsazepine at the protective dose of 2mg/kg managed to potentiate WIN antiepileptic effects, when co-treated. Moreover, WIN subeffective dose of 5mg/kg was turned into effective when capsazepine comes into play. This evidence suggests that systemic administration of TRPV1-active drugs influences electrically induced epilepsy, with a noticeable protective activity for capsazepine. Furthermore, results from the pharmacological interaction with WIN support an interplay between cannabinoid and TRPV1 signaling that could represent a promising approach for a future pharmacological strategy to challenge hyperexcitability-based diseases.

  12. Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure.

    Science.gov (United States)

    Hollins, Sharon L; Zavitsanou, Katerina; Walker, Frederick Rohan; Cairns, Murray J

    2016-08-01

    Maternal immune activation (MIA) and adolescent cannabinoid exposure (ACE) have both been identified as major environmental risk factors for schizophrenia. We examined the effects of these two risk factors alone, and in combination, on gene expression during late adolescence. Pregnant rats were exposed to the viral infection mimic polyriboinosinic-polyribocytidylic acid (poly I:C) on gestational day (GD) 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14days starting on postnatal day (PND) 35. Gene expression was examined in the left entorhinal cortex (EC) using mRNA microarrays. We found prenatal treatment with poly I:C alone, or HU210 alone, produced relatively minor changes in gene expression. However, following combined treatments, offspring displayed significant changes in transcription. This dramatic and persistent alteration of transcriptional networks enriched with genes involved in neurotransmission, cellular signalling and schizophrenia, was associated with a corresponding perturbation in the expression of small non-coding microRNA (miRNA). These results suggest that a combination of environmental exposures during development leads to significant genomic remodeling that disrupts maturation of the EC and its associated circuitry with important implications as the potential antecedents of memory and learning deficits in schizophrenia and other neuropsychiatric disorders. PMID:26923065

  13. Unconditioned and conditioned anxiogenic effects of the cannabinoid receptor agonist CP 55,940 in the social interaction test.

    Science.gov (United States)

    Genn, Rachel F; Tucci, Sonia; Marco, Eva M; Viveros, M Paz; File, Sandra E

    2004-03-01

    In spite of the addictive properties of cannabinoids, under certain circumstances, they can evoke strong anxiogenic and aversive responses in humans and in animal tests of anxiety. Effects of different doses of CP 55,940 (10, 20, and 40 microg/kg) were tested in the low-light, familiar (LF) apparatus test condition of the social interaction test. The 40-microg/kg dose of CP 55,940 significantly decreased the time spent in social interaction, indicating an anxiogenic effect. This dose also had an independent effect of reducing locomotor activity. In rats tested undrugged 24 h after testing with 40 microg/kg, there was a significant anxiogenic effect, indicating conditioned anxiety. The group of rats injected with 40 microg/kg immediately after the social interaction test showed an unexpected significant anxiolytic effect when tested undrugged 24 h later. In an additional experiment, rats were tested in the high-light, familiar (HF) apparatus test condition after 10 or 40 microg/kg, and only those that were tested after 40 microg/kg showed an anxiogenic effect on the test day and a conditioned anxiogenic effect when tested undrugged 24 h later. Once again, those injected with 40 microg/kg after the social interaction test displayed an anxiolytic effect when tested undrugged 24 h later. We provide the first evidence for unconditioned and conditioned anxiogenic-like responses to a cannabinoid agonist in the social interaction test.

  14. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1) Are Neither Obese Nor Diabetic.

    Science.gov (United States)

    Marcus, David J; Zee, Michael L; Davis, Brian J; Haskins, Chris P; Andrews, Mary-Jeanette; Amin, Randa; Henderson-Redmond, Angela N; Mackie, Ken; Czyzyk, Traci A; Morgan, Daniel J

    2016-01-01

    Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45%) and low fat (10%) chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast. PMID:27501235

  15. Hydroxytyrosol Inhibits Cannabinoid CB1 Receptor Gene Expression in 3T3-L1 Preadipocyte Cell Line.

    Science.gov (United States)

    Tutino, Valeria; Orlando, Antonella; Russo, Francesco; Notarnicola, Maria

    2016-02-01

    The 3T3-L1 preadipocyte cell line is a well characterized cell model for studying the adipocyte status and the molecular mechanisms involved in differentiation of these cells. 3T3-L1 preadipocytes have the ability to synthesize and degrade endocannabinoid anandamide (AEA) and their differentiation into adipocytes increases the expression of cannabinoid (CB1) and PPAR-γ receptors. Clinically, the blocking stimulation of the endocannabinoid pathway has been one of the first approaches proposed to counteract the obesity and obesity-associated diseases (such as diabetes, metabolic syndrome and cancer). In this connection, here we studied in cultured 3T3-L1 pre-adipocytes the effects of n-3-PUFA, α-Linolenic acid (OM-3), n-6-PUFA, Linoleic acid (OM-6), and hydroxytyrosol (HT) on the expression of CB1 receptor gene and the adipogenesis-related genes PPAR-γ, Fatty Acid Synthase (FAS) and Lipoprotein Lipase (LPL). HT was able to inhibit 3T3-L1 cell differentiation by down-regulating cell proliferation and CB1 receptor gene expression. HT exhibited anti-adipogenic effects, whereas OM-3 and OM-6 exerted an inhibitory action on cell proliferation associated with an induction of the preadipocytes differentiation and CB1 receptor gene expression. Moreover, the expression of FAS and LPL genes resulted increased after treatment with both HT and OM-3 and OM-6. The present study points out that the intake of molecules such as HT, contained in extra virgin olive oil, may be considered also in view of antiobesity and antineoplastic properties by acting directly on the adipose tissue and modulating CB1 receptor gene transcription.

  16. Cannabinoid type 1 (CB1) receptors on Sim1-expressing neurons regulate energy expenditure in male mice.

    Science.gov (United States)

    Cardinal, Pierre; Bellocchio, Luigi; Guzmán-Quevedo, Omar; André, Caroline; Clark, Samantha; Elie, Melissa; Leste-Lasserre, Thierry; Gonzales, Delphine; Cannich, Astrid; Marsicano, Giovanni; Cota, Daniela

    2015-02-01

    The paraventricular nucleus of the hypothalamus (PVN) regulates energy balance by modulating not only food intake, but also energy expenditure (EE) and brown adipose tissue thermogenesis. To test the hypothesis that cannabinoid type 1 (CB1) receptor in PVN neurons might control these processes, we used the Cre/loxP system to delete CB1 from single-minded 1 (Sim1) neurons, which account for the majority of PVN neurons. On standard chow, mice lacking CB1 receptor in Sim1 neurons (Sim1-CB1-knockout [KO]) had food intake, body weight, adiposity, glucose metabolism, and EE comparable with wild-type (WT) (Sim1-CB1-WT) littermates. However, maintenance on a high-fat diet revealed a gene-by-diet interaction whereby Sim1-CB1-KO mice had decreased adiposity, improved insulin sensitivity, and increased EE, whereas feeding behavior was similar to Sim1-CB1-WT mice. Additionally, high-fat diet-fed Sim1-CB1-KO mice had increased mRNA expression of the β3-adrenergic receptor, as well as of uncoupling protein-1, cytochrome-c oxidase subunit IV and mitochondrial transcription factor A in the brown adipose tissue, all molecular changes suggestive of increased thermogenesis. Pharmacological studies using β-blockers suggested that modulation of β-adrenergic transmission play an important role in determining EE changes observed in Sim1-CB1-KO. Finally, chemical sympathectomy abolished the obesity-resistant phenotype of Sim1-CB1-KO mice. Altogether, these findings reveal a diet-dependent dissociation in the CB1 receptor control of food intake and EE, likely mediated by the PVN, where CB1 receptors on Sim1-positive neurons do not impact food intake but hinder EE during dietary environmental challenges that promote body weight gain.

  17. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

    Science.gov (United States)

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P.; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  18. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca(2+) oscillations in mouse pancreatic acinar cells.

    Science.gov (United States)

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca(2+) oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca(2+) oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca(2+) oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca(2+) oscillations and L-arginine-induced enhancement of Ca(2+) signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  19. Beta-caryophyllene is a dietary cannabinoid

    Science.gov (United States)

    Gertsch, Jürg; Leonti, Marco; Raduner, Stefan; Racz, Ildiko; Chen, Jian-Zhong; Xie, Xiang-Qun; Altmann, Karl-Heinz; Karsak, Meliha; Zimmer, Andreas

    2008-01-01

    The psychoactive cannabinoids from Cannabis sativa L. and the arachidonic acid-derived endocannabinoids are nonselective natural ligands for cannabinoid receptor type 1 (CB1) and CB2 receptors. Although the CB1 receptor is responsible for the psychomodulatory effects, activation of the CB2 receptor is a potential therapeutic strategy for the treatment of inflammation, pain, atherosclerosis, and osteoporosis. Here, we report that the widespread plant volatile (E)-β-caryophyllene [(E)-BCP] selectively binds to the CB2 receptor (Ki = 155 ± 4 nM) and that it is a functional CB2 agonist. Intriguingly, (E)-BCP is a common constituent of the essential oils of numerous spice and food plants and a major component in Cannabis. Molecular docking simulations have identified a putative binding site of (E)-BCP in the CB2 receptor, showing ligand π–π stacking interactions with residues F117 and W258. Upon binding to the CB2 receptor, (E)-BCP inhibits adenylate cylcase, leads to intracellular calcium transients and weakly activates the mitogen-activated kinases Erk1/2 and p38 in primary human monocytes. (E)-BCP (500 nM) inhibits lipopolysaccharide (LPS)-induced proinflammatory cytokine expression in peripheral blood and attenuates LPS-stimulated Erk1/2 and JNK1/2 phosphorylation in monocytes. Furthermore, peroral (E)-BCP at 5 mg/kg strongly reduces the carrageenan-induced inflammatory response in wild-type mice but not in mice lacking CB2 receptors, providing evidence that this natural product exerts cannabimimetic effects in vivo. These results identify (E)-BCP as a functional nonpsychoactive CB2 receptor ligand in foodstuff and as a macrocyclic antiinflammatory cannabinoid in Cannabis. PMID:18574142

  20. Effects of the novel cannabinoid CB1 receptor antagonist PF 514273 on the acquisition and expression of ethanol conditioned place preference.

    Science.gov (United States)

    Pina, Melanie M; Cunningham, Christopher L

    2014-08-01

    The centrally expressed cannabinoid receptor (CB1) has been considered a potential therapeutic target in treating alcoholism. Though CB1 receptors have been shown to modulate primary and conditioned ethanol reward, much of this research employed animal models that require ethanol ingestion or oral routes of administration. This is problematic considering CB1 antagonist drugs have high anorectic liability and have been used clinically in the treatment of obesity. Therefore, the present study examined CB1 antagonism in DBA/2J mice using an unbiased ethanol-induced conditioned place preference (CPP) procedure, a paradigm that does not require ethanol ingestion. To evaluate the role of CB1 receptors in primary ethanol reward, the highly potent and selective novel CB1 antagonist 2-(2-chlorophenyl)-3-(4-chlorophenyl)-7-(2,2-difluoropropyl)-6,7-dihydro-2H-pyrazolo[3,4-f][1,4]oxazepin-8(5H)-one (PF 514273) was administered 30 min before place preference conditioning with a fixed dose of ethanol (acquisition). To evaluate the role of CB1 receptors in ethanol-conditioned reward, PF 514273 was administered 30 min before place preference testing (expression). Although PF 514273 reduced ethanol-stimulated and basal locomotor activity, it did not perturb the acquisition or expression of ethanol-induced CPP. Results from the present study appear inconsistent with other studies that have demonstrated a role for CB1 antagonism in ethanol reward using oral administration paradigms. Our findings suggest that CB1 antagonism may have greater involvement in consummatory behavior than ethanol reward.

  1. Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB{sub 1} receptors using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Garth E. [National Institute of Mental Health, Molecular Imaging Branch, Bethesda, MD (United States); Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Hirvonen, Jussi; Liow, Jeih-San; Seneca, Nicholas; Morse, Cheryl L.; Pike, Victor W.; Innis, Robert B. [National Institute of Mental Health, Molecular Imaging Branch, Bethesda, MD (United States); Tauscher, Johannes T.; Schaus, John M.; Phebus, Lee; Felder, Christian C. [Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN (United States); Halldin, Christer [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden)

    2010-08-15

    Cannabinoid subtype 1 (CB{sub 1}) receptors are found in nearly every organ in the body, may be involved in several neuropsychiatric and metabolic disorders, and are therefore an active target for pharmacotherapy and biomarker development. We recently reported brain imaging of CB{sub 1} receptors with two PET radioligands: {sup 11}C-MePPEP and {sup 18}F-FMPEP-d{sub 2}. Here we describe the biodistribution and dosimetry estimates for these two radioligands. Seven healthy subjects (four men and three women) underwent whole-body PET scans for 120 min after injection with {sup 11}C-MePPEP. Another seven healthy subjects (two men and five women) underwent whole-body PET scans for 300 min after injection with {sup 18}F-FMPEP-d{sub 2}. Residence times were acquired from regions of interest drawn on tomographic images of visually identifiable organs for both radioligands and from radioactivity excreted in urine for {sup 18}F-FMPEP-d{sub 2}. The effective doses of {sup 11}C-MePPEP and {sup 18}F-FMPEP-d{sub 2} are 4.6 and 19.7 {mu}Sv/MBq, respectively. Both radioligands demonstrated high uptake of radioactivity in liver, lung, and brain shortly after injection and accumulated radioactivity in bone marrow towards the end of the scan. After injection of {sup 11}C-MePPEP, radioactivity apparently underwent hepatobiliary excretion only, while radioactivity from {sup 18}F-FMPEP-d{sub 2} showed both hepatobiliary and urinary excretion. {sup 11}C-MePPEP and {sup 18}F-FMPEP-d{sub 2} yield an effective dose similar to other PET radioligands labeled with either {sup 11}C or {sup 18}F. The high uptake in brain confirms the utility of these two radioligands to image CB{sub 1} receptors in brain, and both may also be useful to image CB{sub 1} receptors in the periphery. (orig.)

  2. Pain as a reward: changing the meaning of pain from negative to positive co-activates opioid and cannabinoid systems.

    Science.gov (United States)

    Benedetti, Fabrizio; Thoen, Wilma; Blanchard, Catherine; Vighetti, Sergio; Arduino, Claudia

    2013-03-01

    Pain is a negative emotional experience that is modulated by a variety of psychological factors through different inhibitory systems. For example, endogenous opioids and cannabinoids have been found to be involved in stress and placebo analgesia. Here we show that when the meaning of the pain experience is changed from negative to positive through verbal suggestions, the opioid and cannabinoid systems are co-activated and these, in turn, increase pain tolerance. We induced ischemic arm pain in healthy volunteers, who had to tolerate the pain as long as possible. One group was informed about the aversive nature of the task, as done in any pain study. Conversely, a second group was told that the ischemia would be beneficial to the muscles, thus emphasizing the usefulness of the pain endurance task. We found that in the second group pain tolerance was significantly higher compared to the first one, and that this effect was partially blocked by the opioid antagonist naltrexone alone and by the cannabinoid antagonist rimonabant alone. However, the combined administration of naltrexone and rimonabant antagonized the increased tolerance completely. Our results indicate that a positive approach to pain reduces the global pain experience through the co-activation of the opioid and cannabinoid systems. These findings may have a profound impact on clinical practice. For example, postoperative pain, which means healing, can be perceived as less unpleasant than cancer pain, which means death. Therefore, the behavioral and/or pharmacological manipulation of the meaning of pain can represent an effective approach to pain management.

  3. Pharmacokinetics and pharmacodynamics of cannabinoids.

    Science.gov (United States)

    Grotenhermen, Franjo

    2003-01-01

    Delta(9)-Tetrahydrocannabinol (THC) is the main source of the pharmacological effects caused by the consumption of cannabis, both the marijuana-like action and the medicinal benefits of the plant. However, its acid metabolite THC-COOH, the non-psychotropic cannabidiol (CBD), several cannabinoid analogues and newly discovered modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoids exert many effects through activation of G-protein-coupled cannabinoid receptors in the brain and peripheral tissues. Additionally, there is evidence for non-receptor-dependent mechanisms. Natural cannabis products and single cannabinoids are usually inhaled or taken orally; the rectal route, sublingual administration, transdermal delivery, eye drops and aerosols have only been used in a few studies and are of little relevance in practice today. The pharmacokinetics of THC vary as a function of its route of administration. Pulmonary assimilation of inhaled THC causes a maximum plasma concentration within minutes, psychotropic effects start within seconds to a few minutes, reach a maximum after 15-30 minutes, and taper off within 2-3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30-90 minutes, reach their maximum after 2-3 hours and last for about 4-12 hours, depending on dose and specific effect. At doses exceeding the psychotropic threshold, ingestion of cannabis usually causes enhanced well-being and relaxation with an intensification of ordinary sensory experiences. The most important acute adverse effects caused by overdosing are anxiety and panic attacks, and with regard to somatic effects increased heart rate and changes in blood pressure. Regular use of cannabis may lead to dependency and to a mild withdrawal syndrome. The existence and the intensity of possible long-term adverse effects on psyche and cognition, immune system, fertility and pregnancy remain controversial

  4. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity

    NARCIS (Netherlands)

    Campolongo, P.; Morena, M.; Scaccianoce, S.; Trezza, V.; Chiarotti, F.; Schelling, G.; Cuomo, V.; Roozendaal, B.

    2013-01-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.

  5. Cannabinoid receptor CB1 is involved in nicotine-induced protection against Aβ1-42 neurotoxicity in HT22 cells.

    Science.gov (United States)

    Wu, Mingchun; Jia, Ji; Lei, Chong; Ji, Ling; Chen, Xiaodan; Sang, Hanfei; Xiong, Lize

    2015-03-01

    Emerging evidences suggest that nicotine exerts a neuroprotective effect on Alzheimer's disease (AD), yet the precise mechanism is not fully elucidated. Here, HT22 cells were exposed to amyloid beta protein fragment (Aβ)1-42 to mimic the pathological process of neuron in AD. We hypothesized that cannabinoid receptor CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 injury in HT22 cells. CB1 expression in HT22 cells was investigated by immunocytochemistry and Western blot. The injury of HT22 cells was evaluated by cellular morphology, cell viability, and lactate dehydrogenase (LDH) release. The apoptosis of HT22 cells was assessed by flow cytometry and expressions of Bcl-2 and Bax. The results demonstrated that nicotine markedly upregulated CB1 expression, increased cell viability, ameliorated cellular morphology, decreased LDH release, and reduced the apoptotic rate of HT22 cells exposed to Aβ1-42 for 24 h, while the blockade of CB1 or the inhibition of protein kinase C (PKC) partially reversed the neuroprotection. Furthermore, the blockade of CB1 reversed nicotine-induced PKC activation in HT22 cells exposed to Aβ1-42. These results suggest that CB1 is involved in the nicotine-induced neuroprotection against Aβ1-42 neurotoxicity, and the neuroprotection may be dependent on the activation of PKC.

  6. WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture.

    Directory of Open Access Journals (Sweden)

    Diana Aguirre-Rueda

    Full Text Available Alzheimer's disease (AD, a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS, and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 55,212-2 (a synthetic cannabinoid on cell viability, inflammatory mediators and oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would be needed to assess the possible beneficial effects of cannabinoids in Alzheimer's disease patients.

  7. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2′-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned

  8. Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

    Science.gov (United States)

    Blanco-Calvo, Eduardo; Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Pavón, Francisco Javier; Serrano, Antonia; Castilla-Ortega, Estela; Galeano, Pablo; Rubio, Leticia; Suárez, Juan; Rodriguez de Fonseca, Fernando

    2014-01-01

    Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion

  9. The Combined Inhibitory Effect of the Adenosine A1 and Cannabinoid CB1 Receptors on cAMP Accumulation in the Hippocampus Is Additive and Independent of A1 Receptor Desensitization

    Directory of Open Access Journals (Sweden)

    André Serpa

    2015-01-01

    Full Text Available Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3–30 μM decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6 ± 2.7 μM and an Emax⁡ of 31% ± 2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10–150 nM, an EC50 of 35 ± 19 nM, and an Emax⁡ of 29% ± 5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM and CPA (100 nM on cAMP accumulation was 41% ± 6% (n=4, which did not differ (P>0.7 from the sum of the individual effects of each agonist (43% ± 8% but was different (P<0.05 from the effects of CPA or WIN55212-2 alone. Preincubation with CPA (100 nM for 95 min caused desensitization of adenosine A1 activity, which did not modify the effect of WIN55212-2 (30 μM on cAMP accumulation. In conclusion, the combined effect of CB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.

  10. Cannabinoids and centrak neuropathic pain. A review (Cannabinoidi e dolore neuropatico centrale. Una rassegna

    Directory of Open Access Journals (Sweden)

    Francesco Crestani

    2014-03-01

    Full Text Available Only recently, the medical community highlighted the pharmacological scientific bases of the effects of Cannabis. The most important active principle, Delta-9-tetrahydrocannabinol was identified in the second half of the last century, and receptors were subsequently identified and endogenous ligands, called endocannabinoids, were characterized. The effectiveness of the cannabinoids in the treatment of nausea and vomit due to anti-neoplastic chemotherapy and in the wasting-syndrome during AIDS is recognized. Moreover, the cannabinoids have shown analgesic properties, particularly interesting with regard to the central neuropathic pain. This article will review the current knowledge and will give practical guidance on how to proceed in prescribing cannabinoids.

  11. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice.

    Science.gov (United States)

    Bermudez-Silva, Francisco J; Romero-Zerbo, Silvana Y; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases.

  12. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions.

    Science.gov (United States)

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.

  13. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    Directory of Open Access Journals (Sweden)

    Eleftheria Lakiotaki

    2015-01-01

    Full Text Available The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2, their endogenous ligands (endocannabinoids, and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins’ expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n=43 and malignant (n=44 lesions and was statistically analyzed with clinicopathological parameters, follicular cells’ proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p=0.0010 and p=0.0005, resp.. Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p=0.0097 and p=0.0110, resp.. In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p=0.0301. Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p=0.1165, lymphatic (p=0.1989, and vascular invasion (p=0.0555, as well as in those with increased risk of recurrence rate (p=0.1165, at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia.

  14. Feeding Induced by Cannabinoids Is Mediated Independently of the Melanocortin System

    OpenAIRE

    Sinnayah, Puspha; Jobst, Erin E.; Rathner, Joseph A.; Caldera-Siu, Angela D.; Tonelli-Lemos, Luciana; Eusterbrock, Aaron J.; Enriori, Pablo J.; Pothos, Emmanuel N.; Grove, Kevin L.; Cowley, Michael A.

    2008-01-01

    Background Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R) antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance. Methodology/Principal Findings Here, we show that peripherally administered CB1-R antagonist (AM251) or agonist equally suppressed or stimulated feeding respectively in Ay , which...

  15. Plant cannabinoids: a neglected pharmacological treasure trove

    OpenAIRE

    Mechoulam, Raphael

    2005-01-01

    Most of the cannabinoids in Cannabis sativa L. have not been fully evaluated for their pharmacological activity. A publication in this issue presents evidence that a plant cannabinoid, Δ9-tetrahydrocannabivarin is a potent antagonist of anandamide, a major endogenous cannabinoid. It seems possible that many of the non-psychoactive constituents of this plant will be of biological interest.

