WorldWideScience

Sample records for canine knee cartilage

  1. Topographical variation of the elastic properties of articular cartilage in the canine knee.

    Science.gov (United States)

    Jurvelin, J S; Arokoski, J P; Hunziker, E B; Helminen, H J

    2000-06-01

    Equilibrium response of articular cartilage to indentation loading is controlled by the thickness (h) and elastic properties (shear modulus, mu, and Poisson's ratio, nu) of the tissue. In this study, we characterized topographical variation of Poisson's ratio of the articular cartilage in the canine knee joint (N=6). Poisson's ratio was measured using a microscopic technique. In this technique, the shape change of the cartilage disk was visualized while the cartilage was immersed in physiological solution and compressed in unconfined geometry. After a constant 5% axial strain, the lateral strain was measured during stress relaxation. At equilibrium, the lateral-to-axial strain ratio indicates the Poisson's ratio of the tissue. Indentation (equilibrium) data from our prior study (Arokoski et al., 1994. International Journal of Sports Medicine 15, 254-260) was re-analyzed using the Poisson's ratio results at the test site to derive values for shear and aggregate moduli. The lowest Poisson's ratio (0.070+/-0.016) located at the patellar surface of femur (FPI) and the highest (0.236+/-0.026) at the medial tibial plateau (TMI). The stiffest cartilage was found at the patellar groove of femur (micro=0.964+/-0.189MPa, H(a)=2.084+/-0. 409MPa) and the softest at the tibial plateaus (micro=0.385+/-0. 062MPa, H(a)=1.113+/-0.141MPa). Comparison of the mechanical results and the biochemical composition of the tissue (Jurvelin et al., 1988. Engineering in Medicine 17, 157-162) at the matched sites of the canine knee joint indicated a negative correlation between the Poisson's ratio and collagen-to-PG content ratio. This is in harmony with our previous findings which suggested that, in unconfined compression, the degree of lateral expansion in different tissue zones is related to collagen-to-PG ratio of the zone.

  2. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness.

    Science.gov (United States)

    Schmitz, Randy J; Harrison, David; Wang, Hsin-Min; Shultz, Sandra J

    2017-06-02

      Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown.   To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals.   Descriptive laboratory study.   Laboratory.   Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg).   Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex.   Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R 2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R 2 Δ = 0.31, PΔ = .003).   Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a potentially modifiable biomechanical factor is associated with cartilage status in a healthy population

  3. Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter; Dam, Erik Bjørnager; Lillholm, Martin

    2013-01-01

    This study investigates whether measures of knee cartilage thickness can predict future loss of knee cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learning...... framework was then trained using these maps. Compared to measures of mean cartilage plate thickness, group separation was increased by focusing on local cartilage differences. This result is central for clinical trials where inclusion of rapid progressors may help reduce the period needed to study effects...

  4. Cartilage Degeneration and Alignment in Severe Varus Knee Osteoarthritis.

    Science.gov (United States)

    Nakagawa, Yasuaki; Mukai, Shogo; Yabumoto, Hiromitsu; Tarumi, Eri; Nakamura, Takashi

    2015-10-01

    The aim of this study was to examine the relationship between cartilage, ligament, and meniscus degeneration and radiographic alignment in severe varus knee osteoarthritis in order to understand the development of varus knee osteoarthritis. Fifty-three patients (71 knees) with primary varus knee osteoarthritis and who underwent total knee arthroplasty were selected for this study. There were 6 men and 47 women, with 40 right knees and 31 left knees studied; their mean age at operation was 73.5 years. The ligament, meniscus, degeneration of joint cartilage, and radiographic alignments were examined visually. The tibial plateau-tibial shaft angle was larger if the condition of the cartilage in the lateral femoral condyle was worse. The femorotibial angle and tibial plateau-tibial shaft angle were larger if the conditions of the lateral meniscus or the cartilage in the lateral tibial plateau were worse. Based on the results of this study, progression of varus knee osteoarthritis may occur in the following manner: medial knee osteoarthritis starts in the central portion of the medial tibial plateau, and accompanied by medial meniscal extrusion and anterior cruciate ligament rupture, cartilage degeneration expands from the anterior to the posterior in the medial tibial plateau. Bone attrition occurs in the medial tibial plateau, and the femoro-tibial angle and tibial plateau-tibial shaft angle increase. Therefore, the lateral intercondylar eminence injures the cartilage of the lateral femoral condyle in the longitudinal fissure type. Thereafter, the cartilage degeneration expands in the whole of the knee joints.

  5. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Directory of Open Access Journals (Sweden)

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  6. Association Between Pain at Sites Outside the Knee and Knee Cartilage Volume Loss in Elderly People Without Knee Osteoarthritis: A Prospective Study.

    Science.gov (United States)

    Pan, Feng; Laslett, Laura; Tian, Jing; Cicuttini, Flavia; Winzenberg, Tania; Ding, Changhai; Jones, Graeme

    2017-05-01

    Pain is common in the elderly. Knee pain may predict knee cartilage loss, but whether generalized pain is associated with knee cartilage loss is unclear. This study, therefore, aimed to determine whether pain at multiple sites predicts knee cartilage volume loss among community-dwelling older adults, and, if so, to explore potential mechanisms. Data from the prospective Tasmanian Older Adult Cohort study was utilized (n = 394, mean age 63 years, range 52-79 years). Experience of pain at multiple sites was assessed using a questionnaire at baseline. T1-weighted fat-saturated magnetic resonance imaging of the right knee was performed to assess the cartilage volume at baseline and after 2.6 years. Linear regression modeling was used with adjustment for potential confounders. The median number of painful sites was 3 (range 0-7). There was a dose-response relationship between the number of painful sites and knee cartilage volume loss in the lateral and total tibiofemoral compartments (lateral β = -0.28% per annum; total β = -0.25% per annum, both P for trend knee osteoarthritis (OA) (P pain medication, and knee structural abnormalities. The number of painful sites independently predicts knee cartilage volume loss, especially in people without knee OA, suggesting that widespread pain may be an early marker of more rapid knee cartilage loss in those without radiographic knee OA. The underlying mechanism is unclear, but it is independent of anthropometrics, physical activity, and knee structural abnormalities. © 2016, American College of Rheumatology.

  7. Cartilage Injuries in the Adult Knee

    Science.gov (United States)

    Moyad, Thomas F.

    2011-01-01

    Cartilage injuries are frequently recognized as a source of significant morbidity and pain in patients with previous knee injuries. The majority of patients who undergo routine knee arthroscopy have evidence of a chondral defect. These injuries represent a continuum of pathology from small, asymptomatic lesions to large, disabling defects affecting a major portion of one or more compartments within the knee joint. In comparison to patients with osteoarthritis, individuals with isolated chondral surface damage are often younger, significantly more active, and usually less willing to accept limitations in activities that require higher impact. At the present time, a variety of surgical procedures exist, each with their unique indications. This heterogeneity of treatment options frequently leads to uncertainty regarding which techniques, if any, are most appropriate for patients. The purpose of this review is to describe the workup and discuss the management techniques for cartilage injuries within the adult knee. PMID:26069581

  8. Electric Field Stimulation Enhances Healing of Post-Traumatic Osteoarthritic Cartilage

    Science.gov (United States)

    2015-10-01

    within canine cartilage explants. FY16 Goal – Testing the recovery of mechanical properties, biochemistry, and histology of .canine knee joints which...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...Prescribed by ANSI Std. Z39.18 Post-traumatic osteoarthritis (PTOA) often follows joint fractures and dislocations, cartilage injuries, chronic ligament

  9. MRI evaluation of acute articular cartilage injury of knee

    International Nuclear Information System (INIS)

    Zhang Jun; Wu Zhenhua; Fan Guoguang; Pan Shinong; Guo Qiyong

    2003-01-01

    Objective: To study the MRI manifestation of acute articular cartilage injury of knee for evaluating the extension and degree of the injury and guiding treatment. Methods: MRI of 34 patients with acute articular cartilage injury of knee within one day to fifteen days confirmed by arthroscopy and arthrotomy was reviewed and analyzed, with emphasis on articular cartilage and subchondral lesion. And every manifestation on MRI and that of arthroscopy and operation was compared. Results: The articular cartilage injury was diagnosed on MRI in 29 of 34 cases. Cartilage signal changes were found only in 4. The changes of cartilage shape were variable. Thinning of focal cartilage was showed in 3, osteochondral impaction in 3, creases of cartilage in 3, disrupted cartilage with fissuring in 13, cracks cartilage in 2, and cracks cartilage with displaced fragment in 1. Bone bruise and occult fracture were found only on MRI. Conclusion: The assessment of MRI and arthroscopy in acute articular cartilage injury are consistent. Combined with arthroscopy, MRI can succeed in assessing the extension and degree of acute articular injury and allowing treatment planning

  10. Prevention and management of knee osteoarthritis and knee cartilage injury in sports.

    Science.gov (United States)

    Takeda, Hideki; Nakagawa, Takumi; Nakamura, Kozo; Engebretsen, Lars

    2011-04-01

    Articular cartilage defects in the knee of young or active individuals remain a problem in orthopaedic practice. These defects have limited ability to heal and may progress to osteoarthritis. The prevalence of knee osteoarthritis among athletes is higher than in the non-athletic population. The clinical symptoms of osteoarthritis are joint pain, limitation of range of motion and joint stiffness. The diagnosis of osteoarthritis is confirmed by the symptoms and the radiological findings (narrowing joint space, osteophyte formation and subchondral sclerosis). There is no strong correlation between symptoms and radiographic findings. The aetiology of knee osteoarthritis is multifactorial. Excessive musculoskeletal loading (at work or in sports), high body mass index, previous knee injury, female gender and muscle weakness are well-known risk factors. The high-level athlete with a major knee injury has a high incidence of knee osteoarthritis. Cartilage injuries are frequently observed in young and middle-aged active athletes. Often this injury precedes osteoarthritis. Reducing risk factors can decrease the prevalence of knee osteoarthritis. The prevention of knee injury, especially anterior cruciate ligament and meniscus injury in sports, is important to avoid progression of knee osteoarthritis.

  11. Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model.

    Science.gov (United States)

    Ng, Kenneth W; Lima, Eric G; Bian, Liming; O'Conor, Christopher J; Jayabalan, Prakash S; Stoker, Aaron M; Kuroki, Keiichi; Cook, Cristi R; Ateshian, Gerard A; Cook, James L; Hung, Clark T

    2010-03-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-beta3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects.

  12. Understanding Magnetic Resonance Imaging of Knee Cartilage Repair: A Focus on Clinical Relevance.

    Science.gov (United States)

    Hayashi, Daichi; Li, Xinning; Murakami, Akira M; Roemer, Frank W; Trattnig, Siegfried; Guermazi, Ali

    2017-06-01

    The aims of this review article are (a) to describe the principles of morphologic and compositional magnetic resonance imaging (MRI) techniques relevant for the imaging of knee cartilage repair surgery and their application to longitudinal studies and (b) to illustrate the clinical relevance of pre- and postsurgical MRI with correlation to intraoperative images. First, MRI sequences that can be applied for imaging of cartilage repair tissue in the knee are described, focusing on comparison of 2D and 3D fast spin echo and gradient recalled echo sequences. Imaging features of cartilage repair tissue are then discussed, including conventional (morphologic) MRI and compositional MRI techniques. More specifically, imaging techniques for specific cartilage repair surgery techniques as described above, as well as MRI-based semiquantitative scoring systems for the knee cartilage repair tissue-MR Observation of Cartilage Repair Tissue and Cartilage Repair OA Knee Score-are explained. Then, currently available surgical techniques are reviewed, including marrow stimulation, osteochondral autograft, osteochondral allograft, particulate cartilage allograft, autologous chondrocyte implantation, and others. Finally, ongoing research efforts and future direction of cartilage repair tissue imaging are discussed.

  13. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    Science.gov (United States)

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  14. Sonographic evaluation of femoral articular cartilage in the knee

    International Nuclear Information System (INIS)

    Hong, Sung Hwan; Kong Keun Young; Chung, Hye Won; Choi, Young Ho; Song, Yeong Wook; Kang, Heung Sik

    2000-01-01

    To investigate the usefulness of sonography for the evaluation of osteoarthritic articular cartilage. Ten asymptomatic volunteers and 20 patients with osteoarthritis of the knee underwent sonographic evaluation. For this, the knee was maintained of full flexion in order to expose the deep portion of femoral condylar cartilage. Both transverse and longitudinal scans were obtained in standardized planes. Sonographic images of the articular cartilages were analyzed in terms of surface sharpness, echogenicity and thickness, along with associated bone changes. Normal cartilages showed a clearly-defined surface, homogeneously low echogenicity and regular thickness. Among 20 patients, the findings for medial and lateral condyles, respectively, were as follows: poorly defined cartilage surface, 16 (80%) and ten (50%); increased echogenicity of cartilage, 17 (85%) and 16 (80%); cartilage thinning, 16 (80%) and 14 (70%) (two medial condyles demonstrated obvious cartilage thickening); the presence of thick subchondral hyperechoic bands, five (25%) and four (20%); the presence of osteophytes, 13 (65%) and 12 (60%). Sonography is a convenient and accurate modality for the evaluation of femoral articular cartilage. In particular, it can be useful for detecting early degenerative cartilaginous change and for studying such change during clinical follow-up. (author)

  15. Can Glucosamine Supplements Protect My Knee Cartilage from Osteoarthritis?

    Science.gov (United States)

    ... cartilage in osteoarthritis? Can glucosamine supplements protect my knee cartilage from osteoarthritis? Answers from Brent A. Bauer, M.D. Study results on this question have been mixed, with some suggesting possible ...

  16. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model.

    Science.gov (United States)

    Jing, Lizhong; Zhang, Jiying; Leng, Huijie; Guo, Qinwei; Hu, Yuelin

    2015-04-01

    To demonstrate that iliac crest cartilage may be used to repair articular cartilage defects in the knees of rabbits. Full-thickness cartilage defects were created in the medial femoral condyle on both knees of 36 New Zealand white rabbits. The 72 defects were randomly assigned to be repaired with ipsilateral iliac crest cartilage (Group I), osteochondral tissues removed at defect creation (Group II), or no treatment (negative control, Group III). Animals were killed at 6, 12, and 24 weeks post-operatively. The repaired tissues were harvested for magnetic resonance imaging (MRI), histological studies (haematoxylin and eosin and immunohistochemical staining), and mechanical testing. At 6 weeks, the iliac crest cartilage graft was not yet well integrated with the surrounding articular cartilage, but at 12 weeks, the graft deep zone had partial ossification. By 24 weeks, the hyaline cartilage-like tissue was completely integrated with the surrounding articular cartilage. Osteochondral autografts showed more rapid healing than Group I at 6 weeks and complete healing at 12 weeks. Untreated defects were concave or partly filled with fibrous tissue throughout the study. MRI showed that Group I had slower integration with surrounding normal cartilage compared with Group II. The mechanical properties of Group I were significantly lower than those of Group II at 12 weeks, but this difference was not significant at 24 weeks. Iliac crest cartilage autografts were able to repair knee cartilage defects with hyaline cartilage and showed comparable results with osteochondral autografts in the rabbit model.

