WorldWideScience

Sample records for cannabinoid agonist win

  1. Agmatine and a cannabinoid agonist, WIN 55212-2, interact to produce a hypothermic synergy.

    Science.gov (United States)

    Rawls, Scott M; Tallarida, Ronald J; Zisk, Jacob

    2006-12-28

    Agmatine blocks morphine withdrawal symptoms and enhances morphine analgesia in rats. Yet, the role of agmatine in the pharmacological effects of other abused drugs has not been investigated. The present study investigates the effect of agmatine administration on the hypothermic response to cannabinoids. Hypothermia is an effective endpoint because cannabinoid agonists produce a rapid, reproducible, and significant decrease in body temperature that is abolished by cannabinoid CB(1) receptor antagonists. WIN 55212-2, a cannabinoid agonist, was administered to rats by itself and with agmatine. WIN 55212-2 (1, 2.5, 5 and 10 mg/kg, i.m.) caused a significant hypothermia. Agmatine (10, 25 and 50 mg/kg, i.p.) was ineffective. For combined administration, agmatine (50 mg/kg, i.p.) enhanced the hypothermic effect of WIN 55212-2 (1, 2.5, 5 and 10 mg/kg, i.m.). The enhancement was strongly synergistic, indicated by a 2.7-fold increase in the relative potency of WIN 55212-2. The central administration of agmatine (25 and 50 mug/rat, i.c.v.) significantly increased the hypothermic effect of WIN 55212-2 (2.5 mg/kg, i.m.). This indicates that agmatine acts through a central mechanism to augment cannabinoid-evoked hypothermia. Idazoxan (2 mg/kg, i.p.), an imidazoline antagonist, blocked the enhancement by agmatine, thus suggesting that imidazoline receptor activation is required for agmatine to enhance cannabinoid-evoked hypothermia. The present data reveal that agmatine and a cannabinoid agonist interact to produce a hypothermic synergy in rats. These results show that agmatine acts in the brain and via imidazoline receptors to enhance cannabinoid-evoked hypothermia.

  2. Functional responses to the cannabinoid agonist WIN 55,212-2 in neonatal rats of both genders: influence of weaning.

    Science.gov (United States)

    Borcel, Erika; Pérez-Alvarez, Laura; de Ceballos, María L; Ramirez, Belén G; Marco, Eva Maria; Fernández, Beatriz; Rubio, Marina; Guaza, Carmen; Viveros, Ma-Paz

    2004-07-01

    We have studied behavioural, biochemical and endocrine responses to the cannabinoid agonist WIN 55,212-2 (WIN) in neonatal rats, as well as the effects of weaning on such responses. We used preweanling rats (20 days of age), 25-day-old weaned rats (weaning at Day 22) and 25-day-old nonweaned rats of both sexes. The behavioural effects of WIN were assessed in the nociceptive tail immersion test and in the open field. We also analysed the effect of weaning on corticosterone responses to WIN (radioimmunoassay) as well as on WIN-stimulated [35S] GTPgammaS binding in periaqueductal grey (PAG) and striatum. The cannabinoid agonist induced a modest increase in pain thresholds, whereas the effect of the drug on open-field activity, particularly on vertical activity, was much more marked. The weaning process appeared to reduce the baseline nociceptive latencies of the female rats. No significant effect of weaning on the behavioural responses to WIN was found. However, the group of weaned females (but not males) showed a significantly reduced WIN-stimulated [35S] GTPgammaS binding in the striatum. The cannabinoid agonist significantly increased the corticosterone levels of 25-day-old rats with the effect being more marked in weaned than in nonweaned animals. The results suggest that the weaning process might produce some sexually dimorphic developmental changes in CB1 receptor function.

  3. (+)-WIN 55,212-2, a novel cannabinoid receptor agonist, exerts antidystonic effects in mutant dystonic hamsters.

    Science.gov (United States)

    Richter, A; Löscher, W

    1994-11-03

    The effects of the novel high affinity cannabinoid receptor agonist (+)-WIN 55,212-2 ((R)-4,5-dihydro-2-methyl-4(4-morphoinylmethyl)-1-(1-naphthalen ylcarbonyl)-6H-pyrrolo[3,2,1-ij]quinolin-6-one) on severity of dystonia were investigated in mutant Syrian hamsters with primary generalized dystonia. Following injections of (+)-WIN 55,212-2 (1.0-5.0 mg/kg i.p.) a dose-dependent reduction of the severity of dystonia was observed. At antidystonic doses (2.5 and 5.0 mg/kg i.p.) (+)-WIN 55,212-2 caused a reduction of spontaneous motor activity and catalepsy. 1 mg/kg of (+)-WIN 55,212-2 exhibited neither antidystonic effects nor any side effects. However, the coadministration of 1.0 mg/kg (+)-WIN 55,212-2 with an ineffective dose of diazepam (0.1 mg/kg i.p.) exerted antidystonic effects in the absence of severe side effects. Although psychotropic effects of cannabinoids, such as (+)-WIN 55,212-2, limit the therapeutical utility of cannabinoids, the present data indicate that cannabinoids exert antidystonic effects and that low doses of cannabinoids may increase antidystonic efficacy of benzodiazepines.

  4. Neuroprotection by the cannabinoid agonist WIN-55212 in an in vivo newborn rat model of acute severe asphyxia.

    Science.gov (United States)

    Martínez-Orgado, José; Fernández-Frutos, Beatriz; González, Rita; Romero, Eva; Urigüen, Leire; Romero, Julián; Viveros, M Paz

    2003-06-10

    This study was designed to evaluate the neuroprotective effect of the cannabinoid agonist WIN-55212 after inducing acute severe asphyxia in newborn rats. The left common carotid artery was ligated in anaesthetised 7-day-old Wistar rats, which were then asphyxiated by inhaling 100% nitrogen for 10 min. Pups recovering from asphyxia were s.c. administered vehicle (n=23), WIN-55212 (0.1 mg/kg, n=18), or WIN-55212 plus the CB1 receptor antagonist SR141716 (3 mg/kg, n=10). Pups undergoing a sham operation served as controls (n=12). Coronal sections of the brain were obtained on the 14th day after surgery and observed under light microscope after Nissl or Fluoro-Jade B (FJB) staining, to respectively quantify surviving or degenerating neurones in the CA1 area of the hippocampus and parietal cortex. Acute asphyxia led to early neurone loss amounting to 19% in the hippocampus and 29% in the cortex (both ANOVA P<0.05 vs. control). Delayed neurone loss occurred in the proportions 13% in the hippocampus and 20% in the cortex (both ANOVA P<0.05 vs. control). Neuronal loss was fully prevented by WIN-55212 administration. Co-administration of SR141716 failed to modify the protective effect of WIN-55212 on early neuronal death, but abolished the WIN-55212-induced prevention of delayed neuronal death. We conclude that when administered after acute severe asphyxia in newborn rats, WIN-55212 shows a neuroprotective effect, reducing both early and delayed neurone loss. This effect is achieved through two parallel CB1-dependent and -independent mechanisms.

  5. WIN55,212-2, a Cannabinoid Receptor Agonist, Protects Against Nigrostriatal Cell Loss in the MPTP Mouse Model of Parkinson’s Disease

    OpenAIRE

    Price, David A.; Martinez, Alex A; Seillier, Alexandre; Koek, Wouter; Acosta, Yolanda; Fernandez, Elizabeth; Strong, John R.; Lutz, Beat; Marsicano, Giovanni; Roberts, James L.; Giuffrida, Andrea

    2009-01-01

    Parkinson’s disease (PD) is characterized by the progressive loss of nigrostriatal dopamine (DA) neurons leading to motor disturbances and cognitive impairment. Current pharmacotherapies relieve PD symptoms temporarily but fail to prevent or slow down the disease progression. In this study, we investigated the molecular mechanisms by which the non-selective cannabinoid receptor agonist WIN55,212-2 (WIN) protects mouse nigrostriatal neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MP...

  6. The Study of Destructive Effects of Exposure to WIN 55212-2, an Agonist of Cannabinoid Receptor, during Pregnancy on CNS Function of Rats’ Offspring

    Directory of Open Access Journals (Sweden)

    Mohammad Shabani

    2011-08-01

    Full Text Available Introduction: Cannabinoid consumption including hashish and WIN55212-2 during pregnancy has destructive affect on the development of fetus and the performance of CNS. Method: WIN treated group received daily 0.5 or 1mg/kg WIN suspended in 1% tween 80 saline (s.c. at a volume of 1 ml/kg from days 5 to 20 of pregnancy. Third, fifth and seventh weeks after birth, the effects of maternal WIN consumption on infants body weight, mortality, histological changes, motor performance and memory function were assessed. Results: Prenatal WIN consumption associated with atrophy of cerebellum cortex in granular and Purkinje cells layers. WIN treatment of pregnant rats produced a significant decrease in the rearing frequency of the offspring, but significantly increased the grooming frequency at 22, 36 and 50 days of age. During the acquisition trials, approach latencies were not significantly different between all groups of rats (50 days old.When the trial was repeated 24 hours and seven days later (retention trial, the avoidance latencies of the WIN-exposed group were significantly shorter than those of control and sham animals. The mortality percent was increased significantly and litter size was decreased significantly in WIN (1mg/kg treated rats compared to the control, sham and WIN (0/5 mg/kg treatment groups. Conclusion: These findings suggest that prenatal exposure to WIN, cannabinoid agonist, induces possibly a long-term alteration on histological, motor performance and learning and memory parameters.

  7. The Neuroprotective Effect of Cannabinoid Receptor Agonist (WIN55,212-2 in Paraoxon Induced Neurotoxicity in PC12 Cells and N-methyl-D-aspartate Receptor Interaction

    Directory of Open Access Journals (Sweden)

    Hedayat Sahraei

    2010-01-01

    Full Text Available Objective: Considering that cannabinoids protect neurons against neurodegeneration, inthis study, the neuroprotective effect of WIN55,212-2 in paraoxon induced neurotoxicity inPC12 cells and the role of the N-methyl-D-aspartate (NMDA receptor were evaluated.Materials and Methods: In this study PC12 cells were maintained in Dulbecco's modifiedeagle’s medium (DMEM+F12 culture medium supplemented with 10% fetal bovineserum. The cells were treated with paraoxon (200 μM in the presence or absence ofWIN55,212-2 (0.1 μM, NMDA receptor agonist NMDA (100 μM, cannabinoid receptorantagonist AM251 and NMDA receptor antagonist MK801 (1 μM at 15 minutes intervals.After 48 hours of exposure, cellular viability and protein expression of the CB1 receptorwere evaluated in PC12 cells.Results: Following the exposure of PC12 cells to paraoxon (200 μM, a reduction in cellsurvival and protein level of the CB1 receptor was observed (p<0.01. Treatment of thecells with WIN55,212-2 (0.1 μM and NMDA (100 μM prior to paraoxon exposure significantlyelevated cell survival and protein level of the CB1 receptor (p<0.01. Also, AM251(1μM did not inhibit the cell survival and protein level of the CB1 receptor increase inducedby WIN55,212-2 (p<0.001. However, MK801 (1 μM did inhibit cell survival andprotein expression of the CB1 receptor increase induced by NMDA (p<0.001.Conclusion: The results indicate that WIN55,212-2 and NMDA protect PC12 cellsagainst paraoxon induced toxicity. In addition, the neuroprotective effect of WIN55,212-2and NMDA was cannabinoid receptor-independent and NMDA receptor dependent, respectively.

  8. Effect of the CB1 cannabinoid agonist WIN 55212-2 on the acquisition and reinstatement of MDMA-induced conditioned place preference in mice

    Directory of Open Access Journals (Sweden)

    Miñarro José

    2010-03-01

    Full Text Available Abstract Background Numerous reports indicate that MDMA users consume other psychoactive drugs, among which cannabis is one of the most common. The aim of the present study was to evaluate, using the conditioned place preference, the effect of the cannabinoid agonist WIN 55,212-2 on the rewarding effects of MDMA in mice. Methods In the first experiment adolescent mice were initially conditioned with 1.25, 2.5 or 5 mg/kg of MDMA or 0.1 or 0.5 mg/kg of WIN and subsequently with both drugs. Reinstatement of the extinguished preference by priming doses was performed in the groups that showed CPP. In the second experiment, animals were conditioned with 2.5 or 5 mg/kg of MDMA and, after extinction, reinstatement of the preference was induced by 0.5 or 0.1 mg/kg of WIN. Results A low dose of WIN 55212-2 (0.1 mg/kg increased the rewarding effects of low doses of MDMA (1.25 mg/kg, although a decrease in the preference induced by MDMA (5 and 2.5 mg/kg was observed when the dose of WIN 55212-2 was raised (0.5 mg/kg. The CB1 antagonist SR 141716 also increased the rewarding effects of the lowest MDMA dose and did not block the effects of WIN. Animals treated with the highest WIN dose plus a non-neurotoxic dose of MDMA exhibited decreases of striatal DA and serotonin in the cortex. On the other hand, WIN 55212-2-induced CPP was reinstated by priming injections of MDMA, although WIN did not reinstate the MDMA-induced CPP. Conclusions These results confirm that the cannabinoid system plays a role in the rewarding effects of MDMA and highlights the risks that sporadic drug use can pose in terms of relapse to dependence. Finally, the potential neuroprotective action of cannabinoids is not supported by our data; on the contrary, they are evidence of the potential neurotoxic effect of said drugs when administered with MDMA.

  9. Inhibition of spontaneous neurotransmission in the nucleus of solitary tract of the rat by the cannabinoid agonist WIN 55212-2 is not via CB1 or CB2 receptors.

    Science.gov (United States)

    Accorsi-Mendonça, Daniela; Almado, Carlos E L; Dagostin, André L A; Machado, Benedito H; Leão, Ricardo M

    2008-03-20

    Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. In the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 microM WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the vanniloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2.

  10. Anti-inflammatory effect of cannabinoid agonist WIN55, 212 on mouse experimental colitis is related to inhibition of p38MAPK

    Science.gov (United States)

    Feng, Ya-Jing; Li, Yong-Yu; Lin, Xu-Hong; Li, Kun; Cao, Ming-Hua

    2016-01-01

    AIM To investigate the anti-inflammatory effect and the possible mechanisms of an agonist of cannabinoid (CB) receptors, WIN55-212-2 (WIN55), in mice with experimental colitis, so as to supply experimental evidence for its clinical use in future. METHODS We established the colitis model in C57BL/6 mice by replacing the animals’ water supply with 4% dextran sulfate sodium (DSS) for 7 consecutive days. A colitis scoring system was used to evaluate the severity of colon local lesion. The plasma levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the myeloperoxidase (MPO) activity in colon tissue were measured. The expressions of cannabinoid receptors, claudin-1 protein, p38 mitogen-activated protein kinase (p38MAPK) and its phosphorylated form (p-p38) in colon tissue were determined by immunohistochemistry and Western blot. In addition, the effect of SB203580 (SB), an inhibitor of p38, was investigated in parallel experiments, and the data were compared with those from intervention groups of WIN55 and SB alone or used together. RESULTS The results demonstrated that WIN55 or SB treatment alone or together improved the pathological changes in mice with DSS colitis, decreased the plasma levels of TNF-α, and IL-6, and MPO activity in colon. The enhanced expression of claudin-1 and the inhibited expression of p-p38 in colon tissues were found in the WIN55-treated group. Besides, the expression of CB1 and CB2 receptors was enhanced in the colon after the induction of DSS colitis, but reduced when p38MAPK was inhibited. CONCLUSION These results confirmed the anti-inflammatory effect and protective role of WIN55 on the mice with experimental colitis, and revealed that this agent exercises its action at least partially by inhibiting p38MAPK. Furthermore, the results showed that SB203580, affected the expression of CB1 and CB2 receptors in the mouse colon, suggesting a close linkage and cross-talk between the p38

  11. The effect of spinally administered WIN 55,212-2, a cannabinoid agonist, on thermal pain sensitivity in diabetic rats

    Directory of Open Access Journals (Sweden)

    Samane Jahanabadi

    2016-04-01

    Conclusion: These data show that cannabinoids have potent antinociceptive effects through direct actions in the spinal dorsal horn of nociceptive pathway. This suggests that intrathecally administered cannabinoids may offer hopeful strategies for the treatment of diabetic neuropathic pain.

  12. Effects of glucagon-like peptide-1 receptor stimulation and blockade on food consumption and body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2

    Science.gov (United States)

    Radziszewska, Elżbieta; Bojanowska, Ewa

    2013-01-01

    Background Glucagon-like peptide-1 (GLP-1) and endocannabinoids are involved in appetite control. Recently we have demonstrated that cannabinoid (CB)1 receptor antagonist and GLP-1 receptor agonist synergistically suppress food intake in the rat. The aim of the present study was to determine the effects of GLP-1 receptor stimulation or blockade on feeding behavior in rats treated with WIN 55,212-2, a CB1 receptor agonist. Material/Methods Experiments were performed on adult male Wistar rats. In the first experiment the effects of increasing doses (0.5–4.0 mg/kg) of WIN 55,212-2 injected intraperitoneally on 24-hour food consumption were tested. In further experiments a GLP-1 receptor antagonist, exendin (9-39), and WIN 55,212-2 or a GLP-1 receptor agonist, exendin-4, and WIN 55,212-2 were injected intraperitoneally at subthreshold doses (that alone did not change food intake and body weight) to investigate whether these agents may interact to affect food intake in rats. Results WIN 55,212-2 administered at low doses (0.5–2 mg/kg) did not markedly change 24-hour food consumption; however, at the highest dose, daily food intake was inhibited. Combined administration of WIN 55,212-2 and exendin (9-39) did not change the amount of food consumed compared to either the control group or to each agent injected alone. Combined injection of WIN 55,212-2 and exendin-4 at subthreshold doses resulted in a significant decrease in food intake and body weight in rats. Conclusions Stimulation of the peripheral CB1 receptor by its agonist WIN 55,212-2 can induce anorexigenic effects or potentiate, even at a subthreshold dose, the effects of exendin-4, a known anorectic agent. Hence, this dual action of the cannabinoid system should be considered in the medical use of CB1 agonists. PMID:23291632

  13. Influence of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist (WIN 55,212-2) and inverse agonist (AM 251) on the regulation of food intake and hypothalamic serotonin levels.

    Science.gov (United States)

    Merroun, Ikram; Errami, Mohammed; Hoddah, Hanaa; Urbano, Gloria; Porres, Jesús M; Aranda, Pilar; Llopis, Juan; López-Jurado, María

    2009-05-01

    The effect of intracerebroventricular or intraperitoneal administration of cannabinoid receptor agonist WIN 55,212-2 or inverse agonist AM 251 on food intake and extracellular levels of serotonin and acetic acid 5-hydroxy-indol from presatiated rats was studied. Compared to the vehicle-injected control, the intracerebroventricular administration of WIN 55,212-2 was associated with a significant increase in food intake, whereas the administration of AM 251 caused a significant reduction in this respect. These results were accompanied by considerable reductions or increases in serotonin and acetic acid 5-hydroxy-indol levels compared to the vehicle-injected control and the baseline values for the different experimental groups studied. Intraperitoneal administration of WIN 55,212-2 at doses of 1 and 2 mg/kg promoted hyperphagia up to 6 h after injection, whereas administration of a higher dose (5 mg/kg) significantly inhibited food intake and motor behaviour in partially satiated rats. Administration of any of the AM 251 doses studied (0.5, 1, 2, 5 mg/kg) led to a significant decrease in the amount of food ingested from 2 h after the injection, compared to the vehicle-injected control group, with the most striking effect being observed when the 5 mg/kg dose was injected.

  14. WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture.

    Directory of Open Access Journals (Sweden)

    Diana Aguirre-Rueda

    Full Text Available Alzheimer's disease (AD, a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS, and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 55,212-2 (a synthetic cannabinoid on cell viability, inflammatory mediators and oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would be needed to assess the possible beneficial effects of cannabinoids in Alzheimer's disease patients.

  15. Effects of WIN 55,212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice.

    Science.gov (United States)

    Florek-Luszczki, Magdalena; Wlaz, Aleksandra; Zagaja, Mirosław; Andres-Mach, Marta; Kondrat-Wrobel, Maria W; Luszczki, Jarogniew J

    2015-03-01

    The purpose of this study was to determine the influence of WIN 55,212-2 mesylate (WIN-a non-selective cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various second- and third-generation antiepileptic drugs (i.e., gabapentin, lacosamide, levetiracetam, oxcarbazepine, pregabalin and tiagabine) in the mouse 6 Hz-induced psychomotor seizure model. Psychomotor seizures were evoked in albino Swiss mice by a current (32 mA, 6 Hz, 3s stimulus duration) delivered via ocular electrodes. Additionally, total brain antiepileptic drug concentrations were measured. Results indicate that WIN (5 mg/kg, administered i.p.) significantly potentiated the anticonvulsant action of gabapentin (P < 0.05) and levetiracetam (P < 0.01), but not that of lacosamide, oxcarbazepine, pregabalin or tiagabine in the mouse psychomotor seizure model. Moreover, WIN (2.5 mg/kg) had no significant effect on the anticonvulsant activity of all tested antiepileptic drugs in the 6 Hz test in mice. Measurement of total brain antiepileptic drug concentrations revealed that WIN (5 mg/kg) had no impact on gabapentin or levetiracetam total brain concentrations, indicating the pharmacodynamic nature of interaction between these antiepileptic drugs in the mouse 6Hz model. In conclusion, WIN in combination with gabapentin and levetiracetam exerts beneficial anticonvulsant pharmacodynamic interactions in the mouse psychomotor seizure model.

  16. Differential Effects of Cannabinoid Receptor Agonist on Social Discrimination and Contextual Fear in Amygdala and Hippocampus

    Science.gov (United States)

    Segev, Amir; Akirav, Irit

    2011-01-01

    We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 [mu]g/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval.…

  17. CB1 Cannabinoid Agonist (WIN55,212-2) Within the Basolateral Amygdala Induced Sensitization to Morphine and Increased the Level of μ-Opioid Receptor and c-fos in the Nucleus Accumbens.

    Science.gov (United States)

    Molaei, Marzieh; Fatahi, Zahra; Zaringhalam, Jalal; Haghparast, Abbas

    2016-04-01

    The basolateral amygdala (BLA) is rich of CB1 cannabinoid receptors (CB1R) and has reciprocal connections with the nucleus accumbens (NAc) which is involved in opioid sensitization. In this study, effects of intra-BLA administration of CB1R agonist on sensitization to antinociceptive effect of morphine and changes in the levels of μ-opioid receptor (MOR), p-CREB, and c-fos in the NAc were investigated. Animals received intra-BLA microinjection of CB1R agonist (WIN55,212-2) once daily for 3 days consecutively (sensitization period). After 5 days free of drug, tail-flick test was performed before and after the administration of an ineffective dose of morphine. Afterward, the levels of MOR, p-CREB, and c-fos proteins were measured in the NAc by Western blot analysis. The results indicated that intra-BLA injection of WIN55,212-2 during sensitization period resulted in the induction of antinociceptive responses by ineffective dose of morphine and caused a significant increase in the MOR and c-fos levels but not p-CREB/CREB ratio in the NAc. These finding revealed that CB1 receptor agonist in the BLA induces development of morphine sensitization and increases expression of MOR in the NAc. It seems that c-fos is one of the important factors involved in the induction of sensitization to antinociceptive effect of morphine.

  18. WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors.

    Science.gov (United States)

    Pamplona, Fabrício Alano; Takahashi, Reinaldo Naoto

    The memory deficits induced by cannabinoid agonists have been found in several behavioral paradigms. Nevertheless, there is evidence that not all types of memory are impaired after cannabinoid administration. The aim of this study was to investigate whether the cannabinoid agonist WIN 55212-2 (WIN) is able to influence the acquisition of fear conditioning using tone and contextual versions. For tone-fear conditioning, male Wistar rats were placed in the conditioning chamber and after 3 min, a sound (CS) was presented for 10s that terminated with a 1-s electric footshock (1.5 mA). For contextual-fear conditioning, a similar procedure was used but no sound was presented. Twenty-four hours after, the animals were re-exposed to the respective CS (tone or conditioning chamber) and the freezing behavior was registered. A subsequent experiment investigated a possible state-dependent effect of WIN by administering WIN or control solution 30 min before conditioning and before testing. WIN (2.5 and 5.0 mg/kg) administered i.p. 30 min before impaired contextual fear conditioning but did not modify the freezing behavior elicited by tone presentation. These animals did not show any state-dependent effects of WIN. Further, the impaired contextual conditioning was prevented by preadministration of SR141716A (1.0 mg/kg, i.p.) or SR147778 (1.0 mg/kg, i.p.), selective cannabinoid CB1 receptor antagonists. The present findings highlight that cannabinoid agonists effects are selective for the hippocampus-dependent aversive memories in rats. This effect appears to be related to the activation of CB1 cannabinoid receptors and confirms that cannabinoids might provide a novel approach for the treatment of unpleasant memories.

  19. 大麻素受体激动剂WIN55,212-2预处理对大鼠脊髓缺血再灌注损伤的保护作用研究%Protective effects of cannabinoid receptor agonist WIN55,212-2 preconditioning on spinal cord ischemia reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    荆娜; 马虹

    2015-01-01

    目的 探讨大麻素受体激动剂WIN55,212-2预处理对大鼠脊髓缺血再灌注损伤的保护作用.方法 32只SD大鼠按随机数字表法分为4组(n=8),分别为Sham组(假手术组)、Control组(单纯缺血对照组)、二甲基亚砜(DMSO)组(溶剂组)、WIN组(WIN55,212-2预处理组).Control组在诱导脊髓缺血前30 min腹腔内注射生理盐水0.3ml,DMSO组在诱导脊髓缺血前30 min腹腔内注射DMSO 0.3 ml,WIN组在诱导脊髓缺血前30 min腹腔内注射WIN55,212-2 1 mg/kg.分别于再灌注24、48 h采用Tarlov评分标准对后肢运动功能进行评价,之后取L4~L6脊髓组织行病理学检查.结果 再灌注24h和48 h,缺血组Tarlov评分均低于Sham组(P<0.05),WIN组Tarlov评分明显高于Control组和DMSO组(P<0.05).缺血组前角正常神经元数量少于Sham组(P<0.05),WIN组明显多于Control组和DMSO组(P<0.05).结论 大麻素受体激动剂WIN55,212-2预处理能够减轻大鼠脊髓缺血再灌注损伤.%Objective To explore the effects of cannabinoid receptor agonist WIN55,212-2 preconditioning on spinal cord ischemia reperfusion injury in rats.Methods A total of 32 male Sprague-Dawley rats was randomly divided into four groups (n =8):sham group,control group,dimethyl sulfoxide(DMSO) group which was given intraperitoneally DMSO 0.3 ml 30 min before ischemia reperfusion,and WIN group which was given intraperitoneally WIN55,212-2 1 mg/kg 30 min before ischemia reperfusion.Each rat was neurologically assessed at 24 h and 48 h after reperfusion by Tarlov scale,and the number of normal motor neurons at anterior horn of the spinal cord was recorded.Res uits The Tarlov scale of WIN group was significantly higher than that control and DMSO groups (P < 0.05).There were more normal motor neurons at anterior horn of the spinal cord in WIN group than those in control and DMSO groups (P < 0.05).Conclusions Cannabinoid receptor agonist WIN55,212-2 preconditioning might attenuate spinal cord ischemia

  20. L-NAME (N omega-nitro-L-arginine methyl ester), a nitric-oxide synthase inhibitor, and WIN 55212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], a cannabinoid agonist, interact to evoke synergistic hypothermia.

    Science.gov (United States)

    Rawls, S M; Tallarida, R J; Gray, A M; Geller, Ellen B; Adler, Martin W

    2004-02-01

    Cannabinoids evoke profound hypothermia in rats by activating central CB(1) receptors. Nitric oxide (NO), a prominent second messenger in central and peripheral neurons, also plays a crucial role in thermoregulation, with previous studies suggesting pyretic and antipyretic functions. Dense nitric-oxide synthase (NOS) staining and CB(1) receptor immunoreactivity have been detected in regions of the hypothalamus that regulate body temperature, suggesting that intimate NO-cannabinoid associations may exist in the central nervous system. The present study investigated the effect of N(omega)-nitro-L-arginine methyl ester (L-NAME), a NO synthase inhibitor, on the hypothermic response to WIN 55212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenylcarbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], a selective cannabinoid agonist, in rats. WIN 55212-2 (1-5 mg/kg, i.m.) produced dose-dependent hypothermia that peaked 45 to 90 min post-injection. L-NAME (10-100 mg/kg, i.m.) by itself did not significantly alter body temperature. However, a nonhypothermic dose of L-NAME (50 mg/kg) potentiated the hypothermia caused by WIN 55212-2 (0.5-5 mg/kg). The augmentation was strongly synergistic, indicated by a 2.5-fold increase in the relative potency of WIN 55212-2. The inactive enantiomer of WIN 55212-2, WIN 55212-3 [S-(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-napthanlenyl) methanone mesylate] (5 mg/kg, i.m.), did not produce hypothermia in the absence or presence of L-NAME (50 mg/kg), confirming that cannabinoid receptors mediated the synergy. The present data are the first evidence that drug combinations of NOS blockers and cannabinoid agonists produce synergistic hypothermia. Thus, NO and cannabinoid systems may interact to induce superadditive hypothermia.

  1. Regulation of MMP-9 by a WIN-binding site in the monocyte-macrophage system independent from cannabinoid receptors.

    Directory of Open Access Journals (Sweden)

    Svantje Tauber

    Full Text Available The cannabinoid system is known to be involved in the regulation of inflammatory processes. Therefore, drugs targeting cannabinoid receptors are considered as candidates for anti-inflammatory and tissue protective therapy. We demonstrated that the prototypical cannabinoid agonist R(+WIN55,212-2 (WIN reduced the secretion of matrix metalloproteinase-9 (MMP-9 in a murine model of cigarette-smoke induced lung inflammation. In experiments using primary cells and cell lines of the monocyte-macrophage-system we found that binding of the cannabinoid-receptor agonist WIN to a stereo-selective, specific binding site in cells of the monocyte-macrophage-system induced a significant down-regulation of MMP-9 secretion and disturbance of intracellular processing, which subsequently down-regulated MMP-9 mRNA expression via a ERK1/2-phosphorylation-dependent pathway. Surprisingly, the anti-inflammatory effect was independent from classical cannabinoid receptors. Our experiments supposed an involvement of TRPV1, but other yet unidentified sites are also possible. We conclude that cannabinoid-induced control of MMP-9 in the monocyte-macrophage system via a cannabinoid-receptor independent pathway represents a general option for tissue protection during inflammation, such as during lung inflammation and other diseases associated with inflammatory tissue damage.

  2. Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55,212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex.

    Science.gov (United States)

    Saez, Trinidad M M; Aronne, María P; Caltana, Laura; Brusco, Alicia H

    2014-05-01

    The endocannabinoid system, composed of cannabinoid receptors, endocannabinoids, and synthesis and degradation enzymes, is present since early stages of brain development. During this period, the endocannabinoid system is involved in the regulation of neural progenitor proliferation and specification as well as the migration and differentiation of pyramidal neurons and interneurons. Marijuana consumption during pregnancy represents a serious risk in relation to the fetal brain development since Δ(9) -tetrahidrocannabinol, the main active compound of cannabis, can reach the fetus through placenta and hemato-encephalic barrier. Cohort studies performed on children and adolescents of mothers who consumed marijuana during pregnancy reported cognitive and comportamental abnormalities. In the present study, we examined the expression of the cannabinoid receptor CB1 R during corticogenesis in radially and tangentially migrating post-mitotic neurons. We found that prenatal exposure to WIN impaired tangential and radial migration of post-mitotic neurons in the dorsal pallium. In addition, we described alterations of two transcription factors associated with proliferating and newly post-mitotic glutamatergic cells in the dorsal pallium, Tbr1 and Tbr2, and disruption in the number of Cajal-Retzius cells. The present results contribute to the knowledge of neurobiological substrates that determine neuro-comportamental changes that will persist through post-natal life.

  3. Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists.

    Science.gov (United States)

    Greineisen, William E; Turner, Helen

    2010-05-01

    The active constituents of Cannabis sativa have been used for centuries as recreational drugs and medicinal agents. Today, marijuana is the most prevalent drug of abuse in the United States and, conversely, therapeutic use of marijuana constituents are gaining mainstream clinical and political acceptance. Given the documented contributions of endocannabinoid signaling to a range of physiological systems, including cognitive function, and the control of eating behaviors, it is unsurprising that cannabinoid receptor agonists and antagonists are showing significant clinical potential. In addition to the neuroactive effects of cannabinoids, an emerging body of data suggests that both endogenous and exogenous cannabinoids are potently immunoactive. The central premise of this review article is that the immunological effects of cannabinoids should be considered in the context of each prescribing decision. We present evidence that the immunological effects of cannabinoid receptor agonists and antagonists are highly relevant to the spectrum of disorders for which cannabinoid therapeutics are currently offered.

  4. Effects of Cannabinoid Exposure during Adolescence on the Conditioned Rewarding Effects of WIN 55212-2 and Cocaine in Mice: Influence of the Novelty-Seeking Trait

    Directory of Open Access Journals (Sweden)

    M. Rodríguez-Arias

    2016-01-01

    Full Text Available Adolescent exposure to cannabinoids enhances the behavioural effects of cocaine, and high novelty-seeking trait predicts greater sensitivity to the conditioned place preference (CPP induced by this drug. Our aim was to evaluate the influence of novelty-seeking on the effects of adolescent cannabinoid exposure. Adolescent male mice were classified as high or low novelty seekers (HNS and LNS in the hole-board test. First, we evaluated the CPP induced by the cannabinoid agonist WIN 55212-2 (0.05 and 0.075 mg/kg, i.p. in HNS and LNS mice. Then, HNS and LNS mice were pretreated i.p. with vehicle, WIN 55212-2 (0.1 mg/kg, or cannabinoid antagonist rimonabant (1 mg/kg and were subsequently conditioned with WIN 55212-2 (0.05 mg/kg, i.p. or cocaine (1 or 6 mg/kg, i.p.. Only HNS mice conditioned with the 0.075 mg/kg dose acquired CPP with WIN 55212-2. Adolescent exposure to this cannabinoid agonist increased the rewarding effects of 1 mg/kg of cocaine in both HNS and LNS mice, and in HNS mice it also increased the reinstating effect of a low dose of cocaine. Our results endorse a role for individual differences such as a higher propensity for sensation-seeking in the development of addiction.

  5. Effects of Cannabinoid Exposure during Adolescence on the Conditioned Rewarding Effects of WIN 55212-2 and Cocaine in Mice: Influence of the Novelty-Seeking Trait

    Science.gov (United States)

    Rodríguez-Arias, M.; Roger-Sánchez, C.; Vilanova, I.; Revert, N.; Manzanedo, C.; Miñarro, J.; Aguilar, M. A.

    2016-01-01

    Adolescent exposure to cannabinoids enhances the behavioural effects of cocaine, and high novelty-seeking trait predicts greater sensitivity to the conditioned place preference (CPP) induced by this drug. Our aim was to evaluate the influence of novelty-seeking on the effects of adolescent cannabinoid exposure. Adolescent male mice were classified as high or low novelty seekers (HNS and LNS) in the hole-board test. First, we evaluated the CPP induced by the cannabinoid agonist WIN 55212-2 (0.05 and 0.075 mg/kg, i.p.) in HNS and LNS mice. Then, HNS and LNS mice were pretreated i.p. with vehicle, WIN 55212-2 (0.1 mg/kg), or cannabinoid antagonist rimonabant (1 mg/kg) and were subsequently conditioned with WIN 55212-2 (0.05 mg/kg, i.p.) or cocaine (1 or 6 mg/kg, i.p.). Only HNS mice conditioned with the 0.075 mg/kg dose acquired CPP with WIN 55212-2. Adolescent exposure to this cannabinoid agonist increased the rewarding effects of 1 mg/kg of cocaine in both HNS and LNS mice, and in HNS mice it also increased the reinstating effect of a low dose of cocaine. Our results endorse a role for individual differences such as a higher propensity for sensation-seeking in the development of addiction. PMID:26881125

  6. Effects of Cannabinoid Exposure during Adolescence on the Conditioned Rewarding Effects of WIN 55212-2 and Cocaine in Mice: Influence of the Novelty-Seeking Trait.

    Science.gov (United States)

    Rodríguez-Arias, M; Roger-Sánchez, C; Vilanova, I; Revert, N; Manzanedo, C; Miñarro, J; Aguilar, M A

    2016-01-01

    Adolescent exposure to cannabinoids enhances the behavioural effects of cocaine, and high novelty-seeking trait predicts greater sensitivity to the conditioned place preference (CPP) induced by this drug. Our aim was to evaluate the influence of novelty-seeking on the effects of adolescent cannabinoid exposure. Adolescent male mice were classified as high or low novelty seekers (HNS and LNS) in the hole-board test. First, we evaluated the CPP induced by the cannabinoid agonist WIN 55212-2 (0.05 and 0.075 mg/kg, i.p.) in HNS and LNS mice. Then, HNS and LNS mice were pretreated i.p. with vehicle, WIN 55212-2 (0.1 mg/kg), or cannabinoid antagonist rimonabant (1 mg/kg) and were subsequently conditioned with WIN 55212-2 (0.05 mg/kg, i.p.) or cocaine (1 or 6 mg/kg, i.p.). Only HNS mice conditioned with the 0.075 mg/kg dose acquired CPP with WIN 55212-2. Adolescent exposure to this cannabinoid agonist increased the rewarding effects of 1 mg/kg of cocaine in both HNS and LNS mice, and in HNS mice it also increased the reinstating effect of a low dose of cocaine. Our results endorse a role for individual differences such as a higher propensity for sensation-seeking in the development of addiction.

  7. BIASED AGONISM OF THREE DIFFERENT CANNABINOID RECEPTOR AGONISTS IN MOUSE BRAIN CORTEX

    Directory of Open Access Journals (Sweden)

    Rebeca Diez-Alarcia

    2016-11-01

    Full Text Available Cannabinoid receptors are able to couple to different families of G-proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, THC, WIN55212-2 and ACEA in mouse brain cortex.Stimulation of the [35S]GTPS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13, in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 µM was determined by Scintillation Proximity Assay (SPA technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs.

  8. Biased Agonism of Three Different Cannabinoid Receptor Agonists in Mouse Brain Cortex

    Science.gov (United States)

    Diez-Alarcia, Rebeca; Ibarra-Lecue, Inés; Lopez-Cardona, Ángela P.; Meana, Javier; Gutierrez-Adán, Alfonso; Callado, Luis F.; Agirregoitia, Ekaitz; Urigüen, Leyre

    2016-01-01

    Cannabinoid receptors are able to couple to different families of G proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, Δ9-THC, WIN55212-2, and ACEA in mouse brain cortex. Stimulation of the [35S]GTPγS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13), in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 μM) was determined by scintillation proximity assay (SPA) technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs. PMID:27867358

  9. Vascular Dysfunction in a Transgenic Model of Alzheimer's Disease: Effects of CB1R and CB2R Cannabinoid Agonists

    Science.gov (United States)

    Navarro-Dorado, Jorge; Villalba, Nuria; Prieto, Dolores; Brera, Begoña; Martín-Moreno, Ana M.; Tejerina, Teresa; de Ceballos, María L.

    2016-01-01

    There is evidence of altered vascular function, including cerebrovascular, in Alzheimer's disease (AD) and transgenic models of the disease. Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears to be responsible, at least in part, of alterations in vascular function. Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro. We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation. In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring. First we showed increased collagen IV positive vessels in AD brain compared to control subjects, with a similar increase in TgAPP mice, which was normalized by prolonged oral treatment with the CB1/CB2 mixed agonist WIN 55,212-2 (WIN) and the CB2 selective agonist JWH-133 (JWH). In Tg APP mice the vasoconstriction induced by phenylephrine and the thromboxane agonist U46619 was significantly increased, and no change in the vasodilation to acetylcholine (ACh) was observed. Tg APP displayed decreased vasodilation to both cannabinoid agonists, which were able to prevent decreased ACh relaxation in the presence of Aβ. In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice. Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology. PMID:27695396

  10. The CB1/CB2 receptor agonist WIN-55,212-2 reduces viability of human Kaposi's sarcoma cells in vitro.

    Science.gov (United States)

    Luca, Tonia; Di Benedetto, Giulia; Scuderi, Mariagrazia Rita; Palumbo, Marco; Clementi, Silvia; Bernardini, Renato; Cantarella, Giuseppina

    2009-08-15

    Kaposi's sarcoma is a highly vascularized mesenchymal neoplasm arising with multiple lesions of the skin. Endogenous cannabinoids have been shown to inhibit proliferation of a wide spectrum of tumor cells. We studied the effects of cannabinoids on human Kaposi's sarcoma cell proliferation in vitro. To do so, we first investigated the presence of the cannabinoid receptors CB(1) and CB(2) mRNAs in the human Kaposi's sarcoma cell line KS-IMM by RT-PCR and, subsequently, the effects of the mixed CB(1)/CB(2) agonist WIN-55,212-2 (WIN) on cell proliferation in vitro. WIN showed antimitogenic effects on Kaposi's sarcoma cells. Western blot analysis of Kaposi's sarcoma lysates suggested that WIN treatment induced activation of both caspase-3 and -6, as well as increased phosphorylation of the stress kinase p38 and JNK, along with transient phosphorylation of ERK(1/2). To better characterize the involvement of each single CB receptor in cannabinoid-induced cell death, we incubated Kaposi's sarcoma cells with different selective cannabinoid receptor agonists, respectively ACEA (CB(1)) and JWH-133 (CB(2)). None of the agonists was able to induce KS-IMM cell apoptosis. Moreover, we co-incubated Kaposi's sarcoma cells with WIN-55,212-2 and either the CB(1) receptor antagonist AM251, the CB(2) receptor antagonist AM630, or a combination of both substances. The CB(2) receptor antagonist AM630 was able to significantly increase survival of Kaposi's sarcoma cells treated with WIN. In view of the antiproliferative effects of cannabinoids on KS-IMM cells, one could envision the cannabinoid system as a potential target for pharmacological treatment of Kaposi's sarcoma.

  11. Involvement of TRPV1 channels in the activity of the cannabinoid WIN 55,212-2 in an acute rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Carletti, Fabio; Gambino, Giuditta; Rizzo, Valerio; Ferraro, Giuseppe; Sardo, Pierangelo

    2016-05-01

    The exogenous cannabinoid agonist WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone (WIN), has revealed to play a role on modulating the hyperexcitability phenomena in the hippocampus. Cannabinoid-mediated mechanisms of neuroprotection have recently been found to imply the modulation of transient receptor potential vanilloid 1 (TRPV1), a cationic channel subfamily that regulate synaptic excitation. In our study, we assessed the influence of pharmacological manipulation of TRPV1 function, alone and on WIN antiepileptic activity, in the Maximal Dentate Activation (MDA) acute model of temporal lobe epilepsy. Our results showed that the TRPV1 agonist, capsaicin, increased epileptic outcomes; whilst antagonizing TRPV1 with capsazepine exerts a protective role on paroxysmal discharge. When capsaicin is co-administered with WIN effective dose of 10mg/kg is able to reduce its antiepileptic strength, especially on the triggering of MDA response. Accordingly, capsazepine at the protective dose of 2mg/kg managed to potentiate WIN antiepileptic effects, when co-treated. Moreover, WIN subeffective dose of 5mg/kg was turned into effective when capsazepine comes into play. This evidence suggests that systemic administration of TRPV1-active drugs influences electrically induced epilepsy, with a noticeable protective activity for capsazepine. Furthermore, results from the pharmacological interaction with WIN support an interplay between cannabinoid and TRPV1 signaling that could represent a promising approach for a future pharmacological strategy to challenge hyperexcitability-based diseases.

  12. Vascular dysfunction in a transgenic model of Alzheimer’s disease: Effects of CB1R and CB2R cannabinoid agonists.

    Directory of Open Access Journals (Sweden)

    Jorge Navarro-Dorado

    2016-09-01

    Full Text Available There is evidence of altered vascular function, including cerebrovascular, in Alzheimer’s disease (AD and transgenic models of the disease. Indeed vasoconstrictor responses are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ appears to be responsible, at least in part, of alterations in vascular function. Cannabinoids, neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in vitro. We have demonstrated a beneficial effect of cannabinoids in models of AD by preventing glial activation. In this work we have studied the effects of these compounds on vessel density in amyloid precursor protein (APP transgenic mice, line 2576, and on altered vascular responses in aortae isolated ring. First we showed increased collagen IV positive vessels in AD brain compared to control subjects, with a similar increase in TgAPP mice, which was normalized by prolonged oral treatment with the CB1/CB2 mixed agonist WIN 55,212-2 (WIN and the CB2 selective agonist JWH-133 (JWH. In Tg APP mice the vasoconstriction induced by phenylephrine and the thromboxane agonist U46619 was significantly increased, and no change in the vasodilation to acetylcholine (ACh was observed. Tg APP displayed decreased vasodilation to both cannabinoid agonists, which were able to prevent decreased ACh relaxation in the presence of Aβ. In summary, we have confirmed and extended the existence of altered vascular responses in Tg APP mice. Moreover, our results suggest that treatment with cannabinoids may ameliorate the vascular responses in AD-type pathology.

  13. In vitro and non-invasive in vivo effects of the cannabinoid-1 receptor (CB1R) agonist AM841 on gastrointestinal motor function in the rat

    Science.gov (United States)

    Abalo, R; Chen, C; Vera, G; Fichna, J; Thakur, GA; López-Pérez, AE; Makriyannis, A; Martín-Fontelles, MI; Storr, M

    2015-01-01

    Background Cannabinoids have been traditionally used for the treatment of gastrointestinal (GI) symptoms, but the associated central effects, through cannabinoid-1 receptors (CB1R), constitute an important drawback. Our aims were to characterize the effects of the recently developed highly potent long-acting megagonist AM841 on GI motor function and to determine its central effects in rats. Methods Male Wistar rats were used for in vitro and in vivo studies. The effect of AM841 was tested on electrically-induced twitch contractions of GI preparations (in vitro) and on GI motility measured radiographically after contrast administration (in vivo). Central effects of AM841 were evaluated using the cannabinoid tetrad. The non-selective cannabinoid agonist WIN 55,212-2 (WIN) was used for comparison. The CB1R (AM251) and CB2R (AM630) antagonists were used to characterize cannabinoid receptor-mediated effects of AM841. Key results AM841 dose-dependently reduced in vitro contractile activity of rat GI preparations via CB1R, but not CB2R or opioid receptors. In vivo, AM841 acutely and potently reduced gastric emptying and intestinal transit in a dose-dependent and AM251-sensitive manner. The in vivo GI effects of AM841 at 0.1 mg kg−1 were comparable to those induced by WIN at 5 mg kg−1. However, at this dose, AM841 did not induce any sign of the cannabinoid tetrad, whereas WIN induced significant central effects. Conclusions & Inferences The CB1R megagonist AM841 may potently depress GI motor function in the absence of central effects. This effect may be mediated peripherally and may be useful in the treatment of GI motility disorders. PMID:26387676

  14. Early maternal deprivation and neonatal single administration with a cannabinoid agonist induce long-term sex-dependent psychoimmunoendocrine effects in adolescent rats.

    Science.gov (United States)

    Llorente, Ricardo; Arranz, Lorena; Marco, Eva-María; Moreno, Enrique; Puerto, Marta; Guaza, Carmen; De la Fuente, Mónica; Viveros, Maria-Paz

    2007-07-01

    Maternal deprivation [24h on postnatal day 9] might represent an animal model of schizophrenia and behavioural and neurochemical alterations observed in adulthood may be mediated by hippocampal impairments induced by abnormally increased glucocorticoids due to neonatal stress. We aimed to provide new data for psychoimmunoendocrine characterization of this animal model by evaluating its effects in adolescent rats of both genders. In previous studies we found that cannabinoid compounds counteracted the enhanced impulsivity of maternally deprived animals and that the cannabinoid receptor agonist WIN 55,212-2 showed neuroprotective properties in neonatal rats. So, we hypothesised that this compound could counteract at least some of the detrimental effects that we expected to find in maternally deprived animals. Accordingly, the drug was administered immediately after the maternal deprivation period. Maternally deprived males showed significantly decreased motor activity in the holeboard and the plus-maze. The cannabinoid agonist induced, exclusively in males, a significant anxiogenic-like effect, which was reversed by maternal deprivation. In the forced swimming test, both treatments independently induced depressive-like responses. Maternal deprivation reduced immunological function whereas the drug exerted tissue-dependent effects on the immune parameters analysed. Maternally deprived females showed reduced corticosterone levels whereas the cannabinoid agonist increased hormone concentration in all groups. In general, the results show detrimental effects of both treatments as well as intriguing interactions, notably in relation to emotional behaviour and certain immunological responses.

  15. Cannabinoids: A New Group of Agonists of PPARs

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2007-11-01

    Full Text Available Cannabinoids have been used medicinally and recreationally for thousands of years and their effects were proposed to occur mainly via activation of the G-protein-coupled receptor CB1/CB2 (cannabinoid receptor 1/2. Discovery of potent synthetic analogs of the natural cannabinoids as clinically useful drugs is the sustained aim of cannabinoid research. This demands that these new compounds be free of the psychotropic effects that connected with the recreational use of cannabinoids. In preclinical studies cannabinoids displayed many of the characteristics of nonsteroidal anti-inflammatory drugs (NSAIDs and it seems to be free of unwanted side effects. An increasing number of therapeutic actions of cannabinoid are being reported that do not appear to be mediated by either CB1 or CB2, and recently nuclear receptor superfamily PPARs (peroxisome-proliferator-activated receptors have been suggested as the target of certain cannabinoids. This review summarizes the evidence for cannabinoid activation on PPARs and possible associated remedial potentials.

  16. Inhibitory effects of synthetic cannabinoid WIN55, 212-2 on nicotine-activated currents in rat trigeminal ganglion neurons

    Institute of Scientific and Technical Information of China (English)

    Yongli Lu; Changjin Liu; Hongwei Yang

    2011-01-01

    Cannabinoid and nicotinic acetylcholine receptors are strongly associated with algesia. Previous studies in our laboratory have reported inhibitory effects of synthetic cannabinoid WIN55, 212-2 on nicotine-activated currents (/nic), but the underlying mechanisms remain poorly understood. The present study used whole-cell patch clamp techniques to investigate the modulatory effects of synthetic cannabinoid WIN55, 212-2 on /nic in cultured rat trigeminal ganglion neurons. The results revealed several major findings: WIN55, 212-2 inhibited /nic in rat trigeminal ganglion neurons. In addition, when WIN55, 212-2 (3 μmol/L) was applied simultaneously with nicotine (100 μmol/L), the inhibition of WIN55, 212-2 on /nic was reversible, concentration-dependent and voltage-independent. This effect was not mediated by CB1, CB2 or VR1 receptors; neither the selective CB1 receptor antagonist AM281, CB2 receptor antagonist AM630 nor VR1 receptor antagonist capsazepine reduced the inhibitory effect of WIN55, 212-2. Further, the inhibition of nicotinic responses by WIN55, 212-2 was not sensitive to the membrane permeable cyclic adenosine monophosphate (cAMP) analog 8-Br-cAMP. The G-protein inhibitor GDP-β-S (1 mmol/L) did not block the inhibitory effects of WIN55, 212-2 on /nic, excluding the involvement of G-protein mediation. The results suggested that WIN55, 212-2 inhibits/nic directly via the neuronal nicotinic acetylcholine receptor, and that this inhibition is non-competitive. WIN55, 212-2 did not act as an open channel blocker of the neuronal nicotinic acetylcholine receptor, and did not affect the desensitization of /nic. The results suggest that nicotine receptors may be physically plugged from outside the membrane by drugs containing WIN55, 212-2.

  17. Novel indole and azaindole (pyrrolopyridine) cannabinoid (CB) receptor agonists: design, synthesis, structure-activity relationships, physicochemical properties and biological activity

    NARCIS (Netherlands)

    Blaazer, A.R.; Lange, J.H.M.; van der Neut, M.A.W.; Mulder, A.; den Boon, F.S.; Werkman, T.R.; Kruse, C.G.; Wadman, W.J.

    2011-01-01

    The discovery, synthesis and structure-activity relationship (SAR) of a novel series of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor ligands are reported. Based on the aminoalkylindole class of cannabinoid receptor agonists, a biphenyl moiety was introduced as novel lipophilic indole 3-acyl

  18. Effects of cannabinoid receptor agonists on immunologically induced histamine release from rat peritoneal mast cells.

    Science.gov (United States)

    Lau, Alaster H Y; Chow, Sharron S M

    2003-03-19

    Immunologic activation of mast cells through the cross-linking of high affinity IgE receptors results in the release of inflammatory mediators which are important in the pathogenesis of allergic reactions. Early studies investigating the effects of palmitoylethanolamide on animal models of inflammation and on rat mast cells led to the hypothesis that endogenous cannabinoids might act as local autacoids which suppressed inflammation by reducing the activation of mast cells. However, more recent studies produced contradicting results. In order to evaluate if cannabinoid receptors are present in mast cells, we studied the effects of endocannabinoids (anandamide and palmitoylethanolamide) and synthetic cannabimimetics (CP 55,940, WIN 55,212-2 and HU-210) on histamine release from rat peritoneal mast cells. When incubated with mast cells alone, only anandamide could induce significant level of histamine release at concentrations higher than 10(-6) M. When mast cells were activated with anti-IgE, the histamine release induced was not affected by anandamide, palmitoylethanolamide and CP 55,940. In contrast, both WIN 55,212-2 and HU-210 enhanced anti-IgE-induced histamine release at 10(-5) M and preincubation did not increase the potency. The histamine releasing action of anandamide and the enhancing effects of WIN 55,212-2 and HU-210 on anti-IgE-induced histamine release were not reduced by the cannabinoid receptor antagonists, AM 281 and AM 630. In conclusion, the present study does not support the hypothesis that cannabinoids suppress mast cell activation. Instead, some of the cannabinoid receptor-directed ligands tested enhanced mast cell activation. However, the high concentrations required and the failure of cannabinoid receptor antagonists to reverse such effects also question the existence of functional cannabinoid receptors in mast cells.

  19. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Petra eAmchova

    2014-03-01

    Full Text Available Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed higher voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 µg/kg/infusion. To this aim, olfactory-bulbectomized (OBX and sham-operated (SHAM Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous (FR-1 schedule of reinforcement in 2h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behaviour after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg, did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2 reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.

  20. Evaluation of WIN 55,212-2 self-administration in rats as a potential cannabinoid abuse liability model

    Science.gov (United States)

    Lefever, Timothy W.; Marusich, Julie A.; Antonazzo, Kateland R.; Wiley, Jenny L.

    2014-01-01

    Because Δ9-tetrahydrocannabinol (THC) has been a false negative in rat intravenous self-administration procedures, evaluation of the abuse potential of candidate cannabinoid medications has proved difficult. One lab group has successfully trained self-administration of the aminoalkylindole WIN55,212-2 in rats; however, their results have not been independently replicated. The purpose of this study was to extend their model by using a within-subjects design, with the goal of establishing a robust method suitable for substitution testing of other cannabinoids. Male Long-Evans rats were trained to self-administer WIN55,212-2 (0.01 mg/kg/infusion) on a fixed ratio 3 schedule. Dose-effect curves for WIN55,212-2 were determined, followed by vehicle substitution and a dose-effect curve with THC. WIN55,212-2 self-administration was acquired; however, substitution with THC did not maintain responding above vehicle levels. Dose-dependent attenuation by rimonabant confirmed CB1 receptor mediation of WIN55,212-2’s reinforcing effects. Vehicle substitution resulted in a session-dependent decrease in responding (i.e., extinction). While this study provides systematic replication of previous studies, lack of substitution with THC is problematic and suggests that WIN55,212-2 self-administration may be of limited usefulness as a screening tool for detection of the reinforcing effects of potential cannabinoid medications. Clarification of underlying factors responsible for failure of THC to maintain self-administration in cannabinoid-trained rats is needed. PMID:24412835

  1. Cannabinoid receptor interacting protein suppresses agonist-driven CB1 receptor internalization and regulates receptor replenishment in an agonist-biased manner.

    Science.gov (United States)

    Blume, Lawrence C; Leone-Kabler, Sandra; Luessen, Deborah J; Marrs, Glen S; Lyons, Erica; Bass, Caroline E; Chen, Rong; Selley, Dana E; Howlett, Allyn C

    2016-11-01

    Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.

  2. Prejunctional and peripheral effects of the cannabinoid CB(1) receptor inverse agonist rimonabant (SR 141716).

    Science.gov (United States)

    van Diepen, Hester; Schlicker, Eberhard; Michel, Martin C

    2008-10-01

    Rimonabant is an inverse agonist specific for cannabinoid receptors and selective for their cannabinoid-1 (CB(1)) subtype. Although CB(1) receptors are more abundant in the central nervous system, rimonabant has many effects in the periphery, most of which are related to prejunctional modulation of transmitter release from autonomic nerves. However, CB(1) receptors are also expressed in, e.g., adipocytes and endothelial cells. Rimonabant inhibits numerous cardiovascular cannabinoid effects, including the decrease of blood pressure by central and peripheral (cardiac and vascular) sites of action, with the latter often being endothelium dependent. Rimonabant may also antagonize cannabinoid effects in myocardial infarction and in hypotension associated with septic shock or liver cirrhosis. In the gastrointestinal tract, rimonabant counteracts the cannabinoid-induced inhibition of secretion and motility. Although not affecting most cannabinoid effects in the airways, rimonabant counteracts inhibition of smooth-muscle contraction by cannabinoids in urogenital tissues and may interfere with embryo attachment and outgrowth of blastocysts. It inhibits cannabinoid-induced decreases of intraocular pressure. Rimonabant can inhibit proliferation of, maturation of, and energy storage by adipocytes. Among the many cannabinoid effects on hormone secretion, only some are rimonabant sensitive. The effects of rimonabant on the immune system are not fully clear, and it may inhibit or stimulate proliferation in several types of cancer. We conclude that direct effects of rimonabant on adipocytes may contribute to its clinical role in treating obesity. Other peripheral effects, many of which occur prejunctionally, may also contribute to its overall clinical profile and lead to additional indications as well adverse events.

  3. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    Science.gov (United States)

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  4. Cannabinoid type 1 receptor ligands WIN 55,212-2 and AM 251 alter anxiety-like behaviors of marmoset monkeys in an open-field test.

    Science.gov (United States)

    Cagni, Priscila; Barros, Marilia

    2013-03-01

    Cannabinoid type 1 receptors (CB1r) are an important modulatory site for emotional behavior. However, little is known on the effects of CB1r ligands on emotionality aspects of primates, even with their highly similar behavioral response and receptor density/distribution as humans. Thus, we analyzed the effects of the CB1r agonist WIN 55,212-2 (WIN; 1mg/kg) and the antagonist AM 251 (AM; 2mg/kg), systemically administered prior to a single brief (15 min) exposure to a novel open-field (OF) environment, on the behavior of individually tested adult black tufted-ear marmosets. Both WIN- and AM-treated subjects, compared to vehicle controls, had significantly lower rates of long (contact) calls and exploration, while higher levels of vigilance-related behaviors (scan/glance); these are indicators of anxiolysis in this setup. Changes in locomotion were not detected. However, in the vehicle and AM-groups, sojourn in the peripheral zone of the OF was significantly higher than in its central region. WIN-treated marmosets spent an equivalent amount of time in both zones. Therefore, activation or blockade CB1r function prior to a short and individual exposure to an unfamiliar environment exerted a significant and complex influence on different behavioral indicators of anxiety in these monkeys (i.e., a partially overlapping anxiolytic-like profile). AM 251, however, has no anxiolytic effect when the time spent in the center of the OF is considered. This is a major difference when compared to the WIN-treated group. Data were compared to the response profile reported in other pre-clinical (rodent) and clinical studies.

  5. EFFECTS OF SYNTETIC CANNABINOID RECEPTOR LIGANDS WIN 55.212-2 AND ANANDAMID UPON IN VITRO ACTIVITY OF IMMUNOCOMPETENT CELLS

    Directory of Open Access Journals (Sweden)

    E. G. Lobanova

    2009-01-01

    Full Text Available Abstract. Ability of cannabinoid receptor ligands WIN 55.212-2 and anandamid to inhibit synthesis of TNFα and IL-8 was studied in healthy donors and men with allergic disorders. To establish mechanism of action for investigated substances, the selective antagonists of the СВ1-receptor (SR141716A and for СВ2 - receptor (SR144528 were applied. Studies with whole blood dilutions allowed of approximating in vivo conditions when investigating biological properties of WIN-55.212-2 and anandamid. The synthetic cannabinoids WIN - 55.212-2 and anandamid at a concentration of 3-10 μМ were capable of reducing synthesis of TNFα and IL-8 in lipopolysaccharide-stimulated blood leukocytes, both from healthy donors and subjects with allergic disorders. It was revealed that the antagonist of СВ1-receptor (SR141716A did not exert a receptor-mediated effect for WIN-55.212-2 and anandamid. Meanwhile, a СВ2-receptor antagonist (SR144528 entirely eliminated completely the blocking effect of anandamid and WIN-55.212-2.

  6. The effect of WIN 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes.

    Science.gov (United States)

    Colín-González, A L; Paz-Loyola, A L; Serratos, I N; Seminotti, B; Ribeiro, C A J; Leipnitz, G; Souza, D O; Wajner, M; Santamaría, A

    2015-12-01

    Several physiological processes in the CNS are regulated by the endocannabinoid system (ECS). Cannabinoid receptors (CBr) and CBr agonists have been involved in the modulation of the N-methyl-D-aspartate receptor (NMDAr) activation. Glutaric (GA), 3-hydroxyglutaric (3-OHGA), methylmalonic (MMA) and propionic (PA) acids are endogenous metabolites produced and accumulated in the brain of children affected by severe organic acidemias (OAs) with neurodegeneration. Oxidative stress and excitotoxicity have been involved in the toxic pattern exerted by these organic acids. Studying the early pattern of toxicity exerted by these metabolites is crucial to explain the extent of damage that they can produce in the brain. Herein, we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) on early markers of GA-, 3-OHGA-, MMA- and PA-induced toxicity in brain synaptosomes from adult (90-day-old) and adolescent (30-day-old) rats. As pre-treatment, WIN exerted protective effects on the GA- and MMA-induced mitochondrial dysfunction, and prevented the reactive oxygen species (ROS) formation and lipid peroxidation induced by all metabolites. Our findings support a protective and modulatory role of cannabinoids in the early toxic events elicited by toxic metabolites involved in OAs.

  7. Impact of efficacy at the μ-opioid receptor on antinociceptive effects of combinations of μ-opioid receptor agonists and cannabinoid receptor agonists.

    Science.gov (United States)

    Maguire, David R; France, Charles P

    2014-11-01

    Cannabinoid receptor agonists, such as Δ(9)-tetrahydrocannabinol (Δ(9)-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ(9)-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ(9)-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ(9)-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ(9)-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain.

  8. Chronic Cannabinoid Administration in Vivo Compromises Extinction of Fear Memory

    Science.gov (United States)

    Lin, Hui-Ching; Mao, Sheng-Chun; Chen, Po-See; Gean, Po-Wu

    2008-01-01

    Endocannabinoids are critically involved in the extinction of fear memory. Here we examined the effects of repeated cannabinoid administration on the extinction of fear memory in rats and on inhibitory synaptic transmission in medial prefrontal cortex (mPFC) slices. Rats were treated with the CB1 receptor agonist WIN55212-2 (WIN 10 mg/kg, i.p.)…

  9. Effects of the CB1R agonist WIN-55,212-2 and the CB1R antagonists SR-141716 and AM-1387: open-field examination in rats.

    Science.gov (United States)

    Järbe, T U C; Ross, T; DiPatrizio, N V; Pandarinathan, L; Makriyannis, A

    2006-09-01

    This study examined the open-field (O-F) effects in rats of the cannabinoid 1 receptor (CB1R) agonist WIN-55,212-2 (WIN; 1 to 5.6 mg/kg) and its interaction with the CB1R antagonist/inverse agonist SR-141716 (1 to 5.6 mg/kg). Additionally, separate studies examined the O-F effects of SR-141716 (1 to 10 mg/kg) and a newly synthesized CB1R selective antagonist/inverse agonist AM-1387 (3 and 10 mg/kg) when these ligands were administered alone. Both antagonists are characterized in vitro by decreased of GTPgammaS binding and increased cAMP accumulation (inverse agonism). WIN dose dependently reduced ambulation (horizontal activity) and rearing (vertical activity); SR-141716 completely (WIN 3 mg/kg) or partially (WIN 5.6 mg/kg) normalized these behaviors. WIN alone resulted in circling and in an increased latency to leave the start area of the O-F, effects blocked by all doses of SR-141716. Both the increased scratching and grooming, associated with SR-141716 administration, were attenuated but not abolished by WIN. SR-141716 alone tended to reduce ambulation (significant at 10 mg/kg) and rearing (non-significant), had no effect on latency, and increased scratching and grooming (both frequency and duration), at doses of 3 mg/kg and up. At the doses examined, AM-1387 had no effect on ambulation, rearing, latency but significantly increased scratching (10 mg/kg); there was also a trend for increased grooming (both frequency and duration). The O-F profile of WIN suggests more similarity with the effects of THC rather than methanandamide (and presumably also anandamide). Intrinsic activity (scratching and grooming) by SR-141716 was re-affirmed and seemed to be associated with administration of AM-1387 as well. AM-1387 was less potent than SR-141716.

  10. Prospects for cannabinoid therapies in viral encephalitis.

    Science.gov (United States)

    Solbrig, Marylou V; Fan, Yijun; Hazelton, Paul

    2013-11-06

    Cannabinoids are promising therapies to support neurogenesis and decelerate disease progression in neuroinflammatory and degenerative disorders. Whether neuroprotective effects of cannabinoids are sustainable during persistent viral infection of the CNS is not known. Using a rodent model of chronic viral encephalitis based on Borna Disease (BD) virus, in which 1 week treatment with the general cannabinoid WIN 55,212-2 has been shown to be neuroprotective (Solbrig et al., 2010), we examine longer term (2 week treatment) effects of a general (CB1 and CB2) cannabinoid receptor agonist WIN55,212-2 (1mg/kg ip twice per day) or a specific (CB2) cannabinoid receptor agonist HU-308 (5mg/kg ip once daily) on histopathology, measures of frontostriatal neurogenesis and gliogenesis, and viral load. We find that WIN and HU-308 differ in their ability to protect new BrdU(+) cells. The selective CB2 agonist HU increases BrdU(+) cells in prefrontal cortex (PFC), significantly increases BrdU(+) cells in striatum, differentially regulates polydendrocytes vs. microglia/macrophages, and reduces immune activation at a time WIN-treated rats appear tolerant to the anti-inflammatory effect of their cannabinoid treatment. WIN and HU had little direct viral effect in PFC and striatum, yet reduced viral signal in hippocampus. Thus, HU-308 action on CB2 receptors, receptors known to be renewed during microglia proliferation and action, is a nontolerizing mechanism of controlling CNS inflammation during viral encephalitis by reducing microglia activation, as well as partially limiting viral infection, and uses a nonpsychotropic cannabinoid agonist.