  16. Type 1 cannabinoid receptor mapping with [18F]MK-9470 PET in the rat brain after quinolinic acid lesion: a comparison to dopamine receptors and glucose metabolism

    International Nuclear Information System (INIS)

    Several lines of evidence imply early alterations in metabolic, dopaminergic and endocannabinoid neurotransmission in Huntington's disease (HD). Using [18F]MK-9470 and small animal PET, we investigated cerebral changes in type 1 cannabinoid (CB1) receptor binding in the quinolinic acid (QA) rat model of HD in relation to glucose metabolism, dopamine D2 receptor availability and amphetamine-induced turning behaviour. Twenty-one Wistar rats (11 QA and 10 shams) were investigated. Small animal PET acquisitions were conducted on a Focus 220 with approximately 18 MBq of [18F]MK-9470, [18F]FDG and [11C]raclopride. Relative glucose metabolism and parametric CB1 receptor and D2 binding images were anatomically standardized to Paxinos space and analysed voxel-wise using Statistical Parametric Mapping (SPM2). In the QA model, [18F]MK-9470 uptake, glucose metabolism and D2 receptor binding were reduced in the ipsilateral caudate-putamen by 7, 35 and 77%, respectively (all p -5), while an increase for these markers was observed on the contralateral side (>5%, all p -4). [18F]MK-9470 binding was also increased in the cerebellum (p = 2.10-5), where it was inversely correlated to the number of ipsiversive turnings (p = 7.10-6), suggesting that CB1 receptor upregulation in the cerebellum is related to a better functional outcome. Additionally, glucose metabolism was relatively increased in the contralateral hippocampus, thalamus and sensorimotor cortex (p = 1.10-6). These data point to in vivo changes in endocannabinoid transmission, specifically for CB1 receptors in the QA model, with involvement of the caudate-putamen, but also distant regions of the motor circuitry, including the cerebellum. These data also indicate the occurrence of functional plasticity on metabolism, D2 and CB1 neurotransmission in the contralateral hemisphere. (orig.)

  17. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology.

    Science.gov (United States)

    Ligresti, Alessia; De Petrocellis, Luciano; Di Marzo, Vincenzo

    2016-10-01

    Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ(9)-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field. PMID:27630175

  18. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology.

    Science.gov (United States)

    Ligresti, Alessia; De Petrocellis, Luciano; Di Marzo, Vincenzo

    2016-10-01

    Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ(9)-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.

  19. Peripherally Selective Cannabinoid 1 Receptor (CB1R) Agonists for the Treatment of Neuropathic Pain.

    Science.gov (United States)

    Seltzman, Herbert H; Shiner, Craig; Hirt, Erin E; Gilliam, Anne F; Thomas, Brian F; Maitra, Rangan; Snyder, Rod; Black, Sherry L; Patel, Purvi R; Mulpuri, Yatendra; Spigelman, Igor

    2016-08-25

    Alleviation of neuropathic pain by cannabinoids is limited by their central nervous system (CNS) side effects. Indole and indene compounds were engineered for high hCB1R affinity, peripheral selectivity, metabolic stability, and in vivo efficacy. An epithelial cell line assay identified candidates with <1% blood-brain barrier penetration for testing in a rat neuropathy induced by unilateral sciatic nerve entrapment (SNE). The SNE-induced mechanical allodynia was reversibly suppressed, partially or completely, after intraperitoneal or oral administration of several indenes. At doses that relieve neuropathy symptoms, the indenes completely lacked, while the brain-permeant CB1R agonist HU-210 (1) exhibited strong CNS side effects, in catalepsy, hypothermia, and motor incoordination assays. Pharmacokinetic findings of ∼0.001 cerebrospinal fluid:plasma ratio further supported limited CNS penetration. Pretreatment with selective CB1R or CB2R blockers suggested mainly CB1R contribution to an indene's antiallodynic effects. Therefore, this class of CB1R agonists holds promise as a viable treatment for neuropathic pain. PMID:27482723

  20. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi.

    Science.gov (United States)

    Shim, Joong-Youn; Ahn, Kwang H; Kendall, Debra A

    2013-11-01

    The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.

  1. Cannabinoid Receptor 1 Gene Polymorphisms and Nonalcoholic Fatty Liver Disease in Women with Polycystic Ovary Syndrome and in Healthy Controls

    Directory of Open Access Journals (Sweden)

    Justyna Kuliczkowska Plaksej

    2014-01-01

    Full Text Available Context. Polycystic ovary syndrome (PCOS is frequently associated with nonalcoholic fatty liver disease (NAFLD. The endocannabinoid system may play a crucial role in the pathogenesis of NAFLD. Polymorphism of the cannabinoid receptor 1 gene (CNR1 may be responsible for individual susceptibility to obesity and related conditions. Objective. To determine the role of genetic variants of CNR1 in the etiopathology of NAFLD in women with PCOS. Design and Setting. Our department (a tertiary referral center conducted a cross-sectional, case-controlled study. Subjects. 173 women with PCOS (aged 20–35 and 125 healthy, age- and weight-matched controls were studied. Methods. Hepatic steatosis was assessed by ultrasound evaluation. Single nucleotide polymorphisms of CNR1 (rs806368, rs12720071, rs1049353, rs806381, rs10485170, rs6454674 were genotyped. Results. Frequency of the G allele of rs806381 (P<0.025 and the GG genotype of rs10485170 (P<0.03 was significantly higher in women with PCOS and NAFLD than in PCOS women without NAFLD. Frequency of the TT genotype of rs6454674 was higher in PCOS women with NAFLD (not significantly, P=0.059. In multivariate stepwise regression, allele G of rs806381 was associated with PCOS + NAFLD phenotype. Conclusion. Our preliminary results suggest the potential role of CNR1 polymorphisms in the etiology of NAFLD, especially in PCOS women.

  2. Mechanical and material properties of cortical and trabecular bone from cannabinoid receptor-1-null (Cnr1(-/-)) mice.

    Science.gov (United States)

    Khalid, Aysha B; Goodyear, Simon R; Ross, Ruth A; Aspden, Richard M

    2016-10-01

    The endocannabinoid system is known for its regulatory effects on bone metabolism through the cannabinoid receptors, Cnr1 and Cnr2. In this study we analysed the mechanical and material properties of long bones from Cnr1(-/-) mice on a C57BL/6 background. Tibiae and femora from 5- and 12-week-old mice were subjected to three-point bending to measure bending stiffness and yield strength. Elastic modulus, density and mineral content were measured in the diaphysis. Second moment of area (MOA2), inner and outer perimeters of the cortical shaft and trabecular fractional bone volume (BV/TV) were measured using micro-CT. In Cnr1(-/-) males and females at both ages the bending stiffness was reduced due to a smaller MOA2. Bone from Cnr1(-/-) females had a greater modulus than wild-type controls, although no differences were observed in males. BV/TV of 12-week-old Cnr1(-/-) females was greater than controls, although no difference was seen at 5-weeks. On the contrary, Cnr1(-/-) males had the same BV/TV as controls at 12-weeks while they had significantly lower values at 5-weeks. This study shows that deleting Cnr1 decreases the amount of cortical bone in both males and females at 12-weeks, but increases the amount of trabecular bone only in females.

  3. Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner.

    Science.gov (United States)

    Nishio, Shin-Ichi; Gibert, Yann; Berekelya, Liubov; Bernard, Laure; Brunet, Frédéric; Guillot, Etienne; Le Bail, Jean-Christophe; Sánchez, Juan Antonio; Galzin, Anne Marie; Triqueneaux, Gerard; Laudet, Vincent

    2012-08-01

    Central and peripheral mechanisms modulate food intake and energy balance in mammals and the precise role of the type 1 cannabinoid receptor (CB1) in these processes is still being explored. Using the zebrafish, Danio rerio, we show that rimonabant, a CB1-specific antagonist with an EC(50) of 5.15 × 10(-8) m, decreases embryonic yolk sac reserve use. We reveal a developmental overlap between CART genes and CB1 expression in the hypothalamus and medulla oblongata, two brain structures that play crucial roles in appetite regulation in mammals. We show that morpholino knockdown of CB1 or fasting decreases cocaine- and amphetamine-related transcript (CART)-3 expression. Strikingly, this down-regulation occurs only in regions coexpressing CB1 and CART3, reinforcing the link between CB1, CART, and appetite regulation. We show that rimonabant treatment impairs the fasting-induced down-regulation of CART expression in specific brain regions, whereas vehicle alone-treated embryos do not display this rescue of CART expression. Our data reveal that CB1 lies upstream of CART and signals the appetite through the down-regulation of CART expression. Thus, our results establish the zebrafish as a promising system to study appetite regulation. PMID:22700585

  4. ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs.

    Science.gov (United States)

    Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Miroslaw; Rola, Radoslaw; Maj, Maciej; Chrościńska-Krawczyk, Magdalena; Luszczki, Jarogniew J

    2015-10-22

    Hippocampal neurogenesis plays a very important role in learning and memory functions. In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties. The aim of this study was to evaluate the impact of ACEA (arachidonyl-2'-chloroethylamide--a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells' proliferation and differentiation in the mouse brain. All experiments were performed on adolescent CB57/BL male mice injected i.p. with VPA (10mg/kg), ACEA (10mg/kg) and PMSF (30 mg/kg) (phenylmethylsulfonyl fluoride--a substance protecting ACEA against degradation by the fatty-acid amidohydrolase) for 10 days. Next an acute response of proliferating neural precursor cells to ACEA and VPA administration was evaluated with Ki-67 staining (Time point 1). Next, in order to determine whether acute changes translated into long-term alterations in neurogenesis, proliferating cells were labeled with 5-bromo-2deoxyuridine (BrdU) followed by confocal microscopy used to determine the percentage of BrdU-labeled cells that showed mature cell phenotypes (Time point 2). Results indicate that ACEA with PMSF significantly increase the total number of Ki-67-positive cells when compared to the control group. Moreover, ACEA in combination with VPA increased the number of Ki-67-positive cells, whereas VPA administered alone had no impact on proliferating cells' population. Accordingly, neurogenesis study results indicate that the combination of ACEA+PMSF administered alone and in combination with VPA considerably increases the total number of BrdU-positive cells in comparison to the control group while ACEA+PMSF alone and in combination with VPA increased total numbers of BrdU-positive cells, newly born neurons and astrocytes as compared to VPA group but not to

  5. Δ8-Tetrahydrocannabinol induces cytotoxicity in macrophage J774-1 cells: Involvement of cannabinoid receptor 2 and p38 MAPK

    International Nuclear Information System (INIS)

    Tetrahydrocannabinol (THC), a psychoactive component of marijuana, is known to exert cytotoxicity in immune cells. In the present study, we examined the cytotoxicity of Δ8-THC in mouse macrophage J774-1 cells and a possible involvement of cannabinoid receptors and stress-responsive mitogen-activated protein kinases (MAPKs) in the cytotoxic process. J774-1 cells were treated with Δ8-THC (0–20 μM) for up to 6 h. As measured by the MTT and LDH assays, Δ8-THC induced cell death of J774-1 cells in a concentration- and/or exposure time-dependent manner. Δ8-THC-induced cell damage was associated with vacuole formation, cell swelling, chromatin condensation, and nuclear fragmentation. The cytotoxic effect of Δ8-THC was significantly prevented by a caspase-1 inhibitor Ac-YVAD-cmk but not a caspase-3 inhibitor z-DEVD-fmk. The pretreatment with SR144528, a CB2 receptor-selective antagonist, effectively suppressed Δ8-THC-induced cytotoxicity in J774-1 cells, which exclusively expressed CB2 receptors as indicated by real-time polymerase chain reaction analysis. In contrast, AM251, a CB1 receptor-selective antagonist, did not affect the cytotoxicity. Pertussis toxin and α-tocopherol significantly attenuated Δ8-THC-induced cytotoxicity suggesting that Gi/o protein coupling signal transduction and oxidative stress are responsible for the cytotoxicity. 8-THC stimulated the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) in J774-1 cells, which were effectively antagonized by the pretreatment with SR144528. In addition, SB203580, a p38 MARK inhibitor, significantly attenuated the cytotoxic effect of Δ8-THC, whereas SP600125, a JNK inhibitor, significantly enhanced the cytotoxicity. These results suggest that the cytotoxicity of Δ8-THC to J774-1 cells is exerted mediated through the CB2 receptor followed by the activation of p38 MAPK

  6. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  7. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    The mechanism by which delta9 tetrahydrocannabinol (delta9THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta8THC (TMA) is a positively charged analog of delta-8THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [3H]-5'-trimethylammonium-delta-8THC ([3H]TMA) to rat neuronal membranes. [3H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [3H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  8. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice.

    Science.gov (United States)

    Ortega-Alvaro, Antonio; Aracil-Fernández, Auxiliadora; García-Gutiérrez, María S; Navarrete, Francisco; Manzanares, Jorge

    2011-06-01

    The possible role of the CB(2) receptor (CB(2)r) in psychiatric disorders has been considered. Several animal models use knockout (KO) mice that display schizophrenia-like behaviors and this study evaluated the role of CB(2)r in the regulation of such behaviors. Mice lacking the CB(2)r (CB(2)KO) were challenged in open field, light-dark box, elevated plus-maze, tail suspension, step down inhibitory avoidance, and pre-pulse inhibition tests (PPI). Furthermore, the effects of treatment with cocaine and risperidone were evaluated using the OF and the PPI test. Gene expression of dopamine D(2) (D(2)r), adrenergic-α(2C) (α(2C)r), serotonergic 5-HT(2A) and 5-HT(2C) receptors (5-HT(2A)r and 5-HT(2C)r) were studied by RT-PCR in brain regions related to schizophrenia. Deletion of CB(2)r decreased motor activity in the OF test, but enhanced response to acute cocaine and produced mood-related alterations, PPI deficit, and cognitive impairment. Chronic treatment with risperidone tended to impair PPI in WT mice, whereas it 'normalized' the PPI deficit in CB(2)KO mice. CB(2)KO mice presented increased D(2)r and α(2C)r gene expressions in the prefrontal cortex (PFC) and locus coeruleus (LC), decreased 5-HT(2C)r gene expression in the dorsal raphe (DR), and 5-HT(2A)r gene expression in the PFC. Chronic risperidone treatment in WT mice left α(2C)r gene expression unchanged, decreased D(2)r gene expression (15 μg/kg), and decreased 5-HT(2C)r and 5-HT(2A)r in PFC and DR. In CB(2)KO, the gene expression of D(2)r in the PFC, of α(2C)r in the LC, and of 5-HT(2C)r and 5-HT(2A)r in PFC was reduced; 5-HT(2C)r and 5-HT(2A)r gene expressions in DR were increased after treatment with risperidone. These results suggest that deletion of CB(2)r has a relation with schizophrenia-like behaviors. Pharmacological manipulation of CB(2)r may merit further study as a potential therapeutic target for the treatment of schizophrenia-related disorders. PMID:21430651

  9. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model

    International Nuclear Information System (INIS)

    Recent ex vivo and pharmacological evidence suggests involvement of the endocannabinoid system in the pathophysiology of stroke, but conflicting roles for type 1 and 2 cannabinoid receptors (CB1 and CB2) have been suggested. The purpose of this study was to evaluate CB1 and CB2 receptor binding over time in vivo in a rat photothrombotic stroke model using PET. CB1 and CB2 microPET imaging was performed at regular time-points up to 2 weeks after stroke using [18F]MK-9470 and [11C]NE40. Stroke size was measured using MRI at 9.4 T. Ex vivo validation was performed via immunostaining for CB1 and CB2. Immunofluorescent double stainings were also performed with markers for astrocytes (GFAP) and macrophages/microglia (CD68). [18F]MK-9470 PET showed a strong increase in CB1 binding 24 h and 72 h after stroke in the cortex surrounding the lesion, extending to the insular cortex 24 h after surgery. These alterations were consistently confirmed by CB1 immunohistochemical staining. [11C]NE40 did not show any significant differences between stroke and sham-operated animals, although staining for CB2 revealed minor immunoreactivity at 1 and 2 weeks after stroke in this model. Both CB1+ and CB2+ cells showed minor immunoreactivity for CD68. Time-dependent and regionally strongly increased CB1, but not CB2, binding are early consequences of photothrombotic stroke. Pharmacological interventions should primarily aim at CB1 signalling as the role of CB2 seems minor in the acute and subacute phases of stroke. (orig.)

  10. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    Science.gov (United States)

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-01

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  11. High tumour cannabinoid CB1 receptor immunoreactivity negatively impacts disease-specific survival in stage II microsatellite stable colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Sofia B Gustafsson

    Full Text Available BACKGROUND: There is good evidence in the literature that the cannabinoid system is disturbed in colorectal cancer. In the present study, we have investigated whether CB(1 receptor immunoreactive intensity (CB(1IR intensity is associated with disease severity and outcome. METHODOLOGY/PRINCIPAL FINDINGS: CB(1IR was assessed in formalin-fixed, paraffin-embedded specimens collected with a consecutive intent during primary tumour surgical resection from a series of cases diagnosed with colorectal cancer. Tumour centre (n = 483 and invasive front (n = 486 CB(1IR was scored from 0 (absent to 3 (intense staining and the data was analysed as a median split i.e. CB(1IR <2 and ≥2. In microsatellite stable, but not microsatellite instable tumours (as adjudged on the basis of immunohistochemical determination of four mismatch repair proteins, there was a significant positive association of the tumour grade with the CB(1IR intensity. The difference between the microsatellite stable and instable tumours for this association of CB(1IR was related to the CpG island methylation status of the cases. Cox proportional hazards regression analyses indicated a significant contribution of CB(1IR to disease-specific survival in the microsatellite stable tumours when adjusting for tumour stage. For the cases with stage II microsatellite stable tumours, there was a significant effect of both tumour centre and front CB(1IR upon disease specific survival. The 5 year probabilities of event-free survival were: 85±5 and 66±8%; tumour interior, 86±4% and 63±8% for the CB(1IR<2 and CB(1IR≥2 groups, respectively. CONCLUSIONS/SIGNIFICANCE: The level of CB(1 receptor expression in colorectal cancer is associated with the tumour grade in a manner dependent upon the degree of CpG hypermethylation. A high CB(1IR is indicative of a poorer prognosis in stage II microsatellite stable tumour patients.

  12. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model

    Energy Technology Data Exchange (ETDEWEB)

    Vandeputte, Caroline; Casteels, Cindy; Koole, Michel; Gerits, Anneleen [KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); Struys, Tom [Hasselt University, Laboratory of Histology, Biomedical Research Institute, Hasselt (Belgium); KU Leuven, Biomedical NMR Unit, Leuven (Belgium); Veghel, Daisy van; Evens, Nele; Bormans, Guy [KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); KU Leuven, Laboratory of Radiopharmacy, Leuven (Belgium); Dresselaers, Tom; Himmelreich, Uwe [KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); KU Leuven, Biomedical NMR Unit, Leuven (Belgium); Lambrichts, Ivo [Hasselt University, Laboratory of Histology, Biomedical Research Institute, Hasselt (Belgium); Laere, Koen van [KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); UZ Leuven, Division of Nuclear Medicine, Leuven (Belgium)

    2012-11-15

    Recent ex vivo and pharmacological evidence suggests involvement of the endocannabinoid system in the pathophysiology of stroke, but conflicting roles for type 1 and 2 cannabinoid receptors (CB{sub 1} and CB{sub 2}) have been suggested. The purpose of this study was to evaluate CB{sub 1} and CB{sub 2} receptor binding over time in vivo in a rat photothrombotic stroke model using PET. CB{sub 1} and CB{sub 2} microPET imaging was performed at regular time-points up to 2 weeks after stroke using [{sup 18}F]MK-9470 and [{sup 11}C]NE40. Stroke size was measured using MRI at 9.4 T. Ex vivo validation was performed via immunostaining for CB{sub 1} and CB{sub 2}. Immunofluorescent double stainings were also performed with markers for astrocytes (GFAP) and macrophages/microglia (CD68). [{sup 18}F]MK-9470 PET showed a strong increase in CB{sub 1} binding 24 h and 72 h after stroke in the cortex surrounding the lesion, extending to the insular cortex 24 h after surgery. These alterations were consistently confirmed by CB{sub 1} immunohistochemical staining. [{sup 11}C]NE40 did not show any significant differences between stroke and sham-operated animals, although staining for CB{sub 2} revealed minor immunoreactivity at 1 and 2 weeks after stroke in this model. Both CB{sub 1} {sup +} and CB{sub 2} {sup +} cells showed minor immunoreactivity for CD68. Time-dependent and regionally strongly increased CB{sub 1}, but not CB{sub 2}, binding are early consequences of photothrombotic stroke. Pharmacological interventions should primarily aim at CB{sub 1} signalling as the role of CB{sub 2} seems minor in the acute and subacute phases of stroke. (orig.)

  13. Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains

    Energy Technology Data Exchange (ETDEWEB)

    Kronfeld, Andrea; Müller-Forell, Wibke [Institute of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, Mainz 55131 (Germany); Buchholz, Hans-Georg; Maus, Stephan; Reuss, Stefan; Schreckenberger, Mathias; Miederer, Isabelle, E-mail: isabelle.miederer@unimedizin-mainz.de [Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, Mainz 55131 (Germany); Lutz, Beat [Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55128 (Germany)

    2015-12-15

    Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawley rats were investigated for template construction using MRI and [{sup 18}F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL

  14. Cannabinoid receptor 1 gene polymorphisms and marijuana misuse interactions on white matter and cognitive deficits in schizophrenia.

    Science.gov (United States)

    Ho, Beng-Choon; Wassink, Thomas H; Ziebell, Steven; Andreasen, Nancy C

    2011-05-01

    Marijuana exposure during the critical period of adolescent brain maturation may disrupt neuro-modulatory influences of endocannabinoids and increase schizophrenia susceptibility. Cannabinoid receptor 1 (CB1/CNR1) is the principal brain receptor mediating marijuana effects. No study to-date has systematically investigated the impact of CNR1 on quantitative phenotypic features in schizophrenia and inter-relationships with marijuana misuse. We genotyped 235 schizophrenia patients using 12 tag single nucleotide polymorphisms (tSNPs) that account for most of CB1 coding region genetic variability. Patients underwent a high-resolution anatomic brain magnetic resonance scan and cognitive assessment. Almost a quarter of the sample met DSM marijuana abuse (14%) or dependence (8%) criteria. Effects of CNR1 tSNPs and marijuana abuse/dependence on brain volumes and neurocognition were assessed using ANCOVA, including co-morbid alcohol/non-marijuana illicit drug misuse as covariates. Significant main effects of CNR1 tSNPs (rs7766029, rs12720071, and rs9450898) were found in white matter (WM) volumes. Patients with marijuana abuse/dependence had smaller fronto-temporal WM volumes than patients without heavy marijuana use. More interestingly, there were significant rs12720071 genotype-by-marijuana use interaction effects on WM volumes and neurocognitive impairment; suggestive of gene-environment interactions for conferring phenotypic abnormalities in schizophrenia. In this comprehensive evaluation of genetic variants distributed across the CB1 locus, CNR1 genetic polymorphisms were associated with WM brain volume variation among schizophrenia patients. Our findings suggest that heavy cannabis use in the context of specific CNR1 genotypes may contribute to greater WM volume deficits and cognitive impairment, which could in turn increase schizophrenia risk.