  17. [Effects of warm needling moxibustion on knee cartilage and morphology in rats with knee osteoarthritis].

    Science.gov (United States)

    Zhang, Yongliang; Mi, Yiqun; Gang, Jiahong; Wang, Huamin

    2016-02-01

    To observe the effects of warm needling moxibustion on body mass, knee cartilage andmorphology in rats with knee osteoarthritis (KOA). Forty SD rats were randomly divided into a normalgroup, a model group, a medication group and a warm needling group, 10 rats in each one. Except the normalgroup, the rats in the remaining three groups were injected with papain to establish the model of KOA. After themodeling, rats in the model group did not receive any treatment; rats in the warm needling group were treated withwarm needling moxibustion at bilateral "Xiqian"; rats in the medication group were treated with intragastric administration of meloxicam; rats in the normal group were treated with 0. 9% NaCl solution (identical dose as medication group) and immobilized as the warm needling group. The treatment was given once a day for consecutive20 days. The body mass, scale of knee cartilage and morphological changes were observed in each group after'treatment. The increasing of body mass in the medication group and warm needling group was faster than!that in the model group, but slower than that in the normal group (all Pwarm needling group was not statistically significant (P>0. 05). The scale of knee cartilage in thewarm needling group and medication group was significantly lower than that in the model group (both Pwarm needling group was lower than that in the medication group (Pwarm needlinggroup were superior to those in the medication group. The warm needling moxibustion could effectively reduce the knee pain, improve the recovery of knee cartilage, which is a safe and effective treatment.

  18. Arthrosonography and biomarkers in the evaluation of destructive knee cartilage osteoarthrosis

    Directory of Open Access Journals (Sweden)

    Živanović Sandra

    2009-01-01

    Full Text Available Introduction. Knee osteoarthrosis (OA is a degenerative disease with progressive loss of cartilage of joints and bone destruction. During this process, the release of fragments of connective tissue matrix is detected in the biological fluids such as human cartilage glycoprotein (YKL-40, cartilage oligomeric matrix protein (COMP and collagen type I C terminal telopeptid (CTX-I. Objective. The aim of the study was to determine the degree of connection cartilage thickness measured by ultrasound with serum concentrations of biomarkers YKL-40, COMP and CTX-I in patients with primary knee OA. Methods. The analysis included 88 patients with the diagnosis of knee OA. Ultrasound examination of knees were done by two rheumatologists. The analysis of serum samples determined the concentration of COMP, YKL-40 and CTX-I by the ELISA method. Results. The average age of patients was 69.97±9.37 years and the duration of knee OA 6.46±6.73 years. The average cartilage thickness of the femoral condyle was 1.33±0.20 mm; of the medial condyle (MC (front access 1.30±0.23 mm, (rear access 1.30±0.29 mm and lateral condyli (LC (front access 1.39±0.27 mm. The average cartilage thickness of MC (front access was 1.27 mm (0.98-1.42 mm, (rear access 1.27 mm (0.84-1.46 mm and LC (front access 1.36 mm (1.01-1.57 mm (p=0.002. There was a significant connection in the negative direction between the patients' age and the cartilage thickness of MC (front and rear access and LC (front access (r=-0.253; p=0.017. There was a significant negative direction of interrelationship between the cartilage thickness of MC (front access (r=-0.259; p=0.015 and LC (front access and the disease duration (r=-0.259; p=0.015. In patients with knee OA lasting for 5 years the measured cartilage thickness was 1.27 mm (1.16-1.49 mm, and 0.99 mm (0.94-1.23 mm (p=0.007 in those lasting for 20 years. There was a significant relationship in a negative direction between the concentration of YKL-40 and

  19. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    Science.gov (United States)

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  20. Magnetic resonance imaging reflects cartilage proteoglycan degradation in the rabbit knee

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.; Blancuzzi, V.; Wilson, D.; Gunson, D.; Douglas, F.L.; Wang Jinzhao; Mezrich, R.S.

    1991-01-01

    Cartilage degeneration in osteoarthritis is initiated by a loss of proteoglycan. Intra-articular injection of papain causes a reversible loss of proteoglycan in rabbit knees. Rabbits were scanned with magnetic resonance imaging (MRI), using a 1.5T Signa superconducting magnet with 3 inch surface coil. Spin echo sequences were performed in the coronal and sagittal planes at 0, 24, 48, and 72 h after intra-articular injection of papain to abtain T 1 , proton density, and T 2 -weighted images. Cartilage proteoglycan content was measured biochemically and histochemically. Reduced articular cartilage thickness in the MR images of papain-treated knees corresponded to changes in cartilage proteoglycan content. (orig.)

  1. MR imaging of canine osteoarthritis shows sustained hypertrophic repair of articular cartilage

    International Nuclear Information System (INIS)

    Braunstein, E.M.; Albrecht, M.; Brandt, K.D.

    1989-01-01

    This paper reports MR imaging used to evaluate cartilage abnormalities in three dogs in which the anterior cruciate ligament (ACL) of one hind limb had been transected to produce osteoarthritis. In this model changes mirror those in human osteoarthritis, but they are not progressive after a few months. The authors performed serial plain radiography and MR imaging of the osteoarthritic knee and control knee 3 years after ACL transection. Coronal T1- weighted images and sagittal multiecho and field echo summed images were obtained. Radiographs showed osteophytes, geodes, and subchondral sclerosis of the operated knees, with no progression between 2 and 3 years. Contralateral knees were normal. On MR images in each case there was indistinctness and thickening of articular cartilage in the abnormal knee compared with the contralateral knee

  2. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis.

    Science.gov (United States)

    Rushton, Michael D; Reynard, Louise N; Barter, Matt J; Refaie, Ramsay; Rankin, Kenneth S; Young, David A; Loughlin, John

    2014-09-01

    The aim of this study was to characterize the genome-wide DNA methylation profile of chondrocytes from knee and hip cartilage obtained from patients with osteoarthritis (OA) and hip cartilage obtained from patients with femoral neck fracture, providing the first comparison of DNA methylation between OA and non-OA hip cartilage, and between OA hip and OA knee cartilage. The study was performed using the Illumina Infinium HumanMethylation450 BeadChip array, which allows the annotation of ∼480,000 CpG sites. Genome-wide methylation was assessed in chondrocyte DNA extracted from 23 hip OA patients, 73 knee OA patients, and 21 healthy hip control patients with femoral neck fracture. Analysis revealed that chondrocytes from the hip cartilage of OA patients and healthy controls have unique methylation profiles, with 5,322 differentially methylated loci (DMLs) identified between the 2 groups. In addition, a comparison between hip and knee OA chondrocytes revealed 5,547 DMLs between the 2 groups, including DMLs in several genes known to be involved in the pathogenesis of OA. Hip OA samples were found to cluster into 2 groups. A total of 15,239 DMLs were identified between the 2 clusters, with an enrichment of genes involved in inflammation and immunity. Similarly, we confirmed a previous report of knee OA samples that also clustered into 2 groups. We demonstrated that global DNA methylation using a high-density array can be a powerful tool in the characterization of OA at the molecular level. Identification of pathways enriched in DMLs between OA and OA-free cartilage highlight potential etiologic mechanisms that are involved in the initiation and/or progression of the disease and that could be therapeutically targeted. © 2014 The Authors. Arthritis & Rheumatology is published by Wiley Periodicals, Inc. on behalf of the American College of Rheumatology.

  3. Cartilage Health in Knees Treated with Metal Resurfacing Implants or Untreated Focal Cartilage Lesions: A Preclinical Study in Sheep.

    Science.gov (United States)

    Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E

    2017-07-01

    Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.

  4. Study of MR sequence in detecting hyaline cartilage defects of the knee joint

    International Nuclear Information System (INIS)

    Li Songbai; He Cuiju; Sun Wenge; Li Chunkui; Qi Xixun; Li Yanliang; Xu Ke; Bai Xizhuang; Wu Zhenhua

    2003-01-01

    Objective: To evaluate the value of various MR imaging sequences for detecting hyaline cartilage defects. Methods: Ten animal models of cartilage defect were established in 5 pig knees. 5 knees were examined with nine different MR sequences. The signal noise ratio of cartilage and contrast noise ratio were calculated and compared between cartilage and adjacent tissue. Measurement of the defect depth and width on the imaging was correlated with the actual measurement before imaging. 23 patients with hyaline cartilage defects of the knee were evaluated with MR imaging. All these patients underwent subsequent arthroscopy. MR imaging protocol included the selected sequences in the experimental study. Results: The cartilage SNR was better in FSE PD, FS 3D FSPGR, and FS FSE PD sequences. CNR between cartilage and subcartilaginous bone was best in FS 3D FSPGR and FS FSE PD sequences. CNR between cartilage and joint fluid was best in FS 3D FSPGR and FS FSE T 2 WI sequences. CNR between cartilage and meniscus and ligament was best in FS 3D FSPGR, FS FSE PD, SE T 1 WI, and IR TI700 sequences. CNR between cartilage and fat was best in FS 3D FSPGR and SE T 1 WI sequences. The width and depth correlation was best in IR TI700 sequence, which showed the statistical significance (P 2 WI sequence, 68%, 99%, and 0.74, respectively with IR TI700 sequence. Conclusion: The sensitivity of FS 3D FSPGR sequence in detecting hyaline cartilage defect is the highest. T 1 WI of spin echo sequence and T 2 WI/PDWI of fast spin-echo with fat saturation should be the standard sequence in the examination of knee joint. T 1 WI of IR sequence has potential clinical value for cartilage examination

  5. The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint.

    Science.gov (United States)

    Valiyaveettil, Manojkumar; Mort, John S; McDevitt, Cahir A

    2005-01-01

    The concentration, spatial distribution, and gene expression of aggrecan in meniscus, articular cartilage, and the anterior and posterior cruciate ligaments (ACL and PCL) was determined in the knee joints of five mature dogs. An anti-serum against peptide sequences specific to the G1 domain of aggrecan was employed in competitive-inhibition ELISA of guanidine HCl extracts and immunofluorescence microscopy. Gene expression was determined by Taqman real-time PCR. The concentration of aggrecan in articular cartilage (240.1 +/- 32 nMol/g dry weight) was higher than that in meniscus (medial meniscus: 33.4 +/- 4.3 nMol/g) and ligaments (ACL: 6.8 +/- 0.9 nMol/g). Aggrecan was more concentrated in the inner than the outer zone of the meniscus. Aggrecan in meniscus showed an organized, spatial network, in contrast to its diffuse distribution in articular cartilage. Thus, differences in the concentration, gene expression, and spatial distribution of aggrecan constitute another molecular distinction between hyaline cartilage and fibrocartilage of the knee.

  6. Hand joint space narrowing and osteophytes are associated with magnetic resonance imaging-defined knee cartilage thickness and radiographic knee osteoarthritis: data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Haugen, Ida K; Cotofana, Sebastian; Englund, Martin; Kvien, Tore K; Dreher, Donatus; Nevitt, Michael; Lane, Nancy E; Eckstein, Felix

    2012-01-01

    To evaluate whether features of radiographic hand osteoarthritis (OA) are associated with quantitative magnetic resonance imaging (MRI)-defined knee cartilage thickness, radiographic knee OA, and 1-year structural progression. A total of 765 participants in Osteoarthritis Initiative (OAI; 455 women, mean age 62.5 yrs, SD 9.4) obtained hand radiographs (at baseline), knee radiographs (baseline and Year 1), and knee MRI (baseline and Year 1). Hand radiographs were scored for presence of osteophytes and joint space narrowing (JSN). Knee radiographs were scored according to the Kellgren-Lawrence (KL) scale. Cartilage thickness in the medial and lateral femorotibial compartments was measured quantitatively from coronal FLASHwe images. We examined the cross-sectional and longitudinal associations between features of hand OA (total osteophyte and JSN scores) and knee cartilage thickness, 1-year knee cartilage thinning (above smallest detectable change), presence of knee OA (KL grade ≥ 3), and progression of knee OA (KL change ≥ 1) by linear and logistic regression. Both hand OA features were included in a multivariate model (if p ≤ 0.25) adjusted for age, sex, and body mass index (BMI). Hand JSN was associated with reduced knee cartilage thickness (ß = -0.02, 95% CI -0.03, -0.01) in the medial femorotibial compartment, while hand osteophytes were associated with the presence of radiographic knee OA (OR 1.10, 95% CI 1.03-1.18; multivariate models) with both hand OA features as independent variables adjusted for age, sex, and BMI). Radiographic features of hand OA were not associated with 1-year cartilage thinning or radiographic knee OA progression. Our results support a systemic OA susceptibility and possibly different mechanisms for osteophyte formation and cartilage thinning.

  7. 1. 5 MRT of the hyaline articular cartilage of the knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Adam, G.; Bohndorf, K.; Krasny, R.; Guenther, R.W.; Prescher, A.

    1988-06-01

    MRI is a new method for imaging the knee joint. There is still some uncertainty regarding the extent and the signal from hyaline articular cartilage. MRI images were therefore compared with anatomical and histological preparations of the knee joint and the difference between MRI and the anatomical sections have been determined. It was shown that demonstration of hyaline cartilage was obscured by an artifact. Further investigations are required to determine the cause of this artifact and to achieve accurate imaging of hyaline cartilage by MRI.