  11. Cannabinoid WIN-55,212-2 mesylate inhibits ADAMTS-4 activity in human osteoarthritic articular chondrocytes by inhibiting expression of syndecan-1

    Science.gov (United States)

    KONG, YING; WANG, WANCHUN; ZHANG, CHANGJIE; WU, YI; LIU, YANG; ZHOU, XIAORONG

    2016-01-01

    A central feature of osteoarthritis (OA) is the loss of articular cartilage, which is primarily attributed to cartilage breakdown. A group of metalloproteinases termed the A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family are reported to be important in cartilage breakdown. Recent studies have suggested that ADAMTS-4 is a major contributor to the pathogenesis of OA and that syndecan-1 is closely associated with activation of ADAMTS-4 in human chondrocytes. Accumulating evidence also suggests that cannabinoids have chondroprotective effects. The current study explored the effects of synthetic cannabinoid WIN-55,212-2 mesylate (WIN-55) on the expression of syndecan-1 and ADAMTS-4, as well as ADAMTS-4 activity, in unstimulated and interleukin (IL)-1β-stimulated OA chondrocytes. Primary human OA articular chondrocytes were treated with WIN-55 in the presence or absence of IL-1β and cannabinoid receptor antagonists. The results of the present study demonstrated that WIN-55 inhibited ADAMTS-4 activity in unstimulated and IL-1β-stimulated primary human OA articular chondrocytes in a concentration-dependent manner. Cannabinoid receptor type 1 (CB1) and 2 (CB2) were constitutively expressed in human OA articular chondrocytes. Furthermore, selective CB2 antagonist, JTE907, but not selective CB1 antagonist, MJ15, abolished the inhibitory effect of WIN-55 on ADAMTS-4 activity. WIN55 inhibited the expression of syndecan-1 but not ADAMTS-4, and overexpression of syndecan-1 reversed the inhibitory effect of WIN-55 on the ADAMTS-4 activity in unstimulated and IL-1β-stimulated human OA articular chondrocytes. Despite having no significant effect on syndecan-1 gene promoter activity, WIN-55 markedly decreased the stability of syndecan-1 mRNA via CB2. In conclusion, to the best of our knowledge, the present study provides the first in vitro evidence supporting that the synthetic cannabinoid WIN-55 inhibits ADAMTS-4 activity in unstimulated and IL-1

  12. Novel selective cannabinoid CB1 receptor antagonist MJ08 with potent in vivo bioactivity and inverse agonistic effects

    Institute of Scientific and Technical Information of China (English)

    Wei CHEN; Cheng XU; Hong-ying LIU; Long LONG; Wei ZHANG; Zhi-bing ZHENG; Yun-de XIE; Li-li WANG; Song LI

    2011-01-01

    To characterize the biological profiles of M J08,a novel selective CB1 receptor antagonist.Methods:Radioligand binding assays were performed using rat brain and spleen membrane preparations.CB1 and CB2 receptor redistribution and intracellular Ca2+ ([Ca2+]1) assays were performed with IN CELL Analyzer.Inverse agonism was studied using intracellular cAMP assays,and in guinea-pig ileum and mouse vas deferens smooth muscle preparations.In vivo pharmacologic profile was assessed in diet-induced obesity (DIO) mice.Results:In radioligand binding assay,M J08 selectively antagonized CB1 receptor (IC50=99.9 nmol/L).In EGFP-CB1_U20S cells,its IC50 value against CB1 receptor activation was 30.23 nmol/L (SR141716A:32.16 nmol/L).WIN 55,212-2 (1 μmol/L) increased [Ca2+]1 in the primary cultured hippocampal neuronal cells and decreased cAMP accumulation in CHO-hCB1 cells.M J08 (10 nmol/L-1O μmol/L)blocked both the WIN 55,212-2-induced effects.Furthermore,M J08 reversed the inhibition of electrically evoked twitches of mouse vas deferens by WIN 55,212-2 (pA2=10.29±1.05).M J08 and SR141716A both showed an inverse agonism activity by markedly promoting the contraction force and frequency of guinea pig ileum muscle.M J08 significantly increased the cAMP level in CHO-hCB1 cells with an EC50 value of 78.6 nmol/L,which was lower than the EC50 value for SR141716A (159.2 nmol/L).Besides the more potent pharmacological effects of cannabinoid CB1 receptor antagonism in DIO mice,such as reducing food intake,decreasing body weight,and ameliorating dyslipidemia,M J08 (10 mg/kg) unexpectedly raised the fasted blood glucose in vivo.Conclusion:M J08 is a novel,potent and selective CB1 receptor antagonist/inverse agonist with potent bioactive responses in vitro and in vivo that may be useful for disclosure the versatile nature of CB1 receptors.

  13. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity

    NARCIS (Netherlands)

    Campolongo, P.; Morena, M.; Scaccianoce, S.; Trezza, V.; Chiarotti, F.; Schelling, G.; Cuomo, V.; Roozendaal, B.

    2013-01-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.

  14. Control of spasticity in a multiple sclerosis model using central nervous system-excluded CB1 cannabinoid receptor agonists.

    Science.gov (United States)

    Pryce, Gareth; Visintin, Cristina; Ramagopalan, Sreeram V; Al-Izki, Sarah; De Faveri, Lia E; Nuamah, Rosamond A; Mein, Charles A; Montpetit, Alexandre; Hardcastle, Alison J; Kooij, Gijs; de Vries, Helga E; Amor, Sandra; Thomas, Sarah A; Ledent, Catherine; Marsicano, Giovanni; Lutz, Beat; Thompson, Alan J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2014-01-01

    The purpose of this study was the generation of central nervous system (CNS)-excluded cannabinoid receptor agonists to test the hypothesis that inhibition of spasticity, due to CNS autoimmunity, could be controlled by affecting neurotransmission within the periphery. Procedures included identification of chemicals and modeling to predict the mode of exclusion; induction and control of spasticity in the ABH mouse model of multiple sclerosis; conditional deletion of CB1 receptor in peripheral nerves; side-effect profiling to demonstrate the mechanism of CNS-exclusion via drug pumps; genome-wide association study in N2(129×ABH) backcross to map polymorphic cannabinoid drug pump; and sequencing and detection of cannabinoid drug-pump activity in human brain endothelial cell lines. Three drugs (CT3, SAB378 and SAD448) were identified that control spasticity via action on the peripheral nerve CB1 receptor. These were peripherally restricted via drug pumps that limit the CNS side effects (hypothermia) of cannabinoids to increase the therapeutic window. A cannabinoid drug pump is polymorphic and functionally lacking in many laboratory (C57BL/6, 129, CD-1) mice used for transgenesis, pharmacology, and toxicology studies. This phenotype was mapped and controlled by 1-3 genetic loci. ABCC1 within a cluster showing linkage is a cannabinoid CNS-drug pump. Global and conditional CB1 receptor-knockout mice were used as controls. In summary, CNS-excluded CB1 receptor agonists are a novel class of therapeutic agent for spasticity.

  15. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor.

    Science.gov (United States)

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S; Buchan, Alice; Brodermann, Maximillian H; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J; Greaves, David R

    2015-06-02

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2(-/-) macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.

  16. Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

    Science.gov (United States)

    Presley, Chaela; Abidi, Ammaar; Suryawanshi, Satyendra; Mustafa, Suni; Meibohm, Bernd; Moore, Bob M

    2015-08-01

    Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease. Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury. We have previously reported the receptor affinity of 3',5'-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury. Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940. The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined. Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.

  17. Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity

    Science.gov (United States)

    Franks, Lirit N.; Ford, Benjamin M.; Prather, Paul L.

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting

  18. Cannabinoid CB1 and CB2 receptor ligand specificity and the development of CB2-selective agonists.

    Science.gov (United States)

    Ashton, John C; Wright, Jason L; McPartland, John M; Tyndall, Joel D A

    2008-01-01

    Cannabinoids in current use such as nabilone activate both CB1 and CB2 receptors. Selective CB2 activation may provide some of the therapeutic effects of cannabinoids, such as their immuno-modulatory properties, without the psychoactive effects of CB1 activation. Therefore, cannabinoid CB2 receptors represent an attractive target for drug development. However, selective and potent CB2 agonists remain in development. CB1 and CB2 differ considerably in their amino acid sequence and tertiary structures. Therefore, clinical development of potent and selective CB2 agonists is probable. Mutational and ligand binding studies, functional mapping, and computer modelling have revealed key residues and domains in cannabinoid receptors that are involved in agonist and antagonist binding to CB1 and CB2. In addition, CB2 has undergone more rapid evolution, and results for ligand binding and efficacy cannot be automatically extrapolated from rat or mouse CB2 to human. Furthermore, loss of CB1 affinity is a crucial property for CB2-selective ligands, and although rat CB1 is 97% homologous with human CB1, critical differences do exist, with potential for further exploitation in drug design. In this paper we briefly review previous cannabinoid receptor models and mutation/binding studies. We also review binding affinity ratios with respect to CB1 and CB2. We then employ our own models to illustrate key cannabinoid receptor residues and binding subdomains that are involved in these differences in binding affinities and discuss how these might be exploited in the development of CB2 specific ligands. Published reports for species specific binding affinities for CB2 are scarce, and we argue that this needs to be corrected prior to the progression of CB2 agonists from pre-clinical to clinical research.

  19. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  20. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells.

    Science.gov (United States)

    Wilhelmsen, Kevin; Khakpour, Samira; Tran, Alphonso; Sheehan, Kayla; Schumacher, Mark; Xu, Fengyun; Hellman, Judith

    2014-05-09

    Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.

  1. Antagonistic and inverse agonistic effect of M J15 on cannabinoid receptors Ⅰ%MJ15对大麻素Ⅰ型受体的阻滞及反相激动作用的研究

    Institute of Scientific and Technical Information of China (English)

    曹宁; 杨洋; 周晓棉; 徐成; 王莉莉

    2011-01-01

    Objective: To observe the antagonistic and inverse agonistic effect of MJ15 on cannabinoid receptors Ⅰ (CB1). Methods: The samples of the ileum smooth muscle isolated from guinea pigs and vas deferens isolated from mice were put into the Magnus' bath, and the contractive activities were investigated. Results: The CB1 receptor agonist WIN55212-2 ( 10 - 10 ~ 10 - 6 mol · L - 1 ) inhibited electrically induced contraction of mouse vas deferens; the concentration-dependency was significant. The concentration-response curse was completely inhibited by SR141716A and MJ15(l0-7 mol· L-1). WIN55212-2 inhibited contraction of mouse vas deferens and guinea pig ileum smooth muscle; while SR141716A and MJ15 accelerated the contraction. Conclusion: MJ15 is an antagonist of CB1 receptor with inverse agonistic activity.%目的:观察MJ15对大麻素Ⅰ型(cannabinoid receptors Ⅰ,CB1)受体的阻滞及反相激动作用.方法:制备小鼠输精管和豚鼠回肠平滑肌的离体标本,观察CB1受体激动剂WIN55212-2以及阻滞剂利莫那班(SR141716A)和MJ15对其收缩特性的影响.结果:CB1受体激动剂WIN55212-2(10-10~10-6 mol·L-1)可抑制电刺激所引起小鼠输精管的收缩作用,呈现明显的剂量依赖性,而SR141716A和MJ15(10-7mol·L-1)能阻滞WIN55212-2的抑制作用;CB1受体激动剂WIN55212-2可抑制豚鼠回肠和小鼠输精管平滑肌的收缩,而SR141716A和MJ15能促进豚鼠回肠和小鼠输精管平滑肌的收缩.结论:MJ15是CB1受体的阻滞剂,同时具有反相激动作用.

  2. Cannabinoid and Cholinergic Systems Interact during Performance of a Short-Term Memory Task in the Rat

    Science.gov (United States)

    Goonawardena, Anushka V.; Robinson, Lianne; Hampson, Robert E.; Riedel, Gernot

    2010-01-01

    It is now well established that cannabinoid agonists such as [delta][superscript 9]-tetrahydrocannabinol (THC), anandamide, and WIN 55,212-2 (WIN-2) produce potent and specific deficits in working memory (WM)/short-term memory (STM) tasks in rodents. Although mediated through activation of CB1 receptors located in memory-related brain regions such…

  3. The natural product magnolol as a lead structure for the development of potent cannabinoid receptor agonists.

    Directory of Open Access Journals (Sweden)

    Alexander Fuchs

    Full Text Available Magnolol (4-allyl-2-(5-allyl-2-hydroxyphenylphenol, the main bioactive constituent of the medicinal plant Magnolia officinalis, and its main metabolite tetrahydromagnolol were recently found to activate cannabinoid (CB receptors. We now investigated the structure-activity relationships of (tetrahydromagnolol analogs with variations of the alkyl chains and the phenolic groups and could considerably improve potency. Among the most potent compounds were the dual CB1/CB2 full agonist 2-(2-methoxy-5-propyl-phenyl-4-hexylphenol (61a, K(i CB1:0.00957 µM; K(i CB2:0.0238 µM, and the CB2-selective partial agonist 2-(2-hydroxy-5-propylphenyl-4-pentylphenol (60, K(i CB1:0.362 µM; K(i CB2:0.0371 µM, which showed high selectivity versus GPR18 and GPR55. Compound 61b, an isomer of 61a, was the most potent GPR55 antagonist with an IC50 value of 3.25 µM but was non-selective. The relatively simple structures, which possess no stereocenters, are easily accessible in a four- to five-step synthetic procedure from common starting materials. The central reaction step is the well-elaborated Suzuki-Miyaura cross-coupling reaction, which is suitable for a combinatorial chemistry approach. The scaffold is versatile and may be fine-tuned to obtain a broad range of receptor affinities, selectivities and efficacies.

  4. Cannabinoid-induced changes in respiration of brain mitochondria.

    Science.gov (United States)

    Fišar, Zdeněk; Singh, Namrata; Hroudová, Jana

    2014-11-18

    Cannabinoids exert various biological effects that are either receptor-mediated or independent of receptor signaling. Mitochondrial effects of cannabinoids were interpreted either as non-receptor-mediated alteration of mitochondrial membranes, or as indirect consequences of activation of plasma membrane type 1 cannabinoid receptors (CB1). Recently, CB1 receptors were confirmed to be localized to the membranes of neuronal mitochondria, where their activation directly regulates respiration and energy production. Here, we performed in-depth analysis of cannabinoid-induced changes of mitochondrial respiration using both an antagonist/inverse agonist of CB1 receptors, AM251 and the cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol (THC), cannabidiol, anandamide, and WIN 55,212-2. Relationships were determined between cannabinoid concentration and respiratory rate driven by substrates of complex I, II or IV in pig brain mitochondria. Either full or partial inhibition of respiratory rate was found for the tested drugs, with an IC50 in the micromolar range, which verified the significant role of non-receptor-mediated mechanism in inhibiting mitochondrial respiration. Effect of stepwise application of THC and AM251 evidenced protective role of AM251 and corroborated the participation of CB1 receptor activation in the inhibition of mitochondrial respiration. We proposed a model, which includes both receptor- and non-receptor-mediated mechanisms of cannabinoid action on mitochondrial respiration. This model explains both the inhibitory effect of cannabinoids and the protective effect of the CB1 receptor inverse agonist.

  5. Differential β-arrestin2 requirements for constitutive and agonist-induced internalization of the CB1 cannabinoid receptor.

    Science.gov (United States)

    Gyombolai, Pál; Boros, Eszter; Hunyady, László; Turu, Gábor

    2013-06-15

    CB1 cannabinoid receptor (CB1R) undergoes both constitutive and agonist-induced internalization, but the underlying mechanisms of these processes and the role of β-arrestins in the regulation of CB1R function are not completely understood. In this study, we followed CB1R internalization using confocal microscopy and bioluminescence resonance energy transfer measurements in HeLa and Neuro-2a cells. We found that upon activation CB1R binds β-arrestin2 (β-arr2), but not β-arrestin1. Furthermore, both the expression of dominant-negative β-arr2 (β-arr2-V54D) and siRNA-mediated knock-down of β-arr2 impaired the agonist-induced internalization of CB1R. In contrast, neither β-arr2-V54D nor β-arr2-specific siRNA had a significant effect on the constitutive internalization of CB1R. However, both constitutive and agonist-induced internalization of CB1R were impaired by siRNA-mediated depletion of clathrin heavy chain. We conclude that although clathrin is required for both constitutive and agonist-stimulated internalization of CB1R, β-arr2 binding is only required for agonist-induced internalization of the receptor suggesting that the molecular mechanisms underlying constitutive and agonist-induced internalization of CB1R are different.

  6. Cannabinoids, cannabinoid receptors and tinnitus.

    Science.gov (United States)

    Smith, Paul F; Zheng, Yiwen

    2016-02-01

    One hypothesis suggests that tinnitus is a form of sensory epilepsy, arising partly from neuronal hyperactivity in auditory regions of the brain such as the cochlear nucleus and inferior colliculus. Although there is currently no effective drug treatment for tinnitus, anti-epileptic drugs are used in some cases as a potential treatment option. There is increasing evidence to suggest that cannabinoid drugs, i.e. cannabinoid receptor agonists, can also have anti-epileptic effects, at least in some cases and in some parts of the brain. It has been reported that cannabinoid CB1 receptors and the endogenous cannabinoid, 2-arachidonylglycerol (2-AG), are expressed in the cochlear nucleus and that they are involved in the regulation of plasticity. This review explores the question of whether cannabinoid receptor agonists are likely to be pro- or anti-epileptic in the cochlear nucleus and therefore whether cannabinoids and Cannabis itself are likely to make tinnitus better or worse.

  7. THE CANNABINOID WIN 55,212-2 DECREASES SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS AND THE ONCOGENIC CAP PROTEIN eIF4E IN COLON CANCER CELLS

    Science.gov (United States)

    Sreevalsan, Sandeep; Safe, Stephen

    2013-01-01

    2,3-Dihydro-5-methyl-3-([morpholinyl]methyl)pyrollo(1,2,3-de)-1,4-benzoxazinyl]-[1-naphthaleny]methanone [WIN 55,212-2 (WIN)] is a synthetic cannabinoid that inhibits RKO, HT-29 and SW480 cell growth, induced apoptosis, and downregulated expression of survivin, cyclin D1, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) and its receptor (VEGFR1). WIN also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4, and this is consistent with the observed downregulation of the aforementioned Sp-regulated genes. In addition, we also observed by RNA interference (RNAi) that the oncogenic cap protein eIF4E was an Sp-regulated gene also downregulated by WIN in colon cancer cells. WIN-mediated repression of Sp proteins was not affected by CB receptor antagonists or by knockdown of the receptor but was attenuated by the phosphatase inhibitor sodium orthovanadate or by knockdown of protein phosphatase 2A (PP2A). WIN-mediated repression of Sp1, Sp3 and Sp4 was due to PP2A-dependent downregulation of microRNA-27a (miR-27a) and induction of miR-27a-regulated ZBTB10 which has previously been characterized as an “Sp repressor”. The results demonstrate that the anticancer activity of WIN is due, in part, to PP2A-dependent disruption of miR-27a:ZBTB10 and ZBTB10-mediated repression of Sp transcription factors and Sp-regulated genes including eIF4E. PMID:24030632

  8. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity.

    Science.gov (United States)

    Brents, Lisa K; Gallus-Zawada, Anna; Radominska-Pandya, Anna; Vasiljevik, Tamara; Prisinzano, Thomas E; Fantegrossi, William E; Moran, Jeffery H; Prather, Paul L

    2012-04-01

    K2 and several similar purported "incense products" spiked with synthetic cannabinoids are abused as cannabis substitutes. We hypothesized that metabolism of JWH-073, a prevalent cannabinoid found in K2, contributes to toxicity associated with K2 use. Competition receptor binding studies and G-protein activation assays, both performed by employing mouse brain homogenates, were used to determine the affinity and intrinsic activity, respectively, of potential monohydroxylated (M1, M3-M5) and monocarboxylated (M6) metabolites at cannabinoid 1 receptors (CB1Rs). Surprisingly, M1, M4 and M5 retain nanomolar affinity for CB1Rs, while M3 displays micromolar affinity and M6 does not bind to CB1Rs. JWH-073 displays equivalent efficacy to that of the CB1R full agonist CP-55,940, while M1, M3, and M5 act as CB1R partial agonists, and M4 shows little or no intrinsic activity. Further in vitro investigation by Schild analysis revealed that M4 acts as a competitive neutral CB1R antagonist (K(b)∼40nM). In agreement with in vitro studies, M4 also demonstrates CB1R antagonism in vivo by blunting cannabinoid-induced hypothermia in mice. Interestingly, M4 does not block agonist-mediated responses of other measures in the cannabinoid tetrad (e.g., locomotor suppression, catalepsy or analgesia). Finally, also as predicted by in vitro results, M1 exhibits agonist activity in vivo by inducing significant hypothermia and suppression of locomotor activity in mice. In conclusion, the present study indicates that further work examining the physiological effects of synthetic cannabinoid metabolism is warranted. Such a complex mix of metabolically produced CB1R ligands may contribute to the adverse effect profile of JWH-073-containing products.

  9. Cannabinoid Receptors: A Novel Target for Treating Prostate Cancer

    Science.gov (United States)

    2006-02-01

    prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (a mixed CB1 / CB2 agonist) resulted in...34 CBI receptor, and the "peripheral" CB2 receptor. Recently we have shown that expression levels of both cannabinoid receptors CB1 and CB2 are higher...in human prostate cancer cells than in normal prostate epithelial cells and treatment of LNCaP cells with WIN-55,212-2 (a mixed CB1 / CB2 agonist

  10. Involvement of ERK1/2, cPLA2 and NF-κB in microglia suppression by cannabinoid receptor agonists and antagonists.

    Science.gov (United States)

    Ribeiro, Rachel; Wen, Jie; Li, Shihe; Zhang, Yumin

    2013-01-01

    Cannabinoids have been consistently shown to suppress microglia activation and the release of cytotoxic factors including nitric oxide, superoxide and proinflammatory cytokines. However, the underlying molecular mechanisms and whether the action of cannabinoids is coupled to the activation of cannabinoid type 1 (CB1) and type 2 (CB2) receptors are still poorly defined. In this study we observed that the CB1 and CB2 receptor non-selective or selective agonists dramatically attenuate iNOS induction and ROS generation in LPS-activated microglia. These effects are due to their reduction of phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), cytosolic phospholipase A (cPLA) and activation of NF-κB. Surprisingly, instead of reversing the effect of the respective CB1 and CB2 receptor agonists, the antagonists also suppress iNOS induction and ROS generation in activated microglia by similar mechanisms. Taken together, these results indicate that both cannabinoid receptor agonists and antagonists might suppress microglia activation by CB1 and CB2 receptor independent mechanisms, and provide a new insight into the mechanisms of microglia inhibition by cannabinoids.

  11. Repeated morphine treatment-mediated hyperalgesia, allodynia and spinal glial activation are blocked by co-administration of a selective cannabinoid receptor type-2 agonist

    OpenAIRE

    Tumati, Suneeta; Largent-Milnes, Tally M.; Keresztes, Attila; Ren, Jiyang; Roeske, William R.; Vanderah, Todd W; Varga, Eva V.

    2012-01-01

    Spinal glial activation has been implicated in sustained morphine-mediated paradoxical pain sensitization. Since activation of glial CB2 cannabinoid receptors attenuates spinal glial activation in neuropathies, we hypothesized that CB2 agonists may also attenuate sustained morphine–mediated spinal glial activation and pain sensitization. Our data indicate that co-administration of a CB2-selective agonist (AM 1241) attenuates morphine (intraperitoneal; twice daily; 6 days)-mediated thermal hyp...

  12. Retention and Extinction of Delay Eyeblink Conditioning Are Modulated by Central Cannabinoids

    Science.gov (United States)

    Steinmetz, Adam B.; Freeman, John H.

    2011-01-01

    Rats administered the cannabinoid agonist WIN55,212-2 or the antagonist SR141716A exhibit marked deficits during acquisition of delay eyeblink conditioning, as noted by Steinmetz and Freeman in an earlier study. However, the effects of these drugs on retention and extinction of eyeblink conditioning have not been assessed. The present study…

  13. Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration

    OpenAIRE

    Lax Zapata, Pedro; Esquiva Sobrino, Gema; Altavilla, Cesare; Cuenca Navarro, Nicolás

    2014-01-01

    Cannabinoids have been demonstrated to exert neuroprotective effects on different types of neuronal insults. Here we have addressed the therapeutic potential of the synthetic cannabinoid HU210 on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model for autosomal dominant retinitis pigmentosa (RP). In P23H rats administered with HU210 (100 μg/kg, i.p.) from P24 to P90, ERG recordings showed an amelioration of vision...

  14. Cannabinoids facilitate the swallowing reflex elicited by the superior laryngeal nerve stimulation in rats.

    Directory of Open Access Journals (Sweden)

    Rahman Md Mostafeezur

    Full Text Available Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1 and 2 (CB2. The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN, with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67 or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid neurons in the central pattern generator for swallowing.

  15. JWH-133, a Selective Cannabinoid CB₂ Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Wojcieszak, Jakub; Krzemień, Wojciech; Zawilska, Jolanta B

    2016-04-01

    Endocannabinoid system plays an important role in the regulation of diverse physiological functions. Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders. At present, very little is known about the potential effects of CB2-mimetic drugs on neuronal cells. This study aimed to examine whether JWH-133, a selective CB2 receptor agonist, affects the survival of SH-SY5Y neuroblastoma cell line, a widely used experimental in vitro model to study mechanisms of toxicity and protection in nigral dopaminergic neurons. Cell viability was assessed using two complementary methods: MTT test measuring mitochondrial activity and LDHe test indicating disruption of cell membrane integrity. In addition, cell proliferation was measured using BrdU incorporation assay. JWH-133 (10-40 μM) induced a concentration-dependent decrease of SH-SY5Y cell viability and proliferation rate. Using AM-630, a reverse agonist of CB2 receptors, as well as Z-VAD-FMK, a pan-caspase inhibitor, we demonstrated that the cytotoxic effect of JWH-133 presumably was not mediated by activation of CB2 receptors or by caspase pathway. Results of this work suggest that agonists of CB2 receptors when administered in multiple/high doses may induce neuronal damage.

  16. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    Science.gov (United States)

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.

  17. Unconditioned and conditioned anxiogenic effects of the cannabinoid receptor agonist CP 55,940 in the social interaction test.

    Science.gov (United States)

    Genn, Rachel F; Tucci, Sonia; Marco, Eva M; Viveros, M Paz; File, Sandra E

    2004-03-01

    In spite of the addictive properties of cannabinoids, under certain circumstances, they can evoke strong anxiogenic and aversive responses in humans and in animal tests of anxiety. Effects of different doses of CP 55,940 (10, 20, and 40 microg/kg) were tested in the low-light, familiar (LF) apparatus test condition of the social interaction test. The 40-microg/kg dose of CP 55,940 significantly decreased the time spent in social interaction, indicating an anxiogenic effect. This dose also had an independent effect of reducing locomotor activity. In rats tested undrugged 24 h after testing with 40 microg/kg, there was a significant anxiogenic effect, indicating conditioned anxiety. The group of rats injected with 40 microg/kg immediately after the social interaction test showed an unexpected significant anxiolytic effect when tested undrugged 24 h later. In an additional experiment, rats were tested in the high-light, familiar (HF) apparatus test condition after 10 or 40 microg/kg, and only those that were tested after 40 microg/kg showed an anxiogenic effect on the test day and a conditioned anxiogenic effect when tested undrugged 24 h later. Once again, those injected with 40 microg/kg after the social interaction test displayed an anxiolytic effect when tested undrugged 24 h later. We provide the first evidence for unconditioned and conditioned anxiogenic-like responses to a cannabinoid agonist in the social interaction test.

  18. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors.

    Science.gov (United States)

    Mateos, B; Borcel, E; Loriga, R; Luesu, W; Bini, V; Llorente, R; Castelli, M P; Viveros, M-P

    2011-12-01

    We have analysed the long-term effects of adolescent (postnatal day 28-43) exposure of male and female rats to nicotine (NIC, 1.4 mg/kg/day) and/or the cannabinoid agonist CP 55,940 (CP, 0.4 mg/kg/day) on the following parameters measured in the adulthood: (1) the memory ability evaluated in the object location task (OL) and in the novel object test (NOT); (2) the anxiety-like behaviour in the elevated plus maze; and (3) nicotinic and CB(1) cannabinoid receptors in cingulated cortex and hippocampus. In the OL, all pharmacological treatments induced significant decreases in the DI of females, whereas no significant effects were found among males. In the NOT, NIC-treated females showed a significantly reduced DI, whereas the effect of the cannabinoid agonist (a decrease in the DI) was only significant in males. The anxiety-related behaviour was not changed by any drug. Both, nicotine and cannabinoid treatments induced a long-lasting increase in CB(1) receptor activity (CP-stimulated GTPγS binding) in male rats, and the nicotine treatment also induced a decrease in nicotinic receptor density in the prefrontal cortex of females. The results show gender-dependent harmful effects of both drugs and long-lasting changes in CB(1) and nicotinic receptors.

  19. Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration.

    Science.gov (United States)

    Lax, Pedro; Esquiva, Gema; Altavilla, Cesare; Cuenca, Nicolás

    2014-03-01

    Cannabinoids have been demonstrated to exert neuroprotective effects on different types of neuronal insults. Here we have addressed the therapeutic potential of the synthetic cannabinoid HU210 on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model for autosomal dominant retinitis pigmentosa (RP). In P23H rats administered with HU210 (100 μg/kg, i.p.) from P24 to P90, ERG recordings showed an amelioration of vision loss, as compared to vehicle-administered animals. Under scotopic conditions, the maximum a-wave amplitudes recorded at P60 and P90 were higher in HU210-treated animals, as compared to the values obtained in untreated animals. The scotopic b-waves were significantly higher in treated animals than in untreated rats at P30, P60 and P90. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. HU210-treated animals had 40% more photoreceptors than untreated animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were also preserved in HU210-treated P23H rats. These results indicate that HU210 preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in P23H rats. These data suggest that cannabinoids are potentially useful to delay retinal degeneration in RP patients.

  20. GABAA receptors modulate cannabinoid-evoked hypothermia.

    Science.gov (United States)

    Rawls, S M; Tallarida, R J; Kon, D A; Geller, E B; Adler, Martin W

    2004-05-01

    Cannabinoids evoke hypothermia by stimulating central CB(1) receptors. GABA induces hypothermia via GABA(A) or GABA(B) receptor activation. CB(1) receptor activation increases GABA release in the hypothalamus, a central locus for thermoregulation, suggesting that cannabinoid and GABA systems may be functionally linked in body temperature regulation. We investigated whether GABA receptors modulate the hypothermic actions of [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one] (WIN 55212-2), a selective cannabinoid agonist, in male Sprague-Dawley rats. WIN 55212-2 (2.5 mg/kg im) produced a rapid hypothermia that peaked 45-90 min postinjection. The hypothermia was attenuated by bicuculline (2 mg/kg ip), a GABA(A) antagonist. However, SCH 50911 (1-10 mg/kg ip), a GABA(B) blocker, did not antagonize the hypothermia. Neither bicuculline (2 mg/kg) nor SCH 50911 (10 mg/kg) by itself altered body temperature. We also investigated a possible role for CB(1) receptors in GABA-generated hypothermia. Muscimol (2.5 mg/kg ip), a GABA(A) agonist, or baclofen (5 mg/kg ip), a GABA(B) agonist, evoked a significant hypothermia. Blockade of CB(1) receptors with SR141716A (2.5 mg/kg im) did not antagonize muscimol- or baclofen-induced hypothermia, indicating that GABA-evoked hypothermia does not contain a CB(1)-sensitive component. Our results implicate GABA(A) receptors in the hypothermic actions of cannabinoids and provide further evidence of a functional link between cannabinoid and GABA systems.

  1. Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists

    OpenAIRE

    Pertwee, R. G.

    2010-01-01

    It is widely accepted that non-endogenous compounds that target CB1 and/or CB2 receptors possess therapeutic potential for the clinical management of an ever growing number of disorders. Just a few of these disorders are already treated with Δ9-tetrahydrocannabinol or nabilone, both CB1/CB2 receptor agonists, and there is now considerable interest in expanding the clinical applications of such agonists and also in exploiting CB2-selective agonists, peripherally restricted CB1/CB2 receptor ago...

  2. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    Science.gov (United States)

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  3. WIN55,212-2 protects oligodendrocyte precursor cells in stroke penumbra following permanent focal cerebral ischemia in rats

    OpenAIRE

    SUN, JING; Fang, Yin-quan; Ren, Hong; Tao CHEN; Guo, Jing-Jing; Yan, Jun; SONG, SHU; Zhang, Lu-yong; Liao, Hong

    2012-01-01

    Aim: To explore whether the synthetic cannabinoid receptor agonist WIN55,212-2 could protect oligodendrocyte precursor cells (OPCs) in stroke penumbra, thereby providing neuroprotection following permanent focal cerebral ischemia in rats. Methods: Adult male SD rats were subjected to permanent middle cerebral artery occlusion (p-MCAO). The animals were administered WIN55,212-2 at 2 h, and sacrificed at 24 h after the ischemic insult. The infarct volumes and brain swelling were assessed. The e...

  4. Normal aging in rats and pathological aging in human Alzheimer's disease decrease FAAH activity: modulation by cannabinoid agonists.

    Science.gov (United States)

    Pascual, A C; Martín-Moreno, A M; Giusto, N M; de Ceballos, M L; Pasquaré, S J

    2014-12-01

    Anandamide is an endocannabinoid involved in several physiological functions including neuroprotection. Anandamide is synthesized on demand and its endogenous level is regulated through its degradation, where fatty acid amide hydrolase plays a major role. The aim of this study was to characterize anandamide breakdown in physiological and pathological aging and its regulation by CB1 and CB2 receptor agonists. Fatty acid amide hydrolase activity was analyzed in an independent cohort of human cortical membrane samples from control and Alzheimer's disease patients, and in membrane and synaptosomes from adult and aged rat cerebral cortex. Our results demonstrate that fatty acid amide hydrolase activity decreases in the frontal cortex from human patients with Alzheimer's disease and this effect is mimicked by Aβ(1-40) peptide. This activity increases and decreases in aged rat cerebrocortical membranes and synaptosomes, respectively. Also, while the presence of JWH-133, a CB2 selective agonist, slightly increases anandamide hydrolysis in human controls, it decreases this activity in adults and aged rat cerebrocortical membranes and synaptosomes. In the presence of WIN55,212-2, a mixed CB1/CB2 agonist, anandamide hydrolysis increases in Alzheimer's disease patients but decreases in human controls as well as in adult and aged rat cerebrocortical membranes and synaptosomes. Although a similar profile is observed in fatty acid amide hydrolase activity between aged rat synaptic endings and human Alzheimer's disease brains, it is differently modulated by CB1/CB2 agonists. This modulation leads to a reduced availability of anandamide in Alzheimer's disease and to an increased availability of this endocannabinoid in aging.

  5. Attenuation of HIV-1 replication in macrophages by cannabinoid receptor 2 agonists.

    Science.gov (United States)

    Ramirez, Servio H; Reichenbach, Nancy L; Fan, Shongshan; Rom, Slava; Merkel, Steven F; Wang, Xu; Ho, Wen-Zhe; Persidsky, Yuri

    2013-05-01

    Infiltrating monocytes and macrophages play a crucial role in the progression of HIV-1 infection in the CNS. Previous studies showed that activation of the CB₂ can attenuate inflammatory responses and affect HIV-1 infectivity in T cells and microglia. Here, we report that CB₂ agonists can also act as immunomodulators on HIV-1-infected macrophages. First, our findings indicated the presence of elevated levels of CB₂ expression on monocytes/macrophages in perivascular cuffs of postmortem HIV-1 encephalitic cases. In vitro analysis by FACS of primary human monocytes revealed a step-wise increase in CB₂ surface expression in monocytes, MDMs, and HIV-1-infected MDMs. We next tested the notion that up-regulation of CB₂ may allow for the use of synthetic CB₂ agonist to limit HIV-1 infection. Two commercially available CB₂ agonists, JWH133 and GP1a, and a resorcinol-based CB₂ agonist, O-1966, were evaluated. Results from measurements of HIV-1 RT activity in the culture media of 7 day-infected cells showed a significant decrease in RT activity when the CB₂ agonist was present. Furthermore, CB₂ activation also partially inhibited the expression of HIV-1 pol. CB₂ agonists did not modulate surface expression of CXCR4 or CCR5 detected by FACS. We speculate that these findings indicate that prevention of viral entry is not a central mechanism for CB₂-mediated suppression in viral replication. However, CB₂ may affect the HIV-1 replication machinery. Results from a single-round infection with the pseudotyped virus revealed a marked decrease in HIV-1 LTR activation by the CB₂ ligands. Together, these results indicate that CB₂ may offer a means to limit HIV-1 infection in macrophages.

  6. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Qiang Liu

    Full Text Available Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs in rat dorsal root ganglion (DRG neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration-response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC(50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.

  7. Interaction between orexin A and cannabinoid system in the lateral hypothalamus of rats and effects of subchronic intraperitoneal administration of cannabinoid receptor inverse agonist on food intake and the nutritive utilization of protein.

    Science.gov (United States)

    Merroun, I; El Mlili, N; Martinez, R; Porres, J M; Llopis, J; Ahabrach, H; Aranda, P; Sanchez Gonzalez, C; Errami, M; Lopez-Jurado, M

    2015-04-01

    Crosstalk may occur between cannabinoids and other systems controlling appetite, since cannabinoid receptors are present in hypothalamic circuits involved in feeding regulation, and likely to interact with orexin. In this study, an immunohistochemical approach was used to examine the effect of the intracerebroventricular administration of cannabinoid receptor inverse agonist AM 251 on orexin neuropeptide in the hypothalamic system. AM-activated neurons were identified using c-Fos as a marker of neuronal activity. The results obtained show that AM 251 decreases orexin A immunoreactivity, and that it increases c-Fos-immunoreactive neurons within the hypothalamus when compared with the vehicle-injected control group. We also studied the effects of subchronic intraperitoneal administration of AM 251 on food intake, body weight, and protein utilization. The administration of AM 251 at 1, 2, or 5 mg/kg led to a significant reduction in food intake, along with a significant decrease in the digestive utilization of protein in the groups injected with 1 and 2 mg/kg. There was a dose-related slowdown in weight gain, especially at the doses of 2 and 5 mg/kg, during the initial days of the trial. The absence of this effect in the pair-fed group reveals that any impairment to digestibility was the result of administering AM 251. These data support our conclusion that hypothalamic orexigenic neuropeptides are involved in the reduction of appetite and mediated by the cannabinoid receptor inverse agonist. Furthermore, the subchronic administration of AM 251, in addition to its effect on food intake, has significant effects on the digestive utilization of protein.

  8. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  9. ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs.

    Science.gov (United States)

    Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Miroslaw; Rola, Radoslaw; Maj, Maciej; Chrościńska-Krawczyk, Magdalena; Luszczki, Jarogniew J

    2015-10-22

    Hippocampal neurogenesis plays a very important role in learning and memory functions. In a search for best neurological drugs that protect neuronal cells and stimulate neurogenesis with no side effects, cannabinoids proved to be a strong group of substances having many beneficial properties. The aim of this study was to evaluate the impact of ACEA (arachidonyl-2'-chloroethylamide--a highly selective cannabinoid CB1 receptor agonist) combined with a classical antiepileptic drug sodium valproate (VPA) on neural precursor cells' proliferation and differentiation in the mouse brain. All experiments were performed on adolescent CB57/BL male mice injected i.p. with VPA (10mg/kg), ACEA (10mg/kg) and PMSF (30 mg/kg) (phenylmethylsulfonyl fluoride--a substance protecting ACEA against degradation by the fatty-acid amidohydrolase) for 10 days. Next an acute response of proliferating neural precursor cells to ACEA and VPA administration was evaluated with Ki-67 staining (Time point 1). Next, in order to determine whether acute changes translated into long-term alterations in neurogenesis, proliferating cells were labeled with 5-bromo-2deoxyuridine (BrdU) followed by confocal microscopy used to determine the percentage of BrdU-labeled cells that showed mature cell phenotypes (Time point 2). Results indicate that ACEA with PMSF significantly increase the total number of Ki-67-positive cells when compared to the control group. Moreover, ACEA in combination with VPA increased the number of Ki-67-positive cells, whereas VPA administered alone had no impact on proliferating cells' population. Accordingly, neurogenesis study results indicate that the combination of ACEA+PMSF administered alone and in combination with VPA considerably increases the total number of BrdU-positive cells in comparison to the control group while ACEA+PMSF alone and in combination with VPA increased total numbers of BrdU-positive cells, newly born neurons and astrocytes as compared to VPA group but not to

  10. WIN55, 212-2 promotes differentiation of oligodendrocyte precursor cells and improve remyelination through regulation of the phosphorylation level of the ERK 1/2 via cannabinoid receptor 1 after stroke-induced demyelination.

    Science.gov (United States)

    Sun, Jing; Fang, Yinquan; Chen, Tao; Guo, Jingjing; Yan, Jun; Song, Shu; Zhang, Luyong; Liao, Hong

    2013-01-23

    In stroke, a common cause of neurological disability in adults is that the myelin sheaths are lost through the injury or death of mature oligodendrocytes, and the failure of remyelination may be often due to insufficient proliferation and differentiation of oligodendroglial progenitors. In the current study, we used middle cerebral artery occlusion (MCAO) to induced transient focal cerebral ischemia, and found that WIN55, 212-2 augmented actively proliferating oligodendrocytes measured by CC1 immunoreactive cells within the peri-infarct areas. To establish whether these effects were associated with changes in myelin formation, we analyzed the expression of myelin basic protein (MBP) and myelin ultrastructure. We found that WIN55, 212-2 showed more extensive remyelination than vehicle at 14 days post injection (dpi). The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway may be involved in OPCs differentiation. To determine the regulatory effect of WIN55, 212-2 post-treatment on phospho-ERK 1/2 (p-ERK 1/2) after ischemia/reperfusion, Western blot analysis was performed. We found that WIN55, 212-2 regulated the phosphorylation level of the ERK 1/2 to promote OPCs survival and differentiation. Notably, cannabinoid receptor 1 is coupled to the activation of the ERK cascade. Following rimonabant combined treatment, the effect of WIN55, 212-2 on regulating the phosphorylation level of the ERK 1/2 was reversed, and the effect of accelerated myelin formation was partially inhibited. Together, we first found that WIN55, 212-2 promoted OPCs differentiation and remyelination through regulation of the level of the p-ERK 1/2 via cannabinoid receptor 1.

  11. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Xiuyuan Zhang

    2016-12-01

    Full Text Available Background/Aims: The endocannabinoid signalling (ECS system has been known to regulate glucose homeostasis. Previous studies have suggested that the cannabinoid 2 (CB2 receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance. Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD/streptozotocin (STZ-induced mice. Methods: Diabetes was induced in male ICR mice by HFD/STZ and exposed to a CB2 receptor agonist, SER601, for 2- or 4-weeks via subcutaneous implantation of osmotic minipumps. Glucose and insulin tolerance tests were performed at the end of treatment. Islets were isolated for assessment of β-cell function. Pancreases and skeletal muscles were also obtained for histological analyses. Results: Despite a lack of impact on glucose tolerance, substantial improvement on insulin sensitivity was observed in SER601-treated mice, which could partly be attributed to improved islet β-cell function, shown as increased glucose-induced insulin secretion and insulin content. No changes on islet macrophage infiltration or skeletal muscle fat deposition were detectable from SER601-treated mice. However, a major decrease in body weight was recorded at the end of 4-week SER601 exposure, accompanied by a lack of epididymal adipose mass in SER601-treated mice. Conclusion: Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity. Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.

  12. Receptor subtypes and signal transduction mechanisms contributing to the estrogenic attenuation of cannabinoid-induced changes in energy homeostasis.

    Science.gov (United States)

    Washburn, Neal; Borgquist, Amanda; Wang, Kate; Jeffery, Garrett S; Kelly, Martin J; Wagner, Edward J

    2013-01-01

    We examined the receptor subtypes and signal transduction mechanisms contributing to the estrogenic modulation of cannabinoid-induced changes in energy balance. Food intake and, in some cases, O2 consumption, CO2 production and the respiratory exchange ratio were evaluated in ovariectomized female guinea pigs treated s.c. with the cannabinoid receptor agonist WIN 55,212-2 or its cremephor/ethanol/0.9% saline vehicle, and either with estradiol benzoate (EB), the estrogen receptor (ER) α agonist PPT, the ERβ agonist DPN, the Gq-coupled membrane ER agonist STX, the GPR30 agonist G-1 or their respective vehicles. Patch-clamp recordings were performed in hypothalamic slices. EB, STX, PPT and G-1 decreased daily food intake. Of these, EB, STX and PPT blocked the WIN 55,212-2-induced increase in food intake within 1-4 h. The estrogenic diminution of cannabinoid-induced hyperphagia correlated with a rapid (within 15 min) attenuation of cannabinoid-mediated decreases in glutamatergic synaptic input onto arcuate neurons, which was completely blocked by inhibition of protein kinase C (PKC) and attenuated by inhibition of protein kinase A (PKA). STX, but not PPT, mimicked this rapid estrogenic effect. However, PPT abolished the cannabinoid-induced inhibition of glutamatergic neurotransmission in cells from animals treated 24 h prior. The estrogenic antagonism of this presynaptic inhibition was observed in anorexigenic proopiomelanocortin neurons. These data reveal that estrogens negatively modulate cannabinoid-induced changes in energy balance via Gq-coupled membrane ER- and ERα-mediated mechanisms involving activation of PKC and PKA. As such, they further our understanding of the pathways through which estrogens act to temper cannabinoid sensitivity in regulating energy homeostasis in females.

  13. In vitro metabolism of indomethacin morpholinylamide (BML-190), an inverse agonist for the peripheral cannabinoid receptor (CB2) in rat liver microsomes

    Science.gov (United States)

    Zhang, Qiang; Ma, Peng; Cole, Richard B.; Wang, Guangdi

    2010-01-01

    The in vitro metabolism of an inverse agonist of the peripheral cannabinoid receptor (CB2), indomethacin morpholinylamide (BML-190), has been characterized using rat liver microsomal incubation. BML-190 was found to yield at least 15 metabolic products as identified by HPLC–MS/MS analysis. Four major phase one metabolic pathways either individually, or in combination, were proposed to account for the identified metabolic products: (1) loss of the p-chlorobenzyl group, (2) hydroxylation on the indole or on the morpholine ring, (3) morpholinyl ring opening, and (4) demethylation of the methoxyl group on the indole ring. PMID:20542112

  14. In vitro metabolism of indomethacin morpholinylamide (BML-190), an inverse agonist for the peripheral cannabinoid receptor (CB(2)) in rat liver microsomes.

    Science.gov (United States)

    Zhang, Qiang; Ma, Peng; Cole, Richard B; Wang, Guangdi

    2010-09-11

    The in vitro metabolism of an inverse agonist of the peripheral cannabinoid receptor (CB(2)), indomethacin morpholinylamide (BML-190), has been characterized using rat liver microsomal incubation. BML-190 was found to yield at least 15 metabolic products as identified by HPLC-MS/MS analysis. Four major phase one metabolic pathways either individually, or in combination, were proposed to account for the identified metabolic products: (1) loss of the p-chlorobenzyl group, (2) hydroxylation on the indole or on the morpholine ring, (3) morpholinyl ring opening, and (4) demethylation of the methoxyl group on the indole ring.

  15. Nonlinear isobologram and superadditive withdrawal from cocaine: cannabinoid combinations in planarians.

    Science.gov (United States)

    Raffa, Robert B; Stagliano, Gregory W; Tallarida, Ronald J

    2007-02-05

    Elucidation of interactions between drugs used in polydrug abuse is especially important. However, the necessary experimental conditions for precise quantitative analysis are difficult to establish. Because withdrawal effects of cocaine and the cannabinoid receptor agonist WIN 55212-2 are easily quantified in planarians, demonstration of synergistic effects (P<0.01) of certain ratios of this combination was possible. This synergy, here analyzed with the latest (nonlinear) isobolographic methodology, is now quantitatively established for the first time.

  16. Nonlinear isobologram and superadditive withdrawal from cocaine:cannabinoid combinations in planarians

    OpenAIRE

    Raffa, Robert B.; Stagliano, Gregory W.; Tallarida, Ronald J.

    2006-01-01

    Elucidation of interactions between drugs used in polydrug abuse is especially important. However, the necessary experimental conditions for precise quantitative analysis are difficult to establish. Because withdrawal effects of cocaine and the cannabinoid receptor agonist WIN 55212-2 are easily quantified in planarians, demonstration of synergistic effects (P < 0.01) of certain ratios of this combination was possible. This synergy, here analyzed with the latest (nonlinear) isobolographic met...

  17. Evaluation of selective cannabinoid CB(1) and CB(2) receptor agonists in a mouse model of lipopolysaccharide-induced interstitial cystitis.

    Science.gov (United States)

    Tambaro, Simone; Casu, Maria Antonietta; Mastinu, Andrea; Lazzari, Paolo

    2014-04-15

    Interstitial cystitis is a debilitating bladder inflammation disorder. To date, the understanding of the causes of interstitial cystitis remains largely fragmentary and there is no effective treatment available. Recent experimental results have shown a functional role of the endocannabinoid system in urinary bladder. In this study, we evaluated the anti-inflammatory effect of selective cannabinoid CB1 and CB2 receptor agonists in a mouse model of interstitial cystitis. Bladder inflammation was induced in mice by lipopolysaccharide (LPS) and whole bladders were removed 24h later. LPS induced a significant increase of the contractile amplitude in spontaneous activity and a hypersensitivity to exogenous acetylcholine-induced contraction of whole-isolated bladder. Next, we evaluated the anti-inflammatory activity of cannabinoidergic compounds by pretreating mice with CB1 or CB2 selective agonist compounds, respectively ACEA and JWH015. Interestingly, JWH015, but not ACEA, antagonized LPS-induced bladder inflammation. Additionally, anti-inflammatory activity was studied by evaluation, leukocytes mucosa infiltration, myeloperoxidase activity, and mRNA expression of pro-inflammatory interleukin (IL-1α and IL-1β), tumor necrosis factor-alpha (TNF-α) and cannabinoid CB1 and CB2 receptors. JWH015 significantly decreased leukocytes infiltration in both submucosa and mucosa, as well as the myeloperoxydase activity, in LPS treated mice. JWH015 reduced mRNA expression of IL-1α, IL-1β, and TNF-α. LPS treatment increased expression of bladder CB2 but not CB1 mRNA. Taken together, these findings strongly suggest that modulation of the cannabinoid CB2 receptors might be a promising therapeutic strategy for the treatment of bladder diseases and conditions characterized by inflammation, such as interstitial cystitis.

  18. Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus.

    Science.gov (United States)

    Blair, Robert E; Deshpande, Laxmikant S; Sombati, Sompong; Falenski, Katherine W; Martin, Billy R; DeLorenzo, Robert J

    2006-06-01

    Cannabinoids have been shown to have anticonvulsant properties, but no studies have evaluated the effects of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy (AE) and status epilepticus (SE). This study investigated the anticonvulsant properties of the cannabinoid receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolol[1,2,3 de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone (WIN 55,212-2) in primary hippocampal neuronal culture models of both AE and SE. WIN 55,212-2 produced dose-dependent anticonvulsant effects against both spontaneous recurrent epileptiform discharges (SRED) (EC50 = 0.85 microM) and SE (EC50 = 1.51 microM), with total suppression of seizure activity at 3 microM and of SE activity at 5 microM. The anticonvulsant properties of WIN 55,212-2 in these preparations were both stereospecific and blocked by the cannabinoid type-1 (CB1) receptor antagonist N-(piperidin-1-yl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A; 1 microM), showing a CB1 receptor-dependent pathway. The inhibitory effect of WIN 55,212-2 against low Mg2+-induced SE is the first observation in this model of total suppression of SE by a selective pharmacological agent. The clinically used anticonvulsants phenytoin and phenobarbital were not able to abolish low Mg2+-induced SE at concentrations up to 150 microM. The results from this study show CB1 receptor-mediated anticonvulsant effects of the cannabimimetic WIN 55,212-2 against both SRED and low Mg2+-induced SE in primary hippocampal neuronal cultures and show that these in vitro models of AE and SE may represent powerful tools to investigate the molecular mechanisms mediating the effects of cannabinoids on neuronal excitability.

  19. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats.

    Directory of Open Access Journals (Sweden)

    Hila Abush

    Full Text Available The use of cannabis can impair cognitive function, especially short-term memory. A controversial question is whether long-term cannabis use during the late-adolescence period can cause irreversible deficits in higher brain function that persist after drug use stops. In order to examine the short- and long-term effects of chronic exposure to cannabinoids, rats were administered chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg for two weeks during the late adolescence period (post-natal days 45-60 and tested for behavioral and electrophysiological measures of cognitive performance 24 hrs, 10 and 30 days after the last drug injection. The impairing effects of chronic WIN on short-term memory in the water maze and the object recognition tasks as well as long-term potentiation (LTP in the ventral subiculum (vSub-nucleus accumbens (NAc pathway were temporary as they lasted only 24 h or 10 d after withdrawal. However, chronic WIN significantly impaired hippocampal dependent short-term memory measured in the object location task 24 hrs, 10, 30, and 75 days after the last drug injection. Our findings suggest that some forms of hippocampal-dependent short-term memory are sensitive to chronic cannabinoid administration but other cognitive impairments are temporary and probably result from a residue of cannabinoids in the brain or acute withdrawal effects from cannabinoids. Understanding the effects of cannabinoids on cognitive function may provide us with tools to overcome these impairments and for cannabinoids to be more favorably considered for clinical use.

  20. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai P.; Singh, Narendra P. [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Singh, Balwan [National Primate Research Center, Emory University, Atlanta GA 30329 (United States); Price, Robert L. [Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Mitzi [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Prakash S., E-mail: Prakash.Nagarkatti@uscmed.sc.edu [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)

    2012-01-15

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and

  1. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function.

    Science.gov (United States)

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    2017-01-01

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CB1 receptor agonist WIN55,212-2 (WIN) in rats. Lister Hooded male rats were treated intramuscularly with nandrolone (15mg/kg) or vehicle for 14 consecutive days, and then allowed to self-administer WIN (12.5μg/kg/infusion) intravenously. After reaching stable drug intake, self-administration behavior was extinguished to examine drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Other behavioral parameters presumed to influence drug-taking and drug-seeking behaviors were examined to gain more insight into the behavioral specificity of nandrolone treatment. Finally, animals were sacrificed for analysis of CB1 receptor density and function in selected brain areas. We found that nandrolone-treated rats self-administered up to 2 times more cannabinoid than vehicle-treated rats, but behaved similarly to control rats when tested for drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Enhanced cannabinoid intake by nandrolone-treated rats was not accompanied by changes in locomotor activity, sensorimotor gating, or memory function. However, our molecular data show that after chronic WIN self-administration nandrolone-treated rats display altered CB1 receptor density and function in selected brain areas. We hypothesize that increased cannabinoid self-administration in nandrolone-treated rats results from a nandrolone-induced decrease in reward function, which rats seem to compensate by voluntarily increasing their cannabinoid intake. Altogether, our findings corroborate the hypothesis that chronic exposure to anabolic-androgenic steroids induces dysfunction of the reward pathway in rats and might represent a potential risk factor for abuse of

  2. Cannabinoid CB1 receptor agonists do not decrease, but may increase, acoustic trauma-induced tinnitus in rats

    Directory of Open Access Journals (Sweden)

    Yiwen eZheng

    2015-03-01

    Full Text Available Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In the present study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC and cannabidiol (CBD, delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: 1 sham (i.e. no acoustic trauma with vehicle treatment; 2 sham with drug treatment (i.e. delta-9-THC + CBD; 3 acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and 4 acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioural testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage.

  3. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons.

    Science.gov (United States)

    Laprairie, Robert B; Bagher, Amina M; Kelly, Melanie E M; Dupré, Denis J; Denovan-Wright, Eileen M

    2014-09-05

    Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC)) on arrestin2-, Gα(i/o)-, Gβγ-, Gα(s)-, and Gα(q)-mediated intracellular signaling in the mouse STHdh(Q7/Q7) cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gα(i/o) and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gα(q)-dependent pathways. CP55,940 and CBD both signaled through Gα(s). CP55,940, but not CBD, activated downstream Gα(s) pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias.

  4. Converging action of alcohol consumption and cannabinoid receptor activation on adult hippocampal neurogenesis.

    Science.gov (United States)

    Alén, Francisco; Mouret, Aurélie; Viveros, Maria-Paz; Llorente, Ricardo; Lepousez, Gabriel; Lledo, Pierre-Marie; López-Moreno, José Antonio

    2010-03-01

    Alcoholism is characterized by successive periods of abstinence and relapse, resulting from long-lasting changes in various circuits of the central nervous system. Accumulating evidence points to the endocannabinoid system as one of the most relevant biochemical systems mediating alcohol addiction. The endocannabinoid system regulates adult neurogenesis, a form of long-lasting adult plasticity that occurs in a few areas of the brain, including the dentate gyrus. Because exposure to psychotropic drugs regulates adult neurogenesis, it is possible that neurogenesis might be implicated in the pathophysiology, and hence treatment, of neurobiological illnesses related to drugs of abuse. Here, we investigated the sensitivity of adult hippocampal neurogenesis to alcohol and the cannabinoid receptor agonist WIN 55,212-2 (WIN). Specifically, we analysed the potential link between alcohol relapse, cannabinoid receptor activation, and adult neurogenesis. Adult rats were exposed to subchronic alcohol binge intoxication and received the cannabinoid receptor agonist WIN. Another group of rats were subjected to an alcohol operant self-administration task. Half of these latter animals had continuous access to alcohol, while the other half were subjected to alcohol deprivation, with or without WIN administration. WIN treatment, when administered during alcohol deprivation, resulted in the greatest increase in alcohol consumption during relapse. Together, forced alcohol binge intoxication and WIN administration dramatically reduced hippocampal neurogenesis. Furthermore, adult neurogenesis inversely correlated with voluntary consumption of alcohol. These findings suggest that adult hippocampal neurogenesis is a key factor involved in drug abuse and that it may provide a new strategy for the treatment of alcohol addiction and dependence.

  5. Epileptiform activity in the CA1 region of the hippocampus becomes refractory to attenuation by cannabinoids in part because of endogenous γ-aminobutyric acid type B receptor activity.

    Science.gov (United States)

    Messer, Ricka D; Levine, Eric S

    2012-07-01

    The anticonvulsant properties of marijuana have been known for centuries. The recently characterized endogenous cannabinoid system thus represents a promising target for novel anticonvulsant agents; however, administration of exogenous cannabinoids has shown mixed results in both human epilepsy and animal models. The ability of cannabinoids to attenuate release of both excitatory and inhibitory neurotransmitters may explain the variable effects of cannabinoids in different models of epilepsy, but this has not been well explored. Using acute mouse brain slices, we monitored field potentials in the CA1 region of the hippocampus to characterize systematically the effects of the cannabinoid agonist WIN55212-2 (WIN) on evoked basal and epileptiform activity. WIN, acting presynaptically, significantly reduced the amplitude and slope of basal field excitatory postsynaptic potentials as well as stimulus-evoked epileptiform responses induced by omission of magnesium from the extracellular solution. In contrast, the combination of omission of magnesium plus elevation of potassium induced an epileptiform response that was refractory to attenuation by WIN. The effect of WIN in this model was partially restored by blocking γ-aminobutyric acid type B (GABA(B) ), but not GABA(A) , receptors. Subtle differences in models of epileptiform activity can profoundly alter the efficacy of cannabinoids. Endogenous GABA(B) receptor activation played a role in the decreased cannabinoid sensitivity observed for epileptiform activity induced by omission of magnesium plus elevation of potassium. These results suggest that interplay between presynaptic G protein-coupled receptors with overlapping downstream targets may underlie the variable efficacy of cannabinoids in different models of epilepsy.

  6. Interaction of a Cannabinoid-2 Agonist With Tramadol on Nociceptive Thresholds and Immune Responses in a Rat Model of Incisional Pain.

    Science.gov (United States)

    Stachtari, Chrysoula C; Thomareis, Olympia N; Tsaousi, Georgia G; Karakoulas, Konstantinos A; Chatzimanoli, Foteini I; Chatzopoulos, Stavros A; Vasilakos, Dimitrios G

    The aim of this study was to elucidate the antinociceptive interaction between cannabinoids and tramadol and their impact on proinflammatory response, in terms of serum intereleukin-6 (IL-6) and interleukin-2 (IL-2) release, in a rat model of incisional pain. Prospective randomized trial assessing the individual or combined application of intraperitoneal tramadol (10 mg/kg) and the selective cannabinoid-2 (CB-2) agonist (R,S)-AM1241 (1 mg/kg) applied postsurgical stress stimulus. Pharmacological specificity was established by antagonizing tramadol with naloxone (0.3 mg/kg) and (R,S)-AM1241 with SR144528 (1 mg/kg). Thermal allodynia was assessed by hot plate test 30 (T30), 60 (T60), and 120 (T120) minutes after incision. Blood samples for plasma IL-6 and IL-2 level determination were obtained 2 hours after incision. Data from 42 rats were included in the final analyses. Significant augmentation of thermal threshold was observed at all time points, after administration of either tramadol or (R,S)-AM1241 compared with the control group (P = 0.004 and P = 0.015, respectively). The combination of (R,S)-AM1241 plus tramadol promoted the induced antinociception in an important manner compared with control (P = 0.002) and (R,S)-AM1241 (P = 0.022) groups. Although the antiallodynic effect produced by tramadol was partially reversed by naloxone 30 and 60 minutes after incision (P = 0.028 and P = 0.016, respectively), SR144528 blocked the effects of (R,S)-AM1241 administration in a significant manner (P = 0.001) at all time points. Similarly, naloxone plus SR144528 also blocked the effects of the combination of (R,S)-AM1241 with tramadol at all time points (P = 0.000). IL-6 level in (R,S)-AM1241 plus tramadol group was significantly attenuated compared with control group (P = 0.000). Nevertheless, IL-2 levels remained unchanged in all experimental groups. It seems that the concomitant administration of a selective CB-2 agonist with tramadol in incisional pain model may

  7. Cannabinoids modulate spontaneous synaptic activity in retinal ganglion cells.

    Science.gov (United States)

    Middleton, T P; Protti, D A

    2011-09-01

    The endocannabinoid (ECB) system has been found throughout the central nervous system and modulates cell excitability in various forms of short-term plasticity. ECBs and their receptors have also been localized to all retinal cells, and cannabinoid receptor activation has been shown to alter voltage-dependent conductances in several different retinal cell types, suggesting a possible role for cannabinoids in retinal processing. Their effects on synaptic transmission in the mammalian retina, however, have not been previously investigated. Here, we show that exogenous cannabinoids alter spontaneous synaptic transmission onto retinal ganglion cells (RGCs). Using whole-cell voltage-clamp recordings in whole-mount retinas, we measured spontaneous postsynaptic currents (SPSCs) in RGCs in adult and young (P14-P21) mice. We found that the addition of an exogenous cannabinoid agonist, WIN55212-2 (5 μM), caused a significant reversible reduction in the frequency of SPSCs. This change, however, did not alter the kinetics of the SPSCs, indicating a presynaptic locus of action. Using blockers to isolate inhibitory or excitatory currents, we found that cannabinoids significantly reduced the release probability of both GABA and glutamate, respectively. While the addition of cannabinoids reduced the frequency of both GABAergic and glutamatergic SPSCs in both young and adult mice, we found that the largest effect was on GABA-mediated currents in young mice. These results suggest that the ECB system may potentially be involved in the modulation of signal transmission in the retina. Furthermore, they suggest that it might play a role in the developmental maturation of synaptic circuits, and that exogenous cannabinoids are likely able to disrupt retinal processing and consequently alter vision.

  8. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

    Science.gov (United States)

    Hashemizadeh, Shiva; Sardari, Maryam; Rezayof, Ameneh

    2014-06-03

    In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats. A conditioned place preference (CPP) apparatus was used for the assessment of rewarding effects of the drugs in adult male Wistar rats. Subcutaneous (s.c.) administration of nicotine (0.2mg/kg) induced a significant CPP, without any effect on the locomotor activity during the testing phase. Intra-BLA microinjection of a non-selective cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.1-0.5 μg/rat) with an ineffective dose of nicotine (0.1mg/kg, s.c.) induced a significant place preference. On the other hand, intra-BLA administration of AM251 (20-60 ng/rat), a selective cannabinoid CB1 receptor antagonist inhibited the acquisition of nicotine-induced place preference. It should be considered that the microinjection of the same doses of WIN 55,212-2 or AM251 into the BLA, by itself had no effect on the CPP score. The administration of a higher dose of AM251 (60 ng/rat) during the acquisition decreased the locomotor activity of animals on the testing phase. Interestingly, the microinjection of AM251 (20 and 40 ng/rat), but not WIN55,212-2 (0.1-0.5 μg/rat), into the BLA inhibited the expression of nicotine-induced place preference without any effect on the locomotor activity. Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.

  9. Detailed analysis of food-reinforced operant lever pressing distinguishes effects of a cannabinoid CB1 inverse agonist and dopamine D1 and D2 antagonists.