  15. Effect of the Cannabinoid Receptor-1 antagonist SR141716A on human adipocyte inflammatory profile and differentiation

    Directory of Open Access Journals (Sweden)

    Murumalla Ravi

    2011-11-01

    Full Text Available Abstract Background Obesity is characterized by inflammation, caused by increase in proinflammatory cytokines, a key factor for the development of insulin resistance. SR141716A, a cannabinoid receptor 1 (CB1 antagonist, shows significant improvement in clinical status of obese/diabetic patients. Therefore, we studied the effect of SR141716A on human adipocyte inflammatory profile and differentiation. Methods Adipocytes were obtained from liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. Media and cells were collected for secretory (ELISA and expression analysis (qPCR. Triglyceride accumulation was observed using oil red-O staining. Cholesterol was assayed by a fluorometric method. 2-AG and anandamide were quantified using isotope dilution LC-MS. TLR-binding experiments have been conducted in HEK-Blue cells. Results In LPS-treated mature adipocytes, SR141716A was able to decrease the expression and secretion of TNF-a. This molecule has the same effect in LPS-induced IL-6 secretion, while IL-6 expression is not changed. Concerning MCP-1, the basal level is down-regulated by SR141716A, but not the LPS-induced level. This effect is not caused by a binding of the molecule to TLR4 (LPS receptor. Moreover, SR141716A restored adiponectin secretion to normal levels after LPS treatment. Lastly, no effect of SR141716A was detected on human pre-adipocyte differentiation, although the compound enhanced adiponectin gene expression, but not secretion, in differentiated pre-adipocytes. Conclusion We show for the first time that some clinical effects of SR141716A are probably directly related to its anti-inflammatory effect on mature adipocytes. This fact reinforces that adipose tissue is an important target in the development of tools to treat the metabolic syndrome.

  16. Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains

    International Nuclear Information System (INIS)

    Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawley rats were investigated for template construction using MRI and [18F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL templates

  17. Cannabinoids and Reproduction: A Lasting and Intriguing History

    Directory of Open Access Journals (Sweden)

    Gilda Cobellis

    2010-10-01

    Full Text Available Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.

  18. Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    NARCIS (Netherlands)

    Pattij, Tommy; Janssen, Mieke; Schepers, Inga; González-Cuevas, Gustavo; Vries, de Taco; Schoffelmeer, Anton

    2007-01-01

    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid syste

  19. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans

    OpenAIRE

    Rabinak, Christine A.; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K. Luan

    2013-01-01

    Pre-extinction administration of ∆9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely involves via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a fu...

  20. Basolateral amygdala CB1 cannabinoid receptors are involved in cross state-dependent memory retrieval between morphine and ethanol.

    Science.gov (United States)

    Ofogh, Sattar Norouzi; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2016-09-01

    Ethanol and morphine are largely co-abused and affect memory formation. The present study intended to investigate the involvement of cannabinoid CB1 receptors of the basolateral amygdala (BLA) in cross state-dependent memory retrieval between morphine and ethanol. Adult male Wistar rats received bilateral cannulation of the BLA, and memory retrieval was measured in step-through type passive avoidance apparatus. Our results showed that post-training intraperitoneal (i.p.) administration of morphine (6mg/kg) induced amnesia. Pre-test administration of ethanol (0.5g/kg, i.p.) significantly improved morphine-induced memory impairment, suggesting that there is cross state-dependent memory retrieval between morphine and ethanol. It should be considered that pre-test administration of ethanol (0.1 and 0.5g/kg, i.p.) by itself had no effect on memory retrieval in the passive avoidance task. Interestingly, pre-test intra-BLA microinjection of different doses of WIN55,212-2 (0.1, 0.2 and 0.3μg/rat), a non-selective CB1/CB2 receptor agonist, plus an ineffective dose of ethanol (0.1g/kg, i.p.) improved morphine-induced memory impairment. Intra-BLA microinjection of AM251 (0.4-0.6ng/rat), a selective CB1 receptor antagonist, inhibited the improved effect of ethanol (0.5g/kg, i.p.) on morphine response. Pre-test intra-BLA microinjection of WIN55,212-2 or AM251 had no effect on memory retrieval or morphine-induced amnesia. Taken together, it can be concluded that morphine and ethanol can induce state-dependent memory retrieval. In addition, the BLA endocannabinoid system mediates via CB1 receptors the functional interaction of morphine and ethanol state-dependent memory retrieval which may depend on the rewarding effects of the drugs. PMID:27327764

  1. (4-(Bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229): a new cannabinoid CB1 receptor inverse agonist from the class of benzhydryl piperazine analogs.

    Science.gov (United States)

    Mahmoud, Mariam M; Olszewska, Teresa; Liu, Hui; Shore, Derek M; Hurst, Dow P; Reggio, Patricia H; Lu, Dai; Kendall, Debra A

    2015-02-01

    Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5'-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A.

  2. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity

    Science.gov (United States)

    Cannabinoid receptor 1 (CB1) is the best-characterized cannabinoid receptor, and CB1 antagonists are used in clinical trials to treat obesity. Because of the wide range of CB1 functions, the side effects of CB1 antagonists pose serious concerns. G-protein-coupled receptor 55 (GPR55) is an atypical c...

  3. Anatomically heterogeneous populations of CB1 cannabinoid receptor-expressing interneurons in the CA3 region of the hippocampus show homogeneous input-output characteristics.

    Science.gov (United States)

    Szabó, Gergely G; Papp, Orsolya I; Máté, Zoltán; Szabó, Gábor; Hájos, Norbert

    2014-12-01

    A subpopulation of GABAergic cells in cortical structures expresses CB1 cannabinoid receptors (CB1 ) on their axon terminals. To understand the function of these interneurons in information processing, it is necessary to uncover how they are embedded into neuronal circuits. Therefore, the proportion of GABAergic terminals expressing CB1 and the morphological and electrophysiological properties of CB1 -immunoreactive interneurons should be revealed. We investigated the ratio and the origin of CB1 -expressing inhibitory boutons in the CA3 region of the hippocampus. Using immunocytochemical techniques, we estimated that ∼40% of GABAergic axon terminals in different layers of CA3 also expressed CB1 . To identify the inhibitory cell types expressing CB1 in this region, we recorded and intracellularly labeled interneurons in hippocampal slices. CB1 -expressing interneurons showed distinct axonal arborization, and were classified as basket cells, mossy-fiber-associated cells, dendritic-layer-innervating cells or perforant-path-associated cells. In each morphological category, a substantial variability in axonal projection was observed. In contrast to the diverse morphology, the active and passive membrane properties were found to be rather similar. Using paired recordings, we found that pyramidal cells displayed large and fast unitary postsynaptic currents in response to activating basket and mossy-fiber-associated cells, while they showed slower and smaller synaptic events in pairs originating from interneurons that innervate the dendritic layer, which may be due to dendritic filtering. In addition, CB1 activation significantly reduced the amplitude of the postsynaptic currents in each cell pair tested. Our data suggest that CB1 -expressing interneurons with different axonal projections have comparable physiological characteristics, contributing to a similar proportion of GABAergic inputs along the somato-dendritic axis of CA3 pyramidal cells.

  4. THE CANNABINOID RECEPTOR ANTAGONIST AM251 INCREASES PARAOXON AND CHLORPYRIFOS OXON TOXICITY IN RATS

    OpenAIRE

    Liu, Jing; Pope, Carey

    2014-01-01

    Organophosphorus anticholinesterases (OPs) elicit acute toxicity by inhibiting acetylcholinesterase (AChE), leading to acetylcholine accumulation and overstimulation of cholinergic receptors. Endocannabinoids (eCBs, e.g., arachidonoyl ethanolamide [AEA] and 2-arachidonoyl glycerol [2-AG]) are neuromodulators that regulate neurotransmission by reducing neurotransmitter release. The eCBs are degraded by the enzymes fatty acid amide hydrolase (FAAH, primarily involved in hydrolysis of AEA) and m...

  5. Framework for sex differences in adolescent neurobiology: a focus on cannabinoids.

    Science.gov (United States)

    Viveros, Maria-Paz; Marco, Eva M; López-Gallardo, Meritxell; Garcia-Segura, Luis Miguel; Wagner, Edward J

    2011-08-01

    This review highlights the salient findings that have furthered our understanding of how sex differences are initiated during development and maintained throughout life. First we discuss how gonadal steroid hormones organize the framework for sex differences within critical periods of development-namely, during those exposures which occur in utero and post-partum, as well as those which occur during puberty. Given the extensive precedence of sex differences in cannabinoid-regulated biology, we then focus on the disparities within the endogenous cannabinoid system, as well as those observed with exogenously administered cannabinoids. We start with how the expression of cannabinoid CB(1) receptors is regulated throughout development. This is followed by a discussion of differential vulnerability to the pathological sequelae stemming from cannabinoid exposure during adolescence. Next we talk about sex differences in the interactions between cannabinoids and other drugs of abuse, followed by the organizational and activational roles of gonadal steroids in establishing and maintaining the sex dependence in the biological actions of cannabinoids. Finally, we discuss ways to utilize this knowledge to strategically target critical developmental windows of vulnerability/susceptibility and thereby implement more effective therapeutic interventions for afflictions that may be more prevalent in one sex vs. the other.

  6. Preclinical and Clinical Assessment of Cannabinoids as Anti-Cancer Agents

    Science.gov (United States)

    Ladin, Daniel A.; Soliman, Eman; Griffin, LaToya; Van Dross, Rukiyah

    2016-01-01

    Cancer is the second leading cause of death in the United States with 1.7 million new cases estimated to be diagnosed in 2016. This disease remains a formidable clinical challenge and represents a substantial financial burden to the US health care system. Therefore, research and development of novel therapeutics for the treatment of cancer is of high priority. Cannabinoids and their derivatives have been utilized for their medicinal and therapeutic properties throughout history. Cannabinoid activity is regulated by the endocannabinoid system (ECS), which is comprised of cannabinoid receptors, transporters, and enzymes involved in cannabinoid synthesis and breakdown. More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death. However, many studies investigated these effects using in vitro models which may not adequately mimic tumor growth and metastasis. As such, this article aims to review study results which evaluated effects of cannabinoids from plant, synthetic and endogenous origins on cancer development in preclinical animal models and to examine the current standing of cannabinoids that are being tested in human cancer patients.

  7. Deletion of CB cannabinoid receptor induces schizophrenia-related behaviors in mice

    OpenAIRE

    Ortega-Alvaro, Antonio; Aracil-Fernández, Auxiliadora; García-Gutiérrez, María S.; Navarrete, Francisco; Manzanares, Jorge

    2011-01-01

    Abstract The possible role of the CB2 receptor (CB2r) in psychiatric disorders has been considered. Several animal models use knockout mice that display schizophrenia-like behaviors and the present study evaluated the role of the CB2r in the regulation of such behaviors. Mice lacking the CB2r (CB2KO) were challenged in open field (OF), light-dark box (LDB), elevated plus maze (EPM), tail suspension (TST), step down inhibitory avoidance (SDIA), and prepulse inhibition tests (PPI). F...

  8. Novelty-Induced Emotional Arousal Modulates Cannabinoid Effects on Recognition Memory and Adrenocortical Activity

    OpenAIRE

    Campolongo, Patrizia; Morena, Maria; Scaccianoce, Sergio; Trezza, Viviana; Chiarotti, Flavia; Schelling, Gustav; Cuomo, Vincenzo; Roozendaal, Benno

    2013-01-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings—describing both enhancing and impairing effects—have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that ...

  9. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    Science.gov (United States)

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination. PMID:25595101

  10. WIN55, 212-2 promotes differentiation of oligodendrocyte precursor cells and improve remyelination through regulation of the phosphorylation level of the ERK 1/2 via cannabinoid receptor 1 after stroke-induced demyelination.

    Science.gov (United States)

    Sun, Jing; Fang, Yinquan; Chen, Tao; Guo, Jingjing; Yan, Jun; Song, Shu; Zhang, Luyong; Liao, Hong

    2013-01-23

    In stroke, a common cause of neurological disability in adults is that the myelin sheaths are lost through the injury or death of mature oligodendrocytes, and the failure of remyelination may be often due to insufficient proliferation and differentiation of oligodendroglial progenitors. In the current study, we used middle cerebral artery occlusion (MCAO) to induced transient focal cerebral ischemia, and found that WIN55, 212-2 augmented actively proliferating oligodendrocytes measured by CC1 immunoreactive cells within the peri-infarct areas. To establish whether these effects were associated with changes in myelin formation, we analyzed the expression of myelin basic protein (MBP) and myelin ultrastructure. We found that WIN55, 212-2 showed more extensive remyelination than vehicle at 14 days post injection (dpi). The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway may be involved in OPCs differentiation. To determine the regulatory effect of WIN55, 212-2 post-treatment on phospho-ERK 1/2 (p-ERK 1/2) after ischemia/reperfusion, Western blot analysis was performed. We found that WIN55, 212-2 regulated the phosphorylation level of the ERK 1/2 to promote OPCs survival and differentiation. Notably, cannabinoid receptor 1 is coupled to the activation of the ERK cascade. Following rimonabant combined treatment, the effect of WIN55, 212-2 on regulating the phosphorylation level of the ERK 1/2 was reversed, and the effect of accelerated myelin formation was partially inhibited. Together, we first found that WIN55, 212-2 promoted OPCs differentiation and remyelination through regulation of the level of the p-ERK 1/2 via cannabinoid receptor 1.

  11. The role of Astroglial Type 1 Cannabinoid Receptor in Memory Functions

    OpenAIRE

    Cruz, José Fernando Oliveira da

    2013-01-01

    O Sistema Endocanabinóide é um importante sistema modulador envolvido na regulação de funções fisiológicas como a aprendizagem e a memória. O receptor canabinóide tipo 1 (CB 1) encontra-se abundantemente expresso no encéfalo primariamente em neurónios. Recentemente, a sua presença foi demonstrada em astrócitos. Os astrócitos, aos quais se atribuem classicamente funções de suporte neuronal, participam intrinsecamente na comunicação bidireccional com neurónios exercendo deste modo uma modulação...

  12. Beyond THC: the new generation of cannabinoid designer drugs

    Directory of Open Access Journals (Sweden)

    Liana eFattore

    2011-09-01

    Full Text Available Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC, the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs. From 2008, synthetic cannabinoids were detected in herbal smoking mixtures sold on websites and in head shops under the brand name of Spice Gold, Yucatan Fire, Aroma, and others. Although these products (also known as Spice drugs or legal highs do not contain tobacco or cannabis, when smoked they produce effects similar to THC. Intoxication, withdrawal, psychosis and death have been recently reported after consumption, posing difficult social, political and health challenges. More than 140 different Spice products have been identified to date. The ability to induce strong cannabis-like psychoactive effects, along with the fact that they are readily available on the Internet, still legal in many countries, marketed as natural safe substances, and undetectable by conventional drug screening tests, has rendered these drugs very popular and particularly appealing to young and drug-naïve individuals seeking new experiences. An escalating number of compounds with cannabinoid receptor activity are currently being found as ingredients of Spice, of which almost nothing is known in terms of pharmacology, toxicology and safety. Since legislation started to control the synthetic cannabinoids identified in these herbal mixtures, many new analogs have appeared on the market. New cannabimimetic compounds are likely to be synthesized in the near future to replace banned synthetic cannabinoids, leading to a dog chasing its tail situation. Spice smokers are exposed to drugs that are extremely variable in composition and potency, and are at risk of serious, if not lethal, outcomes. Social and health professionals should maintain a high degree of alertness for Spice use and its possible psychiatric effects in vulnerable people.

  13. Immunoregulation of cannabinoid 2 receptor antagonist on activated microglia BV2 cells%大麻素2型受体拮抗剂对激活态BV2小胶质细胞的免疫调节作用

    Institute of Scientific and Technical Information of China (English)

    李琳; 楼之茵; 程洁; 赵忠新

    2016-01-01

    目的 观察大麻素2型受体(cannabinoid 2 receptor,CB2R)拮抗剂对BV2小胶质细胞免疫调节功能的影响.方法 使用适量浓度的IFN-γ刺激激活BV2小胶质细胞,建立模拟EAE炎性环境的细胞模型,比较静息态BV2细胞组、激活态BV2细胞组和大麻素2型受体拮抗剂SR144528A(SR2)干预组CB2R mRNA和蛋白的表达情况,用ELISA方法检测细胞因子和趋化因子的浓度,MTT法检测细胞增殖率.结果 IFN-γ激活的BV2小胶质细胞CB2RmRNA和蛋白的表达均高于静息组(P<0.05);使用SR2干预激活的BV2小胶质细胞,可降低其CB2R mRNA和蛋白的表达(P<0.05);SR2可显著上调激活态BV2细胞致炎因子IFN-y、IL-17、IL-6和TNF-α的水平,促进BV2小胶质细胞增殖和NO的释放(P<0.05),同时显著下调IL-4和MCP-1的浓度,对IL-1β、IL-10、CX3CL1无调节作用.结论 CB2R参与了小胶质细胞介导的炎症反应,CB2R在调节Th1/Th17/Th2细胞因子网络平衡中发挥了一定的作用.

  14. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis.

    Science.gov (United States)

    Navakkode, Sheeja; Korte, Martin

    2014-04-01

    Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.

  15. Can the benefits of cannabinoid receptor stimulation on neuroinflammation, neurogenesis and memory during normal aging be useful in AD prevention?

    Directory of Open Access Journals (Sweden)

    Marchalant Yannick

    2012-01-01

    Full Text Available Abstract Background Alzheimer's disease has become a growing socio-economical concern in developing countries where increased life expectancy is leading to large aged populations. While curing Alzheimer's disease or stopping its progression does not appear within reach in a foreseeable future, new therapies capable of delaying the pathogenesis would represent major breakthroughs. Presentation of the hypothesis The growing number of medical benefits of cannabinoids, such as their ability to regulate age-related processes like neuroinflammation, neurogenesis and memory, raise the question of their potential role as a preventive treatment of AD. Testing the hypothesis To test this hypothesis, epidemiological studies on long term, chronic cannabinoid users could enlighten us on the potential benefits of these compounds in normal and pathological ageing processes. Systematic pharmacological (and thus more mechanistic investigations using animal models of Alzheimer's disease that have been developed would also allow a thorough investigation of the benefits of cannabinoid pharmacotherapy in the pathogenesis of Alzheimer's disease. Implications of the hypothesis The chronic administration of non-selective cannabinoids may delay the onset of cognitive deficits in AD patients; this will dramatically reduce the socio-economic burden of AD and improve the quality of life of the patients and their families.

  16. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB₁R signaling and anxiety-like behavior.

    Science.gov (United States)

    Imperatore, Roberta; Morello, Giovanna; Luongo, Livio; Taschler, Ulrike; Romano, Rosaria; De Gregorio, Danilo; Belardo, Carmela; Maione, Sabatino; Di Marzo, Vincenzo; Cristino, Luigia

    2015-11-01

    Endocannabinoids (eCB) are key regulators of excitatory/inhibitory neurotransmission at cannabinoid-1-receptor (CB1 R)-expressing axon terminals. The most abundant eCB in the brain, that is 2-arachidonoylglycerol (2-AG), is hydrolyzed by the enzyme monoacylglycerol lipase (MAGL), whose chronic inhibition in the brain was reported to cause CB1 R desensitization. We employed the MAGL knock-out mouse (MAGL-/-), a genetic model of congenital and sustained elevation of 2-AG levels in the brain, to provide morphological and biochemical evidence for β-arrestin2-mediated CB1 R desensitization in brain regions involved in the control of emotional states, that is, the prefrontal cortex (PFC), amygdala, hippocampus and cerebellar cortex. We found a widespread CB1 R/β-arrestin2 co-expression in the mPFC, amygdala and hippocampus accompanied by impairment of extracellular signal-regulated kinase signaling and elevation of vesicular glutamate transporter (VGluT1) at CB1 R-positive excitatory terminals in the mPFC, or vesicular GABA transporter (VGAT) at CB1 R-positive inhibitory terminals in the amygdala and hippocampus. The impairment of CB1 R signaling in MAGL-/- mice was also accompanied by enhanced excitatory drive in the basolateral amygdala (BLA)-mPFC circuit, with subsequent elevation of glutamate release to the mPFC and anxiety-like and obsessive-compulsive behaviors, as assessed by the light/dark box and marble burying tests, respectively. Collectively, these data provide evidence for a β-arrestin2-mediated desensitization of CB1 R in MAGL-/- mice, with impact on the synaptic plasticity of brain circuits involved in emotional functions. In this study, the authors provide evidence that congenitally enhanced endocannabinoid levels in the neuronal circuits underlying anxiety-like behavioral states (mainly medial prefrontal cortex, amygdala and hippocampus) lead to CB1R desenistization and anxiety and depression. MAGL-/- mice, a model of congenital overactivity of the e

  17. Cannabinoid CB1 receptor agonists do not decrease, but may increase, acoustic trauma-induced tinnitus in rats

    Directory of Open Access Journals (Sweden)

    Yiwen eZheng

    2015-03-01

    Full Text Available Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In the present study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC and cannabidiol (CBD, delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: 1 sham (i.e. no acoustic trauma with vehicle treatment; 2 sham with drug treatment (i.e. delta-9-THC + CBD; 3 acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and 4 acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioural testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage.

  18. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis.

    Science.gov (United States)

    Lowin, Torsten; Straub, Rainer H

    2015-09-06

    Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.

  19. Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα and degrading (MAGL, FAAH enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin and parvalbumin in the adult rat hippocampus

    Directory of Open Access Journals (Sweden)

    Patricia eRivera

    2014-06-01

    Full Text Available The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca2+ and the activation of specific 2-AG synthesizing (i.e. DAGLα enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca2+-binding proteins (CaBPs is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL and FAAH and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. CB1, DAGLα and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB1+ fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin+ cells (granular and pyramidal neurons, and calretinin+ and parvalbumin+ interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin+ principal cells in the dentate gyrus and CA1, and in the calretinin+ and parvalbumin+ interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL+ terminals were only observed around CA1 calbindin+ pyramidal cells, CA1/3 calretinin+ interneurons and CA3 parvalbumin+ interneurons localized in the pyramidal cell layers. Interestingly, calbindin+ pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.