  8. The effect of fixed charge density and cartilage swelling on mechanics of knee joint cartilage during simulated gait.

    Science.gov (United States)

    Räsänen, Lasse P; Tanska, Petri; Zbýň, Štefan; van Donkelaar, Corrinus C; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2017-08-16

    The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium ( 23 Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Priority of surgical treatment techniques of full cartilage defects of knee joint

    Directory of Open Access Journals (Sweden)

    Андрій Вікторович Літовченко

    2015-10-01

    Full Text Available Aim. Surgical treatment of chondromalacia of knee joint cartilage is an actual problem of the modern orthopedics because the means of conservative therapy can be realized at an initial stage only and almost exhausted at the further ones. Imperfections of palliative surgical techniques are the short-term clinical effect and pathogenetic baselessness because surgical procedure is not directed on reparation of cartilaginous tissue. For today there are a lot of transplantation techniques that are used for biological renewal of articular surface with formation of hyaline or at least hyaline-like cartilage. The deep forage of cartilage defect bottom to the medullary canal is a perspective and priority technique.Methods. The results of treatment of 61 patients with chondromalacia of knee joint of 3-4 degree according to R. Outerbridge are the base of the work. 20 patients of every group underwent microfracturization of cartilage defect bottom and subchondral forage of defect zone. 21 patients underwent the deep forage of defect zone of knee joint according to an offered technique.Result. The results of treatment with microfracturization, subchondral forage and deep forage of defect zone indicate the more strong clinical effect especially in the last clinical group where good and satisfactory results ratios in the term of observation 18 and 24 month remain stable.Conclusions. Deep forage of cartilage defects zone is the most adequate reparative technique of the surgical treatment of local knee joint cartilage defects. Owing to this procedure the number of cells of reparative chondrogenesis predecessors is realized

  10. Three-dimensional evaluation of cartilage thickness and cartilage volume in the knee joint with MR imaging: reproducibility in volunteers

    International Nuclear Information System (INIS)

    Westhoff, J.; Eckstein, F.; Sittek, H.; Faber, S.; Reiser, M.; Loesch, A.; Englmeier, K.H.; Kolem, H.

    1997-01-01

    Objective: To determine the reproductibility of three-dimensional volume and thickness measurements of the knee joint cartilage with MRI in volunteers. Methods: The knees of 7 healthy individuals (ages 23 to 58 yrs.) were sagitally imaged with a resolution of 2x0.31x0.31 mm 3 , using a fat-suppressed FLASH-3 D sequence. The knee was repositioned in between replicate acquisitions, 6 data sets being obtained in each case. After semiautomatic segmentation and three-dimensional reconstruction of the cartilage, the thickness was determined independent of the original section orientation. The coefficient of variation for repeated volume measurements and the deviations of the maximal cartilage thickness values were calculated subsequently. Results: The mean variation of the cartilage volumes of the replicate measurements was 1.4% (±0.8%) in the patella, 1.7% (±1.5%) in the femur, 3.0% (±1.2%) in the medial tibial plateau and 3.5% (±2.0%) in the lateral tibial plateau. The comparison of the distribution patterns of cartilage thickness yielded a high degree of agreement. Only in rare cases deviations of more than 0.5 mm were observed. Conclusions: The results show that the presented method for determining the quantitative distribution of articular cartilage yields a high degree of precision. It offers new possibilities in screening risk groups, monitoring the course of degenerative joint disease and the investigation of functional adaptation of the cartilage to mechanical loading. (orig.) [de

  11. An update on risk factors for cartilage loss in knee osteoarthritis assessed using MRI-based semiquantitative grading methods

    Energy Technology Data Exchange (ETDEWEB)

    Alizai, Hamza [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); University of Texas Health Science Center at San Antonio, Department of Radiology, San Antonio, TX (United States); Roemer, Frank W. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); University of Erlangen-Nuremberg, Department of Radiology, Erlangen (Germany); Hayashi, Daichi [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); Yale University School of Medicine, Department of Radiology, Bridgeport Hospital, Bridgeport, CT (United States); Crema, Michel D. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); Hospital do Coracao and Teleimagem, Department of Radiology, Sao Paulo (Brazil); Felson, David T. [Boston University School of Medicine, Clinical Epidemiology Research and Training Unit, Boston, MA (United States); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Aspetar Orthopaedic and Sports Medicine Hospital, Doha (Qatar); Boston Medical Center, Boston, MA (United States)

    2014-11-07

    Arthroscopy-based semiquantitative scoring systems such as Outerbridge and Noyes' scores were the first to be developed for the purpose of grading cartilage defects. As magnetic resonance imaging (MRI) became available faor evaluation of the osteoarthritic knee joint, these systems were adapted for use with MRI. Later on, grading methods such as the Whole Organ Magnetic Resonance Score, the Boston-Leeds Osteoarthritis Knee Score and the MRI Osteoarthritis Knee Score were designed specifically for performing whole-organ assessment of the knee joint structures, including cartilage. Cartilage grades on MRI obtained with these scoring systems represent optimal outcome measures for longitudinal studies, and are designed to enhance understanding of the knee osteoarthritis disease process. The purpose of this narrative review is to describe cartilage assessment in knee osteoarthritis using currently available MRI-based semiquantitative whole-organ scoring systems, and to provide an update on the risk factors for cartilage loss in knee osteoarthritis as assessed with these scoring systems. (orig.)

  12. An update on risk factors for cartilage loss in knee osteoarthritis assessed using MRI-based semiquantitative grading methods

    International Nuclear Information System (INIS)

    Alizai, Hamza; Roemer, Frank W.; Hayashi, Daichi; Crema, Michel D.; Felson, David T.; Guermazi, Ali

    2015-01-01

    Arthroscopy-based semiquantitative scoring systems such as Outerbridge and Noyes' scores were the first to be developed for the purpose of grading cartilage defects. As magnetic resonance imaging (MRI) became available faor evaluation of the osteoarthritic knee joint, these systems were adapted for use with MRI. Later on, grading methods such as the Whole Organ Magnetic Resonance Score, the Boston-Leeds Osteoarthritis Knee Score and the MRI Osteoarthritis Knee Score were designed specifically for performing whole-organ assessment of the knee joint structures, including cartilage. Cartilage grades on MRI obtained with these scoring systems represent optimal outcome measures for longitudinal studies, and are designed to enhance understanding of the knee osteoarthritis disease process. The purpose of this narrative review is to describe cartilage assessment in knee osteoarthritis using currently available MRI-based semiquantitative whole-organ scoring systems, and to provide an update on the risk factors for cartilage loss in knee osteoarthritis as assessed with these scoring systems. (orig.)

  13. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations

    International Nuclear Information System (INIS)

    Beltran, J.; Marty-Delfaut, E.; Bencardino, J.; Rosenberg, Z.S.; Steiner, G.; Aparisi, F.; Padron, M.

    1998-01-01

    Purpose. To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. Design and patients. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with r[iographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. R[iographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. [ditionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with r[iography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gr[ient recalled echo (GRE) and STIR sequences. Results. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. R[iographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the r[iographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. Conclusion. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition. (orig.)

  14. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Marty-Delfaut, E.; Bencardino, J.; Rosenberg, Z.S. [Department of Radiology, Hospital for Joint Diseases, New York, NY (United States); Steiner, G. [Department of Pathology, Hospital for Joint Diseases, New York, NY (United States); Aparisi, F. [Department of Radiology, Residencia Sanitaria ``La Fe``, Valencia (Spain); Padron, M. [Clinica San Camilo, Madrid (Spain)

    1998-07-01

    Purpose. To determine the ability of MRI to detect the presence of crystals of calcium pyrophosphate in the articular cartilage of the knee. Design and patients. The MR studies of 12 knees (11 cases) were reviewed retrospectively and correlated with radiographs (12 cases) and the findings at arthroscopy (2 cases) and surgery (1 case). A total of 72 articular surfaces were evaluated. Radiographic, surgical or arthroscopic demonstration of chondrocalcinosis was used as the gold standard. Additionally, two fragments of the knee of a patient who underwent total knee replacement and demonstrated extensive chondrocalcinosis were studied with radiography and MRI using spin-echo T1-, T2- and proton-density-weighted images as well as two- and three-dimensional fat saturation (2D and 3D Fat Sat) gradient recalled echo (GRE) and STIR sequences. Results. MRI revealed multiple hypointense foci within the articular cartilage in 34 articular surfaces, better shown on 2D and 3D GRE sequences. Radiographs showed 12 articular surfaces with chondrocalcinosis. In three cases with arthroscopic or surgical correlation, MRI demonstrated more diffuse involvement of the articular cartilage than did the radiographs. The 3D Fat Sat GRE sequences were the best for demonstrating articular calcification in vitro. In no case was meniscal calcification identified with MRI. Hyperintense halos around some of the calcifications were seen on the MR images. Conclusion. MRI can depict articular cartilage calcification as hypointense foci using GRE techniques. Differential diagnosis includes loose bodies, post-surgical changes, marginal osteophytes and hemosiderin deposition. (orig.) With 4 figs., 14 refs.

  15. Menopause is associated with articular cartilage degeneration: a clinical study of knee joint in 860 women.

    Science.gov (United States)

    Lou, Chao; Xiang, Guangheng; Weng, Qiaoyou; Chen, Zhaojie; Chen, Deheng; Wang, Qingqing; Zhang, Di; Zhou, Bin; He, Dengwei; Chen, Hongliang

    2016-11-01

    The purpose of this study was to investigate the association between menopause and severity of knee joint cartilage degeneration using a magnetic resonance imaging-based six-level grading system, with six cartilage surfaces, the medial and lateral femoral condyle, the femoral trochlea, the medial and lateral tibia plateau, and the patella. The study cohort comprised 860 healthy women (age 36-83 y), and 5,160 cartilage surfaces were analyzed. Age, weight, height, age at natural menopause, and years since menopause (YSM) were obtained. Cartilage degeneration was assessed using a magnetic resonance imaging-based six-level grading system. After removing the age, height, and weight effects, postmenopausal women had more severe cartilage degeneration than pre- and perimenopausal women (P  0.05). No significant difference was observed in lateral tibia plateau and lateral femoral condyle in postmenopausal women. Menopause is associated with cartilage degeneration of knee joint. After menopause, cartilage showed progressive severe degeneration that occurred in the first 25 YSM, suggesting estrogen deficiency might be a risk factor of cartilage degeneration of the knee joint. Further studies are needed to investigate whether age or menopause plays a more important role in the progression of cartilage degeneration in the knee joint.

  16. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T

    International Nuclear Information System (INIS)

    Horng, Annie; Stockinger, M.; Notohamiprodjo, M.; Raya, J.G.; Pietschmann, M.; Hoehne-Hueckstaedt, U.; Glitsch, U.; Ellegast, R.; Hering, K.G.; Glaser, C.

    2015-01-01

    To implement a novel voxel-based technique to identify statistically significant local cartilage deformation and analyze in-vivo topographic knee cartilage deformation patterns using a voxel-based thickness map approach for high-flexion postures. Sagittal 3T 3D-T1w-FLASH-WE-sequences of 10 healthy knees were acquired before and immediately after loading (kneeling/squatting/heel sitting/knee bends). After cartilage segmentation, 3D-reconstruction and 3D-registration, colour-coded deformation maps were generated by voxel-based subtraction of loaded from unloaded datasets to visualize cartilage thickness changes in all knee compartments. Compression areas were found bifocal at the peripheral medial/caudolateral patella, both posterior femoral condyles and both anterior/central tibiae. Local cartilage thickening were found adjacent to the compression areas. Significant local strain ranged from +13 to -15 %. Changes were most pronounced after squatting, least after knee bends. Shape and location of deformation areas varied slightly with the loading paradigm, but followed a similar pattern consistent between different individuals. Voxel-based deformation maps identify individual in-vivo load-specific and posture-associated strain distribution in the articular cartilage. The data facilitate understanding individual knee loading properties and contribute to improve biomechanical 3 models. They lay a base to investigate the relationship between cartilage degeneration patterns in common osteoarthritis and areas at risk of cartilage wear due to mechanical loading in work-related activities. (orig.)

  17. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Horng, Annie; Stockinger, M.; Notohamiprodjo, M. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Raya, J.G. [New York University Langone Medical Center, Center for Biomedical Imaging, New York, NY (United States); Pietschmann, M. [Ludwig-Maximilians-University Hospital Munich, Department of Orthopedic Surgery, Munich (Germany); Hoehne-Hueckstaedt, U.; Glitsch, U.; Ellegast, R. [Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin (Germany); Hering, K.G. [Miner' s Hospital, Department of Diagnostic Radiology, Dortmund (Germany); Glaser, C. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); RZM Zentrum, Munich (Germany)

    2015-06-01

    To implement a novel voxel-based technique to identify statistically significant local cartilage deformation and analyze in-vivo topographic knee cartilage deformation patterns using a voxel-based thickness map approach for high-flexion postures. Sagittal 3T 3D-T1w-FLASH-WE-sequences of 10 healthy knees were acquired before and immediately after loading (kneeling/squatting/heel sitting/knee bends). After cartilage segmentation, 3D-reconstruction and 3D-registration, colour-coded deformation maps were generated by voxel-based subtraction of loaded from unloaded datasets to visualize cartilage thickness changes in all knee compartments. Compression areas were found bifocal at the peripheral medial/caudolateral patella, both posterior femoral condyles and both anterior/central tibiae. Local cartilage thickening were found adjacent to the compression areas. Significant local strain ranged from +13 to -15 %. Changes were most pronounced after squatting, least after knee bends. Shape and location of deformation areas varied slightly with the loading paradigm, but followed a similar pattern consistent between different individuals. Voxel-based deformation maps identify individual in-vivo load-specific and posture-associated strain distribution in the articular cartilage. The data facilitate understanding individual knee loading properties and contribute to improve biomechanical 3 models. They lay a base to investigate the relationship between cartilage degeneration patterns in common osteoarthritis and areas at risk of cartilage wear due to mechanical loading in work-related activities. (orig.)

  18. Associations between serum ghrelin and knee symptoms, joint structures and cartilage or bone biomarkers in patients with knee osteoarthritis.