    Science.gov (United States)

    McLaughlin, P J; Winston, K M; Swezey, L A; Vemuri, V K; Makriyannis, A; Salamone, J D

    2010-07-01

    Overt similarities exist between the effects of systemic cannabinoid CB1 inverse agonists and dopamine (DA) antagonists on appetitive behavior. The present set of studies was undertaken to apply a fine-grained analysis of food-reinforced operant lever pressing in rats in order to compare the pattern of effects produced by administration of the CB1 inverse agonist AM 251 and those induced by the DA D1 antagonist SKF 83566, and the D2 antagonist raclopride. Three groups of rats were trained on a fixed-ratio 5 (FR5) schedule and administered these compounds over a range of doses expected to suppress responding. All three drugs produced a dose-related suppression of total lever pressing. In addition to main effects of dose, regression analyses were performed to determine which of several response timing- and rate-related variables correlated most strongly with overall responding in each group. It was found that total session time spent pausing from responding was significantly better at predicting responding in the AM 251 group, while both DA antagonists produced significantly stronger regression coefficients (versus AM 251) from fast responding measures. These results suggest that, while several similarities exist, CB1, D1, and D2 antagonists are not identical in their pattern of suppression of food-maintained lever pressing.

  10. Effects of CP 55,940 — agonist of CB1 cannabinoid receptors on ghrelin and somatostatin producing cells in the rat pancreas

    Directory of Open Access Journals (Sweden)

    Alicja Lewandowska

    2012-04-01

    Full Text Available Cannabinoids participate in the modulation of numerous functions in the human organism, increasing the sense of hunger, affecting carbohydrate and lipid metabolism, and controlling systemic energy balance mechanisms. Moreover, they influence the endocrine system functions, acting via two types of receptors, CB1 and CB2. The aim of the present study was to examine the number, distribution and activity of ghrelin and somatostatin producing endocrine cells in the pancreas of rats after a single administration of selective CP 55,940 agonist of CB1 receptor. The study was performed on 20 rats. Neuroendocrine cells were identified by immunohistochemical reactions, involving specific antibodies against ghrelin and somatostatin. The distribution and number of ghrelin- and somatostatin-immunoreactive cells were separately studied in five pancreas islets of each section. A performed analysis showed a decreased number of somatostatin-immunoreactive cells and a weak immunoreactivity of ghrelin and somatostatin containing neuroendocrine cells in the pancreatic islets of experimental rats, compared to control animals. The obtained results suggest that a single administration of a selective CP 55,940 agonist of CB1 receptor influences the immunoreactivity of endocrine cells with ghrelin and somatostatin expression in the pancreas islets.

  11. Suppression of outward K⁺ currents by WIN55212-2 in rat retinal ganglion cells is independent of CB1/CB2 receptors.

    Science.gov (United States)

    Zhang, C-Q; Wu, H-J; Wang, S-Y; Yin, S; Lu, X-J; Miao, Y; Wang, X-H; Yang, X-L; Wang, Z

    2013-12-03

    Cannabinoid CB1 receptor (CB1R) signaling system is extensively distributed in the vertebrate retina. Activation of CB1Rs regulates a variety of functions of retinal neurons through modulating different ion channels. In the present work we studied effects of this receptor signaling on K(+) channels in retinal ganglion cells by patch-clamp techniques. The CB1R agonist WIN55212-2 (WIN) suppressed outward K(+) currents in acutely isolated rat retinal ganglion cells in a dose-dependent manner, with an IC50 of 4.7 μM. We further showed that WIN mainly suppressed the tetraethylammonium (TEA)-sensitive K(+) current component. While CB1Rs were expressed in rat retinal ganglion cells, the WIN effect on K(+) currents was not blocked by either AM251/SR141716, specific CB1R antagonists, or AM630, a selective CB2R antagonist. Consistently, cAMP-protein kinase A (PKA) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways were unlikely involved in the WIN-induced suppression of the K(+) currents because both PKA inhibitors H-89/Rp-cAMP and MAPK/ERK1/2 inhibitor U0126 failed to block the WIN effects. WIN-induced suppression of the K(+) currents was not observed when WIN was intracellularly applied. Furthermore, an endogenous ligand of the cannabinoid receptor anandamide, the specific CB1R agonist ACEA and the selective CB2R agonist CB65 also suppressed the K(+) currents, and the effects were not blocked by AM251/SR141716 or AM630 respectively. All these results suggest that the WIN-induced suppression of the outward K(+) currents in rat retinal ganglion cells, thereby regulating the cell excitability, were not through CB1R/CB2R signaling pathways.

  12. Cannabinoids and traumatic stress modulation of contextual fear extinction and GR expression in the amygdala-hippocampal-prefrontal circuit.

    Science.gov (United States)

    Ganon-Elazar, Eti; Akirav, Irit

    2013-09-01

    Considerable evidence suggests that cannabinoids modulate the behavioral and physiological response to stressful events. We have recently shown that activating the cannabinoid system using the CB1/CB2 receptor agonist WIN55,212-2 (WIN) in proximity to exposure to single-prolonged stress (SPS), a rat model of emotional trauma, prevented the stress-induced enhancement of acoustic startle response, the impairment in avoidance extinction and the enhanced negative feedback on the hypothalamic-pituitary-adrenal (HPA) axis (Ganon-Elazar and Akirav, 2012). Some of the effects were found to be mediated by CB1 receptors in the basolateral amygdala (BLA). Here we examined whether cannabinoid receptor activation in a putative brain circuit that includes the BLA, hippocampus and prefrontal cortex (PFC), could prevent the effects of traumatic stress on contextual fear extinction and alterations in glucocorticoid receptor (GR) protein levels. We found that: (i) SPS impaired contextual fear extinction tested one week after trauma exposure and that WIN prevented the stress-induced impairment of extinction when microinjected immediately after trauma exposure into the BLA or hippocampus (5 μg), but not when microinjected into the PFC, (ii) the ameliorating effects of WIN on contextual extinction were prevented by blocking GRs in the BLA and hippocampus, and (iii) SPS up regulated GRs in the BLA, PFC and hippocampus and systemic WIN administration (0.5 mg/kg) after trauma exposure normalized GR levels in the BLA and hippocampus, but not in the PFC. Cannabinoid receptor activation in the aftermath of trauma exposure may regulate the emotional response to the trauma and prevent stress-induced impairment of extinction and GR up regulation through the mediation of CB1 receptors in the BLA and hippocampus. Taken together, the findings suggest that the interaction between the cannabinoid and glucocorticoid systems is crucial in the modulation of emotional trauma.

  13. Cannabinoids Prevent the Development of Behavioral and Endocrine Alterations in a Rat Model of Intense Stress

    Science.gov (United States)

    Ganon-Elazar, Eti; Akirav, Irit

    2012-01-01

    Cannabinoids have recently emerged as a possible treatment of stress- and anxiety-related disorders such as post-traumatic stress disorder (PTSD). Here, we examined whether cannabinoid receptor activation could prevent the effects of traumatic stress on the development of behavioral and neuroendocrine measures in a rat model of PTSD, the single-prolonged stress (SPS) model. Rats were injected with the CB1/CB2 receptor agonist WIN55,212-2 (WIN) systemically or into the basolateral amygdala (BLA) at different time points following SPS exposure and were tested 1 week later for inhibitory avoidance (IA) conditioning and extinction, acoustic startle response (ASR), hypothalamic-pituitary-adrenal (HPA) axis function, and anxiety levels. Exposure to SPS enhanced conditioned avoidance and impaired extinction while enhancing ASR, negative feedback on the HPA axis, and anxiety. WIN (0.5 mg/kg) administered intraperitoneally 2 or 24 h (but not 48 h) after SPS prevented the trauma-induced alterations in IA conditioning and extinction, ASR potentiation, and HPA axis inhibition. WIN microinjected into the BLA (5 μg/side) prevented SPS-induced alterations in IA and ASR. These effects were blocked by intra-BLA co-administration of the CB1 receptor antagonist AM251 (0.3 ng/side), suggesting the involvement of CB1 receptors. These findings suggest that (i) there may be an optimal time window for intervention treatment with cannabinoids after exposure to a highly stressful event, (ii) some of the preventive effects induced by WIN are mediated by an activation of CB1 receptors in the BLA, and (iii) cannabinoids could serve as a pharmacological treatment of stress- and trauma-related disorders. PMID:21918506

  14. Mitigation win-win

    Science.gov (United States)

    Moran, Dominic; Lucas, Amanda; Barnes, Andrew

    2013-07-01

    Win-win messages regarding climate change mitigation policies in agriculture tend to oversimplify farmer motivation. Contributions from psychology, cultural evolution and behavioural economics should help to design more effective policy.

  15. Role for neuronal nitric-oxide synthase in cannabinoid-induced neurogenesis.

    Science.gov (United States)

    Kim, Sun Hee; Won, Seok Joon; Mao, Xiao Ou; Ledent, Catherine; Jin, Kunlin; Greenberg, David A

    2006-10-01

    Cannabinoids, acting through the CB1 cannabinoid receptor (CB1R), protect the brain against ischemia and related forms of injury. This may involve inhibiting the neurotoxicity of endogenous excitatory amino acids and downstream effectors, such as nitric oxide (NO). Cannabinoids also stimulate neurogenesis in the adult brain through activation of CB1R. Because NO has been implicated in neurogenesis, we investigated whether cannabinoid-induced neurogenesis, like cannabinoid neuroprotection, might be mediated through alterations in NO production. Accordingly, we measured neurogenesis in dentate gyrus (DG) and subventricular zone (SVZ) of CB1R-knockout (KO) and wild-type mice, some of whom were treated with the cannabinoid agonist R(+)-Win 55212-2 [(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone] or the NO synthase (NOS) inhibitor 7-nitroindazole (7-NI). NOS activity was increased by approximately 25%, whereas bromodeoxyuridine (BrdU) labeling of newborn cells in DG and SVZ was reduced by approximately 50% in CB1R-KO compared with wild-type mice. 7-NI increased BrdU labeling in both DG and SVZ and to a greater extent in CB1R-KO than in wild-type mice. In addition, R(+)-Win 55212-2 and 7-NI enhanced BrdU incorporation into neuron-enriched cerebral cortical cultures to a similar maximal extent and in nonadditive fashion, consistent with a shared mechanism of action. Double-label confocal microscopy showed coexpression of BrdU and the neuronal lineage marker doublecortin (Dcx) in DG and SVZ of untreated and 7-NI-treated CB1R-KO mice, and 7-NI increased the number of Dcx- and BrdU/Dcx-immunoreactive cells in SVZ and DG. Thus, cannabinoids appear to stimulate adult neurogenesis by opposing the antineurogenic effect of NO.

  16. (4-(Bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229): a new cannabinoid CB1 receptor inverse agonist from the class of benzhydryl piperazine analogs.

    Science.gov (United States)

    Mahmoud, Mariam M; Olszewska, Teresa; Liu, Hui; Shore, Derek M; Hurst, Dow P; Reggio, Patricia H; Lu, Dai; Kendall, Debra A

    2015-02-01

    Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5'-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A.

  17. Contribution of hypothermia and CB1 receptor activation to protective effects of TAK-937, a cannabinoid receptor agonist, in rat transient MCAO model.

    Directory of Open Access Journals (Sweden)

    Noriko Suzuki

    Full Text Available BACKGROUND: Cannabinoid (CB receptor agonists are expected to alleviate ischemic brain damage by modulating neurotransmission and neuroinflammatory responses via CB(1 and CB(2 receptors, respectively. In a previous study, TAK-937, a novel potent and selective CB(1 and CB(2 receptor agonist, was shown to exert significant cerebroprotective effects accompanied by hypothermia after transient middle cerebral artery occlusion (MCAO in rats. Sustained hypothermia itself induces significant neuroprotective effects. In the present studies, we examined the relative contribution of hypothermia and CB(1 receptor activation to the cerebroprotective effects of TAK-937. METHODOLOGY/PRINCIPAL FINDINGS: Using a multichannel brain temperature controlling system we developed, the brain temperature of freely moving rats was telemetrically monitored and maintained between 37 and 38°C during intravenous infusion of TAK-937 (100 µg/kg/h or vehicle for 24 h after 2 h MCAO. AM251, a selective CB(1 receptor antagonist, was administered intraperitoneally at 30 mg/kg 30 min before starting intravenous infusion of TAK-937 (100 µg/kg/h for 24 h. Rats were sacrificed and their brains were isolated 26 h after MCAO in both experiments. When the hypothermic effect of TAK-937 was completely reversed by a brain temperature controlling system, the infarct-reducing effect of TAK-937 was attenuated in part, but remained significant. On the other hand, concomitant AM251 treatment with TAK-937 completely abolished the hypothermic and infarct-reducing effects of TAK-937. CONCLUSIONS/SIGNIFICANCE: We conclude that the cerebroprotective effects of TAK-937 were at least in part mediated by induction of hypothermia, and mainly mediated by CB(1 receptor activation.

  18. Spicing thing up: Synthetic cannabinoids

    Science.gov (United States)

    Spaderna, Max; Addy, Peter H; D’Souza, Deepak Cyril

    2013-01-01

    Rationale Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. Objectives The availability, acute subjective effects—including self-reports posted on Erowid—laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Results Spice is sold under the guise of potpourri or incense. Unlike THC, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid-receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. Conclusions There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug-detection tests for synthetic cannabinoids need to become clinically available. PMID:23836028

  19. Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice.

    Science.gov (United States)

    Patel, Kartikkumar Navinchandra; Joharapurkar, Amit Arvind; Patel, Vishal; Kshirsagar, Samadhan Govind; Bahekar, Rajesh; Srivastava, Brijesh Kumar; Jain, Mukul R

    2014-12-01

    Cannabinoid 1 (CB1) receptor antagonists reduce body weight and improve insulin sensitivity. Preclinical data indicates that an acute dose of CB1 antagonist rimonabant causes an increase in blood glucose. A stable analog of glucagon-like peptide 1 (GLP-1), exendin-4 improves glucose-stimulated insulin secretion in pancreas, and reduces appetite through activation of GLP-1 receptors in the central nervous system and liver. We hypothesized that the insulin secretagogue effect of GLP-1 agonist exendin-4 may synergize with the insulin-sensitizing action of rimonabant. Intraperitoneal as well as intracerebroventricular administration of rimonabant increased serum glucose upon glucose challenge in overnight fasted, diet-induced obese C57 mice, with concomitant rise in serum glucagon levels. Exendin-4 reversed the acute hyperglycemia induced by rimonabant. The combination of exendin-4 and rimonabant showed an additive effect in the food intake, and sustained body weight reduction upon repeated dosing. The acute efficacy of both the compounds was additive for inducing nausea-like symptoms in conditioned aversion test in mice, whereas exendin-4 treatment antagonized the effect of rimonabant on forced swim test upon chronic dosing. Thus, the addition of exendin-4 to rimonabant produces greater reduction in food intake owing to increased aversion, but reduces the other central nervous system side effects of rimonabant. The hyperglucagonemia induced by rimonabant is partially responsible for enhancing the antiobesity effect of exendin-4.

  20. Nonpsychotropic cannabinoids, abnormal cannabidiol and canabigerol-dimethyl heptyl, act at novel cannabinoid receptors to reduce intraocular pressure.

    Science.gov (United States)

    Szczesniak, Anna-Maria; Maor, Yehoshua; Robertson, Harold; Hung, Orlando; Kelly, Melanie E M

    2011-10-01

    The objective of our study was to examine the pharmacology of the intraocular pressure (IOP)-lowering actions of the behaviorally inactive cannabinoids, abnormal cannabidiol (abn-CBD), and a cannabigerol analog, cannabigerol-dimethyl heptyl (CBG-DMH), in comparison to that of the nonselective cannabinoid 1 receptor (CB(1)R) and CB(2)R agonist, WIN55,212-2, in Brown Norway rats. The IOP was measured noninvasively using a hand-held tonometer in nonanesthetized animals. The IOP measurements were taken every 15 min for a period of 2 h after drug administration. All drugs were administered via intraperitoneal (i.p.) injections, and abn-CBD and CBG-DMH were also given topically. Both abn-CBD and CBG-DMH reduced IOP when administrated i.p. at doses of ≥2.5 mg/kg or topically at concentrations of 1%-2%. The IOP-lowering effects of abn-CBD and CBG-DMH were reduced by i.p. administration of O-1918 (2.5 mg/kg), a selective antagonist of the abn-CBD-sensitive cannabinoid-related receptor (CBx), but were unaffected by the CB(1)R antagonist, AM251 (2.5 mg/kg), or the CB(2)R antagonist, AM630 (2.5 mg/kg). In contrast, the IOP-lowering action of WIN55,212-2 was completely blocked by the CB(1)R-selective antagonist, AM251, and was unaffected by the CBx receptor antagonist, O-1918. However, similar to the nonpsychotropic cannabinoids, the ocular hypotensive actions of WIN55,212-2 were also insensitive to block by the CB(2)R antagonist, AM630. Consistent with this, the selective CB(2)R agonist, HU-308 (2 mg/kg) failed to reduce IOP in Brown Norway rats. Concurrent application of a dose of WIN55,212-2 that was subthreshold to reduce IOP (0.25 mg/kg), together with a topical dose of either abn-CBD (0.5%) or CBG-DMH (0.25%), respectively, potentiated the ocular hypotensive effect of either compound applied alone. This study demonstrates that the atypical cannabinoid, abn-CBD, and the cannabigerol analog, CBG-DMH, decrease IOP in the normotensive Brown Norway rat eye independent of CB

  1. A novel role of cannabinoids: implication in the fever induced by bacterial lipopolysaccharide.

    Science.gov (United States)

    Benamar, Khalid; Yondorf, Menachem; Meissler, Joseph J; Geller, Ellen B; Tallarida, Ronald J; Eisenstein, Toby K; Adler, Martin W

    2007-03-01

    There is continuing interest in elucidating the actions of drugs of abuse on the immune system and on infection. The present study investigated the effects of the cannabinoid (CB) receptor agonist aminoalkylindole, (+)-WIN 55,212-2 [(4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], on fever produced after injection of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, the best known and most frequently used experimental model. Intraperitoneal injection of LPS (50 mug/kg) induced a biphasic fever, with the first peak at 180 min and the second at 300 min postinjection. Pretreatment with a nonhypothermic dose of the cannabinoid receptor agonist WIN 55,212-2 (0.5-1.5 mg/kg i.p.) antagonized the LPS-induced fever. However, pretreatment with the inactive enantiomer WIN 55,212-3 [1.5 mg/kg i.p.; S-(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthanlenyl)methanone mesylate] did not. The inhibitory effect of WIN 55,212-2 on LPS-induced fever was reversed by SR141716 [N-(piperdin-1-yl)-5-(4-chloropheny)-1-(2,4-dichloropheny)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride], a selective CB1 receptor antagonist, but not by SR144528 (N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl]5-(4-choro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide), a selective antagonist at the CB2 receptor. The present results show that cannabinoids interact with systemic bacterial LPS injection and indicate a role of the CB1 receptor subtype in the pathogenesis of LPS fever.

  2. 大麻素WIN55,212-2对裸小鼠肝癌移植瘤及PPARγ表达的影响%Effect of cannabinoid WIN55,212-2 on HepG2 tumor xenograft and PPAR-γexpression in nude mice

    Institute of Scientific and Technical Information of China (English)

    邓远斐; 许达才; 肖顺华; 赵青

    2015-01-01

    目的::探讨大麻素WIN55,212-2( WIN)对裸小鼠肝癌移植瘤及过氧化物酶体增殖物激活受体(PPARγ)、c-myc表达的影响。方法:采用5 mg/kg的WIN对荷瘤裸小鼠进行瘤周皮下注射干预15 d,每3天测量1次瘤体体重和体积,计算肿瘤体积和抑瘤率。荧光定量PCR和Western blotting测定HepG2移植瘤中PPARγ和c-myc的表达情况。结果:WIN对HepG2细胞移植瘤具有抑制作用,抑瘤率为66.00%,荧光定量PCR结果显示WIN抑制HepG2细胞移植瘤c-myc在mRNA水平的表达,促进HepG2细胞移植瘤PPARγ在mRNA水平表达。 Western blotting结果显示WIN抑制HepG2细胞移植瘤c-myc在蛋白水平的表达,促进HepG2细胞移植瘤PPARγ在蛋白水平表达。结论:WIN能够抑制HepG2细胞移植瘤的生长和c-myc的表达,并上调PPARγ的表达。%Objective:To investigate the effect of a cannabinoid, WIN55, 212-2 ( WIN ) , on HepG2 hepatocellular carcinoma xenografts and expression of peroxisome proliferators activated receptor ( PPAR-γ) and c-myc in nude mice. Methods :The tumor-bearing nude mice were injected subcutaneously around the tumor sites with 5 mg/kg WIN for 15 d. The weight and size of the tumor were measure every 3d for calculation of the tumor volume and tumor inhibition rate. PCR and western blotting assay were used to measure the expression of PPAR-γ and of c-myc in HepG2 tumor xenograft. Results:WIN showed inhibitory effect on the growth of HepG2 tumor xenograft, with an inhibition rate being 66.00%. Fluorescence quantitative PCR showed that WIN inhibited the expression of c-myc mRNA and promoted the expression of PPAR-γ mRNA in HepG2 tumor xenografts. Western blotting analysis showed that WIN inhibited the expression of c-myc proteins and promoted the expression of PPAR-γ proteins in HepG2 tumor xenografts. Conclusion:WIN may inhibit the growth of HepG2 tumor xenograft and c-myc expression, and upregulate the expression of PPAR-γ.

  3. Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis.

    Science.gov (United States)

    Köfalvi, Attila; Rodrigues, Ricardo J; Ledent, Catherine; Mackie, Ken; Vizi, E Sylvester; Cunha, Rodrigo A; Sperlágh, Beáta

    2005-03-16

    Despite the profound effect of cannabinoids on motor function, and their therapeutic potential in Parkinson's and Huntington's diseases, the cellular and subcellular distributions of striatal CB1 receptors are not well defined. Here, we show that CB1 receptors are primarily located on GABAergic (vesicular GABA transporter-positive) and glutamatergic [vesicular glutamate transporter-1 (VGLUT-1)- and VGLUT-2-positive] striatal nerve terminals and are present in the presynaptic active zone, in the postsynaptic density, as well as in the extrasynaptic membrane. Both the nonselective agonist WIN552122 [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl] pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate salt] (EC50, 32 nM) and the CB1-selective agonist ACEA [N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide] inhibited [3H]GABA release from rat striatal slices. The effect of these agonists was prevented by the CB1-selective antagonists SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] (1 microM) and AM251 [1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt] (1 microM), indicating that cannabinoids inhibit the release of GABA via activation of presynaptic CB1 receptors. Cannabinoids modulated glutamate release via both CB1 and non-CB1 mechanisms. Cannabinoid agonists and antagonists inhibited 25 mM K+-evoked [3H]glutamate release and sodium-dependent [3H]glutamate uptake. Partial involvement of CB1 receptors is suggested because low concentrations of SR141716A partly and AM251 fully prevented the effect of WIN552122 and CP55940 [5-(1,1-dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol]. However, the effect of CB1 agonists and antagonists persisted in CB1 knock-out mice, indicating the involvement of non-CB1,CB1-like receptors. In contrast, cannabinoids did not modulate [3H]dopamine release or [3H]dopamine and [3H

  4. Functional selectivity in CB(2) cannabinoid receptor signaling and regulation: implications for the therapeutic potential of CB(2) ligands.

    Science.gov (United States)

    Atwood, Brady K; Wager-Miller, James; Haskins, Christopher; Straiker, Alex; Mackie, Ken

    2012-02-01

    Receptor internalization increases the flexibility and scope of G protein-coupled receptor (GPCR) signaling. CB(1) and CB(2) cannabinoid receptors undergo internalization after sustained exposure to agonists. However, it is not known whether different agonists internalize CB(2) to different extents. Because CB(2) is a promising therapeutic target, understanding its trafficking in response to different agonists is necessary for a complete understanding of its biology. Here we profile a number of cannabinoid receptor ligands and provide evidence for marked functional selectivity of cannabinoid receptor internalization. Classic, aminoalkylindole, bicyclic, cannabilactone, iminothiazole cannabinoid, and endocannabinoid ligands varied greatly in their effects on CB(1) and CB(2) trafficking. Our most striking finding was that (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone (WIN55,212-2) (and other aminoalkylindoles) failed to promote CB(2) receptor internalization, whereas 5-(1,1-dimethylheptyl)-2-(5-hydroxy-2-(3-hydroxypropyl)cyclohexyl)phenol (CP55,940) robustly internalized CB(2) receptors. Furthermore, WIN55,212-2 competitively antagonized CP55,940-induced CB(2) internalization. Despite these differences in internalization, both compounds activated CB(2) receptors as measured by extracellular signal-regulated kinase 1/2 phosphorylation and recruitment of β-arrestin(2) to the membrane. In contrast, whereas CP55,940 inhibited voltage-gated calcium channels via CB(2) receptor activation, WIN55,212-2 was ineffective on its own and antagonized the effects of CP55,940. On the basis of the differences we found between these two ligands, we also tested the effects of other cannabinoids on these signaling pathways and found additional evidence for functional selectivity of CB(2) ligands. These novel data highlight that WIN55,212-2 and other cannabinoids show strong functional selectivity at CB(2

  5. Cannabinoids reward sensitivity in a neurodevelopmental animal model of schizophrenia: a brain stimulation reward study.

    Science.gov (United States)

    Gallo, Alexandra; Bouchard, Claude; Fortier, Emmanuel; Ducrot, Charles; Rompré, Pierre-Paul

    2014-09-01

    The comorbidity schizophrenia and cannabis has a high prevalence. The consumption of cannabis is ten times higher among schizophrenia patients, suggesting that these patients could be differentially sensitive to its motivational effects. To study this question, we investigated the motivational effects of cannabinoid agonists using the brain stimulation reward paradigm and a neurodevelopmental model of schizophrenia: neonatal ventral hippocampus lesions (NVHL). Using the curve-shift paradigm, we first compared the effect single dose (0.75mg/kg) of amphetamine in sham and NVHL rats on reward and operant responding. Then, in different groups of NVHL and sham rats, we studied the effect of delta-9-tetrahydrocannabinnol (THC, 0.5mg/kg, i.p.) and WIN55,212-2 (WIN, 1 and 3mg/kg, i.p.) Rats were initially trained to self-administer an electrical stimulation to the posterio-medial mesencephalon. Once responding was stable, reward threshold defined as the frequency required to induce a half maximum response rate was measured before and after injection of the drug or the vehicle. Results show that amphetamine enhanced reward in sham and NVHL rats, an effect that was shorter in duration in NVHL rats. THC produced a weak attenuation of reward in sham rats while WIN produced a dose-dependent attenuation in NVHL; the attenuation effect of WIN was blocked by the cannabinoid antagonist, AM251. WIN also produced an attenuation of performance in sham and NVHL rats, and this effect was partially prevented by AM251. These results provide the additional evidence that the motivational effect of cannabinoids is altered in animals with a schizophrenia-like phenotype.

  6. The secreted protein acidic and rich in cysteine is a critical mediator of cell death program induced by WIN/TRAIL combined treatment in osteosarcoma cells.

    Science.gov (United States)

    Notaro, Antonietta; Sabella, Selenia; Pellerito, Ornella; Vento, Renza; Calvaruso, Giuseppe; Giuliano, Michela

    2016-03-01

    Secreted protein acidic and rich in cysteine (SPARC) is a multi-functional protein which modulates cell-cell and cell-matrix interactions. In cancer cells, SPARC behaves as a tumor promoter in a number of tumors, but it can also act as a tumor suppressor factor. Our previous results showed that the synthetic cannabinoid WIN55,212-2 (WIN), a potent cannabinoid receptor agonist, is able to sensitize osteosarcoma MG63 cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis which is accompanied with endoplasmic reticulum (ER)-stress induction and the increase in autophagic markers. In the present investigation, we studied the role of SPARC in WIN/TRAIL-induced apoptosis demonstrating that WIN increased the level of SPARC protein and mRNA in a time-dependent manner. This event was functional to WIN/TRAIL-dependent apoptosis as demonstrated by RNA interfering analysis which indicated that SPARC-silenced cells were less sensitive to cytotoxic effects induced by the combined treatment. Our experiments also demonstrate that SPARC interacts with caspase-8 thus probably favoring its translocation to plasma membrane and the activation of extrinsic apoptotic pathway. In conclusion, to the best of our knowledge, our results are the first to show that WIN-dependent increase in the level of SPARC plays a critical role in sensitizing osteosarcoma cells to TRAIL action.

  7. Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties.

    Science.gov (United States)

    García-Arencibia, Moisés; González, Sara; de Lago, Eva; Ramos, José A; Mechoulam, Raphael; Fernández-Ruiz, Javier

    2007-02-23

    We have recently demonstrated that two plant-derived cannabinoids, Delta9-tetrahydrocannabinol and cannabidiol (CBD), are neuroprotective in an animal model of Parkinson's disease (PD), presumably because of their antioxidant properties. To further explore this issue, we examined the neuroprotective effects of a series of cannabinoid-based compounds, with more selectivity for different elements of the cannabinoid signalling system, in rats with unilateral lesions of nigrostriatal dopaminergic neurons caused by local application of 6-hydroxydopamine. We used the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA), the CB2 receptor agonist HU-308, the non-selective agonist WIN55,212-2, and the inhibitors of the endocannabinoid inactivation AM404 and UCM707, all of them administered i.p. Daily administration of ACEA or WIN55,212-2 did not reverse 6-hydroxydopamine-induced dopamine (DA) depletion in the lesioned side, whereas HU-308 produced a small recovery that supports a possible involvement of CB2 but not CB1 receptors. AM404 produced a marked recovery of 6-hydroxydopamine-induced DA depletion and tyrosine hydroxylase deficit in the lesioned side. Possibly, this is caused by the antioxidant properties of AM404, which are derived from the presence of a phenolic group in its structure, rather than by the capability of AM404 to block the endocannabinoid transporter, because UCM707, another transporter inhibitor devoid of antioxidant properties, did not produce the same effect. None of these effects were observed in non-lesioned contralateral structures. We also examined the timing for the effect of CBD to provide neuroprotection in this rat model of PD. We found that CBD, as expected, was able to recover 6-hydroxydopamine-induced DA depletion when it was administered immediately after the lesion, but it failed to do that when the treatment started 1 week later. In addition, the effect of CBD implied an upregulation of mRNA levels for Cu,Zn-superoxide dismutase

  8. Cannabinoids and their medicinal potential

    Directory of Open Access Journals (Sweden)

    Deepika Tikoo

    2012-04-01

    Full Text Available Cannabis sativa L preparations have been used therapeutically since many years. Inspite of their medicinal value, the danger of its abusive potential led to the ban on its use in clinical practice in many countries. The recent research and in depth knowledge about the cannabinoid system which throw a light on their disease management potential has paved way for the cannabinoids to become a new therapeutic focus of attention. Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors which include CB1, predominantly expressed in the brain and CB2 which is primarily found in the cells of the immune system. Despite the addictive properties of cannabis, the therapeutic value of cannabinoids is too high to be put aside. Numerous diseases such as anorexia, pain, inflammation, obesity, cardiovascular disorders, neurodegenerative diseases, cancer, gastrointestinal diseases, hepatic disorders, skin related diseases, respiratory disorders like asthma and eye diseases like glaucoma have suggested cannabinoid agonists/ antagonists/ cannabinoids related compounds as potential treatment options. Developments of new specific ligands for the cannabinoid receptors are now underway and it needs to be seen, if in future, they can prove to be a boon for the medical world. The paper reviews the current understanding of the cannabinoid receptors, their ligands and their possible role in various diseases supported by preclinical and clinical studies. [Int J Basic Clin Pharmacol 2012; 1(2.000: 48-59

  9. Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice.

    Science.gov (United States)

    Hsu, Yung-Chien; Lei, Chen-Chou; Shih, Ya-Hsueh; Ho, Cheng; Lin, Chun-Liang

    2015-02-01

    Proteinuria is not only a sign of kidney damage but is also involved in the progression of renal disease as an independent pathologic factor. Although patients with mutated type 1 cannabinoid receptors (CB1) polymorphism are associated with renal microvascular damage, the biologic role of CB1 signaling in proteinuria remains uncharacterized till now. Herein, we investigate whether CB1 participates in glomerular proteinuria in CB1 transgenic mice and treatment with CB1 agonist WIN55212-2 rat, neither of which are diabetic models. The CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher kidney weight and urinary protein concentrations but not blood glucose levels compared with the wild-type group. A combination of laser-capture microsdissection, quantitative reverse transcription-polymerase chain reaction, immunoblotting and immunohistochemical validation revealed that CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 had higher vascular endothelial growth factor (VEGF) expression in renal glomeruli than that of the wild-type group. Geneticorpharmacological activation of CB1 by transgenic CB1 mice or treatment with WIN55212-2 reduced nephrin expression in the renal glomeruli compared with that of the wild-type group in the glomerular mesanglium. Taken together, CB1 transgenic mice and rats treated with CB1 agonist WIN55212-2 induced proteinuria with upregulation of CB1 resulting in impaired nephrin expression, by inducing excess VEGF reaction in the renal glomeruli. Genetic and pharmacological manipulation of CB1 signaling revealed VEGF-dependent nephrin depression of glomerulopathy. Controlling CB1 activity can be used an alternative strategy for sustaining renal function in the presence of CB1 activation.

  10. Prolonged exposure to WIN55,212-2 causes downregulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy.

    Science.gov (United States)

    Blair, Robert E; Deshpande, Laxmikant S; Sombati, Sompong; Elphick, Maurice R; Martin, Billy R; DeLorenzo, Robert J

    2009-09-01

    Cannabinoids have been shown to cause CB1-receptor-dependent anticonvulsant activity in both in vivo and in vitro models of status epilepticus (SE) and acquired epilepsy (AE). It has been further demonstrated in these models that the endocannabinoid system functions in a tonic manner to suppress seizure discharges through a CB1-receptor-dependent pathway. Although acute cannabinoid treatment has anticonvulsant activity, little is known concerning the effects of prolonged exposure to CB1 agonists and development of tolerance on the epileptic phenotype. This study was carried out to evaluate the effects of prolonged exposure to the CB1 agonist WIN55,212-2 on seizure activity in a hippocampal neuronal culture model of low-Mg(2+) induced spontaneous recurrent epileptiform discharges (SREDs). Following low-Mg(2+) induced SREDs, cultures were returned to maintenance media containing 10, 100 or 1000 nM WIN55,212-2 from 4 to 24 h. Whole-cell current-clamp analysis of WIN55,212-2 treated cultures revealed a concentration-dependent increase in SRED frequency. Immunocytochemical staining revealed that WIN55,212-2 treatment induced a concentration-dependent downregulation of the CB1 receptor in neuronal processes and at both glutamatergic and GABAergic presynaptic terminals. Prolonged exposure to the inactive enantiomer WIN55,212-3 in low-Mg(2+) treated cultures had no effect on the frequency of SREDs or CB1 receptor staining. The results from this study further substantiate a role for a tonic CB1-receptor-dependent endocannabinoid regulation of seizure discharge and suggest that prolonged exposure to cannabinoids results in the development of tolerance to the anticonvulsant effects of cannabinoids and an exacerbation of seizure activity in the epileptic phenotype.

  11. Prolonged exposure to WIN55,212-2 causes down-regulation of the CB1 receptor and the development of tolerance to its anticonvulsant effects in the hippocampal neuronal culture model of acquired epilepsy

    Science.gov (United States)

    Blair, Robert E.; Deshpande, Laxmikant S.; Sombati, Sompong; Elphick, Maurice R.; Martin, Billy R.; DeLorenzo, Robert J.

    2009-01-01

    Summary Cannabinoids have been shown to cause CB1-receptor dependent anticonvulsant activity in both in vivo and in vitro models of status epilepticus (SE) and acquired epilepsy (AE). It has been further demonstrated in these models that the endocannabinoid system functions in a tonic manner to suppress seizure discharges through a CB1-receptor dependent pathway. Although acute cannabinoid treatment has anticonvulsant activity, little is known concerning the effects of prolonged exposure to CB1 agonists and development of tolerance on the epileptic phenotype. This study was carried out to evaluate the effects of prolonged exposure to the CB1 agonist WIN55,212-2 on seizure activity in a hippocampal neuronal culture model of low-Mg2+ induced spontaneous recurrent epileptiform discharges (SREDs). Following low-Mg2+ induced SREDs, cultures were returned to maintenance media containing 10, 100 or 1000 nM WIN55,212-2 from 4 to 24 hours. Whole-cell current-clamp analysis of WIN55,212-2 treated cultures revealed a concentration-dependent increase in SRED frequency. Immunocytochemical staining revealed that WIN55,212-2 treatment induced a concentration-dependent down-regulation of the CB1 receptor in neuronal processes and at both glutamatergic and GABAergic presynaptic terminals. Prolonged exposure to the inactive enantiomer WIN55,212-3 in low-Mg2+ treated cultures had no effect on the frequency of SREDs or CB1 receptor staining. The results from this study further substantiate a role for a tonic CB1 receptor-dependent endocannabinoid regulation of seizure discharge and suggest that prolonged exposure to cannabinoids results in the development of tolerance to the anticonvulsant effects of cannabinoids and an exacerbation of seizure activity in the epileptic phenotype. PMID:19540252

  12. Effects of a Cannabinoid1 receptor antagonist and Serotonin2C receptor agonist alone and in combination on motivation for palatable food: a dose-addition analysis study in mice.

    Science.gov (United States)

    Ward, Sara Jane; Lefever, Timothy W; Jackson, Cavario; Tallarida, Ronald J; Walker, Ellen A

    2008-05-01

    The cannabinoid and serotonin systems modulate feeding behavior in humans and laboratory animals. The present study assessed whether a cannabinoid (CB)(1) receptor antagonist and a serotonin (5-HT)(2C) receptor agonist alone and in combination attenuate motivation for the liquid nutritional drink Ensure as measured by a progressive ratio (PR) schedule of reinforcement in male C57BL/6 mice. Pretreatment (15 min i.p.) with either the CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716) (SR; Rimonabant or Acomplia) or the 5-HT(2C) receptor agonist m-chlorophenylpiperazine (mCPP) dose-dependently decreased the maximum ratio completed under the PR schedule (break point) in mice. ED(25) values for SR and mCPP to decrease break point were determined, and the relative potency of each drug alone was quantified. Fixed dose-ratio pairs of SR/mCPP based on their relative potency were then administered. Dose-addition analysis comparing the experimentally determined potency for SR/mCPP combinations with their predicted additive potency revealed that SR/mCPP combinations in 1:1 and 2:1 ratios based on relative potency produced significant synergistic attenuation of break point for Ensure. The ED(25) values for decreasing break point were consistently lower than ED(25) values for decreasing response rate, and synergistic effects of SR/mCPP combinations on break point were seen independent of synergistic effects on response rate. These results indicate that cannabinoid CB(1) and serotonin 5-HT(2C) receptors are involved in motivated feeding behavior in mice and that these compounds can synergistically modulate motivation for palatable food with the synergy dependent upon the ratio of SR/mCPP in the combination.

  13. Cannabinoid and nitric oxide signaling interplay in the modulation of hippocampal hyperexcitability: Study on electrophysiological and behavioral models of temporal lobe epilepsy in the rat.

    Science.gov (United States)

    Carletti, F; Gambino, G; Rizzo, V; Ferraro, G; Sardo, P

    2015-09-10

    A growing bulk of evidence suggests that cannabinoid system plays a pivotal role in the control of hyperexcitability phenomena. Notwithstanding, the anticonvulsant action of cannabinoids has not been fully addressed, in particular the involvement of potential cellular neuromodulators, for instance nitric oxide. In the current study, we focused on two distinct rat models of temporal lobe epilepsy, the Maximal Dentate Activation and the pilocarpine-induced acute seizures, providing both electrophysiological and behavioral data on cannabinoid and nitrergic system interplay. We evaluated the antiepileptic effects of WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone (WIN), a CB agonist, and of 7-Nitroindazole (7NI), a preferential neuronal nitric oxide synthase (nNOS) inhibitor, at different doses, alone and in combination. MDA study showed that these drugs protected animals in a dose-dependent manner from electrically induced epileptiform discharges. In pilocarpine model, a dose-related activity of 7NI and WIN: a) decreased the behavioral scoring, used to describe the severity of chemically induced acute seizures; b) affected latency of the onset of acute convulsions; c) dampened mortality rate. Interestingly, the combination of the treatments brought to light that individually ineffective doses of WIN turn into effective when nNOS activity is pharmacologically inhibited in both experimental conditions. This effect is mediated by CB1 receptor since the co-administration of N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), a CB1 receptor specific antagonist, thwarted the 7NI-WIN convergent action. In the light of this, our findings suggest a putative antagonism between CBr-activated pathway and NO signaling in the context of neuronal hyperexcitability and contribute to elucidate possible synaptic processes underlying neuroprotective

  14. Win-win initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Specter, Herschel

    1999-03-01

    This paper explores the use of win-win initiatives as a means of making safety improvements while simultaneously reducing plant operating costs. A two-phased process for implementing these initiatives is provided. Near-term progress is emphasized in the first phase by using presently available information. The second phase addresses complex issues such as closure in the regulatory process, modernizing the role of determinism in decisionmaking, closer coupling of performance-based regulation and risk-informed regulation, modernizing the testing of important plant equipment, and the treatment of uncertainties.

  15. Differential effects of repeated low dose treatment with the cannabinoid agonist WIN 55,212-2 in experimental models of bone cancer pain and neuropathic pain

    DEFF Research Database (Denmark)

    Hald, Andreas; Ding, Ming; Egerod, Kristoffer Lihme;

    2008-01-01

    . Furthermore, this treatment strategy was not found to induce measurable CNS related side effects or tolerance. Cancer cell viability assays and bone volume fraction assessed by micro computed tomography (microCT) demonstrated that these effects were not due to changes in cancer progression. The difference...

  16. Involvement of cannabinoid CB1- and CB2-receptors in the modulation of exocrine pancreatic secretion.

    Science.gov (United States)

    Linari, G; Agostini, S; Amadoro, G; Ciotti, M T; Florenzano, F; Improta, G; Petrella, C; Severini, C; Broccardo, M

    2009-03-01

    The role of the cannabinoid system in the regulation of exocrine pancreatic secretion was investigated by studying the effects of the synthetic CB1- and CB2-receptors agonist, WIN55,212, on amylase secretion in isolated lobules and acini of guinea pig and rat, and the expression of CB-receptors in rat pancreatic tissue by immuno-chemistry and Western-blot analysis in both basal and cerulein (CK)-induced pancreatitis condition. In pancreatic lobules of guinea pig and rat, WIN55,212 significantly inhibited amylase release stimulated by KCl depolarization through inhibition of presynaptic acetylcholine release, but did not modify basal, carbachol- or CK-stimulated amylase secretion. The effect of WIN55,212 was significantly reduced by pre-treatment with selective CB1- and CB2-receptor antagonists. The antagonists, when given alone, did not affect the KCl-evoked response. Conversely, WIN55,212 was unable to affect basal and CK- or carbachol-stimulated amylase release from pancreatic acini of guinea pig and rat. Immunofluorescent staining of rat pancreatic tissues showed that CB1- and CB2-receptors are expressed in lobules and in acinar cells and their presence in acinar cells was also shown by Western-blot analysis. After CK-induced pancreatitis, the expression of CB1-receptors in acinar cells was not changed, whilst a down-regulation of CB2-receptors was observed. In conclusion, the present study shows that WIN55,212 inhibits amylase release from guinea pig and rat pancreatic lobules and, for the first time, that cannabinoid receptors are expressed in lobules of the rat pancreas, suggesting an inhibitory presynaptic role of this receptor system. Finally, in rat pancreatic acinar cells, CB1- and CB2-receptors, expressed both in basal conditions and after CK-induced pancreatitis but inactive on amylase secretion, have an unknown role both in physiological and pathological conditions.

  17. The Synthetic Cannabinoids Phenomenon.

    Science.gov (United States)

    Karila, Laurent; Benyamina, Amine; Blecha, Lisa; Cottencin, Olivier; Billieux, Joël

    2016-01-01

    « Spice » is generally used to describe the diverse types of herbal blends that encompass synthetic cannabinoids on the market. The emergence of smokable herbal products containing synthetic cannabinoids, which mimic the effects of cannabis, appears to become increasingly popular, in the new psychoactive substances landscape. In 2014, the existence of 134 different types of synthetic cannabinoids were reported by the European Union Early Warning System. These drugs are mainly sold online as an alternative to controlled and regulated psychoactive substances. They appear to have a life cycle of about 1-2 years before being replaced by a next wave of products. Legislation controlling these designer drugs has been introduced in many countries with the objective to limit the spread of existing drugs and control potential new analogs. The majority of the synthetic cannabinoids are full agonists at the CB1 receptor and do not contain tobacco or cannabis. They are becoming increasingly popular in adolescents, students and clubbers as an abused substance. Relatively high incidence of adverse effects associated with synthetic cannabinoids use has been documented in the literature. Numerous fatalities linked with their use and abuse have been reported. In this paper, we will review the available data regarding the use and effects of synthetic cannabinoids in humans in order to highlight their impact on public health. To reach this objective, a literature search was performed on two representative databases (Pubmed, Google Scholar), the Erowid Center website (a US non-profit educational organization that provides information about psychoactive plants and chemicals), and various governmental websites. The terms used for the database search were: "synthetic cannabinoids", "spice", "new psychoactive substances", and/or "substance use disorder", and/or "adverse effects", and/or "fatalities". The search was limited to years 2005 to 2016 due to emerging scientific literature at

  18. Metabolites of 5F-AKB-48, a synthetic cannabinoid receptor agonist, identified in human urine and liver microsomal preparations using liquid chromatography high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Holm, Niels Bjerre; Pedersen, Anders Just; Dalsgaard, Petur Weihe

    2015-01-01

    New types of synthetic cannabinoid designer drugs are constantly introduced to the illicit drug market to circumvent legislation. Recently, N-​(1-Adamant​yl)-​1-​(5-​fluoropentyl)-​1H-​indazole-​3-​carboxamide (5F-AKB-48), also known as 5F-APINACA, was identified as an adulterant in herbal products...

  19. Cannabinoid CB1 receptors of the dorsal hippocampus are important for induction of conditioned place preference (CPP) but do not change morphine CPP.

    Science.gov (United States)

    Zarrindast, Mohammad-Reza; Nouri, Maryam; Ahmadi, Shamseddin

    2007-08-13

    Interactions between cannabinoid and opioid systems have been reported in many studies. In the present study, we have investigated influence of cannabinoid CB1 receptor mechanism on the acquisition of conditioned place preference (CPP) induced by morphine in male Wistar rats. The cannabinoid CB1 receptor agonist (WIN55,212-2) and antagonist (AM251) were injected bilaterally into the dorsal hippocampus. Morphine and naloxone were injected subcutaneously (s.c.). The conditioning treatments with injections of morphine (6 and 9 mg/kg) induced a CPP for the drug-associated place. When administered into the dorsal hippocampus, WIN55,212-2 (1 microg/rat) induced CPP, but significantly did not alter CPP induced by a sub-effective dose of morphine (3 mg/kg). Moreover, administration of different doses of AM251 (50 and 100 ng/rat) into the dorsal hippocampus induced CPP, while did not change CPP by the sub-effective dose of morphine. Naloxone alone (1 mg/kg) induced conditioned place aversion (CPA). The drug (0.5 and 1 mg/kg) also caused CPA when co-administered with WIN55,212-2 (1 microg/rat). These results suggest that endocannabinoid system in the dorsal hippocampus is important for the CPP paradigm. However, agents did not alter morphine-induced CPP.

  20. The Neuroprotective Effect of Lithium in cannabinoid Dependence is Mediated through Modulation of Cyclic AMP, ERK1/2 and GSK-3β Phosphorylation in Cerebellar Granular Neurons of Rat

    Science.gov (United States)

    Rahimi, Hamid Reza; Ghahremani, Mohammad Hossein; Dehpour, Ahmad Reza; Sharifzadeh, Mohammad; Ejtemaei-Mehr, Shahram; Razmi, Ali; Ostad, Seyed Nasser

    2015-01-01

    Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate the cannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this are unclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2) and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. This is mediated through cannabinoid receptor 1 (CB1) enriched in cerebellar granular neurons (CGNs). Accordingly, the present study aimed to investigate the mechanism of modulatory/neuroprotective effects of Li on a cannabinoid agonist (WIN 55,212-2 (WIN))-induced dependence, through quantitative analysis of some involved proteins such as ERK1/2, GSK-3β and related signaling pathways including their phosphorylated forms; and cAMP level as the other molecular mechanisms leading to dependence, in CGNs model. The CGNs were prepared from 7-day-old Wistar rat pup in a 12-well plate, pretreated with Li (1mM) and an ERK1/2 inhibitor SL327 (SL, 10 µM). The WIN (1 µM) was added 30 minutes prior to treatment and AM251 (AM, 1 µM), as a cannabinoid antagonist was co-treated with WIN. The cAMP level, as an indicator of cannabinoid-induced dependence, was measured by ELISA following forskolin (FSK) stimulation. Western blot analyses determined the phosphorylated forms of ERK1/2 (p-ERK1/2), GSK-3β (p-GSK-3β) as well as their total expressions in various treatment times and doses in CGNs. WIN alone could down regulate the cAMP/p-ERK1/2 cascade compared to AM treatment. However, P-GSK-3β was up-regulated with Li and WIN or with SL and Li pretreatment to AM-induced cellular response, which was the highest 60 minutes after CGNs exposure. Results further suggested the potential role of Li pretreatment to diminish the development of cannabinoid-induced dependence/neuronal injury through possible mechanisms of modulating the cAMP/p-ERK1/2 cascade independent of p-GSK-3β signaling pathway in-vitro. PMID:26664379

  1. Behavioral effects of D3 receptor inhibition and 5-HT4 receptor activation on animals undergoing chronic cannabinoid exposure during adolescence.

    Science.gov (United States)

    Abboussi, Oualid; Said, Nadia; Fifel, Karim; Lakehayli, Sara; Tazi, Abdelouahhab; El Ganouni, Soumaya

    2016-04-01

    Chronic exposure to cannabinoids during adolescence results in long-lasting behavioral deficits that match some symptomatologic aspects of schizophrenia. The aim of this study was to investigate the reversibility of the emotional and the cognitive effects of chronic exposure to cannabinoids during adolescence, via subsequent modulation of the serotoninergic 5-HT4 and dopaminergic D3 receptors. RS67333 as a 5-HT4 agonist and U-99194A as a D3 antagonist were administered separately at 1 mg/kg and 20 mg/kg, and in combination at 0.5 mg/kg and 10 mg/kg to adult animals undergoing chronic treatment with the synthetic cannabinoid receptor agonist WIN55,212-2 (1 mg/kg) during adolescence. Animals were tested for anxiety-like behavior and episodic-like memory in the open field and novel object recognition tests respectively 30 minutes after the last drug administration. Chronic WIN55,212-2 treated animals exhibited a lasting disruption of episodic memory and increased anxiety levels. The effect on episodic-like memory were partially restored by acute administration of RS67333 and U-99194A and completely by administration of both drugs in combination at lower doses. However, only RS67333 (20 mg/kg) improved the anxiogenic-like effect of WIN55,212-2. These findings give further support that chronic exposure to cannabinoids during adolescence may be used as an animal model for schizophrenia, and highlight D3 and 5-HT4 receptors as potential targets for an enhanced treatment of the cognitive aspect of this disease.

  2. Antinociceptive effects of the non-selective cannabinoid receptor agonist CP 55,940 are absent in CB1(-/-) and not CB2(-/-) mice in models of acute and persistent pain.

    Science.gov (United States)

    Sain, Nova M H; Liang, Annie; Kane, Stefanie A; Urban, Mark O

    2009-09-01

    Previous studies have suggested a role for both CB1 and CB2 cannabinoid receptors in modulation of nociception. To further examine the role of CB1 and CB2 receptors in antinociception, we evaluated the efficacy of the non-selective cannabinoid receptor agonist, CP 55,940, in models of acute, inflammatory, and neuropathic pain in control mice, CB1 receptor knockout mice, and CB2 receptor knockout mice. In control C57BL/6 mice, administration of CP 55,940 (0.03-0.3 mg/kg, i.p.) reversed complete Freund's adjuvant-induced tactile allodynia, reversed tactile allodynia in the spinal nerve ligation model and inhibited the noxious heat-evoked tail withdrawal response. In addition to its antinociceptive effects, CP 55,940 produced an impairment of motor coordination in the rotarod test. The antinociceptive effects produced by CP 55,940 and associated motor deficits were found to be completely abolished in CB1 receptor knockout mice. In contrast, the antinociceptive effects of CP 55,940 in all pain models were fully retained in CB2 receptor knockout mice, along with the associated motor deficits. The results suggest that the antinociceptive effects of CP 55,940 in models of acute and persistent pain, along with the associated motor deficits, are mediated by CB1 receptors, and likely not CB2 receptors.

  3. WIN55,212-2 protects oligodendrocyte precursor cells in stroke penumbra following permanent focal cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Jing SUN; Yin-quan FANG; Hong REN; Tao CHEN; Jing-jing GUO; Jun YAN; Shu SONG; Lu-yong ZHANG; Hong LIAO

    2013-01-01

    Aim:To explore whether the synthetic cannabinoid receptor agonist WIN55,212-2 could protect oligodendrocyte precursor cells (OPCs)in stroke penumbra,thereby providing neuroprotection following permanent focal cerebral ischemia in rats.Methods:Adult male SD rats were subjected to permanent middle cerebral artery occlusion (p-MCAO).The animals were administered WIN55,212-2 at 2 h,and sacrificed at 24 h after the ischemic insult.The infarct volumes and brain swelling were assessed.The expression of cannabinoid receptor type 1 (CB1) in the stroke penumbra was examined using Western blot assay.The pathological changes and proliferation of neural glial antigen 2-positive OPCs (NG2+ cells) in the stroke penumbra were studied using immunohistochemistry staining.Results:p-MCAO significantly increased the expression of CB1 within the stroke penumbra with the highest level appearing at 2 h following the ischemic insult.Administration of WIN55,212-2 (9 mg/kg,iv) significantly attenuated the brain swelling,and reduced the infarct volume as well as the number of tau-immunoreactive NG2+ cells (tau-1+/NG2+ cells) in the stroke penumbra.Moreover,WIN55,212-2 significantly promoted the proliferation of NG2+ cells in the stroke penumbra and in the ipsilateral subventricular zone at 24 h following the ischemic insult.Administration of the selective CB1 antagonist rimonabant (1 mg/kg,iv) partially blocked the effects caused by WIN55,212-2.Conclusion:Tau-1 is expressed in NG2+ cells following permanent focal cerebral ischemic injury.Treatment with WIN55,212-2 reduces the number of tau-1+/NG2+ cells and promotes NG2+ cell proliferation in the stroke penumbra,which are mediated partially via CB1 and may contribute to its neuroprotective effects.

  4. Green, Reform, Win-Win

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Boao Forum for Asia this year enjoys three high lights, namely "Green, Reform and Win-Win".The old but hot topics attracted accumulated attention from the whole world, and more fresh ideas were ushered in.

  5. Cannabinoid receptor ligands suppress memory-related effects of nicotine in the elevated plus maze test in mice.

    Science.gov (United States)

    Biala, Grazyna; Kruk, Marta

    2008-10-10

    The purpose of the experiments was to examine the memory-related effects of nicotine using the mouse elevated plus maze. It has been shown that the acute doses of nicotine (0.1 and 0.5 mg/kg) significantly decreased the time of transfer latency (TL2) on the retention trial, indicating that nicotine improved memory processes. Similarly, acute doses of the CB1 cannabinoid receptor antagonist AM 251 (0.5, 1, 1.5 and 3 mg/kg) significantly decreased TL2 values. WIN55,212-2, a non-selective CB cannabinoid receptor agonist, at any dose tested (0.25, 0.5 and 1 mg/kg), did not provoke any effect in this model. Moreover, the acute injection of both WIN55,212-2 (0.25 and 0.5 mg/kg) and AM 251 (0.25 mg/kg), prior to injections of nicotine (0.1 and 0.5 mg/kg), significantly prevented nicotine-induced memory improvement. The results of this study provide clear evidence that the endogenous cannabinoid system participates in the responses induced by nicotine on memory-related behaviour in mice.

  6. Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis.

    Science.gov (United States)

    Preet, Anju; Qamri, Zahida; Nasser, Mohd W; Prasad, Anil; Shilo, Konstantin; Zou, Xianghong; Groopman, Jerome E; Ganju, Ramesh K

    2011-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. Hence, we investigated the role of cannabinoid receptors, CB1 and CB2, as novel therapeutic targets against NSCLC. We observed expression of CB1 (24%) and CB2 (55%) in NSCLC patients. Furthermore, we have shown that the treatment of NSCLC cell lines (A549 and SW-1573) with CB1/CB2- and CB2-specific agonists Win55,212-2 and JWH-015, respectively, significantly attenuated random as well as growth factor-directed in vitro chemotaxis and chemoinvasion in these cells. We also observed significant reduction in focal adhesion complex, which plays an important role in migration, upon treatment with both JWH-015 and Win55,212-2. In addition, pretreatment with CB1/CB2 selective antagonists, AM251 and AM630, prior to JWH-015 and Win55,212-2 treatments, attenuated the agonist-mediated inhibition of in vitro chemotaxis and chemoinvasion. In addition, both CB1 and CB2 agonists Win55,212-2 and JWH-133, respectively, significantly inhibited in vivo tumor growth and lung metastasis (∼50%). These effects were receptor mediated, as pretreatment with CB1/CB2 antagonists abrogated CB1/CB2 agonist-mediated effects on tumor growth and metastasis. Reduced proliferation and vascularization, along with increased apoptosis, were observed in tumors obtained from animals treated with JWH-133 and Win55,212-2. Upon further elucidation into the molecular mechanism, we observed that both CB1 and CB2 agonists inhibited phosphorylation of AKT, a key signaling molecule controlling cell survival, migration, and apoptosis, and reduced matrix metalloproteinase 9 expression and activity. These results suggest that CB1 and CB2 could be used as novel therapeutic targets against NSCLC.

  7. Pretreatment with clonidine caused desensitization to WIN 55,212-2 in guinea pig ileum.

    Science.gov (United States)

    Rezania, F; Mohaghegh Shalmani, L; Rahimian, R; Dehpour, A R; Ejtemaei Mehr, S

    2014-01-01

    Considering the existence of cross-tolerance between clonidine and morphine besides the same interaction between morphine and WIN 55,212-2 persuaded us to verify this fact between WIN 55,212-2 and clonidine in guinea pig ileum, which is a well-known model to examine the mode of action of cannabinoids and α2 -adenoceptor agonists The rectangular pulses were passed to the 0.5 g stretched ileum segments that were fixed in 20-ml organ bath. PowerLab system and Graphpad Prism were applied to record twitches and analyse the data. Electrically evoked contractions were dose-dependently inhibited by WIN 55,212-2 and clonidine (pD2 = 8.56 ± 0.41 and 7.65 ± 0.15, respectively). Tolerance to this effect could be induced by 4-h incubation with WIN 55,212-2 (3 × IC50 ) (pD2  = 6.36 ± 0.26, degree of tolerance: 159.32) (P systems interaction in the enteric nervous system as a simplified representative for central nervous system.

  8. She wins You win

    Institute of Scientific and Technical Information of China (English)

    杨品文

    2006-01-01

    对于那些执著于人生理想的商业领袖们,他们背后的女人们也是不甘寂寞的,甚至可能成为这些企业传奇中最让人津津乐道的故事。在这个弥漫女性色彩的三月,我们想起“She wins You win”这句西方的古老谚语,发现它非常精确地描述了现代商业社会中这些大师和女人的某种相处方式。

  9. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    Science.gov (United States)

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  10. Rational design, synthesis, and pharmacological properties of new 1,8-naphthyridin-2(1H)-on-3-carboxamide derivatives as highly selective cannabinoid-2 receptor agonists

    DEFF Research Database (Denmark)

    Manera, Clementina; Saccomanni, Giuseppe; Adinolfi, Barbara

    2009-01-01

    derivatives were designed, synthesized, and tested for their affinities toward the human CB(1) and CB(2) cannabinoid receptors. Some of the reported compounds showed a subnanomolar CB(2) affinity with a CB(1)/CB(2) selectivity ratio greater than 200 (compounds 6, 12, cis-12, 13, and cis-13). Further studies......The CB(2) receptor activation can be exploited for the treatment of diseases such as chronic pain and tumors of immune origin, devoid of psychotropic activity. On the basis of our already reported 1,8-naphthyridin-4(1H)-on-3-carboxamide derivatives, new 1,8-naphthyridin-2(1H)-on-3-carboxamide...

  11. CB1 receptor agonist WIN55212-2 improves motor complications in Parkinson's disease%CB1受体激动剂WIN55212-2改善帕金森病运动并发症的实验研究

    Institute of Scientific and Technical Information of China (English)

    马雅萍; 宋璐; 刘振国; 巴茂文; 卞雷斯

    2011-01-01

    目的 探讨CB1受体激动剂WIN55212-2对左旋多巴诱发的运动并发症的行为学及细胞学作用.方法通过6-OHDA立体定向注射至大鼠右侧前脑内侧束建立PD动物模型,成功的PD大鼠模型分别接受左旋多巴/苄丝肼(50mg/kg加12.5mg/kg苄丝肼,每天2次)+溶剂、左旋多巴/苄丝肼+WIN55212-2(1 mg/kg)腹腔注射,共持续21d.评估用药后大鼠的旋转反应时间、剂峰旋转圈数变化和关期发生率;采用Western blot方法检测纹状体信号转导蛋白DARPP-32(Thr75)和ERK1/2 (Thr202/Tyr204)的磷酸化表达.结果长期联合应用WIN55212-2和左旋多巴,缓解了左旋多巴单独用药所致的PD大鼠旋转反应时间缩短、剂峰旋转圈数增加的趋势,并明显降低关期发生频率.WIN55212-2与左旋多巴合用显著降低了纹状体内DARPP-32(Thr75)的磷酸化;但未使ERK1/2磷酸化表达降低至对照组水平.结论激动CB1受体可能有益于预防帕金森病运动并发症.%Objective To investigate cellular and behavioural effects of CB1 receptor agonist WIN55212-2 in a rat model of levodopa-induced motor complications. Methods The hemi-Parkinsonian rat model was produced by stereotaxically injecting 6-OHDA to right medial forebrain bundle( MFB). Animals were intraperitoneally treated with levodopa/ benserazide (50mg/kg levodopa plus 12.5mg/kg benserazide) or WIN55212-2( lmg/kg) + levodopa/benserazide twice a day for 21 days. Rotational duration,peak rotation and the frequency of failures to L-dopa were estimated. After sacrificed,the phosphorylation of dopamine and cAMP- regulated phosphoprotein of Mr 32,000( DARPP-32) at Thr75 site and extracellular signal-regulated kinase (ERK) at Thr202 and Tyr204 site was observed by Western blot. Results W1N55212-2 plus L-dopa treatment prolonged the duration of the motor response and reduced peak turning. WIN55212-2 plus L-dopa also decreased the frequency of failures to L-dopa. The long-term use of L-dopa reduced the

  12. Neuroprotective effect of WIN55,212-2 against 3-nitropropionic acid-induced toxicity in the rat brain: involvement of CB1 and NMDA receptors

    Science.gov (United States)

    Maya-López, Marisol; Colín-González, Ana Laura; Aguilera, Gabriela; de Lima, María Eduarda; Colpo-Ceolin, Ana; Rangel-López, Edgar; Villeda-Hernández, Juana; Rembao-Bojórquez, Daniel; Túnez, Isaac; Luna-López, Armando; Lazzarini-Lechuga, Roberto; González-Puertos, Viridiana Yazmín; Posadas-Rodríguez, Pedro; Silva-Palacios, Alejandro; Königsberg, Mina; Santamaría, Abel

    2017-01-01

    The endocannabinoid system (ECS), and agonists acting on cannabinoid receptors (CBr), are known to regulate several physiological events in the brain, including modulatory actions on excitatory events probably through N-methyl-D-aspartate receptor (NMDAr) activity. Actually, CBr agonists can be neuroprotective. The synthetic CBr agonist WIN55,212-2 acts mainly on CB1 receptor. In turn, the mitochondrial toxin 3-nitropropionic acid (3-NP) produces striatal alterations in rats similar to those observed in the brain of Huntington’s disease patients. Herein, the effects of WIN55,212-2 were tested on different endpoints of the 3-NP-induced toxicity in rat brain synaptosomes and striatal tissue. Motor activity was also evaluated. The 3-NP (1 mM)-induced mitochondrial dysfunction and lipid peroxidation was attenuated by WIN55,212-2 (1 µM) in synaptosomal fractions. The intrastriatal bilateral injection of 3-NP (500 nmol/µL) to rats increased lipid peroxidation and locomotor activity, augmented the rate of cell damage, and decreased the striatal density of neuronal cells. These alterations were accompanied by transcriptional changes in the NMDA (NR1 subunit) content. The administration of WIN55212-2 (1 mg/kg, i.p.) to rats for six consecutive days, before the 3-NP injection, exerted preventive effects on all alterations elicited by the toxin. The prevention of the 3-NP-induced NR1 transcriptional alterations by the CBr agonist together with the increase of CB1 content suggest an early reduction of the excitotoxic process via CBr activation. Our results demonstrate a protective role of WIN55,212-2 on the 3-NP-induced striatal neurotoxicity that could be partially related to the ECS stimulation and induction of NMDAr hypofunction, representing an effective therapeutic strategy at the experimental level for further studies.

  13. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.

    2002-01-01

    The ability of cannabinoid CB, receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB...... receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB/CB receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB and SR144528 for CB) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA......-induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB receptor function. In contrast, blockade of CB, but not CB, receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest...

  14. Effects of Cannabinoid Drugs on the Deficit of Prepulse Inhibition of Startle in an Animal Model of Schizophrenia: the SHR Strain

    Directory of Open Access Journals (Sweden)

    Raquel eLevin

    2014-02-01

    Full Text Available Clinical and neurobiological findings suggest that the cannabinoids and the endocannabinoid system may be implicated in the pathophysiology and treatment of schizophrenia. We described that the Spontaneously Hypertensive Rats (SHR strain presents a schizophrenia behavioral phenotype that is specifically attenuated by antipsychotic drugs, and potentiated by proschizophrenia manipulations. Based on these findings, we have suggested this strain as an animal model of schizophrenia. The aim of this study was to evaluate the effects of cannabinoid drugs on the deficit of prepulse inhibition of startle (PPI, the main paradigm used to study sensorimotor gating impairment related to schizophrenia, presented by the SHR strain. The following drugs were used: 1 WIN55212,2 (cannabinoid agonist, 2 rimonabant (CB1 antagonist, 3 AM404 (anandamide uptake inhibitor, and 4 cannabidiol (indirect CB1/CB2 receptor antagonist, among other effects. Wistar rats (WR and SHRs were treated with vehicle or different doses of WIN55212 (0.3, 1 or 3 mg/kg, rimonabant (0.75, 1.5 or 3 mg/kg, AM404 (1, 5 or 10 mg/kg or cannabidiol (15, 30 or 60 mg/kg. Vehicle-treated SHRs showed a decreased PPI when compared to WRs. This PPI deficit was reversed by 1 mg/kg WIN and 30 mg/kg cannabidiol. Conversely, 0.75 mg/kg rimonabant decreased PPI in SHR strain, whereas AM404 did not modify it. Our results reinforce the role of the endocannabinoid system in the sensorimotor gating impairment related to schizophrenia, and point to cannabinoid drugs as potential therapeutic strategies.