  20. CHROMENOPYRAZOLES: NON-PSYCHOACTIVE AND SELECTIVE CB1 CANNABINOID AGONISTS WITH PERIPHERAL ANTINOCICEPTIVE PROPERTIES

    Science.gov (United States)

    Cumella, Jose; Hernández-Folgado, Laura; Girón, Rocio; Sánchez, Eva; Morales, Paula; Hurst, Dow P.; Gómez-Cañas, Maria; Gómez-Ruiz, Maria; Pinto, Diana C. G. A.; Goya, Pilar; Reggio, Patricia H.; Martin, María Isabel; Fernández-Ruiz, Javier; Silva, Artur M. S.; Jagerovic, Nadine

    2014-01-01

    The unwanted psychoactive effects of cannabinoid receptor agonists have limited their development as medicines. These CB1 mediated side effects are due to the fact that CB1 receptors are largely expressed in the Central Nervous System (CNS). Since it is known that CB1 receptors are also located peripherally, there is a growing interest in targeting cannabinoid receptors located outside the brain. A library of chromenopyrazoles designed in analogy to the classical cannabinoid cannabinol were synthesized, characterized and tested for cannabinoid activity. Radiolabeled binding assays were used to determine their affinities at CB1 and CB2 receptors. Structural features required for CB1/CB2 affinity and selectivity were explored using molecular modeling. Within the chromenopyrazoles series, some of them showed to be selective CB1 ligands. These modeling studies suggest that CB1 full selectivity over CB2 can be accounted for the presence of a pyrazole ring in the structure. The functional activities of selected chromenopyrazoles were evaluated in isolated tissues. Behavioral tests, in vivo, were then carried on the most effective CB1 cannabinoid agonist (13a). Chromenopyrazole 13a did not induce modifications in any of the tested parameters on the mouse cannabinoid tetrad, discarding CNS-mediated effects. This lack of agonistic activity in the CNS suggests that it does not readily cross the blood-brain barrier. Moreover, compound 13a can induce antinociception in a peripheral model of orofacial pain in rat. Taking into account the negative results obtained in the hot plate test, it could be suggested that the antinociception induced by 13a in the orofacial test may be mediated through peripheral mechanisms. PMID:22302767

  1. Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson's disease.

    Science.gov (United States)

    Concannon, Ruth M; Okine, Bright N; Finn, David P; Dowd, Eilís

    2016-09-01

    In recent years, it has become evident that Parkinson's disease is associated with a self-sustaining cycle of neuroinflammation and neurodegeneration, with dying neurons activating microglia, which, once activated, can release several factors that kill further neurons. One emerging pharmacological target that has the potential to break this cycle is the microglial CB2 receptor which, when activated, can suppress microglial activity and reduce their neurotoxicity. However, very little is known about CB2 receptor expression in animal models of Parkinson's disease which is essential for valid preclinical assessment of the anti-Parkinsonian efficacy of drugs targeting the CB2 receptor. Therefore, the aim of this study was to investigate and compare the changes that occur in CB2 receptor expression in environmental and inflammation-driven models of Parkinson's disease. To do so, male Sprague Dawley rats were given unilateral, intra-striatal injections of the Parkinson's disease-associated agricultural pesticide, rotenone, or the viral-like inflammagen, polyinosinic:polycytidylic acid (Poly (I:C)). Animals underwent behavioural testing for motor dysfunction on days 7, 14 and 28 post-surgery, and were sacrificed on days 1, 4, 14 and 28. Changes in the endocannabinoid system and neuroinflamamtion were investigated by qRT-PCR, liquid chromatography-mass spectrometry and immunohistochemistry. After injection of rotenone or Poly (I:C) into the rat striatum, we found that expression of the CB2 receptor was significantly elevated in both models, and that this increase correlated significantly with an increase in microglial activation in the rotenone model. Interestingly, the increase in CB2 receptor expression in the inflammation-driven Poly (I:C) model was significantly more pronounced than that in the neurotoxic rotenone model. Thus, this study has shown that CB2 receptor expression is dysregulated in animal models of Parkinson's disease, and has also revealed significant

  2. Sustainable Production of Cannabinoids with Supercritical Carbon Dioxide Technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all cannabinoi

  3. Are cannabinoids effective for treatment of pain in patients with active cancer?

    Directory of Open Access Journals (Sweden)

    Diego Lobos Urbina

    2016-09-01

    Full Text Available Resumen El uso de cannabinoides ha sido propuesto para el tratamiento de pacientes con dolor oncológico, principalmente para aquellos en quienes el tratamiento habitual no es suficiente. Utilizando la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en 30 bases de datos, identificamos nueve revisiones sistemáticas que en conjunto incluyen siete estudios que responden la pregunta de interés, de los cuáles seis corresponden a estudios aleatorizados. Realizamos un metanálisis y tablas de resumen de los resultados utilizando el método GRADE. Concluimos que no está claro si los cannabinoides producen una disminución del dolor o una mejoría en la calidad de vida en pacientes con dolor oncológico refractario porque la certeza de la evidencia es muy baja, pero probablemente se asocian a efectos adversos importantes.

  4. CB1 receptor mediates the effects of glucocorticoids on AMPK activity in the hypothalamus.

    Science.gov (United States)

    Scerif, Miski; Füzesi, Tamás; Thomas, Julia D; Kola, Blerina; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-10-01

    AMP-activated protein kinase (AMPK), a regulator of cellular and systemic energy homeostasis, can be influenced by several hormones. Tissue-specific alteration of AMPK activity by glucocorticoids may explain the increase in appetite, the accumulation of lipids in adipose tissues, and the detrimental cardiac effects of Cushing's syndrome. Endocannabinoids are known to mediate the effects of various hormones and to influence AMPK activity. Cannabinoids have central orexigenic and direct peripheral metabolic effects via the cannabinoid receptor type 1 (CB1). In our preliminary experiments, WT mice received implants of a corticosterone-containing pellet to establish a mouse model of Cushing's syndrome. Subsequently, WT and Cb1 (Cnr1)-knockout (CB1-KO) littermates were treated with corticosterone and AMPK activity in the hypothalamus, various adipose tissues, liver and cardiac tissue was measured. Corticosterone-treated CB1-KO mice showed a lack of weight gain and of increase in hypothalamic and hepatic AMPK activity. In adipose tissues, baseline AMPK activity was higher in CB1-KO mice, but a glucocorticoid-induced drop was observed, similar to that observed in WT mice. Cardiac AMPK levels were reduced in CB1-KO mice, but while WT mice showed significantly reduced AMPK activity following glucocorticoid treatment, CB1-KO mice showed a paradoxical increase. Our findings indicate the importance of the CB1 receptor in the central orexigenic effect of glucocorticoid-induced activation of hypothalamic AMPK activity. In the periphery adipose tissues, changes may occur independently of the CB1 receptor, but the receptor appears to alter the responsiveness of the liver and myocardial tissues to glucocorticoids. In conclusion, our data suggest that an intact cannabinoid pathway is required for the full metabolic effects of chronic glucocorticoid excess.

  5. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Liu

    Full Text Available Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP and long-term depression (LTD. Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses of the midbrain ventral tegmental area (VTA following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids, the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  6. Lower levels of cannabinoid 1 receptor mRNA in female eating disorder patients: association with wrist cutting as impulsive self-injurious behavior.

    Science.gov (United States)

    Schroeder, Marc; Eberlein, Christian; de Zwaan, Martina; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge

    2012-12-01

    The cannabinoid 1 (CB 1) receptor as the primary mediator of the endocannabinoid (EC) system was found to play a role in eating disorders (EDs), depression, anxiety, and suicidal behavior. The CB 1 receptor is assumed to play a crucial role in the central reward circuitry with impact on body weight and personality traits like novelty-seeking behavior. In a previous study we found higher levels of CB 1 receptor mRNA in patients with anorexia nervosa (AN) and bulimia nervosa (BN) compared to healthy control women (HCW). The aim of the present study was to investigate the possible influence of the EC and the CB 1 receptor system on wrist cutting as self-injurious behavior (SIB) in women with EDs (n=43; AN: n=20; BN: n=23). Nine ED patients with repetitive wrist cutting (AN, n=4; BN, n=5) were compared to 34 ED patients without wrist cutting and 26 HCW. Levels of CB 1 receptor mRNA were determined in peripheral blood samples using quantitative real-time PCR. ED patients with self-injurious wrist cutting exhibited significantly lower CB 1 receptor mRNA levels compared with ED patients without wrist cutting and HCW. No significant differences were found between ED patients without a history of wrist cutting and HCW. Furthermore, a negative association was detected between CB 1 receptor mRNA levels and Beck Depression Inventory (BDI) scores. To our knowledge, this is the first study reporting a down-regulation of CB 1 receptor mRNA in patients with EDs and wrist cutting as SIB. Due to the small sample size, our results should be regarded as preliminary and further studies are warranted to reveal the underlying mechanisms.

  7. Antagonistic and inverse agonistic effect of M J15 on cannabinoid receptors Ⅰ%MJ15对大麻素Ⅰ型受体的阻滞及反相激动作用的研究

    Institute of Scientific and Technical Information of China (English)

    曹宁; 杨洋; 周晓棉; 徐成; 王莉莉

    2011-01-01

    Objective: To observe the antagonistic and inverse agonistic effect of MJ15 on cannabinoid receptors Ⅰ (CB1). Methods: The samples of the ileum smooth muscle isolated from guinea pigs and vas deferens isolated from mice were put into the Magnus' bath, and the contractive activities were investigated. Results: The CB1 receptor agonist WIN55212-2 ( 10 - 10 ~ 10 - 6 mol · L - 1 ) inhibited electrically induced contraction of mouse vas deferens; the concentration-dependency was significant. The concentration-response curse was completely inhibited by SR141716A and MJ15(l0-7 mol· L-1). WIN55212-2 inhibited contraction of mouse vas deferens and guinea pig ileum smooth muscle; while SR141716A and MJ15 accelerated the contraction. Conclusion: MJ15 is an antagonist of CB1 receptor with inverse agonistic activity.%目的:观察MJ15对大麻素Ⅰ型(cannabinoid receptors Ⅰ,CB1)受体的阻滞及反相激动作用.方法:制备小鼠输精管和豚鼠回肠平滑肌的离体标本,观察CB1受体激动剂WIN55212-2以及阻滞剂利莫那班(SR141716A)和MJ15对其收缩特性的影响.结果:CB1受体激动剂WIN55212-2(10-10~10-6 mol·L-1)可抑制电刺激所引起小鼠输精管的收缩作用,呈现明显的剂量依赖性,而SR141716A和MJ15(10-7mol·L-1)能阻滞WIN55212-2的抑制作用;CB1受体激动剂WIN55212-2可抑制豚鼠回肠和小鼠输精管平滑肌的收缩,而SR141716A和MJ15能促进豚鼠回肠和小鼠输精管平滑肌的收缩.结论:MJ15是CB1受体的阻滞剂,同时具有反相激动作用.

  8. Critical appraisal of the potential use of cannabinoids in cancer management

    Directory of Open Access Journals (Sweden)

    Cridge BJ

    2013-08-01

    Full Text Available Belinda J Cridge, Rhonda J Rosengren Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand Abstract: Cannabinoids have been attracting a great deal of interest as potential anticancer agents. Originally derived from the plant Cannabis sativa, there are now a number of endo-, phyto- and synthetic cannabinoids available. This review summarizes the key literature to date around the actions, antitumor activity, and mechanisms of action for this broad range of compounds. Cannabinoids are largely defined by an ability to activate the cannabinoid receptors – CB1 or CB2. The action of the cannabinoids is very dependent on the exact ligand tested, the dose, and the duration of exposure. Some cannabinoids, synthetic or plant-derived, show potential as therapeutic agents, and evidence across a range of cancers and evidence in vitro and in vivo is starting to be accumulated. Studies have now been conducted in a wide range of cell lines, including glioma, breast, prostate, endothelial, liver, and lung. This work is complemented by an increasing body of evidence from in vivo models. However, many of these results remain contradictory, an issue that is not currently able to be resolved through current knowledge of mechanisms of action. While there is a developing understanding of potential mechanisms of action, with the extracellular signal-regulated kinase pathway emerging as a critical signaling juncture in combination with an important role for ceramide and lipid signaling, the relative importance of each pathway is yet to be determined. The interplay between the intracellular pathways of autophagy versus apoptosis is a recent development that is discussed. Overall, there is still a great deal of conflicting evidence around the future utility of the cannabinoids, natural or synthetic, as therapeutic agents. Keywords: cancer, cannabinoid, endocannabinoid, tetrahydrocannabinol, JWH-133, WIN-55,212-2

  9. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    Science.gov (United States)

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  10. Effects of glucagon-like peptide-1 receptor stimulation and blockade on food consumption and body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2

    Science.gov (United States)

    Radziszewska, Elżbieta; Bojanowska, Ewa

    2013-01-01

    Background Glucagon-like peptide-1 (GLP-1) and endocannabinoids are involved in appetite control. Recently we have demonstrated that cannabinoid (CB)1 receptor antagonist and GLP-1 receptor agonist synergistically suppress food intake in the rat. The aim of the present study was to determine the effects of GLP-1 receptor stimulation or blockade on feeding behavior in rats treated with WIN 55,212-2, a CB1 receptor agonist. Material/Methods Experiments were performed on adult male Wistar rats. In the first experiment the effects of increasing doses (0.5–4.0 mg/kg) of WIN 55,212-2 injected intraperitoneally on 24-hour food consumption were tested. In further experiments a GLP-1 receptor antagonist, exendin (9-39), and WIN 55,212-2 or a GLP-1 receptor agonist, exendin-4, and WIN 55,212-2 were injected intraperitoneally at subthreshold doses (that alone did not change food intake and body weight) to investigate whether these agents may interact to affect food intake in rats. Results WIN 55,212-2 administered at low doses (0.5–2 mg/kg) did not markedly change 24-hour food consumption; however, at the highest dose, daily food intake was inhibited. Combined administration of WIN 55,212-2 and exendin (9-39) did not change the amount of food consumed compared to either the control group or to each agent injected alone. Combined injection of WIN 55,212-2 and exendin-4 at subthreshold doses resulted in a significant decrease in food intake and body weight in rats. Conclusions Stimulation of the peripheral CB1 receptor by its agonist WIN 55,212-2 can induce anorexigenic effects or potentiate, even at a subthreshold dose, the effects of exendin-4, a known anorectic agent. Hence, this dual action of the cannabinoid system should be considered in the medical use of CB1 agonists. PMID:23291632

  11. A Cannabinoid CB1 Receptor-Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects.

    Science.gov (United States)

    Ignatowska-Jankowska, Bogna M; Baillie, Gemma L; Kinsey, Steven; Crowe, Molly; Ghosh, Sudeshna; Owens, Robert A; Damaj, Imad M; Poklis, Justin; Wiley, Jenny L; Zanda, Matteo; Zanato, Chiara; Greig, Iain R; Lichtman, Aron H; Ross, Ruth A

    2015-12-01

    The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ(9)-tetrahydrocannabinol and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2-phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 potentiated binding of [(3)H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [(35)S]GTPγS binding in mouse brain membranes and β-arrestin recruitment and ERK phosphorylation in hCB1 cells. In the whole animal, ZCZ011 is brain penetrant, increased the potency of these orthosteric agonists in mouse behavioral assays indicative of cannabimimetic activity, including antinociception, hypothermia, catalepsy, locomotor activity, and in the drug discrimination paradigm. Administration of ZCZ011 alone was devoid of activity in these assays and did not produce a conditioned place preference or aversion, but elicited CB1 receptor-mediated antinociceptive effects in the chronic constriction nerve injury model of neuropathic pain and carrageenan model of inflammatory pain. These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.

  12. 大麻素受体2与几种消化系统疾病%Cannabinoid receptor 2 and several digestive system diseases

    Institute of Scientific and Technical Information of China (English)

    张建; 戴二黑; 姜慧卿

    2016-01-01

    内源性大麻素系统包括内源性大麻素物质、特异性大麻素受体1(cannabinoid receptor 1,CB1)和CB2.内源性大麻素系统在胃肠道疾病、肝脏疾病、胰腺疾病和肿瘤的发生发展过程中扮演了众多的生理效应和病理生理角色.本文就内源性大麻素系统、CB2与肠易激综合征、炎症性肠病、胰腺炎、肝脏疾病及消化系肿瘤的关系等作一综述.

  13. Cannabinoid 2 (CB2) receptor agonism reduces lithium chloride-induced vomiting in Suncus murinus and nausea-induced conditioned gaping in rats.

    Science.gov (United States)

    Rock, Erin M; Boulet, Nathalie; Limebeer, Cheryl L; Mechoulam, Raphael; Parker, Linda A

    2016-09-01

    We aimed to investigate the potential anti-emetic and anti-nausea properties of targeting the cannabinoid 2 (CB2) receptor. We investigated the effect of the selective CB2 agonist, HU-308, on lithium chloride- (LiCl) induced vomiting in Suncus murinus (S. murinus) and conditioned gaping (nausea-induced behaviour) in rats. Additionally, we determined whether these effects could be prevented by pretreatment with AM630 (a selective CB2 receptor antagonist/inverse agonist). In S. murinus, HU-308 (2.5, 5mg/kg, i.p.) reduced, but did not completely block, LiCl-induced vomiting; an effect that was prevented with AM630. In rats, HU-308 (5mg/kg, i.p.) suppressed, but did not completely block, LiCl-induced conditioned gaping to a flavour; an effect that was prevented by AM630. These findings are the first to demonstrate the ability of a selective CB2 receptor agonist to reduce nausea in animal models, indicating that targeting the CB2 receptor may be an effective strategy, devoid of psychoactive effects, for managing toxin-induced nausea and vomiting. PMID:27263826

  14. Cannabinoids: New Promising Agents in the Treatment of Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Sabrina Giacoppo

    2014-11-01

    Full Text Available Nowadays, Cannabis sativa is considered the most extensively used narcotic. Nevertheless, this fame obscures its traditional employ in native medicine of South Africa, South America, Turkey, Egypt and in many regions of Asia as a therapeutic drug. In fact, the use of compounds containing Cannabis and their introduction in clinical practice is still controversial and strongly limited by unavoidable psychotropic effects. So, overcoming these adverse effects represents the main open question on the utilization of cannabinoids as new drugs for treatment of several pathologies. To date, therapeutic use of cannabinoid extracts is prescribed in patients with glaucoma, in the control of chemotherapy-related vomiting and nausea, for appetite stimulation in patients with anorexia-cachexia syndrome by HIV, and for the treatment of multiple sclerosis symptoms. Recently, researcher efforts are aimed to employ the therapeutic potentials of Cannabis sativa in the modulation of cannabinoid receptor activity within the central nervous system, particularly for the treatment of neurodegenerative diseases, as well as psychiatric and non-psychiatric disorders. This review evaluates the most recent available data on cannabinoids utilization in experimental and clinical studies, and highlights their beneficial effects in the prevention of the main neurological diseases and for the clinical treatment of symptoms with them correlated.

  15. Molecular imaging of human tumor cells that naturally overexpress type 2 cannabinoid receptors using a quinolone-based near-infrared fluorescent probe

    Science.gov (United States)

    Wu, Zhiyuan; Shao, Pin; Zhang, Shaojuan; Ling, Xiaoxi; Bai, Mingfeng

    2014-07-01

    Cannabinoid CB2 receptors (CB2R) hold promise as therapeutic targets for treating diverse diseases, such as cancers, neurodegenerative diseases, pain, inflammation, osteoporosis, psychiatric disorders, addiction, and immune disorders. However, the fundamental role of CBR in the regulation of diseases remains unclear, largely due to a lack of reliable imaging tools for the receptors. The goal of this study was to develop a CBR-targeted molecular imaging probe and evaluate the specificity of the probe using human tumor cells that naturally overexpress CBR. To synthesize the CBR-targeted probe (NIR760-Q), a conjugable CBR ligand based on the quinolone structure was first prepared, followed by bioconjugation with a near-infrared (NIR) fluorescent dye, NIR760. In vitro fluorescence imaging and competitive binding studies showed higher uptake of NIR760-Q than free NIR760 dye in Jurkat human acute T-lymphoblastic leukemia cells. In addition, the high uptake of NIR760-Q was significantly inhibited by the blocking agent, 4-quinolone-3-carboxamide, indicating specific binding of NIR760-Q to the target receptors. These results indicate that the NIR760-Q has potential in diagnostic imaging of CBR positive cancers and elucidating the role of CBR in the regulation of disease progression.

  16. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit.

    Directory of Open Access Journals (Sweden)

    Ana Belen Lopez-Rodriguez

    Full Text Available Traumatic brain injury (TBI incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2, blood brain barrier proteins (AQP4 and astrogliosis markers (vimentin to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h, early mid-term (72h and late mid-term (two weeks. Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.

  17. Changes in cannabinoid receptors, aquaporin 4 and vimentin expression after traumatic brain injury in adolescent male mice. Association with edema and neurological deficit.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Acaz-Fonseca, Estefania; Viveros, Maria-Paz; Garcia-Segura, Luis M

    2015-01-01

    Traumatic brain injury (TBI) incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2), blood brain barrier proteins (AQP4) and astrogliosis markers (vimentin) to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h), early mid-term (72h) and late mid-term (two weeks). Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.

  18. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice.

    Science.gov (United States)

    Lopez-Rodriguez, Ana Belen; Siopi, Eleni; Finn, David P; Marchand-Leroux, Catherine; Garcia-Segura, Luis M; Jafarian-Tehrani, Mehrnaz; Viveros, Maria-Paz

    2015-01-01

    Traumatic brain injury (TBI) and its consequences represent one of the leading causes of death in young adults. This lesion mediates glial activation and the release of harmful molecules and causes brain edema, axonal injury, and functional impairment. Since glial activation plays a key role in the development of this damage, it seems that controlling it could be beneficial and could lead to neuroprotective effects. Recent studies show that minocycline suppresses microglial activation, reduces the lesion volume, and decreases TBI-induced locomotor hyperactivity up to 3 months. The endocannabinoid system (ECS) plays an important role in reparative mechanisms and inflammation under pathological situations by controlling some mechanisms that are shared with minocycline pathways. We hypothesized that the ECS could be involved in the neuroprotective effects of minocycline. To address this hypothesis, we used a murine TBI model in combination with selective CB1 and CB2 receptor antagonists (AM251 and AM630, respectively). The results provided the first evidence for the involvement of ECS in the neuroprotective action of minocycline on brain edema, neurological impairment, diffuse axonal injury, and microglial activation, since all these effects were prevented by the CB1 and CB2 receptor antagonists.

  19. Synergistic Effect between Maternal Infection and Adolescent Cannabinoid Exposure on Serotonin 5HT1A Receptor Binding in the Hippocampus: Testing the "Two Hit" Hypothesis for the Development of Schizophrenia,

    OpenAIRE

    DALTON, VICTORIA

    2012-01-01

    Infections during pregnancy and adolescent cannabis use have both been identified as environmental risk factors for schizophrenia. We combined these factors in an animal model and looked at their effects, alone and in combination, on serotonin 5HT1A receptor binding (5HT1AR) binding longitudinally from late adolescence to adulthood. Pregnant rats were exposed to the viral mimic poly I:C on embryonic day 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14 days st...

  20. The cannabinoid CB₂ receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain.

    Science.gov (United States)

    Klauke, A-L; Racz, I; Pradier, B; Markert, A; Zimmer, A M; Gertsch, J; Zimmer, A

    2014-04-01

    The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural selective agonist of the peripherally expressed cannabinoid receptor 2 (CB₂). It is found in relatively high concentrations in many spices and food plants. A number of studies have shown that CB₂ is critically involved in the modulation of inflammatory and neuropathic pain responses. In this study, we have investigated the analgesic effects of BCP in animal models of inflammatory and neuropathic pain. We demonstrate that orally administered BCP reduced inflammatory (late phase) pain responses in the formalin test in a CB₂ receptor-dependent manner, while it had no effect on acute (early phase) responses. In a neuropathic pain model the chronic oral administration of BCP attenuated thermal hyperalgesia and mechanical allodynia, and reduced spinal neuroinflammation. Importantly, we found no signs of tolerance to the anti-hyperalgesic effects of BCP after prolonged treatment. Oral BCP was more effective than the subcutaneously injected synthetic CB₂ agonist JWH-133. Thus, the natural plant product BCP may be highly effective in the treatment of long lasting, debilitating pain states. Our results have important implications for the role of dietary factors in the development and modulation of chronic pain conditions.