    Science.gov (United States)

    Wu, J; Wang, K; Xu, J; Ruan, G; Zhu, Q; Cai, J; Ren, J; Zheng, S; Zhu, Z; Otahal, P; Ding, C

    2017-09-01

    The roles of ghrelin in knee osteoarthritis (OA) are unclear. This study aimed to examine cross-sectional associations of ghrelin with knee symptoms, joint structures and cartilage or bone biomarkers in patients with knee OA. This study included 146 patients with symptomatic knee OA. Serum levels of ghrelin and cartilage or bone biomarkers including cartilage oligomeric matrix protein (COMP), cross linked C-telopeptide of type I collagen (CTXI), cross linked N-telopeptide of type I collagen (NTXI), N-terminal procollagen III propeptide (PIIINP), and matrix metalloproteinase (MMP)-3, 10, 13 were measured using Enzyme-linked immunosorbent assay (ELISA). Knee symptoms were assessed using the Western Ontario and McMaster Universities Arthritis Index (WOMAC). Infrapatellar fat pad (IPFP) volume, IPFP signal intensity alternation, cartilage defects, bone marrow lesions (BMLs) and effusion-synovitis were assessed using the (MRI). Osteophytes and joint space narrowing (JSN) were assessed using the Osteoarthritis Research Society International atlas. After adjustment for potential confounders, ghrelin quartiles were positively associated with knee symptoms including pain, stiffness, dysfunction and total score (quartile 4 vs 1: β 24.19, 95% CI 8.13-40.25). Ghrelin quartiles were also significantly associated with increased IPFP signal intensity alteration (quartile 4 vs 1: OR 3.57, 95% CI 1.55-8.25) and NTXI, PIIINP, MMP3 and MMP13. Ghrelin was not significantly associated with other joint structures and biomarkers. Serum levels of ghrelin were significantly associated with increased knee symptoms, IPFP signal intensity alteration and serum levels of MMP3, MMP13, NTXI and PIIINP, suggesting that ghrelin may have a role to play in knee OA. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    International Nuclear Information System (INIS)

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-01-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis

  20. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-04-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis.

  1. Role of magnetic resonance imaging in the evaluation of articular cartilage in painful knee joint

    Directory of Open Access Journals (Sweden)

    Digish Shah

    2014-01-01

    Full Text Available Aim: The aim of this study was to determine the role of the magnetic resonance imaging (MRI in patients with atraumatic knee pain. Background and Objectives: Knee pain is one of the most common problems faced by people from time immemorial. There is a wide range of disease ranging from traumatic to degenerative causing knee pain in which articular cartilage is involved. Over the past 15 years, MRI has become the premier, first-line imaging study that should be performed in the evaluation of the painful knee in particular in tears of menisci, cruciate and collateral ligaments, osteochondral abnormalities (chondromalacia, osteoarthritis and osteochondral defects, synovial cysts and bone bruises. MRI, by virtue of its superior soft-tissue contrast, lack of ionizing radiation and multiplanar capabilities, is superior to more conventional techniques for the evaluation of articular cartilage. Materials and Methods: A prospective study was carried out on 150 patients in the Department of Radio-diagnosis, Padmashree Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pimpri, Pune over a period of 2 years from June 2011 to May 2013. Patients having fracture or dislocations of the knee joint were also excluded from the study. Detailed clinical history, physical and systemic examination findings of all patients were noted in addition to the laboratory investigations. All patients were subjected to radiograph of knee anterior-posterior and lateral view. MRI was performed with Siemens 1.5 Tesla MAGNETOM Avanto machine. Results: In our study of 150 patients with knee pain, articular cartilage defect was found in 90 patients (60%. Out of 90 patients with articular cartilage defect, 30 patients (20% had full thickness cartilage defects. Subchondral marrow edema was seen beneath 30 patients (20% with articular cartilage defects. 32 patients (21.1% had a complex or macerated meniscal tear. Complete anterior cruciate ligament tear was found in seven

  2. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.

    Science.gov (United States)

    Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha

    2014-09-01

    Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Premature osteoarthritis of the knee associated with cartilage hypertrophy and phalangeal dysgenesis

    International Nuclear Information System (INIS)

    Vital, E.M.J.; Hutton, C.W.; Hughes, P.M.

    2005-01-01

    A woman presented with premature knee osteoarthritis associated with marked femoral cartilage hypertrophy. She also exhibited phalangeal dysgenesis, suggesting this may be an unrecognised syndrome that may predispose to knee osteoarthritis. (orig.)

  4. Association of baseline knee sagittal dynamic joint stiffness during gait and 2-year patellofemoral cartilage damage worsening in knee osteoarthritis.

    Science.gov (United States)

    Chang, A H; Chmiel, J S; Almagor, O; Guermazi, A; Prasad, P V; Moisio, K C; Belisle, L; Zhang, Y; Hayes, K; Sharma, L

    2017-02-01

    Knee sagittal dynamic joint stiffness (DJS) describes the biomechanical interaction between change in external knee flexion moment and flexion angular excursion during gait. In theory, greater DJS may particularly stress the patellofemoral (PF) compartment and thereby contribute to PF osteoarthritis (OA) worsening. We hypothesized that greater baseline knee sagittal DJS is associated with PF cartilage damage worsening 2 years later. Participants all had OA in at least one knee. Knee kinematics and kinetics during gait were recorded using motion capture systems and force plates. Knee sagittal DJS was computed as the slope of the linear regression line for knee flexion moments vs angles during the loading response phase. Knee magnetic resonance imaging (MRI) scans were obtained at baseline and 2 years later. We assessed the association between baseline DJS and baseline-to-2-year PF cartilage damage worsening using logistic regression with generalized estimating equations (GEE). Our sample had 391 knees (204 persons): mean age 64.2 years (SD 10.0); body mass index (BMI) 28.4 kg/m 2 (5.7); 76.5% women. Baseline knee sagittal DJS was associated with baseline-to-2-year cartilage damage worsening in the lateral (OR = 5.35, 95% CI: 2.37-12.05) and any PF (OR = 2.99, 95% CI: 1.27-7.04) compartment. Individual components of baseline DJS (i.e., change in knee moment or angle) were not associated with subsequent PF disease worsening. Capturing the concomitant effect of knee kinetics and kinematics during gait, knee sagittal DJS is a potentially modifiable risk factor for PF disease worsening. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Obesity-related juvenile form of cartilage lesions: a new affliction in the knees of morbidly obese children and adolescents

    International Nuclear Information System (INIS)

    Widhalm, Harald K.; Marlovits, Stefan; Vecsei, Vilmos; Welsch, Goetz H.; Dirisamer, Albert; Neuhold, Andreas; Griensven, Martijn van; Seemann, Rudolf; Widhalm, Kurt

    2012-01-01

    Overweight and obesity are afflictions that lead to an increased risk of health problems including joint problems. The aim of the study was to assess the condition of articular cartilage in obese adolescent patients suffering from knee pain. MRI of 24 knees of 20 morbidly obese patients, mean age 14.2 years, was performed in an open 1.0 Tesla MR system, where the cartilage, the quality and structure of the menisci, and the presence or absence of surrounding changes was examined. In all patients a cartilage lesion in at least one region of the knee could be detected. Retropatellar cartilage lesions have been found in 19 knees. Ten cartilage lesions grade I, and four lesions grade II have been described in the lateral compartment of the knee, whereas the medial compartment showed in eight cases a grade I, in 13 cases a grade II and in two cases a grade III cartilage lesion. Meniscal changes were assessed in most patients. Morbidly obese children and adolescents show major abnormalities in the articular cartilage of the knee. Whether obesity alone is the causal factor for the development of the pattern of these changes, remains to be seen. (orig.)

  6. Obesity-related juvenile form of cartilage lesions: a new affliction in the knees of morbidly obese children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Widhalm, Harald K.; Marlovits, Stefan; Vecsei, Vilmos [Medical University of Vienna, Center for Joints and Cartilage, Department of Traumatology, Vienna (Austria); Welsch, Goetz H. [Medical University of Vienna, MR Center, Department of Radiology, Vienna (Austria); University Hospital of Erlangen, Department of Trauma Surgery, Erlangen (Germany); Dirisamer, Albert [Medical University of Vienna, Department of Radiology, Vienna (Austria); Neuhold, Andreas [Private Hospital Rudolfinerhaus, Department of Radiology, Vienna (Austria); Griensven, Martijn van [Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna (Austria); Seemann, Rudolf [Medical University of Vienna, Department of Cranio-Maxillofacial and Oral Surgery, Vienna (Austria); Widhalm, Kurt [Medical University of Vienna, Division of Nutrition and Metabolism, Department of Pediatrics, Vienna (Austria)

    2012-03-15

    Overweight and obesity are afflictions that lead to an increased risk of health problems including joint problems. The aim of the study was to assess the condition of articular cartilage in obese adolescent patients suffering from knee pain. MRI of 24 knees of 20 morbidly obese patients, mean age 14.2 years, was performed in an open 1.0 Tesla MR system, where the cartilage, the quality and structure of the menisci, and the presence or absence of surrounding changes was examined. In all patients a cartilage lesion in at least one region of the knee could be detected. Retropatellar cartilage lesions have been found in 19 knees. Ten cartilage lesions grade I, and four lesions grade II have been described in the lateral compartment of the knee, whereas the medial compartment showed in eight cases a grade I, in 13 cases a grade II and in two cases a grade III cartilage lesion. Meniscal changes were assessed in most patients. Morbidly obese children and adolescents show major abnormalities in the articular cartilage of the knee. Whether obesity alone is the causal factor for the development of the pattern of these changes, remains to be seen. (orig.)

  7. Deginerative changes of femoral articular cartilage in the knee : comparative study of specimen sonography and pathology

    International Nuclear Information System (INIS)

    Park, Ju Youn; Hong, Sung Hwan; Sohn, Jin Hee; Wee, Young Hoon; Chang, Jun Dong; Park, Hong Seok; Lee, Eil Seoung; Kang Ik Won

    2001-01-01

    To determine the sonographic findings of degenerative change in femoral articular cartilage of the knee by comparative study of specimen sonography and pathology. We obtained 40 specimens of cartilage of the femur (20 medial and 20 lateral condylar) from 20 patients with osteoarthritis of the knee who had undergone total knee replacement. The specimens were placed in a saline-filled container and sonography was performed using a 10-MHz linear transducer. Sonographic abnormalities were evaluated at the cartilage surface, within the cartilage, and at the bone-cartilage interface, and were compared with the corresponding pathologic findings. In addition, cartilage thickness was measured at a representative portion of each femoral cartilage specimen and was compared with the thickness determined by sonography. 'Dot' lesions, irregularity or loss of the hyperechoic line, were demonstrated by sonography at the saline-cartilage interface of 14 cartilages. Pathologic examination showed that these findings corresponded to cleft, detachment, erosion, and degeneration. Irregularities in the hyperechoic line at the bone-cartilage interface were revealed by sonography in eight cartilages and were related to irregularity or loss of tidemark, downward displacement of the cartilage, and subchondral callus formation. Dot lesions, corresponding to cleft and degeneration, were noted within one cartilage. Cartilage thickness measured on specimen and by sonography showed no significant difference (p=0.446). Specimen sonography suggested that articular cartilage underwent degenerative histopathological change. Cartilage thickness measured by sonography exactly reflected real thickness

  8. Assessing the effect of football play on knee articular cartilage using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC).

    Science.gov (United States)

    Wei, Wenbo; Lambach, Becky; Jia, Guang; Flanigan, David; Chaudhari, Ajit M W; Wei, Lai; Rogers, Alan; Payne, Jason; Siston, Robert A; Knopp, Michael V

    2017-06-01

    The prevalence of cartilage lesions is much higher in football athletes than in the general population. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been shown to quantify regional variations of glycosaminoglycan (GAG) concentrations which is an indicator of early cartilage degeneration. The goal of this study is to determine whether dGEMRIC can be used to assess the influence in cartilage GAG concentration due to college level football play. Thirteen collegiate football players with one to four years of collegiate football play experience were recruited and both knee joints were scanned using a dedicated 8-channel phased array knee coil on a 3T MRI system. The contrast concentrations within cartilage were calculated based on the T 1 values from dGEMRIC scans. No substantial differences were found in the contrast concentrations between the pre- and post-season across all the cartilage compartments. One year collegiate football players presented an average contrast concentration at the pre-season of 0.116±0.011mM and post-season of 0.116±0.011mM. In players with multiple years of football play, contrast uptake was elevated to 0.141±0.012mM at the pre-season and 0.139±0.012mM at the post-season. The pre-season 0.023±0.016mM and post-season 0.025±0.016mM increase in contrast concentration within the group with multiple years of experience presented with a >20% increase in contrast uptake. This may indicate the gradual, cumulative damage of football play to the articular cartilage over years, even though the effect may not be noticeable after a season of play. Playing collegiate football for a longer period of time may lead to cartilage microstructural alterations, which may be linked to early knee cartilage degeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A technique for visualization and mapping of local cartilage thickness changes in MR images of osteoarthritic knee

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Quanxu, E-mail: gequanxu@yahoo.com.cn [Department of Radiology, Weihai Municipal Hospital, Weihai City, Shandong Province, 164200 (China); Cheng, Yuanzhi, E-mail: yzcheng@hitwh.edu.cn [School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001 (China); Bi, Kesen, E-mail: whbks@yahoo.com.cn [Department of Radiology, Weihai Municipal Hospital, Weihai City, Shandong Province, 164200 (China); Guo, Changyong, E-mail: hit_gcy@163.com [School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001 (China); Bai, Jing, E-mail: deabj@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, China B209, Medical School Building, Tsinghua University, Beijing, 100084 (China); Tamura, Shinichi, E-mail: tamuras@nblmt.jp [Center for Advanced Medical Engineering and Informatics, Osaka University, D11, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-11-15

    Purpose: The aim of this paper is to describe a technique for the visualization and mapping of focal, local cartilage thickness changes over time in magnetic resonance images of osteoarthritic knee. Methods: Magnetic resonance imaging was performed in 25 fresh frozen pig knee joints and 15 knees of patients with borderline to mild osteoarthritis (51.2 {+-} 6.3 years). Cartilage and corresponding bone structures were extracted by semi-automatic segmentation. Each point in the bone surface which was part of the bone-cartilage interface was assigned a cartilage thickness value. Cartilage thicknesses were computed for each point in the bone-cartilage interfaces and transferred to the bone surfaces. Moreover, we developed a three dimensional registration method for the identification of anatomically corresponding points of the bone surface to quantify local cartilage thickness changes. One of the main advantages of our method compared to other studies in the field of registration is a global optimization algorithm that does not require any initialization. Results and conclusion: The registration accuracy was 0.93 {+-} 0.05 mm (less than a voxel of magnetic resonance data). Local cartilage thickness changes were seen as having follow-up clinical study for detecting local changes in cartilage thickness. Experiment results suggest that our method was sufficiently accurate and effective for monitoring knee joint diseases.