  15. What's so Hard about Win-Win?

    Science.gov (United States)

    Bluestein, Jane

    2011-01-01

    The win-win approach to solving conflicts, which has become popular in the business world, should be a natural for the school environment. Win-win thinking can foster a cooperative school climate by meeting educators' and students' needs for dignity, belonging, and respect. Yet win-win thinking faces a number of obstacles in schools, writes…

  16. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology

    Directory of Open Access Journals (Sweden)

    Justine eRenard

    2014-11-01

    Full Text Available Marijuana is the most widely used illicit drug among adolescents and young adults. Unique cognitive, emotional, and social changes occur during this critical period of development from childhood into adulthood. The adolescent brain is in a state of transition and differs from the adult brain with respect to both anatomy (e.g., neuronal connections and morphology and neurochemistry (e.g., dopamine, GABA, and glutamate. These changes are thought to support the emergence of adult cerebral processes and behaviors. The endocannabinoid system plays an important role in development by acting on synaptic plasticity, neuronal cell proliferation, migration, and differentiation. Delta-9-tetrahydrocanabinol (THC, the principal psychoactive component in marijuana, acts as an agonist of the cannabinoid type 1 receptor (CB1R. Thus, over-activation of the endocannabinoid system by chronic exposure to CB1R agonists (e.g. THC, CP-55,940, and WIN55,212-2 during adolescence can dramatically alter brain maturation and cause long-lasting neurobiological changes that ultimately affect the function and behavior of the adult brain. Indeed, emerging evidence from both human and animal studies demonstrates that early-onset marijuana use has long-lasting consequences on cognition; moreover, in humans, this use is associated with a two-fold increase in the risk of developing a psychotic disorder. Here, we review the relationship between cannabinoid exposure during adolescence and the increased risk of neuropsychiatric disorders, focusing on both clinical and animal studies.

  17. Short- and long-term effects of cannabinoids on the extinction of contextual fear memory in rats.

    Science.gov (United States)

    Pamplona, Fabrício A; Bitencourt, Rafael M; Takahashi, Reinaldo N

    2008-07-01

    Facilitation of memory extinction by manipulation of the endocannabinoid (eCB) system has been recently studied in several paradigms. Our previous results pointed to facilitation of contextual fear memory extinction by a low dose of a cannabinoid agonist, with a suggestion of short-term effects. The aim of the present study was to further investigate the effects of cannabinoid drugs in the short- and long-term extinction of conditioned fear using an extended extinction protocol. Male Wistar rats were placed in a conditioning chamber and after 3min received a footshock (1.5mA, 1s). On the next day, they received i.p. drug treatment (WIN55212-2 0.25mg/kg, AM404 10mg/kg, SR141716A 1mg/kg) and were re-exposed to the conditioning chamber for 30min (extinction training). No-Extinction groups received the same drug treatment, but were exposed for 3min to the conditioning chamber. A drug-free test of contextual memory (3min) was performed 7 days later. The cannabinoid agonist WI55212-2 and the inhibitor of eCB metabolism/uptake AM404 facilitated short-term extinction. In addition, long-term effects induced by treatments with WIN55212 and AM404 were completely divergent to those of SR141716A treatment. The present results confirm and extend previous findings showing that the eCB system modulates short-term fear memory extinction with long-lasting consequences.

  18. The inhibitory effect of combination treatment with leptin and cannabinoid CB1 receptor agonist on food intake and body weight gain is mediated by serotonin 1B and 2C receptors.

    Science.gov (United States)

    Wierucka-Rybak, M; Wolak, M; Juszczak, M; Drobnik, J; Bojanowska, E

    2016-06-01

    Previous studies reported that the co-injection of leptin and cannabinoid CB1 receptor antagonists reduces food intake and body weight in rats, and this effect is more profound than that induced by these compounds individually. Additionally, serotonin mediates the effects of numerous anorectic drugs. To investigate whether serotonin interacts with leptin and endocannabinoids to affect food intake and body weight, we administered 5-hydroxytryptamine(HT)1B and 5-hydroxytryptamine(HT)2C serotonin receptor antagonists (3 mg/kg GR 127935 and 0.5 mg/kg SB 242084, respectively) to male Wistar rats treated simultaneously with leptin (100 μg/kg) and the CB1 receptor inverse agonist AM 251 (1 mg/kg) for 3 days. In accordance with previous findings, the co-injection of leptin and AM 251, but not the individual injection of each drug, resulted in a significant decrease in food intake and body weight gain. Blockade of the 5-HT1B and 5-HT2C receptors completely abolished the leptin- and AM 251-induced anorectic and body-weight-reducing effects. These results suggest that serotonin mediates the leptin- and AM 251-dependent regulation of feeding behavior in rats via the 5-HT1B and 5-HT2C receptors.

  19. Influence of arachidonyl-2'-chloroethylamide, a selective cannabinoid CB1 receptor agonist, on the anticonvulsant and acute side-effect potentials of clobazam, lacosamide, and pregabalin in the maximal electroshock-induced seizure model and chimney test in mice.

    Science.gov (United States)

    Florek-Luszczki, Magdalena; Zagaja, Miroslaw; Luszczki, Jarogniew J

    2015-08-01

    The influence of arachidonyl-2'-chloroethylamide (ACEA - a selective cannabinoid CB1 receptor agonist) on the anticonvulsant potency and acute adverse-effect potentials of clobazam, lacosamide, and pregabalin was determined in the maximal electroshock-induced seizure model and chimney test in mice. ACEA (2.5 mg/kg, i.p.) significantly enhanced the anticonvulsant potency of pregabalin in the mouse maximal electroshock-induced seizure model by decreasing the median effective dose (ED50 ) of pregabalin from 125.39 to 78.06 mg/kg (P clobazam and lacosamide in the mouse maximal electroshock-induced seizure model. On the other hand, ACEA (2.5 mg/kg) did not affect acute adverse effects of clobazam, lacosamide or pregabalin, and the median toxic doses (TD50 ) for the studied anti-epileptic drugs in combination with ACEA did not differ from the TD50 values as determined for the drugs administered alone in the chimney test. In conclusion, ACEA ameliorates the pharmacological profile of pregabalin, when considering both the anticonvulsant and the acute adverse effects of the drug in preclinical study on animals. The combination of pregabalin with ACEA can be of pivotal importance for patients with epilepsy as a potentially advantageous combination if the results from this study translate into clinical settings.

  20. Cannabinoids in health and disease

    OpenAIRE

    Kogan, Natalya M.; Mechoulam, Raphael

    2007-01-01

    Cannabis sativa L. preparations have been used in medicine for millenia. However, concern over the dangers of abuse led to the banning of the medicinal use of marijuana in most countries in the 1930s. Only recently, marijuana and individual natural and synthetic cannabinoid receptor agonists and antagonists, as well as chemically related compounds, whose mechanism of action is still obscure, have come back to being considered of therapeutic value. However, their use is highly restricted. Desp...

  1. Antiapoptotic mechanism of cannabinoid receptor 2 agonist on cisplatin-induced apoptosis in the HEI-OC1 auditory cell line.

    Science.gov (United States)

    Jeong, Hyun-Ja; Kim, Su-Jin; Moon, Phil-Dong; Kim, Na-Hyun; Kim, Jung-Sun; Park, Rae-Kil; Kim, Min-Sun; Park, Byung-Rim; Jeong, Sejin; Um, Jae-Young; Kim, Hyung-Min; Hong, Seung-Heon

    2007-03-01

    Cisplatin is a highly effective chemotherapeutic agent but with significant ototoxic side effects. Apoptosis is an important mechanism of cochlear hair cell loss following exposure to an ototoxic level of cisplatin. The present study investigated the effects of the cannabinoid receptor 2 (CB2) ligand JWH-015 on cisplatin-induced apoptosis. CB2 mRNA was constitutively expressed in the auditory cell line HEI-OC1. By using MTT assay, DNA fragmentation, and FACS analysis, we demonstrated that apoptosis induced by cisplatin was inhibited by treatment with JWH-015 in a dose-dependent manner. Activation of caspase-3, caspase-8, and caspase-9 was detected after treatment with cisplatin, and the cleavage of poly-(ADP)-ribose polymerase (PARP) was observed within cisplatin-treated HEI-OC1 cells. JWH-015 inhibited the activation of caspase-3, caspase-8, and caspase-9; cleavage of PARP; and release of cytochrome c. JWH-015 also inhibited the apoptosis through activation of the extracellular signal-regulated kinase pathway. Finally, JWH-015 inhibited cisplatin-induced reactive oxygen species and tumor necrosis factor-alpha production. Collectively, these findings show that blocking a critical step in apoptosis by using JWH-015 may be a useful strategy to prevent harmful side effects of cisplatin ototoxicity in patients having to undergo chemotherapy.

  2. Cannabinoid CB1 receptor signaling dichotomously modulates inhibitory and excitatory synaptic transmission in rat inner retina.

    Science.gov (United States)

    Wang, Xiao-Han; Wu, Yi; Yang, Xiao-Fang; Miao, Yanying; Zhang, Chuan-Qiang; Dong, Ling-Dan; Yang, Xiong-Li; Wang, Zhongfeng

    2016-01-01

    In the inner retina, ganglion cells (RGCs) integrate and process excitatory signal from bipolar cells (BCs) and inhibitory signal from amacrine cells (ACs). Using multiple labeling immunohistochemistry, we first revealed the expression of the cannabinoid CB1 receptor (CB1R) at the terminals of ACs and BCs in rat retina. By patch-clamp techniques, we then showed how the activation of this receptor dichotomously regulated miniature inhibitory postsynaptic currents (mIPSCs), mediated by GABAA receptors and glycine receptors, and miniature excitatory postsynaptic currents (mEPSCs), mediated by AMPA receptors, of RGCs in rat retinal slices. WIN55212-2 (WIN), a CB1R agonist, reduced the mIPSC frequency due to an inhibition of L-type Ca(2+) channels no matter whether AMPA receptors were blocked. In contrast, WIN reduced the mEPSC frequency by suppressing T-type Ca(2+) channels only when inhibitory inputs to RGCs were present, which could be in part due to less T-type Ca(2+) channels of cone BCs, presynaptic to RGCs, being in an inactivation state under such condition. This unique feature of CB1R-mediated retrograde regulation provides a novel mechanism for modulating excitatory synaptic transmission in the inner retina. Moreover, depolarization of RGCs suppressed mIPSCs of these cells, an effect that was eliminated by the CB1R antagonist SR141716, suggesting that endocannabinoid is indeed released from RGCs.

  3. CONSTITUTIVE ACTIVITY AT THE CANNABINOID CB1 RECEPTOR IS REQUIRED FOR BEHAVIORAL RESPONSE TO NOXIOUS CHEMICAL STIMULATION OF TRPV1: ANTINOCICEPTIVE ACTIONS OF CB1 INVERSE AGONISTS

    OpenAIRE

    Fioravanti, Beatriz; De Felice, Milena; Stucky, Cheryl L; Medler, Karen A.; Luo, Miaw-chyi; Gardell, Luis R.; Ibrahim, Mohab; Malan, T. Phil; Yamamura, Henry I.; Ossipov, Michael H.; King, Tamara; Lai, Josephine; Porreca, Frank; Vanderah, Todd W

    2008-01-01

    The potential modulation of TRPV1 nociceptive activity by the CB1 receptor was investigated here using CB1 wildtype (WT) and knock-out (KO) mice as well as selective CB1 inverse agonists. No significant differences were detected in baseline thermal thresholds of ICR, CB1WT or CB1KO mice. Intraplantar capsaicin produced dose- and time-related paw flinch responses in ICR and CB1WT mice and induced plasma extravasation yet minimal responses were seen in CB1KO animals with no apparent differences...

  4. Influence of pre-exposure to morphine on cannabinoid-induced impairment of spatial memory in male rats.

    Science.gov (United States)

    Farahmandfar, Maryam; Kadivar, Mehdi; Naghdi, Nasser; Choopani, Samira; Zarrindast, Mohammad-Reza

    2013-11-01

    In the present study, we investigated the effects of repeated morphine pre-treatment on impairment of spatial memory acquisition induced by intra dorsal hippocampus (intra-CA1) administration of the non-selective cannabinoid CB1/CB2 receptor agonist, WIN55,212-2 in adult male rats. 2-day version of Morris water maze task has been used for the assessment of spatial memory. On the training day, rats were trained by a single training session of eight trials and 24 h later a probe trial test consist of 60s free swim period without a platform and the visible test was administered. Animals received pre-treatment subcutaneous (s.c.) injections of morphine, once daily for three days followed by five days drug-free treatment before training trials. The results indicated that bilateral pre-training intra-CA1 infusions of WIN55,212-2 (0.25 and 0.5 μg/rat) impaired acquisition of spatial memory on the training and test day. The amnesic effect of WIN55, 212-2 (0.5 μg/rat) was prevented in rats previously injected with morphine (20 mg/kg/day × 3 days, s.c.). Improvement in spatial memory acquisition in morphine-pretreated rats was inhibited by once daily administration of naloxone (1 and 2 mg/kg, s.c.) 15 min prior to injection of morphine for three days. The results suggest that sub-chronic morphine treatment may produced sensitization to cannabinoids, which in turn reversed the impairment of spatial memory acquisition induced by WIN55,212-2 and mu- opioid receptors may play an important role in this effect.

  5. Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB{sub 1} receptors using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Garth E. [National Institute of Mental Health, Molecular Imaging Branch, Bethesda, MD (United States); Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Hirvonen, Jussi; Liow, Jeih-San; Seneca, Nicholas; Morse, Cheryl L.; Pike, Victor W.; Innis, Robert B. [National Institute of Mental Health, Molecular Imaging Branch, Bethesda, MD (United States); Tauscher, Johannes T.; Schaus, John M.; Phebus, Lee; Felder, Christian C. [Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN (United States); Halldin, Christer [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden)

    2010-08-15

    Cannabinoid subtype 1 (CB{sub 1}) receptors are found in nearly every organ in the body, may be involved in several neuropsychiatric and metabolic disorders, and are therefore an active target for pharmacotherapy and biomarker development. We recently reported brain imaging of CB{sub 1} receptors with two PET radioligands: {sup 11}C-MePPEP and {sup 18}F-FMPEP-d{sub 2}. Here we describe the biodistribution and dosimetry estimates for these two radioligands. Seven healthy subjects (four men and three women) underwent whole-body PET scans for 120 min after injection with {sup 11}C-MePPEP. Another seven healthy subjects (two men and five women) underwent whole-body PET scans for 300 min after injection with {sup 18}F-FMPEP-d{sub 2}. Residence times were acquired from regions of interest drawn on tomographic images of visually identifiable organs for both radioligands and from radioactivity excreted in urine for {sup 18}F-FMPEP-d{sub 2}. The effective doses of {sup 11}C-MePPEP and {sup 18}F-FMPEP-d{sub 2} are 4.6 and 19.7 {mu}Sv/MBq, respectively. Both radioligands demonstrated high uptake of radioactivity in liver, lung, and brain shortly after injection and accumulated radioactivity in bone marrow towards the end of the scan. After injection of {sup 11}C-MePPEP, radioactivity apparently underwent hepatobiliary excretion only, while radioactivity from {sup 18}F-FMPEP-d{sub 2} showed both hepatobiliary and urinary excretion. {sup 11}C-MePPEP and {sup 18}F-FMPEP-d{sub 2} yield an effective dose similar to other PET radioligands labeled with either {sup 11}C or {sup 18}F. The high uptake in brain confirms the utility of these two radioligands to image CB{sub 1} receptors in brain, and both may also be useful to image CB{sub 1} receptors in the periphery. (orig.)

  6. Effects of cannabinoids on caffeine contractures in slow and fast skeletal muscle fibers of the frog.

    Science.gov (United States)

    Huerta, Miguel; Ortiz-Mesina, Mónica; Trujillo, Xóchitl; Sánchez-Pastor, Enrique; Vásquez, Clemente; Castro, Elena; Velasco, Raymundo; Montoya-Pérez, Rocío; Onetti, Carlos

    2009-05-01

    The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 microM) caused a decrease in tension. These doses reduced maximum tension to 67.43 +/- 8.07% (P = 0.02, n = 5) and 79.4 +/- 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 +/- 7.17% and 75.10 +/- 3.60% (P = 0.002, n = 5), respectively. Using the CB(1) cannabinoid receptor agonist ACPA (1 microM) reduced the maximum tension of caffeine contractures by 68.70 +/- 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 +/- 6.89% (P = 0.02, n = 5) compared to controls. When the CB(1) receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers, ACPA (1 microM) also decreased tension; the maximum tension was reduced by 56.48 +/- 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 +/- 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers. Moreover, we detected the presence of mRNA for the cannabinoid CB(1) receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression. In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked tension through a receptor-mediated mechanism.

  7. [Drug discrimination properties and cytotoxicity of the cannabinoid receptor ligands].

    Science.gov (United States)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2012-06-01

    The worldwide distribution of smokable herbal mixtures called "Spice" that contain synthetic cannabinoids with a pharmacological activity similar to delta 9-tetrahydrocannabinol (delta 9-THC) has been reported. The synthetic cannabinoids induce behavior and have biochemical properties similar to naturally occurring cannabinoids such as delta 9-THC. In drug discrimination procedures, animal behavior is differentially reinforced depending on the presence or absence of specific drug stimuli. This review seeks to establish an animal model to serve as a discriminative stimulus of the synthetic cannabinoids, to determine whether this discriminative stimulus is identical to that of delta 9-THC. Much data have been obtained in drug discrimination experiments with various synthetic cannabinoids. In the discriminative study, synthetic cannabinoids such as CP-55,940 and WIN-55,212-2 were substituted for delta 9-THC in rats trained to discriminate delta 9-THC from the vehicle. These discriminative effects of synthetic cannabinoids were antagonized by CB1 antagonist SR-141,716A. The discriminative effects of synthetic cannabinoids may overlap with the delta 9-THC cue mediated by CB1 receptors. In in vitro study using NG 108-15 cell lines, synthetic cannabinoids have produced strong cytotoxicities that were suppressed by pretreatment with the CB1 receptor antagonist. Furthermore, pretreatment with caspase inhibitors suppressed these synthetic-cannabinoid-induced cytotoxicities in NG 108-15 cells. These findings indicate that the cytotoxicity of synthetic cannabinoids towards NG 108-15 cells is mediated by the CB1 receptors and further suggest that caspase cascades may play an important role in the cytotoxicities induced by these synthetic cannabinoids. In conclusion, synthetic cannabinoid abuse could be a health hazard for humans.

  8. Population-based input function modeling for [(18F]FMPEP-d 2, an inverse agonist radioligand for cannabinoid CB1 receptors: validation in clinical studies.

    Directory of Open Access Journals (Sweden)

    Paolo Zanotti-Fregonara

    Full Text Available BACKGROUND: Population-based input function (PBIF may be a valid alternative to full blood sampling for quantitative PET imaging. PBIF is typically validated by comparing its quantification results with those obtained via arterial sampling. However, for PBIF to be employed in actual clinical research studies, its ability to faithfully capture the whole spectrum of results must be assessed. The present study validated a PBIF for [(18F]FMPEP-d 2, a cannabinoid CB1 receptor radioligand, in healthy volunteers, and also attempted to utilize PBIF to replicate three previously published clinical studies in which the input function was acquired with arterial sampling. METHODS: The PBIF was first created and validated with data from 42 healthy volunteers. This PBIF was used to assess the retest variability of [(18F]FMPEP-d 2, and then to quantify CB1 receptors in alcoholic patients (n = 18 and chronic daily cannabis smokers (n = 29. Both groups were scanned at baseline and after 2-4 weeks of monitored drug abstinence. RESULTS: PBIF yielded accurate results in the 42 healthy subjects (average Logan-distribution volume (V T was 13.3±3.8 mL/cm(3 for full sampling and 13.2±3.8 mL/cm(3 for PBIF; R(2 = 0.8765, p<0.0001 and test-retest results were comparable to those obtained with full sampling (variability: 16%; intraclass correlation coefficient: 0.89. PBIF accurately replicated the alcoholism study, showing a widespread ∼20% reduction of CB1 receptors in alcoholic subjects, without significant change after abstinence. However, a small PBIF-V T bias of -9% was unexpectedly observed in cannabis smokers. This bias led to substantial errors, including a V T decrease in regions that had shown no downregulation in the full input function. Simulated data showed that the original findings could only have been replicated with a PBIF bias between -6% and +4%. CONCLUSIONS: Despite being initially well validated in healthy subjects, PBIF may

  9. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    Science.gov (United States)

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  10. Interaction between cannabinoid compounds and diazepam on anxiety-like behaviour of mice.

    Science.gov (United States)

    Naderi, Nima; Haghparast, Abbas; Saber-Tehrani, Ali; Rezaii, Neguine; Alizadeh, Amir-Mohammad; Khani, Abbas; Motamedi, Fereshteh

    2008-03-01

    Previous studies have suggested that cannabinoidergic system is involved in anxiety. However, a complete picture of cannabinoid association in the anxiety is still lacking. In the present study, we investigated the possible interaction between cannabinoidergic and GABAergic systems in the anxiety-like behaviour of mice. Intraperitoneal (i.p.) administration of the cannabinoid receptor agonist WIN55212-2 (0.25-5 mg/kg), the endocannabinoid transport inhibitor AM404 (0.25-2 mg/kg) and diazepam (0.25-8 mg/kg) dose dependently exhibited an anxiolytic effect evaluated in terms of increase in the percentage of time spent in the open arms in the elevated plus maze (EPM) test. Administration of certain fixed-ratio combinations (3:1 and 1:1) of WIN55212-2 and diazepam produced a synergistic anxiolytic effect, while the 1:3 combination produced an additive effect. In hole-board test, administration of certain ratios of WIN55212-2-diazepam combination significantly altered the animal behaviour compared to groups that received each drug alone. Co-administration of AM404 (1 and 2 mg/kg) and diazepam (0.5 mg/kg) abolished the anxiolytic effect of the former drug in EPM and the latter in hole-board test, respectively. The combination of an ineffective dose of the fatty acid amide hydrolase (FAAH) inhibitor, URB597 (0.3 mg/kg, i.p.) on anxiety-related responses with an ineffective dose of diazepam (0.25 mg/kg, i.p.) led to a synergistic effect. Co-administration of the CB1 receptor antagonist, AM251 (5 mg/kg) and an effective dose of diazepam (2 mg/kg, i.p.) attenuated diazepam-induced elevation of percentage of time spent in open arm, while lower dose of AM251 (0.5 mg/kg) failed to inhibit diazepam-induced anxiolytic effect. Taken together, the present study showed that co-administration of exogenous cannabinoids and diazepam produce additive or synergistic effect at different combinations. Moreover, it has been shown that enhancement of the function of endocannabinoids could

  11. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey, E-mail: carey.pope@okstate.edu

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  12. Cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala prevent the stress-induced enhancement of a negative learning experience.

    Science.gov (United States)

    Ramot, Assaf; Akirav, Irit

    2012-05-01

    The enhancement of emotional memory is clearly important as emotional stimuli are generally more significant than neutral stimuli for surviving and reproduction purposes. Yet, the enhancement of a negative emotional memory following exposure to stress may result in dysfunctional or intrusive memory that underlies several psychiatric disorders. Here we examined the effects of stress exposure on a negative emotional learning experience as measured by a decrease in the magnitude of the expected quantity of reinforcements in an alley maze. In contrast to other fear-related negative experiences, reward reduction is more associated with frustration and is assessed by measuring the latency to run the length of the alley to consume the reduced quantity of reward. We also examined whether the cannabinoid receptors agonist WIN55,212-2 (5 μg/side) and the glucocorticoid receptors (GRs) antagonist RU-486 (10 ng/side) administered into the rat basolateral amygdala (BLA) could prevent the stress-induced enhancement. We found that intra-BLA RU-486 or WIN55,212 before stress exposure prevented the stress-induced enhancement of memory consolidation for reduction in reward magnitude. These findings suggest that cannabinoid receptors and GRs in the BLA are important modulators of stress-induced enhancement of emotional memory.

  13. Efectos de la exposición prenatal al agonista cannabinoide WIN55,212-2 sobre la proliferación, la migración y el citoesqueleto neuronal de la rata

    OpenAIRE

    Saez, Trinidad María de los Milagros

    2012-01-01

    El sistema endocannabinoide (eCB), compuesto por los receptores cannabinoides (rCB1 y rCB2), ligandos endógenos (endocannabinoides), y enzimas de síntesis y degradación, está presente en el cerebro desde etapas muy tempranas de su desarrollo. En este periodo, el sistema eCB está involucrado en la regulación de la proliferación de progenitores neuronales, en la especificación, la migración y la diferenciación de neuronas piramidales e interneuronas y también en la sinaptogénesis. El consumo de...

  14. Benzophenanthridine alkaloid, piperonyl butoxide and (S)-methoprene action at the cannabinoid-1 receptor (CB1-receptor) pathway of mouse brain: Interference with [(3)H]CP55940 and [(3)H]SR141716A binding and modification of WIN55212-2-dependent inhibition of synaptosomal l-glutamate release.

    Science.gov (United States)

    Dhopeshwarkar, Amey Sadashiv; Nicholson, Russell Alfred

    2014-01-15

    Benzophenanthridine alkaloids (chelerythrine and sanguinarine) inhibited binding of [(3)H]SR141716A to mouse brain membranes (IC50s: CB1 receptors versus spleen CB2 receptors. All compounds reduced Bmax of [(3)H]SR141716A binding to CB1 receptors, but only methoprene and piperonyl butoxide increased Kd (3-5-fold). Benzophenanthridines increased the Kd of [(3)H]CP55940 binding (6-fold), but did not alter Bmax. (S)-methoprene increased the Kd of [(3)H]CP55940 binding (by almost 4-fold) and reduced Bmax by 60%. Piperonyl butoxide lowered the Bmax of [(3)H]CP55940 binding by 50%, but did not influence Kd. All compounds reduced [(3)H]SR141716A and [(3)H]CP55940 association with CB1 receptors. Combined with a saturating concentration of SR141716A, only piperonyl butoxide and (S)-methoprene increased dissociation of [(3)H]SR141716A above that of SR141716A alone. Only piperonyl butoxide increased dissociation of [(3)H]CP55940 to a level greater than CP55940 alone. Binding results indicate predominantly allosteric components to the study compounds action. 4-Aminopyridine-(4-AP-) evoked release of l-glutamate from synaptosomes was partially inhibited by WIN55212-2, an effect completely neutralized by AM251, (S)-methoprene and piperonyl butoxide. With WIN55212-2 present, benzophenanthridines enhanced 4-AP-evoked l-glutamate release above 4-AP alone. Modulatory patterns of l-glutamate release (with WIN-55212-2 present) align with previous antagonist/inverse agonist profiling based on [(35)S]GTPγS binding. Although these compounds exhibit lower potencies compared to many classical CB1 receptor inhibitors, they may have potential to modify CB1-receptor-dependent behavioral/physiological outcomes in the whole animal.

  15. Analysis of Synthetic Cannabinoids in Botanical Material: A Review of Analytical Methods and Findings.

    Science.gov (United States)

    Presley, B C; Jansen-Varnum, S A; Logan, B K

    2013-03-01

    Synthetic cannabinoid analogs have gained a great deal of attention from the forensic community within the last four years. The compounds found to be of most interest to forensic practitioners include those of the following series: JWH, CP, HU, AM, WIN, RCS, and most recently, XLR and UR. Structurally the HU compounds are most similar in structure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana. The novel compounds include cyclohexylphenols, naphthoylindoles, naphthylmethylindoles, naphthylmethylindenes, benzoylindoles, naphthoylpyrroles, phenylacetylindoles, adamantoylindoles, and tetramethylcyclopropylindoles. Many of these compounds are cannabinoid receptor agonists and were originally synthesized for medical research purposes but have recently been appropriated into the illicit drug market. Their psychoactive effects, mimicking those of marijuana, as well as their indeterminate legal status, have made them popular for recreational use. Solutions of the compounds dissolved in organic solvents are sprayed onto botanical material and sold as "herbal incense" products via the Internet, and in smoke shops, convenience stores, and gas stations around the world. Many of the products are labeled "Not for human consumption" in an attempt to circumvent legislation that bans the sale and manufacture of certain compounds and their analogs for human use. The compounds that were first detected following forensic analysis of botanical materials included JWH-018, JWH-073, and CP 47,497 (C7 and C8 homologs). However, in the four years since their appearance the number of compounds has grown, and additional diverse classes of compounds have been detected. Governments worldwide have taken action in an attempt to control those compounds that have become widespread in their regions. This article discusses the history of synthetic cannabinoids and how they have been detected in the illicit drug market. It also discusses the analytical methods and

  16. Cannabinoids and Dementia: A Review of Clinical and Preclinical Data

    Directory of Open Access Journals (Sweden)

    Michael Halpern

    2010-08-01

    Full Text Available The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia. We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD, Huntington’s disease (HD, Parkinson’s disease (PD and vascular dementia (VD. Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro. However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce. While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia. Further research is needed, including in vivo models of dementia and human studies.

  17. The role of cannabinoids in modulating emotional and non-emotional memory processes in the hippocampus

    Directory of Open Access Journals (Sweden)

    Irit eAkirav

    2011-06-01

    Full Text Available Cannabinoid agonists generally have a disruptive effect on memory, learning, and operant behavior that is considered to be hippocampus-dependent. Nevertheless, under certain conditions, cannabinoid receptor activation may facilitate neuronal learning processes. For example, CB1 receptors are essential for the extinction of conditioned fear associations, indicating an important role for this receptor in neuronal emotional learning and memory. This review examines the diverse effects of cannabinoids on hippocampal memory and plasticity. It shows how the effects of cannabinoid receptor activation may vary depending on the route of administration, the nature of the task (aversive or not, and whether it involves emotional memory formation (e.g. conditioned fear and extinction learning or non-emotional memory formation (e.g. spatial learning. It also examines the memory stage under investigation (acquisition, consolidation, retrieval, extinction, and the brain areas involved. Differences between the effects of exogenous and endogenous agonists are also discussed. The apparently biphasic effects of cannabinoids on anxiety is noted as this implies that the effects of cannabinoid receptor agonists on hippocampal learning and memory may be attributable to a general modulation of anxiety or stress levels and not to memory per se. The review concludes that cannabinoids have diverse effects on hippocampal memory and plasticity that cannot be categorized simply into an impairing or an enhancing effect. A better understanding of the involvement of cannabinoids in memory processes will help determine whether the benefits of the clinical use of cannabinoids outweigh the risks of possible memory impairments.

  18. AB-CHMINACA, AB-PINACA, and FUBIMINA: Affinity and Potency of Novel Synthetic Cannabinoids in Producing Δ9-Tetrahydrocannabinol-Like Effects in Mice.

    Science.gov (United States)

    Wiley, Jenny L; Marusich, Julie A; Lefever, Timothy W; Antonazzo, Kateland R; Wallgren, Michael T; Cortes, Ricardo A; Patel, Purvi R; Grabenauer, Megan; Moore, Katherine N; Thomas, Brian F

    2015-09-01

    Diversion of synthetic cannabinoids for abuse began in the early 2000s. Despite legislation banning compounds currently on the drug market, illicit manufacturers continue to release new compounds for recreational use. This study examined new synthetic cannabinoids, AB-CHMINACA (N-[1-amino-3-methyl-oxobutan-2-yl]-1-[cyclohexylmethyl]-1H-indazole-3-carboxamide), AB-PINACA [N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide], and FUBIMINA [(1-(5-fluoropentyl)-1H-benzo[d]imadazol-2-yl)(naphthalen-1-yl)methanone], with the hypothesis that these compounds, like those before them, would be highly susceptible to abuse. Cannabinoids were examined in vitro for binding and activation of CB1 receptors, and in vivo for pharmacological effects in mice and in Δ(9)-tetrahydrocannabinol (Δ(9)-THC) discrimination. AB-CHMINACA, AB-PINACA, and FUBIMINA bound to and activated CB1 and CB2 receptors, and produced locomotor suppression, antinociception, hypothermia, and catalepsy. Furthermore, these compounds, along with JWH-018 [1-pentyl-3-(1-naphthoyl)indole], CP47,497 [rel-5-(1,1-dimethylheptyl)-2-[(1R,3S)-3-hydroxycyclohexyl]-phenol], and WIN55,212-2 ([(3R)-2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone, monomethanesulfonate), substituted for Δ(9)-THC in Δ(9)-THC discrimination. Rank order of potency correlated with CB1 receptor-binding affinity, and all three compounds were full agonists in [(35)S]GTPγS binding, as compared with the partial agonist Δ(9)-THC. Indeed, AB-CHMINACA and AB-PINACA exhibited higher efficacy than most known full agonists of the CB1 receptor. Preliminary analysis of urinary metabolites of the compounds revealed the expected hydroxylation. AB-PINACA and AB-CHMINACA are of potential interest as research tools due to their unique chemical structures and high CB1 receptor efficacies. Further studies on these chemicals are likely to include research on understanding cannabinoid

  19. Cannabinoids on the Brain

    Directory of Open Access Journals (Sweden)

    Andrew J. Irving

    2002-01-01

    Full Text Available Cannabis has a long history of consumption both for recreational and medicinal uses. Recently there have been significant advances in our understanding of how cannabis and related compounds (cannabinoids affect the brain and this review addresses the current state of knowledge of these effects. Cannabinoids act primarily via two types of receptor, CB1 and CB2, with CB1 receptors mediating most of the central actions of cannabinoids. The presence of a new type of brain cannabinoid receptor is also indicated. Important advances have been made in our understanding of cannabinoid receptor signaling pathways, their modulation of synaptic transmission and plasticity, the cellular targets of cannabinoids in different central nervous system (CNS regions and, in particular, the role of the endogenous brain cannabinoid (endocannabinoid system. Cannabinoids have widespread actions in the brain: in the hippocampus they influence learning and memory; in the basal ganglia they modulate locomotor activity and reward pathways; in the hypothalamus they have a role in the control of appetite. Cannabinoids may also be protective against neurodegeneration and brain damage and exhibit anticonvulsant activity. Some of the analgesic effects of cannabinoids also appear to involve sites within the brain. These advances in our understanding of the actions of cannabinoids and the brain endocannabinoid system have led to important new insights into neuronal function which are likely to result in the development of new therapeutic strategies for the treatment of a number of key CNS disorders.

  20. Cannabinoids and Pain

    Directory of Open Access Journals (Sweden)

    J Michael Walker

    2001-01-01

    Full Text Available Cannabinoids have been used to treat pain for many centuries. However, only during the past several decades have rigorous scientific methods been applied to understand the mechanisms of cannabinoid action. Cannabinoid receptors were discovered in the late 1980s and have been found to mediate the effects of cannabinoids on the nervous system. Several endocannabinoids were subsequently identified. Many studies of cannabinoid analgesia in animals during the past century showed that cannabinoids block all types of pain studied. These effects were found to be due to the suppression of spinal and thalamic nociceptive neurons, independent of any actions on the motor systems. Spinal, supraspinal and peripheral sites of cannabinoid analgesia have been identified. Endocannabinoids are released upon electrical stimulation of the periaqueductal gray, and in response to inflammation in the extremities. These observations and others thus suggest that a natural function of cannabinoid receptors and their endogenous ligands is to regulate pain sensitivity. The therapeutic potential of cannabinoids remains an important topic for future investigations, with previous work suggesting utility in clinical studies of cancer and surgical pain. New modes of delivery and/or new compounds lacking the psychotropic properties of the standard cannabinoid ligands offer promise for cannabinoid therapeutics for pain.

  1. WAG/Rij rats show a reduced expression of CB1 receptors in thalamic nuclei and respond to the CB1 receptor agonist, R(+)WIN55,212-2, with a reduced incidence of spike-wave discharges

    NARCIS (Netherlands)

    Rijn, C.M. van; Gaetani, S.; Santolini, I.; Badura, A.; Fu, J.; Watanabe, M.; Cuomo, V.; Luijtelaar, E.L.J.M. van; Nicoletti, F.; Ngomba, R.T.

    2010-01-01

    Purpose: Genetically epileptic WAG/Rij rats develop spontaneous absence-like seizures after 3 months of age. We used WAG/Rij rats to examine whether absence seizures are associated with changes in the expression of type-1 cannabinoid (CB1) receptors. Methods: Receptor expression was examined by in s

  2. Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones.

    Science.gov (United States)

    Boesmans, W; Ameloot, K; van den Abbeel, V; Tack, J; Vanden Berghe, P

    2009-09-01

    Cannabinoid (CB) receptors are expressed in the enteric nervous system (ENS) and CB(1) receptor activity slows down motility and delays gastric emptying. This receptor system has become an important target for GI-related drug development such as in obesity treatment. The aim of the study was to investigate how CB(1) ligands and antagonists affect ongoing activity in enteric neurone networks, modulate synaptic vesicle cycling and influence mitochondrial transport in nerve processes. Primary cultures of guinea-pig myenteric neurones were loaded with different fluorescent markers: Fluo-4 to measure network activity, FM1-43 to image synaptic vesicles and Mitotracker green to label mitochondria. Synaptic vesicle cluster density was assessed by immunohistochemistry and expression of CB(1) receptors was confirmed by RT-PCR. Spontaneous network activity, displayed by both excitatory and inhibitory neurones, was significantly increased by CB(1) receptor antagonists (AM-251 and SR141716), abolished by CB(1) activation (methanandamide, mAEA) and reduced by two different inhibitors (arachidonylamide serotonin, AA-5HT and URB597) of fatty acid amide hydrolase. Antagonists reduced the number of synaptic vesicles that were recycled during an electrical stimulus. CB(1) agonists (mAEA and WIN55,212) reduced and antagonists enhanced the fraction of transported mitochondria in enteric nerve fibres. We found immunohistochemical evidence for an enhancement of synaptophysin-positive release sites with SR141716, while WIN55,212 caused a reduction. The opposite effects of agonists and antagonists suggest that enteric nerve signalling is under the permanent control of CB(1) receptor activity. Using inhibitors of the endocannabinoid degrading enzyme, we were able to show there is endogenous production of a CB ligand in the ENS.

  3. The Combined Inhibitory Effect of the Adenosine A1 and Cannabinoid CB1 Receptors on cAMP Accumulation in the Hippocampus Is Additive and Independent of A1 Receptor Desensitization

    Directory of Open Access Journals (Sweden)

    André Serpa

    2015-01-01

    Full Text Available Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3–30 μM decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6 ± 2.7 μM and an Emax⁡ of 31% ± 2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10–150 nM, an EC50 of 35 ± 19 nM, and an Emax⁡ of 29% ± 5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM and CPA (100 nM on cAMP accumulation was 41% ± 6% (n=4, which did not differ (P>0.7 from the sum of the individual effects of each agonist (43% ± 8% but was different (P<0.05 from the effects of CPA or WIN55212-2 alone. Preincubation with CPA (100 nM for 95 min caused desensitization of adenosine A1 activity, which did not modify the effect of WIN55212-2 (30 μM on cAMP accumulation. In conclusion, the combined effect of CB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.

  4. The combined inhibitory effect of the adenosine A1 and cannabinoid CB1 receptors on cAMP accumulation in the hippocampus is additive and independent of A1 receptor desensitization.

    Science.gov (United States)

    Serpa, André; Correia, Sara; Ribeiro, Joaquim A; Sebastião, Ana M; Cascalheira, José F

    2015-01-01

    Adenosine A1 and cannabinoid CB1 receptors are highly expressed in hippocampus where they trigger similar transduction pathways. We investigated how the combined acute activation of A1 and CB1 receptors modulates cAMP accumulation in rat hippocampal slices. The CB1 agonist WIN55212-2 (0.3-30 μM) decreased forskolin-stimulated cAMP accumulation with an EC50 of 6.6±2.7 μM and an Emax of 31%±2%, whereas for the A1 agonist, N6-cyclopentyladenosine (CPA, 10-150 nM), an EC50 of 35±19 nM, and an Emax of 29%±5 were obtained. The combined inhibitory effect of WIN55212-2 (30 μM) and CPA (100 nM) on cAMP accumulation was 41%±6% (n=4), which did not differ (P>0.7) from the sum of the individual effects of each agonist (43%±8%) but was different (Peffects of CPA or WIN55212-2 alone. Preincubation with CPA (100 nM) for 95 min caused desensitization of adenosine A1 activity, which did not modify the effect of WIN55212-2 (30 μM) on cAMP accumulation. In conclusion, the combined effect of CB1 and A1 receptors on cAMP formation is additive and CB1 receptor activity is not affected by short-term A1 receptor desensitization.

  5. Presynaptic α₂-adrenoceptors control the inhibitory action of presynaptic CB₁ cannabinoid receptors on prefrontocortical norepinephrine release in the rat.

    Science.gov (United States)

    Richter, Hardy; Teixeira, Filipe M; Ferreira, Samira G; Kittel, Ágnes; Köfalvi, Attila; Sperlágh, Beáta

    2012-10-01

    Endocannabinoids play a crucial neuromodulator role in both physiological and pathological states in various brain regions including the prefrontal cortex (PFC). We examined, whether presynaptic cannabinoid receptors are involved in the modulation of basal and electrical field stimulation-evoked [³H]norepinephrine ([³H]NE) release from rat PFC slices. WIN55,212-2, a nonselective CB₁ receptor (CB₁R) agonist, inhibited the electrical stimulation-evoked efflux of [³H]NE in a concentration-dependent fashion, which was antagonized by the CB₁R antagonist/inverse agonist, AM251 (1 μM). Idazoxan, a selective α₂-adrenoceptor antagonist, augmented the evoked [³H]NE release. In the presence of idazoxan, the effect of WIN55,212-2 was exacerbated or attenuated, depending on the applied concentration and stimulation frequency. Moreover their combined, but not individual application elicited a depressive-like phenomenon in the forced-swim test. These data were bolstered with fluorescent and confocal microscopy analysis, which revealed that CB₁R immunoreactivity co-localized with dopamine-β-hydroxylase positive (i.e. noradrenergic) fibers and the inhibitory α(2A) adrenergic autoreceptors (α(2A)R) in the PFC. Furthermore, idazoxan triggered a decrease in CB₁R density in the PFC, suggesting that high extracellular level of norepinephrine downregulates CB₁Rs.

  6. Influence of three-day morphine-treatment upon impairment of memory consolidation induced by cannabinoid infused into the dorsal hippocampus in rats.

    Science.gov (United States)

    Zarrindast, Mohammad Reza; Navaeian, Majid; Nasehi, Mohammad

    2011-01-01

    In the present study, the effects of morphine treatment upon reduction of memory consolidation by post-training administration of the non-selective cannabinoid CB(1)/CB(2) receptor agonist, WIN55,212-2, into the dorsal hippocampus (intra-CA1) have been investigated in rats. Step-through inhibitory avoidance apparatus was used to test memory retrieval, which was made of two white and dark compartments. In training day, electric shocks were delivered to the grid floor of the dark compartment. On the test day, the animal was placed in the white compartment and allowed to enter the dark compartment. The latency with which the animal crossed into the dark compartment was recorded as memory retrieval. Morphine was injected subcutaneously (S.C.), once daily for three days, followed by a five day morphine-free period before training. Bilateral post-training intra-CA1 infusions of WIN55,212-2 (0.25 and 0.5 μg/rat) shortened the step-through latency, which suggested impaired memory consolidation. The deleterious effect of WIN55,212-2 (0.5 μg/rat) was prevented in rats previously injected with morphine (10 mg/kg/day × 3 days, S.C.). Prevention of the WIN55,212-2-induced amnesic-like effect was counteracted by the mu-receptor antagonist, naloxone, and the dopamine D(2) receptor antagonist, sulpiride, but not by the D(1) receptor antagonist, SCH 23390, when administered prior to each morphine injection. The results have suggested that subchronic morphine treatment may cause mu-opioid and D(2) receptor sensitization, which in turn prevents impairment of memory consolidation induced by WIN55,212-2.

  7. Novel cannabinoid receptors

    OpenAIRE

    Brown, A J

    2007-01-01

    Cannabinoids have numerous physiological effects. In the years since the molecular identification of the G protein-coupled receptors CB1 and CB2, the ion channel TRPV1, and their corresponding endogenous ligand systems, many cannabinoid-evoked actions have been shown conclusively to be mediated by one of these specific receptor targets. However, there remain several examples where these classical cannabinoid receptors do not explain observed pharmacology. Studies using mice genetically delete...

  8. Weapons plutonium for electricity: a win-win-win solution

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, P. [Synatom, Brussels (Belgium)

    1997-12-31

    Incorporating recovered weapons-grade plutonium into mixed-oxide (MOX) fuel to produce electricity in currently operating reactors is presented as the best option for its disposition from a European utilities perspective. It would be a win-win-win solution. Firstly, it would be a win for the US government as the only technology readily available on an industrial scale and therefore the fastest way to convert the surplus plutonium to a highly proliferation resistant spent fuel form, as well as being the most cost-effective option. It would also have the political advantages of proving to the world that the US is dedicated to the elimination of its surplus plutonium without delay, receiving support from the Western allies of the US, and encouraging the Russians to take the same route. Secondly, it would be a win for the US utilities both in economic terms and in improving their public image through their contribution to world disarmament. Finally, it would be a win for the world as the fastest route to making disarmament irreversible and as the only solution that conserves natural resources. (8 figures; 14 references) (UK).

  9. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models.

    Science.gov (United States)

    Vincenzi, Fabrizio; Targa, Martina; Corciulo, Carmen; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania; Saponaro, Giulia; Baraldi, Pier Giovanni; Borea, Pier Andrea; Varani, Katia

    2013-06-01

    Cannabinoid CB(2) receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory, neuropathic, and bone cancer pain. In this study the effect of a novel CB(2)agonist (MT178) was evaluated in different animal models of pain. First of all, in vitro competition binding experiments performed on rat, mouse, or human CB receptors revealed a high affinity, selectivity, and potency of MT178. The analgesic properties of the novel CB(2) agonist were evaluated in various in vivo experiments, such as writhing and formalin assays, showing a good efficacy comparable with that produced by the nonselective CB agonist WIN 55,212-2. A dose-dependent antiallodynic effect of the novel CB(2) compound in the streptozotocin-induced diabetic neuropathy was found. In a bone cancer pain model and in the acid-induced muscle pain model, MT178 was able to significantly reduce mechanical hyperalgesia in a dose-related manner. Notably, MT178 failed to provoke locomotor disturbance and catalepsy, which were observed following the administration of WIN 55,212-2. CB(2) receptor mechanism of action was investigated in dorsal root ganglia where MT178 mediated a reduction of [(3)H]-d-aspartate release. MT178 was also able to inhibit capsaicin-induced substance P release and NF-κB activation. These results demonstrate that systemic administration of MT178 produced a robust analgesia in different pain models via CB(2) receptors, providing an interesting approach to analgesic therapy in inflammatory and chronic pain without CB(1)-mediated central side effects.

  10. Pro-drugs for indirect cannabinoids as therapeutic agents.

    Science.gov (United States)

    Ashton, John

    2008-10-01

    Medicinal cannabis, cannabis extracts, and other cannabinoids are currently in use or under clinical trial investigation for the control of nausea, emesis and wasting in patients undergoing chemotherapy, the control of neuropathic pain and arthritic pain, and the control of the symptoms of multiple sclerosis. The further development of medicinal cannabinoids has been challenged with problems. These include the psychoactivity of cannabinoid CB1 receptor agonists and the lack of availability of highly selective cannabinoid receptor full agonists (for the CB1 or CB2 receptor), as well as problems of pharmacokinetics. Global activation of cannabinoid receptors is usually undesirable, and so enhancement of local endocannabinoid receptor activity with indirect cannabimimetics is an attractive strategy for therapeutic modulation of the endocannabinoid system. However, existing drugs of this type tend to be metabolized by the same enzymes as their target endocannabinoids and are not yet available in a form that is clinically useful. A potential solution to these problems may now have been suggested by the discovery that paracetamol (acetaminophen) exerts its analgesic (and probably anti-pyretic) effects by its degradation into an anandamide (an endocannabinoid) reuptake inhibitor (AM404) within the body, thus classifying it as pro-drug for an indirect cannabimimetic. Given the proven efficacy and safety of paracetamol, the challenge now is to develop related drugs, or entirely different substrates, into pro-drug indirect cannabimimetics with a similar safety profile to paracetamol but at high effective dose titrations.

  11. Targeting the cannabinoid system for pain relief?

    Science.gov (United States)

    Chiou, Lih-Chu; Hu, Sherry Shu-Jung; Ho, Yu-Cheng

    2013-12-01

    Marijuana has been used to relieve pain for centuries, but its analgesic mechanism has only been understood during the past two decades. It is mainly mediated by its constituents, cannabinoids, through activating central cannabinoid 1 (CB1) receptors, as well as peripheral CB1 and CB2 receptors. CB2-selective agonists have the benefit of lacking CB1 receptor-mediated CNS side effects. Anandamide and 2-arachidonoylglycerol (2-AG) are two intensively studied endogenous lipid ligands of cannabinoid receptors, termed endocannabinoids, which are synthesized on demand and rapidly degraded. Thus, inhibitors of their degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase (MAGL), respectively, may be superior to direct cannabinoid receptor ligands as a promising strategy for pain relief. In addition to the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, we also review recent studies that revealed a novel analgesic mechanism, involving 2-AG in the periaqueductal gray (PAG), a midbrain region for initiating descending pain inhibition. It is initiated by Gq-protein-coupled receptor (GqPCR) activation of the phospholipase C (PLC)-diacylglycerol lipase (DAGL) enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia. This GqPCR-PLC-DAGL-2-AG retrograde disinhibition mechanism in the PAG can be initiated by activating type 5 metabotropic glutamate receptor (mGluR5), muscarinic acetylcholine (M1/M3), and orexin (OX1) receptors. mGluR5-mediated disinhibition can be initiated by glutamate transporter inhibitors, or indirectly by substance P, neurotensin, cholecystokinin, capsaicin, and AM404, the bioactive metabolite of acetaminophen in the brain. The putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is also discussed.

  12. Cannabinoids Regulate Bcl-2 and Cyclin D2 Expression in Pancreatic β Cells.

    Directory of Open Access Journals (Sweden)

    Jihye Kim

    Full Text Available Recent reports have shown that cannabinoid 1 receptors (CB1Rs are expressed in pancreatic β cells, where they induce cell death and cell cycle arrest by directly inhibiting insulin receptor activation. Here, we report that CB1Rs regulate the expression of the anti-apoptotic protein Bcl-2 and cell cycle regulator cyclin D2 in pancreatic β cells. Treatment of MIN6 and βTC6 cells with a synthetic CB1R agonist, WIN55,212-2, led to a decrease in the expression of Bcl-2 and cyclin D2, in turn inducing cell cycle arrest in G0/G1 phase and caspase-3-dependent apoptosis. Additionally, genetic deletion and pharmacological blockade of CB1Rs after injury in mice led to increased levels of Bcl-2 and cyclin D2 in pancreatic β cells. These findings provide evidence for the involvement of Bcl-2 and cyclin D2 mediated by CB1Rs in the regulation of β-cell survival and growth, and will serve as a basis for developing new therapeutic interventions to enhance β-cell function and growth in diabetes.

  13. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... and Over-the-Counter Medications Stimulant ADHD Medications: Methylphenidate and Amphetamines Synthetic Cannabinoids Synthetic Cathinones ("Bath Salts") Effects of Drug Abuse Comorbidity: Addiction and Other Mental Disorders Drug Use ...

  14. Biased Type 1 Cannabinoid Receptor Signaling Influences Neuronal Viability in a Cell Culture Model of Huntington Disease.

    Science.gov (United States)

    Laprairie, Robert B; Bagher, Amina M; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2016-03-01

    Huntington disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder with limited treatment options. Prior to motor symptom onset or neuronal cell loss in HD, levels of the type 1 cannabinoid receptor (CB1) decrease in the basal ganglia. Decreasing CB1 levels are strongly correlated with chorea and cognitive deficit. CB1 agonists are functionally selective (biased) for divergent signaling pathways. In this study, six cannabinoids were tested for signaling bias in in vitro models of medium spiny projection neurons expressing wild-type (STHdh(Q7/Q7)) or mutant huntingtin protein (STHdh(Q111/Q111)). Signaling bias was assessed using the Black and Leff operational model. Relative activity [ΔlogR (τ/KA)] and system bias (ΔΔlogR) were calculated relative to the reference compound WIN55,212-2 for Gαi/o, Gαs, Gαq, Gβγ, and β-arrestin1 signaling following treatment with 2-arachidonoylglycerol (2-AG), anandamide (AEA), CP55,940, Δ(9)-tetrahydrocannabinol (THC), cannabidiol (CBD), and THC+CBD (1:1), and compared between wild-type and HD cells. The Emax of Gαi/o-dependent extracellular signal-regulated kinase (ERK) signaling was 50% lower in HD cells compared with wild-type cells. 2-AG and AEA displayed Gαi/o/Gβγ bias and normalized CB1 protein levels and improved cell viability, whereas CP55,940 and THC displayed β-arrestin1 bias and reduced CB1 protein levels and cell viability in HD cells. CBD was not a CB1 agonist but inhibited THC-dependent signaling (THC+CBD). Therefore, enhancing Gαi/o-biased endocannabinoid signaling may be therapeutically beneficial in HD. In contrast, cannabinoids that are β-arrestin-biased--such as THC found at high levels in modern varieties of marijuana--may be detrimental to CB1 signaling, particularly in HD where CB1 levels are already reduced.

  15. [The mechanism of action of cannabis and cannabinoids].

    Science.gov (United States)

    Scholten, W K

    2006-01-21

    The effect ofcannabis can be explained on the basis of the function of the cannabinoid receptor system, which consists of CB receptors (CB1, CB2), endoligands to activate these receptors and an enzyme--fatty acid amidohydrolase--to metabolize the endoligands. The endoligands of the cannabinoid receptor system are arachidonic acid-like substances, and are called endocannabinoids. Indications exist that the body also contains arachidonic acid-like substances that inhibit fatty acid amido hydrolase. Various cannabinoids have diverse effects on the receptors, functioning as agonists, antagonists or partial antagonists, as well as affecting the vanilloid receptor. Many known effects ofcannabis can be explained on the basis of this mechanism of action as can the use ofcannabis in various conditions including multiple sclerosis, Parkinson's disease, glaucoma, nausea, vomiting and rheumatoid arthritis.

  16. Cannabinoids inhibit T-cells via cannabinoid receptor 2 in an in vitro assay for graft rejection, the mixed lymphocyte reaction.

    Science.gov (United States)

    Robinson, Rebecca Hartzell; Meissler, Joseph J; Breslow-Deckman, Jessica M; Gaughan, John; Adler, Martin W; Eisenstein, Toby K

    2013-12-01

    Cannabinoids are known to have anti-inflammatory and immunomodulatory properties. Cannabinoid receptor 2 (CB2) is expressed mainly on leukocytes and is the receptor implicated in mediating many of the effects of cannabinoids on immune processes. This study tested the capacity of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) and of two CB2-selective agonists to inhibit the murine Mixed Lymphocyte Reaction (MLR), an in vitro correlate of graft rejection following skin and organ transplantation. Both CB2-selective agonists and Δ(9)-THC significantly suppressed the MLR in a dose dependent fashion. The inhibition was via CB2, as suppression could be blocked by pretreatment with a CB2-selective antagonist, but not by a CB1 antagonist, and none of the compounds suppressed the MLR when splenocytes from CB2 deficient mice were used. The CB2 agonists were shown to act directly on T-cells, as exposure of CD3(+) cells to these compounds completely inhibited their action in a reconstituted MLR. Further, the CB2-selective agonists completely inhibited proliferation of purified T-cells activated by anti-CD3 and anti-CD28 antibodies. T-cell function was decreased by the CB2 agonists, as an ELISA of MLR culture supernatants revealed IL-2 release was significantly decreased in the cannabinoid treated cells. Together, these data support the potential of this class of compounds as useful therapies to prolong graft survival in transplant patients.

  17. Cannabinoid Receptor–Interacting Protein 1a Modulates CB1 Receptor Signaling and Regulation

    OpenAIRE

    Smith, Tricia H.; Blume, Lawrence C.; Straiker, Alex; Cox, Jordan O.; David, Bethany G.; McVoy, Julie R. Secor; Sayers, Katherine W.; Poklis, Justin L.; Abdullah, Rehab A.; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Maurice R. Elphick; Howlett, Allyn C; Selley, Dana E

    2015-01-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor–interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca2+ channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated ...

  18. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite

    DEFF Research Database (Denmark)

    Holm, Niels Bjerre; Noble, Carolina; Linnet, Kristian

    2016-01-01

    Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has bee...

  19. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    Science.gov (United States)

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.

  20. Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Christoph W Michalski

    Full Text Available BACKGROUND: While cannabinoids have been shown to ameliorate liver fibrosis, their effects in chronic pancreatitis and on pancreatic stellate cells (PSC are unknown. METHODOLOGY/PRINCIPAL FINDINGS: The activity of the endocannabinoid system was evaluated in human chronic pancreatitis (CP tissues. In vitro, effects of blockade and activation of cannabinoid receptors on pancreatic stellate cells were characterized. In CP, cannabinoid receptors were detected predominantly in areas with inflammatory changes, stellate cells and nerves. Levels of endocannabinoids were decreased compared with normal pancreas. Cannabinoid-receptor-1 antagonism effectuated a small PSC phenotype and a trend toward increased invasiveness. Activation of cannabinoid receptors, however, induced de-activation of PSC and dose-dependently inhibited growth and decreased IL-6 and MCP-1 secretion as well as fibronectin, collagen1 and alphaSMA levels. De-activation of PSC was partially reversible using a combination of cannabinoid-receptor-1 and -2 antagonists. Concomitantly, cannabinoid receptor activation specifically decreased invasiveness of PSC, MMP-2 secretion and led to changes in PSC phenotype accompanied by a reduction of intracellular stress fibres. CONCLUSIONS/SIGNIFICANCE: Augmentation of the endocannabinoid system via exogenously administered cannabinoid receptor agonists specifically induces a functionally and metabolically quiescent pancreatic stellate cell phenotype and may thus constitute an option to treat inflammation and fibrosis in chronic pancreatitis.

  1. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids.

    Science.gov (United States)

    Carriba, Paulina; Ortiz, Oskar; Patkar, Kshitij; Justinova, Zuzana; Stroik, Jessica; Themann, Andrea; Müller, Christa; Woods, Anima S; Hope, Bruce T; Ciruela, Francisco; Casadó, Vicent; Canela, Enric I; Lluis, Carme; Goldberg, Steven R; Moratalla, Rosario; Franco, Rafael; Ferré, Sergi

    2007-11-01

    The mechanism of action responsible for the motor depressant effects of cannabinoids, which operate through centrally expressed cannabinoid CB1 receptors, is still a matter of debate. In the present study, we report that CB1 and adenosine A2A receptors form heteromeric complexes in co-transfected HEK-293T cells and rat striatum, where they colocalize in fibrilar structures. In a human neuroblastoma cell line, CB1 receptor signaling was found to be completely dependent on A2A receptor activation. Accordingly, blockade of A2A receptors counteracted the motor depressant effects produced by the intrastriatal administration of a cannabinoid CB1 receptor agonist. These biochemical and behavioral findings demonstrate that the profound motor effects of cannabinoids depend on physical and functional interactions between striatal A2A and CB1 receptors.

  2. Cannabinoids: Glutamatergic Transmission and Kynurenines.

    Science.gov (United States)

    Colín-González, Ana Laura; Aguilera, Gabriela; Santamaría, Abel

    2016-01-01

    The endocannabinoid system (ECS) comprises a complex of receptors, enzymes, and endogenous agonists that are widely distributed in the central nervous system of mammals and participates in a considerable number of neuromodulatory functions, including neurotransmission, immunological control, and cell signaling. In turn, the kynurenine pathway (KP) is the most relevant metabolic route for tryptophan degradation to form the metabolic precursor NAD(+). Recent studies demonstrate that the control exerted by the pharmacological manipulation of the ECS on the glutamatergic system in the brain may offer key information not only on the development of psychiatric disorders like psychosis and schizophrenia-like symptoms, but it also may constitute a solid basis for the development of therapeutic strategies to combat excitotoxic events occurring in neurological disorders like Huntington's disease (HD). Part of the evidence pointing to the last approach is based on experimental protocols demonstrating the efficacy of cannabinoids to prevent the deleterious actions of the endogenous neurotoxin and KP metabolite quinolinic acid (QUIN). These findings intuitively raise the question about what is the precise role of the ECS in tryptophan metabolism through KP and vice versa. In this chapter, we will review basic concepts on the physiology of both the ECS and the KP to finally describe those recent findings combining the components of these two systems and hypothesize the future course that the research in this emerging field will take in the next years.

  3. Cannabinoids: Medical implications.

    Science.gov (United States)

    Schrot, Richard J; Hubbard, John R

    2016-01-01

    Herbal cannabis has been used for thousands of years for medical purposes. With elucidation of the chemical structures of tetrahydrocannabinol (THC) and cannabidiol (CBD) and with discovery of the human endocannabinoid system, the medical usefulness of cannabinoids has been more intensively explored. While more randomized clinical trials are needed for some medical conditions, other medical disorders, like chronic cancer and neuropathic pain and certain symptoms of multiple sclerosis, have substantial evidence supporting cannabinoid efficacy. While herbal cannabis has not met rigorous FDA standards for medical approval, specific well-characterized cannabinoids have met those standards. Where medical cannabis is legal, patients typically see a physician who "certifies" that a benefit may result. Physicians must consider important patient selection criteria such as failure of standard medical treatment for a debilitating medical disorder. Medical cannabis patients must be informed about potential adverse effects, such as acute impairment of memory, coordination and judgment, and possible chronic effects, such as cannabis use disorder, cognitive impairment, and chronic bronchitis. In addition, social dysfunction may result at work/school, and there is increased possibility of motor vehicle accidents. Novel ways to manipulate the endocannbinoid system are being explored to maximize benefits of cannabinoid therapy and lessen possible harmful effects.

  4. The influence of cannabinoids on learning and memory processes of the dorsal striatum.

    Science.gov (United States)

    Goodman, Jarid; Packard, Mark G

    2015-11-01

    Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system.

  5. Oxaza adamantyl cannabinoids. A new class of cannabinoid receptor probes.

    Science.gov (United States)

    Le Goanvic, David; Tius, Marcus A

    2006-09-29

    The preparation of C3 oxaza adamantyl cannabinoids has been described starting from phloroglucinol. Straightforward manipulations of the aromatic ring lead to a bromononaflate that is a benzyne precursor and that serves as a common intermediate for the synthesis of diverse C3-substituted tricyclic cannabinoids. Generation of the benzyne in the presence of an oxaza adamantyl amide anion results in efficient and regiospecific addition to C3 of the aromatic ring. This represents an attractive strategy for the synthesis of classical tricyclic cannabinoids that bear a modified aromatic appendage. The oxaza adamantyl cannabinoids that have been prepared represent a new class of ligands for the CB1 and CB2 receptors.

  6. Stimulation of cannabinoid receptor 2 (CB2 suppresses microglial activation

    Directory of Open Access Journals (Sweden)

    Fernandez Francisco

    2005-12-01

    Full Text Available Abstract Background Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD, multiple sclerosis (MS, and HIV dementia. It is well known that inflammatory mediators such as nitric oxide (NO, cytokines, and chemokines play an important role in microglial cell-associated neuron cell damage. Our previous studies have shown that CD40 signaling is involved in pathological activation of microglial cells. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2. Methods In this study, we investigated the effects of a cannabinoid agonist on CD40 expression and function by cultured microglial cells activated by IFN-γ using RT-PCR, Western immunoblotting, flow cytometry, and anti-CB2 small interfering RNA (siRNA analyses. Furthermore, we examined if the stimulation of CB2 could modulate the capacity of microglial cells to phagocytise Aβ1–42 peptide using a phagocytosis assay. Results We found that the selective stimulation of cannabinoid receptor CB2 by JWH-015 suppressed IFN-γ-induced CD40 expression. In addition, this CB2 agonist markedly inhibited IFN-γ-induced phosphorylation of JAK/STAT1. Further, this stimulation was also able to suppress microglial TNF-α and nitric oxide production induced either by IFN-γ or Aβ peptide challenge in the presence of CD40 ligation. Finally, we showed that CB2 activation by JWH-015 markedly attenuated CD40-mediated inhibition of microglial phagocytosis of Aβ1–42 peptide. Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.

  7. Cannabinoids enhance gastric X/A-like cells activity.

    Directory of Open Access Journals (Sweden)

    Bogusław Sawicki

    2008-06-01

    Full Text Available It has been reported that cannabinoids may cause overeating in humans and in laboratory animals. Although, endogenous cannabinoids and their receptors (CB1 have been found in the hypothalamus, and recently also in gastrointestinal tract, the precise mechanism of appetite control by cannabinoids remains unknown. Recently, ghrelin--a hormone secreted mainly from the stomach X/A-like cells was proposed to be an appetite stimulating agent. The aim of this study was the evaluation of the influence of a single ip injection of a stable analogue of endogenous cannabinoid--anandamide, R-(+-methanandamide (2.5 mg/kg and CP 55,940 (0.25 mg/kg, an exogenous agonist of CB1 receptors, on ghrelin plasma concentration and on ghrelin immunoreactivity in the gastric mucosa of male Wistar rats. Four hours after a single injection of both cannabinoids or vehicle, the animals were anaesthetized and blood was taken from the abdominal aorta to determinate plasma ghrelin concentration by RIA. Subsequently, the animals underwent resection of distal part of stomach. Immunohistochemical study of gastric mucosa, using the EnVision method and specific monoclonal antibodies against ghrelin was performed. The intensity of ghrelin immunoreactivity in X/A-like cells was analyzed using Olympus Cell D image analysis system. The attenuation of ghrelin-immunoreactivity of gastric mucosa, after a single injection of R-(+-methanandamide and CP 55,940 was accompanied by a significant increase of ghrelin plasma concentration. These results indicate that stimulation of appetite exerted by cannabinoids may be connected with an increase of ghrelin secretion from gastric X/A-like cells.