  1. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    Science.gov (United States)

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-01

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways. PMID:25841876

  2. Deuterium labeled cannabinoids

    International Nuclear Information System (INIS)

    Complex reactions involving ring opening, ring closure and rearrangements hamper complete understanding of the fragmentation processes in the mass spectrometric fragmentation patterns of cannabinoids. Specifically labelled compounds are very powerful tools for obtaining more insight into fragmentation mechanisms and ion structures and therefore the synthesis of specifically deuterated cannabinoids was undertaken. For this, it was necessary to investigate the preparation of cannabinoids, appropriately functionalized for specific introduction of deuterium atom labels. The results of mass spectrometry with these labelled cannabinoids are described. (Auth.)

  3. Feeding induced by cannabinoids is mediated independently of the melanocortin system.

    Directory of Open Access Journals (Sweden)

    Puspha Sinnayah

    Full Text Available BACKGROUND: Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that peripherally administered CB1-R antagonist (AM251 or agonist equally suppressed or stimulated feeding respectively in A(y , which lack a functional melanocortin system, and wildtype mice, demonstrating that cannabinoid effects on feeding do not require melanocortin circuitry. CB1-R antagonist or agonist administered into the ventral tegmental area (VTA equally suppressed or stimulated feeding respectively, in both genotypes. In addition, peripheral and central cannabinoid administration similarly induced c-Fos activation in brain sites suggesting mediation via motivational dopaminergic circuitry. Amperometry-detected increases in evoked dopamine (DA release by the CB1-R antagonist in nucleus accumbens slices indicates that AM251 modulates DA release from VTA terminals. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that the effects of cannabinoids on energy balance are independent of hypothalamic melanocortin circuitry and is primarily driven by the reward system.

  4. Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells.

    Science.gov (United States)

    Dando, I; Donadelli, M; Costanzo, C; Dalla Pozza, E; D'Alessandro, A; Zolla, L; Palmieri, M

    2013-06-13

    The anti-tumoral effects of cannabinoids have been described in different tumor systems, including pancreatic adenocarcinoma, but their mechanism of action remains unclear. We used cannabinoids specific for the CB1 (ACPA) and CB2 (GW) receptors and metabolomic analyses to unravel the potential pathways mediating cannabinoid-dependent inhibition of pancreatic cancer cell growth. Panc1 cells treated with cannabinoids show elevated AMPK activation induced by a ROS-dependent increase of AMP/ATP ratio. ROS promote nuclear translocation of GAPDH, which is further amplified by AMPK, thereby attenuating glycolysis. Furthermore, ROS determine the accumulation of NADH, suggestive of a blockage in the respiratory chain, which in turn inhibits the Krebs cycle. Concomitantly, inhibition of Akt/c-Myc pathway leads to decreased activity of both the pyruvate kinase isoform M2 (PKM2), further downregulating glycolysis, and glutamine uptake. Altogether, these alterations of pancreatic cancer cell metabolism mediated by cannabinoids result in a strong induction of autophagy and in the inhibition of cell growth.

  5. Role of Cannabinoids in the Regulation of Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Aymen I Idris

    2012-11-01

    Full Text Available The endocannabinoid system plays a key role in regulating a variety of physiological processes such as appetite control and energy balance, pain perception, and immune responses. Recent studies have implicated the endocannabinoid system in the regulation of bone cell activity and bone remodelling. These studies showed that endogenous cannabinoid ligands, cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown all play important roles in bone mass and in the regulation of bone disease. These findings suggest that the endocannabinoid pathway could be of value as a therapeutic target for the prevention and treatment of bone diseases. Here, we review the role of the skeletal endocannabinoid system in the regulation of bone remodelling in health and disease.

  6. Hypothalamic POMC neurons promote cannabinoid-induced feeding.

    Science.gov (United States)

    Koch, Marco; Varela, Luis; Kim, Jae Geun; Kim, Jung Dae; Hernández-Nuño, Francisco; Simonds, Stephanie E; Castorena, Carlos M; Vianna, Claudia R; Elmquist, Joel K; Morozov, Yury M; Rakic, Pasko; Bechmann, Ingo; Cowley, Michael A; Szigeti-Buck, Klara; Dietrich, Marcelo O; Gao, Xiao-Bing; Diano, Sabrina; Horvath, Tamas L

    2015-03-01

    Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide β-endorphin. CB1R activation selectively increases β-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids. PMID:25707796

  7. Cannabinoid and Cholinergic Systems Interact during Performance of a Short-Term Memory Task in the Rat

    Science.gov (United States)

    Goonawardena, Anushka V.; Robinson, Lianne; Hampson, Robert E.; Riedel, Gernot

    2010-01-01

    It is now well established that cannabinoid agonists such as [delta][superscript 9]-tetrahydrocannabinol (THC), anandamide, and WIN 55,212-2 (WIN-2) produce potent and specific deficits in working memory (WM)/short-term memory (STM) tasks in rodents. Although mediated through activation of CB1 receptors located in memory-related brain regions such…

  8. Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice.

    Science.gov (United States)

    Smith, S R; Terminelli, C; Denhardt, G

    2000-04-01

    Previous studies have shown that mice primed with Corynebacterium parvum produce higher levels of inflammatory cytokines than unprimed mice upon challenge with lipopolysaccharide (LPS). Herein, we describe experiments in which two cannabinoid (CB) agonists, WIN 55212-2 [(R)-(+)-[2, 3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]1, 4-benzoxazin-6-yl](1-naphthyl)methanone) and HU-210 [(-)-11-hydroxy-delta(8) tetrahydrocannabinol-dimethylheptyl], were examined for their effects on LPS-induced cytokines in C. parvum-primed and unprimed mice. These agonists have been reported to bind selectively to the CB2 and CB1 receptor subtypes, respectively. WIN 55212-2 (3.1-50 mg/kg i.p.) and HU-210 (0.05-0.4 mg/kg i.p.) decreased serum tumor necrosis factor-alpha and interleukin-12 (IL-12) and increased IL-10 when administered to mice before LPS. The drugs also protected C. parvum mice (but not unprimed mice) against the lethal effects of LPS. The protection afforded to C. parvum mice could not be attributed to the higher levels of IL-10 present in these mice after agonist treatment. The WIN 55212-2- and HU-210-mediated changes in the responsiveness of mice to LPS were antagonized by SR141716A [N-(piperdin-1-yl)-5-(4-chloropheny)-1-(2, 4-dichloropheny)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride], a selective CB1 receptor antagonist, but not by SR144528 [N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2. 1]heptan-2-yl]5-(4-choro-3-methylphenyl)-1-(4-methylbenzyl)p yrazole-3 -carboxamide], a selective antagonist at the CB2 receptor. Therefore, both CB agonists modulated LPS responses through the CB1 receptor. Surprisingly, SR141716A itself modulated cytokine responses in a manner identical with that of WIN 55212-2 and HU-210 when administered alone to mice. The agonist-like effects of SR141716A, which were more striking in unprimed than in primed mice, suggested that the antagonist also could function as a partial agonist at the CB1 receptor. Our findings indicate a role

  9. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects.

    Science.gov (United States)

    Jiang, Wen; Zhang, Yun; Xiao, Lan; Van Cleemput, Jamie; Ji, Shao-Ping; Bai, Guang; Zhang, Xia

    2005-11-01

    The hippocampal dentate gyrus in the adult mammalian brain contains neural stem/progenitor cells (NS/PCs) capable of generating new neurons, i.e., neurogenesis. Most drugs of abuse examined to date decrease adult hippocampal neurogenesis, but the effects of cannabis (marijuana or cannabinoids) on hippocampal neurogenesis remain unknown. This study aimed at investigating the potential regulatory capacity of the potent synthetic cannabinoid HU210 on hippocampal neurogenesis and its possible correlation with behavioral change. We show that both embryonic and adult rat hippocampal NS/PCs are immunoreactive for CB1 cannabinoid receptors, indicating that cannabinoids could act on CB1 receptors to regulate neurogenesis. This hypothesis is supported by further findings that HU210 promotes proliferation, but not differentiation, of cultured embryonic hippocampal NS/PCs likely via a sequential activation of CB1 receptors, G(i/o) proteins, and ERK signaling. Chronic, but not acute, HU210 treatment promoted neurogenesis in the hippocampal dentate gyrus of adult rats and exerted anxiolytic- and antidepressant-like effects. X-irradiation of the hippocampus blocked both the neurogenic and behavioral effects of chronic HU210 treatment, suggesting that chronic HU210 treatment produces anxiolytic- and antidepressant-like effects likely via promotion of hippocampal neurogenesis.

  10. Synthetic cannabinoids: the multi-organ failure and metabolic derangements associated with getting high

    OpenAIRE

    Dolkar Sherpa; Paudel, Bishow M.; Subedi, Bishnu H.; Robert Dobbin Chow

    2015-01-01

    Synthetic cannabinoids (SC), though not detected with routine urine toxicology screening, can cause severe metabolic derangements and widespread deleterious effects in multiple organ systems. The diversity of effects is related to the wide distribution of cannabinoid receptors in multiple organ systems. Both cannabinoid-receptor-mediated and non-receptor-mediated effects can result in severe cardiovascular, renal, and neurologic manifestations. We report the case of a 45-year-old African Amer...

  11. Localization of cannabinoid CB1 receptor mRNA using ribonucleotide probes: methods for double- and single-label in situ hybridization.

    Science.gov (United States)

    Hohmann, Andrea G

    2006-01-01

    This chapter presents a reliable, detailed method for performing double-label in situ hybridization (ISH) that has been validated for use in studies identifying the co-localization of cannabinoid CB1 receptor mRNA with other distinct species of mRNAs. This method permits simultaneous detection of two different species of mRNA within the same tissue section. Double-label ISH may be accomplished by hybridizing tissue sections with a combination of radiolabeled and digoxigenin-labeled RNA probes that are complementary to their target mRNAs. Single-label ISH may be accomplished by following the procedures described for use with radioisotopic probes (here [35S]-labeled) only. Silver grains derived from conventional emulsion autoradiography are used to detect the radiolabeled cRNA probe. An alkaline phosphatase-dependent chromogen reaction product is used to detect the nonisotopic (here, digoxigenin-labeled) cRNA probe. Necessary controls that are required to document the specificity of the labeling of the digoxigenin and radiolabeled probes are described. The methods detailed herein may be employed to detect even low levels of a target mRNA. These methods may be utilized to study co-localization and coregulation of expression of a particular gene within identified neurons in multiple systems.

  12. The cannabinoid receptor type 2 (CNR2) gene is associated with hand bone strength phenotypes in an ethnically homogeneous family sample.

    Science.gov (United States)

    Karsak, Meliha; Malkin, Ida; Toliat, Mohammad R; Kubisch, Christian; Nürnberg, Peter; Zimmer, Andreas; Livshits, Gregory

    2009-11-01

    Genetic variants within the CNR2 gene encoding the cannabinoid receptor CB2 have been shown to be associated with osteoporosis and low bone mineral density (BMD) in case-control studies. We now examined the association of polymorphisms in CNR2 with hand bone strength in an ethnically homogeneous healthy family sample of European origin (Chuvashians) living in Russia. We show that non-synonymous CNR2 SNPs are significantly associated with radiographic hand BMD and breaking bending resistance index (BBRI) by two different transmission disequilibrium tests. For both tests highly significant p values (ranging from 0.007 to 0.008 for hand BMD, and from 0.001 to 0.003 for BBRI) were also obtained with additional SNPs at the CNR2 locus. The associations remained significant after correction for multiple testing. In conclusion, in addition to the association of CNR2 polymorphisms with low BMD at selected clinically relevant skeletal sites, we now report their significant association with hand bone strength phenotypes using a family-based study design implying an even broader impact of genetic variation at the CNR2 locus on bone structure and function.

  13. The Role of Cannabinoid Receptor 2 in Morphine Tolerance%大麻素受体2在吗啡耐受中的作用

    Institute of Scientific and Technical Information of China (English)

    马敏; 张明月; 何沙沙; 文雯; 王国年

    2015-01-01

    吗啡在疼痛治疗中广泛应用,但其长期使用可以导致耐受,这大大影响了其临床应用价值,吗啡耐受是临床亟待解决的问题.研究发现大麻素受体2(cannabinoid receptor 2,CB2受体)参与吗啡耐受的发生与发展.CB2受体选择性激活剂与吗啡联合使用,可以减弱吗啡诱导产生的痛觉过敏和异常疼痛,抑制吗啡耐受的发生与发展.激活CB2受体抑制吗啡耐受的机制尚未明确,本文将就CB2受体在吗啡耐受中作用的研究现状作一综述.

  14. Glycolytic pathway (GP), kreb's cycle (KC), and hexose monophosphate shunt (HMS) activity in myocardial subcellular fractions exposed to cannabinoids

    International Nuclear Information System (INIS)

    Delta-9-tetrahydrocannabinol (Δ9-THC), the primary psychoactive component of marihuana, and its active metabolite 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC) have been reported to produce a direct cardiac depressant effect. Studies in isolated perfused rat hearts have indicated a decreased force of contraction (inotropic response) when Δ9-THC or 11-OH-Δ9-THC was administered in microgram amounts. The mechanism and site of action have not been explained or correlated with associated metabolic pathways. The purpose of this study was to investigate the effects of cannabinoids on major myocardial energy producing pathways, GP and KC, and a non-energy producing pathway, HMS. Cardiac ventricular tissue from male Sprague-Dawley rats (250-300 g) was excised and homogenized for subcellular fractionation. KC, GP and HMS activity was assayed in the appropriate fractions by measuring 14CO2 generation from 14C-2-pyruvate, 14C-6-glucose and 14C-1-glucose respectively. Duplicate assays (n=8) were performed on tissue exposed to saline (control), empty liposomes (vehicle) and four doses each of Δ9-THC and 11-OH-Δ9-THC. Changes in metabolic activity and decreases in cardiac contractile performance may be associated

  15. Pro-epileptic effects of the cannabinoid receptor antagonist SR141716 in a model of audiogenic epilepsy

    NARCIS (Netherlands)

    Vinogradova, L.V.; Shatskova, A.B.; Rijn, C.M. van

    2011-01-01

    Endocannabinoid system and its CB1 receptors are suggested to provide endogeneous protection against seizures. The present study examines whether CB1 receptors contribute to resistance to seizures and kindling epileptogenesis in a model of audiogenic epilepsy. Three groups of Wistar rats were used:

  16. The effect of anaesthesia on [{sup 18}F]MK-9470 binding to the type 1 cannabinoid receptor in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Casteels, Cindy; Van Laere, Koen [KU Leuven and University Hospital Gasthuisberg, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); Bormans, Guy [KU Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); KU Leuven, Laboratory for Radiopharmacy, Leuven (Belgium)

    2010-06-15

    Small animal PET can be applied to study molecular processes in animal models of a variety of human diseases. In order to keep the animals in a restricted position during imaging, anaesthesia is in many instances inevitable. Using small animal PET and ex vivo autoradiography, we examined the influence of pentobarbital and isoflurane anaesthesia on the rat brain uptake of [{sup 18}F]MK-9470, a radioligand for the type 1 cannabinoid receptor. PET imaging was performed on adult Wistar rats under pentobarbital (n=6) and isoflurane anaesthesia (n=7), and under control conditions (free moving during tracer uptake, n=8). Parametric PET images were generated, anatomically standardized and analysed by voxel-based Statistical Parametric Mapping and a predefined volume of interest approach. Immediately after in vivo PET, brains were processed for ex vivo autoradiography using manually placed regions of interest. An extra group (n=6) was included ex vivo, in which animals were intravenously injected without the use of anaesthetics. Using in vivo and ex vivo molecular imaging techniques, no significant changes in absolute [{sup 18}F]MK-9470 uptake were present in the brain of pentobarbital and isoflurane rats as compared to control conditions. Relative [{sup 18}F]MK-9470 uptake PET values obtained applying global scaling were, however, decreased in the cortex under both anaesthetics (pentobarbital: -13.3{+-}1.4%; isoflurane -8.7 {+-} 3.1%), while an increase was seen in the cerebellum by 13.5 {+-} 4.0% and 13.9 {+-} 4.1% under pentobarbital and isoflurane, respectively. Ex vivo results were in agreement with in vivo findings. These findings suggest a similar, regionally specific interference of pentobarbital and isoflurane anaesthesia with in vivo CB1 receptor imaging using [{sup 18}F]MK-9470. (orig.)

  17. Preclinical evaluation and quantification of [18F]MK-9470 as a radioligand for PET imaging of the type 1 cannabinoid receptor in rat brain

    International Nuclear Information System (INIS)

    [18F]MK-9470 is an inverse agonist for the type 1 cannabinoid (CB1) receptor allowing its use in PET imaging. We characterized the kinetics of [18F]MK-9470 and evaluated its ability to quantify CB1 receptor availability in the rat brain. Dynamic small-animal PET scans with [18F]MK-9470 were performed in Wistar rats on a FOCUS-220 system for up to 10 h. Both plasma and perfused brain homogenates were analysed using HPLC to quantify radiometabolites. Displacement and blocking experiments were done using cold MK-9470 and another inverse agonist, SR141716A. The distribution volume (VT) of [18F]MK-9470 was used as a quantitative measure and compared to the use of brain uptake, expressed as SUV, a simplified method of quantification. The percentage of intact [18F]MK-9470 in arterial plasma samples was 80 ± 23 % at 10 min, 38 ± 30 % at 40 min and 13 ± 14 % at 210 min. A polar radiometabolite fraction was detected in plasma and brain tissue. The brain radiometabolite concentration was uniform across the whole brain. Displacement and pretreatment studies showed that 56 % of the tracer binding was specific and reversible. VT values obtained with a one-tissue compartment model plus constrained radiometabolite input had good identifiability (≤10 %). Ignoring the radiometabolite contribution using a one-tissue compartment model alone, i.e. without constrained radiometabolite input, overestimated the [18F]MK-9470 VT, but was correlated. A correlation between [18F]MK-9470 VT and SUV in the brain was also found (R 2 = 0.26-0.33; p ≤ 0.03). While the presence of a brain-penetrating radiometabolite fraction complicates the quantification of [18F]MK-9470 in the rat brain, its tracer kinetics can be modelled using a one-tissue compartment model with and without constrained radiometabolite input. (orig.)

  18. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain.

    Science.gov (United States)

    Dowie, Megan J; Grimsey, Natasha L; Hoffman, Therri; Faull, Richard L M; Glass, Michelle

    2014-09-01

    Huntington's disease (HD) is an inherited neurological disease with motor, cognitive and psychiatric symptoms. Characterised by neuronal degeneration, HD pathology is initially apparent in the striatum and cortex. Considerable research has recently suggested that the neurological immune response apparent in brain injury and disease may provide a valuable therapeutic target. Cannabinoid CB2 receptors are localised and up-regulated on a number of peripheral immune cell types following inflammation and injury. However, their cellular location within the human brain during inflammation has not been well characterised. The present study shows CB2 is expressed in human post-mortem striatum in HD. Quantification revealed a trend towards an increase in CB2 staining with disease, but no significant difference was measured compared to neurologically normal controls. In HD striatal tissue, there is an up-regulation of the brains' resident immune cells, with a significant increase in GFAP-positive astrocyte staining at both grade 1 (685±118%) and grade 3 (1145±163%) and Iba1-positive microglia at grade 1 (299±27%) but not grade 3 (119±48%), compared to neurologically normal controls. Both cell types exhibit irregular cell morphology, particularly at higher grades. Using double-labelled immunohistochemistry CB2 receptors are demonstrated not to be expressed on microglia or astrocytes and instead appear to be localised on CD31-positive blood vessel endothelium and vascular smooth muscle. Co-expression analysis suggests that CB2 may be more highly expressed on CD31 positive cells in HD brains than in control brains. Contrasting with evidence from rodent studies suggesting CB2 glial cell localisation, our observation that CB2 is present on blood vessel cells, with increased CD31 co-localisation in HD may represent a new context for CB2 therapeutic approaches to neurodegenerative diseases.

  19. Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats.

    Science.gov (United States)

    Suárez, Juan; Llorente, Ricardo; Romero-Zerbo, Silvana Y; Mateos, Beatriz; Bermúdez-Silva, Francisco J; de Fonseca, Fernando Rodríguez; Viveros, María-Paz

    2009-07-01

    Early maternal deprivation (MD) in rats (24 h, postnatal day 9-10) is a model for neurodevelopmental stress. There are some data proving that MD affects the endocannabinoid system (ECS) in a gender-dependent manner, and that these changes may account for the proposed schizophrenia-like phenotype of MD rats. The impact of MD on cannabinoid receptor distribution in the hippocampus is unknown. The aim of this study is to evaluate the expression of CB(1) and CB(2) receptors in diverse relevant subregions (DG, CA1, and CA3) of the hippocampus in 13-day-old rats by immunohistochemistry and densitometry. MD induced a significant decrease in CB(1) immunoreactivity (more marked in males than in females), which was mainly associated with fibers in the strata pyramidale and radiatum of CA1 and in the strata oriens, pyramidale, and radiatum of CA3. In contrast, MD males and females showed a significant increase in CB(2) immunoreactivity in the three hippocampal areas analyzed that was detected in neuropil and puncta in the stratum oriens of CA1 and CA3, and in the polymorphic cell layer of the dentate gyrus. A marked sex dimorphism was observed in CA3, with females exhibiting higher CB(1) immunoreactivity than males, and in dentate gyrus, with females exhibiting lower CB(2) immunoreactivity than males. These results point to a clear association between developmental stress and dysregulation of the ECS. The present MD procedure may provide an interesting experimental model to further address the role of the ECS in neurodevelopmental mental illnesses such as schizophrenia.