  10. Physical activity is associated with changes in knee cartilage microstructure.

    Science.gov (United States)

    Halilaj, E; Hastie, T J; Gold, G E; Delp, S L

    2018-06-01

    The purpose of this study was to determine if there is an association between objectively measured physical activity and longitudinal changes in knee cartilage microstructure. We used accelerometry and T 2 -weighted magnetic resonance imaging (MRI) data from the Osteoarthritis Initiative, restricting the analysis to men aged 45-60 years, with a body mass index (BMI) of 25-27 kg/m 2 and no radiographic evidence of knee osteoarthritis. After computing 4-year changes in mean T 2 relaxation time for six femoral cartilage regions and mean daily times spent in the sedentary, light, moderate, and vigorous activity ranges, we performed canonical correlation analysis (CCA) to find a linear combination of times spent in different activity intensity ranges (Activity Index) that was maximally correlated with a linear combination of regional changes in cartilage microstructure (Cartilage Microstructure Index). We used leave-one-out pre-validation to test the robustness of the model on new data. Nineteen subjects satisfied the inclusion criteria. CCA identified an Activity Index and a Cartilage Microstructure Index that were significantly correlated (r = .82, P microstructural changes in different cartilage regions than it is with univariate or cumulative changes, likely because this index separates the effect of activity, which is greater in the medial loadbearing region, from that of patient-specific natural aging. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times. Data from the osteoarthritis initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix C. [University of California San Francisco, Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Technical University of Munich, Department of Radiology, Munich (Germany); Neumann, Jan; Heilmeier, Ursula; Joseph, Gabby B.; Link, Thomas M. [University of California San Francisco, Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Nevitt, Michael C.; McCulloch, Charles E. [University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA (United States)

    2018-01-15

    To investigate the association of cartilage degeneration with previous knee injuries not undergoing surgery, determined by morphologic and quantitative 3-T magnetic resonance imaging (MRI). We performed a nested cross-sectional study of right knee MRIs from participants in the Osteoarthritis Initiative (OAI) aged 45-79 with baseline Kellgren-Lawrence score of 0-2. Cases were 142 right knees of patients with self-reported history of injury limiting the ability to walk for at least 2 days. Controls were 426 right knees without history of injury, frequency-matched to cases on age, BMI, gender, KL scores and race (1:3 ratio). Cases and controls were compared using covariate-adjusted linear regression analysis, with the outcomes of region-specific T2 mean, laminar analysis and heterogeneity measured by texture analysis to investigate early cartilage matrix abnormalities and the Whole-Organ Magnetic Resonance Imaging Score (WORMS) to investigate morphologic knee lesions. Compared to control subjects, we found significantly higher mean T2 values in the injury [lateral tibia (28.10 ms vs. 29.11 ms, p = 0.001), medial tibia (29.70 ms vs. 30.40 ms, p = 0.014) and global knee cartilage (32.73 ms vs. 33.29 ms, p = 0.005)]. Injury subjects also had more heterogeneous cartilage as measured by GLCM texture contrast, variance and entropy (p < 0.05 in 14 out of 18 texture parameters). WORMS gradings were not significantly different between the two groups (p > 0.05). A history of knee injury not treated surgically is associated with higher and more heterogeneous T2 values, but not with morphologic knee abnormalities. Our findings suggest that significant, conservatively treated knee injuries are associated with permanent cartilage matrix abnormalities. (orig.)

  12. Conservatively treated knee injury is associated with knee cartilage matrix degeneration measured with MRI-based T2 relaxation times. Data from the osteoarthritis initiative

    International Nuclear Information System (INIS)

    Hofmann, Felix C.; Neumann, Jan; Heilmeier, Ursula; Joseph, Gabby B.; Link, Thomas M.; Nevitt, Michael C.; McCulloch, Charles E.

    2018-01-01

    To investigate the association of cartilage degeneration with previous knee injuries not undergoing surgery, determined by morphologic and quantitative 3-T magnetic resonance imaging (MRI). We performed a nested cross-sectional study of right knee MRIs from participants in the Osteoarthritis Initiative (OAI) aged 45-79 with baseline Kellgren-Lawrence score of 0-2. Cases were 142 right knees of patients with self-reported history of injury limiting the ability to walk for at least 2 days. Controls were 426 right knees without history of injury, frequency-matched to cases on age, BMI, gender, KL scores and race (1:3 ratio). Cases and controls were compared using covariate-adjusted linear regression analysis, with the outcomes of region-specific T2 mean, laminar analysis and heterogeneity measured by texture analysis to investigate early cartilage matrix abnormalities and the Whole-Organ Magnetic Resonance Imaging Score (WORMS) to investigate morphologic knee lesions. Compared to control subjects, we found significantly higher mean T2 values in the injury [lateral tibia (28.10 ms vs. 29.11 ms, p = 0.001), medial tibia (29.70 ms vs. 30.40 ms, p = 0.014) and global knee cartilage (32.73 ms vs. 33.29 ms, p = 0.005)]. Injury subjects also had more heterogeneous cartilage as measured by GLCM texture contrast, variance and entropy (p < 0.05 in 14 out of 18 texture parameters). WORMS gradings were not significantly different between the two groups (p > 0.05). A history of knee injury not treated surgically is associated with higher and more heterogeneous T2 values, but not with morphologic knee abnormalities. Our findings suggest that significant, conservatively treated knee injuries are associated with permanent cartilage matrix abnormalities. (orig.)

  13. Indian Hedgehog in Synovial Fluid Is a Novel Marker for Early Cartilage Lesions in Human Knee Joint

    Science.gov (United States)

    Zhang, Congming; Wei, Xiaochun; Chen, Chongwei; Cao, Kun; Li, Yongping; Jiao, Qiang; Ding, Juan; Zhou, Jingming; Fleming, Braden C.; Chen, Qian; Shang, Xianwen; Wei, Lei

    2014-01-01

    To determine whether there is a correlation between the concentration of Indian hedgehog (Ihh) in synovial fluid (SF) and the severity of cartilage damage in the human knee joints, the knee cartilages from patients were classified using the Outer-bridge scoring system and graded using the Modified Mankin score. Expression of Ihh in cartilage and SF samples were analyzed with immunohistochemistry (IHC), western blot, and enzyme-linked immunosorbent assay (ELISA). Furthermore, we detected and compared Ihh protein levels in rat and mice cartilages between normal control and surgery-induced osteoarthritis (OA) group by IHC and fluorescence molecular tomography in vivo respectively. Ihh expression was increased 5.2-fold in OA cartilage, 3.1-fold in relative normal OA cartilage, and 1.71-fold in OA SF compared to normal control samples. The concentrations of Ihh in cartilage and SF samples was significantly increased in early-stage OA samples when compared to normal samples (r = 0.556; p Ihh protein was also an early event in the surgery-induced OA models. Increased Ihh is associated with the severity of OA cartilage damage. Elevated Ihh content in human knee joint synovial fluid correlates with early cartilage lesions. PMID:24786088

  14. Relationship between knee alignment and T1ρ values of articular cartilage and menisci in patients with knee osteoarthritis

    International Nuclear Information System (INIS)

    Wang, Ligong; Vieira, Renata La Rocca; Rybak, Leon D.; Babb, James S.; Chang, Gregory; Krasnokutsky, Svetlana; Abramson, Steven

    2013-01-01

    Objective: To assess the relationship between knee alignment and subregional T1ρ values of the femorotibial cartilage and menisci in patients with mild (Kellgren–Lawrence grade 1) to moderate (KL3) osteoarthritis (OA) at 3 T. Materials and methods: 26 subjects with a clinical diagnosis of KL1-3 OA were included and subdivided into three subgroups: varus, valgus, and neutral. All subjects were evaluated on a 3 T MR scanner. Mann–Whitney and Wilcoxon signed rank tests were performed to determine any statistically significant differences in subregional T1ρ values of femorotibial cartilage and menisci among the three subgroups of KL1-3 OA patients. Results: Medial femoral anterior cartilage subregion in varus group had significantly higher (p < 0.05) T1ρ values than all cartilage subregions in valgus group. Medial tibial central cartilage subregion had significantly higher T1ρ values (p < 0.05) than lateral tibial central cartilage subregion in varus group. The posterior horn of the medial meniscus in neutral group had significantly higher T1ρ values (p < 0.0029) than all meniscus subregions in valgus group. Conclusion: There exists some degree of association between knee alignment and subregional T1ρ values of femorotibial cartilage and menisci in patients with clinical OA

  15. Relationship between knee alignment and T1ρ values of articular cartilage and menisci in patients with knee osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ligong, E-mail: ligong.wang@hotmail.com [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY 10016 (United States); School of Radiation Medicine and Protection, Medical College of Soochow University, School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123 (China); Vieira, Renata La Rocca, E-mail: relarocca@gmail.com [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY 10016 (United States); Rybak, Leon D., E-mail: Leon.Rybak@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY 10016 (United States); Babb, James S., E-mail: James.Babb@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY 10016 (United States); Chang, Gregory, E-mail: gregory.chang@nyumc.org [Quantitative Multinuclear Musculoskeletal Imaging Group (QMMIG), Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY 10016 (United States); Krasnokutsky, Svetlana, E-mail: Svetlana.Krasnokutsky@nyumc.org [Department of Rheumatology, New York University Hospital for Joint Diseases, 301 East 17th Street, New York, NY 10003 (United States); Abramson, Steven, E-mail: StevenB.Abramson@nyumc.org [Department of Rheumatology, New York University Hospital for Joint Diseases, 301 East 17th Street, New York, NY 10003 (United States); and others

    2013-11-01

    Objective: To assess the relationship between knee alignment and subregional T1ρ values of the femorotibial cartilage and menisci in patients with mild (Kellgren–Lawrence grade 1) to moderate (KL3) osteoarthritis (OA) at 3 T. Materials and methods: 26 subjects with a clinical diagnosis of KL1-3 OA were included and subdivided into three subgroups: varus, valgus, and neutral. All subjects were evaluated on a 3 T MR scanner. Mann–Whitney and Wilcoxon signed rank tests were performed to determine any statistically significant differences in subregional T1ρ values of femorotibial cartilage and menisci among the three subgroups of KL1-3 OA patients. Results: Medial femoral anterior cartilage subregion in varus group had significantly higher (p < 0.05) T1ρ values than all cartilage subregions in valgus group. Medial tibial central cartilage subregion had significantly higher T1ρ values (p < 0.05) than lateral tibial central cartilage subregion in varus group. The posterior horn of the medial meniscus in neutral group had significantly higher T1ρ values (p < 0.0029) than all meniscus subregions in valgus group. Conclusion: There exists some degree of association between knee alignment and subregional T1ρ values of femorotibial cartilage and menisci in patients with clinical OA.

  16. Intra-articular injection of dexketoprofen in rat knee joint: histopathologic assessment of cartilage & synovium.

    Science.gov (United States)

    Ekici, Aycan Guner; Akyol, Onat; Ekici, Murat; Sitilci, Tolga; Topacoglu, Hakan; Ozyuvaci, Emine

    2014-08-01

    Effective pain control following outpatient surgical procedures is an important aspect of patient discharge. This study was carried out with an aim to investigate the histopathological effects of intra-articular dexketoprofen trometamol injection in knee joint on synovium and cartilage in an experimental rat model. In each of 40 rats, the right knee was designated as the study group and the left knee as the control group (NS group). Under aseptic conditions, 35 rats received an injection of 0.25 ml (6.25 mg) dexketoprofen trometamol into the right knee joint and an injection of 0.25 ml 0.9 per cent normal saline solution into the left knee joint. On the 1st, 2nd, 7th, 14th, and 21st days after intra-articular injection, rats in specified groups were sacrificed by intraperitoneal injection of 120 mg/kg sodium thiopental. Knee joints were separated and sectioned for histopathological examination. Inflammatory changes in the joints were recorded according to a grade scale. No significant difference in terms of pathological changes both in synovium and cartilage was observed between the NS group and the study group on days 1, 2, 7, 14 and 21 after intra-articular injection of dexketoprofen or saline in the knee joint. The findings showed no evidence of significant histopathological damage to the cartilage and synovia for a period up to 21 days following intra-articular administration of dexketoprofen trometamol in the knee joints of rats.

  17. Differences in injury pattern and prevalence of cartilage lesions in knee and ankle joints: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Matthias Aurich

    2014-12-01

    Full Text Available Osteoarthritis (OA is more common in the knee compared to the ankle joint. This can not be explained exclusively by anatomical and biomechanical differences. The aim of this study is to analyze and compare the injury pattern (clinically and the cartilage lesions (arthroscopically of knee and ankle joints in a cohort of patients from the same catchment area. A retrospective study of the clinical data of 3122 patients (2139 outpatients and 983 inpatients was performed, who were treated due to an injury of the knee and ankle joint. Statistical analysis was performed using SigmaStat 3.0 (SPSS Inc, Chicago, USA. There is a higher prevalence of injuries in the ankle as compared to the knee joint in this population from the same catchment area. In contrast, high-grade cartilage lesions are more prevalent in the knee, whereas low grade cartilage lesions are equally distributed between knee and ankle. From this data it can be concluded that the frequency of injuries and the injury pattern of knee versus ankle joints do not correlate with the severity of cartilage lesions and may therefore have no direct influence on the differential incidence of OA in those two joints.