  8. The Importance of Teaching a Win-Win Philosophy.

    Science.gov (United States)

    Brainard, Alan J.

    Most people are raised in a traditional environment which teaches that someone-winning implies that someone-loses. However, psychology and the examples provided in the Watergate scandal demonstrate that such a philosophy is neither productive nor beneficial. A "win-win" philosophy of cooperation, not competition, is needed for…

  9. Biofuels: A win-win strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This article looks at the overall goal of stabilizing global climate change while achieving a sustainable energy future. On Earth Day 1993, President Clinton announced that the U.S. would comply with the Rio accord and bring U.S. greenhouse gas emissions back to 1990 levels by the year 2000. Since the transportation sector accounts for over 30 percent of domestic CO{sub 2} emissions, the large-scale use and deployment of biofuels would be a useful tool in achieving the Administration`s goals of limiting greenhouse gases. Biofuels such as ethanol, methanol, and biodiesel are expected to have lower emissions of greenhouse gases than those derived from petroleum or other fossil fuels. This marked difference is due to the {open_quotes}CO{sub 2} recycling effect{close_quotes} associated with the growth process of biomass renewable resources such as trees and grasses. This article covers the following topics: global climate change an future energy consumption, reducing greenhouse transportation sector emissions: improving fuel economy and switching to low-carbon emission fuel sources; integration of fuel economy and alternative fuels; biofuels as a transportation strategy for mitigating global climate change; a win-win strategy: biofuels reduce carbon dioxide while promoting sustainable economic growth; increasing biofuels utilization through government and industry cooperation. 5 figs.

  10. Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes

    OpenAIRE

    2006-01-01

    Cannabis extracts and synthetic cannabinoids are still widely considered illegal substances. Preclinical and clinical studies have suggested that they may result useful to treat diverse diseases, including those related with acute or chronic pain. The discovery of cannabinoid receptors, their endogenous ligands, and the machinery for the synthesis, transport, and degradation of these retrograde messengers, has equipped us with neurochemical tools for novel drug design. Agonist-activated canna...

  11. (Endo)cannabinoids mediate different Ca(2+) entry mechanisms in human bronchial epithelial cells

    NARCIS (Netherlands)

    Gkoumassi, Effimia; Dekkers, Bart G. J.; Droge, Melloney J.; Elzinga, Carolina R. S.; Hasenbosch, Rutger E.; Meurs, Herman; Nelemans, S. Adriaan; Schmidt, Martina; Zaagsma, Johan

    2009-01-01

    In human bronchial epithelial (16HBE14o) cells, CB(1) and CB(2) cannabinoid receptors are present, and their activation by the endocannabinoid virodhamine and the synthetic non-selective receptor agonist CP55,940 inhibits adenylyl cyclase and cellular interleukin-8 release. Here, we analyzed changes

  12. Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice.

    Science.gov (United States)

    Morgan, Daniel J; Davis, Brian J; Kearn, Chris S; Marcus, David; Cook, Alex J; Wager-Miller, Jim; Straiker, Alex; Myoga, Michael H; Karduck, Jeffrey; Leishman, Emma; Sim-Selley, Laura J; Czyzyk, Traci A; Bradshaw, Heather B; Selley, Dana E; Mackie, Ken

    2014-04-09

    For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430). However, the role of these serine residues in tolerance and dependence for cannabinoids in vivo was unclear. Therefore, we generated mice where S426 and S430 were mutated to nonphosphorylatable alanines (S426A/S430A). S426A/S430A mutant mice were more sensitive to acutely administered delta-9-tetrahydrocannabinol (Δ(9)-THC), have delayed tolerance to Δ(9)-THC, and showed increased dependence for Δ(9)-THC. S426A/S430A mutants also showed increased responses to elevated levels of endogenous cannabinoids. CB1R desensitization in the periaqueductal gray and spinal cord following 7 d of treatment with Δ(9)-THC was absent in S426A/S430A mutants. Δ(9)-THC-induced downregulation of CB1R in the spinal cord was also absent in S426A/S430A mutants. Cultured autaptic hippocampal neurons from S426A/S430A mice showed enhanced endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and reduced agonist-mediated desensitization of DSE. These results indicate that S426 and S430 play major roles in the acute response to, tolerance to, and dependence on cannabinoids. Additionally, S426A/S430A mice are a novel model for studying pathophysiological processes thought to involve excessive endocannabinoid signaling such as drug addiction and metabolic disease. These mice also validate the approach of mutating GRK phosphorylation sites involved in desensitization as a general means to confer exaggerated signaling to GPCRs in vivo.

  13. The role of cannabinoids and leptin in neurological diseases.

    Science.gov (United States)

    Agar, E

    2015-12-01

    Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.

  14. Cannabinoids in the management of difficult to treat pain.

    Science.gov (United States)

    Russo, Ethan B

    2008-02-01

    This article reviews recent research on cannabinoid analgesia via the endocannabinoid system and non-receptor mechanisms, as well as randomized clinical trials employing cannabinoids in pain treatment. Tetrahydrocannabinol (THC, Marinol((R))) and nabilone (Cesamet((R))) are currently approved in the United States and other countries, but not for pain indications. Other synthetic cannabinoids, such as ajulemic acid, are in development. Crude herbal cannabis remains illegal in most jurisdictions but is also under investigation. Sativex((R)), a cannabis derived oromucosal spray containing equal proportions of THC (partial CB(1) receptor agonist ) and cannabidiol (CBD, a non-euphoriant, anti-inflammatory analgesic with CB(1) receptor antagonist and endocannabinoid modulating effects) was approved in Canada in 2005 for treatment of central neuropathic pain in multiple sclerosis, and in 2007 for intractable cancer pain. Numerous randomized clinical trials have demonstrated safety and efficacy for Sativex in central and peripheral neuropathic pain, rheumatoid arthritis and cancer pain. An Investigational New Drug application to conduct advanced clinical trials for cancer pain was approved by the US FDA in January 2006. Cannabinoid analgesics have generally been well tolerated in clinical trials with acceptable adverse event profiles. Their adjunctive addition to the pharmacological armamentarium for treatment of pain shows great promise.

  15. Antiaversive Effects of Cannabinoids: Is the Periaqueductal Gray Involved?

    Directory of Open Access Journals (Sweden)

    F. S. Guimarães

    2008-12-01

    Full Text Available Cannabinoids play an important role in activity-dependent changes in synaptic activity and can interfere in several brain functions, including responses to aversive stimuli. The regions responsible for their effects, however, are still unclear. Cannabinoid type 1 (CB1 receptors are widely distributed in the central nervous system and are present in the periaqueductal gray (PAG, a midbrain structure closely involved in responses related to aversive states. Accordingly, exposure to stressful stimuli increases endocannabinoid (eCB levels in the PAG, and local administration of CB1 agonists or drugs that facilitate eCB-mediated neurotransmission produces antinociceptive and antiaversive effects. To investigate if these drugs would also interfere in animal models that are sensitive to anxiolytic drugs, we verified the responses to intra-PAG injection of CB1 agonists in rats submitted to the elevated plus-maze, the Vogel punished licking test, or contextual aversive conditioning model. The drugs induced anxiolytic-like effects in all tests. The same was observed with the transient receptor potential vanilloid type 1 (TRPV1 antagonist capsazepine and with cannabidiol, a nonpsychotomimetic phytocannabinoid that produces anxiolytic-like effects after systemic administration in humans and laboratory animals. These results, therefore, suggest that the PAG could be an important site for the antiaversive effects of cannabinoids.

  16. Critical appraisal of the potential use of cannabinoids in cancer management

    Directory of Open Access Journals (Sweden)

    Cridge BJ

    2013-08-01

    Full Text Available Belinda J Cridge, Rhonda J Rosengren Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand Abstract: Cannabinoids have been attracting a great deal of interest as potential anticancer agents. Originally derived from the plant Cannabis sativa, there are now a number of endo-, phyto- and synthetic cannabinoids available. This review summarizes the key literature to date around the actions, antitumor activity, and mechanisms of action for this broad range of compounds. Cannabinoids are largely defined by an ability to activate the cannabinoid receptors – CB1 or CB2. The action of the cannabinoids is very dependent on the exact ligand tested, the dose, and the duration of exposure. Some cannabinoids, synthetic or plant-derived, show potential as therapeutic agents, and evidence across a range of cancers and evidence in vitro and in vivo is starting to be accumulated. Studies have now been conducted in a wide range of cell lines, including glioma, breast, prostate, endothelial, liver, and lung. This work is complemented by an increasing body of evidence from in vivo models. However, many of these results remain contradictory, an issue that is not currently able to be resolved through current knowledge of mechanisms of action. While there is a developing understanding of potential mechanisms of action, with the extracellular signal-regulated kinase pathway emerging as a critical signaling juncture in combination with an important role for ceramide and lipid signaling, the relative importance of each pathway is yet to be determined. The interplay between the intracellular pathways of autophagy versus apoptosis is a recent development that is discussed. Overall, there is still a great deal of conflicting evidence around the future utility of the cannabinoids, natural or synthetic, as therapeutic agents. Keywords: cancer, cannabinoid, endocannabinoid, tetrahydrocannabinol, JWH-133, WIN-55,212-2

  17. Indemnification: Win/lose or win/win

    Energy Technology Data Exchange (ETDEWEB)

    Booth, G.M.

    1996-08-01

    Some of you may be wondering how an oil company employee came to be speaking on indemnity. I`ve been wondering that myself and have even considered the possibility that the conference thought it might be interesting to have a presentation in which the sacrificial lamb is led to the slaughter. I hope that`s not the case. I am not speaking today as a representative of Conoco or as a spokesperson for the operator perspective. I do not intend to tell you what position to take with respect to contractual indemnification. My purpose is to share with you some of my thoughts on indemnification and provide you with some perspective in which to consider your own objectives in structuring indemnities and evaluate whether your current positions meet those objectives. What is contractual indemnification? To some, it is a vehicle by which to transfer all the risk inherent in their operations to another party. Others view it as a means of protecting a deductible or self-insured retention. Some think of it as a bloodbath. There are a few who believe that it is a game in which the only way to win is to ensure the other party loses. The states of Texas and Louisiana believe contractual indemnities are {open_quotes}inequities foisted on certain contractors.{close_quotes} I would like to propose that indemnity can be nothing more than an economic transaction which attempts to allocate risk in a cost effective manner.

  18. The endocannabinoids anandamide and virodhamine modulate the activity of the candidate cannabinoid receptor GPR55.

    Science.gov (United States)

    Sharir, Haleli; Console-Bram, Linda; Mundy, Christina; Popoff, Steven N; Kapur, Ankur; Abood, Mary E

    2012-12-01

    The role of cannabinoid receptors in inflammation has been the topic of many research endeavors. Despite this effort, to date the involvement of the endocannabinoid system (ECS) in inflammation remains obscure. The ambiguity of cannabinoid involvement may be explained by the existence of cannabinoid receptors, other than CB(1) and CB(2), or a consequence of interaction of endocannabinoids with other signaling systems. GPR55 has been proposed to be a cannabinoid receptor; however the interaction of the endocannabinoid system with GPR55 remains elusive. Consequently this study set about to examine the effects of the endocannabinoids, anandamide (AEA) and virodhamine, on GPR55 mediated signaling. Specifically, we assessed changes in β-arrestin2 (βarr2) distribution and GPR55 receptor internalization following activation by lysophosphatidylinositol (LPI), the synthetic cannabinoid ligand SR141716A, and new selective synthetic GPR55 agonists. Data obtained from the experiments presented herein demonstrate that AEA and virodhamine modulate agonist-mediated recruitment of βarr2. AEA and virodhamine act as partial agonists; enhancing the agonist effect at low concentrations and inhibiting it at high concentrations. Furthermore, both virodhamine and AEA significantly attenuated agonist-induced internalization of GPR55. These effects are attributed to the expression of GPR55, and not CB(1) and CB(2) receptors, as we have established negligible expression of CB(1) and CB(2) in these GPR55-transfected U2OS cells. The identification of select endocannabinoids as GPR55 modulators will aide in elucidating the function of GPR55 in the ECS.

  19. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation.

    Science.gov (United States)

    Rom, Slava; Persidsky, Yuri

    2013-06-01

    An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB(1), CB(2)) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer's disease to name a few), mainly mediated by CB(2) activation. Development of CB(2) agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB(2) activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection.

  20. Cannabinoids inhibit ATP-activated currents in rat trigeminal ganglionic neuroas%大麻素抑制大鼠三叉神经节神经元ATP激活电流

    Institute of Scientific and Technical Information of China (English)

    申晶晶; 刘长金; 李爱; 胡新武; 陆永利; 陈蕾; 周莹; 刘烈炬

    2007-01-01

    本文在培养的大鼠三叉神经节(trigeminal ganglion,TG)神经元上采用全细胞膜片钳技术,探讨大麻素对大鼠TG神经元ATP激活电流(ATP-activated currents,IATP)的影响.结果显示:(1)胞外给予ATP,大部分受检细胞(67/75,89.33%)可记录到一个内向电流,且具有剂量依赖性.该电流可被P2X嘌呤受体特异性拮抗剂PPADS所阻断.(2)预加WIN55212-2[大麻素受体1(cannabinoid receptor 1,CB1受体)激动剂]可对IATP产生抑制作用,此作用呈剂量依赖性,并可被CB1受体特异性拮抗剂AM281阻断.预加不同浓度的WIN55212-2(1x10-13、1x10-12、1x10-11、1x10-10、1x10-9和1x10-8mol/L)对IATP(1x10-4mol/L ATP)的抑制作用分别为(8.14±3.14)%、(20.11±2.72)%、(46.62±3.51)%、(72.16±5.64)%、(80.21±2.80)%和(80.59±3.55)%.(3)预加WIN55212-2后IATP的浓度-反应曲线明显下移;最大反应浓度时的IATP幅值减小了(58.02±4.21)%,而阈值基本不变;预加WIN55212.2前后曲线的EC50值非常接近(1.15x10-4mol/L vs 1.27x10-4 mol/L).(4)预加forskolin[腺苷酸环化酶(adenylyl cyclase,AC)激动剂]或8-Br-cAMP可以逆转WIN55212-2对IATP的抑制作用.以上结果表明,大麻素可能作用于CB1受体,通过抑制AC-cAMP-PKA途径发挥对IATP的抑制作用.%The present study aimed to investigate whether cannabinoids could modulate the response mediated by ATP receptor (P2X purinoceptor).Whole-cell patch-clamp recording was performed on cultured rat trigeminal ganglionic (TG)neurons.The majority of TG neurons were sensitive to ATP(67/75,89.33%).Extracellular pretreatment with WIN55212-2,a cannabinoid receptor 1(CB1 receptor)agonist,reduced ATP-activated current(IATP)significantly.This inhibitory effect was concentration-dependent and was blocked by AM281,a specific CB1 receptor antagonist.Pretreatment with WIN55212-2 at 1x10-13,1x10-12,1x10-11,1x10-10,1×10-9 and 1x10-8mol/L reduced IATP(induced by 1x10-4mol/L ATP)by(8.14±3.14)%,(20.11±2.72)%,(46.62±3.51)%,(72.16±5

  1. 2014 WIN3 Workshop

    CERN Document Server

    Long, Ling; Pries, Rachel; Stange, Katherine

    2016-01-01

    Exploring the interplay between deep theory and intricate computation, this volume is a compilation of research and survey papers in number theory, written by members of the Women In Numbers (WIN) network, principally by the collaborative research groups formed at Women In Numbers 3, a conference at the Banff International Research Station in Banff, Alberta, on April 21-25, 2014. The papers span a wide range of research areas: arithmetic geometry; analytic number theory; algebraic number theory; and applications to coding and cryptography. The WIN conference series began in 2008, with the aim of strengthening the research careers of female number theorists. The series introduced a novel research-mentorship model: women at all career stages, from graduate students to senior members of the community, joined forces to work in focused research groups on cutting-edge projects designed and led by experienced researchers. The goals for Women In Numbers 3 were to establish ambitious new collaborations between women i...

  2. Vestas- Will To Win

    OpenAIRE

    2015-01-01

    Abstract In 2005 the new CEO of Vestas, Ditlev Engel introduces the corporate strategy Will to Win and with that Vestas experiences a streamlining of the organization. The internal environment is optimized and a focus towards reduction of variable costs through implementation of performance systems and reassignments of the company’s production plant is made. The overall financial position of the company is improved by the new incentives and by end 2008 Vestas has mamaged to reach a EBIT-ma...

  3. Feeding induced by cannabinoids is mediated independently of the melanocortin system.

    Directory of Open Access Journals (Sweden)

    Puspha Sinnayah

    Full Text Available BACKGROUND: Cannabinoids, the active components of marijuana, stimulate appetite, and cannabinoid receptor-1 (CB1-R antagonists suppress appetite and promote weight loss. Little is known about how CB1-R antagonists affect the central neurocircuitry, specifically the melanocortin system that regulates energy balance. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that peripherally administered CB1-R antagonist (AM251 or agonist equally suppressed or stimulated feeding respectively in A(y , which lack a functional melanocortin system, and wildtype mice, demonstrating that cannabinoid effects on feeding do not require melanocortin circuitry. CB1-R antagonist or agonist administered into the ventral tegmental area (VTA equally suppressed or stimulated feeding respectively, in both genotypes. In addition, peripheral and central cannabinoid administration similarly induced c-Fos activation in brain sites suggesting mediation via motivational dopaminergic circuitry. Amperometry-detected increases in evoked dopamine (DA release by the CB1-R antagonist in nucleus accumbens slices indicates that AM251 modulates DA release from VTA terminals. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that the effects of cannabinoids on energy balance are independent of hypothalamic melanocortin circuitry and is primarily driven by the reward system.

  4. Downregulation of class II transactivator (CIITA) expression by synthetic cannabinoid CP55,940.

    Science.gov (United States)

    Gongora, Celine; Hose, Stacey; O'Brien, Terrence P; Sinha, Debasish

    2004-01-30

    Cannabinoid receptors are known to be expressed in microglia; however, their involvement in specific aspects of microglial immune function has not been demonstrated. Many effects of cannabinoids are mediated by two G-protein coupled receptors, designated CB1 and CB2. We have shown that the CB1 receptor is expressed in microglia that also express MHC class II antigen (J. Neuroimmunol. 82 (1998) 13-21). In our present study, we have analyzed the effect of cannabinoid agonist CP55,940 on MHC class II expression on the surface of IFN-gamma induced microglial cells by flow cytometry. CP55,940 blocked the class II MHC expression induced by IFN-gamma. It has been shown that the regulation of class II MHC genes occurs primarily at the transcriptional level, and a non-DNA binding protein, class II transactivator (CIITA), has been shown to be the master activator for class II transcription. We find that mRNA levels of CIITA are increased in IFN-gamma induced EOC 20 microglial cells and that this increase is almost entirely eliminated by the cannabinoid agonist CP55,940. These data suggests that cannabinoids affect MHC class II expression through actions on CIITA at the transcriptional level.

  5. CB1大麻素受体激动剂抑制基质金属蛋白酶参与脊髓损伤后血-脊髓屏障通透性调节%Involvement of CB1 cannabinoid receptor agonist in the permeability of blood spinal cord barrier after acute spinal cord in-jury in rat model

    Institute of Scientific and Technical Information of China (English)

    董宝铁; 李泓; 费良健; 王岩峰

    2015-01-01

    目的:探讨CB1大麻素受体激动剂在大鼠脊髓损伤后对血-脊髓屏障通透性调节的作用。方法将150只雌性SD大鼠随机分为假手术组( Sham组)、脊髓损伤组( SCI组)和CB1激动剂处理组( ACEA组)。采用改良Allen法建立T9脊髓损伤实验动物模型。 Sham组仅行T9椎板切除术,SCI组和ACEA组以30 g·cm致伤力制作模型。 ACEA组建模成功后,每日腹腔给药ACEA 3mg/(kg·d);Sham组和SCI组以生理盐水代替。建模术后12、24、72 h分时段处死动物,取T8~T10脊髓节段,Evans蓝含量测定法检测SCI后血-脊髓屏障通透性变化,定量RT-PCR法检测脊髓组织基质金属蛋白酶9(MMP9)表达水平。结果 Sham组脊髓通透性无改变,脊髓组织中无Evans蓝渗入,ACEA组Evans蓝通过血-脊髓屏障渗漏至脊髓,但渗漏量明显低于SCI组。 ACEA组MMP9表达水平显著低于Sci组。结论 CB1受体激动剂ACEA能降低Allen′s大鼠脊髓损伤模型血-脊髓屏障的破坏,其作用机制可能与MMP9的表达下调相关。%Objective To investigate whether the CB1 cannabinoid receptor agonist has regulating effect on permeability of blood spi-nal cord barrier( BSCB) after spinal cord injury( SCI) in rat model. Methods Totally 150 female SD rats were randomly divided into three groups,including sham operation group(Sham group),spinal cord injury group(SCI group)and ACEA treatment group(ACEA group). Modified Allen′s method was carried out at T9 level spinal segment for SCI group and ACEA group to induce acute SCI. While Sham group only underwent laminectomy. Rats in ACEA group were treated with ACEA 3 mg/( kg·d) after surgery until killed. After modeling,the animals were sacrificed at 12,24 and 72 hours,and the level of permeability for BSC was detected by Evans blue assay at T8-T10. The expression level of MMP9 was detected by quantitative RT-PCR method. Results There was no change in the permeabil-ity of BSCB for the Sham group,no Evans blue in the

  6. Role of the cannabinoid system in pain control and therapeutic implications for the management of acute and chronic pain episodes.

    Science.gov (United States)

    Manzanares, J; Julian, Md; Carrascosa, A

    2006-07-01

    Cannabis extracts and synthetic cannabinoids are still widely considered illegal substances. Preclinical and clinical studies have suggested that they may result useful to treat diverse diseases, including those related with acute or chronic pain. The discovery of cannabinoid receptors, their endogenous ligands, and the machinery for the synthesis, transport, and degradation of these retrograde messengers, has equipped us with neurochemical tools for novel drug design. Agonist-activated cannabinoid receptors, modulate nociceptive thresholds, inhibit release of pro-inflammatory molecules, and display synergistic effects with other systems that influence analgesia, especially the endogenous opioid system. Cannabinoid receptor agonists have shown therapeutic value against inflammatory and neuropathic pains, conditions that are often refractory to therapy. Although the psychoactive effects of these substances have limited clinical progress to study cannabinoid actions in pain mechanisms, preclinical research is progressing rapidly. For example, CB(1)mediated suppression of mast cell activation responses, CB(2)-mediated indirect stimulation of opioid receptors located in primary afferent pathways, and the discovery of inhibitors for either the transporters or the enzymes degrading endocannabinoids, are recent findings that suggest new therapeutic approaches to avoid central nervous system side effects. In this review, we will examine promising indications of cannabinoid receptor agonists to alleviate acute and chronic pain episodes. Recently, Cannabis sativa extracts, containing known doses of tetrahydrocannabinol and cannabidiol, have granted approval in Canada for the relief of neuropathic pain in multiple sclerosis. Further double-blind placebo-controlled clinical trials are needed to evaluate the potential therapeutic effectiveness of various cannabinoid agonists-based medications for controlling different types of pain.

  7. Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain.

    Science.gov (United States)

    Jhaveri, Maulik D; Sagar, Devi R; Elmes, Steven J R; Kendall, David A; Chapman, Victoria

    2007-08-01

    The endocannabinoid system consists of cannabinoid CB(1) and CB(2) receptors, endogenous ligands and their synthesising/metabolising enzymes. Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information. The analgesic effects of cannabinoids have been well documented. The usefulness of nonselective cannabinoid agonists can, however, be limited by psychoactive side effects associated with activation of CB(1) receptors. Following the recent evidence for CB(2) receptors existing in the nervous system and reports of their up-regulation in chronic pain states and neurodegenerative diseases, much research is now aimed at shedding light on the role of the CB(2) receptor in human disease. Recent studies have demonstrated anti-nociceptive effects of selective CB(2) receptor agonists in animal models of pain in the absence of CNS side effects. This review focuses on the analgesic potential of CB(2) receptor agonists for inflammatory, post-operative and neuropathic pain states and discusses their possible sites and mechanisms of action.

  8. Cannabinoids & Stress: impact of HU-210 on behavioral tests of anxiety in acutely stressed mice.

    Science.gov (United States)

    Kinden, Renee; Zhang, Xia

    2015-05-01

    Anxiety disorders are one of the most prevalent classes of mental disorders affecting the general population, but current treatment strategies are restricted by their limited efficacy and side effect profiles. Although the cannabinoid system is speculated to be a key player in the modulation of stress responses and emotionality, the vast majority of current research initiatives had not incorporated stress exposure into their experimental designs. This study was the first to investigate the impact of exogenous cannabinoid administration in an acutely stressed mouse model, where CD1 mice were pre-treated with HU-210, a potent CB1R agonist, prior to acute stress exposure and subsequent behavioral testing. Exogenous cannabinoid administration induced distinct behavioral phenotypes in stressed and unstressed mice. While low doses of HU-210 were anxiolytic in unstressed subjects, this effect was abolished when mice were exposed to an acute stressor. The administration of higher HU-210 doses in combination with acute stress exposure led to severe locomotor deficits that were not previously observed at the same dose in unstressed subjects. These findings suggest that exogenous cannabinoids and acute stress act synergistically in an anxiogenic manner. This study underlies the importance of including stress exposure into future anxiety-cannabinoid research due to the differential impact of cannabinoid administration on stressed and unstressed subjects.

  9. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    Science.gov (United States)

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action.

  10. Preferential epithelial expression of type-1 cannabinoid receptor (CB1R) in the developing canine embryo

    OpenAIRE

    2015-01-01

    The use of cannabinoid receptor agonists is gaining a strong interest both in human and veterinary medicine. The potential use of cannabimimetic compounds in companion animals was reviewed in 2007 for their role in tissue inflammation and pain. A better knowledge of type-1 cannabinoid receptor (CB1R) expression on the target population may help in risk management in order to prevent unwanted side effects. We used 30-days old canine embryos to describe the distribution of CB1R by means of immu...

  11. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice

    Directory of Open Access Journals (Sweden)

    Martín-Moreno Ana María

    2012-01-01

    Full Text Available Abstract Background Alzheimer's disease (AD brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential. Methods We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein (APP mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the drinking water during 4 months on inflammatory and cognitive parameters, and on 18F-fluoro-deoxyglucose (18FDG uptake by positron emission tomography (PET. Results Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased 18FDG uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-α mRNA expression found in the AD model. Increased cortical β-amyloid (Aβ levels were significantly reduced in the mouse model by both cannabinoids. Noteworthy both cannabinoids enhanced Aβ transport across choroid plexus cells in vitro. Conclusions In summary we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aβ clearance.

  12. Genetic vs. pharmacological inactivation of COMT influences cannabinoid-induced expression of schizophrenia-related phenotypes.

    Science.gov (United States)

    O'Tuathaigh, Colm M P; Clarke, Gerard; Walsh, Jeremy; Desbonnet, Lieve; Petit, Emilie; O'Leary, Claire; Tighe, Orna; Clarke, Niamh; Karayiorgou, Maria; Gogos, Joseph A; Dinan, Ted G; Cryan, John F; Waddington, John L

    2012-10-01

    Catechol-O-methyltransferase (COMT) is an important enzyme in the metabolism of dopamine and disturbance in dopamine function is proposed to be central to the pathogenesis of schizophrenia. Clinical epidemiological studies have indicated cannabis use to confer a 2-fold increase in risk for subsequent onset of psychosis, with adolescent-onset use conveying even higher risk. There is evidence that a high activity COMT polymorphism moderates the effects of adolescent exposure to cannabis on risk for adult psychosis. In this paper we compared the effect of chronic adolescent exposure to the cannabinoid WIN 55212 on sensorimotor gating, behaviours related to the negative symptoms of schizophrenia, anxiety- and stress-related behaviours, as well as ex-vivo brain dopamine and serotonin levels, in COMT KO vs. wild-type (WT) mice. Additionally, we examined the effect of pretreatment with the COMT inhibitor tolcapone on acute effects of this cannabinoid on sensorimotor gating in C57BL/6 mice. COMT KO mice were shown to be more vulnerable than WT to the disruptive effects of adolescent cannabinoid treatment on prepulse inhibition (PPI). Acute pharmacological inhibition of COMT in C57BL/6 mice also modified acute cannabinoid effects on startle reactivity, as well as PPI, indicating that chronic and acute loss of COMT can produce dissociable effects on the behavioural effects of cannabinoids. COMT KO mice also demonstrated differential effects of adolescent cannabinoid administration on sociability and anxiety-related behaviour, both confirming and extending earlier reports of COMT×cannabinoid effects on the expression of schizophrenia-related endophenotypes.

  13. Cannabinoid-Induced Hyperemesis: A Conundrum—From Clinical Recognition to Basic Science Mechanisms

    Directory of Open Access Journals (Sweden)

    Nissar A. Darmani

    2010-07-01

    Full Text Available Cannabinoids are used clinically on a subacute basis as prophylactic agonist antiemetics for the prevention of nausea and vomiting caused by chemotherapeutics. Cannabinoids prevent vomiting by inhibition of release of emetic neurotransmitters via stimulation of presynaptic cannabinoid CB1 receptors. Cannabis-induced hyperemesis is a recently recognized syndrome associated with chronic cannabis use. It is characterized by repeated cyclical vomiting and learned compulsive hot water bathing behavior. Although considered rare, recent international publications of numerous case reports suggest the contrary. The syndrome appears to be a paradox and the pathophysiological mechanism(s underlying the induced vomiting remains unknown. Although some traditional hypotheses have already been proposed, the present review critically explores the basic science of these explanations in the clinical setting and provides more current mechanisms for the induced hyperemesis. These encompass: (1 pharmacokinetic factors such as long half-life, chronic exposure, lipid solubility, individual variation in metabolism/excretion leading to accumulation of emetogenic cannabinoid metabolites, and/or cannabinoid withdrawal; and (2 pharmacodynamic factors including switching of the efficacy of Δ9-THC from partial agonist to antagonist, differential interaction of Δ9-THC with Gs and Gi signal transduction proteins, CB1 receptor desensitization or downregulation, alterations in tissue concentrations of endocannabinoid agonists/inverse agonists, Δ9-THC-induced mobilization of emetogenic metabolites of the arachidonic acid cascade, brainstem versus enteric actions of Δ9-THC, and/or hypothermic versus hyperthermic actions of Δ9-THC. In addition, human and animal findings suggest that chronic exposure to cannabis may not be a prerequisite for the induction of vomiting but is required for the intensity of emesis.

  14. Cannabinoid receptor localization in brain

    Energy Technology Data Exchange (ETDEWEB)

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  15. Pharmacokinetics of Cannabinoids

    Directory of Open Access Journals (Sweden)

    Iain J McGilveray

    2005-01-01

    Full Text Available Delta-9-tetrahydrocannabinol (Δ-9-THC is the main psychoactive ingredient of cannabis (marijuana. The present review focuses on the pharmacokinetics of THC, but also includes known information for cannabinol and cannabidiol, as well as the synthetic marketed cannabinoids, dronabinol (synthetic THC and nabilone. The variability of THC in plant material (0.3% to 30% leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level of 152±86.3 ng/mL occured approximately 10 min after inhalation. Oral THC, on the other hand, is only 4% to 12% bioavailable and absorption is highly variable. THC is eliminated from plasma in a multiphasic manner, with low amounts detectable for over one week after dosing. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20% and 100% of parent, respectively. THC is widely distributed, particularly to fatty tissues, but less than 1% of an administered dose reaches the brain, while the spleen and body fat are long-term storage sites. The elimination of THC and its many metabolites (from all routes occurs via the feces and urine. Metabolites persist in the urine and feces for severalweeks. Nabilone is well absorbed and the pharmacokinetics, although variable, appear to be linear from oral doses of 1 mg to 4 mg (these doses show a plasma elimination half-life of approximately 2 h. As with THC, there is a high first-pass effect, and the feces to urine ratio of excretion is similar to other cannabinoids. Pharmacokineticpharmacodynamic modelling with plasma THC versus cardiac and psychotropic effects show that after equilibrium is reached, the intensity of effect is proportional to the plasma THC profile. Clinical trials have found that nabilone produces less tachycardia and less euphoria than THC for a similar antiemetic response.

  16. Win Market by Brand

    Institute of Scientific and Technical Information of China (English)

    FENG Zhende

    2002-01-01

    Brand is symbol of product quality and strength of enterprise. As a typical culture in market economy, it has great influences in everyday life. Famous brands attract purchasing, which prospers enterprise. After China' s entry to WTO, Chinese economy has turned into a new page.As the world manufacturing base, China is to win international market with its own brands. Chunsheng Refractory Ltd., which specialized in quality silica bricks, has grown in size and strength. And our experiences proved how important the brand is for an enterprise.

  17. The Win-Win of Adult Degree Programs

    Science.gov (United States)

    Ellis, J. Richard

    2012-01-01

    Adult degree programs have been seen as a win-win solution for private colleges and adult learners, but their innovative and often-entrepreneurial postures are not a natural fit with governance structures in more traditional institutions. Through narrative and illustrative vignettes, this chapter presents an overview of efforts employed by some…

  18. Win-win Imageries in a Soap Bubble World

    DEFF Research Database (Denmark)

    Ekman, Susanne

    2015-01-01

    This article explores the imagery and notions of personhood underlying the willingness to undertake extreme work among creative knowledge workers. The core argument is that extreme work is informed by pervasive win-win fantasies which can be recognized in a number of current organizational trends...

  19. Cannabinoids modulate Olig2 and polysialylated neural cell adhesion molecule expression in the subventricular zone of post-natal rats through cannabinoid receptor 1 and cannabinoid receptor 2.

    Science.gov (United States)

    Arévalo-Martín, Angel; García-Ovejero, Daniel; Rubio-Araiz, Ana; Gómez, Oscar; Molina-Holgado, Francisco; Molina-Holgado, Eduardo

    2007-09-01

    The subventricular zone (SVZ) is a source of post-natal glial precursors that can migrate to the overlying white matter, where they may differentiate into oligodendrocytes. We showed that, in the post-natal SVZ ependymocytes, radial glia and astrocyte-like cells express cannabinoid receptor 1 (CB1), whereas cannabinoid receptor 2 (CB2) is found in cells expressing the polysialylated neural cell adhesion molecule. To study CB1 and CB2 function, post-natal rats were exposed to selective CB1 or CB2 agonists (arachidonyl-2-chloroethylamide and JWH-056, respectively) for 15 days. Accordingly, we found that CB1 activation increases the number of Olig2-positive cells in the dorsolateral SVZ, whereas CB2 activation increases polysialylated neural cell adhesion molecule expression in this region. As intense myelination occurs during the first weeks of post-natal development, we examined how modulating these factors affected the expression of myelin basic protein. Pharmacological administration of agonists and antagonists of CB1 and CB2 showed that the activation of both receptors is needed to augment the expression of myelin basic protein in the subcortical white matter.

  20. Who Will Win the Game?

    Institute of Scientific and Technical Information of China (English)

    一维

    2007-01-01

    <正>Peter:Do you think Brazil will win? Paul:Could be.Peter:I bet you that Brazil will win the game. Paul:Don’t be so sure.Italy is also one of the best teams in Europe.Peter:But Brazil had won five World Cup Champions.Paul:Things are changing! Peter:It’s

  1. 大麻素受体2激动剂JWH015对瑞芬太尼诱发痛觉过敏的影响%The effect of cannabinoid receptor 2 agonist JWH015 on the hyperalgesia induced by remifentanil

    Institute of Scientific and Technical Information of China (English)

    张威; 张伟; 刘晓杰; 张娟; 蒋明; 马正良; 顾小萍

    2012-01-01

    目的 探讨大麻素受体2( cannabinoid receptor 2,CB2R)激动剂JWH015对瑞芬太尼诱发的切口痛模型大鼠痛觉过敏的影响.方法 60只雄性SD大鼠采用随机数字表法随机分成2大组:鞘内给药组和腹腔给药组.每大组又随机分为5小组:鞘内给药组分为对照组1(C1组)、切口痛组1(I1组)、瑞芬太尼组1(R1组)、切口痛+JWH015组(QI组)、切口痛+瑞芬太尼+JWH015组(QR组);腹腔给药组分为对照组2(C2组)、切口痛组2(I2组)、瑞芬太尼组2(R2组)、切口痛+JWH015组(FI组),切口痛+瑞芬太尼+ JWH015组(FR组),每组6只.QI组与QR组在造模前30 min鞘内注射10μg JWH015,C1、I1、R1组均鞘内给予20%的二甲基亚砜(DMSO)溶液,容积均为10μl;而FI组与FR组在造模前30 min腹腔注射100 μg JWH015,C2、I2、R2组均腹腔给予4%的DMSO溶液,容积均为0.5ml.除C1/C2组外,其余各组均制作切口痛模型,R1/R2组、QR组和FR组在造模的同时皮下泵注瑞芬太尼0.04 mg/kg,其余组皮下泵注生理盐水,容积均为0.4ml,30 min泵完.测量术前24h及术后2,6,24,48 h大鼠手术切口同侧后爪的机械缩足反射阈值(PWMT)及热缩足潜伏期(PWTL).结果 与C1/C2组和基础值比较,I1/I2组术后PWMT和PWTL均降低(P<0.01);与I1/I2组比较,R1/R2组术后PWMT和PWTL均明显降低(P<0.05);与R1/R2组相比,QR组从术后6h的PWMT[ (7.78±1.09)g]和PWTL[( 17.28±1.58)s]开始明显升高(P<0.05),与FR组在术后6h、24h和48 h的PWMT[ (7.79 ±0.72)g,(9.50±1.17)g,(7.86±1.16)g]和PWTL[ (16.23±1.50)s,(19.53±1.63)s,(18.10 ±0.93)s]升高的结果一致.结论 鞘内及腹腔注射JW H015均可以有效缓解由瑞芬太尼诱发的切口周围组织痛觉过敏.%Objective To investigate the effects of cannabinoid receptor 2 (cannabinoid receptor 2,CB2R) agonist JWHO15 on the hyperalgesia induced by remifentanil in a rat model of postoperative pain.Methods Sixty SD rats were randomly divided into 10 groups ( n =6 each

  2. Bilateral Changes of Cannabinoid Receptor Type 2 Protein and mRNA in the Dorsal Root Ganglia of a Rat Neuropathic Pain Model

    OpenAIRE

    2013-01-01

    Cannabinoid receptor type 2 (CB2R) plays a critical role in nociception. In contrast to cannabinoid receptor type 1 ligands, CB2R agonists do not produce undesirable central nervous system effects and thus promise to treat neuropathic pain that is often resistant to medical therapy. In the study presented here, we evaluated the bilateral distribution of the CB2R protein and messenger RNA (mRNA) in rat dorsal root ganglia (DRG) after unilateral peripheral nerve injury using immunohistochemistr...

  3. Altered gene expression and functional activity of opioid receptors in the cerebellum of CB1 cannabinoid receptor knockout mice after acute treatments with cannabinoids.

    Science.gov (United States)

    Páldyová, Estera; Bereczki, E; Sántha, M; Wenger, T; Borsodi, Anna; Benyhe, S

    2007-01-01

    Numerous studies have shown functional links between the cannabinoid and opioid systems. The goal of this study was to evaluate whether acute treatments by endogenous cannabinoid agonist, selective CB1 or CB2 receptor antagonists modulate the expression of mu- (MOR) and delta- (DOR) opioid receptor mRNA levels and functional activity in the cerebellum of transgenic mice deficient in the CB1 type of cannabis receptors. We examined the effect of noladin ether (endogenous cannabinoid agonist) pretreatment on MOR and DOR mRNA expression by using reverse transcription and real-time polimerase chain reaction (PCR) and the ability of subsequent application of the opioid agonists to activate G-proteins, as measured by [35S]GTPgammaS binding, in wild-type (CB1+/+) and CB1 cannabinoid receptor deficient (CB1-/-, 'knockout', K.O.) mice. The acute administration of noladin ether markedly reduced MOR-mediated G-protein activation and caused a significant increase in the level of MOR mRNAs in the cerebella of wildtype, but not in the CB1-/- mice. No significant differences were observed in DOR functional activity and mRNA expression in wild-type animals. In CB1-/- mice the expression of DOR mRNA increased after noladin ether treatment, but no changes were found in DOR functional activity. In addition, Rimonabant (selective central cannabinoid CB1 receptor antagonist) and SR144528 (selective peripheral cannabinoid CB2 receptor antagonist) caused significant potentiation in MOR functional activity in the wild-type animals, whereas DOR mediated G-protein activation was increased in the CB1-/- mice. In contrast, Rimonabant and SR144528 decreased the MOR and DOR mRNA expressions in both CB1+/+ and CB1-/- mice. Taken together, these results indicate that acute treatment with cannabinoids causes alterations in MOR and DOR mRNA expression and functional activity in the cerebella of wild-type and CB1 knockout mice indicating indirect interactions between these two signaling systems.

  4. Cannabinoids: occurrence and medicinal chemistry.

    Science.gov (United States)

    Appendino, G; Chianese, G; Taglialatela-Scafati, O

    2011-01-01

    With an inventory of several hundreds secondary metabolites identified, Cannabis sativa L. (hemp) is one of the phytochemically best characterized plant species. The biomedical relevance of hemp undoubtedly underlies the wealth of data on its constituents and their biological activities, and cannabinoids, a class of unique meroterpenoids derived from the alkylation of an olivetollike alkyl resorcinol with a monoterpene unit, are the most typical constituents of Cannabis. In addition to the well-known psychotropic properties of Δ(9)-THC, cannabinoids have been reported to show potential in various fields of medicine, with the capacity to address unmet needs like the relief of chemotherapy-derived nausea and anorexia, and symptomatic mitigation of multiple sclerosis. Many of the potential therapeutic uses of cannabinoids are related to the interaction with (at least) two cannabinoid G-protein coupled receptors (CB1 and CB2). However, a number of activities, like the antibacterial or the antitumor properties are non totally dependent or fully independent from the interaction with these proteins. These pharmacological activities are particularly interesting since, in principle, they could be easily dissociated by the unwanted psychotropic effects. This review aims at giving readers a survey of the more recent advances in both phytochemistry of C. sativa, the medicinal chemistry of cannabinoids, and their distribution in plants, highlighting the impact that research in these hot fields could have for modern medicinal chemistry and pharmacology.

  5. Cannabinoid receptor 1 ligands revisited: Pharmacological assessment in the ACTOne system.

    Science.gov (United States)

    Presley, Chaela S; Abidi, Ammaar H; Moore, Bob M

    2016-04-01

    In vitro cannabinoid pharmacology has evolved over time from simple receptor binding to include [(35)S]GTPγ, β-arrestin, and cAMP assays. Each assay has benefits and drawbacks; however, no single functional system has been used for high-throughput evaluation of compounds from binding to pharmacological functionality and antagonist assessment in a well-characterized human cell line. In this study, we evaluated and validated one system-ACTOne human embryonic kidney cells transfected with a cyclic nucleotide gated channel and cannabinoid receptor 1 (CB1)-and compared human CB1 affinity, functional, and antagonistic effects on cAMP with previously published results. The study was conducted on a diverse group of CB1 ligands, including endocannabinoids and related compounds, 2-AG, AEA, MAEA, and ACEA, the phytocannabinoid Δ(9) THC, and synthetic cannabinoids CP 55,940, WIN 55,212-2, SR 141716A, CP 945,598, and WIN 55,212-3. Our results were compared with literature values where human CB1 was used for affinity determination and cAMP was used as a functional readout. Here we report the first detailed evaluation of the ACTOne assay for the pharmacological evaluation of CB1 ligands. The results from the study reveal some interesting deviations from previously reported functional activities of the aforementioned ligands.

  6. WIN Belarus report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Vastchenko, Svetlana [Institute of Power and Nuclear Research, Sosny (Belarus)

    2008-07-01

    national WIN: WIN Belarus was established in December 1998 and at present has 17 members. Highlights of the last year and trends in Belarus: There are some problems with the natural gas supply in Belarus from Russia. Energy policy directed to use the local fuel resources and energy saving, but these resources can not provide for Belarus energy demand. Therefore made a decision of NPP construction. At present the NPP site is selected. WIN activities: Collection and analysis of articles in newspapers and journals on energy problems in Belarus and construction of nuclear power plant in our republic. Publication and distribution of newsletters on nuclear problems for public information and authorities, which are available for the press too. We took part in debates with environmental and other opponents on the ecological, economical and safety problems of nuclear technology. We published articles about nuclear energy (safety problems, environment and climate). Female communication: Collaboration with women organizations in Belarus (Women Alliance, Women group in physics and others). Future plans and goals for WIN: Participation in several international conferences and seminars. Publication and distribution of newsletters on nuclear problems for public information and authorities, which are available for the press too. Collection and analysis of articles in newspapers and journals on energy problems in Belarus and construction of nuclear power plant in our republic. Publication articles in newspapers and 'Industrial Safety' journal about using nuclear technology and radiation and power problems. Investigation problems of radioactive waste handling. Preparation trainings for journalists and public organizations on radiation problems, nuclear power and on un-traditional renewed sources of energy. We shall continue debates with opponents on the ecological, economical and safety problems of NPP. Collaboration with women and ecological organizations in Belarus (Women

  7. Country Report WIN Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shin [Atomic Energy Council, 6F, No 80, Sec 1, Cheng-Gong Road, Yonghe City, 23452 Taipei, Taiwan (China)

    2008-07-01

    assessment for Chinshan NPP, nuclear power up-rate for existing NPPs, NPP license renewal related studies, development of D and D technology, development of fuel cells and solar and wind power generation systems, and development and commercialization of radiopharmaceuticals. Among major nuclear regulatory activities during the past year include: establishment of a nuclear knowledge management web site, completion of review for power up-rate for Kuosheng NPP, oversight of the installation of automatic scram systems at NPPs during strong earthquakes, advancement of the electronically oriented radiation protection control operations, strengthening of safety controls of high-risk radiation sources, development of a mammography quality control program, and review and conditional approval of the preliminary safety analysis report (PSAR) of the construction license application for the spent nuclear fuel dry storage facility at the Chinshan NPP. C - WIN Taiwan: Founded in 1994, WIN Taiwan now has 110 national members and 33 global members. 2007-2008 Activities and Achievements: 15. WIN Global Annual Meeting held (21-27 April 2007, Bali, Indonesia); Science Excursions at TPC's Northern Visitors Center and at radwaste volume reduction center (12 July 2007); WIN-Taiwan and ANS Taiwan Joint Annual Meeting at the National Tsing Hua University's newly re-established Institute of Nuclear Engineering and Science (9 August 2007); workshop on 'understanding radiation and radioactive waste' (28 September 2007), Fall Seminar (7 December 2007), Steering and Advisory Committee Meetings (1 June and 1 November 2006, 11 January and 18 March, 2008)

  8. Winning the interviewing game.

    Science.gov (United States)

    Lyons, M F

    2000-01-01

    Those who don't "interview well" are not likely to receive the job offer, despite their qualifications. A job interview is actually a fierce competitive activity that offers only two grades: an A or F. By nature, physicians are competitive; they like to win. Infrequent interviewees are prone to making easily corrected mistakes, such as showing no enthusiasm or having poor eye contact. The key for interviewing success is preparation--doing research, developing a personal statement, and role-playing practice interviews. View the interview as a sales call whose bottom-line goal is to achieve an offer, or at least to let you leave with the option to return for future discussions.

  9. Synthetic cannabinoids: analysis and metabolites.

    Science.gov (United States)

    Elsohly, Mahmoud A; Gul, Waseem; Wanas, Amira S; Radwan, Mohamed M

    2014-02-27

    Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these "synthetic cannabinoids" with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.

  10. Modulation of cannabinoid to GABA currents in retinal ganglion cells in human and mice%大麻素对人和小鼠视网膜神经节细胞GABA电流的调控差异

    Institute of Scientific and Technical Information of China (English)

    罗雪; 刘诗亮; 江梦南; 沈雨濛; 胡单萍; 沈吟

    2015-01-01

    目的 比较人和小鼠视网膜内源性大麻素类受体1(cannabinoid receptor,CB1)的表达差异,观察大麻素受体激动剂WIN55212-2对不同种属视网膜神经节细胞GABA电流的调控作用.方法 采用冰冻切片免疫荧光染色,观察CB1受体在视网膜中的表达.制备视网膜薄片,行全细胞膜片钳记录.在神经节细胞上给予100 μmol/L GABA快速加药诱导出电流I GABA,而后观察孵育大麻素受体激动剂WIN55212-2时GABA诱导的IGABA及同时孵育WIN 55212-2和大麻素受体拮抗剂SR141716A的电流IGABA.结果 人和小鼠视网膜CB1受体的分布有所不同,人的内核层、外核层、神经节细胞层有显著的CB1表达,但小鼠CB1受体主要表达在内网状层、外网状层上;膜片钳结果显示不管是在人还是在小鼠的视网膜上,孵育WIN55212-2后的GABA诱导电流幅度均有显著减小.不同的是,在人视网膜神经节细胞上,WIN55212-2明显减慢了GABA电流的反应速度,表现在电流达峰时间明显延长,恢复时间缩短(P<0.05).WIN55212-2对小鼠视网膜神经节细胞GABA的反应速度无明显差别(P>0.05).结论 CB1受体在人和小鼠视网膜中有差异性分布,对神经节细胞的GABA电流影响也不同.孵育WIN55212-2可抑制人和小鼠神经节细胞GABA电流幅度,但仅对人的神经节细胞的GABA电流的动力学速度有影响.%Objective To compare the expression of endogenous cannabinoid receptor 1 (CB1) in human and mouse retinal ganglion cells and observe the modulation of CB1 receptor agonist WIN55212-2 to γ-aminobutyric acid (GABA) currents.Methods Immunofluorescence assay was applied to study the expression pattern of CB1 receptors in the retina.Whole-cell patch-clamp technology was used to record GABA currents in the retinal ganglion cells after applying 2 μmol/L WIN55212-2 or 2 μmol/L WIN55212-2 + 4 μmol/L SR141716A (CB1 receptor antagonist).Results CB1 receptors were expressed in the human outer nuclear

  11. Recent development of CB2 selective and peripheral CB1/CB2 cannabinoid receptor ligands.

    Science.gov (United States)

    Nevalainen, Tapio

    2014-01-01

    Cannabinoids have potential therapeutic value e.g. in pain relief, cancer therapy, control of nausea and vomiting, and appetite stimulation, but their therapeutic benefits are limited by unwanted central nervous system (CNS) side-effects. Separating the therapeutic effects of cannabinoid agonists from their undesired CNS effects can be achieved by either increasing the selectivity of the ligands for the CB2 receptor or by developing peripherally restricted CB1/CB2 ligands. A vast number of structurally diverse CB2 ligands have been developed during the past 3 years, stemming from the screening hits, which are further optimized towards lead compounds and drug candidates. Some of CB2 ligands may ultimately enter into clinical use as pain relief, anticancer, or antipruritic agents. This review focuses on the recent literature dealing with selective CB2 receptor ligands, with a particular emphasis on the CB2 agonists developed from 2009 onwards.

  12. β-arrestins: regulatory role and therapeutic potential in opioid and cannabinoid receptor-mediated analgesia.

    Science.gov (United States)

    Raehal, Kirsten M; Bohn, Laura M

    2014-01-01

    Pain is a complex disorder with neurochemical and psychological components contributing to the severity, the persistence, and the difficulty in adequately treating the condition. Opioid and cannabinoids are two classes of analgesics that have been used to treat pain for centuries and are arguably the oldest of "pharmacological" interventions used by man. Unfortunately, they also produce several adverse side effects that can complicate pain management. Opioids and cannabinoids act at G protein-coupled receptors (GPCRs), and much of their effects are mediated by the mu-opioid receptor (MOR) and cannabinoid CB1 receptor (CB1R), respectively. These receptors couple to intracellular second messengers and regulatory proteins to impart their biological effects. In this chapter, we review the role of the intracellular regulatory proteins, β-arrestins, in modulating MOR and CB1R and how they influence the analgesic and side-effect profiles of opioid and cannabinoid drugs in vivo. This review of the literature suggests that the development of opioid and cannabinoid agonists that bias MOR and CB1R toward G protein signaling cascades and away from β-arrestin interactions may provide a novel mechanism by which to produce analgesia with less severe adverse effects.

  13. Intraperirhinal cortex administration of the synthetic cannabinoid, HU210, disrupts object recognition memory in rats.

    Science.gov (United States)

    Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D

    2015-03-25

    Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory.

  14. Wins, winning and winners: the commercial advertising of lottery gambling.

    Science.gov (United States)

    McMullan, John L; Miller, Delthia

    2009-09-01

    This study analyzed a sample of 920 lottery ads that were placed or played in Atlantic Canada from January 2005 to December 2006. A content analysis, involving quantitative and qualitative techniques, was conducted to examine the design features, exposure profiles and focal messages of these ads and to explore the connections between lottery advertising and consumer culture. We found that there was an "ethos of winning" in these commercials that provided the embedded words, signs, myths, and symbols surrounding lottery gambling and conveyed a powerful imagery of plentitude and certitude in a world of potential loss where there was little reference to the actual odds of winning. The tangible and emotional qualities in the ads were especially inviting to young people creating a positive orientation to wins, winning and winners, and lottery products that, in turn, reinforced this form of gambling as part of youthful consumption practices. We concluded that enticing people with the prospects of huge jackpots, attractive consumer goods and easy wins, showcasing top prize winners, and providing dubious depictions that winning is life-changing was narrow and misleading and exploited some of the factors associated with at-risk gambling.

  15. Win-Win transportation solutions price reforms with multiple benefits

    Energy Technology Data Exchange (ETDEWEB)

    Litman, T. [Victoria Transport Policy Institute, BC (Canada)

    2001-07-01

    Reform strategies in the transportation market, such as the Win-Win Transportation Solutions, can provide several economic, social and environmental benefits. The strategies are cost effective, technically feasible reforms based on market principles which help create a more equitable and efficient transportation system that supports sustainable economic development. The benefits they provide include reduced traffic congestion, road and parking facility savings, consumer savings, equity, safety and environmental protection. They also increase economic productivity. If fully implemented, they could reduce motor vehicle impacts by 15 to 30 per cent and could help achieve the Kyoto emission reduction targets. Examples of Win-Win strategies at the federal level include: (1) removal of subsidies to oil production and internalized costs, and (2) tax exempt employer provided transfer benefits. Examples of Win-Win strategies at the state/provincial level include: (1) distance-based vehicle insurance and registration fees, (2) least-coast transportation planning and funding, (3) revenue-neutral tax shifting, (4) road pricing, (5) reform motor carrier regulations for competition and efficiency, (6) local and regional transportation demand management programs, (7) more efficient land use, (8) more flexible zoning requirements, (9) parking cash out, (10) transportation management associations, (11) location-efficient housing and mortgages, (12) school and campus trip management, (13) car sharing, (14) non-motorized transport improvements, and (15) traffic calming. It was noted that any market reform that leads to more efficient use of existing transportation systems can provide better economic development benefits. 9 refs., 1 tab., 1 fig.

  16. Suppression of vascular endothelial growth factor expression by cannabinoids in a canine osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Figueiredo AS

    2013-07-01

    Full Text Available Andreza S Figueiredo,1 Hiram J García-Crescioni,1 Sandra C Bulla,1 Matthew K Ross,2 Chelsea McIntosh,1 Kari Lunsford,3 Camilo Bulla11Department of Pathobiology and Population Medicine, 2Department of Basic Sciences, 3Department of Clinical Sciences and Animal Health Center, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USAAbstract: Vascular endothelial growth factor (VEGF is a key regulator in both physiologic and pathologic angiogenesis, and cannabinoids decrease VEGF release in human and murine cancer cells. The aim of this study was to assess the in vitro effects of a synthetic cannabinoid, WIN-55,212-2, on the expression of the proangiogenic factor VEGF-A in the canine osteosarcoma cell line 8. After analysis of gene expression by quantitative real-time polymerase chain reaction, the compound decreased VEGF-A expression by 35% ± 10% (P < 0.0001 as compared with the control. This synthetic cannabinoid shows promise as a potential inhibitor of angiogenesis, and further studies are warranted to investigate its in vivo effects and to explore the potential of this and related compounds as adjuvant cancer therapy in the dog.Keywords: dog, cancer, angiogenesis, cannabinoids

  17. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

    Science.gov (United States)

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.

    2013-01-01

    In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  18. QIN Dahe wins IMO prize

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Prof.QIN Dahe,a glaciologist and climatologist from the CAS Cold and Arid Regions Environmental and Engineering Research,has been elected to win the prestigious Prize of the International Meteorology Organization (IMO) in 2008.

  19. Cannabinoid receptor-interacting protein 1a modulates CB1 receptor signaling and regulation.

    Science.gov (United States)

    Smith, Tricia H; Blume, Lawrence C; Straiker, Alex; Cox, Jordan O; David, Bethany G; McVoy, Julie R Secor; Sayers, Katherine W; Poklis, Justin L; Abdullah, Rehab A; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R; Howlett, Allyn C; Selley, Dana E

    2015-04-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca(2+) channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide-binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [(35)S]GTPγS (guanylyl-5'-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA-mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [(35)S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  20. 76 FR 71351 - Prospective Grant of Exclusive License: Development of Cannabinoid(s) and Cannabidiol(s) Based...

    Science.gov (United States)

    2011-11-17

    ... Cannabinoid(s) and Cannabidiol(s) Based Therapeutics To Treat Hepatic Encephalopathy in Humans. AGENCY... be limited to: The development and sale of cannabinoid(s) and cannabidiol(s) based therapeutics as... chronic neurodegenerative diseases. Nonpsychoactive cannabinoids, such as Cannabidiol (CBD),...

  1. Opposite changes in cannabinoid CB1 and CB2 receptor expression in human gliomas.

    Science.gov (United States)

    De Jesús, Maider López; Hostalot, Cristina; Garibi, Jesús M; Sallés, Joan; Meana, J Javier; Callado, Luis F

    2010-01-01

    Gliomas are the most important group of malignant primary brain tumors and one of the most aggressive forms of cancer. During the last years, several studies have demonstrated that cannabinoids induce apoptosis of glioma cells and inhibit angiogenesis of gliomas in vivo. As the effects of cannabinoids rely on CB(1) and CB(2) receptors activation, the aim of the present study was to investigate both receptors protein expression in cellular membrane homogenates of human glial tumors using specific antibodies raised against these proteins. Additionally, we studied the functionality of the cannabinoid receptors in glioblastomas by using WIN 55,212-2 stimulated [(35)S]GTPgammaS binding. Western blot analysis showed that CB(1) receptor immunoreactivity was significantly lower in glioblastoma multiforme (-43%, n=10; p<0.05) than in normal post-mortem brain tissue (n=16). No significant differences were found for astrocytoma (n=6) and meningioma (n=8) samples. Conversely, CB(2) receptor immunoreactivity was significantly greater in membranes of glioblastoma multiforme (765%, n=9; p<0.05) and astrocytoma (471%, n=4; p<0.05) than in control brain tissue (n=10). Finally, the maximal stimulation of [(35)S]GTPgammaS binding by WIN 55,212-2 was significantly lower in glioblastomas (134+/-4%) than in control membranes (183+/-2%; p<0.05). The basal [(35)S]GTPgammaS binding and the EC(50) values were not significantly different between both groups. The present results demonstrate opposite changes in CB(1) and CB(2) receptor protein expression in human gliomas. These changes may be of interest for further research about the therapeutic effects of cannabinoids in glial tumors.

  2. CB1 and CB2 receptor agonists promote analgesia through synergy in a murine model of tumor pain.

    Science.gov (United States)

    Khasabova, Iryna A; Gielissen, James; Chandiramani, Anisha; Harding-Rose, Catherine; Odeh, Desiree Abu; Simone, Donald A; Seybold, Virginia S

    2011-09-01

    In light of the adverse side-effects of opioids, cannabinoid receptor agonists may provide an effective alternative for the treatment of cancer pain. This study examined the potency and efficacy of synthetic CB1 and CB2 receptor agonists in a murine model of tumor pain. Intraplantar injection of the CB1 receptor agonist arachidonylcyclopropylamide (ED(50) of 18.4 μg) reduced tumor-related mechanical hyperalgesia by activation of peripheral CB1 but not CB2 receptors. Similar injection of the CB2 receptor agonist AM1241 (ED50 of 19.5 μg) reduced mechanical hyperalgesia by activation of peripheral CB2 but not CB1 receptors. Both agonists had an efficacy comparable with that of morphine (intraplantar), but their analgesic effects were independent of opioid receptors. Isobolographic analysis of the coinjection of arachidonylcyclopropylamide and AM1241 determined that the CB1 and CB2 receptor agonists interacted synergistically to reduce mechanical hyperalgesia in the tumor-bearing paw. These data extend our previous findings that the peripheral cannabinoid receptors are a promising target for the management of cancer pain and mixed cannabinoid receptor agonists may have a therapeutic advantage over selective agonists.

  3. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Directory of Open Access Journals (Sweden)

    Nicola H. Morgan

    2008-01-01

    Full Text Available Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM, increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

  4. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin.

    Science.gov (United States)

    Pertwee, R G

    2008-01-01

    Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (-)-trans-delta9-tetrahydrocannabinol (delta9-THC), (-)-cannabidiol (CBD) and (-)-trans-delta9-tetrahydrocannabivarin (delta9-THCV), interact with cannabinoid CB1 and CB2 receptors. Delta9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Delta9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Delta9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by delta9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which delta9-THC, CBD and delta9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.

  5. Creating a winning organizational culture.

    Science.gov (United States)

    Campbell, Robert James

    2009-01-01

    This article explores the idea of how to create a winning organizational culture. By definition, a winning organizational culture is one that is able to make current innovations stick, while continuously changing based on the demands of the marketplace. More importantly, the article explores the notion that a winning organizational culture can have a profound impact on the conscious of the workforce, helping each individual to become a better, more productive person, who provides important services and products to the community. To form a basis toward defining the structure of what a winning organization culture looks like, 4 experts were asked 12 questions related to the development of an organizational culture. Three of the experts have worked intimately within the health care industry, while a fourth has been charged with turning around an organization that has had a losing culture for 17 years. The article provides insight into the role that values, norms, goals, leadership style, familiarity, and hiring practices play in developing a winning organizational culture. The article also emphasizes the important role that leaders perform in developing an organizational culture.

  6. Sex-dependent effects of maternal deprivation and adolescent cannabinoid treatment on adult rat behaviour.

    Science.gov (United States)

    Llorente-Berzal, Alvaro; Fuentes, Sílvia; Gagliano, Humberto; López-Gallardo, Meritxell; Armario, Antonio; Viveros, María-Paz; Nadal, Roser

    2011-10-01

    Early life experiences such as maternal deprivation (MD) exert long-lasting changes in adult behaviour and reactivity to stressors. Adolescent exposure to cannabinoids is a predisposing factor in developing certain psychiatric disorders. Therefore, the combination of the two factors could exacerbate the negative consequences of each factor when evaluated at adulthood. The objective of this study was to investigate the long-term effects of early MD [24 hours at postnatal day (PND) 9] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (0.4 mg/kg, PND 28-42) on diverse behavioural and physiological responses of adult male and female Wistar rats. We tested them in the prepulse inhibition (PPI) of the startle response and analysed their exploratory activity (holeboard) and anxiety (elevated plus maze, EPM). In addition, we evaluated their adrenocortical reactivity in response to stress and plasma leptin levels. Maternal behaviour was measured before and after deprivation. MD induced a transient increase of maternal behaviour on reuniting. In adulthood, maternally deprived males showed anxiolytic-like behaviour (or increased risk-taking behaviour) in the EPM. Adolescent exposure to the cannabinoid agonist induced an impairment of the PPI in females and increased adrenocortical responsiveness to the PPI test in males. Both, MD and adolescent cannabinoid exposure also induced sex-dependent changes in plasma leptin levels and body weights. The present results indicate that early MD and adolescent cannabinoid exposure exerted distinct sex-dependent long-term behavioural and physiological modifications that could predispose to the development of certain neuropsychiatric disorders, though no synergistic effects were found.

  7. Win at Work! The Everybody Wins Approach to Conflict Resolution

    CERN Document Server

    Katz, Diane

    2010-01-01

    Proven techniques for resolving workplace conflicts. After years of seeing clients struggling and their businesses suffering with destructive conflicts, Diane Katz developed The Working Circle, a step-by-step process that helps everyone in business resolve conflict in a non-confrontational, creative, collaborative way. Win at Work! provides you with a no-nonsense guide based on real-life examples of people at pivotal points in their careers. Filled with practical wisdom, it reveals how you can move around the roadblocks that, if left unattanded, can stop you in your tracks. Win at Work! also h

  8. GLP-1 Receptor Agonists

    Science.gov (United States)

    ... in Balance › GLP-1 Receptor Agonists Fact Sheet GLP-1 Receptor Agonists May, 2012 Download PDFs English Espanol Editors Silvio ... are too high or too low. What are GLP-1 receptor agonist medicines? GLP-1 receptor agonist medicines, also called ...

  9. Winning Faces Vary By Ideology

    DEFF Research Database (Denmark)

    Laustsen, Lasse; Petersen, Michael Bang

    2016-01-01

    for others. Utilizing research on ideological stereotypes and the determinants of facial preferences, we focus on the relationship between the facial dominance of the source and the ideology of the receiver. Across five studies, we demonstrate that a dominant face is a winning face when the audience...... is conservative but backfires and decreases success when the audience is liberal. On the other hand, a non-dominant face constitutes a winning face among liberal audiences but backfires among conservatives. These effects seemingly stem from deep-seated psychological responses and shape both the election...