  20. Cannabinoid Control of Learning and Memory through HCN Channels.

    Science.gov (United States)

    Maroso, Mattia; Szabo, Gergely G; Kim, Hannah K; Alexander, Allyson; Bui, Anh D; Lee, Sang-Hun; Lutz, Beat; Soltesz, Ivan

    2016-03-01

    The mechanisms underlying the effects of cannabinoids on cognitive processes are not understood. Here we show that cannabinoid type-1 receptors (CB1Rs) control hippocampal synaptic plasticity and spatial memory through the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that underlie the h-current (Ih), a key regulator of dendritic excitability. The CB1R-HCN pathway, involving c-Jun-N-terminal kinases (JNKs), nitric oxide synthase, and intracellular cGMP, exerts a tonic enhancement of Ih selectively in pyramidal cells located in the superficial portion of the CA1 pyramidal cell layer, whereas it is absent from deep-layer cells. Activation of the CB1R-HCN pathway impairs dendritic integration of excitatory inputs, long-term potentiation (LTP), and spatial memory formation. Strikingly, pharmacological inhibition of Ih or genetic deletion of HCN1 abolishes CB1R-induced deficits in LTP and memory. These results demonstrate that the CB1R-Ih pathway in the hippocampus is obligatory for the action of cannabinoids on LTP and spatial memory formation. PMID:26898775

  1. 大麻素受体和配体对胃肠运动及分泌的影响%Effects of cannabinoid receptors and their ligands on gastrointestinal motility and secretion

    Institute of Scientific and Technical Information of China (English)

    曹明华; 李永渝

    2011-01-01

    Endocannabinoid system has several kinds of receptors, all of which have correspondence ligands and pathways of synthesis and degradation, and they belong to G-protein coupled receptors family. Recently studies show that stimulation of cannabinoid receptors has inhibitory effects on gastrointestinal motility and secretion. In this article, we introduce the compositions of the cannabinoid family members, includingtheir receptors, ligands, and antagonists, and their effects on the gastrointestinal motility and secretion. Useful information can be provided for the further study on the effects of endocannabinoid system on gastrointestinal motility and secretion, providing theoretic evidences for clinical use of cannabinoid.%内源性大麻素系统有几种受体,在体内均存在相应的配体和特定的合成及代谢通路,均属G蛋白耦联超家族成员.近来的一些研究显示,大麻素受体激活后可影响胃肠运动及分泌.本文介绍大麻素的种类,其受体、配体、拮抗剂以及它们对胃肠运动和胃肠分泌的影响,为进一步研究内源性大麻素系统对胃肠运动及分泌的作用机制提供资料,并为临床应用该类药物提供理论依据.

  2. Cannabinoid Hyperemesis Syndrome

    OpenAIRE

    Galli, Jonathan A.; Sawaya, Ronald Andari; Friedenberg, Frank K.

    2011-01-01

    Coinciding with the increasing rates of cannabis abuse has been the recognition of a new clinical condition known as Cannabinoid Hyperemesis Syndrome. Cannabinoid Hyperemesis Syndrome is characterized by chronic cannabis use, cyclic episodes of nausea and vomiting, and frequent hot bathing. Cannabinoid Hyperemesis Syndrome occurs by an unknown mechanism. Despite the well-established anti-emetic properties of marijuana, there is increasing evidence of its paradoxical effects on the gastrointes...

  3. Chapter 8. Activation mechanisms of chemokine receptors

    DEFF Research Database (Denmark)

    Jensen, Pia C; Rosenkilde, Mette M

    2009-01-01

    Chemokine receptors belong to the large family of 7-transmembrane (7TM) G-protein-coupled receptors. These receptors are targeted and activated by a variety of different ligands, indicating that activation is a result of similar molecular mechanisms but not necessarily similar modes of ligand bin...

  4. Activation of cannabinoid system in anterior cingulate cortex and orbitofrontal cortex modulates cost-benefit decision making

    OpenAIRE

    Khani, Abbas; Kermani, Mojtaba; Hesam, 6Soghra; Haghparast, Abbas; Enrike G Argandoña; Rainer, Gregor

    2015-01-01

    Despite the evidence for altered decision making in cannabis abusers, the role of the cannabinoid system in decision-making circuits has not been studied. Here, we examined the effects of cannabinoid modulation during cost-benefit decision making in the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), key brain areas involved in decision making. We trained different groups of rats in a delay-based and an effort-based form of cost-benefit T-maze decision-making task. During test...

  5. Mechanism for the activation of glutamate receptors

    Science.gov (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  6. Association between cerebral cannabinoid 1 receptor availability and body mass index in patients with food intake disorders and healthy subjects: a [(18)F]MK-9470 PET study.

    Science.gov (United States)

    Ceccarini, J; Weltens, N; Ly, H G; Tack, J; Van Oudenhove, L; Van Laere, K

    2016-07-12

    Although of great public health relevance, the mechanisms underlying disordered eating behavior and body weight regulation remain insufficiently understood. Compelling preclinical evidence corroborates a critical role of the endocannabinoid system (ECS) in the central regulation of appetite and food intake. However, in vivo human evidence on ECS functioning in brain circuits involved in food intake regulation as well as its relationship with body weight is lacking, both in health and disease. Here, we measured cannabinoid 1 receptor (CB1R) availability using positron emission tomography (PET) with [(18)F]MK-9470 in 54 patients with food intake disorders (FID) covering a wide body mass index (BMI) range (anorexia nervosa, bulimia nervosa, functional dyspepsia with weight loss and obesity; BMI range=12.5-40.6 kg/m(2)) and 26 age-, gender- and average BMI-matched healthy subjects (BMI range=18.5-26.6 kg/m(2)). The association between regional CB1R availability and BMI was assessed within predefined homeostatic and reward-related regions of interest using voxel-based linear regression analyses. CB1R availability was inversely associated with BMI in homeostatic brain regions such as the hypothalamus and brainstem areas in both patients with FID and healthy subjects. However, in FID patients, CB1R availability was also negatively correlated with BMI throughout the mesolimbic reward system (midbrain, striatum, insula, amygdala and orbitofrontal cortex), which constitutes the key circuit implicated in processing appetitive motivation and hedonic value of perceived food rewards. Our results indicate that the cerebral homeostatic CB1R system is inextricably linked to BMI, with additional involvement of reward areas under conditions of disordered body weight.

  7. Association between cerebral cannabinoid 1 receptor availability and body mass index in patients with food intake disorders and healthy subjects: a [(18)F]MK-9470 PET study.

    Science.gov (United States)

    Ceccarini, J; Weltens, N; Ly, H G; Tack, J; Van Oudenhove, L; Van Laere, K

    2016-01-01

    Although of great public health relevance, the mechanisms underlying disordered eating behavior and body weight regulation remain insufficiently understood. Compelling preclinical evidence corroborates a critical role of the endocannabinoid system (ECS) in the central regulation of appetite and food intake. However, in vivo human evidence on ECS functioning in brain circuits involved in food intake regulation as well as its relationship with body weight is lacking, both in health and disease. Here, we measured cannabinoid 1 receptor (CB1R) availability using positron emission tomography (PET) with [(18)F]MK-9470 in 54 patients with food intake disorders (FID) covering a wide body mass index (BMI) range (anorexia nervosa, bulimia nervosa, functional dyspepsia with weight loss and obesity; BMI range=12.5-40.6 kg/m(2)) and 26 age-, gender- and average BMI-matched healthy subjects (BMI range=18.5-26.6 kg/m(2)). The association between regional CB1R availability and BMI was assessed within predefined homeostatic and reward-related regions of interest using voxel-based linear regression analyses. CB1R availability was inversely associated with BMI in homeostatic brain regions such as the hypothalamus and brainstem areas in both patients with FID and healthy subjects. However, in FID patients, CB1R availability was also negatively correlated with BMI throughout the mesolimbic reward system (midbrain, striatum, insula, amygdala and orbitofrontal cortex), which constitutes the key circuit implicated in processing appetitive motivation and hedonic value of perceived food rewards. Our results indicate that the cerebral homeostatic CB1R system is inextricably linked to BMI, with additional involvement of reward areas under conditions of disordered body weight. PMID:27404285

  8. Oleamide activates peroxisome proliferator-activated receptor gamma (PPARγ in vitro

    Directory of Open Access Journals (Sweden)

    Dionisi Mauro

    2012-05-01

    Full Text Available Abstract Background Oleamide (ODA is a fatty acid primary amide first identified in the cerebrospinal fluid of sleep-deprived cats, which exerts effects on vascular and neuronal tissues, with a variety of molecular targets including cannabinoid receptors and gap junctions. It has recently been reported to exert a hypolipidemic effect in hamsters. Here, we have investigated the nuclear receptor family of peroxisome proliferator-activated receptors (PPARs as potential targets for ODA action. Results Activation of PPARα, PPARβ and PPARγ was assessed using recombinant expression in Chinese hamster ovary cells with a luciferase reporter gene assay. Direct binding of ODA to the ligand binding domain of each of the three PPARs was monitored in a cell-free fluorescent ligand competition assay. A well-established assay of PPARγ activity, the differentiation of 3T3-L1 murine fibroblasts into adipocytes, was assessed using an Oil Red O uptake-based assay. ODA, at 10 and 50 μM, was able to transactivate PPARα, PPARβ and PPARγ receptors. ODA bound to the ligand binding domain of all three PPARs, although complete displacement of fluorescent ligand was only evident for PPARγ, at which an IC50 value of 38 μM was estimated. In 3T3-L1 cells, ODA, at 10 and 20 μM, induced adipogenesis. Conclusions We have, therefore, identified a novel site of action of ODA through PPAR nuclear receptors and shown how ODA should be considered as a weak PPARγ ligand in vitro.

  9. Therapeutic potential of cannabinoid medicines.

    Science.gov (United States)

    Robson, P J

    2014-01-01

    Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines. The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology. In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders. PMID:24006213

  10. Mapping CB1 cannabinoid receptors with [3H]OMAR in the Flinders rodent model of depression

    DEFF Research Database (Denmark)

    Nahimi, A.; Gjedde, A.; Wong, D. F.;

    2012-01-01

    Background: The endocannabinoid system regulates cognitive and emotional processes and pathology of this system is implicated in psychiatric disorders, including depression and schizophrenia. The precise role of the endocannabinoid system in psychiatric disorders remains unclear, but changes......H]OMAR, a highly selective CB1 receptor antagonist (Horti et al, 2006) in the Flinders rodent model of depression. Methods: The Flinders sensitive line (FSL) (N = 5-6) was used as a model of depression and the Flinders resistant line (FRL) (N= 6-8) served as controls (Wegener et al. 2010...... not significantly different. Conclusions: Although changes in CB1 receptor expression have been demonstrated in human suicide victims with depression and in animal models of depression, the present maps of [3H]OMAR binding revealed no difference between FSL and FRL rats. We used a single concentration of [3H...

  11. Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

    Science.gov (United States)

    Zhang, Jianbo; Wang, Na; Chen, Bo; Wang, Yi'nan; He, Jing; Cai, Xintong; Zhang, Hongbo; Wei, Shuguang; Li, Shengbin

    2016-09-01

    Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse. Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction. However, the downstream signaling of CB1R is not fully elucidated. In the present study, we investigated the relationship between CB1R and the extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF) signaling in the nucleus accumbens (NAc) and hippocampus in morphine-induced conditioned place preference (CPP), which is used to assess the morphine-induced reward memory. The protein level of CB1R, ERK, CREB, and BDNF were detected by western blotting. Additionally, a CB1R antagonist, AM251, was used to study whether blockade of CB1R altered the CPP and above-mentioned molecules. We found an increase of CB1R expression in the NAc and hippocampus of the mice following morphine CPP, but not those after repeated morphine in home cage without context exposure (NO-CPP). Both morphine CPP and NO-CPP induced an upregulation of ERK, CREB phosphorylation and BDNF expression. Furthermore, pretreatment with AM251 before morphine attenuated the CPP acquisition and CB1R expression as well as the activation of ERK-CREB-BDNF cascade. Collectively, these findings demonstrate that (1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. (2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP. PMID:27461790

  12. Cannabinoid-based medicines for neurological disorders--clinical evidence.

    Science.gov (United States)

    Wright, Stephen

    2007-08-01

    Whereas the cannabis plant has a long history of medicinal use, it is only in recent years that a sufficient understanding of the pharmacology of the main plant constituents has allowed for a better understanding of the most rational therapeutic targets. The distribution of cannabinoid receptors, both within the nervous system and without, and the development of pharmacological tools to investigate their function has lead to a substantial increase in efforts to develop cannabinoids as therapeutic agents. Concomitant with these efforts, the understanding of the pharmacology of plant cannabinoids at receptor and other systems distinct from the cannabinoid receptors suggests that the therapeutic applications of plant-derived cannabinoids (and presumably their synthetic derivatives also) may be diverse. This review aims to discuss the clinical evidence investigating the use of medicines derived, directly or indirectly, from plant cannabinoids with special reference to neurological disorders. Published studies suggest that the oral administration of cannabinoids may not be the preferred route of administration and that plant extracts show greater evidence of efficacy than synthetic compounds. One of these, Sativex (GW Pharmaceuticals), was approved as a prescription medicine in Canada in 2005 and is currently under regulatory review in the EU. PMID:17952657

  13. Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions.

    Science.gov (United States)

    Mendizábal, V E; Adler-Graschinsky, E

    2007-06-01

    In addition to their classical known effects, such as analgesia, impairment of cognition and learning and appetite enhancement, cannabinoids have also been related to the regulation of cardiovascular responses and implicated in cardiovascular pathology. Elevated levels of endocannabinoids have been related to the extreme hypotension associated with various forms of shock as well as to the cardiovascular abnormalities that accompany cirrhosis. In contrast, cannabinoids have also been associated with beneficial effects on the cardiovascular system, such as a protective role in atherosclerosis progression and in cerebral and myocardial ischaemia. In addition, it has also been suggested that the pharmacological manipulation of the endocannabinoid system may offer a novel approach to antihypertensive therapy. During the last decades, the tremendous increase in the understanding of the molecular basis of cannabinoid activity has encouraged many pharmaceutical companies to develop more potent synthetic cannabinoid analogues and antagonists, leading to an explosion of basic research and clinical trials. Consequently. not only the synthetic THC dronabinol (Marinol) and the synthetic THC analogue nabilone (Cesamet) have been approved in the United States, but also the standardized cannabis extract (Sativex) in Canada. At least three strategies can be foreseen in the future clinical use of cannabinoid-based drugs: (a) the use of CB(1) receptor antagonists, such as the recently approved rimonabant (b) the use of CB(2)-selective agonists, and (c) the use of inhibitors of endocannabinoid degradation. In this context, the present review examines the effects of cannabinoids and of the pharmacological manipulation of the endocannabinoid system, in cardiovascular pathophysiology. PMID:17450170

  14. Preclinical evaluation and quantification of [{sup 18}F]MK-9470 as a radioligand for PET imaging of the type 1 cannabinoid receptor in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Casteels, Cindy [K.U. Leuven, University Hospital Leuven, Division of Nuclear Medicine, Leuven (Belgium); K.U. Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); University Hospital Gasthuisberg, Division of Nuclear Medicine, Leuven (Belgium); Koole, Michel; Laere, Koen van [K.U. Leuven, University Hospital Leuven, Division of Nuclear Medicine, Leuven (Belgium); K.U. Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); Celen, Sofie; Bormans, Guy [K.U. Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven (Belgium); K.U. Leuven, Laboratory for Radiopharmacy, Leuven (Belgium)

    2012-09-15

    [{sup 18}F]MK-9470 is an inverse agonist for the type 1 cannabinoid (CB1) receptor allowing its use in PET imaging. We characterized the kinetics of [{sup 18}F]MK-9470 and evaluated its ability to quantify CB1 receptor availability in the rat brain. Dynamic small-animal PET scans with [{sup 18}F]MK-9470 were performed in Wistar rats on a FOCUS-220 system for up to 10 h. Both plasma and perfused brain homogenates were analysed using HPLC to quantify radiometabolites. Displacement and blocking experiments were done using cold MK-9470 and another inverse agonist, SR141716A. The distribution volume (V{sub T}) of [{sup 18}F]MK-9470 was used as a quantitative measure and compared to the use of brain uptake, expressed as SUV, a simplified method of quantification. The percentage of intact [{sup 18}F]MK-9470 in arterial plasma samples was 80 {+-} 23 % at 10 min, 38 {+-} 30 % at 40 min and 13 {+-} 14 % at 210 min. A polar radiometabolite fraction was detected in plasma and brain tissue. The brain radiometabolite concentration was uniform across the whole brain. Displacement and pretreatment studies showed that 56 % of the tracer binding was specific and reversible. V{sub T} values obtained with a one-tissue compartment model plus constrained radiometabolite input had good identifiability ({<=}10 %). Ignoring the radiometabolite contribution using a one-tissue compartment model alone, i.e. without constrained radiometabolite input, overestimated the [{sup 18}F]MK-9470 V{sub T}, but was correlated. A correlation between [{sup 18}F]MK-9470 V{sub T} and SUV in the brain was also found (R {sup 2} = 0.26-0.33; p {<=} 0.03). While the presence of a brain-penetrating radiometabolite fraction complicates the quantification of [{sup 18}F]MK-9470 in the rat brain, its tracer kinetics can be modelled using a one-tissue compartment model with and without constrained radiometabolite input. (orig.)

  15. Cannabinoids and zebrafish

    NARCIS (Netherlands)

    Akhtar, Muhammad Tayyab

    2013-01-01

    Cannabinoids are a group of terpenophenolic compounds and are naturally found in the cannabis plant (Cannabis sativa L). Δ9-Tetrahydrocannabinol (Δ9-THC) is the psychoactive cannabinoid. The high lipophilicity of Δ9-THC is a hindering factor in the further development of this compound into a large s

  16. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice.

    Science.gov (United States)

    Steffens, Sabine; Veillard, Niels R; Arnaud, Claire; Pelli, Graziano; Burger, Fabienne; Staub, Christian; Karsak, Meliha; Zimmer, Andreas; Frossard, Jean-Louis; Mach, François

    2005-04-01

    Atherosclerosis is a chronic inflammatory disease, and is the primary cause of heart disease and stroke in Western countries. Derivatives of cannabinoids such as delta-9-tetrahydrocannabinol (THC) modulate immune functions and therefore have potential for the treatment of inflammatory diseases. We investigated the effects of THC in a murine model of established atherosclerosis. Oral administration of THC (1 mg kg(-1) per day) resulted in significant inhibition of disease progression. This effective dose is lower than the dose usually associated with psychotropic effects of THC. Furthermore, we detected the CB2 receptor (the main cannabinoid receptor expressed on immune cells) in both human and mouse atherosclerotic plaques. Lymphoid cells isolated from THC-treated mice showed diminished proliferation capacity and decreased interferon-gamma secretion. Macrophage chemotaxis, which is a crucial step for the development of atherosclerosis, was also inhibited in vitro by THC. All these effects were completely blocked by a specific CB2 receptor antagonist. Our data demonstrate that oral treatment with a low dose of THC inhibits atherosclerosis progression in the apolipoprotein E knockout mouse model, through pleiotropic immunomodulatory effects on lymphoid and myeloid cells. Thus, THC or cannabinoids with activity at the CB2 receptor may be valuable targets for treating atherosclerosis.

  17. Cannabinoids and autoimmune diseases: A systematic review.

    Science.gov (United States)

    Katchan, Valeria; David, Paula; Shoenfeld, Yehuda

    2016-06-01

    Cannabinoids have shown to have a variety effects on body systems. Through CB1 and CB2 receptors, amongst other, they exert an effect by modulating neurotransmitter and cytokine release. Current research in the role of cannabinoids in the immune system shows that they possess immunosuppressive properties. They can inhibit proliferation of leucocytes, induce apoptosis of T cells and macrophages and reduce secretion of pro-inflammatory cytokines. In mice models, they are effective in reducing inflammation in arthritis, multiple sclerosis, have a positive effect on neuropathic pain and in type 1 diabetes mellitus. They are effective as treatment for fibromyalgia and have shown to have anti-fibrotic effect in scleroderma. Studies in human models are scarce and not conclusive and more research is required in this field. Cannabinoids can be therefore promising immunosuppressive and anti-fibrotic agents in the therapy of autoimmune disorders. PMID:26876387

  18. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses.

    Science.gov (United States)

    Chiurchiù, Valerio; Leuti, Alessandro; Maccarrone, Mauro

    2015-06-01

    The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders. PMID:25601726

  19. Expression of cannabinoid receptor in intestinal tissue in patients with ulcerative colitis%大麻素受体在溃疡性结肠炎中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    陶科明; 吴正祥; 李为慧; 王巧民

    2013-01-01

    目的 观察大麻素受体(CNR)在溃疡性结肠炎(UC)中的表达,探讨其作用及意义.方法 采用免疫组织化学方法检测45例UC患者和30例健康对照者肠道组织中CNR1和CNR2的表达,并进一步分析CNR1和CNR2与UC临床特征的关系.结果 CNR1和CNR2在UC患者中表达阳性率分别为62.2%、68.9%,明显高于正常对照组(26.7%、36.7%,P0.05).结论 CNR在UC肠道组织中表达增加,而且与疾病活动性明显相关,提示CNR可能在UC发生、发展中发挥重要的作用.%Objective To investigate the expression and clinical significance of cannabinoid receptor (CNR) in intestinal tissue in patients with ulcerative colitis ( UC ) . Methods 45 UC patients and 30 normal controls were enrolled. Expression of CNR1 and CNR2 in UC intestinal tissue and normal controls were determined by immunohistochemical staining, and the relationship with clinical characteristics was analyzed. Results Expression positive rates of CNR1 and CNR2 in UC patients were 62. 2% and 68. 9% , significantly higher than the normal control (26. 7% , 36. 7% , P 0. 05) . Conclusion Expression of CNR is high in UC patients, and is significant correlate with disease activity, which suggests that CNR may play an important role in the pathogenesis of UC.

  20. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells.

    Science.gov (United States)

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  1. Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells

    Science.gov (United States)

    Cobellis, Gilda; Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo

    2016-01-01

    Endocannabinoids control male reproduction acting at central and local level via cannabinoid receptors. The cannabinoid receptor CB1 has been characterized in the testis, in somatic and germ cells of mammalian and non-mammalian animal models, and its activity related to Leydig cell differentiation, steroidogenesis, spermiogenesis, sperm quality, and maturation. In this short review, we provide a summary of the insights concerning neuroendocrine CB1 activity in male reproduction focusing on adult Leydig cell ontogenesis and steroid biosynthesis. PMID:27375550

  2. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe;

    2015-01-01

    -fluoropentylindazole moiety, dealkylation of the N-fluoropentyl side chain, and oxidative loss of fluorine as well as combinations thereof. The results were compared to human liver microsomal (HLM) incubations, which predominantly showed time-dependent formation of mono-, di-, and trihydroxylated metabolites having....... This compound deviates from earlier JHW-type synthetic cannabinoids by having an indazole ring connected to an adamantyl group via a carboxamide linkage. Synthetic cannabinoids are completely metabolized, and identification of the metabolites is thus crucial when using urine as the sample matrix. Using...

  3. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release.

    Science.gov (United States)

    Kola, Blerina; Wittman, Gábor; Bodnár, Ibolya; Amin, Faisal; Lim, Chung Thong; Oláh, Márk; Christ-Crain, Mirjam; Lolli, Francesca; van Thuijl, Hinke; Leontiou, Chrysanthia A; Füzesi, Tamás; Dalino, Paolo; Isidori, Andrea M; Harvey-White, Judith; Kunos, George; Nagy, György M; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-12-01

    This study aimed to investigate whether the growth hormone release and metabolic effects of ghrelin on AMPK activity of peripheral tissues are mediated by cannabinoid receptor type 1 (CB1) and the central nervous system. CB1-knockout (KO) and/or wild-type mice were injected peripherally or intracerebroventricularly with ghrelin and CB1 antagonist rimonabant to study tissue AMPK activity and gene expression (transcription factors SREBP1c, transmembrane protein FAS, enzyme PEPCK, and protein HSL). Growth hormone levels were studied both in vivo and in vitro. Peripherally administered ghrelin in liver, heart, and adipose tissue AMPK activity cannot be observed in CB1-KO or CB1 antagonist-treated mice. Intracerebroventricular ghrelin treatment can influence peripheral AMPK activity. This effect is abolished in CB1-KO mice and by intracerebroventricular rimonabant treatment, suggesting that central CB1 receptors also participate in the signaling pathway that mediates the effects of ghrelin on peripheral tissues. Interestingly, in vivo or in vitro growth hormone release is intact in response to ghrelin in CB1-KO animals. Our data suggest that the metabolic effects of ghrelin on AMPK in peripheral tissues are abolished by the lack of functional CB1 receptor via direct peripheral effect and partially through the central nervous system, thus supporting the existence of a possible ghrelin-cannabinoid-CB1-AMPK pathway.