  18. Articular Cartilage of the Human Knee Joint: In Vivo Multicomponent T2 Analysis at 3.0 T

    Science.gov (United States)

    Choi, Kwang Won; Samsonov, Alexey; Spencer, Richard G.; Wilson, John J.; Block, Walter F.; Kijowski, Richard

    2015-01-01

    Purpose To compare multicomponent T2 parameters of the articular cartilage of the knee joint measured by using multicomponent driven equilibrium single-shot observation of T1 and T2 (mcDESPOT) in asymptomatic volunteers and patients with osteoarthritis. Materials and Methods This prospective study was performed with institutional review board approval and with written informed consent from all subjects. The mcDESPOT sequence was performed in the knee joint of 13 asymptomatic volunteers and 14 patients with osteoarthritis of the knee. Single-component T2 (T2Single), T2 of the fast-relaxing water component (T2F) and of the slow-relaxing water component (T2S), and the fraction of the fast-relaxing water component (FF) of cartilage were measured. Wilcoxon rank-sum tests and multivariate linear regression models were used to compare mcDESPOT parameters between volunteers and patients with osteoarthritis. Receiver operating characteristic analysis was used to assess diagnostic performance with mcDESPOT parameters for distinguishing morphologically normal cartilage from morphologically degenerative cartilage identified at magnetic resonance imaging in eight cartilage subsections of the knee joint. Results Higher cartilage T2Single (P cartilage FF (P cartilage T2F (P = .079) and T2S (P = .124) values were seen in patients with osteoarthritis compared with those in asymptomatic volunteers. Differences in T2Single and FF remained significant (P cartilage (P cartilage T2Single and significantly lower cartilage FF than did asymptomatic volunteers, and receiver operating characteristic analysis results suggested that FF may allow greater diagnostic performance than that with T2Single for distinguishing between normal and degenerative cartilage. © RSNA, 2015 Online supplemental material is available for this article. PMID:26024307

  19. MR imaging of articular cartilage in the knee. Evaluation of cadaver knee by 3D FLASH sequence with fat saturation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Katsuhiko; Hachiya, Junichi; Matsumura, Joji [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-06-01

    MR imaging of the articular cartilage of the 24 cadever knees was performed using 3D FLASH sequence with fat saturation. Good correlation was noted between MR findings and either macroscopic or microscopic appearances of the hyaline cartilage. Low signal intensity area without significant thinning of the cartilage was considered to represent the degenerative changes due to relatively early process of osteoarthritis. (author)

  20. MR Imaging of Degenerative Cartilage Lesions of the Knee Joint in Floor Layers and Graphic Designers

    DEFF Research Database (Denmark)

    Rytter, Søren; Thomsen, Birthe Lykke; Christensen, Birgitte Schütt

    2016-01-01

    Introduction: Kneeling work leads to an additional risk of developing knee osteoarthritis (OA). Previous studies have primarily been based on radiography, but radiography is limited by its inability to visualize articular cartilage, in which the earliest signs of OA occur. The objective of this e......Introduction: Kneeling work leads to an additional risk of developing knee osteoarthritis (OA). Previous studies have primarily been based on radiography, but radiography is limited by its inability to visualize articular cartilage, in which the earliest signs of OA occur. The objective...... of this explorative study, based on available data, was to examine the prevalence of magnetic resonance imaging (MRI)-detected knee cartilage lesions in male floor layers exposed to kneeling work, as compared to non-exposed male graphic designers. Methods: MRI of the knees was conducted in 92 floor layers and 49...... tibiofemoral posterior area, the most strained area during kneeling and 2) the total knee. Presence of lesions was compared in floor layers and graphic designers after adjusting for age, BMI, seniority, knee injuries, and sports activity in logistic regression analyses for correlated data, and investigated...

  1. Using Cartilage MRI T2-Mapping to Analyze Early Cartilage Degeneration in the Knee Joint of Young Professional Soccer Players.

    Science.gov (United States)

    Waldenmeier, Leonie; Evers, Christoph; Uder, Michael; Janka, Rolf; Hennig, Frank Friedrich; Pachowsky, Milena Liese; Welsch, Götz Hannes

    2018-02-01

    Objective To evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI). Design In this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An "early unloading" (minute 0) and "late unloading" (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the "early unloading" and "late unloading." Results When comparing "early unloading" with "late unloading," our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial ( P cartilage of the medial compartment ( P cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.

  2. Polymers in cartilage defect repair of the knee : Current status and future prospects

    NARCIS (Netherlands)

    Jeuken, R.M.; Roth, A.K.; Peters, R.; van Donkelaar, C.C.; Thies, J.; van Rhijn, L.; Emans, P.

    2016-01-01

    Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using

  3. Quantitative evaluation of hyaline articular cartilage T2 maps of knee and determine the relationship of cartilage T2 values with age, gender, articular changes.

    Science.gov (United States)

    Cağlar, E; Şahin, G; Oğur, T; Aktaş, E

    2014-11-01

    To identify changes in knee joint cartilage transverse relaxation values depending on the patient's age and gender and to investigate the relationship between knee joint pathologies and the transverse relaxation time. Knee MRI images of 107 symptomatic patients with various pathologic knee conditions were analyzed retrospectively. T2 values were measured at patellar cartilage, posteromedial and posterolateral femoral cartilage adjacent to the central horn of posterior meniscus. 963 measurements were done for 107 knees MRI. Relationship of T2 values with seven features including subarticular bone marrow edema, subarticular cysts, marginal osteophytes, anterior-posterior cruciate and collateral ligament tears, posterior medial and posterior lateral meniscal tears, synovial thickening and effusion were analyzed. T2 values in all three compartments were evaluated according to age and gender. A T2 value increase correlated with age was present in all three compartments measured in the subgroup with no knee joint pathology and in all patient groups. According to the ROC curve, an increase showing a statistically significant difference was present in the patient group aged over 40 compared to the patient group aged 40 and below in all patient groups. There is a statistically difference at T2 values with and without subarticular cysts, marginal osteophytes, synovial thickening and effusion. T2 relaxation time showed a statistically significant increase in the patients with a medial meniscus tear compared to those without a tear and no statistically significant difference was found in T2 relaxation times of patients with and without a posterior lateral meniscus tear. T2 cartilage mapping on MRI provides opportunity to exhibit biochemical and structural changes related with cartilage extracellular matrix without using invasive diagnostic methods.

  4. Intra-articular injection of dexketoprofen in rat knee joint : Histopathologic assessment of cartilage & synovium

    Directory of Open Access Journals (Sweden)

    Aycan Guner Ekici

    2014-01-01

    Full Text Available Background & objectives: Effective pain control following outpatient surgical procedures is an important aspect of patient discharge. This study was carried out with an aim to investigate the histopathological effects of intra-articular dexketoprofen trometamol injection in knee joint on synovium and cartilage in an experimental rat model. Methods: In each of 40 rats, the right knee was designated as the study group and the left knee as the control group (NS group. Under aseptic conditions, 35 rats received an injection of 0.25 ml (6.25 mg dexketoprofen trometamol into the right knee joint and an injection of 0.25 ml 0.9 per cent normal saline solution into the left knee joint. On the 1 st , 2 nd , 7 th , 14 th , and 21 st days after intra-articular injection, rats in specified groups were sacrificed by intraperitoneal injection of 120 mg/kg sodium thiopental. Knee joints were separated and sectioned for histopathological examination. Inflammatory changes in the joints were recorded according to a grade scale. Results: No significant difference in terms of pathological changes both in synovium and cartilage was observed between the NS group and the study group on days 1, 2, 7, 14 and 21 after intra-articular injection of dexketoprofen or saline in the knee joint. Interpretation & conclusions: The findings showed no evidence of significant histopathological damage to the cartilage and synovia for a period up to 21 days following intra-articular administration of dexketoprofen trometamol in the knee joints of rats.

  5. Return to sports participation after articular cartilage repair in the knee: scientific evidence.

    Science.gov (United States)

    Mithoefer, Kai; Hambly, Karen; Della Villa, Stefano; Silvers, Holly; Mandelbaum, Bert R

    2009-11-01

    Articular cartilage injury in the athlete's knee presents a difficult clinical challenge. Despite the importance of returning injured athletes to sports, information is limited on whether full sports participation can be successfully achieved after articular cartilage repair in the knee. Systematic analysis of athletic participation after articular cartilage repair will demonstrate the efficacy of joint surface restoration in high-demand patients and help to optimize outcomes in athletes with articular cartilage injury of the knee. Systematic review. A comprehensive literature review of original studies was performed to provide information about athletic participation after articular cartilage repair. The athlete's ability to perform sports postoperatively was assessed by activity outcome scores, rate of return to sport, timing of the return, level of postoperative sports participation, and the continuation of athletic activity over time. Twenty studies describing 1363 patients were included in the review, with an average follow-up of 42 months. Return to sports was possible in 73% overall, with highest return rates after osteochondral autograft transplantation. Time to return to sports varied between 7 and 18 months, depending on the cartilage repair technique. Initial return to sports at the preinjury level was possible in 68% and did not significantly vary between surgical techniques. Continued sports participation at the preinjury level was possible in 65%, with the best durability after autologous chondrocyte transplantation. Several factors affected the ability to return to sport: athlete's age, preoperative duration of symptoms, level of play, lesion size, and repair tissue morphology. Articular cartilage repair in the athletic population allows for a high rate of return to sports, often at the preinjury level. Return to sports participation is influenced by several independent factors. The findings provide pertinent information that is helpful for the

  6. MR imaging of cartilage and its repair in the knee - a review

    International Nuclear Information System (INIS)

    Trattnig, S.; Welsch, G.W.; Domayer, S.; Mosher, T.; Eckstein, F.

    2009-01-01

    Chondral injuries are common lesions of the knee joint, and many patients could benefit from cartilage repair. Widespread cartilage repair techniques require sophisticated noninvasive follow-up using MRI. In addition to the precise morphological assessment of this area of cartilage repair, the cartilage's biochemical constitution can be determined using biochemical MRI techniques. The combination of the clinical outcome after cartilage repair together with the morphological and biochemical description of the cartilage repair tissue as well as the surrounding cartilage can lead to an optimal follow-up evaluation. The present article on MR imaging techniques of cartilage repair focuses on morphological description and scoring using techniques from conventional 2D through advanced isotropic 3D MRI sequences. Furthermore the ultrastructure of the repair tissue and the surrounding cartilage is evaluated in-vivo by biochemical T1-delayed gadolinium enhanced MRI of cartilage (dGEMRIC), T2 relaxation, and diffusion-weighted imaging techniques. (orig.)

  7. Full-thickness knee articular cartilage defects in national football league combine athletes undergoing magnetic resonance imaging: prevalence, location, and association with previous surgery.

    Science.gov (United States)

    Nepple, Jeffrey J; Wright, Rick W; Matava, Matthew J; Brophy, Robert H

    2012-06-01

    To better define the prevalence and location of full-thickness articular cartilage lesions in elite football players undergoing knee magnetic resonance imaging (MRI) at the National Football League (NFL) Invitational Combine and assess the association of these lesions with previous knee surgery. We performed a retrospective review of all participants in the NFL Combine undergoing a knee MRI scan from 2005 to 2009. Each MRI scan was reviewed for evidence of articular cartilage disease. History of previous knee surgery including anterior cruciate ligament reconstruction, meniscal procedures, and articular cartilage surgery was recorded for each athlete. Knees with a history of previous articular cartilage restoration surgery were excluded from the analysis. A total of 704 knee MRI scans were included in the analysis. Full-thickness articular cartilage lesions were associated with a history of any previous knee surgery (P football players at the NFL Combine undergoing MRI. The lateral compartment appears to be at greater risk for full-thickness cartilage loss. Previous knee surgery, particularly meniscectomy, is associated with these lesions. Level IV, therapeutic case series. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  8. Indian Hedgehog in Synovial Fluid Is a Novel Marker for Early Cartilage Lesions in Human Knee Joint

    Directory of Open Access Journals (Sweden)

    Congming Zhang

    2014-04-01

    Full Text Available To determine whether there is a correlation between the concentration of Indian hedgehog (Ihh in synovial fluid (SF and the severity of cartilage damage in the human knee joints, the knee cartilages from patients were classified using the Outer-bridge scoring system and graded using the Modified Mankin score. Expression of Ihh in cartilage and SF samples were analyzed with immunohistochemistry (IHC, western blot, and enzyme-linked immunosorbent assay (ELISA. Furthermore, we detected and compared Ihh protein levels in rat and mice cartilages between normal control and surgery-induced osteoarthritis (OA group by IHC and fluorescence molecular tomography in vivo respectively. Ihh expression was increased 5.2-fold in OA cartilage, 3.1-fold in relative normal OA cartilage, and 1.71-fold in OA SF compared to normal control samples. The concentrations of Ihh in cartilage and SF samples was significantly increased in early-stage OA samples when compared to normal samples (r = 0.556; p < 0.001; however, there were no significant differences between normal samples and late-stage OA samples. Up-regulation of Ihh protein was also an early event in the surgery-induced OA models. Increased Ihh is associated with the severity of OA cartilage damage. Elevated Ihh content in human knee joint synovial fluid correlates with early cartilage lesions.

  9. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    Science.gov (United States)

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  10. Isotropic three-dimensional T2 mapping of knee cartilage: Development and validation.

    Science.gov (United States)

    Colotti, Roberto; Omoumi, Patrick; Bonanno, Gabriele; Ledoux, Jean-Baptiste; van Heeswijk, Ruud B

    2018-02-01

    1) To implement a higher-resolution isotropic 3D T 2 mapping technique that uses sequential T 2 -prepared segmented gradient-recalled echo (Iso3DGRE) images for knee cartilage evaluation, and 2) to validate it both in vitro and in vivo in healthy volunteers and patients with knee osteoarthritis. The Iso3DGRE sequence with an isotropic 0.6 mm spatial resolution was developed on a clinical 3T MR scanner. Numerical simulations were performed to optimize the pulse sequence parameters. A phantom study was performed to validate the T 2 estimation accuracy. The repeatability of the sequence was assessed in healthy volunteers (n = 7). T 2 values were compared with those from a clinical standard 2D multislice multiecho (MSME) T 2 mapping sequence in knees of healthy volunteers (n = 13) and in patients with knee osteoarthritis (OA, n = 5). The numerical simulations resulted in 100 excitations per segment and an optimal radiofrequency (RF) excitation angle of 15°. The phantom study demonstrated a good correlation of the technique with the reference standard (slope 0.9 ± 0.05, intercept 0.2 ± 1.7 msec, R 2 ≥ 0.99). Repeated measurements of cartilage T 2 values in healthy volunteers showed a coefficient of variation of 5.6%. Both Iso3DGRE and MSME techniques found significantly higher cartilage T 2 values (P < 0.03) in OA patients. Iso3DGRE precision was equal to that of the MSME T 2 mapping in healthy volunteers, and significantly higher in OA (P = 0.01). This study successfully demonstrated that high-resolution isotropic 3D T 2 mapping for knee cartilage characterization is feasible, accurate, repeatable, and precise. The technique allows for multiplanar reformatting and thus T 2 quantification in any plane of interest. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:362-371. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Effects of intraarticular contrast media on synovial membrane and cartilage: An electron microscopic evaluation in rabbit knees

    International Nuclear Information System (INIS)

    Kose, N.; Inan, U.; Omeroglu, H.; Seber, S.; Baycu, C.; Omeroglu, H.