  10. Modulation of pilocarpine-induced seizures by cannabinoid receptor 1.

    Directory of Open Access Journals (Sweden)

    Rebecca L Kow

    Full Text Available Administration of the muscarinic agonist pilocarpine is commonly used to induce seizures in rodents for the study of epilepsy. Activation of muscarinic receptors has been previously shown to increase the production of endocannabinoids in the brain. Endocannabinoids act at the cannabinoid CB1 receptors to reduce neurotransmitter release and the severity of seizures in several models of epilepsy. In this study, we determined the effect of CB1 receptor activity on the induction in mice of seizures by pilocarpine. We found that decreased activation of the CB1 receptor, either through genetic deletion of the receptor or treatment with a CB1 antagonist, increased pilocarpine seizure severity without modifying seizure-induced cell proliferation and cell death. These results indicate that endocannabinoids act at the CB1 receptor to modulate the severity of pilocarpine-induced seizures. Administration of a CB1 agonist produced characteristic CB1-dependent behavioral responses, but did not affect pilocarpine seizure severity. A possible explanation for the lack of effect of CB1 agonist administration on pilocarpine seizures, despite the effects of CB1 antagonist administration and CB1 gene deletion, is that muscarinic receptor-stimulated endocannabinoid production is acting maximally at CB1 receptors to modulate sensitivity to pilocarpine seizures.

  11. 大麻素CB1受体对大鼠视网膜神经节细胞诱发动作电位的作用%Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    蒋淑霞; 李倩; 王霄汉; 李芳; 王中峰

    2013-01-01

    Activation of cannabinoid CB1 receptors (CB 1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels.The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques.The results showed that under current-clamped condition perfusing WIN55212-2 (WIN,5 μmol/L),a CB1R agonist,did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs.In the presence of cocktail synaptic blockers,including excitatory postsynaptic receptor blockers CNQX and D-APV,and inhibitory receptor blockers bicuculline and strychnine,perfusion of WIN (5 μmol/L)hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA).Phaseplane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN.However,WIN significantly decreased +dV/dtmax and-dV/dtmax of action potentials,suggestive of reduced rising and descending velocities of action potentials.The effects of WIN were reversed by co-application of SR141716,a CB1R selective antagonist.Moreover,WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked.These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.%激活大麻素CB1受体(CB1Rs)通过调控多种离子通道,从而调节脊椎动物视网膜的功能.本文旨在利用膜片钳全细胞记录技术,在大鼠视网膜薄片上研究CB1Rs对神经节细胞兴奋性的作用.结果显示,在电流钳制状态下,灌流CB1R激动剂WIN55212-2 (WIN,5μmol/L)对神经节细胞的自发动作电位发放频率和静息膜电位均没有显著影响.在灌流液中加入CNQX,D-APV,bicuculline

  12. Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

    Science.gov (United States)

    Nguyen, Thuy; Li, Jun-Xu; Thomas, Brian F; Wiley, Jenny L; Kenakin, Terry P; Zhang, Yanan

    2016-11-23

    The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions. A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years. In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators. A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists. Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands. This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators. The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.

  13. Effects of neuropeptide FF and related peptides on the antinociceptive activities of VD-hemopressin(α) in naive and cannabinoid-tolerant mice.

    Science.gov (United States)

    Pan, Jia-Xin; Wang, Zi-Long; Li, Ning; Zhang, Nan; Wang, Pei; Tang, Hong-Hai; Zhang, Ting; Yu, Hong-Ping; Zhang, Run; Zheng, Ting; Fang, Quan; Wang, Rui

    2015-11-15

    Neuropeptide FF (NPFF) system has recently been reported to modulate cannabinoid-induced antinociception. The aim of the present study was to further investigate the roles of NPFF system in the antinociceptive effects induced by intracerebroventricular (i.c.v.) administration of mouse VD-hemopressin(α), a novel endogenous agonist of cannabinoid CB1 receptor, in naive and VD-hemopressin(α)-tolerant mice. The effects of NPFF system on the antinociception induced by VD-hemopressin(α) were investigated in the radiant heat tail-flick test in naive mice and VD-hemopressin(α)-tolerant mice. The cannabinoid-tolerant mice were produced by given daily injections of VD-hemopressin(α) (20 nmol, i.c.v.) for 5 days and the antinociception was measured on day 6. In naive mice, intracerebroventricular injection of NPFF dose-dependently attenuated central analgesia of VD-hemopressin(α). In contrast, neuropeptide VF (NPVF) and D.NP(N-Me)AFLFQPQRF-NH2 (dNPA), two highly selective agonists for Neuropeptide FF1 and Neuropeptide FF2 receptors, enhanced VD-hemopressin(α)-induced antinociception in a dose-dependent manner. In addition, the VD-hemopressin(α)-modulating activities of NPFF and related peptides were antagonized by the Neuropeptide FF receptors selective antagonist 1-adamantanecarbonyl-RF-NH2 (RF9). In VD-hemopressin(α)-tolerant mice, NPFF failed to modify VD-hemopressin(α)-induced antinociception. However, both neuropeptide VF and dNPA dose-dependently potentiated the antinociception of VD-hemopressin(α) and these cannabinoid-potentiating effects were reduced by RF9. The present works support the cannabinoid-modulating character of NPFF system in naive and cannabinoid-tolerant mice. In addition, the data suggest that a chronic cannabinoid treatment modifies the pharmacological profiles of NPFF, but not the cannabinoid-potentiating effects of neuropeptide VF and dNPA.

  14. Cannabinoid facilitation of fear extinction memory recall in humans

    Science.gov (United States)

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  15. A Photo Contest: Everybody Wins!

    Science.gov (United States)

    Carroll, Cathryn

    1996-01-01

    Profiles the winners of a national photography contest for students who are deaf and includes the prize-winning photographs. Information is provided on how to sponsor a photography contest, including choosing the theme, size range, contestants, and timelines for exhibition. Ways to have the photos judged and exhibited are also addressed. (CR)

  16. Customers and markets. International components for win-win relations; Kunden und Maerkte. Internationale Bausteine fuer Win-Win-Relationen

    Energy Technology Data Exchange (ETDEWEB)

    Lamprecht, F.

    1998-09-01

    In deregulated energy markets, power supply companies change from commodity suppliers to service providers. The core of the process of change is a change in attitude, from producer to customer-oriented marketer; the means applied in the process are a diversified and integrated marketing strategy, targeting both external and internal conditions, which fits into a comprehensive concept of an integrated communications strategy. An international conference held in mid-June in Lisbon, organised by the associations Unipede and EURELECTRIC as well as the International Energy Agency (IEA), supplied a wealth of information on this topical issue spanning a broad range of interesting aspects, as eg. approaches to identify customer needs and correspondingly develop new services, or the quest for new business segments and possibilities of finding win-win relations for both customers and power producers. (orig./CB) [Deutsch] Auf liberalisierten Strommaerkten entwickeln sich die Energieversorger zu Dienstleistern. Kern des Wandels ist der Weg von der Produktions- zur Kundenorientierung, Mittel eine differenzierte und integrierte Marketingstrategie, die nach aussen wie nach innen gerichtet ist und in ein umfassendes Konzept einer integrierten Kommunikationsstrategie eingepasst ist. Eine von den Verbaenden Unipede und EURELECTRIC sowie der Internationalen Energie-Agentur (IEA) Mitte Juni in Lissabon ausgerichtete internationale Konferenz lieferte hierzu eine Fuelle an Material. Es wurde thematisch ein weiter Bogen gespannt. Von der Ermittlung unterschiedlicher Kundenbeduerfnisse ueber Methoden, sich danach auszurichten sowie speziell entwickelte Marketingstrategien, bis hin zu neuen Betaetigungsfeldern wurde nach Moeglichkeiten gesucht, Win-Win-Relationen fuer Kunden und EVU darzustellen. (orig.)

  17. Do quantum strategies always win?

    Science.gov (United States)

    Anand, Namit; Benjamin, Colin

    2015-11-01

    In a seminal paper, Meyer (Phys Rev Lett 82:1052, 1999) described the advantages of quantum game theory by looking at the classical penny flip game. A player using a quantum strategy can win against a classical player almost 100 % of the time. Here we make a slight modification to the quantum game, with the two players sharing an entangled state to begin with. We then analyze two different scenarios: First in which quantum player makes unitary transformations to his qubit, while the classical player uses a pure strategy of either flipping or not flipping the state of his qubit. In this case, the quantum player always wins against the classical player. In the second scenario, we have the quantum player making similar unitary transformations, while the classical player makes use of a mixed strategy wherein he either flips or not with some probability " p." We show that in the second scenario, 100 % win record of a quantum player is drastically reduced and for a particular probability " p" the classical player can even win against the quantum player. This is of possible relevance to the field of quantum computation as we show that in this quantum game of preserving versus destroying entanglement a particular classical algorithm can beat the quantum algorithm.

  18. Cannabinoid modulation of prefrontal-limbic activation during fear extinction learning and recall in humans.

    Science.gov (United States)

    Rabinak, Christine A; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R; Liberzon, Israel; Phan, K Luan

    2014-09-01

    Pre-extinction administration of Δ9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely occurs via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 h after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders.

  19. Lithium attenuates cannabinoid-induced dependence in the animal model: involvement of phosphorylated ERK1/2 and GSK-3β signaling pathways.

    Directory of Open Access Journals (Sweden)

    Hamid Reza Rahimi

    2014-09-01

    Full Text Available Cannabis is one of the most banned drugs in the world. Cannabinoid-induced dependence or withdrawal signs are indicated by the result of complex molecular mechanisms including upstream protein kinases (PKs, such as an extracellular signal regulated kinase1/2 (ERK1/2 and downstream glycogen synthase kinase-3β (GSK-3β, which lead to neuronal plasticity. In this study, we examined the protective effect of lithium (Li as a potent ERK1/2 and GSK-3β modulator to prevent the development of dependence on cannabinoids. For this purpose, rats were treated twice daily with increasing doses of WIN 55,212-2 (WIN, 2-8 mg/kg, intraperitoneally (i.p., for five consecutive days. AM251 (AM, 2 mg/kg, a cannabinoid antagonist, was injected i.p to induce manifestations of abstinence in rat dependency on WIN, and the subsequent withdrawal signs were recorded. To evaluate the preventive effect of Li, the rats were pre-treated with Li (10 mg/kg, i.p. twice daily, 30 minutes before every injection of WIN. SL327, as an ERK1/2 inhibitor, was also injected (SL, 50 mg/kg, i.p. 30 minutes before the last doses of WIN in separate groups. The p-ERK1/2, total ERK1/2, p-GSK-3β and total GSK-3β expressions were determined with Western blot method after 60 minutes, prior to the Li, WIN or AM injections. Li and SL pre-treatment attenuated the global withdrawal signs in regarding their modulation effect on the up-regulation of p-ERK1/2 cascade enhanced by AM injection. Furthermore, the p-GSK-3β expression was up-regulated with SL and Li pre-treatment against AM injection, without alteration on the total contents of ERK1/2 and GSK-3β level. Therefore, p-ERK1/2 and p-GSK-3β pathways are involved in the cannabinoid-induced dependence. However, no crosstalk was indicated between these two pathways. In conclusion, Li neuroprotectionwith regard to cannabinoid abstinence may occur through the regulation of the p-ERK1/2 cascade inconsequent of p-GSK-3β signaling pathways in rats.

  20. Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors.

    Science.gov (United States)

    López Rodríguez, Ana Belén; Mateos Vicente, Beatriz; Romero-Zerbo, Silvana Y; Rodriguez-Rodriguez, Noé; Bellini, María José; Rodriguez de Fonseca, Fernando; Bermudez-Silva, Francisco Javier; Azcoitia, Iñigo; Garcia-Segura, Luis M; Viveros, María-Paz

    2011-09-01

    The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.

  1. Functional characterization and analgesic effects of mixed cannabinoid receptor/T-type channel ligands

    Directory of Open Access Journals (Sweden)

    You Haitao

    2011-11-01

    Full Text Available Abstract Background Both T-type calcium channels and cannabinoid receptors modulate signalling in the primary afferent pain pathway. Here, we investigate the analgesics activities of a series of novel cannabinoid receptor ligands with T-type calcium channel blocking activity. Results Novel compounds were characterized in radioligand binding assays and in vitro functional assays at human and rat CB1 and CB2 receptors. The inhibitory effects of these compounds on transient expressed human T-type calcium channels were examined in tsA-201 cells using standard whole-cell voltage clamp techniques, and their analgesic effects in response to various administration routes (intrathecally, intraplantarly, intraperitoneally assessed in the formalin model. A series of compounds were synthesized and evaluated for channel and receptor activity. Compound NMP-7 acted as non-selective CB1/CB2 agonist while NMP4 was found to be a CB1 partial agonist and CB2 inverse agonist. Furthermore, NMP-144 behaved as a selective CB2 inverse agonist. All of these three compounds completely inhibited peak Cav3.2 currents with IC50 values in the low micromolar range. All compounds mediated analgesic effects in the formalin model, but depending on the route of administration, could differentially affect phase 1 and phase 2 of the formalin response. Conclusions Our results reveal that a set of novel cannabinioid receptor ligands potently inhibit T-type calcium channels and show analgesic effects in vivo. Our findings suggest possible novel means of mediating pain relief through mixed T-type/cannabinoid receptor ligands.

  2. Expression and function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid ligands in murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Characterization of intrinsic and extrinsic factors regulating the self-renewal/division and differentiation of stem cells is crucial in determining embryonic stem (ES cell fate. ES cells differentiate into multiple hematopoietic lineages during embryoid body (EB formation in vitro, which provides an experimental platform to define the molecular mechanisms controlling germ layer fate determination and tissue formation. METHODS AND FINDINGS: The cannabinoid receptor type 1 (CB1 and cannabinoid receptor type 2 (CB2 are members of the G-protein coupled receptor (GPCR family, that are activated by endogenous ligands, the endocannabinoids. CB1 receptor expression is abundant in brain while CB2 receptors are mostly expressed in hematopoietic cells. However, the expression and the precise roles of CB1 and CB2 and their cognate ligands in ES cells are not known. We observed significant induction of CB1 and CB2 cannabinoid receptors during the hematopoietic differentiation of murine ES (mES-derived embryoid bodies. Furthermore, mES cells as well as ES-derived embryoid bodies at days 7 and 14, expressed endocannabinoids, the ligands for both CB1 and CB2. The CB1 and CB2 antagonists (AM251 and AM630, respectively induced mES cell death, strongly suggesting that endocannabinoids are involved in the survival of mES cells. Treatment of mES cells with the exogenous cannabinoid ligand Delta(9-THC resulted in the increased hematopoietic differentiation of mES cells, while addition of AM251 or AM630 blocked embryoid body formation derived from the mES cells. In addition, cannabinoid agonists induced the chemotaxis of ES-derived embryoid bodies, which was specifically inhibited by the CB1 and CB2 antagonists. CONCLUSIONS: This work has not been addressed previously and yields new information on the function of cannabinoid receptors, CB1 and CB2, as components of a novel pathway regulating murine ES cell differentiation. This study provides insights

  3. Central and peripheral consequences of the chronic blockade of CB1 cannabinoid receptor with rimonabant or taranabant.

    Science.gov (United States)

    Martín-García, Elena; Burokas, Aurelijus; Martín, Miquel; Berrendero, Fernando; Rubí, Blanca; Kiesselbach, Christoph; Heyne, Andrea; Gispert, Juan Domingo; Millán, Olga; Maldonado, Rafael

    2010-03-01

    The endocannabinoid system plays a crucial role in the pathophysiology of obesity. However, the clinical use of cannabinoid antagonists has been recently stopped because of its central side-effects. The aim of this study was to compare the effects of a chronic treatment with the CB(1) cannabinoid antagonist rimonabant or the CB(1) inverse agonist taranabant in diet-induced obese female rats to clarify the biological consequences of CB(1) blockade at central and peripheral levels. As expected, chronic treatment with rimonabant and taranabant reduced body weight and fat content. Interestingly, a decrease in the number of CB(1) receptors and its functional activity was observed in all the brain areas investigated after chronic taranabant treatment in both lean and obese rats. In contrast, chronic treatment with rimonabant did not modify the density of CB(1) cannabinoid receptor binding, and decreased its functional activity to a lower degree than taranabant. Six weeks after rimonabant and taranabant withdrawal, CB(1) receptor density and activity recovered to basal levels. These results reveal differential adaptive changes in CB(1) cannabinoid receptors after chronic treatment with rimonabant and taranabant that could be related to the central side-effects reported with the use of these cannabinoid antagonists.

  4. The cannabinoid system in the retrosplenial cortex modulates fear memory consolidation, reconsolidation, and extinction

    Science.gov (United States)

    Sachser, Ricardo Marcelo; Crestani, Ana Paula; Quillfeldt, Jorge Alberto; Mello e Souza, Tadeu

    2015-01-01

    Despite the fact that the cannabinoid receptor type 1 (CB1R) plays a pivotal role in emotional memory processing in different regions of the brain, its function in the retrosplenial cortex (RSC) remains unknown. Here, using contextual fear conditioning in rats, we showed that a post-training intra-RSC infusion of the CB1R antagonist AM251 impaired, and the agonist CP55940 improved, long-term memory consolidation. Additionally, a post-reactivation infusion of AM251 enhanced memory reconsolidation, while CP55940 had the opposite effect. Finally, AM251 blocked extinction, whereas CP55940 facilitated it and maintained memory extinguished over time. Altogether, our data strongly suggest that the cannabinoid system of the RSC modulates emotional memory. PMID:26572648

  5. Augmentation of the development of behavioral tolerance to cannabinoid administration through pavlovian conditioning.

    Science.gov (United States)

    Hill, Matthew N; Gorzalka, Boris B; Choi, Joyce W

    2004-01-01

    This investigation examined the effects, in female rats, of a Pavlovian conditioning paradigm on the development of tolerance to hypolocomotion induced by the cannabinoid agonist HU-210. Rats were administered HU-210 and placebo in either an associative or a nonassociative fashion. The results indicated that rats in the associative paradigm developed tolerance significantly faster than those in the nonassociative group (p developed, the associative group of rats was administered HU-210 and placebo in the opposite environments. There were no differences found in locomotion between the CS+ and CS- environments following administration of HU-210. However, when the placebo was administered in the CS+ environment, there was a trend towards increased activity levels (p = 0.06), suggesting withdrawal-like behavior. These findings indicate that the underlying physiological mechanisms of tolerance development in the cannabinoid system are hastened by conditioning, but that these physiological alterations are not contingent upon the associative parameters used for drug administration.

  6. Identification of synthetic cannabinoids in herbal incense blends in the United States.

    Science.gov (United States)

    Logan, Barry K; Reinhold, Lindsay E; Xu, Allan; Diamond, Francis X

    2012-09-01

    Synthetic cannabinoid agonists are chemically diverse with multiple analogs gaining popularity as drugs of abuse. We report on the use of thin layer chromatography, gas chromatography mass spectrometry, high-performance liquid chromatography, and liquid chromatography time of flight mass spectrometry for the identification and quantitation of these pharmacologically active chemicals in street drug dosage forms. Using these approaches, we have identified the synthetic cannabinoids JWH-018, JWH-019, JWH-073, JWH-081, JWH-200, JWH-210, JWH-250, CP47,497 (C=8) (cannabicyclohexanol), RCS-4, RCS-8, AM-2201, and AM-694 in various commercially available products. Other noncannabinoid drugs including mitragynine have also been detected. Typical concentrations of drug in the materials are in the range 5-20 mg/g, or 0.5-2% by weight for each compound, although many products contained more than one drug.

  7. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders

    OpenAIRE

    Gema Navarro; Paula Morales; Carmen Rodríguez-Cueto; Javier Fernández-Ruiz; Nadine Jagerovic; Rafael Franco

    2016-01-01

    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and u...

  8. Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β 2 AR.

    Science.gov (United States)

    Latek, Dorota; Kolinski, Michal; Ghoshdastider, Umesh; Debinski, Aleksander; Bombolewski, Rafal; Plazinska, Anita; Jozwiak, Krzysztof; Filipek, Slawomir

    2011-09-01

    Cannabinoid and adrenergic receptors belong to the class A (similar to rhodopsin) G protein coupled receptors. Docking of agonists and antagonists to CB(1) and CB(2) cannabinoid receptors revealed the importance of a centrally located rotamer toggle switch and its possible participation in the mechanism of agonist/antagonist recognition. The switch is composed of two residues, F3.36 and W6.48, located on opposite transmembrane helices TM3 and TM6 in the central part of the membranous domain of cannabinoid receptors. The CB(1) and CB(2) receptor models were constructed based on the adenosine A(2A) receptor template. The two best scored conformations of each receptor were used for the docking procedure. In all poses (ligand-receptor conformations) characterized by the lowest ligand-receptor intermolecular energy and free energy of binding the ligand type matched the state of the rotamer toggle switch: antagonists maintained an inactive state of the switch, whereas agonists changed it. In case of agonists of β(2)AR, the (R,R) and (S,S) stereoisomers of fenoterol, the molecular dynamics simulations provided evidence of different binding modes while preserving the same average position of ligands in the binding site. The (S,S) isomer was much more labile in the binding site and only one stable hydrogen bond was created. Such dynamical binding modes may also be valid for ligands of cannabinoid receptors because of the hydrophobic nature of their ligand-receptor interactions. However, only very long molecular dynamics simulations could verify the validity of such binding modes and how they affect the process of activation.

  9. Therapeutic potential of cannabinoid-based drugs.

    Science.gov (United States)

    Klein, Thomas W; Newton, Catherine A

    2007-01-01

    Cannabinoid-based drugs modeled on cannabinoids originally isolated from marijuana are now known to significantly impact the functioning of the endocannabinoid system of mammals. This system operates not only in the brain but also in organs and tissues in the periphery including the immune system. Natural and synthetic cannabinoids are tricyclic terpenes, whereas the endogenous physiological ligands are eicosanoids. Several receptors for these compounds have been extensively described, CB1 and CB2, and are G protein-coupled receptors; however, cannabinoid-based drugs are also demonstrated to function independently of these receptors. Cannabinoids regulate many physiological functions and their impact on immunity is generally antiinflammatory as powerful modulators of the cytokine cascade. This anti-inflammatory potency has led to the testing of these drugs in chronic inflammatory laboratory paradigms and even in some human diseases. Psychoactive and nonpsychoactive cannabinoid-based drugs such as Delta9-tetrahydrocannabinol, cannabidiol, HU-211, and ajulemic acid have been tested and found moderately effective in clinical trials of multiple sclerosis, traumatic brain injury, arthritis, and neuropathic pain. Furthermore, although clinical trials are not yet reported, preclinical data with cannabinoid-based drugs suggest efficacy in other inflammatory diseases such as inflammatory bowel disease, Alzheimer's disease, atherosclerosis, and osteoporosis.

  10. Cannabinoids as novel anti-inflammatory drugs.

    Science.gov (United States)

    Nagarkatti, Prakash; Pandey, Rupal; Rieder, Sadiye Amcaoglu; Hegde, Venkatesh L; Nagarkatti, Mitzi

    2009-10-01

    Cannabinoids are a group of compounds that mediate their effects through cannabinoid receptors. The discovery of Δ9-tetrahydrocannabinol (THC) as the major psychoactive principle in marijuana, as well as the identification of cannabinoid receptors and their endogenous ligands, has led to a significant growth in research aimed at understanding the physiological functions of cannabinoids. Cannabinoid receptors include CB1, which is predominantly expressed in the brain, and CB2, which is primarily found on the cells of the immune system. The fact that both CB1 and CB2 receptors have been found on immune cells suggests that cannabinoids play an important role in the regulation of the immune system. Recent studies demonstrated that administration of THC into mice triggered marked apoptosis in T cells and dendritic cells, resulting in immunosuppression. In addition, several studies showed that cannabinoids downregulate cytokine and chemokine production and, in some models, upregulate T-regulatory cells (Tregs) as a mechanism to suppress inflammatory responses. The endocannabinoid system is also involved in immunoregulation. For example, administration of endocannabinoids or use of inhibitors of enzymes that break down the endocannabinoids, led to immunosuppression and recovery from immune-mediated injury to organs such as the liver. Manipulation of endocannabinoids and/or use of exogenous cannabinoids in vivo can constitute a potent treatment modality against inflammatory disorders. This review will focus on the potential use of cannabinoids as a new class of anti-inflammatory agents against a number of inflammatory and autoimmune diseases that are primarily triggered by activated T cells or other cellular immune components.

  11. EFFECT OF CANNABINOIDS ON TESTICULAR ISCHEMIA-REPERFUSION INJURY IN RAT

    Directory of Open Access Journals (Sweden)

    H. Sepehri

    2006-11-01

    Full Text Available Anandamide is an endogenous ligand for cannabinoid receptors and has endothelial protective effect against ischemic preconditioning. The purpose of this study was to investigate the effects of cannabinoids on reperfusion injury due to testicular torsion-detorsion (T/D. A total of 36 adult male Sprague-Dawley rats were divided into 6 groups. Testicular ischemia was achieved by twisting the right testes 720◦ counters clockwise for 1 hour and reperfusion was allowed for 4 hours after detorsion. In baseline (normal group, bilateral orchiectomies performed after anesthesia. Sham operated group was served as a control group. Torsion/detorsion group underwent 1 hour testicular torsion and 4 hours of detorsion. Anandamide (cannabinoid agonist group received pretreatment with intraperitoneally anandamide 30 min before torsion. AM251 (CB1 antagonist group, received intraperitoneally injection of AM251 45 min before torsion. Anandamid/AM251 (An/AM group received administrations of AM251 45 min before torsion and anandamide 30 min before torsion. The ipsilateral malondialdehyde (MDA level in T/D group were significantly higher versus control and base line groups. Ipsilateral MDA values in anandamid group were significantly lower than T/D and An/AM groups. There were also significant decreases in catalase activity in T/D group compared with control and base line groups. These values were significantly higher in cannabinoid group versus T/D and An/AM groups. Anandamide increased ipsilateral intratesticular antioxidative markers and decreased free radicals formation during reperfusion phase after unilateral testicular torsion, which was reflected in lesser testicular MDA level. Furthermore, the effects of anandamide were mediated via cannabinoid receptors, since AM251 could abolish these effects.

  12. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain.

    Science.gov (United States)

    Callén, Lucía; Moreno, Estefanía; Barroso-Chinea, Pedro; Moreno-Delgado, David; Cortés, Antoni; Mallol, Josefa; Casadó, Vicent; Lanciego, José Luis; Franco, Rafael; Lluis, Carmen; Canela, Enric I; McCormick, Peter J

    2012-06-15

    Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.

  13. Cannabinoids alleviate experimentally induced intestinal inflammation by acting at central and peripheral receptors.

    Directory of Open Access Journals (Sweden)

    Jakub Fichna

    Full Text Available In an attempt to further investigate the role of cannabinoid (CB system in the pathogenesis of inflammatory bowel diseases, we employed two recently developed ligands, AM841 (a covalently acting CB agonist and CB13 (a peripherally-restricted CB agonist to establish whether central and peripheral CB sites are involved in the anti-inflammatory action in the intestine.AM841 (0.01, 0.1 and 1 mg/kg, i.p. significantly decreased inflammation scores in dextran sulfate sodium (DSS- and 2,4,6-trinitrobenzene sulfonic acid (TNBS-treated mice when administered before induction of colitis or as a treatment of existing intestinal inflammation. The effect was absent in CB1, CB2 and CB(1/2-deficient mice. A peripherally-restricted agonist CB13 did not alleviate colitis when given i.p. (0.1 mg/kg, but significantly decreased inflammation score after central administration (0.1 µg/animal.This is the first evidence that central and peripheral CB receptors are responsible for the protective and therapeutic action of cannabinoids in mouse models of colitis. Our observations provide new insight to CB pharmacology and validate the use of novel ligands AM841 and CB13 as potent tools in CB-related research.

  14. Winning fights induces hyperaggression via the action of the biogenic amine octopamine in crickets.

    Directory of Open Access Journals (Sweden)

    Jan Rillich

    Full Text Available Winning an agonistic interaction against a conspecific is known to heighten aggressiveness, but the underlying events and mechanism are poorly understood. We quantified the effect of experiencing successive wins on aggression in adult male crickets (Gryllus bimaculatus by staging knockout tournaments and investigated its dependence on biogenic amines by treatment with amine receptor antagonists. For an inter-fight interval of 5 min, fights between winners escalated to higher levels of aggression and lasted significantly longer than the preceding round. This winner effect is transient, and no longer evident for an inter-fight interval of 20 min, indicating that it does not result from selecting individuals that were hyper-aggressive from the outset. A winner effect was also evident in crickets that experienced wins without physical exertion, or that engaged in fights that were interrupted before a win was experienced. Finally, the winner effect was abolished by prior treatment with epinastine, a highly selective octopamine receptor blocker, but not by propranolol, a ß-adrenergic receptor antagonist, nor by yohimbine, an insect tyramine receptor blocker nor by fluphenazine an insect dopamine-receptor blocker. Taken together our study in the cricket indicates that the physical exertion of fighting, together with some rewarding aspect of the actual winning experience, leads to a transient increase in aggressive motivation via activation of the octopaminergic system, the invertebrate equivalent to the adrenergic system of vertebrates.

  15. Novel adamantyl cannabinoids as CB1 receptor probes.

    Science.gov (United States)

    Thakur, Ganesh A; Bajaj, Shama; Paronis, Carol; Peng, Yan; Bowman, Anna L; Barak, Lawrence S; Caron, Marc G; Parrish, Demon; Deschamps, Jeffrey R; Makriyannis, Alexandros

    2013-05-23

    In previous studies, compound 1 (AM411), a 3-(1-adamantyl) analogue of the phytocannabinoid (-)-Δ(8)-tetrahydrocannabinol (Δ(8)-THC), was shown to have improved affinity and selectivity for the CB1 receptor. In this work, we further explored the role of the 1-adamantyl group at the C-3 position in a series of tricyclic cannabinoid analogues modified at the 9-northern aliphatic hydroxyl (NAH) position. Of these, 9-hydroxymethyl hexahydrocannabinol 11 (AM4054) exhibited high CB1 affinity and full agonist profile. In the cAMP assay, the 9-hydroxymethyl cannabinol analogue 24 (AM4089) had a partial agonist profile, with high affinity and moderate selectivity for rCB1 over hCB2. In vivo results in rat models of hypothermia and analgesia were congruent with in vitro data. Our in vivo data indicate that 3-(1-adamantyl) substitution, within NAH cannabinergics, imparts improved pharmacological profiles when compared to the corresponding, traditionally used 3-dimethylheptyl analogues and identifies 11 and 24 as potentially useful in vivo CB1 cannabinergic probes.

  16. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play.

    Science.gov (United States)

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J M J; Trezza, Viviana; Manzoni, Olivier J J

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  17. Interacting cannabinoid and opioid receptors in the nucleus accumbens core control adolescent social play

    Directory of Open Access Journals (Sweden)

    Antonia Manduca

    2016-11-01

    Full Text Available Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R or mu-opioid receptor (MOR antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC. Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of mediates social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors.

  18. Phase I hydroxylated metabolites of the K2 synthetic cannabinoid JWH-018 retain in vitro and in vivo cannabinoid 1 receptor affinity and activity.

    Directory of Open Access Journals (Sweden)

    Lisa K Brents

    Full Text Available BACKGROUND: K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R. METHODS/PRINCIPAL FINDINGS: JWH-018, five potential monohydroxylated metabolites (M1-M5, and one carboxy metabolite (M6 were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i values that were lower than or equivalent to Δ(9-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251. CONCLUSIONS/SIGNIFICANCE: Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations

  19. 26 CFR 1.50B-1 - Definitions of WIN expenses and WIN employees.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true Definitions of WIN expenses and WIN employees. 1.50B-1 Section 1.50B-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Rules for Computing Credit for Expenses of Work Incentive Programs § 1.50B-1 Definitions of WIN expenses and WIN employees. (a)...

  20. Cannabinoids and bone: friend or foe?

    Science.gov (United States)

    Idris, Aymen I; Ralston, Stuart H

    2010-10-01

    The endocannabinoid system is recognized to play an important role in regulating a variety of physiological processes, including appetite control and energy balance, pain perception, and immune responses. The endocannabinoid system has also recently been implicated in the regulation of bone metabolism. Endogenously produced cannabinoids are hydrophobic molecules derived from hydrolysis of membrane phospholipids. These substances, along with plant-derived and synthetic cannabinoids, interact with the type 1 (CB(1)) and 2 (CB(2)) cannabinoid receptors and the GPR55 receptor to regulate cellular function through a variety of signaling pathways. Endocannabinoids are produced in bone, but the mechanisms that regulate their production are unclear. Skeletal phenotyping of mice with targeted inactivation of cannabinoid receptors and pharmacological studies have shown that cannabinoids play a key role in the regulation of bone metabolism. Mice with CB(1) deficiency have high peak bone mass as a result of an osteoclast defect but develop age-related osteoporosis as a result of impaired bone formation and accumulation of bone marrow fat. Mice with CB(2) deficiency have relatively normal peak bone mass but develop age-related osteoporosis as a result of increased bone turnover with uncoupling of bone resorption from bone formation. Mice with GPR55 deficiency have increased bone mass as a result of a defect in the resorptive activity of osteoclasts, but bone formation is unaffected. Cannabinoids are also produced within synovial tissues, and preclinical studies have shown that cannabinoid receptor ligands are effective in the treatment of inflammatory arthritis. These data indicate that cannabinoid receptors and the enzymes responsible for ligand synthesis and breakdown play important roles in bone remodeling and in the pathogenesis of joint disease.

  1. Cannabinoid CB1 receptor-mediated inhibition of hippocampal acetylcholine release is preserved in aged mice

    OpenAIRE

    Redmer, Agnes; Kathmann, Markus; Schlicker, Eberhard

    2003-01-01

    The cannabinoid CB1 receptor inverse agonist/antagonist SR 141716 increases acetylcholine release in rodent hippocampus and improves memory in some experimental paradigms. Since drugs like SR 141716 may represent a novel class of cognition-enhancing drugs, we wanted to check whether the function of the CB1 receptor is preserved during ageing.Hippocampal and striatal slices from 2- to 3- and 24- to 28-month-old C57BL/6J mice were preincubated with [3H]-choline or [3H]-noradrenaline ([3H]-NA) a...

  2. Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus

    DEFF Research Database (Denmark)

    Soni, Neeraj; Satpathy, Shankha; Kohlmeier, Kristi Anne

    2014-01-01

    Marijuana, which acts within the endocannabinoid (eCB) system as an agonist of the cannabinoid type 1 receptor (CB1R), exhibits addictive properties and has powerful actions on the state of arousal of an organism. The laterodorsal tegmental nucleus (LDT), as a component of the reticular activating...... the firing frequency and synaptic activity of neurons in this nucleus. Therefore, endogenous eCB transmission could play a role in processes involving the LDT, such as cortical activation and motivated behaviours and, further, behavioural actions of marijuana are probably mediated, in part, via cellular...

  3. The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism--or inverse agonism--as potential obesity treatment and other therapeutic use.

    Science.gov (United States)

    Xie, S; Furjanic, M A; Ferrara, J J; McAndrew, N R; Ardino, E L; Ngondara, A; Bernstein, Y; Thomas, K J; Kim, E; Walker, J M; Nagar, S; Ward, S J; Raffa, R B

    2007-06-01

    There is considerable evidence that the endocannabinoid (endogenous cannabinoid) system plays a significant role in appetitive drive and associated behaviours. It is therefore reasonable to hypothesize that the attenuation of the activity of this system would have therapeutic benefit in treating disorders that might have a component of excess appetitive drive or over-activity of the endocannabinoid system, such as obesity, ethanol and other drug abuse, and a variety of central nervous system and other disorders. Towards this end, antagonists of cannabinoid receptors have been designed through rational drug discovery efforts. Devoid of the abuse concerns that confound and impede the use of cannabinoid receptor agonists for legitimate medical purposes, investigation of the use of cannabinoid receptor antagonists as possible pharmacotherapeutic agents is currently being actively investigated. The compound furthest along this pathway is rimonabant, a selective CB(1) (cannabinoid receptor subtype 1) antagonist, or inverse agonist, approved in the European Union and under regulatory review in the United States for the treatment of obesity. This article summarizes the basic science of the endocannabinoid system and the therapeutic potential of cannabinoid receptor antagonists, with emphasis on the treatment of obesity.

  4. Opportunistic Cognitive Relaying: A Win-Win Spectrum Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Luo Haiyan

    2010-01-01

    Full Text Available A cost-effective spectrum sharing architecture is proposed to enable the legacy noncognitive secondary system to coexist with the primary system. Specifically, we suggest to install a few intermediate nodes, namely, the cognitive relays, to conduct the spectrum sensing and coordinate the spectrum access. To achieve the goal of win-win between primary and secondary systems, the cognitive relay may act as a cooperator for both of them, and an Opportunistic Cognitive Relaying (OCR scheme is specially devised. In this scheme, the cognitive relay opportunistically switches among three different working modes, that is, Relay for Primary Link (RPL, Relay for Secondary Link (RSL, or Relay for Neither of the Links (RNL, respectively, based on the channel-dependent observation of both systems. In addition, the transmit power for cognitive relay and secondary transmitter in each mode are optimally determined by maximizing the transmission rate of secondary system while keeping or even reducing the outage probability of primary system. Simulation results validate the efficiency of the proposed spectrum sharing scheme.

  5. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart;

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  6. Emerging drugs of abuse: current perspectives on synthetic cannabinoids

    Directory of Open Access Journals (Sweden)

    Debruyne D

    2015-10-01

    Full Text Available Danièle Debruyne,1,2 Reynald Le Boisselier1 1Centre for Evaluation and Information on Pharmacodependence - Addictovigilance (CEIP-A, 2Toxicology and Pharmacology Laboratory, Department of Pharmacology, University Hospital Centre Côte de Nacre, Caen, France Abstract: New psychoactive drugs that have appeared over the last decade are typically dominated by cathinones and synthetic cannabinoids (SCs. SCs have been emerging as recreational drugs because they mimic the euphoria effect of cannabis while still being legal. Sprayed on natural herb mixtures, SCs have been primarily sold as “herbal smoking blends” or “herbal incense” under brand names like “Spice” or “K2”. Currently, SCs pure compounds are available from websites for the combination with herbal materials or for the use in e-cigarettes. For the past 5 years, an ever increasing number of compounds, representative of different chemical classes, have been promoted and now represent a large assortment of new popular drugs of abuse, which are difficult to properly identify. Their legal status varies by country with many government institutions currently pushing for their control. The in vitro binding to CB1/CB2 receptors is usually well-known and considerable differences have been found in the CB1 versus CB2 selectivity and potency within the different SCs, with several structure-activity relations being evident. Desired effects by CB1 agonist users are relaxation/recreative, however, cardiovascular, gastrointestinal, or psychiatric/neurological side effects are commonly reported. At present there is no specific antidote existing if an overdose of designer drugs was to occur, and no curative treatment has been approved by health authorities. Management of acute toxic effects is mainly symptomatic and extrapolated from experience with cannabis. Keywords: synthetic cannabinoids, chemistry, analysis, pharmacology, toxicology, dependence, medical care

  7. Ways to Win at Vocabulary Learning

    Science.gov (United States)

    Goodwin, Amanda P.; Cho, Sun-Joo; Nichols, Sally

    2016-01-01

    This teaching tip identifies ways to "WIN" at vocabulary learning. Specifically, the approach conveys three morphological strategies in the mnemonic "WIN." These three strategies remind students to find smaller units of meaning within bigger words, look for those units in other words that they know, and notice the context. Each…

  8. Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes.

    Science.gov (United States)

    Lu, Dai; Dopart, Rachel; Kendall, Debra A

    2016-01-01

    Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM). The endocannabinoid system is composed of at least two Gprotein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2). Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors. Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity. Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists. Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes. This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.

  9. Sustainable Production of Cannabinoids with Supercritical Carbon Dioxide Technologies

    NARCIS (Netherlands)

    Perrotin-Brunel, H.

    2011-01-01

    This thesis concerns the production of natural compounds from plant material for pharmaceutical and food applications. It describes the production (extraction and isolation) of cannabinoids, the active components present in cannabis. Many cannabinoids have medicinal properties but not all cannabinoi

  10. Bayesian modeling using WinBUGS

    CERN Document Server

    Ntzoufras, Ioannis

    2009-01-01

    A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all ...

  11. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling.

    Science.gov (United States)

    Ma, Lei; Jia, Ji; Liu, Xiangyu; Bai, Fuhai; Wang, Qiang; Xiong, Lize

    2015-02-27

    Inhibition of microglial activation is effective in treating various neurological disorders. Activation of microglial cannabinoid CB2 receptor induces anti-inflammatory effects, and the mechanism, however, is still elusive. Microglia could be activated into the classic activated state (M1 state) or the alternative activated state (M2 state), the former is cytotoxic, and the latter is neurotrophic. In this study, we used lipopolysaccharide (LPS) plus interferon-γ (IFNγ) to activate N9 microglia and hypothesized the pretreatment with cannabinoid CB2 receptor agonist AM1241 attenuates microglial activation by shifting microglial M1 to M2 state. We found that pretreatment with 5 μM AM1241 at 1 h before microglia were exposed to LPS plus IFNγ decreased the expression of inducible nitric oxide synthase (iNOS) and the release of pro-inflammatory factors, increased the expression of arginase 1 (Arg-1) and the release of anti-inflammatory and neurotrophic factors in microglia. However, these effects induced by AM1241 pretreatment were significantly reversed in the presence of 10 μM cannabinoid CB2 receptor antagonist AM630 or 10 μM protein kinase C (PKC) inhibitor chelerythrine. These findings indicated that AM1241 pretreatment attenuates microglial activation by shifting M1 to M2 activated state via CB2 receptor, and the AM1241-induced anti-inflammatory effects may be mediated by PKC.

  12. Cannabinoids for treatment of Alzheimer’s disease: moving towards the clinic

    Directory of Open Access Journals (Sweden)

    Isidro eFerrer

    2014-03-01

    Full Text Available The limited effectiveness of current therapies against Alzheimer’s disease highlights the need for intensifying research efforts devoted to developing new agents for preventing or retarding the disease process. During the last few years, targeting the endogenous cannabinoid system has emerged as a potential therapeutic approach to treat Alzheimer. The endocannabinoid system is composed by a number of cannabinoid receptors, including the well-characterized CB1 and CB2 receptors, with their endogenous ligands and the enzymes related to the synthesis and degradation of these endocannabinoid compounds. Several findings indicate that the activation of both CB1 and CB2 receptors by natural or synthetic agonists, at non-psychoactive doses, have beneficial effects in Alzheimer experimental models by reducing the harmful A peptide action and tau phosphorylation, as well as by promoting the brain’s intrinsic repair mechanisms. Moreover, endocannabinoid signaling has been demonstrated to modulate numerous concomitant pathological processes, including neuroinflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress. The present paper summarizes the main experimental studies demonstrating the polyvalent properties of cannabinoid compounds for the treatment of Alzheimer’s disease, which together encourage progress towards a clinical trial.

  13. Protocol to Study β-Arrestin Recruitment by CB1 and CB2 Cannabinoid Receptors.

    Science.gov (United States)

    Soethoudt, Marjolein; van Gils, Noortje; van der Stelt, Mario; Heitman, Laura H

    2016-01-01

    Cannabinoid CB1 and CB2 receptors are G-protein-coupled receptors (GPCRs) that recruit β-arrestins upon activation by (partial) agonists. β-Arrestin recruitment is induced by phosphorylation of their C-terminal tails, and is associated with the termination of GPCR signaling; yet, it may also activate cellular signaling pathways independent of G-proteins. Here, we describe a detailed protocol to characterize the potency and efficacy of ligands to induce or inhibit β-arrestin recruitment to the human CB1 and CB2 receptors, by using the PathHunter(®) assay. The latter is a cellular assay that can be performed in plates with 384-wells. The PathHunter(®) assay makes use of β-galactosidase complementation, and has a chemiluminescent readout. We used this assay to characterize a set of reference ligands (both agonists and antagonists) on human CB1 and CB2 receptors.

  14. The effects of cannabinoids on the brain.

    Science.gov (United States)

    Ameri, A

    1999-07-01

    Cannabinoids have a long history of consumption for recreational and medical reasons. The primary active constituent of the hemp plant Cannabis sativa is delta9-tetrahydrocannabinol (delta9-THC). In humans, psychoactive cannabinoids produce euphoria, enhancement of sensory perception, tachycardia, antinociception, difficulties in concentration and impairment of memory. The cognitive deficiencies seem to persist after withdrawal. The toxicity of marijuana has been underestimated for a long time, since recent findings revealed delta9-THC-induced cell death with shrinkage of neurons and DNA fragmentation in the hippocampus. The acute effects of cannabinoids as well as the development of tolerance are mediated by G protein-coupled cannabinoid receptors. The CB1 receptor and its splice variant CB1A, are found predominantly in the brain with highest densities in the hippocampus, cerebellum and striatum. The CB2 receptor is found predominantly in the spleen and in haemopoietic cells and has only 44% overall nucleotide sequence identity with the CB1 receptor. The existence of this receptor provided the molecular basis for the immunosuppressive actions of marijuana. The CB1 receptor mediates inhibition of adenylate cyclase, inhibition of N- and P/Q-type calcium channels, stimulation of potassium channels, and activation of mitogen-activated protein kinase. The CB2 receptor mediates inhibition of adenylate cyclase and activation of mitogen-activated protein kinase. The discovery of endogenous cannabinoid receptor ligands, anandamide (N-arachidonylethanolamine) and 2-arachidonylglycerol made the notion of a central cannabinoid neuromodulatory system plausible. Anandamide is released from neurons upon depolarization through a mechanism that requires calcium-dependent cleavage from a phospholipid precursor in neuronal membranes. The release of anandamide is followed by rapid uptake into the plasma and hydrolysis by fatty-acid amidohydrolase. The psychoactive cannabinoids

  15. Functional effects of cannabinoids during dopaminergic specification of human neural precursors derived from induced pluripotent stem cells.

    Science.gov (United States)

    Stanslowsky, Nancy; Jahn, Kirsten; Venneri, Anna; Naujock, Maximilian; Haase, Alexandra; Martin, Ulrich; Frieling, Helge; Wegner, Florian

    2016-03-30

    Among adolescents cannabis is one of the most widely used illicit drugs. In adolescence brain development continues, characterized by neuronal maturation and synaptic plasticity. The endocannabinoid system plays an important role during brain development by modulating neuronal function and neurogenesis. Changes in endocannabinoid signaling by Δ(9) -tetrahydrocannabinol (THC), the psychoactive component of cannabis, might therefore lead to neurobiological changes influencing brain function and behavior. We investigated the functional maturation and dopaminergic specification of human cord blood-derived induced pluripotent stem cell (hCBiPSC)-derived small molecule neural precursor cells (smNPCs) after cultivation with the endogenous cannabinoid anandamide (AEA) and the exogenous THC, both potent agonists at the cannabinoid 1 receptor (CB1 R). Higher dosages of 10-μM AEA or THC significantly decreased functionality of neurons, indicated by reduced ion currents and synaptic activity. A lower concentration of 1-μM THC had no marked effect on neuronal and dopaminergic maturation, while 1-μM AEA significantly enhanced the frequency of synaptic activity. As there were no significant effects on DNA methylation in promotor regions of genes important for neuronal function, these cannabinoid actions seem to be mediated by another than this epigenetic mechanism. Our data suggest that there are concentration-dependent actions of cannabinoids on neuronal function in vitro indicating neurotoxic, dysfunctional effects of 10-μM AEA and THC during human neurogenesis.

  16. The role of the hippocampus in mediating emotional responses to nicotine and cannabinoids: a possible neural substrate for functional interactions.

    Science.gov (United States)

    Viveros, María-Paz; Marco, Eva-María; Llorente, Ricardo; Lamota, Laura

    2007-09-01

    The endocannabinoid system is involved in the regulation of behavioural and physiological stress-related responses. Nicotine exerts complex effects on emotional behaviour, and its withdrawal may result in depressive and anxiogenic-like symptoms. Cannabinoid receptor agonists and nicotine induce biphasic effects in diverse tests of unconditioned anxiety, alter adrenocortical activity and affect hippocampus-dependent contextual fear conditioning. Upon exposure to stressful stimuli, central endocannabinoid and cholinergic systems appear to be activated in key limbic areas such as hippocampus and amygdala, which might contribute to adaptive cognitive and emotional strategies to cope with aversive situations. Numerous studies indicate the existence of functional interactions between nicotine and cannabinoids, particularly in relation to anxiety-related processes. An overlapping distribution of CB1 and nicotinic acetylcholine receptors in the hippocampus is observed and the endocannabinoid system exerts a modulatory role over the hippocampal cholinergic system. In this review, we point to the hippocampus as a relevant neural substrate for cannabinoid-nicotine interactions, notably as regards emotional responses. After a general description of the cannabinoid and nicotinic systems, we review their implications in unconditioned anxiety, depressive-like behaviour and fear conditioning. Then we discuss the role of both systems in modulating stress-induced changes at cellular, endocrine and behavioural levels and their possible involvement in hippocampal neurogenesis. Although we mainly focus on animal data, some relevant human studies are also discussed.

  17. Chronic cannabinoid treatment in adolescent attenuates c-Fos expression in nucleus accumbens of adult estrous rats

    Directory of Open Access Journals (Sweden)

    Samuel I. Brook

    2013-02-01

    Full Text Available Chronic cannabinoid exposure during adolescence may negatively impact brain development and alter adult motivation and behavior. We present evidence that treatment with a cannabinoid agonist during adolescence attenuates estrous-mediated expression of c-Fos within the nucleus accumbens of female rats exposed to a male conspecific. Thirty-two female Long-Evans rats were administered either 0.4 mg/kg of CP-55,940 or vehicle on a daily basis between the ages of 35-45 days. When subjects reached adulthood (days 71-76, they were tested within an exposure paradigm designed to invoke sexual motivation wihtout allowing for consummatory behavior. Female subjects were naturally-cyclins; half were tested when in behavioral estrus (as determined by vaginal cytology and half were tested outside of estrus. c-Fos expression was then quantified in multiple brain regions associated with female sexual motivation, in addition to two control regions. Analyses revealed that untreated females showed more c-Fos-positive neurons when estrous (versus non-estrous within the medial preoptic area of the hypothalamus, the ventromedial hypothalamus, and the nucleus accumbens core and shell. Significant attenuation of this estrous effect was observed within the nucleus accumbens core and shell of drug-treated females. This suggests that adolescent cannabinoid exposure may negatively impact research in our laboratory which indicated that chronic cannabinoid exposure during adolescence persistently attenuates the expression of sexual motivation in female rats and provide a potential neurobiological substrate for those behavioral deficits.

  18. A cannabinoid link between mitochondria and memory.

    Science.gov (United States)

    Hebert-Chatelain, Etienne; Desprez, Tifany; Serrat, Román; Bellocchio, Luigi; Soria-Gomez, Edgar; Busquets-Garcia, Arnau; Pagano Zottola, Antonio Christian; Delamarre, Anna; Cannich, Astrid; Vincent, Peggy; Varilh, Marjorie; Robin, Laurie M; Terral, Geoffrey; García-Fernández, M Dolores; Colavita, Michelangelo; Mazier, Wilfrid; Drago, Filippo; Puente, Nagore; Reguero, Leire; Elezgarai, Izaskun; Dupuy, Jean-William; Cota, Daniela; Lopez-Rodriguez, Maria-Luz; Barreda-Gómez, Gabriel; Massa, Federico; Grandes, Pedro; Bénard, Giovanni; Marsicano, Giovanni

    2016-11-24

    Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP. Acute cannabinoid intoxication induces amnesia in humans and animals, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.

  19. Winning strategies in congested traffic

    CERN Document Server

    Jarai-Szabo, Ferenc

    2012-01-01

    One-directional traffic on two-lanes is modeled in the framework of a spring-block type model. A fraction $q$ of the cars are allowed to change lanes, following simple dynamical rules, while the other cars keep their initial lane. The advance of cars, starting from equivalent positions and following the two driving strategies is studied and compared. As a function of the parameter $q$ the winning probability and the average gain in the advancement for the lane-changing strategy is computed. An interesting phase-transition like behavior is revealed and conclusions are drawn regarding the conditions when the lane changing strategy is the better option for the drivers.

  20. Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1.

    Science.gov (United States)

    Nagode, Daniel A; Tang, Ai-Hui; Yang, Kun; Alger, Bradley E

    2014-01-01

    Neuronal electrical oscillations in the theta (4-14 Hz) and gamma (30-80 Hz) ranges are necessary for the performance of certain animal behaviours and cognitive processes. Perisomatic GABAergic inhibition is prominently involved in cortical oscillations driven by ACh release from septal cholinergic afferents. In neocortex and hippocampal CA3 regions, parvalbumin (PV)-expressing basket cells, activated by ACh and glutamatergic agonists, largely mediate oscillations. However, in CA1 hippocampus in vitro, cholinergic agonists or the optogenetic release of endogenous ACh from septal afferents induces rhythmic, theta-frequency inhibitory postsynaptic currents (IPSCs) in pyramidal cells, even with glutamatergic transmission blocked. The IPSCs are regulated by exogenous and endogenous cannabinoids, suggesting that they arise from type 1 cannabinoid receptor-expressing (CB1R+) interneurons - mainly cholecystokinin (CCK)-expressing cells. Nevertheless, an occult contribution of PV-expressing interneurons to these rhythms remained conceivable. Here, we directly test this hypothesis by selectively silencing CA1 PV-expressing cells optogenetically with halorhodopsin or archaerhodopsin. However, this had no effect on theta-frequency IPSC rhythms induced by carbachol (CCh). In contrast, the silencing of glutamic acid decarboxylase 2-positive interneurons, which include the CCK-expressing basket cells, strongly suppressed inhibitory oscillations; PV-expressing interneurons appear to play no role. The low-frequency IPSC oscillations induced by CCh or optogenetically stimulated ACh release were also inhibited by a μ-opioid receptor (MOR) agonist, which was unexpected because MORs in CA1 are not usually associated with CCK-expressing cells. Our results reveal novel properties of an inhibitory oscillator circuit within CA1 that is activated by muscarinic agonists. The oscillations could contribute to behaviourally relevant, atropine-sensitive, theta rhythms and link cannabinoid and

  1. Cannabinoid hyper-emesis syndrome: An enigma

    Directory of Open Access Journals (Sweden)

    Neeraj Gupta

    2013-01-01

    Full Text Available Marijuana is one of the most frequently abused illicit substances in the world especially Australia. Cannabinoid Hyperemesis Syndrome (CHS is characterized by a triad of symptoms: Cyclic vomiting, chronic marijuana use, and compulsive bathing. It involves recurrent episodes of self-limited nausea and vomiting lasting several days and patients are asymptomatic between episodes. We believe that Cannabinoid Hyper emesis Syndrome is much more common than currently recognized. We present a unique case with an apparent positive family history of the same clinical entity.

  2. Augmented inhibition from cannabinoid sensitive interneurons diminishes CA1 output after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Brian Neal Johnson

    2014-12-01

    Full Text Available The neurological impairments associated with traumatic brain injury include learning and memory deficits and increased risk of seizures. The hippocampus is critically involved in both of these phenomena and highly susceptible to damage by traumatic brain injury. To examine network activity in the hippocampal CA1 region after lateral fluid percussion injury, we used a combination of voltage sensitive dye, field potential and patch clamp recording in mouse hippocampal brain slices. When the stratum radiatum was stimulated in slices from injured mice we found decreased depolarization in stratum radiatum and increased hyperpolarization in stratum oriens, together with a decrease in the percentage of pyramidal neurons firing stimulus-evoked action potentials. Increased hyperpolarization in stratum oriens persisted when glutamatergic transmission was blocked. However, we found no changes in stratum oriens responses when the alveus was stimulated to directly activate stratum oriens. These results suggest that the increased stratum oriens hyperpolarization evoked by stratum radiatum stimulation was mediated by interneurons that have cell bodies and/or axons in stratum radiatum, and form synapses in stratum pyramidale and stratum oriens. A low concentration (100 nM of the synthetic cannabinoid WIN55,212-2,restored CA1 output in slices from injured animals. These findings support the hypothesis that increased GABAergic signaling by cannabinoid sensitive interneurons contributes to the reduced CA1 output following traumatic brain injury.

  3. Bladder cancer cell growth and motility implicate cannabinoid 2 receptor-mediated modifications of sphingolipids metabolism

    Science.gov (United States)

    Bettiga, Arianna; Aureli, Massimo; Colciago, Giorgia; Murdica, Valentina; Moschini, Marco; Lucianò, Roberta; Canals, Daniel; Hannun, Yusuf; Hedlund, Petter; Lavorgna, Giovanni; Colombo, Renzo; Bassi, Rosaria; Samarani, Maura; Montorsi, Francesco; Salonia, Andrea; Benigni, Fabio

    2017-01-01

    The inhibitory effects demonstrated by activation of cannabinoid receptors (CB) on cancer proliferation and migration may also play critical roles in controlling bladder cancer (BC). CB expression on human normal and BC specimens was tested by immunohistochemistry. Human BC cells RT4 and RT112 were challenged with CB agonists and assessed for proliferation, apoptosis, and motility. Cellular sphingolipids (SL) constitution and metabolism were evaluated after metabolic labelling. CB1-2 were detected in BC specimens, but only CB2 was more expressed in the tumour. Both cell lines expressed similar CB2. Exposure to CB2 agonists inhibited BC growth, down-modulated Akt, induced caspase 3-activation and modified SL metabolism. Baseline SL analysis in cell lines showed differences linked to unique migratory behaviours and cytoskeletal re-arrangements. CB2 activation changed the SL composition of more aggressive RT112 cells by reducing (p < 0.01) Gb3 ganglioside (−50 ± 3%) and sphingosine 1-phosphate (S1P, −40 ± 4%), which ended up to reduction in cell motility (−46 ± 5%) with inhibition of p-SRC. CB2-selective antagonists, gene silencing and an inhibitor of SL biosynthesis partially prevented CB2 agonist-induced effects on cell viability and motility. CB2 activation led to ceramide-mediated BC cell apoptosis independently of SL constitutive composition, which instead was modulated by CB2 agonists to reduce cell motility. PMID:28191815

  4. CB1 Cannabinoid Receptors and their Associated Proteins

    Science.gov (United States)

    Howlett, Allyn C.; Blume, Lawrence C.; Dalton, George D.

    2011-01-01

    CB1 receptors are G-protein coupled receptors (GPCRs) abundant in neurons, in which they modulate neurotransmission. The CB1 receptor influence on memory and learning is well recognized, and disease states associated with CB1 receptors are observed in addiction disorders, motor dysfunction, schizophrenia, and in bipolar, depression, and anxiety disorders. Beyond the brain, CB1 receptors also function in liver and adipose tissues, vascular as well as cardiac tissue, reproductive tissues and bone. Signal transduction by CB1 receptors occurs through interaction with Gi/o proteins to inhibit adenylyl cyclase, activate mitogen-activated protein kinases (MAPK), inhibit voltage-gated Ca2+ channels, activate K+ currents (Kir), and influence Nitric Oxide (NO) signaling. CB1 receptors are observed in internal organelles as well as plasma membrane. β-Arrestins, adaptor protein AP-3, and G-protein receptor-associated sorting protein 1 (GASP1) modulate cellular trafficking. Cannabinoid Receptor Interacting Protein 1a (CRIP1a) is an accessory protein whose function has not been delineated. Factor Associated with Neutral sphingomyelinase (FAN) regulates ceramide signaling. Such diversity in cellular signaling and modulation by interacting proteins suggests that agonists and allosteric modulators could be developed to specifically regulate unique, cell type-specific responses. PMID:20166926

  5. Stimulation of cannabinoid CB1 receptors prevents nerve-mediated airway hyperreactivity in NGF-induced inflammation in mouse airways.

    Science.gov (United States)

    Bozkurt, Turgut Emrah; Larsson, Olivia; Adner, Mikael

    2016-04-05

    Cannabinoids are known to inhibit neuronal activity and have significant immunomodulatory effects which suggest a role in inflammatory airway diseases. In the present study, we tested the hypothesis that cannabinoids have both acute and chronic modulatory effects on nerve-mediated contractions in NGF-induced airway inflammation. Contractions induced by electrical field stimulation (EFS) were examined in tracheal segments isolated from male BALB/c mice. Tissues were both used fresh or after four days of culture with NGF to induce airway inflammation, and further exposed to cannabinoid receptor agonists. In order to evaluate nerve density, tracheal segments were also examined by immunohistochemistry after in vitro treatments. The CB1 receptor agonists ACEA and ACPA inhibited the constant train EFS-induced contractions in both fresh and NGF-exposed tracheas, an effect that could be blocked by the CB1 receptor antagonist AM251. Culturing the tissues with NGF up-regulated the frequency-dependent EFS-contractions in isolated tracheas. This up-regulation could be inhibited by concomitant treatment with ACEA or ACPA. The treatment with NGF and/or ACEA did not affect the potency or the maximum response to carbachol. In histological sections, it was recognized that the enhanced effect induced by NGF was associated with an increase in nerve density, which, similarly, could be prevented by ACEA treatment. This study shows that stimulation of cannabinoid CB1 receptors modifies the increase of neuronal activity and density in NGF-induced airway inflammation and directly inhibits cholinergic contractions in the airways by a presynaptic mechanism. These findings indicate a protective role of CB1 receptors in airway inflammation.

  6. Modelling of the concentration--effect relationship of THC on central nervous system parameters and heart rate -- insight into its mechanisms of action and a tool for clinical research and development of cannabinoids.

    Science.gov (United States)

    Strougo, A; Zuurman, L; Roy, C; Pinquier, J L; van Gerven, J M A; Cohen, A F; Schoemaker, R C

    2008-09-01

    Pharmacokinetics after pulmonary administration of delta-9-tetrahydrocannabinol (THC) and its major metabolites 11-OH-THC and 11-nor-9-COOH-THC was quantified. Additionally, the relationship between THC and its effects on heart rate, body sway and several visual analogue scales was investigated using pharmacokinetic-pharmacodynamic (PK-PD) modelling. This provided insights useful for the research and development of novel cannabinoids and the physiology and pharmacology of cannabinoid systems. First, the PK-PD model gave information reflecting various aspects of cannabinoid systems. The delay between THC concentration and effect was quantified in equilibration half-lives of 7.68 min for heart rate and from 39.2 to 84.8 min for the CNS responses. This suggests that the effect of THC on the different responses could be due to different sites of action or different physiological mechanisms. Differences in the shape of the concentration-effect relationship could indicate various underlying mechanisms. Second, the PK-PD model can be used for prediction of THC concentration and effect profiles. It is illustrated how this can be used to optimise studies with entirely different trial designs. Third, many new cannabinoid agonists and antagonists are in development. PK-PD models for THC can be used as a reference for new agonists or as tools to quantitate the pharmacological properties of cannabinoid antagonists.

  7. A Win-Win-Win Proposition -- Academia and Industry Working Together for Students

    Science.gov (United States)

    Cogswell, J.

    2011-12-01

    geoscience, to include having applied real problem solving via a robust field camp experience. In addition, we look for the maturity and ability to conduct independent research, to integrate broad suites of data, and to work as a team. We look for the ability to communicate results. We do not look for a focus on petroleum. We have many decades of experience in how to best develop that particular discipline quickly, to meet current and future business conditions. There are recurring themes that facilitate successful transition from Academia to a practicing industry geoscientist. These themes include giving students a good grounding in STEM, not just geology; one-on-one mentoring; sharing our passion for the science by sharing our research; and sharing the entire breadth of career opportunities. Similar best practices have been identified to encourage under-represented minority students and women to study STEM. Perhaps this is a suite of habits we should be practicing more broadly. This suite of habits takes extra time, extra effort, and extra money. But if geoscience mentors in Academia, Industry, and professional societies work together, we will be able to create a win for Academia, a win for Industry, and a win for students. (1) Gonzales and Keane, 2011, "Status of the Geoscience Workforce -- 2011," AGI, p. 123.

  8. Therapeutic potential of a novel cannabinoid agent CB52 in the mouse model of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Ribeiro, R; Yu, F; Wen, J; Vana, A; Zhang, Y

    2013-12-19

    Multiple Sclerosis (MS) is a demyelinating disease which causes inflammation, demyelination, and axonal injury. Currently, there is no cure for the disease. The endocannabinoid system has recently emerged as a promising therapeutic target for MS. The protective mechanisms of cannabinoids are thought to be mediated by the activation of the cannabinoid type 1 (CB1) and type 2 (CB2) receptors expressed primarily in neurons and immune cells, respectively. However, the molecular mechanisms and the contribution of each receptor in ameliorating disease progression are still debatable. Although CB1 and CB2 receptors are expressed in oligodendrocytes, the myelin producing cells in the central nervous system, the role of cannabinoids in oligodendrocyte survival has not been well investigated. Using primary cultures of mature oligodendrocytes, we tested the effect of a novel synthetic cannabinoid CB52 on oligodendrocyte toxicity induced by peroxynitrite, the primary toxic species released by microglia. Interestingly, we found that CB52 is more potent than a number of broad and selective CB1 and CB2 agonists in protecting oligodendrocytes against peroxynitrite-induced toxicity. The protection provided by CB52 is likely due to its reduction of ERK1/2 phosphorylation and reactive oxygen species (ROS) generation in these cells. Using experimental autoimmune encephalomyelitis (EAE), an animal model of MS, we found that CB52 reduces microglia activation, nitrotyrosine formation, T cell infiltration, oligodendrocyte toxicity, myelin loss and axonal damage in the mouse spinal cord white matter and alleviates the clinical scores when given either before or after disease onset. These effects are reversed by the CB1 receptor antagonist, but not by the CB2 receptor antagonist, suggesting that the activation of CB1 receptors contributes significantly to the anti-inflammatory and neuroprotective effects of cannabinoids on MS.