  4. Animal models of cannabinoid reward

    OpenAIRE

    Panlilio, Leigh V; Justinova, Zuzana; Goldberg, Steven R.

    2010-01-01

    The endogenous cannabinoid system is involved in numerous physiological and neuropsychological functions. Medications that target this system hold promise for the treatment of a wide variety of disorders. However, as reward is one of the most prominent of these functions, medications that activate this system must be evaluated for abuse potential. Meanwhile, cannabis is already being used chronically by millions of people, many of whom eventually seek treatment for cannabis dependence. Theref...

  5. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  6. Pharmacokinetics of Cannabinoids

    Directory of Open Access Journals (Sweden)

    Iain J McGilveray

    2005-01-01

    Full Text Available Delta-9-tetrahydrocannabinol (Δ-9-THC is the main psychoactive ingredient of cannabis (marijuana. The present review focuses on the pharmacokinetics of THC, but also includes known information for cannabinol and cannabidiol, as well as the synthetic marketed cannabinoids, dronabinol (synthetic THC and nabilone. The variability of THC in plant material (0.3% to 30% leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level of 152±86.3 ng/mL occured approximately 10 min after inhalation. Oral THC, on the other hand, is only 4% to 12% bioavailable and absorption is highly variable. THC is eliminated from plasma in a multiphasic manner, with low amounts detectable for over one week after dosing. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20% and 100% of parent, respectively. THC is widely distributed, particularly to fatty tissues, but less than 1% of an administered dose reaches the brain, while the spleen and body fat are long-term storage sites. The elimination of THC and its many metabolites (from all routes occurs via the feces and urine. Metabolites persist in the urine and feces for severalweeks. Nabilone is well absorbed and the pharmacokinetics, although variable, appear to be linear from oral doses of 1 mg to 4 mg (these doses show a plasma elimination half-life of approximately 2 h. As with THC, there is a high first-pass effect, and the feces to urine ratio of excretion is similar to other cannabinoids. Pharmacokineticpharmacodynamic modelling with plasma THC versus cardiac and psychotropic effects show that after equilibrium is reached, the intensity of effect is proportional to the plasma THC profile. Clinical trials have found that nabilone produces less tachycardia and less euphoria than THC for a similar antiemetic response.

  7. EFFECT OF CANNABINOIDS ON TESTICULAR ISCHEMIA-REPERFUSION INJURY IN RAT

    Directory of Open Access Journals (Sweden)

    H. Sepehri

    2006-11-01

    Full Text Available Anandamide is an endogenous ligand for cannabinoid receptors and has endothelial protective effect against ischemic preconditioning. The purpose of this study was to investigate the effects of cannabinoids on reperfusion injury due to testicular torsion-detorsion (T/D. A total of 36 adult male Sprague-Dawley rats were divided into 6 groups. Testicular ischemia was achieved by twisting the right testes 720◦ counters clockwise for 1 hour and reperfusion was allowed for 4 hours after detorsion. In baseline (normal group, bilateral orchiectomies performed after anesthesia. Sham operated group was served as a control group. Torsion/detorsion group underwent 1 hour testicular torsion and 4 hours of detorsion. Anandamide (cannabinoid agonist group received pretreatment with intraperitoneally anandamide 30 min before torsion. AM251 (CB1 antagonist group, received intraperitoneally injection of AM251 45 min before torsion. Anandamid/AM251 (An/AM group received administrations of AM251 45 min before torsion and anandamide 30 min before torsion. The ipsilateral malondialdehyde (MDA level in T/D group were significantly higher versus control and base line groups. Ipsilateral MDA values in anandamid group were significantly lower than T/D and An/AM groups. There were also significant decreases in catalase activity in T/D group compared with control and base line groups. These values were significantly higher in cannabinoid group versus T/D and An/AM groups. Anandamide increased ipsilateral intratesticular antioxidative markers and decreased free radicals formation during reperfusion phase after unilateral testicular torsion, which was reflected in lesser testicular MDA level. Furthermore, the effects of anandamide were mediated via cannabinoid receptors, since AM251 could abolish these effects.

  8. Cannabinoid hyperemesis syndrome.

    Science.gov (United States)

    Galli, Jonathan A; Sawaya, Ronald Andari; Friedenberg, Frank K

    2011-12-01

    Coinciding with the increasing rates of cannabis abuse has been the recognition of a new clinical condition known as Cannabinoid Hyperemesis Syndrome. Cannabinoid Hyperemesis Syndrome is characterized by chronic cannabis use, cyclic episodes of nausea and vomiting, and frequent hot bathing. Cannabinoid Hyperemesis Syndrome occurs by an unknown mechanism. Despite the well-established anti-emetic properties of marijuana, there is increasing evidence of its paradoxical effects on the gastrointestinal tract and CNS. Tetrahydrocannabinol, cannabidiol, and cannabigerol are three cannabinoids found in the cannabis plant with opposing effects on the emesis response. The clinical course of Cannabinoid Hyperemesis Syndrome may be divided into three phases: prodromal, hyperemetic, and recovery phase. The hyperemetic phase usually ceases within 48 hours, and treatment involves supportive therapy with fluid resuscitation and anti-emetic medications. Patients often demonstrate the learned behavior of frequent hot bathing, which produces temporary cessation of nausea, vomiting, and abdominal pain. The broad differential diagnosis of nausea and vomiting often leads to delay in the diagnosis of Cannabinoid Hyperemesis Syndrome. Cyclic Vomiting Syndrome shares several similarities with CHS and the two conditions are often confused. Knowledge of the epidemiology, pathophysiology, and natural course of Cannabinoid Hyperemesis Syndrome is limited and requires further investigation. PMID:22150623

  9. Rational design, synthesis, and pharmacological properties of new 1,8-naphthyridin-2(1H)-on-3-carboxamide derivatives as highly selective cannabinoid-2 receptor agonists

    DEFF Research Database (Denmark)

    Manera, Clementina; Saccomanni, Giuseppe; Adinolfi, Barbara;

    2009-01-01

    The CB(2) receptor activation can be exploited for the treatment of diseases such as chronic pain and tumors of immune origin, devoid of psychotropic activity. On the basis of our already reported 1,8-naphthyridin-4(1H)-on-3-carboxamide derivatives, new 1,8-naphthyridin-2(1H)-on-3-carboxamide der...

  10. Positron emission tomographic imaging of the cannabinoid type 1 receptor system with [¹¹C]OMAR ([¹¹C]JHU75528): improvements in image quantification using wild-type and knockout mice.

    Science.gov (United States)

    Herance, Raúl; Rojas, Santiago; Abad, Sergio; Jiménez, Xavier; Gispert, Juan Domingo; Millán, Olga; Martín-García, Elena; Burokas, Aurelijus; Serra, Miquel Àngel; Maldonado, Rafael; Pareto, Deborah

    2011-12-01

    In this study, we assessed the feasibility of using positron emission tomography (PET) and the tracer [¹¹C]OMAR ([¹¹C]JHU75528), an analogue of rimonabant, to study the brain cannabinoid type 1 (CB1) receptor system. Wild-type (WT) and CB1 knockout (KO) animals were imaged at baseline and after pretreatment with blocking doses of rimonabant. Brain uptake in WT animals was higher (50%) than in KO animals in baseline conditions. After pretreatment with rimonabant, WT uptake lowered to the level of KO animals. The results of this study support the feasibility of using PET with the radiotracer [¹¹C]JHU75528 to image the brain CB1 receptor system in mice. In addition, this methodology can be used to assess the effect of new drugs in preclinical studies using genetically manipulated animals.

  11. Altered expression of the CB1 cannabinoid receptor in the triple transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Bedse, Gaurav; Romano, Adele; Cianci, Silvia; Lavecchia, Angelo M; Lorenzo, Pace; Elphick, Maurice R; Laferla, Frank M; Vendemiale, Gianluigi; Grillo, Caterina; Altieri, Fabio; Cassano, Tommaso; Gaetani, Silvana

    2014-01-01

    The endocannabinoid system has gained much attention as a new potential pharmacotherapeutic target in various neurodegenerative diseases, including Alzheimer's disease (AD). However, the association between CB1 alterations and the development of AD neuropathology is unclear and often contradictory. In this study, brain CB1 mRNA and CB1 protein levels were analyzed in 3 × Tg-AD mice and compared to wild-type littermates at 2, 6 and 12 months of age, using in-situ hybridization and immunohistochemistry, respectively. Semiquantitative analysis of CB1 expression focused on the prefrontal cortex (PFC), prelimbic cortex, dorsal hippocampus (DH), basolateral amygdala complex (BLA), and ventral hippocampus (VH), all areas with high CB1 densities that are strongly affected by neuropathology in 3 × Tg-AD mice. At 2 months of age, there was no change in CB1 mRNA and protein levels in 3 × Tg-AD mice compared to Non-Tg mice in all brain areas analyzed. However, at 6 and 12 months of age, CB1 mRNA levels were significantly higher in PFC, DH, and BLA, and lower in VH in 3 × Tg-AD mice compared to wild-type littermates. CB1 immunohistochemistry revealed that CB1 protein expression was unchanged in 3 × Tg-AD at 2 and 6 months of age, while a significant decrease in CB1 receptor immunoreactivity was detected in the BLA and DH of 12-month-old 3 × Tg-AD mice, with no sign of alteration in other brain areas. The altered CB1 levels appear, rather, to be age-and/or pathology-dependent, indicating an involvement of the endocannabinoid system in AD pathology and supporting the ECS as a potential novel therapeutic target for treatment of AD.

  12. The role of the hippocampus in mediating emotional responses to nicotine and cannabinoids: a possible neural substrate for functional interactions.

    Science.gov (United States)

    Viveros, María-Paz; Marco, Eva-María; Llorente, Ricardo; Lamota, Laura

    2007-09-01

    The endocannabinoid system is involved in the regulation of behavioural and physiological stress-related responses. Nicotine exerts complex effects on emotional behaviour, and its withdrawal may result in depressive and anxiogenic-like symptoms. Cannabinoid receptor agonists and nicotine induce biphasic effects in diverse tests of unconditioned anxiety, alter adrenocortical activity and affect hippocampus-dependent contextual fear conditioning. Upon exposure to stressful stimuli, central endocannabinoid and cholinergic systems appear to be activated in key limbic areas such as hippocampus and amygdala, which might contribute to adaptive cognitive and emotional strategies to cope with aversive situations. Numerous studies indicate the existence of functional interactions between nicotine and cannabinoids, particularly in relation to anxiety-related processes. An overlapping distribution of CB1 and nicotinic acetylcholine receptors in the hippocampus is observed and the endocannabinoid system exerts a modulatory role over the hippocampal cholinergic system. In this review, we point to the hippocampus as a relevant neural substrate for cannabinoid-nicotine interactions, notably as regards emotional responses. After a general description of the cannabinoid and nicotinic systems, we review their implications in unconditioned anxiety, depressive-like behaviour and fear conditioning. Then we discuss the role of both systems in modulating stress-induced changes at cellular, endocrine and behavioural levels and their possible involvement in hippocampal neurogenesis. Although we mainly focus on animal data, some relevant human studies are also discussed.

  13. Hormone activation of baculovirus expressed progesterone receptors.

    Science.gov (United States)

    Elliston, J F; Beekman, J M; Tsai, S Y; O'Malley, B W; Tsai, M J

    1992-03-15

    Human and chicken progesterone receptors (A form) were overproduced in a baculovirus expression system. These recombinant progesterone receptors were full-length bound progesterone specifically and were recognized by monoclonal antibodies, AB52 and PR22, specific for human and chicken progesterone receptor, respectively. In gel retardation studies, binding of recombinant human and chicken progesterone receptors to their progesterone response element (PRE) was specific and was enhanced in the presence of progesterone. Binding of human progesterone receptor to the PRE was also enhanced in the presence of the antiprogestin, RU486, but very little effect was observed in the presence of estradiol, dexamethasone, testosterone, and vitamin D. In our cell-free transcription system, human progesterone receptor induced transcription in a receptor-dependent and hormone-activable manner. Receptor-stimulated transcription required the presence of the PRE in the test template and could be specifically inhibited by excess PRE oligonucleotides. Furthermore, chicken progesterone receptor also induced in vitro transcription in a hormone-activable manner. These results demonstrate that steroid receptors overexpressed in a baculovirus expression system are functional and exhibit steroid-responsive binding and transcription. These observations support our present understanding of the mechanism of steroid receptor-regulated gene expression and provide a technological format for studies of the role of hormone and antihormone in altering gene expression. PMID:1544902

  14. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet.

    Science.gov (United States)

    Wierucka-Rybak, M; Wolak, M; Bojanowska, E

    2014-08-01

    High intake of fats and sugars has prompted a rapid growth in the number of obese individuals worldwide. To further investigate whether simultaneous pharmacological intervention in the leptin and cannabinoid system might change food and water intake, preferences for palatable foods, and body weight, we have examined the effects of concomitant intraperitoneal administration of leptin and AM 251, a cannabinoid 1 (CB1) receptor antagonist, or cannabidiol (CBD), a plant cannabinoid, in rats maintained on either a high-fat (HF) diet (45% energy from fat) or free-choice (FC) diet consisting of high-sucrose and normal rat chow (83% and 61% energy from carbohydrates, respectively). Leptin at a dose of 100 μg/kg injected individually for 3 subsequent days to rats fed a HF diet reduced significantly the daily caloric intake and inhibited body weight gain. The hormone had no significant effects, however, on either caloric intake, body weight or food preferences in rats fed an FC diet. Co-injection of leptin and 1 mg/kg AM 251 resulted in a further significant decrease in HF diet intake and a profound reduction in body weight gain both in HF diet- and FC diet-fed rats. This drug combination, however, had no effect on the consumption of high-sucrose chow. In contrast, 3mg/kg of CBD co-injected with leptin did not modify leptin effects on food intake in rats maintained on an FC or HF diet. None of the drug combinations affected water consumption. It is concluded that the concomitant treatment with leptin and AM 251 attenuated markedly body weight gain in rats maintained on high-calorie diets rich in fat and carbohydrates but did not affect preferences for sweet food. PMID:25179081

  15. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet.

    Science.gov (United States)

    Wierucka-Rybak, M; Wolak, M; Bojanowska, E

    2014-08-01

    High intake of fats and sugars has prompted a rapid growth in the number of obese individuals worldwide. To further investigate whether simultaneous pharmacological intervention in the leptin and cannabinoid system might change food and water intake, preferences for palatable foods, and body weight, we have examined the effects of concomitant intraperitoneal administration of leptin and AM 251, a cannabinoid 1 (CB1) receptor antagonist, or cannabidiol (CBD), a plant cannabinoid, in rats maintained on either a high-fat (HF) diet (45% energy from fat) or free-choice (FC) diet consisting of high-sucrose and normal rat chow (83% and 61% energy from carbohydrates, respectively). Leptin at a dose of 100 μg/kg injected individually for 3 subsequent days to rats fed a HF diet reduced significantly the daily caloric intake and inhibited body weight gain. The hormone had no significant effects, however, on either caloric intake, body weight or food preferences in rats fed an FC diet. Co-injection of leptin and 1 mg/kg AM 251 resulted in a further significant decrease in HF diet intake and a profound reduction in body weight gain both in HF diet- and FC diet-fed rats. This drug combination, however, had no effect on the consumption of high-sucrose chow. In contrast, 3mg/kg of CBD co-injected with leptin did not modify leptin effects on food intake in rats maintained on an FC or HF diet. None of the drug combinations affected water consumption. It is concluded that the concomitant treatment with leptin and AM 251 attenuated markedly body weight gain in rats maintained on high-calorie diets rich in fat and carbohydrates but did not affect preferences for sweet food.

  16. Sex differences in the cannabinoid regulation of energy homeostasis

    OpenAIRE

    Farhang, Borzoo; Diaz, Shanna; Tang, Stephanie L.; Wagner, Edward J.

    2009-01-01

    This review highlights the progress made thus far in characterizing the behavioral and cellular mechanisms through which cannabinoids regulate energy homeostasis. We performed microstructural analysis of feeding behavior in gonadectomized guinea pigs and gonadally intact, transgenic CB1 receptor knockout mice to determine how cannabinoids affect circadian rhythms in food intake and meal pattern. We also implanted data loggers into the abdominal cavity to correlate the appetite-modulating prop...

  17. Medical cannabis vs. synthetic cannabinoids: What does the future hold?

    Science.gov (United States)

    Bolognini, D; Ross, R A

    2015-06-01

    The medical use of cannabis has an intricate therapeutic history that finds its roots in ancient China (∼2700 BC). The main psychoactive component of cannabis, Δ(9) -tetrahydrocannabinol (Δ(9) -THC), was discovered in 1964. This was a significant breakthrough, as it allowed the generation of synthetic analogs of Δ(9) -THC, the discovery of cannabinoid receptors, and the generation of synthetic small molecules. Despite this, today there is still a paucity of drugs that target the cannabinoid system. PMID:25761845

  18. Cannabinoids for treatment of Alzheimer’s disease: moving towards the clinic

    Directory of Open Access Journals (Sweden)

    Isidro eFerrer

    2014-03-01

    Full Text Available The limited effectiveness of current therapies against Alzheimer’s disease highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer. The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB1 and CB2 receptors, with their endogenous ligands and the enzymes related to the synthesis and degradation of these endocannabinoid compounds. Several findings indicate that the activation of both CB1 and CB2 receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models by reducing the harmful A peptide action and tau phosphorylation, as well as by promoting the brain’s intrinsic repair mechanisms. Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress. The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of Alzheimer’s disease, which together encourage progress towards a clinical trial.

  19. Isolation of Cannabinoids from the plant Cannabis sativa and its potential anticancer activity

    Directory of Open Access Journals (Sweden)

    Tariq. A. L

    2012-03-01

    Full Text Available The plant leaves were identified as Cannabis sativa L. The cannabniods were extracted by aqueous extract found a total yield of 3.8g while as acetone extract 4.8g. The protein content in crude extract of Cannabis sativa L for aqeous extract found 112μg/ml and for acetone extract 160μg/ml. The molecular weight of protein by SDS PGAGE found to be 70KDa. The HPLC intension percentage for aqueous was 11 while for acetone extract it found 25. The actone extract exhibited more anticancer activity against HT29, MCF7 and SF-26 Cells

  20. DDD-028: a potent potential non-opioid, non-cannabinoid analgesic for neuropathic and inflammatory pain.

    Science.gov (United States)

    Rajagopalan, Parthasarathi; Tracey, Heather; Chen, Zhoumou; Bandyopadhyaya, Acintya; Veeraraghavan, Sridhar; Rajagopalan, Desikan R; Salvemini, Daniela; McPhee, Ian; Viswanadha, Srikant; Rajagopalan, Raghavan

    2014-07-15

    DDD-028 (4), a novel pentacyclic pyridoindolobenzazepine derivative was evaluated in vitro for receptor binding affinity and in vivo for analgesic activity using rodent models of neuropathic and inflammatory pain. DDD-028 does not bind to opioid, cannabinoid, dopamine, or histamine receptors. DDD-028 is very active even at the low oral dose of 1-5 mg/kg in both neuropathic, (spinal nerve ligation and chronic constriction injury) and inflammatory (Complete Freund's Adjuvant Induced) models of pain. DDD-028 appears to be about 6-fold more potent than pregabalin and indomethacin. Visual observation of all the animals used in these studies indicated that DDD-028 is well tolerated without any sedation. Thus, DDD-028 seems to be a promising candidate for the treatment of neuropathic and inflammatory pain without the possible side effects or abuse potential associated with opioid or cannabinoid activities.

  1. Cannabis and Cannabinoids (PDQ)

    Science.gov (United States)

    ... Professionals Questions to Ask about Your Treatment Research Cannabis and Cannabinoids (PDQ®)–Patient Version Overview Go to ... treatment (see Question 9 ). Questions and Answers About Cannabis What is Cannabis ? Cannabis , also known as marijuana , ...

  2. Cellular mechanisms underlying the interaction between cannabinoid and opioid system.

    Science.gov (United States)

    Parolaro, D; Rubino, T; Viganò, D; Massi, P; Guidali, C; Realini, N

    2010-04-01

    Recently, the presence of functional interaction between the opioid and cannabinoid system has been shown in various pharmacological responses. Although there is an increasing interest for the feasible therapeutic application of a co-administration of cannabinoids and opioids in some disorders (i.e. to manage pain, to modulate immune system and emotions) and the combined use of the two drugs by drug abusers is becoming largely diffuse, only few papers focused on cellular and molecular mechanisms underlying this interaction. This review updates the biochemical and molecular underpinnings of opioid and cannabinoid interaction, both within the central nervous system and periphery. The most convincing theory for the explanation of this reciprocal interaction involves (i) the release of opioid peptides by cannabinoids or endocannabinoids by opioids, (ii) the existence of a direct receptor-receptor interaction when the receptors are co-expressed in the same cells, and (iii) the interaction of their intracellular pathways. Finally, the cannabinoid/opioid interaction might be different in the brain rewarding networks and in those accounting for other pharmacological effects (antinociception, modulation of emotionality and cognitive behavior), as well as between the central nervous system and periphery. Further insights about the cannabinoid/opioid interaction could pave the way for new and promising therapeutic approaches. PMID:20017730

  3. CB2-Selective Cannabinoid Receptor Ligands: Synthesis, Pharmacological Evaluation, and Molecular Modeling Investigation of 1,8-Naphthyridin-2(1H)-one-3-carboxamides

    OpenAIRE

    Lucchesi, Valentina; Hurst, Dow P.; Shore, Derek M.; Bertini, Simone; Ehrmann, Brandie M.; Allarà, Marco; Lawrence, Lyle; Ligresti, Alessia; Minutolo, Filippo; Saccomanni, Giuseppe; Sharir, Haleli; Macchia, Marco; Di Marzo, Vincenzo; Abood, Mary E.; Reggio, Patricia H.

    2014-01-01

    We have recently identified 1,8-naphthyridin-2(1H)-one-3-carboxamide as a new scaffold very suitable for the development of new CB2 receptor potent and selective ligands. In this paper we describe a number of additional derivatives in which the same central scaffold has been variously functionalized in position 1 or 6. All new compounds showed high selectivity and affinity in the nanomolar range for the CB2 receptor. Furthermore, we found that their functional activity is controlled by the pr...