    2007-01-01

    To evaluate the histological and ultrastructural alterations in rabbit knee joint cartilage and synovia induced by intraarticular injections of 2 water soluble contrast agents. The study was conducted at the Department of Orthopedics and Traumatology, Medical Faculty, Osmangazi University, Eskisehir, Turkey in January 2002. To examine the effect of contrast agents on articular cartilage and synovial membrane, rabbit model was used. Specimens from 62 knee joints were examined by light microscopy and transmission electron microscopy one hour, one day, one week and 2 weeks after intraarticular administration of gadolinium-diethylenetriamine pentaacetic acid, iopromide or saline. In the knees injected with saline, light microscopic changes of the synovium consisted of edema only. Edema and hyperemia were seen in contrast agent injected knees. Ultrastructurally, numerous and large pinocytotic vesicles in A cells of the synovial membrane were seen in contrast agent injected groups. In the knees injected with saline the cartilage were ultrastructurally normal but contrast agent injected knees showed increased activation of chondrocytes with increase of dense glycogen accumulation, large lipid vacuoles and matrix material. There were very rare pycnotic cells in these samples. The rating scale has been used and the means of the total scores were determined for the groups. The effects of contrast agents reduced gradually on the cartilage and synovium in general but did not become completely normal in the observation period. (author)

  12. A spectroscopic approach to imaging and quantification of cartilage lesions in human knee joints

    International Nuclear Information System (INIS)

    Johansson, A; Oeberg, P A; Sundqvist, T; Kuiper, J-H

    2011-01-01

    We have previously described a technology based on diffuse reflectance of broadband light for measuring joint articular cartilage thickness, utilizing that optical absorption is different in cartilage and subchondral bone. This study is the first evaluation of the technology in human material. We also investigated the prospects of cartilage lesion imaging, with the specific aim of arthroscopic integration. Cartilage thickness was studied ex vivo in a number of sites (n = 87) on human knee joint condyles, removed from nine patients during total knee replacement surgery. A reflectance spectrum was taken at each site and the cartilage thickness was estimated using the blue, green, red and near-infrared regions of the spectrum, respectively. Estimated values were compared with reference cartilage thickness values (taken after sample slicing) using an exponential model. Two-dimensional Monte Carlo simulations were performed in a theoretical analysis of the experimental results. The reference cartilage thickness of the investigated sites was 1.60 ± 1.30 mm (mean ± SD) in the range 0-4.2 mm. Highest correlation coefficients were seen for the calculations based on the near-infrared region after normalization to the red region (r = 0.86) and for the green region (r = 0.80).

  13. Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Li, Hong; Chen, Shuang; Tao, Hongyue; Chen, Shiyi

    2015-04-01

    Associated meniscal injury is well recognized at anterior cruciate ligament (ACL) reconstruction, and it is a known risk factor for osteoarthritis. To evaluate and characterize the postoperative appearance of articular cartilage after different meniscal treatment in ACL-reconstructed knees using T2 relaxation time evaluation on MRI. Cohort study; Level of evidence, 3. A total of 62 consecutive patients who under ACL reconstruction were recruited in this study, including 23 patients undergoing partial meniscectomy (MS group), 21 patients undergoing meniscal repair (MR group), and 18 patients with intact menisci (MI group) at time of surgery. Clinical evaluation, including subjective functional scores and physical examination, was performed on the same day as the MRI examination and at follow-up times ranging from 2 to 4.2 years. The MRI multiecho sagittal images were segmented to determine the T2 relaxation time value of each meniscus and articular cartilage plate. Differences in each measurement were compared among groups. No patient had joint-line tenderness or reported pain or clicking on McMurray test or instability. There were also no statistically significant differences in functional scores or medial or lateral meniscus T2 values among the 3 groups (P > .05 for both). There was a significantly higher articular cartilage T2 value in the medial femorotibial articular cartilage for the MS group (P T2 value between the MS and MR groups (P > .05) in each articular cartilage plate. The medial tibial articular cartilage T2 value had a significant positive correlation with medial meniscus T2 value (r = 0.287; P = .024) CONCLUSION: This study demonstrates that knees with meniscectomy or meniscal repair had articular cartilage degeneration at 2 to 4 years postoperatively, with higher articular cartilage T2 relaxation time values compared with the knees with an intact meniscus. © 2015 The Author(s).

  14. Texture analysis of articular cartilage traumatic changes in the knee calculated from morphological 3.0 T MR imaging

    International Nuclear Information System (INIS)

    Boutsikou, Konstantina; Kostopoulos, Spiros; Glotsos, Dimitris; Cavouras, Dionisis; Lavdas, Eleftherios; Oikonomou, Georgia; Malizos, Konstantinos; Fezoulidis, Ioannis V.; Vlychou, Marianna

    2013-01-01

    Objectives: In the present work, we aim to identify changes in the cartilage texture of the injured knee in young, physically active, patients by computer analysis of MRI images based on 3.0 T morphological sequences. Methods: Fifty-three young patients with training injury or trauma in one knee underwent MRI and arthroscopy. Textural features were computed from the MRI images of the knee-cartilages and two classes were formed of 28 normal and 16 with pathology only in the medial femoral condyle (MFC) cartilage. Results: Textural features with statistically significant differences between the two classes were found only at the MFC and the medial tibial condyle (MTC) areas. Three features-combinations, at the MFC or the MTC, maximized the between classes separation, thus, rendering alterations in cartilage texture due to injury more evident. The MFC cartilage in the pathology class was found more inhomogeneous in the distribution of gray-levels and of lower texture anisotropy and the opposed MTC cartilage, though normal on MRI and arthroscopy, was found to have lower texture anisotropy than cartilage in the normal class. Conclusion: Texture analysis may be used as an adjunct to morphological MR imaging for improving the detection of subtle cartilage changes and contributes to early therapeutic approach

  15. Texture analysis of articular cartilage traumatic changes in the knee calculated from morphological 3.0 T MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Boutsikou, Konstantina [Department of Medical Radiologic Technology, Technological Educational Institute of Athens, Ag.Spyridonos, Egaleo, Athens 12210 (Greece); Kostopoulos, Spiros; Glotsos, Dimitris; Cavouras, Dionisis [Department of Medical Instruments Technology, Technological Educational Institute of Athens, Ag.Spyridonos, Egaleo, Athens 12210 (Greece); Lavdas, Eleftherios; Oikonomou, Georgia [Department of Medical Radiologic Technology, Technological Educational Institute of Athens, Ag.Spyridonos, Egaleo, Athens 12210 (Greece); Malizos, Konstantinos [Department of Orthopaedic Surgery, University of Thessaly, School of Health Sciences, University Hospital of Larissa, Biopolis, Larissa 41110 (Greece); Fezoulidis, Ioannis V. [Department of Radiology, University of Thessaly, School of Health Sciences, University Hospital of Larissa, Biopolis, Larissa 41110 (Greece); Vlychou, Marianna, E-mail: mvlychou@med.uth.gr [Department of Radiology, University of Thessaly, School of Health Sciences, University Hospital of Larissa, Biopolis, Larissa 41110 (Greece)

    2013-08-15

    Objectives: In the present work, we aim to identify changes in the cartilage texture of the injured knee in young, physically active, patients by computer analysis of MRI images based on 3.0 T morphological sequences. Methods: Fifty-three young patients with training injury or trauma in one knee underwent MRI and arthroscopy. Textural features were computed from the MRI images of the knee-cartilages and two classes were formed of 28 normal and 16 with pathology only in the medial femoral condyle (MFC) cartilage. Results: Textural features with statistically significant differences between the two classes were found only at the MFC and the medial tibial condyle (MTC) areas. Three features-combinations, at the MFC or the MTC, maximized the between classes separation, thus, rendering alterations in cartilage texture due to injury more evident. The MFC cartilage in the pathology class was found more inhomogeneous in the distribution of gray-levels and of lower texture anisotropy and the opposed MTC cartilage, though normal on MRI and arthroscopy, was found to have lower texture anisotropy than cartilage in the normal class. Conclusion: Texture analysis may be used as an adjunct to morphological MR imaging for improving the detection of subtle cartilage changes and contributes to early therapeutic approach.

  16. Supramolecular Organization of Collagen Fibrils in Healthy and Osteoarthritic Human Knee and Hip Joint Cartilage.

    Directory of Open Access Journals (Sweden)

    Riccardo Gottardi

    Full Text Available Cartilage matrix is a composite of discrete, but interacting suprastructures, i.e. cartilage fibers with microfibrillar or network-like aggregates and penetrating extrafibrillar proteoglycan matrix. The biomechanical function of the proteoglycan matrix and the collagen fibers are to absorb compressive and tensional loads, respectively. Here, we are focusing on the suprastructural organization of collagen fibrils and the degradation process of their hierarchical organized fiber architecture studied at high resolution at the authentic location within cartilage. We present electron micrographs of the collagenous cores of such fibers obtained by an improved protocol for scanning electron microscopy (SEM. Articular cartilages are permeated by small prototypic fibrils with a homogeneous diameter of 18 ± 5 nm that can align in their D-periodic pattern and merge into larger fibers by lateral association. Interestingly, these fibers have tissue-specific organizations in cartilage. They are twisted ropes in superficial regions of knee joints or assemble into parallel aligned cable-like structures in deeper regions of knee joint- or throughout hip joints articular cartilage. These novel observations contribute to an improved understanding of collagen fiber biogenesis, function, and homeostasis in hyaline cartilage.

  17. Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes.

    Science.gov (United States)

    Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H

    2014-05-01

    Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  18. Comparison of surface coil and knee coil for evaluation of the patellar cartilage by MR imaging

    International Nuclear Information System (INIS)

    Steen, M. van den; Maeseneer, M. de; Hoste, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M.

    2003-01-01

    Purpose: The aim of this work was to compare the knee coil and the surface coil for the visualisation of the patellar cartilage. Materials and methods: In 28 patients (17 women, 11 men) with an average age of 40 years (range 14-76) with knee pain MR was performed. Transverse images were obtained using a fast spin echo proton density weighted sequence on a Philips Gyroscan Intera 1.5 T clinical system. Transverse images were obtained at the level of the patellar cartilage using both the surface and the knee coil. All images were evaluated by consensus of two radiologists. They evaluated a number of quality criteria on a 4-point scale. Criteria for artefacts were also graded on a 4-point scale. Results: For the visualisation of fluid there was no significant difference between the knee coil and the surface coil (P=0.021). For all other criteria regarding image quality and presence of imaging artefacts there was a significant difference between both coils (P<0.001) with the surface coil obtaining the better result. Conclusion: The use of the surface coil in the visualisation of the patellar cartilage can be recommended at knee MR

  19. MR diagnosis of articular cartilage injury in the knee: compared with arthroscopy

    International Nuclear Information System (INIS)

    Zhang Min; Li Shiling; Guo Zhiping; Zhang Wei; Ma Xiaohui; Cai Pengli; Wei Peijian; Peng Zhigang; Sun Yingcai; Zhang Zekun

    2005-01-01

    Objective: To assess the efficacy of FS-3D-FISP, FS-2D-FLASH and SE-T 1 WI sequences in the detection of articular cartilage injury of the knee. Methods: 34 consecutive patients with persistent symptoms of knee pain who were scheduled for arthroscopy underwent MR examination of the knee on a 1.5 TMR unit prior to arthroscopy. The 2D MR images were transferred to a workstation and processed tow-dimensional and three-dimensional reconstruction. Results: Compared with the arthroscopy, the sensitivity, specificity, and Kappa were 91.4%, 97%, and 0.818, respectively with FS-3D-F ISP sequence, 77.1%, 98%, and 0.531, respectively with FS-2D-FLASH sequence, 70%, 99%, and 0.518, respectively with SE-T 1 WI sequence. In the cases that had no acute trauma, 77.6% lesions were shown lower SI on T 1 -WI in the region of the subchondral bone and marrow near the lesions, and higher SI on FS-3D-FISP and FS-2D-FLASH sequences. Conclusion: Comparing with arthroscopy, the diagnosis accuracy of FS-3D-FISP sequence is obviously better than that of FS-2D-FLASH and SE-T 1 WI sequences. Correlation between FS-3D-FISP sequence and arthroscopy in detecting articular cartilage injury is remarkeble. Abnormal signal in the subchondral bone and marrow is an important indirect sign of articular cartilage injury. Three-dimensional reconstruction of articular cartilage is helpful for localization of the lesions after injury. (authors)

  20. Biological knee reconstruction for combined malalignment, meniscal deficiency, and articular cartilage disease.

    Science.gov (United States)

    Harris, Joshua D; Hussey, Kristen; Wilson, Hillary; Pilz, Kyle; Gupta, Anil K; Gomoll, Andreas; Cole, Brian J

    2015-02-01

    The aim of this study was to analyze patient-reported outcomes in those undergoing the triad of simultaneous osteotomy, meniscal transplantation, and articular cartilage repair. Patients undergoing simultaneous meniscal transplantation, distal femoral or proximal tibial osteotomy, and articular cartilage surgery by a single surgeon (B.J.C.) were analyzed. Meniscal transplantation was performed using bone-in-slot techniques. Distal femoral and high tibial osteotomies were performed for valgus and varus malalignment, respectively. Microfracture, autologous chondrocyte implantation, and osteochondral autograft or allograft were performed for articular cartilage disease. Validated patient-reported and surgeon-measured outcomes were collected. Preoperative and postoperative outcomes and medial versus lateral disease were compared using Student t tests. Eighteen participants (mean age, 34 ± 7.8 years; symptomatic patients, 7.4 ± 5.6 years; 2.4 ± 1.0 surgical procedures before study enrollment; mean follow-up, 6.5 ± 3.2 years) were analyzed. Two thirds of participants had medial compartment pathologic conditions and one third had lateral compartment pathologic processes. At final follow-up, there were statistically significant clinically meaningful improvements in International Knee Documentation Committee (IKDC) subjective classification, Lysholm score, and 4 Knee Injury and Osteoarthritis Outcome Score (KOOS) subscores. Postoperative 12-item short form (SF-12) physical and mental component scores were not significantly different from preoperative scores. The Kellgren-Lawrence classification grade was 1.5 ± 1.1 at 2.5 ± 3.0 years after surgery. There was a significantly higher preoperative SF-12 physical composite score (PCS) in participants with lateral compartment pathologic conditions (v medial compartment conditions) (P = .011). Although there were 13 reoperations in 10 patients (55.5% reoperation rate), only one patient was converted to knee arthroplasty (5