  9. Biphasic Effects of Cannabinoids in Anxiety Responses: CB1 and GABAB Receptors in the Balance of GABAergic and Glutamatergic Neurotransmission

    Science.gov (United States)

    Rey, Alejandro Aparisi; Purrio, Martin; Viveros, Maria-Paz; Lutz, Beat

    2012-01-01

    Biphasic effects of cannabinoids have been shown in processes such as feeding behavior, motor activity, motivational processes and anxiety responses. Using two different tests for the characterization of anxiety-related behavior (elevated plus-maze and holeboard), we first identified in wild-type C57BL/6N mice, two doses of the synthetic CB1 cannabinoid receptor agonist CP-55,940 with anxiolytic (1 μg/kg) and anxiogenic properties (50 μg/kg), respectively. To clarify the role of CB1 receptors in this biphasic effect, both doses were applied to two different conditional CB1 receptor knockout (KO) mouse lines, GABA-CB1-KO (CB1 receptor inactivation in forebrain GABAergic neurons) and Glu-CB1-KO (CB1 receptor inactivation in cortical glutamatergic neurons). We found that the anxiolytic-like effects of the low dose of cannabinoids are mediated via the CB1 receptor on cortical glutamatergic terminals, because this anxiolytic-like response was abrogated only in Glu-CB1-KO mice. On the contrary, the CB1 receptor on the GABAergic terminals is required to induce an anxiogenic-like effect under a high-dose treatment because of the fact that this effect was abolished specifically in GABA-CB1-KO mice. These experiments were carried out in both sexes, and no differences occurred with the doses tested in the mutant mice. Interestingly, the positive allosteric modulation of GABAB receptor with GS-39783 was found to largely abrogate the anxiogenic-like effect of the high dose of CP-55,940. Our results shed new light in further understanding the biphasic effects of cannabinoids at the molecular level and, importantly, pave the way for the development of novel anxiolytic cannabinoid drugs, which may have favorable effect profiles targeting the CB1 receptor on glutamatergic terminals. PMID:22850737

  10. Cannabinoid receptor CB2 modulates axon guidance

    DEFF Research Database (Denmark)

    Duff, Gabriel; Argaw, Anteneh; Cecyre, Bruno

    2013-01-01

    Navigation of retinal projections towards their targets is regulated by guidance molecules and growth cone transduction mechanisms. Here, we present in vitro and in vivo evidences that the cannabinoid receptor 2 (CB2R) is expressed along the retino-thalamic pathway and exerts a modulatory action ...

  11. Combined cannabinoid therapy via an oromucosal spray.

    Science.gov (United States)

    Perez, Jordi

    2006-08-01

    Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1,000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects. Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome.

  12. Cannabis agonist injection effect on the coupling architecture in cortex of WAG/Rij rats during absence seizures

    NARCIS (Netherlands)

    Sysoeva, M.V.; Kuznetsova, G.D.; Rijn, C.M. van; Sysoev, I.V.

    2016-01-01

    WAG/Rij rats are well known genetic model of absence epilepsy, which is traditionally considered as a nonconvulsive generalised epilepsy of unknown aetiology. In current study the effect of (R)-(+)-WIN 55,212-2 (cannabis agonist) injection on the coupling between different parts of cortex was studie

  13. Binding thermodynamics at the human cannabinoid CB1 and CB2 receptors.

    Science.gov (United States)

    Merighi, Stefania; Simioni, Carolina; Gessi, Stefania; Varani, Katia; Borea, Pier Andrea

    2010-02-01

    The thermodynamic parameters DeltaG degrees , DeltaH degrees and DeltaS degrees of the binding equilibrium of agonists and antagonists at cannabinoid CB(1) and CB(2) receptors were determined by means of affinity measurements at different temperatures and van't Hoff plots were constructed. Affinity constants were measured on CHO cells transfected with the human CB(1) and CB(2) receptors by inhibition assays of the binding of the cannabinoid receptor agonist [(3)H]-CP-55,940. van't Hoff plots were linear for agonists and antagonists in the temperature range 0-30 degrees C. The thermodynamic parameters for CB(1) receptors fall in the ranges 17< or =DeltaH degrees < or =59 kJ/mol and 213< or =DeltaS degrees < or =361 kJ/mol for agonists and -52< or =DeltaH degrees < or =-26 kJ/mol and -12< or =DeltaS degrees < or =38 kJ/mol for antagonists. The thermodynamic parameters for CB(2) receptors fall in the ranges 27< or =DeltaH degrees < or =48 kJ/mol and 234< or =DeltaS degrees < or =300 kJ/mol for agonists and -19< or =DeltaH degrees < or =-17 kJ/mol and 43< or =DeltaS degrees < or =74 kJ/mol for antagonists. Collectively, these data show that agonist binding is always totally entropy-driven while antagonist binding is enthalpy and entropy-driven, indicating that CB(1) and CB(2) receptors are thermodynamically discriminated. These data could give new details on the nature of the forces driving the CB(1) and CB(2) binding at a molecular level. Enthalpy, entropy, free energy and binding affinity for each ligand to its receptor can all be assessed and therefore the optimal binding profile discovered. Carrying out these binding investigations as early as possible in the discovery process increases the probability that a lead compound will become a successful pharmaceutical compound.

  14. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity in vivo, via activation of CB1 receptors: Involvement of PI3K/Akt and MEK/ERK signaling pathways.

    Science.gov (United States)

    Kokona, Despina; Thermos, Kyriaki

    2015-07-01

    Cannabinoids have been suggested to protect retinal ganglion cells in different models of toxicity, but their effects on other retinal neurons are poorly known. We investigated the neuroprotective actions of the endocannabinoid N-arachidonoyl ethanolamine (Anandamide/AEA) and the synthetic cannabinoids R1-Methanandamide (MethAEA) and HU-210, in an in vivo retinal model of AMPA excitotoxicity, and the mechanisms involved in the neuroprotection. Sprague-Dawley rats were intravitreally injected with PBS or AMPA in the absence or presence of the cannabinoid agonists. Brain nitric oxide synthase (bNOS) and choline acetyltransferase (ChAT) immunoreactivity (IR), as well as TUNEL staining, assessed the AMPA-induced retinal amacrine cell loss and the dose-dependent neuroprotection afforded by cannabinoids. The CB1 receptor selective antagonist AM251 and the PI3K/Akt inhibitor wortmannin reversed the cannabinoid-induced neuroprotection, suggesting the involvement of CB1 receptors and the PI3K/Akt pathway in cannabinoids' actions. Experiments with the CB2 agonist JWH015 and [(3)H]CP55940 radioligand binding suggested that the CB2 receptor is not involved in the neuroprotection. AEA and HU-210 induced phosphorylation of Akt but only AEA induced phosphorylation of ERK1/2 kinases, as revealed by western blot analysis. To investigate the role of caspase-3 in the AMPA-induced cell death, the caspase-3 inhibitor Z-DEVD-FMK was co-injected with AMPA. Z-DEVD-FMK had no effect on AMPA excitotoxicity. Moreover, no difference was observed in the phosphorylation of SAPK/JNK kinases between PBS- and AMPA-treated retinas. These results suggest that endogenous and synthetic cannabinoids protect retinal amacrine neurons from AMPA excitotoxicity in vivo via a mechanism involving the CB1 receptors, and the PI3K/Akt and/or MEK/ERK1/2 signaling pathways.

  15. 76 FR 11075 - Schedules of Controlled Substances: Temporary Placement of Five Synthetic Cannabinoids Into...

    Science.gov (United States)

    2011-03-01

    ... advance understanding of drug-receptor interactions regarding the cannabinoid system. Developed and... ``cannabinoid'' is a class of chemical compounds in the marijuana plant that are structurally related. The cannabinoid 9- tetrahydrocannabinol (THC) is the primary psychoactive constituent of marijuana....

  16. Teaching Win-Win Better Prepares Students for Subsequent Experiences in Life.

    Science.gov (United States)

    Brainard, Alan J.

    The psychology of competition and winning, especially in relation to learning and motivation, is discussed. The Personalized System of Instruction (PSI) approach to coursework is proposed as a means of using the winning philosophy in education. Also suggested is the inclusion into coursework design of a form of rhetoric developed by Carl Rogers…

  17. The effects of win-win conditions on revenue-sharing contracts

    NARCIS (Netherlands)

    Timmer, J.B.

    2004-01-01

    This paper studies revenue-sharing contracts in distribution chains in the presence of win-win conditions. Revenue-sharing contracts are a mechanism to coordinate the firms in a distribution chain. Under these contracts the retailer shares its revenue with the supplier in exchange for a lower wholes

  18. Challenging the win-win discourse on conservation and development: analyzing support for marine protected areas

    Directory of Open Access Journals (Sweden)

    Tomas Chaigneau

    2016-03-01

    Full Text Available Conservation designations such as protected areas are increasing in numbers around the world, yet it is widely reported that many are failing to reach their objectives. They are frequently promoted as opportunities for win-win outcomes that can both protect biodiversity and lead to economic benefits for affected communities. This win-win view characterizes the dominant discourse surrounding many protected areas. Although this discourse and the arguments derived from it may lead to initial acceptance of conservation interventions, this study shows how it does not necessarily result in compliance and positive attitudes toward specific protected areas. Consequently, the discourse has important implications not just for making the case for protected area implementation, but also for the likelihood of protected areas reaching their objectives. We explain how the win-win discourse influences support for marine protected areas (MPAs and, ultimately, their success. Using data from focus groups, questionnaires, and in-depth interviews at three MPA sites in the Philippines, we identified three reasons why the win-win discourse can negatively influence prolonged support for MPAs: dashed expectations, inequity, and temptation. Through an understanding of these issues, it becomes possible to suggest improvements that can be made pre-MPA implementation that can lead to prolonged support of MPAs. A focus on less tangible and economic MPA benefits, aligning MPA goals with cultural and social values, and higher levels of transparency when describing MPA outcomes are all ways in which prolonged support of MPAs can be bolstered.

  19. Payments for ecosystem services and the fatal attraction of win-win solutions

    NARCIS (Netherlands)

    Muradian Sarache, R.P.; Arsel, M.; Pellegrini, L.; Adaman, F.; Aguilar, B.; Agarwal, B.; Corbera, E.; Ezzine de Blas, D.; Farley, J.; Froger, G.; Garcia-Frapolli, E.; Gómez-Baggethun, E.; Gowdy, J.; Kosoy, N.; Le Coq, J.F.; Leroy, P.; May, P.H.; Méral, P.; Mibielli, P.; Norgaard, R.; Ozkaynak, B.; Pascual, U.; Pengue, W.; Perez, M.; Pesche, D.; Pirard, R.; Ramos-Martin, J.; Rival, L.; Saenz-Segura, F.; Hecken, G. van; Vatn, A.; Vira, B.; Urama, K.

    2013-01-01

    In this commentary we critically discuss the suitability of payments for ecosystem services and the most important challenges they face. While such instruments can play a role in improving environmental governance, we argue that over-reliance on payments as win-win solutions might lead to ineffectiv

  20. Toward Win-win Cooperation Through Amity, Sincerity, Mutual Benefit and Inclusiveness

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    We will work with other members of the international community to boost green development, advocate low-carbon way of life, emphasize sharing of energy-saving and environmental protection technologies, and foster a global climate governance system that is fair, reasonable, and focused on win-win cooperation.

  1. Effects of cannabinoids and their receptors on viral infections.

    Science.gov (United States)

    Tahamtan, Alireza; Tavakoli-Yaraki, Masoumeh; Rygiel, Tomasz P; Mokhtari-Azad, Talat; Salimi, Vahid

    2016-01-01

    Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis. There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication. The present study reviews current insights into the role of cannabinoids and their receptors on viral infections. The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection. Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections.

  2. [Melatonin receptor agonist].

    Science.gov (United States)

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  3. Prospects for cannabinoid therapies in basal ganglia disorders

    OpenAIRE

    Fernández-Ruiz, Javier; Moreno-Martet, Miguel; Rodríguez-Cueto, Carmen; Palomo-Garo, Cristina; Gómez-Cañas, María; Valdeolivas, Sara; Guaza, Carmen; Romero, Julián; Guzmán, Manuel; Mechoulam, Raphael; Ramos, José A

    2011-01-01

    Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ9-tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxid...

  4. GPR55: a new member of the cannabinoid receptor clan?

    OpenAIRE

    Pertwee, R. G.

    2007-01-01

    In this issue of the British Journal of Pharmacology, Ryberg et al. present convincing in vitro evidence that the orphan GPCR, GPR55, is a cannabinoid receptor. GPR55 was activated by a range of plant, synthetic and endogenous cannabinoids and blocked by the non-psychoactive phytocannabinoid, cannabidiol. Their experiments have revealed several differences between the pharmacology of GPR55 and the established cannabinoid CB1 and CB2 receptors. For example, the CB1 receptor antagonist, AM251, ...

  5. Cannabinoids in the management of difficult to treat pain

    OpenAIRE

    Russo, Ethan

    2008-01-01

    Ethan B RussoGW Pharmaceuticals, Vashon, WA, USAAbstract: This article reviews recent research on cannabinoid analgesia via the endocannabinoid system and non-receptor mechanisms, as well as randomized clinical trials employing cannabinoids in pain treatment. Tetrahydrocannabinol (THC, Marinol®) and nabilone (Cesamet®) are currently approved in the United States and other countries, but not for pain indications. Other synthetic cannabinoids, such as ajulemic acid, are in devel...

  6. Dendritic Cell Regulation by Cannabinoid-Based Drugs

    Directory of Open Access Journals (Sweden)

    Mattias Svensson

    2010-08-01

    Full Text Available Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered. Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases. Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function. Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders. At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC. Dendritic cells are recognized for their critical role in initiating and maintaining immune responses. Therefore, DC are potential targets for cannabinoid-mediated modulation. Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.

  7. Impact of Cannabis, Cannabinoids, and Endocannabinoids in the Lungs

    Science.gov (United States)

    Turcotte, Caroline; Blanchet, Marie-Renée; Laviolette, Michel; Flamand, Nicolas

    2016-01-01

    Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids. PMID:27695418

  8. Winning Vaidman's game without unspeakable information

    CERN Document Server

    Cabello, A

    2003-01-01

    Vaidman described how a team of three players, each of them isolated in a remote booth, could use a three-qubit Greenberger-Horne-Zeilinger state to always win a game which would be impossible to always win without quantum resources. However, Vaidman's method requires all three players to share a common reference frame; it does not work if the adversary is allowed to disorientate one player. Here we show how to always win the game, even if the players do not share any reference frame. The introduced method uses a 12-qubit state which is invariant under any transformation $R_a \\otimes R_b \\otimes R_c$ (where $R_a = U_a \\otimes U_a \\otimes U_a \\otimes U_a$, where $U_j$ is a unitary operation on a single qubit) and requires only single-qubit measurements. A number of further applications of this 12-qubit state are described.

  9. PARTIAL AGONISTS, FULL AGONISTS, ANTAGONISTS - DILEMMAS OF DEFINITION

    NARCIS (Netherlands)

    HOYER, D; BODDEKE, HWGM

    1993-01-01

    The absence of selective antagonists makes receptor characterization difficult, and largely dependent on the use of agonists. However, there has been considerable debate as to whether certain drugs acting at G protein-coupled receptors are better described as agonists, partial agonists or antagonist

  10. Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion.

    Science.gov (United States)

    López-Gallardo, M; López-Rodríguez, A B; Llorente-Berzal, Á; Rotllant, D; Mackie, K; Armario, A; Nadal, R; Viveros, M-P

    2012-03-01

    We have recently reported that early maternal deprivation (MD) for 24 h [postnatal day (PND) 9-10] and/or an adolescent chronic treatment with the cannabinoid agonist CP-55,940 (CP) [0.4 mg/kg, PND 28-42] in Wistar rats induced, in adulthood, diverse sex-dependent long-term behavioral and physiological modifications. Here we show the results obtained from investigating the immunohistochemical analysis of CB1 cannabinoid receptors, glial fibrillary acidic protein (GFAP) positive (+) cells and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of the same animals. MD induced, in males, a significant increase in the number of GFAP+ cells in CA1 and CA3 areas and in the polymorphic layer of the dentate gyrus (DG), an effect that was attenuated by CP in the two latter regions. Adolescent cannabinoid exposure induced, in control non-deprived males, a significant increase in the number of GFAP+ cells in the polymorphic layer of the DG. MD induced a decrease in CB1 expression in both sexes, and this effect was reversed in males by the cannabinoid treatment. In turn, the drug "per se" induced, in males, a general decrease in CB1 immunoreactivity, and the opposite effect was observed in females. Cannabinoid exposure tended to reduce BDNF expression in CA1 and CA3 of females, whereas MD counteracted this trend and induced an increase of BDNF in females. As a whole, the present results show sex-dependent long-term effects of both MD and juvenile cannabinoid exposure as well as functional interactions between the two treatments.

  11. Stellar students win fantastic prizes

    Science.gov (United States)

    2008-05-01

    School students and teachers across Europe and around the world are discovering today who has won fantastic prizes in "Catch a Star", the international astronomical competition run by ESO and the European Association for Astronomy Education (EAAE). CAS2008 artwork ESO PR Photo 14/08 One of the winning artworks "We were extremely impressed by the high quality of the entries, and the number of participants was even higher than last year. We wish to congratulate everybody who took part," said Douglas Pierce-Price, Education Officer at ESO. "'Catch a Star' clearly shows astronomy's power to inspire and excite students of all ages," added Fernand Wagner, President of the EAAE. The top prize, of a week-long trip to Chile to visit the ESO Very Large Telescope (VLT) on Paranal, was won by students Roeland Heerema, Liesbeth Schenkels, and Gerben Van Ranst from the Instituut Spijker in Hoogstraten, Belgium, together with their teacher Ann Verstralen. With their "story of aged binary stars... Live and Let Die", they take us on a vivid tour of the amazing zoo of binary stars, and the life and death of stars like our Sun. The students show how state-of-the-art telescopes, particularly those at ESO's sites of La Silla and Paranal, help us understand these stars. They take as an illustrative example the binary star system V390 Velorum. In the last phases of its life, V390 Velorum will shed its outer shell of gas and dust, turning from a celestial chrysalis into a beautiful cosmic butterfly. The students also involved other pupils from their school, showing them how to test their eyesight by observing the binary star system of Alcor and Mizar. But perhaps the most important discovery they made is that, as they write in their report, "Astronomy lives! Discoveries are being made each day and there is still very much to be found and learned by astronomers!" The team will travel to Chile and visit the ESO VLT - the world's most advanced optical/infrared telescope. At Paranal, they

  12. 3'-functionalized adamantyl cannabinoid receptor probes.

    Science.gov (United States)

    Ogawa, Go; Tius, Marcus A; Zhou, Han; Nikas, Spyros P; Halikhedkar, Aneetha; Mallipeddi, Srikrishnan; Makriyannis, Alexandros

    2015-04-09

    The aliphatic side chain plays a pivotal role in determining the cannabinergic potency of tricyclic classical cannabinoids, and we have previously shown that this chain could be substituted successfully by adamantyl or other polycyclic groups. In an effort to explore the pharmacophoric features of these conformationally fixed groups, we have synthesized a series of analogues in which the C3 position is substituted directly with an adamantyl group bearing functionality at one of the tertiary carbon atoms. These substituents included the electrophilic isothiocyanate and photoactivatable azido groups, both of which are capable of covalent attachment with the target protein. Our results show that substitution at the 3'-adamantyl position can lead to ligands with improved affinities and CB1/CB2 selectivities. Our work has also led to the development of two successful covalent probes with high affinities for both cannabinoid receptors, namely, the electrophilic isothiocyanate AM994 and the photoactivatable aliphatic azido AM993 analogues.

  13. Acute rhabdomyolysis following synthetic cannabinoid ingestion

    Directory of Open Access Journals (Sweden)

    Demilade A Adedinsewo

    2016-01-01

    Full Text Available Context: Novel psychoactive substances, including synthetic cannabinoids, are becoming increasingly popular, with more patients being seen in the emergency room following acute ingestion. These substances have been associated with a wide range of adverse effects. However, identification of complications, clinical toxicity, and management remain challenging. Case Report: We present the case of a young African-American male who developed severe agitation and bizarre behavior following acute K2 ingestion. Laboratory studies revealed markedly elevated serum creatine phosphokinase (CPK with normal renal function. The patient was managed with aggressive intravenous (IV fluid hydration and treatment of underlying psychiatric illness. Conclusion: We recommend the routine evaluation of renal function and CPK levels with early initiation of IV hydration among patients who present to the emergency department following acute ingestion of synthetic cannabinoids to identify potential complications early as well as institute early supportive therapy.

  14. Cannabinoid Hyperemesis Syndrome: A Paradoxical Cannabis Effect

    Directory of Open Access Journals (Sweden)

    Ivonne Marie Figueroa-Rivera

    2015-01-01

    Full Text Available Despite well-established antiemetic properties of marijuana, there has been increasing evidence of a paradoxical effect in the gastrointestinal tract and central nervous system, given rise to a new and underrecognized clinical entity called the Cannabinoid Hyperemesis Syndrome. Reported cases in the medical literature have established a series of patients exhibiting a classical triad of symptoms: cyclic vomiting, chronic marijuana use, and compulsive bathing. We present a case of a 29-year-old man whose clinical presentation strongly correlates with cannabinoid hyperemesis syndrome. Despite a diagnosis of exclusion, this syndrome should be considered plausible in the setting of a patient with recurrent intractable vomiting and a strong history of cannabis use as presented in this case.

  15. Examining How Manufacturing Corporations Win Orders

    Directory of Open Access Journals (Sweden)

    Sang-Bing Tsai

    2013-11-01

    Full Text Available This study adopted 14 criteria for order-winners and qualifiers as the attributes for evaluation. The first stage used a simultaneous importance-performance analysis to analyse the competitive market situations of a corporation and its competitors. The second stage used the decision-making trial and evaluation laboratory method to analyse the attributes causal relationships and levels of influence; then two methods of analysis were integrated to analyse and re-formulate the competitive strategies for the winning orders. As well as serving as a novel theory-based method to examine how manufacturers win orders, the proposals in this study can be applied to practical industry experiences.

  16. How to win friends and influence people

    CERN Document Server

    Carnegie, Dale

    2010-01-01

    For more than sixty years the rock-solid, time-tested advice in this book has carried thousands of now famous people up the ladder of success in their business and personal lives. With more than fifteen million copies sold, How to Win Friends and Influence People is one of the best known motivational books in history, with proven advice for achieving success in life. You’ll learn: three fundamental techniques in handling people; six ways to make people like you; twelve ways to win people to you way of thinking; nine ways to change people without arousing resentment; and much, much more!

  17. Acute Rhabdomyolysis Following Synthetic Cannabinoid Ingestion

    OpenAIRE

    Adedinsewo, Demilade A.; Oluwaseun Odewole; Taylor Todd

    2016-01-01

    Context: Novel psychoactive substances, including synthetic cannabinoids, are becoming increasingly popular, with more patients being seen in the emergency room following acute ingestion. These substances have been associated with a wide range of adverse effects. However, identification of complications, clinical toxicity, and management remain challenging. Case Report: We present the case of a young African-American male who developed severe agitation and bizarre behavior following acute K2 ...

  18. The discovery of a cannabinoid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Devane, W.A.

    1989-01-01

    A tritiated form of CP-55,940, a Pfizer cannabinoid analog that is 20- to 100-fold more potent than {Delta}{sup 9}-tetrahydrocannabinol in various in vivo and in vitro models of cannabimimetric activity, was used as the tool with which to probe for a cannabinoid receptor in rat cortical membranes. The bound and free ligand were successfully separated using a centrifugation assay. Specific binding was saturable, rapidly attained, and completely reversible. The K{sub D}'s derived from kinetic analysis of binding agreed well with the K{sub D}'s derived from saturation and displacement analysis. The ({sup 3}H)CP-55,940 binding site exhibited high affinity with a K{sub D} of 68 pM as determined by LIGAND analysis of homologous displacement studies. The ability of other cannabinoid drugs to displace ({sup 3}H)CP-55,940 binding correlated well with the potency of these drugs in in vivo and in vitro models of cannabimimetic activity. The K{sub i} of {Delta}{sup 9}-THC was 1.6 nM. Cannabidiol and cannabigerol, which both lack psychoactivity in man, displaced specific binding by less than 50% at 1 {mu}M.

  19. Quantification of Cannabinoid Content in Cannabis

    Science.gov (United States)

    Tian, Y.; Zhang, F.; Jia, K.; Wen, M.; Yuan, Ch.

    2015-09-01

    Cannabis is an economically important plant that is used in many fields, in addition to being the most commonly consumed illicit drug worldwide. Monitoring the spatial distribution of cannabis cultivation and judging whether it is drug- or fiber-type cannabis is critical for governments and international communities to understand the scale of the illegal drug trade. The aim of this study was to investigate whether the cannabinoids content in cannabis could be spectrally quantified using a spectrometer and to identify the optimal wavebands for quantifying the cannabinoid content. Spectral reflectance data of dried cannabis leaf samples and the cannabis canopy were measured in the laboratory and in the field, respectively. Correlation analysis and the stepwise multivariate regression method were used to select the optimal wavebands for cannabinoid content quantification based on the laboratory-measured spectral data. The results indicated that the delta-9-tetrahydrocannabinol (THC) content in cannabis leaves could be quantified using laboratory-measured spectral reflectance data and that the 695 nm band is the optimal band for THC content quantification. This study provides prerequisite information for designing spectral equipment to enable immediate quantification of THC content in cannabis and to discriminate drug- from fiber-type cannabis based on THC content quantification in the field.

  20. [Cannabinoids in the control of pain].

    Science.gov (United States)

    Shaladi, Ali Muftah; Crestani, Francesco; Tartari, Stefano; Piva, Bruno

    2008-12-01

    Hemp (Cannabis sativa L.) has been used since remotes ages as a herbal remedy. Only recently the medical community highlighted the pharmacological scientific bases of its effects. The most important active principle, Delta-9-tetrahydrocannabinol, was identified in the second half of the last century, and subsequently two receptors were identified and cloned: CB1 that is primarily present in the central nervous system, and CB2 that is present on the cells of the immune system. Endogenous ligands, called endocannabinoids, were characterized. The anandamide was the first one to be discovered. The effectiveness of the cannabinoids in the treatment of nausea and vomit due to anti-neoplastic chemotherapy and in the wasting-syndrome during AIDS is recognized. Moreover, the cannabinoids are analgesic, and their activity is comparable to the weak opioids. Furthermore, parallels exist between opioid and cannabinoid receptors, and evidence is accumulating that the two systems sometimes may operate synergistically. The interest of the pharmaceutical companies led to the production of various drugs, whether synthetic or natural derived. The good ratio between the polyunsatured fatty acids omega-3 and omega-6 of the oil of Cannabis seeds led to reduction of the phlogosis and an improvement of the pain symptoms in patients with chronic musculo-skeletal inflammation.

  1. Treatment of Tourette Syndrome with Cannabinoids

    Directory of Open Access Journals (Sweden)

    Kirsten R. Müller-Vahl

    2013-01-01

    Full Text Available Cannabinoids have been used for hundred of years for medical purposes. To day, the cannabinoid delta-9-tetrahydrocannabinol (THC and the cannabis extract nabiximols are approved for the treatment of nausea, anorexia and spasticity, respectively. In Tourette syndrome (TS several anecdotal reports provided evidence that marijuana might be effective not only in the suppression of tics, but also in the treatment of associated behavioural problems. At the present time there are only two controlled trials available investigating the effect of THC in the treatment of TS. Using both self and examiner rating scales, in both studies a significant tic reduction could be observed after treatment with THC compared to placebo, without causing significant adverse effects. Available data about the effect of THC on obsessive-compulsive symptoms are inconsistent. According to a recent Cochrane review on the efficacy of cannabinoids in TS, definite conclusions cannot be drawn, because longer trials including a larger number of patients are missing. Notwithstanding this appraisal, by many experts THC is recommended for the treatment of TS in adult patients, when first line treatments failed to improve the tics. In treatment resistant adult patients, therefore, treatment with THC should be taken into consideration.

  2. Role of cannabinoids in chronic liver diseases

    Institute of Scientific and Technical Information of China (English)

    Anna Parfieniuk; Robert Flisiak

    2008-01-01

    Cannabinoids are a group of compounds acting primarily via CB1 and CB2 receptors. The expression of cannabinoid receptors in normal liver is low or absent. However, many reports have proven up-regulation of the expression of CB1 and CB2 receptors in hepatic myofibroblasts and vascular endothelial cells, as well as increased concentration of endocannabinoids in liver in the course of chronic progressive liver diseases. It has been shown that CB1 receptor signalling exerts profibrogenic and proinflammatory effects in liver tissue, primarily due to the stimulation of hepatic stellate cells, whereas the activation of CB2 receptors inhibits or even reverses liver fibrogenesis. Similarly, CB1 receptor stimulation contributes to progression of liver steatosis. In end-stage liver disease, the endocannabi-noid system has been shown to contribute to hepatic encephalopathy and vascular effects, such as portal hypertension, splanchnic vasodilatation, relative pe-ripheral hypotension and probably cirrhotic cardiomy-opathy. So far, available evidence is based on cellular cultures or animal models. Clinical data on the effects of cannabinoids in chronic liver diseases are limited. However, recent studies have shown the contribution of cannabis smoking to the progression of liver fibrosis and steatosis. Moreover, controlling CB1 or CB2 signal-ling appears to be an attractive target in managing liver diseases.

  3. Strategy changes in subsequent fights as consequences of winning and losing in fruit fly fights.

    Science.gov (United States)

    Trannoy, Séverine; Kravitz, Edward A

    2016-11-11

    In competition for food, territory and mates, male fruit flies (Drosophila melanogaster) engage in agonistic encounters with conspecifics. The fighting strategies used to obtain these resources are influenced by previous and present experience, environmental cues, and the internal state of the animal including hormonal and genetic influences. Animals that experience prior defeats show submissive behavior and are more likely to lose 2(nd) contests, while animals that win 1(st) fights are more aggressive and have a higher probability of winning 2(nd) contests. In a recent report, we examined these loser and winner effects in greater detail and demonstrated that both winners and losers show short-term memory of the results of previous bouts while only losers demonstrate a longer-term memory that requires protein synthesis. The recent findings also suggested that an individual recognition mechanism likely exists that can serve important roles in evaluating the fighting ability of opponents and influencing future fighting strategy. In this article, we follow up on these results by asking how previous defeated and victorious flies change their fighting strategies in the presence of 2(nd) losing and winning flies, by searching for evidence of territory marking, and discussing the existing literature in light of our findings.

  4. Pharmacological activation/inhibition of the cannabinoid system affects alcohol withdrawal-induced neuronal hypersensitivity to excitotoxic insults.

    Directory of Open Access Journals (Sweden)

    Marina Rubio

    Full Text Available Cessation of chronic ethanol consumption can increase the sensitivity of the brain to excitotoxic damages. Cannabinoids have been proposed as neuroprotectants in different models of neuronal injury, but their effect have never been investigated in a context of excitotoxicity after alcohol cessation. Here we examined the effects of the pharmacological activation/inhibition of the endocannabinoid system in an in vitro model of chronic ethanol exposure and withdrawal followed by an excitotoxic challenge. Ethanol withdrawal increased N-methyl-D-aspartate (NMDA-evoked neuronal death, probably by altering the ratio between GluN2A and GluN2B NMDA receptor subunits. The stimulation of the endocannabinoid system with the cannabinoid agonist HU-210 decreased NMDA-induced neuronal death exclusively in ethanol-withdrawn neurons. This neuroprotection could be explained by a decrease in NMDA-stimulated calcium influx after the administration of HU-210, found exclusively in ethanol-withdrawn neurons. By contrast, the inhibition of the cannabinoid system with the CB1 receptor antagonist rimonabant (SR141716 during ethanol withdrawal increased death of ethanol-withdrawn neurons without any modification of NMDA-stimulated calcium influx. Moreover, chronic administration of rimonabant increased NMDA-stimulated toxicity not only in withdrawn neurons, but also in control neurons. In summary, we show for the first time that the stimulation of the endocannabinoid system is protective against the hyperexcitability developed during alcohol withdrawal. By contrast, the blockade of the endocannabinoid system is highly counterproductive during alcohol withdrawal.

  5. Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders

    Science.gov (United States)

    Navarro, Gemma; Morales, Paula; Rodríguez-Cueto, Carmen; Fernández-Ruiz, Javier; Jagerovic, Nadine; Franco, Rafael

    2016-01-01

    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators. PMID:27679556

  6. Targeting cannabinoid CB2 receptors in the Central Nervous System. Medicinal chemistry approaches with focus on neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Gema Navarro

    2016-09-01

    Full Text Available Endocannabinoids activate two types of specific receptors, namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases. Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.

  7. GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils

    Institute of Scientific and Technical Information of China (English)

    Nariman A B Balenga; Maria Waldhoer; Elma Aflaki; Julia Kargl; Wolfgang Platzer; Ralf Schr(o)der; Stefanie Bl(a)ttermann; Evi Kostenis; Andrew J Brown; Akos Heinemann

    2011-01-01

    The directional migration of neutrophils towards inflammatory mediators,such as chemokines and cannabinoids,occurs via the activation of seven transmembrane G protein coupled receptors (7TM/GPCRs) and is a highly organized process.A crucial role for controlling neutrophil migration has been ascribed to the cannabinoid CB2 receptor (CB2R),but additional modulatory sites distinct from CB2R have recently been suggested to impact CB2R-mediated effector functions in neutrophils.Here,we provide evidence that the recently de-orphanized 7TM/GPCR GPR55potently modulates CB2R-mediated responses.We show that GPR55 is expressed in human blood neutrophils and its activation augments the migratory response towards the CB2R agonist 2-arachidonoylglycerol (2-AG),while inhibiting neutrophil degranulation and reactive oxygen species (ROS) production.Using HEK293 and HL60 cell lines,along with primary neutrophils,we show that GPR55 and CB2R interfere with each other's signaling pathways at the level of small GTPases,such as Rac2 and Cdc42.This ultimately leads to cellular polarization and efficient migration as well as abrogation of degranulation and ROS formation in neutrophils.Therefore,GPR55 limits the tissueinjuring inflammatory responses mediated by CB2R,while it synergizes with CB2R in recruiting neutrophils to sites of inflammation.

  8. Involvement of dorsal hippocampal and medial septal nicotinic receptors in cross state-dependent memory between WIN55, 212-2 and nicotine or ethanol in mice.

    Science.gov (United States)

    Alijanpour, S; Rezayof, A

    2013-08-15

    The present study examined whether nicotinic acetylcholine receptors (nAChRs) of the CA1 regions of the dorsal hippocampus and medial septum (MS) are involved in cross state-dependent memory retrieval between WIN55, 212-2 (WIN, a non-selective CB1/CB2 receptor agonist) and nicotine or ethanol. Memory retrieval was measured in one-trial step-down type passive avoidance apparatus in male adult mice. Pre-training intraperitoneal administration of WIN (0.1-1mg/kg) dose-dependently impaired memory retrieval when it was tested 24h later. Pre-test systemic administration of nicotine (0.6 and 0.7mg/kg, s.c.) or ethanol (0.5g/kg, i.p.) improved WIN-induced memory impairment, suggesting a cross state-dependent memory retrieval between the drugs. Pre-test intra-CA1 microinjection of nicotine (1 and 2μg/mouse) before systemic administration of an ineffective dose of nicotine (0.5mg/kg, s.c.) or ethanol (0.25g/kg) significantly reversed WIN-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (1 and 3μg/mouse) inhibited cross state-dependent memory between WIN and nicotine or ethanol. Moreover, pre-test intra-MS microinjection of nicotine (1 and 2μg/mouse) in combination with systemic administration of a lower dose of nicotine (0.5mg/kg), but not ethanol (0.25g/kg), improved memory impairment induced by pre-training administration of WIN. On the other hand, in the animals that received pre-training WIN and pre-test systemic administration of nicotine (0.7mg/kg), but not ethanol (0.5g/kg), pre-test intra-MS microinjection of mecamylamine (1-5μg/mouse) inhibited WIN-nicotine state-dependent memory retrieval. It should be noted that pre-test intra-CA1 or intra-MS microinjection of nicotine or mecamylamine by itself had no effect on memory retrieval and also could not reverse memory impairment induced by pre-training administration of WIN. It can be concluded that WIN and nicotine or WIN and ethanol can induce state-dependent memory retrieval. In

  9. Addressing disruptive behaviors in the organizational setting: the win-win approach.

    Science.gov (United States)

    Rosenstein, Alan H

    2013-01-01

    Disruptive behaviors can have a significant impact on organizational dynamics and work relationships and a profound negative effect on staff and patient satisfaction, performance efficiency, and patient outcomes. Despite the growing call for action, many organizations still have difficulty in addressing these issues in a consistent, effective manner. Presented below is a model that focuses on causes and barriers and offers solutions designed to promote a "What's in it for me?" win-win approach for improving morale, job satisfaction, and patient care.

  10. Enhancing the Level of Opening up to Achieve Mutual Benefit and Win-win Results

    Institute of Scientific and Technical Information of China (English)

    Chen Feixiang

    2015-01-01

    From upholding opening up strategy of mutual benefit and win-win results to developing top-level design of higher level open economy,then further to putting forward targets of actively participating in global economic governance and supplying public products and enhancing voice in institutional building,and still further to opening the developing concepts and planning,the CPC Central Committee has commanded the deep insights for

  11. The "One Belt and One Road" is an Important Mutually Beneficial and Win-win Strategy

    Institute of Scientific and Technical Information of China (English)

    Long; Kaifeng

    2015-01-01

    The"One Belt and One Road"strategic conception carries the dream of development and prosperity of countries concerned,and gives the ancient Silk Road a brand new content of the time.In September and October 2013,President Xi Jinping proposed building the"New Silk Road Economic Belt"(One Belt)and the"Twenty-first Century Maritime Silk Road"(One Road)strategic conception respectively,emphasizing a mutual-beneficial and win-win

  12. Melatonin agonists and insomnia.

    Science.gov (United States)

    Ferguson, Sally A; Rajaratnam, Shantha M W; Dawson, Drew

    2010-02-01

    The ability of melatonin to shift biological rhythms is well known. As a result, melatonin has been used in the treatment of various circadian rhythm sleep disorders, such as advanced and delayed sleep phase disorders, jet lag and shiftwork disorder. The current evidence for melatonin being efficacious in the treatment of primary insomnia is less compelling. The development of agents that are selective for melatonin receptors provides opportunity to further elucidate the actions of melatonin and its receptors and to develop novel treatments for specific types of sleep disorders. The agonists reviewed here - ramelteon, tasimelteon and agomelatine - all appear to be efficacious in the treatment of circadian rhythm sleep disorders and some types of insomnia. However, further studies are required to understand the mechanisms of action, particularly for insomnia. Clinical application of the agonists requires a good understanding of their phase-dependent properties. Long-term effects of melatonin should be evaluated in large-scale, independent randomized controlled trials.

  13. Cannabinoids in the management of spasticity associated with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Anna Maria Malfitano

    2008-08-01

    Full Text Available Anna Maria Malfitano, Maria Chiara Proto, Maurizio BifulcoDipartimento di Scienze Farmaceutiche, Università degli Studi di SalernoAbstract: The endocannabinoid system and cannabinoid-based treatments have been involved in a wide number of diseases. In particular, several studies suggest that cannabinoids and endocannabinoids may have a key role in the pathogenesis and therapy of multiple sclerosis (MS. In this study we highlight the main findings reported in literature about the relevance of cannabinoid drugs in the management and treatment of MS. An increasing body of evidence suggests that cannabinoids have beneficial effects on the symptoms of MS, including spasticity and pain. In this report we focus on the effects of cannabinoids in the relief of spasticity describing the main findings in vivo, in the mouse experimental allergic encephalomyelitis model of MS. We report on the current treatments used to control MS symptoms and the most recent clinical studies based on cannabinoid treatments, although long-term studies are required to establish whether cannabinoids may have a role beyond symptom amelioration in MS.Keywords: cannabinoids, multiple sclerosis, spasticity

  14. A user’s guide to cannabinoid therapies in oncology

    Science.gov (United States)

    Maida, V.; Daeninck, P.J.

    2016-01-01

    “Cannabinoid” is the collective term for a group of chemical compounds that either are derived from the Cannabis plant, are synthetic analogues, or occur endogenously. Although cannabinoids interact mostly at the level of the currently recognized cannabinoid receptors, they might have cross reactivity, such as at opioid receptors. Patients with malignant disease represent a cohort within health care that have some of the greatest unmet needs despite the availability of a plethora of guideline-driven disease-modulating treatments and pain and symptom management options. Cannabinoid therapies are varied and versatile, and can be offered as pharmaceuticals (nabilone, dronabinol, and nabiximols), dried botanical material, and edible organic oils infused with cannabis extracts. Cannabinoid therapy regimens can be creative, involving combinations of all of the aforementioned modalities. Patients with malignant disease, at all points of their disease trajectory, could be candidates for cannabinoid therapies whether as monotherapies or as adjuvants. The most studied and established roles for cannabinoid therapies include pain, chemotherapy-induced nausea and vomiting, and anorexia. Moreover, given their breadth of activity, cannabinoids could be used to concurrently optimize the management of multiple symptoms, thereby reducing overall polypharmacy. The use of cannabinoid therapies could be effective in improving quality of life and possibly modifying malignancy by virtue of direct effects and in improving compliance or adherence with disease-modulating treatments such as chemotherapy and radiation therapy. PMID:28050136

  15. Interplay between serotonin and cannabinoid function in the amygdala in fear conditioning.

    Science.gov (United States)

    Nasehi, Mohammad; Davoudi, Kamelia; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-04-01

    The possible interactions between the cannabinoid and serotonin systems in the regions of the brain involved in emotional learning and memory formation have been studied by some researchers. In view of the key role of the amygdala in the acquisition and expression of fear memory, we investigated the involvement of basolateral amygdala (BLA) serotonin 5-HT4 receptors in arachidonylcyclopropylamide (ACPA; selective CB1 cannabinoid receptor agonist)-induced fear memory consolidation impairment. In our study, a context and tone fear conditioning apparatus was used for testing fear conditioning in adult male NMRI mice. The results showed that intraperitoneal administration of ACPA 0.5 or 0.05, 0.1 and 0.5mg/kg immediately after training decreased the percentage of freezing time in context or tone fear conditioning respectively, suggesting a context- or tone-dependent fear memory consolidation impairment. Post-training intra-BLA microinjections of RS67333, as 5-HT4 serotonin receptor agonist, at doses of 0.025 and 0.05 µg/mouse also impaired context or tone memory consolidation, while RS23597, as 5-HT4 serotonin receptor antagonist, did not produce a marked difference in both fear memories as compared with the control group. Moreover, a subthreshold dose of RS67333 did not alter ACPA response in both fear conditionings. Interestingly, a subthreshold dose of RS23597 potentiated or reversed ACPA response at the dose of 0.01 or 0.05 respectively. It is concluded that BLA serotonin 5-HT4 receptors are involved in tone-dependent fear memory consolidation impairment induced by CB1 activation using ACPA, suggesting a modulatory role for serotonin 5-HT4 receptor.

  16. Safety Issues Concerning the Medical Use of Cannabis and Cannabinoids

    Directory of Open Access Journals (Sweden)

    Mark A Ware

    2005-01-01

    Full Text Available Safety issues are a major barrier to the use of cannabis and cannabinoid medications for clinical purposes. Information on the safety of herbal cannabis may be derived from studies of recreational cannabis use, but cannabis exposure and effects may differ widely between medical and recreational cannabis users. Standardized, quality-controlled cannabinoid products are available in Canada, and safety profiles of approved medications are available through the Canadian formulary. In the present article, the evidence behind major safety issues related to cannabis use is summarized, with the aim of promoting informed dialogue between physicians and patients in whom cannabinoid therapy is being considered. Caution is advised in interpreting these data, because clinical experience with cannabinoid use is in the early stages. There is a need for long-term safety monitoring of patients using cannabinoids for a wide variety of conditions, to further guide therapeutic decisions and public policy.

  17. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  18. Bi-directional CB1 receptor-mediated cardiovascular effects of cannabinoids in anaesthetized rats: role of the paraventricular nucleus.

    Science.gov (United States)

    Grzeda, E; Schlicker, E; Luczaj, W; Harasim, E; Baranowska-Kuczko, M; Malinowska, B

    2015-06-01

    The activation of cannabinoid CB1 receptors decreases and increases blood pressure (BP) in anaesthetized and conscious rats, respectively. The aim of our study was to check the possible involvement of CB1 receptors in the paraventricular nucleus of the hypothalamus (PVN) in the cardiovascular effects of cannabinoids in rats. Methanandamide (metabolically stable analogue of the endocannabinoid anandamide) and the synthetic cannabinoid receptor agonist CP55940 were microinjected into the PVN of urethane-anaesthetized rats twice (S1 and S2, 20 min apart). Receptor antagonists were administered intravenously (i.v.) 5 min before S1. Methanandamide and CP55940 decreased blood pressure by 15 - 20%. The CB1 receptor antagonist AM251 reversed the depressor effect into a pressor response of 20 - 30%. The pressor effect of CP55940 observed in the presence of AM251 i.v. was reduced by AM251 given additionally into the PVN but not by the i.v. injection of the CB2 antagonist SR144528 or the vanilloid TRPV1 antagonist ruthenium red. In the presence of the peripherally restricted CB1 receptor antagonist AM6545, CP55940 given into the PVN increased BP by 40%. AM6545 reversed the decrease in BP induced by CP55940 i.v. into a marked increase. Bilateral chemical lesion of the PVN by kainic acid abolished all cardiovascular effects of CP55940 i.v. In conclusion, the cannabinoid CP55940 administered to the PVN of urethane-anaesthetized rats can induce depressor and pressor effects. The direction of the response probably depends on the sympathetic tone. The centrally induced hypertensive response of CP55940 can, in addition, be masked by peripheral CB1 receptors.

  19. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat.

    Science.gov (United States)

    Mohammadmirzaei, Negin; Rezayof, Ameneh; Ghasemzadeh, Zahra

    2016-09-01

    The ventral hippocampus (VH) has a high distribution of cannabinoid CB1 receptors which are important in modulating stress responses. Stress exposure activates the hypothalamic-pituitary-adrenal axis (HPA) which can impact hippocampal formation to change hippocampus-based memories. The purpose of the present study was to determine the possible role of the VH cannabinoid CB1 receptors in stress-induced amnesia using a step-through passive avoidance procedure in male Wistar rats. In order to induce acute stress, the animals were placed on an elevated platform for different time periods (10, 20 and 30min). Our results indicated that post-training 20 and 30min exposure to stress, but not 10min, induced amnesia. Post-training microinjection of a cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 2.5-7.5ng/rat) into the VH (intra-VH) induced amnesia. Interestingly, post-training intra-VH microinjection of the same doses of ACPA improved stress-induced amnesia. On the other hand, post-training intra-VH microinjection of a selective CB1 receptor antagonist, AM-251 (20-50ng/rat) with exposure to an ineffective stress (10min) potentiated the effect of stress on memory consolidation and induced amnesia. It should be noted that post-training intra-VH microinjection of the same doses of AM-251 alone had no effect on memory consolidation. Our results revealed that post-training intra-VH microinjection of AM-251, prior to ACPA microinjection, inhibited the reversal effect of ACPA on acute elevated platform stress. Taken together, it can be concluded that exposure to post-training inescapable stress impaired memory consolidation. The impairing effects of stress on memory retrieval may be mediated by the VH cannabinoid CB1 receptors.

  20. Small intestinal cannabinoid receptor changes following a single colonic insult with oil of mustard in mice

    Directory of Open Access Journals (Sweden)

    Edward S Kimball

    2010-11-01

    Full Text Available Cannabinoids are known to be clinically beneficial for control of appetite disorders and nausea/vomiting, with emerging data that they can impact other GI disorders, such as inflammation. Post-inflammatory irritable bowel syndrome (PI-IBS is a condition of perturbed intestinal function that occurs subsequent to earlier periods of intestinal inflammation. Cannabinoid 1 receptor (CB1R and CB2R alterations in GI inflammation have been demonstrated in both animal models and clinically, but their continuing role in the post-inflammatory period has only been implicated to date. Therefore, to provide direct evidence for CBR involvement in altered GI functions in the absence of overt inflammation, we used a model of enhanced upper GI transit that persists for up to 4 weeks after a single insult by intracolonic 0.5% oil of mustard (OM in mice. In mice administered OM, CB1R immunostaining in the myenteric plexus was reduced at day 7, when colonic inflammation is subsiding, and then increased at 28 days, compared to tissue from age-matched vehicle-treated mice. In the lamina propria CB2R immunostaining density was also increased at day 28. In mice tested 28 day after OM, either a CB1R-selective agonist, ACEA (1 and 3 mg/kg, s.c. or a CB2R-selective agonist, JWH-133 (3 and 10 mg/kg, s.c. reduced the enhanced small intestinal transit in a dose-related manner. Doses of ACEA and JWH-133 (1 mg/kg, alone or combined, reduced small intestinal transit of OM-treated mice to a greater extent than control mice. Thus, in this post-colonic inflammation model, both CBR subtypes are up-regulated and there is increased efficacy of both CB1R and CB2R agonists. We conclude that CBR remodeling occurs not only during GI inflammation but continues during the recovery phase. Thus, either CB1R- or CB2-selective agonists could be efficacious for modulating GI motility in individuals experiencing diarrhea-predominant PI-IBS.

  1. Differential CB1 and CB2 cannabinoid receptor-inotropic response of rat isolated atria: endogenous signal transduction pathways.

    Science.gov (United States)

    Sterin-Borda, Leonor; Del Zar, Claudia F; Borda, Enri

    2005-06-15

    In this study, we have determined the contractile effects of CB1 and CB2 cannabinoid receptor activation on rat isolated atria and the different signaling pathways involved. Anandamide did not has significantly effect on atria contractility, however, the treatment with both CB1 (AM251) or CB2 (AM630) receptor antagonists, the endocannabinoids triggered stimulation or inhibition on contractility respectively. The ACEA stimulation of CB1 receptor exerted decrease on contractility, that significantly correlated with the decrement of cAMP and the stimulation of nitric oxide synthase (NOS) and the accumulation of cyclic GMP (cGMP). On the contrary, JWH 015 stimulation of CB2 receptor triggered positive contractile response that significantly correlated with the increase cAMP production. The inhibiton of adenylate cyclase activity impaired the JWH 015 activation of CB1 receptor induced positive contractile effect, while inhibitors of phospholipase C (PLC), NOS and soluble nitric oxide (NO)-sensitive guanylate cyclase blocked the dose-response curves of ACEA on contractility. Those inhibitors also attenuated the CB1 receptor-dependent increase in activation of NOS and cGMP accumulation. These results suggest that CB2 receptor agonist mediated positive contractile effect associated with increased production on cAMP while CB1 receptor agonist mediated decrease on contractility associated with decreased cAMP accumulation and increase production of NO and cGMP; that occur secondarily to stimulation of PLC, NOS and soluble guanylate cyclase. Data give pharmacological evidence for the existence of functional CB1 and CB2 cannabinoid receptors in rat isolated atria and may contribute to a better understanding the effects of cannabinoids in the cardiovascular system.

  2. THE NEURONAL DISTRIBUTION OF CANNABINOID RECEPTOR TYPE 1 IN THE TRIGEMINAL GANGLION OF THE RAT

    OpenAIRE

    2003-01-01

    Cannabinoid compounds have been shown to produce antinociception and antihyperalgesia by acting upon cannabinoid receptors located in both the CNS and the periphery. A potential mechanism by which cannabinoids could inhibit nociception in the periphery is the activation of cannabinoid receptors located on one or more classes of primary nociceptive neurons. To address this hypothesis, we evaluated the neuronal distribution of cannabinoid receptor type 1 (CB1) in the trigeminal ganglion (TG) of...

  3. Human studies of cannabinoids and medicinal cannabis.

    Science.gov (United States)

    Robson, P

    2005-01-01

    Cannabis has been known as a medicine for several thousand years across many cultures. It reached a position of prominence within Western medicine in the nineteenth century but became mired in disrepute and legal controls early in the twentieth century. Despite unremitting world-wide suppression, recreational cannabis exploded into popular culture in the 1960s and has remained easily obtainable on the black market in most countries ever since. This ready availability has allowed many thousands of patients to rediscover the apparent power of the drug to alleviate symptoms of some of the most cruel and refractory diseases known to humankind. Pioneering clinical research in the last quarter of the twentieth century has given some support to these anecdotal reports, but the methodological challenges to human research involving a pariah drug are formidable. Studies have tended to be small, imperfectly controlled, and have often incorporated unsatisfactory synthetic cannabinoid analogues or smoked herbal material of uncertain composition and irregular bioavailability. As a result, the scientific evaluation of medicinal cannabis in humans is still in its infancy. New possibilities in human research have been opened up by the discovery of the endocannabinoid system, a rapidly expanding knowledge of cannabinoid pharmacology, and a more sympathetic political environment in several countries. More and more scientists and clinicians are becoming interested in exploring the potential of cannabis-based medicines. Future targets will extend beyond symptom relief into disease modification, and already cannabinoids seem to offer particular promise in the treatment of certain inflammatory and neurodegenerative conditions. This chapter will begin with an outline of the development and current status of legal controls pertaining to cannabis, following which the existing human research will be reviewed. Some key safety issues will then be considered, and the chapter will conclude with

  4. Cannabinoid hyperemesis syndrome with extreme hydrophilia

    Directory of Open Access Journals (Sweden)

    Enuh HA

    2013-08-01

    Full Text Available Hilary A Enuh,1 Julia Chin,1 Jay Nfonoyim21Department of Medicine, 2Critical Care Unit, Richmond University Medical Center, Staten Island, NY, USAAbstract: Marijuana is the most widely used recreational drug in the US. Hyperemetic hydrophilic syndrome is a previously described but infrequently recognized condition of cannabinoid abuse with hyperemesis and obsessive hot showering. We present a 47-year-old male known marijuana addict with intractable abdominal pain who could not wait for physical examination, meal, or medication, because of obsessive compulsive warm baths. He had a history of epilepsy and addiction to marijuana, which he took on the day of admission. He presented to the hospital with a seizure, complicated by nausea, vomiting, and severe abdominal pain. His examination was unremarkable, except for mild epigastric tenderness. His laboratory and radiological tests were within normal limits, except for a positive urine drug screen for marijuana and opiates. He took himself immediately to the bathroom and remained under a hot shower with the exception of two 15-minute breaks for the rest of the day. He stated that it made him feel better than medication. Receiving medication and even eating was a problem because of this compulsive showering. Abstinence from marijuana during the hospital stay made the patient's nausea and vomiting resolve significantly. Cannabinoid hyperemesis is a differential diagnosis among patients with intractable nausea, vomiting, and obsessive hot bathing. The syndrome is an unmistakable indication of marijuana addiction. A thorough history and observation is very valuable. Recognition of this entity will reduce unnecessary testing and utilization of health care resources.Keywords: cannabinoid, compulsive bathing, cyclic vomiting, hyperemesis, hydrophilia, marijuana

  5. Win-Win-Win: Reflections from a Work-Integrated Learning Project in a Non-Profit Organization

    Directory of Open Access Journals (Sweden)

    Dale C MacKrell

    2016-05-01

    Full Text Available This paper reports on the educational aspects of an information systems work-integrated learning (WIL capstone project for an organization which operates to alleviate homelessness in the Australian non-profit sector. The methodology adopted for the study is Action Design Research (ADR which draws on action research and design research as a means for framing a project's progress. Reflective insights by the project stakeholders, namely, students, academics, and the non-profit client, reveal a curriculum at work through internal features of the organization; personal features of the participants and features of the external environment. Preliminary findings suggest that students in a WIL project for a non-profit are highly engaged, especially when they become aware of the project’s social value. As well, the improvement of professional skills and emotional intelligence by students is more likely in real-life practice settings than in other less authentic WIL activities, equipping graduates for the workforce with both strong disciplinary and generic skills. Win-win-win synergies through project collaboration represent worthwhile outcomes to education, industry and research.

  6. Effects of Repeated Electroacupuncture on Gene Expression of Cannabinoid Receptor-1 and Dopamine 1 Receptor in Nucleus Accumbens-Caudate Nucleus Region in Inflammatory-pain Rats%反复电针对佐剂性关节炎大鼠伏隔核-尾状核区大麻素CB1受体与多巴胺Dl受体基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    寿鉴; 赵颖倩; 徐鸣曙; 葛林宝

    2011-01-01

    Objective To observe the effect of repeated electroacupuncture (EA) on the expression of cannabinoid receptor-1 (CB 1 ) mRNA and dopamine 1 receptor (D 1 ) mRNA in Nucleus Accumbens (NAC)-Caudate Nucleus (CN) region in inflammatory-pain rats, so as to study its underlying mechanism in analgesia. Methods A total of 30 SD rats were randomized into normal control, model, EA, EA + AM 251 and WIN 552 12-2 groups, with 6 cases in each group. EA (2 Hz/100 Hz, 1 - 3 mA)was applied to "Zusanli"(ST 36) and "Kunlun"(BL 60) for 30 min, once every other day, and 4 sessions all together. Arthritis model was established by injection of Freund's complete adjuvant 0.05 mL in the rat's left ankle. Thermal pain threshold (paw withdrawal latency, PWL) was detected before and after modeling and after repeated EA and/or intraperitoneal injection of AM 251 (an inverse antagonist at the CB 1 cannabinoid receptor, 0. 1 mg/1 00 g) and WIN 55212-2 (a potent cannabinoid receptor agonist, 0.2 mg/100 g). The expression of CB 1 receptor mRNA and D 1 receptor mRNA in the NAC-CN region was measured by real time fluorescence quantitative-polymerase chain reaction. Results Compared with the control group, the pain threshold values of the model group was decreased significantly (P<0.01). In comparison with the model group, the pain threshold values of the EA group and WIN 55212-2 group were increased considerably on day 10 (P<0.01). No significant differences were found between the EA+AM 251 and model groups and between the EA and WIN 55212-2 groups in PWL after the treatment (P>0.05).Compared with the control group, both CB 1 R mRNA and D 1 R mRNA expression levels in the model group were increased slightly, while in comparison with the model group and EA+ AM 251 group, CB 1 R mRNA and D 1 R mRNA expression levels in the EAgroup and WIN 55212-2 group were upregulated obviously. No significant differences were found between the EA+ AM 251 and model groups and between the EA and WIN 55212

  7. Pharmacogenetics of β2-Agonists

    OpenAIRE

    Nobuyuki Hizawa

    2011-01-01

    Short-acting β2-agonists (SABAs) and long-acting β2-agonists (LABAs) are both important for treatment of asthma and chronic obstructive pulmonary disease (COPD) because of their bronchodilator and bronchoprotective effects. However, the use of these agonists, at least for asthma, has generated some controversy because of their association with increased mortality. Pharmacogenetics is the study of genetically determined variation in response to medications, which might prove useful for target ...

  8. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor.

    Science.gov (United States)

    Scott, Caitlin E; Ahn, Kwang H; Graf, Steven T; Goddard, William A; Kendall, Debra A; Abrol, Ravinder

    2016-01-25

    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci. 2013 , 22 , 101 - 113 ; Ahn, K. H. et al. Proteins 2013 , 81 , 1304 - 1317] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists.

  9. A natural history of "agonist".

    Science.gov (United States)

    Russo, Ruth

    2002-01-01

    This paper constructs a brief history of the biochemical term agonist by exploring the multiple meanings of the root agôn in ancient Greek literature and describing how agonist first appeared in the scientific literature of the 20th century in the context of neurophysiologists' debates about the existence and properties of cellular receptors. While the narrow scientific definition of agonist may appear colorless and dead when compared with the web of allusions spun by the ancient Greek agôn, the scientific power and creativity of agonist actually resides precisely in its exact, restricted meaning for biomedical researchers.

  10. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2011-01-01

    Introduction: Recently, glucagon-like peptide-1 receptor (GLP-1R) agonists have become available for the treatment of type 2 diabetes. These agents exploit the physiological effects of GLP-1, which is able to address several of the pathophysiological features of type 2 diabetes. GLP-1R agonists...... presently available are administered once or twice daily, but several once-weekly GLP-1R agonists are in late clinical development. Areas covered: The present review aims to give an overview of the clinical data on the currently available GLP-1R agonists used for treatment of type 2 diabetes, exenatide...

  11. The Endocannabinoid System, Cannabinoids, and Pain

    Directory of Open Access Journals (Sweden)

    Perry G. Fine

    2013-10-01

    Full Text Available The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB1 receptors and in the periphery (primarily but not exclusively CB2 receptors are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking, as well as regulatory or legal constraints. However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles. This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.

  12. Biphasic effects of cannabinoids in anxiety responses: CB1 and GABA(B) receptors in the balance of GABAergic and glutamatergic neurotransmission.

    Science.gov (United States)

    Rey, Alejandro Aparisi; Purrio, Martin; Viveros, Maria-Paz; Lutz, Beat

    2012-11-01

    Biphasic effects of cannabinoids have been shown in processes such as feeding behavior, motor activity, motivational processes and anxiety responses. Using two different tests for the characterization of anxiety-related behavior (elevated plus-maze and holeboard), we first identified in wild-type C57BL/6N mice, two doses of the synthetic CB1 cannabinoid receptor agonist CP-55,940 with anxiolytic (1 μg/kg) and anxiogenic properties (50 μg/kg), respectively. To clarify the role of CB1 receptors in this biphasic effect, both doses were applied to two different conditional CB1 receptor knockout (KO) mouse lines, GABA-CB1-KO (CB1 receptor inactivation in forebrain GABAergic neurons) and Glu-CB1-KO (CB1 receptor inactivation in cortical glutamatergic neurons). We found that the anxiolytic-like effects of the low dose of cannabinoids are mediated via the CB1 receptor on cortical glutamatergic terminals, because this anxiolytic-like response was abrogated only in Glu-CB1-KO mice. On the contrary, the CB1 receptor on the GABAergic terminals is required to induce an anxiogenic-like effect under a high-dose treatment because of the fact that this effect was abolished specifically in GABA-CB1-KO mice. These experiments were carried out in both sexes, and no differences occurred with the doses tested in the mutant mice. Interestingly, the positive allosteric modulation of GABA(B) receptor with GS-39783 was found to largely abrogate the anxiogenic-like effect of the high dose of CP-55,940. Our results shed new light in further understanding the biphasic effects of cannabinoids at the molecular level and, importantly, pave the way for the development of novel anxiolytic cannabinoid drugs, which may have favorable effect profiles targeting the CB1 receptor on glutamatergic terminals.

  13. Case Series of Synthetic Cannabinoid Intoxication from One Toxicology Center

    Directory of Open Access Journals (Sweden)

    Kenneth D. Katz

    2016-05-01

    Full Text Available Synthetic cannabinoid use has risen at alarming rates. This case series describes 11 patients exposed to the synthetic cannabinoid, MAB-CHMINACA who presented to an emergency department with life-threatening toxicity including obtundation, severe agitation, seizures and death. All patients required sedatives for agitation, nine required endotracheal intubation, three experienced seizures, and one developed hyperthermia. One developed anoxic brain injury, rhabdomyolysis and died. A significant number were pediatric patients. The mainstay of treatment was aggressive sedation and respiratory support. Synthetic cannabinoids pose a major public health risk. Emergency physicians must be aware of their clinical presentation, diagnosis and treatment.

  14. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ellis Connie L

    2010-03-01

    Full Text Available Abstract Background Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN and neuropathic pain (NeP, our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor. Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states. One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoid receptors (CB are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state. We provided either intranasal or intraperitoneal cannabinoid agonists/antagonists at multiple doses both at the initiation of diabetes as well as after establishment of diabetes and its related NeP state. Results Tactile allodynia and thermal hypersensitivity were observed over 8 months in diabetic mice without intervention. Microglial density increases were seen in the dorsal spinal cord and in thalamic nuclei and were accompanied by elevation of phosphorylated p38 MAPK, a marker of microglial activation. When initiated coincidentally with diabetes, moderate-high doses of intranasal cannabidiol (cannaboid receptor 2 agonist and intraperitoneal cannabidiol attenuated the development of an NeP state, even after their discontinuation and without modification of the diabetic state. Cannabidiol was also associated with restriction in elevation of microglial density in the dorsal spinal cord and elevation in phosphorylated p38 MAPK. When initiated in an established DPN NeP state, both CB1 and CB2 agonists demonstrated an antinociceptive effect until their discontinuation. There were no pronociceptive effects demonstated for either CB1 or CB2 antagonists. Conclusions The prevention of microglial accumulation and activation in the dorsal spinal

  15. Using Win-Win Strategies to Implement Health in All Policies: A Cross-Case Analysis.

    Directory of Open Access Journals (Sweden)

    Agnes Molnar

    Full Text Available In spite of increasing research into intersections of public policy and health, little evidence shows how policy processes impact the implementation of Health in All Policies (HiAP initiatives. Our research sought to understand how and why strategies for engaging partners from diverse policy sectors in the implementation of HiAP succeed or fail in order to uncover the underlying social mechanisms contributing to sustainable implementation of HiAP.In this explanatory multiple case study, we analyzed grey and peer-review literature and key informant interviews to identify mechanisms leading to implementation successes and failures in relation to different strategies for engagement across three case studies (Sweden, Quebec and South Australia, after accounting for the role of different contextual conditions.Our results yielded no support for the use of awareness-raising or directive strategies as standalone approaches for engaging partners to implement HiAP. However, we found strong evidence that mechanisms related to "win-win" strategies facilitated implementation by increasing perceived acceptability (or buy-in and feasibility of HiAP implementation across sectors. Win-win strategies were facilitated by mechanisms related to several activities, including: the development of a shared language to facilitate communication between actors from different sectors; integrating health into other policy agendas (eg., sustainability and use of dual outcomes to appeal to the interests of diverse policy sectors; use of scientific evidence to demonstrate the effectiveness of HiAP; and using health impact assessment to make policy coordination for public health outcomes more feasible and to give credibility to policies being developed by diverse policy sectors.Our findings enrich theoretical understanding in an under-unexplored area of intersectoral action. They also provide policy makers with examples of HiAP across wealthy welfare regimes, and improve

  16. Attenuation of morphine antinociceptive tolerance by cannabinoid CB1 and CB2 receptor antagonists.

    Science.gov (United States)

    Altun, Ahmet; Yildirim, Kemal; Ozdemir, Ercan; Bagcivan, Ihsan; Gursoy, Sinan; Durmus, Nedim

    2015-09-01

    Cannabinoid CB1 and CB2 receptor antagonists may be useful for their potential to increase or prolong opioid analgesia while attenuating the development of opioid tolerance. The aim of this study was to investigate the effects of AM251 (a selective CB1 antagonist) and JTE907 (a selective CB2 antagonist) on morphine analgesia and tolerance in rats. Adult male Wistar albino rats weighing 205-225 g were used in these experiments. To constitute morphine tolerance, we used a 3 day cumulative dosing regimen. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated by analgesia tests. The analgesic effects of morphine (5 mg/kg), ACEA (a CB1 receptor agonist, 5 mg/kg), JWH-015 (a CB2 receptor agonist, 5 mg/kg), AM251 (1 mg/kg) and JTE907 (5 mg/kg) were considered at 30-min intervals (0, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests. Our findings indicate that ACEA and JWH907 significantly increased morphine analgesia and morphine antinociceptive tolerance in the analgesia tests. In contrast, the data suggested that AM251 and JTE907 significantly attenuated the expression of morphine tolerance. In conclusion, we observed that co-injection of AM251 and JTE907 with morphine attenuated expression of tolerance to morphine analgesic effects and decreased the morphine analgesia.