  4. Regulation of MAP Kinase–Directed Mitogenic and Protein Kinase B–Mediated Signaling by Cannabinoid Receptor Type 1 in Skeletal Muscle Cells

    OpenAIRE

    Lipina, Christopher; Stretton, Clare; Hastings, Simon; Hundal, Jonathan S.; Mackie, Ken; Irving, Andrew J.; Harinder S Hundal

    2009-01-01

    OBJECTIVE The endogenous cannabinoid (or endocannabinoid) system (ECS) is part of a central neuromodulatory system thought to play a key role in the regulation of feeding behavior and energy balance. However, increasing evidence suggests that modulation of the ECS may also act to regulate peripheral mechanisms involved in these processes, including lipogenesis in adipose tissue and liver, insulin release from pancreatic β-cells, and glucose uptake into skeletal muscle. It was recently shown t...

  5. Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.

    Science.gov (United States)

    Izzo, Angelo A; Borrelli, Francesca; Capasso, Raffaele; Di Marzo, Vincenzo; Mechoulam, Raphael

    2009-10-01

    Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions). The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol. Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol, the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity. PMID:19729208

  6. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    János Haskó

    2014-05-01

    Full Text Available During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB. The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2; therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A, GPR18 (transcriptional variant 1 and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A, GPR18 (transcriptional variants 1 and 2, GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma.

  7. No more pain upon Gq-protein-coupled receptor activation: role of endocannabinoids.

    Science.gov (United States)

    2016-04-01

    The above article from European Journal of Neuroscience, published online on 4 February 2014 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1111/ejn.12475/full), has been retracted by agreement between the Editors-in-Chief, Paul Bolam and John Foxe, the authors and John Wiley & Sons Ltd. The retraction has been agreed as the above article has been found to overlap substantially with the article 'Chiou, L.-C., Hu, S. S.-J., and Ho, Y.-C. (2013), Targeting the cannabinoid system for pain relief? Acta Anaesthesiologica Taiwanica, Volume 51, Issue 4: 161 - 170. doi: 10.1016/j.aat.2013.10.004', which was submitted after the European Journal of Neuroscience article but was published first. Reference Hu, S.S.-J., Ho, Y.-C. & Chiou, L.-C. (2014) No more pain upon Gq-protein-coupled receptor activation: role of endocannabinoids.

  8. Studies of the brain cannabinoid system using positron emission tomography

    International Nuclear Information System (INIS)

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available

  9. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  10. The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas.

    Directory of Open Access Journals (Sweden)

    Eiron Cudaback

    Full Text Available BACKGROUND: Cannabinoids represent unique compounds for treating tumors, including astrocytomas. Whether CB(1 and CB(2 receptors mediate this therapeutic effect is unclear. PRINCIPAL FINDINGS: We generated astrocytoma subclones that express set levels of CB(1 and CB(2, and found that cannabinoids induce apoptosis only in cells expressing low levels of receptors that couple to ERK1/2. In contrast, cannabinoids do not induce apoptosis in cells expressing high levels of receptors because these now also couple to the prosurvival signal AKT. Remarkably, cannabinoids applied at high concentration induce apoptosis in all subclones independently of CB(1, CB(2 and AKT, but still through a mechanism involving ERK1/2. SIGNIFICANCE: The high expression level of CB(1 and CB(2 receptors commonly found in malignant astrocytomas precludes the use of cannabinoids as therapeutics, unless AKT is concomitantly inhibited, or cannabinoids are applied at concentrations that bypass CB(1 and CB(2 receptors, yet still activate ERK1/2.

  11. Androgen insensitivity syndrome: gonadal androgen receptor activity

    International Nuclear Information System (INIS)

    To determine whether abnormalities of the androgen receptor previously observed in skin fibroblasts from patients with androgen insensitivity syndrome also occur in the gonads of affected individuals, androgen receptor activity in the gonads of a patient with testicular feminization syndrome was investigated. Using conditions for optimal recovery of androgen receptor from human testes established by previous studies, we detected the presence of a high-affinity (dissociation constant . 3.2 X 10(-10) mol/L), low-capacity (4.2 X 10(-12) mol/mg DNA), androgen-binding protein when tritium-labeled R1881 was incubated at 4 degrees C with nuclear extracts from the gonads of control patients or from a patient with testicular feminization syndrome but not when incubated at 37 degrees C. Thus this patient has an androgen receptor with a temperature lability similar to that of receptors from normal persons

  12. Emergency Physicians' Knowledge of Cannabinoid Designer Drugs

    Directory of Open Access Journals (Sweden)

    Patrick M Lank

    2013-09-01

    Full Text Available Introduction: The use of synthetic drugs of abuse in the United States has grown in the last few years, with little information available on how much physicians know about these drugs and how they are treating patients using them. The objective of this study was to assess emergency physician (EP knowledge of synthetic cannabinoids (SC.Methods: A self-administered internet-based survey of resident and attending EPs at a large urban emergency department (ED was administered to assess familiarity with the terms Spice or K2 and basic knowledge of SC, and to describe some practice patterns when managing SC intoxication in the ED.Results: Of the 83 physicians invited to participate, 73 (88% completed surveys. The terms “Spice” and “K2” for SC were known to 25/73 (34% and 36/73 (49% of respondents. Knowledge of SC came most commonly (72% from non-medical sources, with lay publications and the internet providing most respondents with information. Among those with previous knowledge of synthetic cannabinoids, 25% were not aware that SC are synthetic drugs, and 17% did not know they are chemically most similar to marijuana. Among all participants, 80% felt unprepared caring for a patient in the ED who had used synthetic cannabinoids.Conclusion: Clinically active EPs are unfamiliar with synthetic cannabinoids. Even those who stated they had heard of synthetic cannabinoids answered poorly on basic knowledge questions. More education is needed among EPs of all ages and levels of training on synthetic cannabinoids. [West J Emerg Med. 2013;14(5:467–470.

  13. Cannabinoid modulation of drug reward and the implications of marijuana legalization.

    Science.gov (United States)

    Covey, Dan P; Wenzel, Jennifer M; Cheer, Joseph F

    2015-12-01

    Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction. PMID:25463025

  14. Cannabinoid modulation of drug reward and the implications of marijuana legalization.

    Science.gov (United States)

    Covey, Dan P; Wenzel, Jennifer M; Cheer, Joseph F

    2015-12-01

    Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction.

  15. Metabolomics and bioanalysis of terpenoid derived secondary metabolites : Analysis of Cannabis sativa L. metabolite production and prenylases for cannabinoid production

    NARCIS (Netherlands)

    Muntendam, Remco

    2015-01-01

    Cannabinoid research has gained a renenewed interest by both the public and scientist. Focus is mainly directed to the medicinal activities, as reported for various cannabinoid structures. This thesis focusses on prenyl-derived secondary metabolites with main focus on cannabinoids. Firstly the produ

  16. Cannabinoids inhibit ATP-activated currents in rat trigeminal ganglionic neuroas%大麻素抑制大鼠三叉神经节神经元ATP激活电流

    Institute of Scientific and Technical Information of China (English)

    申晶晶; 刘长金; 李爱; 胡新武; 陆永利; 陈蕾; 周莹; 刘烈炬

    2007-01-01

    本文在培养的大鼠三叉神经节(trigeminal ganglion,TG)神经元上采用全细胞膜片钳技术,探讨大麻素对大鼠TG神经元ATP激活电流(ATP-activated currents,IATP)的影响.结果显示:(1)胞外给予ATP,大部分受检细胞(67/75,89.33%)可记录到一个内向电流,且具有剂量依赖性.该电流可被P2X嘌呤受体特异性拮抗剂PPADS所阻断.(2)预加WIN55212-2[大麻素受体1(cannabinoid receptor 1,CB1受体)激动剂]可对IATP产生抑制作用,此作用呈剂量依赖性,并可被CB1受体特异性拮抗剂AM281阻断.预加不同浓度的WIN55212-2(1x10-13、1x10-12、1x10-11、1x10-10、1x10-9和1x10-8mol/L)对IATP(1x10-4mol/L ATP)的抑制作用分别为(8.14±3.14)%、(20.11±2.72)%、(46.62±3.51)%、(72.16±5.64)%、(80.21±2.80)%和(80.59±3.55)%.(3)预加WIN55212-2后IATP的浓度-反应曲线明显下移;最大反应浓度时的IATP幅值减小了(58.02±4.21)%,而阈值基本不变;预加WIN55212.2前后曲线的EC50值非常接近(1.15x10-4mol/L vs 1.27x10-4 mol/L).(4)预加forskolin[腺苷酸环化酶(adenylyl cyclase,AC)激动剂]或8-Br-cAMP可以逆转WIN55212-2对IATP的抑制作用.以上结果表明,大麻素可能作用于CB1受体,通过抑制AC-cAMP-PKA途径发挥对IATP的抑制作用.%The present study aimed to investigate whether cannabinoids could modulate the response mediated by ATP receptor (P2X purinoceptor).Whole-cell patch-clamp recording was performed on cultured rat trigeminal ganglionic (TG)neurons.The majority of TG neurons were sensitive to ATP(67/75,89.33%).Extracellular pretreatment with WIN55212-2,a cannabinoid receptor 1(CB1 receptor)agonist,reduced ATP-activated current(IATP)significantly.This inhibitory effect was concentration-dependent and was blocked by AM281,a specific CB1 receptor antagonist.Pretreatment with WIN55212-2 at 1x10-13,1x10-12,1x10-11,1x10-10,1×10-9 and 1x10-8mol/L reduced IATP(induced by 1x10-4mol/L ATP)by(8.14±3.14)%,(20.11±2.72)%,(46.62±3.51)%,(72.16±5

  17. Analysis in conditional cannabinoid 1 receptor-knockout mice reveals neuronal subpopulation-specific effects on epileptogenesis in the kindling paradigm.

    Science.gov (United States)

    von Rüden, E L; Jafari, M; Bogdanovic, R M; Wotjak, C T; Potschka, H

    2015-01-01

    The endocannabinoid system serves as a retrograde negative feedback mechanism. It is thought to control neuronal activity in an epileptic neuronal network. The purpose of this study was to evaluate the impact of the endocannabinoid and endovanilloid systems on both epileptogenesis and ictogenesis. Therefore, we modulated the endocannabinoid and endovanilloid systems genetically and pharmacologically, and analyzed the subsequent impact on seizure progression in the kindling model of temporal lobe epilepsy in mice. In addition, the impact of seizures on associated cellular alterations was evaluated. Our principal results revealed that the endocannabinoid system affects seizure and afterdischarge duration dependent on the neuronal subpopulation being modulated. Genetic deletion of CB1-receptors (CB1Rs) from principal neurons of the forebrain and pharmacological antagonism with rimonabant (5 mg/kg) caused longer seizure duration. Deletion of CB1R from GABAergic forebrain neurons resulted in the opposite effect. Along with these findings, the CB1R density was elevated in animals with repetitively induced seizures. However, neither genetic nor pharmacological interventions had any impact on the development of generalized seizures. Other than CB1, genetic deletion or pharmacological blockade with SB366791 (1 mg/kg) of transient receptor potential vanilloid receptor 1 (TRPV1) had no effect on the duration of behavioral or electrographic seizure activity in the kindling model. In conclusion, we demonstrate that endocannabinoid, but not endovanilloid, signaling affects termination of seizure activity, without influencing seizure severity over time. These effects are dependent on the neuronal subpopulation. Thus, the data argue that the endocannabinoid system plays an active role in seizure termination but does not regulate epileptogenesis.

  18. The Study of Destructive Effects of Exposure to WIN 55212-2, an Agonist of Cannabinoid Receptor, during Pregnancy on CNS Function of Rats’ Offspring

    Directory of Open Access Journals (Sweden)

    Mohammad Shabani

    2011-08-01

    Full Text Available Introduction: Cannabinoid consumption including hashish and WIN55212-2 during pregnancy has destructive affect on the development of fetus and the performance of CNS. Method: WIN treated group received daily 0.5 or 1mg/kg WIN suspended in 1% tween 80 saline (s.c. at a volume of 1 ml/kg from days 5 to 20 of pregnancy. Third, fifth and seventh weeks after birth, the effects of maternal WIN consumption on infants body weight, mortality, histological changes, motor performance and memory function were assessed. Results: Prenatal WIN consumption associated with atrophy of cerebellum cortex in granular and Purkinje cells layers. WIN treatment of pregnant rats produced a significant decrease in the rearing frequency of the offspring, but significantly increased the grooming frequency at 22, 36 and 50 days of age. During the acquisition trials, approach latencies were not significantly different between all groups of rats (50 days old.When the trial was repeated 24 hours and seven days later (retention trial, the avoidance latencies of the WIN-exposed group were significantly shorter than those of control and sham animals. The mortality percent was increased significantly and litter size was decreased significantly in WIN (1mg/kg treated rats compared to the control, sham and WIN (0/5 mg/kg treatment groups. Conclusion: These findings suggest that prenatal exposure to WIN, cannabinoid agonist, induces possibly a long-term alteration on histological, motor performance and learning and memory parameters.

  19. Influence of G1359A polimorphysm of the cannabinoid receptor gene (CNR1 on insulin resistance and adipokines in patients with non alcoholic fatty liver disease Influencia del polimorfismo G1359a del gen del receptor cannabinoide (CNR1 sobre la resistencia a la insulina y adipocinas en pacientes con enfermedad hepática no alcohólica

    Directory of Open Access Journals (Sweden)

    R. Aller

    2012-10-01

    Full Text Available Background: Considering the evidence that endogenous cannabinoid system plays a role in metabolic aspects of body weight and metabolic syndrome components such as non alcoholic fatty liver disease (NAFLD. The aim of our study was to investigate the influence of this polymorphism on insulin resistance, liver histological changes, anthropometric parameters and adipocytokines in patients with NAFLD. Material and methods: A population of 71 patients with NAFLD was recruited in a cross sectional study. A biochemical analysis of serum was measured. Genotype of G1359A polymorphism of CB1 receptor gene CB1 receptor was studied. Forty one patients (36.9% had the genotype G1359G (wild type group and twenty nine (26.1% patients G1359A or A1359A (mutant type group. Results: Twenty four 24 patients (32,3% had a Brunt grade > 4 and 12 patients (17% had a significative fibrosis (F > = 2. HOMA values were higher in wild type group than mutant type group. Adiponectin and visfatin levels were higher in mutant type group. Moreover, TNF-alpha and resistin levels were higher in wild type group than mutant type group. Patients with mutant genotype showed less frequently elevated levels of AST. AST > 40 UI/L was detected in 28.5% of patients in the mutant vs. 53% of patients with wild genotype, p = 4 less frequently than patients with wild type group (28.5%vs 7.1%. Conclusion: A variant of the polymorphism G1359A CBR1 is associated with lower levels of HOMA, TNF-alpha, resistin and higher levels of adiponectin than patients with the wild variant of this polymorphism. Besides, patients with A allele variant shown lower Brunt grade in liver biopsy.Antecedentes: Teniendo en cuenta la evidencia de que el sistema cannabinoide endógeno juega un papel importante en aspectos metabólicos, peso corporal y componentes del síndrome metabólico como la enfermedad hepática NO alcohólica (EHNA. El objetivo de nuestro estudio fue investigar la influencia de este polimorfismo en

  20. NMDA receptor activity in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Shaheen E Lakhan

    2013-06-01

    Full Text Available N-Methyl-D-aspartate (NMDA receptors play a variety of physiologic roles and their proper signaling is essential for cellular homeostasis. Any disruption in this pathway, leading to either enhanced or decreased activity, may result in the manifestation of neuropsychiatric pathologies such as schizophrenia, mood disorders, substance induced psychosis, Huntington's disease, Alzheimer's disease, and neuropsychiatric systemic lupus erythematosus. Here, we explore the notion that the overlap in activity of at least one biochemical pathway, the NMDA receptor pathway, may be the link to understanding the overlap in psychotic symptoms between diseases. This review intends to present a broad overview of those neuropsychiatric disorders for which alternations in NMDA receptor activity is prominent thus suggesting that continued direction of pharmaceutical intervention to this pathway may present a viable option for managing symptoms.

  1. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  2. Anandamide-大麻素受体Ⅰ在内脏高敏感调控中的作用研究%Regulative effect of anandamide-mediated cannabinoid receptor in rats with visceral hypersensitivity

    Institute of Scientific and Technical Information of China (English)

    何雨芩; 纪雷; 陈强; 张波; 陈恒胜; 杨敏

    2012-01-01

    Objective To investigate the role of anandamide(ANA)-mediated cannabinoid receptor l(CBl) on the acquisition of visceral hypersensitivity in rats, and explore its underlying mechanism. Methods The visceral hypersensitivity non-noxious/noxious colorectal distension (NNCRD/NCRD) model of rat was reproduced by ovalbumin (OVA) sensitization combined with NNCRD/NCRD, Fifty-four rats were randomly divided into control group (n=7), saline+CRD group (n=7), OVA+CRD+dimethyl sulfoxide (DMSO) group (n=8), OVA+CRD+different concentrations of ANA (0.5, 5.0, l0.0mg/kg) groups (8 each), and OVA+CRD+ANA+AM251 group (n=8). The expression and quantitative assessment of CB1 were monitored by immunofiurorescence and laser scanning confocal analysis. The visceral sensitivity was evaluated by the area under curve (AUC) of myoelectrical activity of abdominal wall muscle. Results By NCRD at 80mmHg, the density of CB1 immunofluorescence intensity was significantly higher in L4-L6 of the spinal cord of the rats in saline+CRD group compared with that in control group (P0.05). By NCRD at 80mmHg, the VMR-AUC increased obviously in OVA+CRD+DMSO group as compared with that of saline+CRD group, but it decreased significantly in OVA+CRD+high concentration ANA group (P<0.05). When AM251 was intravenously given, VMR-AUC increased significantly in OVA+CRD+ANA+AM251 group compared with that in OVA+CRD+different concentrations of ANA groups (P<0,05). Conclusions Intravenous administration of ANA may mitigate the visceral nociception induced by basic OVA-sensitization combined with NCRD stimulation in CB1-mediated manner. It indicated that anandamide-mediated CB1 cannabinoid receptor may regulate the development and maintenance of visceral hypersensitivity,%目的 研究Anandamide(ANA)-大麻受体Ⅰ(CB1)在内脏高敏感形成中的作用及其机制.方法 采用鸡卵清蛋白(OVA)腹腔注射基础致敏,联合非伤害性/伤害性结直肠扩张刺激(NNCRD/NCRD),建立内

  3. Microarray and pathway analysis reveal distinct mechanisms underlying cannabinoid-mediated modulation of LPS-induced activation of BV-2 microglial cells.

    Directory of Open Access Journals (Sweden)

    Ana Juknat

    Full Text Available Cannabinoids are known to exert immunosuppressive activities. However, the mechanisms which contribute to these effects are unknown. Using lipopolysaccharide (LPS to activate BV-2 microglial cells, we examined how Δ(9-tetrahydrocannabinol (THC, the major psychoactive component of marijuana, and cannabidiol (CBD the non-psychoactive component, modulate the inflammatory response. Microarray analysis of genome-wide mRNA levels was performed using Illumina platform and the resulting expression patterns analyzed using the Ingenuity Pathway Analysis to identify functional subsets of genes, and the Ingenuity System Database to denote the gene networks regulated by CBD and THC. From the 5338 transcripts that were differentially expressed across treatments, 400 transcripts were found to be upregulated by LPS, 502 by CBD+LPS and 424 by THC+LPS, while 145 were downregulated by LPS, 297 by CBD+LPS and 149 by THC+LPS, by 2-fold or more (p≤0.005. Results clearly link the effects of CBD and THC to inflammatory signaling pathways and identify new cannabinoid targets in the MAPK pathway (Dusp1, Dusp8, Dusp2, cell cycle related (Cdkn2b, Gadd45a as well as JAK/STAT regulatory molecules (Socs3, Cish, Stat1. The impact of CBD on LPS-stimulated gene expression was greater than that of THC. We attribute this difference to the fact that CBD highly upregulated several genes encoding negative regulators of both NFκB and AP-1 transcriptional activities, such as Trib3 and Dusp1 known to be modulated through Nrf2 activation. The CBD-specific expression profile reflected changes associated with oxidative stress and glutathione depletion via Trib3 and expression of ATF4 target genes. Furthermore, the CBD affected genes were shown to be controlled by nuclear factors usually involved in regulation of stress response and inflammation, mainly via Nrf2/Hmox1 axis and the Nrf2/ATF4-Trib3 pathway. These observations indicate that CBD, and less so THC, induce a cellular stress

  4. Cannabinoids: Medical implications.

    Science.gov (United States)

    Schrot, Richard J; Hubbard, John R

    2016-05-01

    Herbal cannabis has been used for thousands of years for medical purposes. With elucidation of the chemical structures of tetrahydrocannabinol (THC) and cannabidiol (CBD) and with discovery of the human endocannabinoid system, the medical usefulness of cannabinoids has been more intensively explored. While more randomized clinical trials are needed for some medical conditions, other medical disorders, like chronic cancer and neuropathic pain and certain symptoms of multiple sclerosis, have substantial evidence supporting cannabinoid efficacy. While herbal cannabis has not met rigorous FDA standards for medical approval, specific well-characterized cannabinoids have met those standards. Where medical cannabis is legal, patients typically see a physician who "certifies" that a benefit may result. Physicians must consider important patient selection criteria such as failure of standard medical treatment for a debilitating medical disorder. Medical cannabis patients must be informed about potential adverse effects, such as acute impairment of memory, coordination and judgment, and possible chronic effects, such as cannabis use disorder, cognitive impairment, and chronic bronchitis. In addition, social dysfunction may result at work/school, and there is increased possibility of motor vehicle accidents. Novel ways to manipulate the endocannbinoid system are being explored to maximize benefits of cannabinoid therapy and lessen possible harmful effects. Key messages The medical disorders with the current best evidence that supports a benefit for cannabinoid use are the following: multiple sclerosis patient-reported symptoms of spasticity (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis central pain or painful spasms (nabiximols, nabilone, dronabinol, and oral cannabis extract), multiple sclerosis bladder frequency (nabiximols), and chronic cancer pain/neuropathic pain (nabiximols and smoked THC). Herbal cannabis has not met rigorous US FDA

  5. Combined cannabinoid therapy via an oromucosal spray.

    Science.gov (United States)

    Perez, Jordi

    2006-08-01

    Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1,000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects. Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome. PMID:16969427

  6. Electrospray ionization mass spectrometric method for the determination of cannabinoid precursors

    DEFF Research Database (Denmark)

    Hansen, H.H.; Hansen, S.H.; Bøjrnsdottir, I.;

    1999-01-01

    N-Acylethanolamine phospholipids (NAPEs) serve as endogenous precursors of N-acylethanolamines (NAEs), e.g. N-arachidonoylethanolamine (anandamide) and N-palmitoylethanolamine that are endogenous ligands of cannabinoid receptors. Under physiological conditions, NAPE is found in very low concentra......N-Acylethanolamine phospholipids (NAPEs) serve as endogenous precursors of N-acylethanolamines (NAEs), e.g. N-arachidonoylethanolamine (anandamide) and N-palmitoylethanolamine that are endogenous ligands of cannabinoid receptors. Under physiological conditions, NAPE is found in very low...

  7. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    Science.gov (United States)

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  8. Glycolytic pathway (GP), kreb's cycle (KC), and hexose monophosphate shunt (HMS) activity in myocardial subcellular fractions exposed to cannabinoids