  17. Near wins prolong gambling on a video lottery terminal.

    Science.gov (United States)

    Côté, Denis; Caron, Anne; Aubert, Jonathan; Desrochers, Véronique; Ladouceur, Robert

    2003-01-01

    The purpose of the present study was to evaluate whether near wins can prolong gambling activity on a video lottery terminal. In a three-reel game, near wins were operationally defined as two identical symbols followed by a third different symbol. Players in an experimental condition were exposed to 27% near wins in a series of continuous losses, whereas players in a control group were exposed to none. Participants played as long as they wished, and received real money for their wins. The results showed that players in the near win condition played 33% more games than did the control group. The results of this study suggest that near wins can be added to the list of factors that may motivate people to gamble despite the probability of monetary loss.

  18. Emerging GLP-1 receptor agonists

    DEFF Research Database (Denmark)

    Lund, Asger; Knop, Filip K; Vilsbøll, Tina

    2011-01-01

    Introduction: Recently, glucagon-like peptide-1 receptor (GLP-1R) agonists have become available for the treatment of type 2 diabetes. These agents exploit the physiological effects of GLP-1, which is able to address several of the pathophysiological features of type 2 diabetes. GLP-1R agonists...

  19. Cannabinoids and cancer: pros and cons of an antitumour strategy

    OpenAIRE

    2006-01-01

    In the last two decades, research has dramatically increased the knowledge of cannabinoids biology and pharmacology. In mammals, compounds with properties similar to active components of Cannabis sativa, the so called ‘endocannabinoids', have been shown to modulate key cell-signalling pathways involved in cancer cell growth, invasion and metastasis. To date, cannabinoids have been licensed for clinical use as palliative treatment of chemotherapy, but increased evidences showed direct antiprol...

  20. Detection and quantification of selected cannabinoids in coping control

    OpenAIRE

    Nessa, Anna Hesby

    2010-01-01

    The use and misuse of substances from the cannabis plant has been verified for a long time, with tetrahydrocannabinol (THC) and cannabidiol (CBD) being the two main psychoactive constituents’. In doping controls, cannabinoids are prohibited substances in competition. As a marker for the consumption of cannabinoids, the main metabolite of THC, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), is used. In order to exclude passive smokers from being declared as positive cases, the World An...

  1. Oscars 2010:Kathryn Bigelow Wins Best Director

    Institute of Scientific and Technical Information of China (English)

    侍小军; 李新

    2010-01-01

    @@ "The Hurt Locker"defeated"Avatar"-the biggest movie of all time-to win Best Picture at the 82nd Academy Awards Sunday. "Hurt Locker" won five other Oscars,including,in a surprising main sweep,Best Director for Kathryn Bigelow. She made history as the first woman to receive the honor. Only three other women have been nominated(提名): Lina Wertmüller for "Seven Beauties",Jane Campion for "The Piano" and Sofia Coppola for "Lost in Translation".

  2. Tricyclic pyrazoles. Part 8. Synthesis, biological evaluation and modelling of tricyclic pyrazole carboxamides as potential CB2 receptor ligands with antagonist/inverse agonist properties.

    Science.gov (United States)

    Deiana, Valeria; Gómez-Cañas, María; Pazos, M Ruth; Fernández-Ruiz, Javier; Asproni, Battistina; Cichero, Elena; Fossa, Paola; Muñoz, Eduardo; Deligia, Francesco; Murineddu, Gabriele; García-Arencibia, Moisés; Pinna, Gerard A

    2016-04-13

    Previous studies have investigated the relevance and structure-activity relationships (SARs) of pyrazole derivatives in relation with cannabinoid receptors, and the series of tricyclic 1,4-dihydroindeno[1,2-c]pyrazoles emerged as potent CB2 receptor ligands. In the present study, novel 1,4-dihydroindeno[1,2-c]pyrazole and 1H-benzo[g]indazole carboxamides containing a cyclopropyl or a cyclohexyl substituent were designed and synthesized to evaluate the influence of these structural modifications towards CB1 and CB2 receptor affinities. Among these derivatives, compound 15 (6-cyclopropyl-1-(2,4-dichlorophenyl)-N-(adamantan-1-yl)-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide) showed the highest CB2 receptor affinity (Ki = 4 nM) and remarkable selectivity (KiCB1/KiCB2 = 2232), whereas a similar affinity, within the nM range, was seen for the fenchyl derivative (compound 10: Ki = 6 nM), for the bornyl analogue (compound 14: Ki = 38 nM) and, to a lesser extent, for the aminopiperidine derivative (compound 6: Ki = 69 nM). Compounds 10 and 14 were also highly selective for the CB2 receptor (KiCB1/KiCB2 > 1000), whereas compound 6 was relatively selective (KiCB1/KiCB2 = 27). The four compounds were also subjected to GTPγS binding analysis showing antagonist/inverse agonist properties (IC50 for compound 14 = 27 nM, for 15 = 51 nM, for 10 = 80 nM and for 6 = 294 nM), and this activity was confirmed for the three more active compounds in a CB2 receptor-specific in vitro bioassay consisting in the quantification of prostaglandin E2 release by LPS-stimulated BV2 cells, in the presence and absence of WIN55,212-2 and/or the investigated compounds. Modelling studies were also conducted with the four compounds, which conformed with the structural requirements stated for the binding of antagonist compounds to the human CB2 receptor.

  3. Cannabinoids increase type 1 cannabinoid receptor expression in a cell culture model of striatal neurons: implications for Huntington's disease.

    Science.gov (United States)

    Laprairie, Robert B; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2013-09-01

    The type 1 cannabinoid receptor (CB1) is a G protein-coupled receptor that is expressed at high levels in the striatum. Activation of CB1 increases expression of neuronal trophic factors and inhibits neurotransmitter release from GABA-ergic striatal neurons. CB1 mRNA levels can be elevated by treatment with cannabinoids in non-neuronal cells. We wanted to determine whether cannabinoid treatment could induce CB1 expression in a cell culture model of striatal neurons and, if possible, determine the molecular mechanism by which this occurred. We found that treatment of STHdh(7/7) cells with the cannabinoids ACEA, mAEA, and AEA produced a CB1receptor-dependent increase in CB1 promoter activity, mRNA, and protein expression. This response was Akt- and NF-κB-dependent. Because decreased CB1 expression is thought to contribute to the pathogenesis of Huntington's disease (HD), we wanted to determine whether cannabinoids could increase CB1 expression in STHdh(7/111) and (111/111) cells expressing the mutant huntingtin protein. We observed that cannabinoid treatment increased CB1 mRNA levels approximately 10-fold in STHdh(7/111) and (111/111) cells, compared to vehicle treatment. Importantly, cannabinoid treatment improved ATP production, increased the expression of the trophic factor BDNF-2, and the mitochondrial regulator PGC1α, and reduced spontaneous GABA release, in HD cells. Therefore, cannabinoid-mediated increases in CB1 levels could reduce the severity of some molecular pathologies observed in HD.

  4. Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish

    Science.gov (United States)

    Oliveira, Rui F.; Silva, Ana; Canário, Adelino V.M.

    2009-01-01

    Animal conflicts are influenced by social experience such that a previous winning experience increases the probability of winning the next agonistic interaction, whereas a previous losing experience has the opposite effect. Since androgens respond to social interactions, increasing in winners and decreasing in losers, we hypothesized that socially induced transient changes in androgen levels could be a causal mediator of winner/loser effects. To test this hypothesis, we staged fights between dyads of size-matched males of the Mozambique tilapia (Oreochromis mossambicus). After the first contest, winners were treated with the anti-androgen cyproterone acetate and losers were supplemented with 11-ketotestosterone. Two hours after the end of the first fight, two contests were staged simultaneously between the winner of the first fight and a naive male and between the loser of first fight and another naive male. The majority (88%) of control winners also won the second interaction, whereas the majority of control losers (87%) lost their second fight, thus confirming the presence of winner/loser effects in this species. As predicted, the success of anti-androgen-treated winners in the second fight decreased significantly to chance levels (44%), but the success of androgenized losers (19%) did not show a significant increase. In summary, the treatment with anti-androgen blocks the winner effect, whereas androgen administration fails to reverse the loser effect, suggesting an involvement of androgens on the winner but not on the loser effect. PMID:19324741

  5. Intergroup conflict: Ecological predictors of winning and consequences of defeat in a wild primate population.

    Science.gov (United States)

    Markham, A Catherine; Alberts, Susan C; Altmann, Jeanne

    2012-08-01

    In many social species, competition between groups is a major factor proximately affecting group-level movement patterns and space use and ultimately shaping the evolution of group living and complex sociality. Here we evaluated the factors influencing group-level dominance among 5 social groups of wild baboons (Papio cynocephalus), in particular focusing on the spatial determinants of dominance and the consequences of defeat. When direct conflict occurred between conspecific baboon groups, the winning group was predicted by differences in the number of adult males in each group and/or groups that had used the areas surrounding the encounter location more intensively than their opponent in the preceding 9 or 12 months. Relative intensity of space use over shorter timescales examined (3 and 6 months) was a poor predictor of the interaction's outcome. Losing groups but not winning groups experienced clear short-term costs. Losing groups used the area surrounding the interaction less following an agonistic encounter (relative to their intensity of use of the area prior to the interaction). These findings offer insight into the influences and consequences of intergroup competition on group-level patterns of space use.

  6. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  7. Involvement of the Endocannabinoid System in the Development and Treatment of Breast Cancer

    Science.gov (United States)

    2013-02-01

    associated with marijuana use (Compton et al. 1992). WIN2 is an agonist at both cannabinoid receptor 1 ( CB1 ) and cannabinoid receptor 2 ( CB2 ) (Howlett et... CB1 and CB2 have been implicated in the antiproliferative effects of various cannabinoids in different model systems. In glioma cancer cells, THC...findings to MCF-7 breast cancer cells. RT- PCR was used to confirm the expression of message for the CB1 and CB2 receptors. Figure 1A shows clear

  8. CERN exhibition wins yet another design prize

    CERN Multimedia

    Joannah Caborn Wengler

    2012-01-01

    The “Universe of Particles” exhibition in CERN’s Globe wins the silver design prize from the German direct business communications association FAMAB.   Not only do tens of thousands of people visit the “Universe of Particles” exhibition each year, but juries for design prizes are crossing its threshold more and more frequently too. In 2011 alone it claimed 8 awards, including winning outright the 2011 Annual Multimedia award, the iF Communication Design for Corporate Architecture award and the Modern Decoration Media award (the Bulletin already reported on some of these in July 2011). The FAMAB award is the latest to join the prestigious list. The jury of FAMAB’s “ADAM 2011” award was particularly impressed by the hands-on nature of the exhibition, which encourages visitors to get interested in science. They also appreciated the way that the space in the Globe is not just a container for the exhibits, but itself ...

  9. Brain neuronal CB2 cannabinoid receptors in drug abuse and depression: from mice to human subjects.

    Directory of Open Access Journals (Sweden)

    Emmanuel S Onaivi

    Full Text Available BACKGROUND: Addiction and major depression are mental health problems associated with stressful events in life with high relapse and reoccurrence even after treatment. Many laboratories were not able to detect the presence of cannabinoid CB2 receptors (CB2-Rs in healthy brains, but there has been demonstration of CB2-R expression in rat microglial cells and other brain associated cells during inflammation. Therefore, neuronal expression of CB2-Rs had been ambiguous and controversial and its role in depression and substance abuse is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested the hypothesis that genetic variants of CB2 gene might be associated with depression in a human population and that alteration in CB2 gene expression may be involved in the effects of abused substances including opiates, cocaine and ethanol in rodents. Here we demonstrate that a high incidence of (Q63R but not (H316Y polymorphism in the CB2 gene was found in Japanese depressed subjects. CB2-Rs and their gene transcripts are expressed in the brains of naïve mice and are modulated following exposure to stressors and administration of abused drugs. Mice that developed alcohol preference had reduced CB2 gene expression and chronic treatment with JWH015 a putative CB2-R agonist, enhanced alcohol consumption in stressed but not in control mice. The direct intracerebroventricular microinjection of CB2 anti-sense oligonucleotide into the mouse brain reduced mouse aversions in the plus-maze test, indicating the functional presence of CB2-Rs in the brain that modifies behavior. We report for the using electron microscopy the sub cellular localization of CB2-Rs that are mainly on post-synaptic elements in rodent brain. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the functional expression of CB2-Rs in brain that may provide novel targets for the effects of cannabinoids in depression and substance abuse disorders beyond neuro-immunocannabinoid activity.

  10. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

    Science.gov (United States)

    Di Giacomo, Daniele; De Domenico, Emanuela; Sette, Claudio; Geremia, Raffaele; Grimaldi, Paola

    2016-04-01

    Type 2 cannabinoid receptor (CB2) has been proposed to play a pivotal role in meiotic entry of male germ cells, similar to retinoic acid (RA). In this study, we showed that activation of CB2with the specific agonist JWH133 [3-(1',1'-dimethylbutyl)-1-deoxy-8-THC] (IC5010(-6)M) mimics epigenetic events induced by RA (IC5010(-7)M) in spermatogonia. Both JWH133 and RA treatments stimulate the expression of the meiotic genes c-KitandStra8, by up-regulating H3K4me3 and down-regulating H3K9me2 levels in genomic regions flanking the transcription start site. Moreover, both agents increase the expression ofPrdm9, the gene encoding a meiosis-specific histone, H3K4me3 methyltransferase, which marks hotspots of recombination in prophase I, thus resulting in a global increase in H3K4me3. Notably, prolonged administration of JWH133 to immature 7 dpp CD-1 mice induced an acceleration of the onset of spermatogenesis, whereas the specific CB2antagonist delayed germ cell differentiation. Thus, both hyper- and hypostimulation of CB2disrupted the temporal dynamics of the spermatogenic cycle. These findings highlight the importance of proper CB2signaling for the maintenance of a correct temporal progression of spermatogenesis and suggest a possible adverse effect of cannabis in deregulating this process.-Di Giacomo, D., De Domenico, E., Sette, C., Geremia, R., Grimaldi, P. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

  11. R-Flurbiprofen Reduces Neuropathic Pain in Rodents by Restoring Endogenous Cannabinoids

    Science.gov (United States)

    Marian, Claudiu; Häussler, Annett; Wijnvoord, Nina; Ziebell, Simone; Metzner, Julia; Koch, Marco; Myrczek, Thekla; Bechmann, Ingo; Kuner, Rohini; Costigan, Michael; Dehghani, Faramarz; Geisslinger, Gerd; Tegeder, Irmgard

    2010-01-01

    Background R-flurbiprofen, one of the enantiomers of flurbiprofen racemate, is inactive with respect to cyclooxygenase inhibition, but shows analgesic properties without relevant toxicity. Its mode of action is still unclear. Methodology/Principal Findings We show that R-flurbiprofen reduces glutamate release in the dorsal horn of the spinal cord evoked by sciatic nerve injury and thereby alleviates pain in sciatic nerve injury models of neuropathic pain in rats and mice. This is mediated by restoring the balance of endocannabinoids (eCB), which is disturbed following peripheral nerve injury in the DRGs, spinal cord and forebrain. The imbalance results from transcriptional adaptations of fatty acid amide hydrolase (FAAH) and NAPE-phospholipase D, i.e. the major enzymes involved in anandamide metabolism and synthesis, respectively. R-flurbiprofen inhibits FAAH activity and normalizes NAPE-PLD expression. As a consequence, R-Flurbiprofen improves endogenous cannabinoid mediated effects, indicated by the reduction of glutamate release, increased activity of the anti-inflammatory transcription factor PPARγ and attenuation of microglia activation. Antinociceptive effects are lost by combined inhibition of CB1 and CB2 receptors and partially abolished in CB1 receptor deficient mice. R-flurbiprofen does however not cause changes of core body temperature which is a typical indicator of central effects of cannabinoid-1 receptor agonists. Conclusion Our results suggest that R-flurbiprofen improves the endogenous mechanisms to regain stability after axonal injury and to fend off chronic neuropathic pain by modulating the endocannabinoid system and thus constitutes an attractive, novel therapeutic agent in the treatment of chronic, intractable pain. PMID:20498712

  12. R-flurbiprofen reduces neuropathic pain in rodents by restoring endogenous cannabinoids.

    Directory of Open Access Journals (Sweden)

    Philipp Bishay

    Full Text Available BACKGROUND: R-flurbiprofen, one of the enantiomers of flurbiprofen racemate, is inactive with respect to cyclooxygenase inhibition, but shows analgesic properties without relevant toxicity. Its mode of action is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: We show that R-flurbiprofen reduces glutamate release in the dorsal horn of the spinal cord evoked by sciatic nerve injury and thereby alleviates pain in sciatic nerve injury models of neuropathic pain in rats and mice. This is mediated by restoring the balance of endocannabinoids (eCB, which is disturbed following peripheral nerve injury in the DRGs, spinal cord and forebrain. The imbalance results from transcriptional adaptations of fatty acid amide hydrolase (FAAH and NAPE-phospholipase D, i.e. the major enzymes involved in anandamide metabolism and synthesis, respectively. R-flurbiprofen inhibits FAAH activity and normalizes NAPE-PLD expression. As a consequence, R-Flurbiprofen improves endogenous cannabinoid mediated effects, indicated by the reduction of glutamate release, increased activity of the anti-inflammatory transcription factor PPARgamma and attenuation of microglia activation. Antinociceptive effects are lost by combined inhibition of CB1 and CB2 receptors and partially abolished in CB1 receptor deficient mice. R-flurbiprofen does however not cause changes of core body temperature which is a typical indicator of central effects of cannabinoid-1 receptor agonists. CONCLUSION: Our results suggest that R-flurbiprofen improves the endogenous mechanisms to regain stability after axonal injury and to fend off chronic neuropathic pain by modulating the endocannabinoid system and thus constitutes an attractive, novel therapeutic agent in the treatment of chronic, intractable pain.

  13. An Application to WIN/ISIS Database on Local Network

    Directory of Open Access Journals (Sweden)

    Robert Lechien

    2005-07-01

    Full Text Available A Translated Article containing an application to how WIN/ISIS database work on local network. It starts with main definitions, and how to install WIN/ISIS on PC, and how to install it on the local network server.

  14. On winning sets and non-normal numbers

    OpenAIRE

    Mance, Bill

    2010-01-01

    In \\cite{SchmidtGames}, W. Schmidt proved that the set of non-normal numbers in base $b$ is a {\\it winning set}. We generalize this result by proving that many sets of non-normal numbers with respect to the Cantor series expansion are winning sets. As an immediate consequence, these sets will be shown to have full Hausdorff dimension.

  15. A winning strategy for 3 x n Cylindrical Hex

    DEFF Research Database (Denmark)

    Huneke, S. C.; Hayward, R.; Toft, Bjarne

    2014-01-01

    For Cylindrical Hex on a board with circumference 3, we give a winning strategy for the end-to-end player. This is the first known winning strategy for odd circumference at least 3, answering a question of David Gale. (C) 2014 Elsevier B.V. All rights reserved....

  16. No effect of blue on winning contests in judo

    NARCIS (Netherlands)

    Dijkstra, Peter D.; Preenen, Paul T. Y.

    2008-01-01

    A study by Rowe et al. reported a winning bias for judo athletes wearing a blue outfit relative to those wearing a white one during the 2004 Olympics. It was suggested that blue is associated with a higher likelihood of winning through differential effects of colour on opponent visibility and/or an

  17. Endogenous cannabinoid release within prefrontal-limbic pathways affects memory consolidation of emotional training

    NARCIS (Netherlands)

    Morena, M.; Roozendaal, B.; Trezza, V.; Ratano, P.; Peloso, A.; Hauer, D.; Atsak, P.; Trabace, L.; Cuomo, V.; McGaugh, J.L.; Schelling, G.; Campolongo, P.

    2014-01-01

    Previous studies have provided extensive evidence that administration of cannabinoid drugs after training modulates the consolidation of memory for an aversive experience. The present experiments investigated whether the memory consolidation is regulated by endogenously released cannabinoids. The ex

  18. Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.

    Science.gov (United States)

    Hu, Jianping; Feng, Zhiwei; Ma, Shifan; Zhang, Yu; Tong, Qin; Alqarni, Mohammed Hamed; Gou, Xiaojun; Xie, Xiang-Qun

    2016-06-27

    Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse. The lack of an experimental three-dimensional CB2 structure has hindered not only the development of studies of conformational differences between the inactive and active CB2 but also the rational discovery of novel functional compounds targeting CB2. In this work, we constructed models of both inactive and active CB2 by homology modeling. Then we conducted two comparative 100 ns molecular dynamics (MD) simulations on the two systems-the active CB2 bound with both the agonist and G protein and the inactive CB2 bound with inverse agonist-to analyze the conformational difference of CB2 proteins and the key residues involved in molecular recognition. Our results showed that the inactive CB2 and the inverse agonist remained stable during the MD simulation. However, during the MD simulations, we observed dynamical details about the breakdown of the "ionic lock" between R131(3.50) and D240(6.30) as well as the outward/inward movements of transmembrane domains of the active CB2 that bind with G proteins and agonist (TM5, TM6, and TM7). All of these results are congruent with the experimental data and recent reports. Moreover, our results indicate that W258(6.48) in TM6 and residues in TM4 (V164(4.56)-L169(4.61)) contribute greatly to the binding of the agonist on the basis of the binding energy decomposition, while residues S180-F183 in extracellular loop 2 (ECL2) may be of importance in recognition of the inverse agonist. Furthermore, pharmacophore modeling and virtual screening were carried out for the inactive and active CB2 models in parallel. Among all 10 hits, two compounds exhibited novel scaffolds and can be used as novel chemical probes for future studies of CB2. Importantly, our studies show that the hits obtained from the inactive CB2 model mainly act as inverse agonist(s) or neutral

  19. Cannabinoid receptor 2-mediated attenuation of CXCR4-tropic HIV infection in primary CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Cristina Maria Costantino

    Full Text Available Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB(1R and CB(2R and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB(2R, but not CB(1R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB(2R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB(2R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB(2R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB(2R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB(2R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.

  20. The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55.

    Science.gov (United States)

    Schuelert, Niklas; McDougall, Jason J

    2011-08-01

    Cannabinoids classically act via CB₁ and CB₂ receptors to modulate nociception; however, recent findings suggest that some cannabinoids bind to atypical receptors. One such receptor is GPR55 which is activated by the abnormal cannabidiol analogue O-1602. This study investigated whether the synthetic GPR55 agonist O-1602 can alter joint nociception in a rat model of acute joint inflammation. Acute (24 h) inflammatory joint pain was induced in male Wistar rats by intra-articular injection of 2% kaolin and 2% carrageenan. Single unit extracellular recordings were made from arthritic joint afferents in response to mechanical rotation of the knee. Peripheral administration of O-1602 significantly reduced movement-evoked firing of nociceptive C fibres and this effect was blocked by the GPR55 receptor antagonist O-1918. Co-administration of the CB₁ and CB₂ antagonists (AM281 and AM630 respectively) had no effect on O-1602 responses. This study clearly shows that atypical cannabinoid receptors are involved in joint nociception and these novel targets may be advantageous for the treatment of inflammatory pain.

  1. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.

    Science.gov (United States)

    Coke, Christopher J; Scarlett, Kisha A; Chetram, Mahandranauth A; Jones, Kia J; Sandifer, Brittney J; Davis, Ahriea S; Marcus, Adam I; Hinton, Cimona V

    2016-05-06

    The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells. Simultaneous, agonist-dependent activation of CXCR4 and CB2 resulted in reduced CXCR4-mediated expression of phosphorylated ERK1/2 and ultimately reduced cancer cell functions such as calcium mobilization and cellular chemotaxis. Given that treatment with cannabinoids has been shown to reduce invasiveness of cancer cells as well as CXCR4-mediated migration of immune cells, it is plausible that CXCR4 signaling can be silenced through a physical heterodimeric association with CB2, thereby inhibiting subsequent functions of CXCR4. Taken together, the data illustrate a mechanism by which the cannabinoid system can negatively modulate CXCR4 receptor function and perhaps tumor progression.

  2. Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: focus on G-protein-coupled receptors and transient receptor potential channels.

    Science.gov (United States)

    De Petrocellis, Luciano; Di Marzo, Vincenzo

    2010-03-01

    The molecular mechanism of action of Delta(9)-tetrahydrocannabinol (THC), the psychotropic constituent of Cannabis, has been a puzzle during the three decades separating its characterization, in 1964, and the cloning, in the 1990s, of cannabinoid CB1 and CB2 receptors. However, while these latter proteins do mediate most of the pharmacological actions of THC, they do not seem to act as receptors for other plant cannabinoids (phytocannabinoids), nor are they the unique targets of the endogenous lipids that were originally identified in animals as agonists of CB1 and CB2 receptors, and named endocannabinoids. Over the last decade, several potential alternative receptors for phytocannabinoids, endocannabinoids, and even synthetic cannabimimetics, have been proposed, often based uniquely on pharmacological evidence obtained in vitro. In particular, the endocannabinoid anandamide, and the other most abundant Cannabis constituent, cannabidiol, seem to be the most "promiscuous" of these compounds. In this article, we review the latest data on the non-CB1, non-CB2 receptors suggested so far for endocannabinoids and plant or synthetic cannabinoids, and lay special emphasis on uncharacterized or orphan G-protein-coupled receptors as well as on transient receptor potential channels.

  3. Capsaicin and N-arachidonoyl-dopamine (NADA) decrease tension by activating both cannabinoid and vanilloid receptors in fast skeletal muscle fibers of the frog.

    Science.gov (United States)

    Trujillo, Xóchitl; Ortiz-Mesina, Mónica; Uribe, Tannia; Castro, Elena; Montoya-Pérez, Rocío; Urzúa, Zorayda; Feria-Velasco, Alfredo; Huerta, Miguel

    2015-02-01

    Previous studies have indicated that vanilloid receptor (VR1) mRNA is expressed in muscle fibers. In this study, we evaluated the functional effects of VR1 activation. We measured caffeine-induced contractions in bundles of the extensor digitorum longus muscle of Rana pipiens. Isometric tension measurements showed that two VR1 agonists, capsaicin (CAP) and N-arachidonoyl-dopamine (NADA), reduced muscle peak tension to 57 ± 4 % and 71 ± 3% of control, respectively. The effect of CAP was partially blocked by a VR1 blocker, capsazepine (CPZ), but the effect of NADA was not changed by CPZ. Because NADA is able to act on cannabinoid receptors, which are also present in muscle fibers, we tested the cannabinoid antagonist AM281. We found that AM281 antagonized both CAP and NADA effects. AM281 alone reduced peak tension to 80 ± 6 % of control. With both antagonists, the CAP effect was completely blocked, and the NADA effect was partially blocked. These results provide pharmacological evidence of the functional presence of the VR1 receptor in fast skeletal muscle fibers of the frog and suggest that capsaicin and NADA reduce tension by activating both cannabinoid and vanilloid receptors.

  4. The endocannabinoids anandamide and virodhamine modulate the activity of the candidate cannabinoid receptor GPR55

    OpenAIRE

    Sharir, Haleli; Console-Bram, Linda; Mundy, Christina; Steven N. Popoff; Kapur, Ankur; Abood, Mary E.

    2012-01-01

    The role of cannabinoid receptors in inflammation has been the topic of many research endeavors. Despite this effort, to date the involvement of the endocannabinoid system (ECS) in inflammation remains obscure. The ambiguity of cannabinoid involvement may be explained by the existence of cannabinoid receptors, other than CB1 and CB2, or a consequence of interaction of endocannabinoids with other signaling systems. GPR55 has been proposed to be a cannabinoid receptor; however the interaction o...

  5. Cannabinoid receptor 1 signaling in cardiovascular regulating nuclei in the brainstem: A review

    OpenAIRE

    Badr M. Ibrahim; Abdel-Rahman, Abdel A.

    2013-01-01

    Cannabinoids elicit complex hemodynamic responses in experimental animals that involve both peripheral and central sites. Centrally administered cannabinoids have been shown to predominantly cause pressor response. However, very little is known about the mechanism of the cannabinoid receptor 1 (CB1R)-centrally evoked pressor response. In this review, we provided an overview of the contemporary knowledge regarding the cannabinoids centrally elicited cardiovascular responses and the possible un...

  6. Win-Win-Win

    Science.gov (United States)

    Jackson, Nancy Mann

    2012-01-01

    Two years ago, members of a strategic planning committee at Woodberry Forest School set a goal to re-engage African-American and Hispanic alumni, many of whom had lost touch with the Virginia boarding school for boys. One of the committee's ideas was to launch a mentoring program to connect current minority students with minority alumni. Two years…

  7. C3-heteroaroyl cannabinoids as photolabeling ligands for the CB2 cannabinoid receptor.

    Science.gov (United States)

    Dixon, Darryl D; Tius, Marcus A; Thakur, Ganesh A; Zhou, Han; Bowman, Anna L; Shukla, Vidyanand G; Peng, Yan; Makriyannis, Alexandros

    2012-08-15

    A series of tricyclic cannabinoids incorporating a heteroaroyl group at C3 were prepared as probes to explore the binding site(s) of the CB1 and CB2 receptors. This relatively unexplored structural motif is shown to be CB2 selective with K(i) values at low nanomolar concentrations when the heteroaromatic group is 3-benzothiophenyl (41) or 3-indolyl (50). When photoactivated, the lead compound 41 was shown to successfully label the CB2 receptor through covalent attachment at the active site while 50 failed to label. The benzothiophenone moiety may be a photoactivatable moiety suitable for selective labeling.

  8. Time-Dependent Protection of CB2 Receptor Agonist in Stroke.

    Directory of Open Access Journals (Sweden)

    Seong-Jin Yu

    Full Text Available Recent studies have indicated that type 2 cannabinoid receptor (CB2R agonists reduce neurodegeneration after brain injury through anti-inflammatory activity. The purpose of this study was to examine the time-dependent interaction of CB2R and inflammation in stroke brain. Adult male rats were subjected to right middle cerebral artery occlusion (MCAo. CB2R mRNA expression was significantly elevated >20 fold on day 2, peaked >40-fold on day 5, and normalized on day 10 post-stroke. Inflammatory markers IBA1 and TLR4 were significantly upregulated 15 fold until day 5 after MCAo. Because of the delayed upregulation of CB2R and IBA1, we next treated animals daily with CB2R agonist AM1241 or anti-inflammatory PPAR-γ agonist pioglitazone from 2 to 5 days after MCAo. Delayed treatment with pioglitazone significantly reduced abnormal neurological scores and body asymmetry as well as brain infarction in stroke animals. No behavioral improvement or reduction in brain infarction was found in animals receiving AM1241. Pioglitazone, but not AM1241, significantly reduced IBA1 expression in the stroke cortex, suggesting that delayed treatment with AM1241 failed to alter ischemia-mediated IBA-1 upregulation. In contrast, pretreatment with AM1241 significantly reduced brain infarction and neurological deficits. In conclusion, our data support a time-dependent neuroprotection of CB2 agonist in an animal model of stroke. Delayed post- treatment with PPAR-γ agonist induced behavioral recovery and microglial suppression; early treatment with CB2R agonist suppressed neurodegeneration in stroke animals.

  9. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    Science.gov (United States)

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes.

  10. Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis.

    Science.gov (United States)

    Fu, Weisi; Taylor, Bradley K

    2015-05-19

    Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that, a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Four weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10-100μg) dose-dependently reduced both mechanical and cold hypersensitivity without producing signs of sedation or ataxia. The anti-hyperalgesic effects of JWH-133 could be dose-dependently prevented by intrathecal co-administration of the CB2 antagonist, AM-630 (1-3μg). Our results suggest that JWH-133 acts at CB2 receptors, most likely within the dorsal horn of the spinal cord, to suppress the hypersensitivity associated with experimental autoimmune encephalomyelitis. These are the first pre-clinical studies to directly promote CB2 as a promising target for the treatment of central pain in an animal model of multiple sclerosis.

  11. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  12. Barselsrettigheder til danske fædre – en win win situation

    DEFF Research Database (Denmark)

    Bloksgaard, Lotte; Borchorst, Anette

    2011-01-01

    Det er vigtigt at sikre selvstændige orlovsrettigheder til mænd i Danmark. Danske fædres orlovsrettigheder er i dag de svageste i Norden, og det er forklaringen på, at de også tager den næstkorteste orlov i nordisk sammenhæng. Den danske orlovslovgivning har været præget af blokpolitik, og forskn...... forskning og viden har ikke spillet nogen større rolle for beslutningerne. Det er beklageligt, fordi det peger i retning af, at øremærket orlov til far skaber en win-win situation for fædre, børn og mødre, mener forskerne Lotte Bloksgaard og Anette Borchorst....

  13. The therapeutic potential of cannabinoids for movement disorders.

    Science.gov (United States)

    Kluger, Benzi; Triolo, Piera; Jones, Wallace; Jankovic, Joseph

    2015-03-01

    There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders.

  14. Update on the Role of Cannabinoid Receptors after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Luciano S. A. Capettini

    2012-01-01

    Full Text Available Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1 and type 2 (CB2 transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role of CB1 and CB2 receptors in ischemic stroke. While CB1 receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, the CB2 activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke.

  15. Win-CC Control Extension Development: Pressure-Enthalpy Win-CC Panel

    CERN Document Server

    Gaona, Daniel

    2013-01-01

    This report reviews in detail the development and implementation of a Win-CC Control Extension for both Windows and Linux Platforms. The Control Extension consists in a Win-CC panel linked by dynamic libraries (*.dll or *.so) to the NIST Thermodynamics properties library. This linking permits to handle in real time different thermodynamic properties of a wide range of refrigerants. The Win-CC panel uses this information to produce a Pressure-Enthalpy Diagram of any required refrigeration cycle. In general, the p-H diagram enhance the understanding of the refrigeration cycle and facilitate the control and supervision of the system. Ideally, this control extension will be part of several Cooling Projects at CERN such as ATLAS IBL and CMS TIF. The development of this tool required several weeks of programming in C++ in both Linux and Windows platforms. At the end, the tool was constructed successfully and tested in both operating systems. The following sections go deeper into the develop, operation, and impleme...

  16. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity?

    Science.gov (United States)

    Fantegrossi, William E; Moran, Jeffery H; Radominska-Pandya, Anna; Prather, Paul L

    2014-02-27

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances.

  17. Rapid CB1 cannabinoid receptor desensitization defines the time course of ERK1/2 MAP kinase signaling.

    Science.gov (United States)

    Daigle, Tanya L; Kearn, Christopher S; Mackie, Ken

    2008-01-01

    Molecular mechanisms regulating the development of physiological and behavioral tolerance to cannabinoids are not well understood. Two cellular correlates implicated in the development and maintenance of tolerance are CB(1) cannabinoid receptor internalization and uncoupling of receptor signal transduction. Both processes have been proposed as mediators of tolerance because of observations that chronic Delta(9)-tetrahydrocannabinol (THC) treatment causes both region-specific decreases in CB(1) receptors and G-protein coupling in the brain. To determine the balance of these two processes in regulating CB(1) receptor signaling during sustained receptor stimulation, we evaluated the parameters affecting ERK1/2 MAP kinase activity in HEK293 cells stably expressing CB(1) receptors. CB(1) receptor stimulation by the potent CB(1) receptor agonist, CP 55,940 transiently activated ERK1/2. To determine if CB(1) receptor desensitization or internalization was responsible for the transient nature of ERK1/2 activation, we evaluated ERK1/2 phosphorylation in HEK293 cells expressing a desensitization-deficient CB(1) receptor (S426A/S430A CB(1)). Here, the duration of S426A/S430A CB(1) receptor-mediated activation of ERK1/2 was markedly prolonged relative to wild-type receptors, and was dynamically reversed by SR141716A. Interestingly, the S426A/S430A CB(1) receptor was still able to recruit betaarrestin-2, a key mediator of receptor desensitization, to the cell surface following agonist activation. In contrast to a central role for desensitization, pharmacological and genetic approaches suggested CB(1) receptor internalization is dispensable in the transient activation of ERK1/2. This study indicates that the duration of ERK1/2 activation by CB(1) receptors is regulated by receptor desensitization and underscores the importance of G-protein uncoupling in the regulation of CB(1) receptor signaling.

  18. The endocannabinoid N-arachidonoyldopamine (NADA) exerts neuroprotective effects after excitotoxic neuronal damage via cannabinoid receptor 1 (CB(1)).

    Science.gov (United States)

    Grabiec, Urszula; Koch, Marco; Kallendrusch, Sonja; Kraft, Robert; Hill, Kerstin; Merkwitz, Claudia; Ghadban, Chalid; Lutz, Beat; Straiker, Alex; Dehghani, Faramarz

    2012-03-01

    Endocannabinoids exert numerous effects in the CNS under physiological and pathological conditions. The aim of the present study was to examine whether the endocannabinoid N-arachidonoyldopamine (NADA) may protect neurons in excitotoxically lesioned organotypic hippocampal slice cultures (OHSC). OHSC were excitotoxically lesioned by application of N-methyl-d-aspartate (NMDA, 50 μM) for 4 h and subsequently treated with different NADA concentrations (0.1 pM-50 μM) alone or in combination with cannabinoid receptor antagonists. NADA protected dentate gyrus granule cells and caused a slight reduction in the number of microglial cells. The number of degenerated neurons significantly decreased between 100 pM and 10 μM NADA (p NADA mediated neuroprotection, we applied the cannabinoid (CB) receptor 1 (CB(1)) inverse agonist/antagonist AM251, CB(2) inverse agonist/antagonist AM630, abnormal-cannabidiol (abn-CBD)-sensitive receptor antagonist O-1918, transient receptor potential channel V1 (TRPV1) antagonist 6-iodonordihydrocapsaicin and A1 (TRPA1) antagonist HC-030031. Neuroprotective properties of low (1 nM) but not high (10 μM) NADA concentrations were solely blocked by AM251 and were absent in CB(1)(-/-) mice. AM630, O-1918, 6-iodonordihydrocapsaicin and HC-030031 showed no effects at all NADA concentrations applied. Our findings demonstrate that NADA protects dentate gyrus granule cells by acting via CB(1). NADA reduced the number of microglial cells at distinct concentrations. TRPV1 and TRPA1 were not involved in NADA mediated neuroprotection. Thus, our data implicate that NADA mediated activation of neuronal CB(1) may serve as a novel pharmacological target to mitigate symptoms of neuronal damage.

  19. The activation of cannabinoid receptors during early postnatal development reduces the expression of cell adhesion molecule L1 in the rat brain.

    Science.gov (United States)

    Gómez, María; Hernández, Mariluz; Fernández-Ruiz, Javier

    2007-05-11

    Cannabinoid CB(1) receptors and their ligands emerge early in brain development and are abundantly expressed in certain brain regions that play key roles in processes related to cell proliferation and migration, neuritic elongation and guidance, and synaptogenesis. This would support the notion that the cannabinoid system might play a modulatory role in the regulation of these processes. We have recently presented preliminary in vivo evidence showing that this modulatory action might be exerted, among others, through regulating the levels of several key elements in these processes, such as the L1 protein. This was observed in various white matter areas of the rat forebrain. Because these preliminary in vivo experiments focused only in fetal ages, we concentrated now in the period of early postnatal development. To this end, we analyzed the effects of the cannabinoid agonist Delta(9)-tetrahydrocannabinol (Delta(9)-THC) daily administered since the 5th day of gestation on mRNA levels for L1 in different brain structures of rat neonates at different postnatal ages (PND1, PND5 and PND12). Our results revealed that Delta(9)-THC exposure affected the levels of L1 transcripts in specific brain structures only in PND1, these effects disappearing during further days. Thus, we found reduced L1-mRNA levels in grey matter regions, such as the cerebral cortex, septum nuclei, striatum, dentate gyrus and CA3 subfield of the Ammon horn. White matter areas and subventricular zones were, however, more resistant to Delta(9)-THC exposure at this postnatal age in contrast with the previous data obtained in the fetal brain. Importantly, the effects were influenced by gender of animals, since the reductions were always more marked in females than males, also in contrast with the data reported for the fetal brain. In summary, the cannabinoid system seems to modulate the levels of L1 in several brain structures during specific periods of development [late gestation (previous data) and very

  20. Nicotine and cannabinoids: parallels, contrasts and interactions.

    Science.gov (United States)

    Viveros, Maria-Paz; Marco, Eva M; File, Sandra E

    2006-01-01

    After a brief outline of the nicotinic and cannabinoid systems, we review the interactions between the pharmacological effects of nicotine and cannabis, two of the most widely used drugs of dependence. These drugs are increasingly taken in combination, particularly among the adolescents and young adults. The review focuses on addiction-related processes, gateway and reverse gateway theories of addiction and therapeutic implications. It then reviews studies on the important period of adolescence, an area that is in urgent need of further investigation and in which the importance of sex differences is emerging. Three other areas of research, which might be particularly relevant to the onset and/or maintenance of dependence, are then reviewed. Firstly, the effects of the two drugs on anxiety-related behaviours are discussed and then their effects on food intake and cognition, two areas in which they have contrasting effects. Certain animal studies suggest that reinforcing effects are likely to be enhanced by joint consumption of nicotine and cannabis, as also may be anxiolytic effects. If this was the case in humans, the latter might be viewed as an advantage particularly by adolescent girls, although the increased weight gain associated with cannabis would be a disadvantage. The two drugs also have opposite effects on cognition and the possibility of long-lasting cognitive impairments resulting from adolescent consumption of cannabis is of particular concern.

  1. Evaluation of principal cannabinoids in airborne particulates

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, C., E-mail: balducci@iia.cnr.it [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy); Nervegna, G.; Cecinato, A. [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy)

    2009-05-08

    The determination of delta(9)-tetrahydrocannabinol ({Delta}{sup 9}-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm{sup -3} of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  2. Effects of ethanol in an open field apparatus: modification by U50488H and WIN 44441-3.

    Science.gov (United States)

    Pohorecky, L A; Patel, V; Roberts, P

    1989-02-01

    The effects of U50488H, a kappa agonist, and WIN 44441-3, a kappa antagonist, and their modification of the effects of ethanol, on the behavior of rats in a modified open field apparatus, was examined. Crossover activity was increased by U50488H. Headpoke activity was decreased by WIN 44441-3 and increased by U50488H. Rearing activity was increased by WIN 44441-3 but was not affected by U50488H. The effect of both drugs was dose related, with the largest doses having no effect. Ethanol (0.5 g/kg) stimulated crossover activity while it depressed rearing, headpoke and corner activities; except for crossover activity the 2.0 g/kg dose of ethanol depressed these activities. Pretreatment with WIN 44441-3 (0.5 mg/kg) potentiated the stimulant effect of ethanol on crossover activity and partially reversed the depressant effect of ethanol on rearing and headpoke activities. U50488H potentiated the ethanol-induced depression of headpoke and reversed the depression of corner activity. Pretreatment with U50488H had no effect on ethanol's action on crossover and rearing behaviors. Our results indicate that kappa opiate receptors may mediate some behaviors exhibited by rats in a modified open field apparatus. Activation of these receptors increases locomotor and headpoke activity but had no effect on rearing activity. Furthermore, the 0.5 g/kg dose of ethanol has differential effects on different measures of open field behavior, while the 2.0 g/kg dose was largely depressant. Our data suggest that some of these effects of ethanol may be mediated via kappa opioid receptors.

  3. Effects of Se-phenyl thiazolidine-4-carboselenoate on mechanical and thermal hyperalgesia in brachial plexus avulsion in mice: mediation by cannabinoid CB1 and CB2 receptors.

    Science.gov (United States)

    Del Fabbro, Lucian; Borges Filho, Carlos; Cattelan Souza, Leandro; Savegnago, Lucielli; Alves, Diego; Henrique Schneider, Paulo; de Salles, Helena Domingues; Jesse, Cristiano R

    2012-09-26

    In this study, we investigated the therapeutic effects of treatment with (R)-Se-phenyl thiazolidine-4-carboselenoate (Se-PTC), an organic selenium compound with antinociceptive properties, against mechanical and thermal hyperalgesia induced by brachial plexus avulsion (BPA), a neuropathic model in mice. The involvement of cannabinoid CB(1) and CB(2) receptors in the Se-PTC anti-hyperalgesic effect was also investigated. Se-PTC treatment at (25 and 50mg/kg, per oral, p.o.) lowered (BPA model) induced mechanical and thermal hyperalgesia in mice. Pretreatment with cannabinoid CB(1) (AM251; 1mg/kg, intraperitoneally, i.p.), or CB(2) (AM630; 3mg/kg, i.p.) receptor antagonists reverted the mechanical and thermal anti-hyperalgesic effect of Se-PTC (25mg/kg) in the BPA model. Selective CB(1) (ACEA, 10mg/kg, i.p.) and CB(2) (JWH-133, 10mg/kg, i.p.) receptor agonists lowered mechanical and thermal hyperalgesia in the BPA model, and this effect was prevented by selective CB(1) and CB(2) receptor antagonists. Gabapentin (70mg/kg, p.o.), positive control administration also lowered mechanical and thermal hyperalgesia in the BPA model. The results suggest that the mechanical and thermal hyperalgesia observed following BPA in mice is dependent on cannabinoid receptors. The results indicate that modulating cannabinoid receptors represent a valuable approach for the treatment of neuropathic pain. In conclusion, the results suggested that Se-PTC produces pronounced mechanical and thermal anti-hyperalgesic effects in neuropathic models in mice by modulating CB(1) and CB(2) receptors.

  4. AM-251 and rimonabant act as direct antagonists at mu-opioid receptors: implications for opioid/cannabinoid interaction studies.

    Science.gov (United States)

    Seely, Kathryn A; Brents, Lisa K; Franks, Lirit N; Rajasekaran, Maheswari; Zimmerman, Sarah M; Fantegrossi, William E; Prather, Paul L

    2012-10-01

    Mu-opioid and CB1-cannabinoid agonists produce analgesia; however, adverse effects limit use of drugs in both classes. Additive or synergistic effects resulting from concurrent administration of low doses of mu- and CB1-agonists may produce analgesia with fewer side effects. Synergism potentially results from interaction between mu-opioid receptors (MORs) and CB1 receptors (CB1Rs). AM-251 and rimonabant are CB1R antagonist/inverse agonists employed to validate opioid-cannabinoid interactions, presumed to act selectively at CB1Rs. Therefore, the potential for direct action of these antagonists at MORs is rarely considered. This study determined if AM-251 and/or rimonabant directly bind and modulate the function of MORs. Surprisingly, AM-251 and rimonabant, but not a third CB1R inverse agonist AM-281, bind with mid-nanomolar affinity to human MORs with a rank order of affinity (K(i)) of AM-251 (251 nM) > rimonabant (652 nM) > AM281 (2135 nM). AM-251 and rimonabant, but not AM-281, also competitively antagonize morphine induced G-protein activation in CHO-hMOR cell homogenates (K(b) = 719 or 1310 nM, respectively). AM-251 and rimonabant block morphine inhibition of cAMP production, while only AM-251 elicits cAMP rebound in CHO-hMOR cells chronically exposed to morphine. AM-251 and rimonabant (10 mg/kg) attenuate morphine analgesia, whereas the same dose of AM-281 produces little effect. Therefore, in addition to high CB1R affinity, AM-251 and rimonabant bind to MORs with mid-nanomolar affinity and at higher doses may affect morphine analgesia via direct antagonism at MORs. Such CB1-independent of these antagonists effects may contribute to reported inconsistencies when CB1/MOR interactions are examined via pharmacological methods in CB1-knockout versus wild-type mice.

  5. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  6. Pharmacogenetics of β2-Agonists

    Directory of Open Access Journals (Sweden)

    Nobuyuki Hizawa

    2011-01-01

    Full Text Available Short-acting β2-agonists (SABAs and long-acting β2-agonists (LABAs are both important for treatment of asthma and chronic obstructive pulmonary disease (COPD because of their bronchodilator and bronchoprotective effects. However, the use of these agonists, at least for asthma, has generated some controversy because of their association with increased mortality. Pharmacogenetics is the study of genetically determined variation in response to medications, which might prove useful for target therapies in highly responsive patients, especially for more expensive therapies or those with increased risk of side effects. Variation in response to both SABAs and LABAs has been observed in patients with polymorphisms in the β2 adrenoceptor gene (ADRB2. This review summarizes results from various studies on the possible relationship between ADRB2 polymorphisms and the bronchodilator or bronchoprotective effects of inhaled β2-agonists. By assessing the ADRB2 genotype, the hope is that it will be possible to predict the responsiveness to chronic administration of β2-agonists. Genetic testing, however, is of limited usefulness at this stage for ADRB2 because the common variants identified thus far account for only a small proportion of the variation observed for given responses. Carefully performed and adequately powered clinical trials continue to be important for achieving the goal of pharmacogenetic approaches to therapy.

  7. On winning sets and non-normal numbers

    CERN Document Server

    Mance, Bill

    2010-01-01

    In \\cite{SchmidtGames}, W. Schmidt proved that the set of non-normal numbers in base $b$ is a {\\it winning set}. We generalize this result by proving that the set of non-normal numbers with respect to the $\\beta$-expansion, where $\\beta$ is a Pisot-Vijayaraghavan number, is a winning set. Additionally, we show that several sets of non-normal numbers with respect to the Cantor series expansion are winning sets. As an immediate consequence, all of these sets will be shown to have full Hausdorff dimension.

  8. Beyond THC: the new generation of cannabinoid designer drugs

    Directory of Open Access Journals (Sweden)

    Liana eFattore

    2011-09-01

    Full Text Available Synthetic cannabinoids are functionally similar to delta9-tetrahydrocannabinol (THC, the psychoactive principle of cannabis, and bind to the same cannabinoid receptors in the brain and peripheral organs. From 2008, synthetic cannabinoids were detected in herbal smoking mixtures sold on websites and in head shops under the brand name of Spice Gold, Yucatan Fire, Aroma, and others. Although these products (also known as Spice drugs or legal highs do not contain tobacco or cannabis, when smoked they produce effects similar to THC. Intoxication, withdrawal, psychosis and death have been recently reported after consumption, posing difficult social, political and health challenges. More than 140 different Spice products have been identified to date. The ability to induce strong cannabis-like psychoactive effects, along with the fact that they are readily available on the Internet, still legal in many countries, marketed as natural safe substances, and undetectable by conventional drug screening tests, has rendered these drugs very popular and particularly appealing to young and drug-naïve individuals seeking new experiences. An escalating number of compounds with cannabinoid receptor activity are currently being found as ingredients of Spice, of which almost nothing is known in terms of pharmacology, toxicology and safety. Since legislation started to control the synthetic cannabinoids identified in these herbal mixtures, many new analogs have appeared on the market. New cannabimimetic compounds are likely to be synthesized in the near future to replace banned synthetic cannabinoids, leading to a dog chasing its tail situation. Spice smokers are exposed to drugs that are extremely variable in composition and potency, and are at risk of serious, if not lethal, outcomes. Social and health professionals should maintain a high degree of alertness for Spice use and its possible psychiatric effects in vulnerable people.

  9. Customer Satisfaction Perceptions of Dislocated Workers Served by WIN Job Centers in the Mississippi Corridor Consortium

    Science.gov (United States)

    Washburn, Dava Michelle

    2009-01-01

    The purpose of this study was to determine the perceptions of satisfaction of dislocated workers served by WIN Job Centers in the Mississippi Corridor Consortium. Four WIN Job Centers participated in this study: Northeast Mississippi Community College WIN Job Center in Corinth, Northwest Mississippi Community College WIN Job Center in Oxford,…

  10. Evaluation of Phytocannabinoids from High Potency Cannabis sativa using In Vitro Bioassays to Determine Structure-Activity Relationships for Cannabinoid Receptor 1 and Cannabinoid Receptor 2

    OpenAIRE

    2014-01-01

    Cannabis has been around for thousands of years and has been used recreationally, medicinally, and for fiber. Over 500 compounds have been isolated from Cannabis sativa with approximately 105 being cannabinoids. Of those 105 compounds, Δ9-tetrahydrocannabinol has been determined as the primary constituent, which is also responsible for the psychoactivity associated with Cannabis. Cannabinoid receptors belong to the large superfamily of G protein-coupled receptors. Targeting the cannabinoid re...

  11. Cannabinoids and Reproduction: A Lasting and Intriguing History

    Directory of Open Access Journals (Sweden)

    Gilda Cobellis

    2010-10-01

    Full Text Available Starting from an historical overview of lasting Cannabis use over the centuries, we will focus on a description of the cannabinergic system, with a comprehensive analysis of chemical and pharmacological properties of endogenous and synthetic cannabimimetic analogues. The metabolic pathways and the signal transduction mechanisms, activated by cannabinoid receptors stimulation, will also be discussed. In particular, we will point out the action of cannabinoids and endocannabinoids on the different neuronal networks involved in reproductive axis, and locally, on male and female reproductive tracts, by emphasizing the pivotal role played by this system in the control of fertility.

  12. Cardiotoxicity associated with the synthetic cannabinoid, K9, with laboratory confirmation.

    Science.gov (United States)

    Young, Amy C; Schwarz, Evan; Medina, Genevieve; Obafemi, Adebisi; Feng, Sing-Yi; Kane, Colin; Kleinschmidt, Kurt

    2012-09-01

    Synthetic cannabinoids have been popular recreational drugs of abuse for their psychoactive properties. Five of the many synthetic cannabinoids have been recently banned in the United States because of their unknown and potentially harmful adverse effects. Little is known about these substances. They are thought to have natural cannabinoid-like effects but have different chemical structures. Adverse effects related to synthetic cannabinoids are not well known. We provide clinical effects and patient outcome following K9 use. In addition, we briefly review synthetic cannabinoids. We present a 17-year-old adolescent boy with chest pain, tachycardia, and then bradycardia associated with smoking K9. Two synthetic cannabinoids, JWH-018 and JWH-073, were confirmed on laboratory analysis. In addition to the limited current data, we demonstrate harmful adverse effects related to toxicity of 2 synthetic cannabinoids. Further studies are needed.

  13. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    Directory of Open Access Journals (Sweden)

    Alejandra Delgado

    2011-01-01

    Full Text Available We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ.

  14. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death.

    Science.gov (United States)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB1 receptor antagonist AM251, but not with the selective CB2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB1 receptor, but not by the CB2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain.

  15. Presynaptic effects of anandamide and WIN55,212-2 on glutamatergic nerve endings isolated from rat hippocampus.

    Science.gov (United States)

    Cannizzaro, C; D'Amico, M; Preziosi, P; Martire, M

    2006-02-01

    We examined the effects of the endocannabinoide-anandamide (AEA), the synthetic cannabinoid, WIN55,212-2, and the active phorbol ester, 4-beta-phorbol 12-myristate 13-acetate (4-beta-PMA), on the release of [(3)H]d-Aspartate ([(3)H]d-ASP) from rat hippocampal synaptosomes. Release was evoked with three different stimuli: (1) KCl-induced membrane depolarization, which activates voltage-dependent Ca(2+) channels and causes limited neurotransmitter exocytosis, presumably from ready-releasable vesicles docked in the active zone; (2) exposure to the Ca(2+) ionophore-A23187, which causes more extensive transmitter release, presumably from intracellular reserve vesicles; and (3) K(+) channel blockade by 4-aminopyridine (4-AP), which generates repetitive depolarization that stimulates release from both ready-releasable and reserve vesicles. AEA produced concentration-dependent inhibition of [(3)H]d-ASP release stimulated with 15 mM KCl (E(max)=47.4+/-2.8; EC(50)=0.8 microM) but potentiated the release induced by 4-AP (1mM) (+22.0+/-1.3% at 1 microM) and by A23187 (1 microM) (+98.0+/-5.9% at 1 microM). AEA's enhancement of the [(3)H]d-ASP release induced by the Ca(2+) ionophore was mimicked by 4-beta-PMA, which is known to activate protein kinase C (PKC), and the increases produced by both compounds were completely reversed by synaptosome treatment with staurosporine (1 microM), a potent PKC blocker. In contrast, WIN55,212-2 inhibited the release of [(3)H]d-ASP evoked by KCl (E(max)=47.1+/-2.8; EC(50)=0.9 microM) and that produced by 4-AP (-26.0+/-1.5% at 1 microM) and had no significant effect of the release induced by Ca(2+) ionophore treatment. AEA thus appears to exert a dual effect on hippocampal glutamatergic nerve terminals. It inhibits release from ready-releasable vesicles and potentiates the release observed during high-frequency stimulation, which also involves the reserve vesicles. The latter effect is mediated by PKC. These findings reveal novel effects of AEA

  16. 大麻素受体2激动剂JWH-015对骨癌痛大鼠脊髓背角磷酸化环磷酸腺苷反应元件结合蛋白的影响%The effect of intraperitoneal injection cannabinoid 2 receptor agonist JWH-015 on the expression of phosphorylated cyclic AMP response element binding protein in spinal dorsal horn in a rat model of bone cancer pain

    Institute of Scientific and Technical Information of China (English)

    孙蓓; 张羽; 冷鑫; 顾小萍; 马正良

    2014-01-01

    目的 探讨腹腔注射大麻素受体(cannabinoid receptor,CB)2激动剂对骨癌痛大鼠脊髓背角磷酸化环磷酸腺苷反应元件结合蛋白(phosphorylated cyclic AMP response element binding protein,pCREB)表达的影响. 方法 运用随机数字表法将63只雌性SD大鼠分为3组:肿瘤给药组(J组,15只)、肿瘤对照组(D组,24只)和假手术对照组(S组,24只).J组、D组的大鼠左侧胫骨上端骨髓腔被注入5μlWalker256大鼠乳腺癌细胞制备骨癌痛模型;S组则注入等量的生理盐水.在造模后第10天,J组腹腔注射JWH-015(100 μg/500μl),D组、S组注射等量JWH-015溶剂二甲基亚髓砜(dimethylsulfoxide,DMSO).每组大鼠于造模前1d,造模后4、7、10 d,腹腔注射后2、6、24、48、72 h,检测手术侧机械刺激缩足阈值(paw withdrawal mechanicalthreshold,PWMT)和行走痛行为学评分.D组和S组大鼠于造模后4、7d,J组、D组和S组大鼠于造模后10 d及腹腔注射后6、24、72 h,取脊髓腰膨大进行免疫印迹分析. 结果 与S组比较,J组和D组大鼠造模后7 d PWMT开始降低(P<0.05),造模后10 d行走痛行为学评分增加(P<0.05),脊髓背角pCREB表达水平于7、10 d上调(P<0.05).与D组比较,腹腔注射JWH-015后24 h,J组PWMT(8.7±1.6)g显著上升(P<0.05),行走痛行为学评分(1.0±0.6)分和pCREB的表达(0.56±0.10)明显下降(P<0.05). 结论 腹腔注射JWH-015可能通过下调脊髓背角pCREB的表达改善骨癌痛大鼠的痛行为.%Objective To investigate the change of phosphorylated cyclic AMP response element binding protein (pCREB) in spinal dorsal horn in a rat model of bone cancer pain,after intraperitoneal injection JWH-015.Methods Sixty-three female SD rats were randomly divided into 3 group:medication administration of JWH-015 group (group J,n=15),medication administration of dimethylsulfoxide (DMSO) group (group D,n=15) and sham group (group S,n=21).Group J,D:5 μl Walker256 breast cancer cells of rat were implanted

  17. Prevention of Paclitaxel-Induced Neuropathy Through Activation of the Central Cannabinoid Type 2 Receptor System

    Science.gov (United States)

    Naguib, Mohamed; Xu, Jijun J.; Diaz, Philippe; Brown, David L.; Cogdell, David; Bie, Bihua; Hu, Jianhua; Craig, Suzanne; Hittelman, Walter N.

    2012-01-01

    Background Peripheral neuropathy is a major dose-limiting toxicity of chemotherapy, especially after multiple courses of paclitaxel. The development of paclitaxel-induced neuropathy is associated with the activation of microglia followed by the activation and proliferation of astrocytes, and the expression and release of proinflammatory cytokines in the spinal dorsal horn. Cannabinoid type 2 (CB2) receptors are expressed in the microglia in neurodegenerative disease models. Methods To explore the potential of CB2 agonists for preventing paclitaxel-induced neuropathy, we designed and synthesized a novel CB2-selective agonist, namely MDA7. The effect of MDA7 in preventing paclitaxel-induced allodynia was assessed in rats and in CB2+/+ and CB2–/– mice. We hypothesize that the CB2 receptor functions in a negative-feedback loop and that early MDA7 administration can blunt the neuroinflammatory response to paclitaxel and prevent mechanical allodynia through interference with specific signaling pathways. Results We found that MDA7 prevents paclitaxel-induced mechanical allodynia in rats and mice in a dose- and time-dependent manner without compromising paclitaxel's antineoplastic effect. MDA7's neuroprotective effect was absent in CB2-/- mice and was blocked by CB2 antagonists, suggesting that MDA7's action directly involves CB2 receptor activation. MDA7 treatment was found to interfere with early events in the paclitaxel-induced neuroinflammatory response as evidenced by relatively reduced Toll-like receptor and CB2 expression in the lumbar spinal cord, reduced levels of extracellular signal regulated kinase 1/2 activity, reduced numbers of activated microglia and astrocytes, and reduced secretion of proinflammatory mediators in vivo and in in vitro models. Conclusions Our findings suggest an innovative therapeutic approach to prevent chemotherapy-induced neuropathy and may permit more aggressive use of active chemotherapeutic regimens with reduced long-term sequelae

  18. Leaders in high temperature superconductivity commercialization win superconductor industry award

    CERN Multimedia

    2007-01-01

    CERN's Large Hadron Collider curretn leads project head Amalia Ballarino named superconductor industry person of the year 2006. Former high temperature superconductivity program manager at the US Department of energy James Daley wins lifetime achievement award. (1,5 page)

  19. Contactless decontamination of hair samples: cannabinoids.

    Science.gov (United States)

    Restolho, José; Barroso, Mário; Saramago, Benilde; Dias, Mário; Afonso, Carlos A M

    2017-02-01

    Room temperature ionic liquids (ILs) have already been shown to provide efficient extraction media for several systems, and to capture volatile compounds, namely opiates. In this work, a novel, contactless, artefact-free extraction procedure for the removal of Δ(9) -tetrahrydrocannabinol (THC) from the surface of human hair is presented. To prepare in vitro cannabinoids-contaminated hair, samples were flushed with hashish smoke for 7 h. The decontamination experiments were carried at 100 °C for 24 h, according to the procedure previously described. Fifty-three ILs were screened and presented decontamination efficiencies ranging from 0 to 96 %. Although the majority of the ILs presented efficiencies above 90%, the 1-ethanol-3-methyl tetrafluoroborate (96%) was chosen for further process optimization. The Design of Experiments results demonstrated that all studied variables were significant for the process and the obtained optimum conditions were: 100 °C, 13 h and 175 mg of IL. In the work of Perrotin-Brunel et al. (J. Mol. Struct. 2011, 987, 67), it is demonstrated that, at 100 °C, full conversion of tetrahydrocannabinolic acid (THCA) into THC is obtained after 60 min. Since our decontamination takes place over 13 h at 100 °C, full conversion of THCA into THC is expected. Additionally, our method was compared with the method proposed by Cairns et al. (Forensic Sci. Int. 2004, 145, 97), through the analysis of 15 in vitro contaminated hair samples. The results demonstrated that with our method a mean extraction efficiency of 11 % higher was obtained. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Who Wins The Olympic Games: Economic Development and Medal Totals

    OpenAIRE

    Andrew B. Bernard; Busse, Meghan R.

    2000-01-01

    This paper examines determinants of Olympic success at the country level. Does the U.S. win its fair share of Olympic medals? Why does China win 6% of the medals even though it has 1/5 of the world's population? We consider the role of population and economic development in determining medal totals from 1960-1996. We also provide out of sample predictions for the 2000 Olympics in Sydney.

  1. A Survey of ’Quick Wins’ in Modern War

    Science.gov (United States)

    1975-10-01

    out over the vast area of northern Manchuria , in a rectangle formed by Kailar, Tsitsihar, Harbin and Sakhalian. It con- sisted of three infantry...of Manchuria , August 1945 5 Third Arab-Israeli War, 1967 6 Almost Quick Wins German Invasion of Russia (Operation "Barbarossa"), 1941 7...1941-1942 Soviet Invasion of Manchuria . August 1945 Third Arab-Israeli War, 1967 Almost Quick Wins Operation Barbarossa, The German Campaign in

  2. Who Wins the Olympic Games: Economic Development and Medal Totals

    OpenAIRE

    2000-01-01

    This paper examines determinants of Olympic success at the country level. Does the U.S. win its fair share of Olympic medals? Why does China win 6% of the medals even though it has 1/5 of the world's population? We consider the role of population and economic development in determining medal totals from 1960-1996. We also provide out of sample predictions for the 2000 Olympics in Sydney.

  3. Activation of Cannabinoid Receptor 2 Enhances Osteogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yong-Xin Sun

    2015-01-01

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs are considered as the most promising cells source for bone engineering. Cannabinoid (CB receptors play important roles in bone mass turnover. The aim of this study is to test if activation of CB2 receptor by chemical agonist could enhance the osteogenic differentiation and mineralization in bone BM-MSCs. Alkaline phosphatase (ALP activity staining and real time PCR were performed to test the osteogenic differentiation. Alizarin red staining was carried out to examine the mineralization. Small interference RNA (siRNA was used to study the role of CB2 receptor in osteogenic differentiation. Results showed activation of CB2 receptor increased ALP activity, promoted expression of osteogenic genes, and enhanced deposition of calcium in extracellular matrix. Knockdown of CB2 receptor by siRNA inhibited ALP activity and mineralization. Results of immunofluorescent staining showed that phosphorylation of p38 MAP kinase is reduced by knocking down of CB2 receptor. Finally, bone marrow samples demonstrated that expression of CB2 receptor is much lower in osteoporotic patients than in healthy donors. Taken together, data from this study suggested that activation of CB2 receptor plays important role in osteogenic differentiation of BM-MSCs. Lack of CB2 receptor may be related to osteoporosis.

  4. Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses.

    Science.gov (United States)

    Sylantyev, Sergiy; Jensen, Thomas P; Ross, Ruth A; Rusakov, Dmitri A

    2013-03-26

    G protein-coupled receptor (GPR) 55 is sensitive