  1. Longitudinal in vivo reproducibility of cartilage volume and surface in osteoarthritis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Brem, M.H. [Harvard Medical School, Brigham and Women' s Hospital, Musculoskeletal Division, Department of Radiology, ASB-1, L-1, Room 003E, Boston, MA (United States); University of Erlangen-Nuremberg, Division of Trauma Surgery and Orthopaedic Surgery, Department of Surgery, Erlangen (Germany); Pauser, J.; Yoshioka, H.; Stratmann, J.; Kikinis, R.; Duryea, J.; Lang, P. [Harvard Medical School, Brigham and Women' s Hospital, Musculoskeletal Division, Department of Radiology, ASB-1, L-1, Room 003E, Boston, MA (United States); Brenning, A. [University of Erlangen-Nuremberg, Department of Medical Informatics, Biometry and Epidemiology, Erlangen (Germany); Hennig, F.F. [University of Erlangen-Nuremberg, Division of Trauma Surgery and Orthopaedic Surgery, Department of Surgery, Erlangen (Germany); Winalski, C.S. [Harvard Medical School, Brigham and Women' s Hospital, Musculoskeletal Division, Department of Radiology, ASB-1, L-1, Room 003E, Boston, MA (United States); Cleveland Clinic Foundation, Division of Radiology, Cleveland, OH (United States)

    2007-04-15

    The aim of this study was to evaluate the longitudinal reproducibility of cartilage volume and surface area measurements in moderate osteoarthritis (OA) of the knee. We analysed 5 MRI (GE 1.5T, sagittal 3D SPGR) data sets of patients with osteoarthritis (OA) of the knee (Kellgren Lawrence grade I-II). Two scans were performed: one baseline scan and one follow-up scan 3 months later (96 {+-} 10 days). For segmentation, 3D Slicer 2.5 software was used. Two segmentations were performed by two readers independently who were blinded to the scan dates. Tibial and femoral cartilage volume and surface were determined. Longitudinal and cross-sectional precision errors were calculated using the standard deviation (SD) and coefficient of variation (CV%=100 x [SD/mean]) from the repeated measurements in each patient. The in vivo reproducibility was then calculated as the root mean square of these individual reproducibility errors. The cross-sectional root mean squared coefficient of variation (RMSE-CV) was 1.2, 2.2 and 2.4% for surface area measurements (femur, medial and lateral tibia respectively) and 1.4, 1.8 and 1.3% for the corresponding cartilage volumes. Longitudinal RMSE-CV was 3.3, 3.1 and 3.7% for the surface area measurements (femur, medial and lateral tibia respectively) and 2.3, 3.3 and 2.4% for femur, medial and lateral tibia cartilage volumes. The longitudinal in vivo reproducibility of cartilage surface and volume measurements in the knee using this segmentation method is excellent. To the best of our knowledge we measured, for the first time, the longitudinal reproducibility of cartilage volume and surface area in participants with mild to moderate OA. (orig.)

  2. Increase in vastus medialis cross-sectional area is associated with reduced pain, cartilage loss, and joint replacement risk in knee osteoarthritis.

    Science.gov (United States)

    Wang, Yuanyuan; Wluka, Anita E; Berry, Patricia A; Siew, Terence; Teichtahl, Andrew J; Urquhart, Donna M; Lloyd, David G; Jones, Graeme; Cicuttini, Flavia M

    2012-12-01

    Although there is evidence for a beneficial effect of increased quadriceps strength on knee symptoms, the effect on knee structure is unclear. We undertook this study to examine the relationship between change in vastus medialis cross-sectional area (CSA) and knee pain, tibial cartilage volume, and risk of knee replacement in subjects with symptomatic knee osteoarthritis (OA). One hundred seventeen subjects with symptomatic knee OA underwent magnetic resonance imaging of the knee at baseline and at 2 and 4.5 years. Vastus medialis CSA was measured at baseline and at 2 years. Tibial cartilage volume was measured at baseline and at 2 and 4.5 years. Knee pain was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index at baseline and at 2 years. The frequency of knee joint replacement over 4 years was determined. Regression coefficients (B) and odds ratios were determined along with 95% confidence intervals (95% CIs). After adjusting for confounders, baseline vastus medialis CSA was inversely associated with current knee pain (r = -0.16, P = 0.04) and with medial tibial cartilage volume loss from baseline to 2 years (B coefficient -10.9 [95% CI -19.5, -2.3]), but not with baseline tibial cartilage volume. In addition, an increase in vastus medialis CSA from baseline to 2 years was associated with reduced knee pain over the same time period (r = 0.24, P = 0.007), reduced medial tibial cartilage loss from 2 to 4.5 years (B coefficient -16.8 [95% CI -28.9, -4.6]), and reduced risk of knee replacement over 4 years (odds ratio 0.61 [95% CI 0.40, 0.94]). In a population of patients with symptomatic knee OA, increased vastus medialis size was associated with reduced knee pain and beneficial structural changes at the knee, suggesting that management of knee pain and optimizing vastus medialis size are important in reducing OA progression and subsequent knee replacement. Copyright © 2012 by the American College of Rheumatology.

  3. Contribution of regional 3D meniscus and cartilage morphometry by MRI to joint space width in fixed flexion knee radiography—A between-knee comparison in subjects with unilateral joint space narrowing

    International Nuclear Information System (INIS)

    Bloecker, K.; Wirth, W.; Hunter, D.J.; Duryea, J.; Guermazi, A.; Kwoh, C.K.; Resch, H.; Eckstein, F.

    2013-01-01

    Background: Radiographic joint space width (JSW) is considered the reference standard for demonstrating structural therapeutic benefits in knee osteoarthritis. Our objective was to determine the proportion by which 3D (regional) meniscus and cartilage measures explain between-knee differences of JSW in the fixed flexion radiographs. Methods: Segmentation of the medial meniscus and tibial and femoral cartilage was performed in double echo steady state (DESS) images. Quantitative measures of meniscus size and position, femorotibial cartilage thickness, and radiographic JSW (minimum, and fixed locations) were compared between both knees of 60 participants of the Osteoarthritis Initiative, with strictly unilateral medial joint space narrowing (JSN). Statistical analyses (between-knee, within-person comparison) were performed using regression analysis. Results: A strong relationship with side-differences in minimum and a central fixed location JSW was observed for percent tibial plateau coverage by the meniscus (r = .59 and .47; p < .01) and central femoral cartilage thickness (r = .69 and .75; p < .01); other meniscus and cartilage measures displayed lower coefficients. The correlation of central femoral cartilage thickness with JSW (but not that of meniscus measures) was greater (r = .78 and .85; p < .01) when excluding knees with non-optimal alignment between the tibia and X-ray beam. Conclusion: 3D measures of meniscus and cartilage provide significant, independent information in explaining side-differences in radiographic JSW in fixed flexion radiographs. Tibial coverage by the meniscus and central femoral cartilage explained two thirds of the variability in minimum and fixed location JSW. JSW provides a better representation of (central) femorotibial cartilage thickness, when optimal positioning of the fixed flexion radiographs is achieved

  4. Contribution of regional 3D meniscus and cartilage morphometry by MRI to joint space width in fixed flexion knee radiography—A between-knee comparison in subjects with unilateral joint space narrowing

    Energy Technology Data Exchange (ETDEWEB)

    Bloecker, K., E-mail: katja.bloecker@pmu.ac.at [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg (Austria); Department of Traumatology and Sports Medicine, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg (Austria); Wirth, W., E-mail: wolfgang.wirth@pmu.ac.at [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg (Austria); Chondrometrics GmbH, Ulrichshöglerstrasse 23, 83404 Ainring (Germany); Hunter, D.J., E-mail: david.hunter@sydney.edu.au [Royal North Shore Hospital and Kolling Institute, University of Sydney, Pacific Highway, St Leonards, Sydney, NSW 2065 (Australia); Duryea, J., E-mail: jduryea@bwh.harvard.edu [Brigham and Women' s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA (United States); Guermazi, A., E-mail: Ali.Guermazi@bmc.org [Boston University School of Medicine, Department of Radiology, 820 Harrison Avenue, FGH Building 3rd Floor, Boston, MA (United States); Boston Imaging Core Lab (BICL), 601 Albany Street, Boston, MA (United States); Kwoh, C.K., E-mail: kwoh@pitt.edu [Division of Rheumatology and Clinical Immunology, University of Arizona, Tucson, AZ (United States); Division of Rheumatology and Clinical Immunology, University of Pittsburgh and VA, Pittsburgh Healthcare System, 3500 Terrace Street, Biomedical Science Tower South 702, Pittsburgh, PA 15261 (United States); Resch, H., E-mail: Herbert.resch@salk.at [Department of Traumatology and Sports Medicine, Paracelsus Medical University, Müllner Hauptstrasse 48, 5020 Salzburg (Austria); Eckstein, F. [Institute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg (Austria); Chondrometrics GmbH, Ulrichshöglerstrasse 23, 83404 Ainring (Germany)

    2013-12-01

    Background: Radiographic joint space width (JSW) is considered the reference standard for demonstrating structural therapeutic benefits in knee osteoarthritis. Our objective was to determine the proportion by which 3D (regional) meniscus and cartilage measures explain between-knee differences of JSW in the fixed flexion radiographs. Methods: Segmentation of the medial meniscus and tibial and femoral cartilage was performed in double echo steady state (DESS) images. Quantitative measures of meniscus size and position, femorotibial cartilage thickness, and radiographic JSW (minimum, and fixed locations) were compared between both knees of 60 participants of the Osteoarthritis Initiative, with strictly unilateral medial joint space narrowing (JSN). Statistical analyses (between-knee, within-person comparison) were performed using regression analysis. Results: A strong relationship with side-differences in minimum and a central fixed location JSW was observed for percent tibial plateau coverage by the meniscus (r = .59 and .47; p < .01) and central femoral cartilage thickness (r = .69 and .75; p < .01); other meniscus and cartilage measures displayed lower coefficients. The correlation of central femoral cartilage thickness with JSW (but not that of meniscus measures) was greater (r = .78 and .85; p < .01) when excluding knees with non-optimal alignment between the tibia and X-ray beam. Conclusion: 3D measures of meniscus and cartilage provide significant, independent information in explaining side-differences in radiographic JSW in fixed flexion radiographs. Tibial coverage by the meniscus and central femoral cartilage explained two thirds of the variability in minimum and fixed location JSW. JSW provides a better representation of (central) femorotibial cartilage thickness, when optimal positioning of the fixed flexion radiographs is achieved.

  5. Guidelines for the Design and Conduct of Clinical Studies in Knee Articular Cartilage Repair

    Science.gov (United States)

    Mithoefer, Kai; Saris, Daniel B.F.; Farr, Jack; Kon, Elizaveta; Zaslav, Kenneth; Cole, Brian J.; Ranstam, Jonas; Yao, Jian; Shive, Matthew; Levine, David; Dalemans, Wilfried; Brittberg, Mats

    2011-01-01

    Objective: To summarize current clinical research practice and develop methodological standards for objective scientific evaluation of knee cartilage repair procedures and products. Design: A comprehensive literature review was performed of high-level original studies providing information relevant for the design of clinical studies on articular cartilage repair in the knee. Analysis of cartilage repair publications and synopses of ongoing trials were used to identify important criteria for the design, reporting, and interpretation of studies in this field. Results: Current literature reflects the methodological limitations of the scientific evidence available for articular cartilage repair. However, clinical trial databases of ongoing trials document a trend suggesting improved study designs and clinical evaluation methodology. Based on the current scientific information and standards of clinical care, detailed methodological recommendations were developed for the statistical study design, patient recruitment, control group considerations, study endpoint definition, documentation of results, use of validated patient-reported outcome instruments, and inclusion and exclusion criteria for the design and conduct of scientifically sound cartilage repair study protocols. A consensus statement among the International Cartilage Repair Society (ICRS) and contributing authors experienced in clinical trial design and implementation was achieved. Conclusions: High-quality clinical research methodology is critical for the optimal evaluation of current and new cartilage repair technologies. In addition to generally applicable principles for orthopedic study design, specific criteria and considerations apply to cartilage repair studies. Systematic application of these criteria and considerations can facilitate study designs that are scientifically rigorous, ethical, practical, and appropriate for the question(s) being addressed in any given cartilage repair research project

  6. Does joint alignment affect the T2 values of cartilage in patients with knee osteoarthritis?

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Klaus M. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Shepard, Timothy; Chang, Gregory; Wang, Ligong; Babb, James S.; Regatte, Ravinder [New York University Langone Medical Center, Department of Radiology, New York, NY (United States); Schweitzer, Mark [Ottawa Hospital, Diagnostic Imaging, Ottawa, ON (Canada)

    2010-06-15

    To assess the relationship between T2 values of femorotibial cartilage and knee alignment in patients with clinical symptoms of medial osteoarthritis (OA). Twenty-four patients (mean age {+-} standard deviation, 62.5 {+-} 9.9 years) with clinical symptoms of medial knee OA, 12 with varus and 12 with valgus alignment of the femorotibial joint, were investigated on 3T MR using a 2D multi-echo spin echo (MESE) sequence for T2 mapping. Analysis of covariance, Spearman correlation coefficients, exact Mann-Whitney tests, and Fisher's exact tests were used for statistical analysis. Overall the T2 values of cartilage in the medial compartment (median {+-} interquartile-range, 49.44 {+-} 6.58) were significantly higher (P = 0.0043) than those in the lateral compartment (47.15 {+-} 6.87). Patients with varus alignment (50.83 {+-} 6.30 ms) had significantly higher T2 values of cartilage (P < 0.0001) than patients with valgus alignment (46.20 {+-} 6.00 ms). No statistically significant association between the T2 values of cartilage (in either location) and the Kellgren Lawrence score was found in the varus or in the valgus group. T2 measurements were increased in medial knee OA patients with varus alignment, adding support to the theory of an association of OA and joint alignment. (orig.)

  7. Increased cartilage volume after injection of hyaluronic acid in osteoarthritis knee patients who underwent high tibial osteotomy.

    Science.gov (United States)

    Chareancholvanich, Keerati; Pornrattanamaneewong, Chaturong; Narkbunnam, Rapeepat

    2014-06-01

    High tibial osteotomy (HTO) is a surgical procedure used to correct abnormal mechanical loading of the knee joint; additionally, intra-articular hyaluronic acid injections have been shown to restore the viscoelastic properties of synovial fluid and balance abnormal biochemical processes. It was hypothesized that combining HTO with intra-articular hyaluronic acid injections would have benefit to improve the cartilage volume of knee joints. Forty patients with medial compartment knee osteoarthritis (OA) were randomly placed into 1 of 2 groups. The study group (n = 20) received 2 cycles (at 6-month intervals) of 5 weekly intra-articular hyaluronic acid injections after HTO operation. The control group (n = 20) did not receive any intra-articular injections after HTO surgery. Cartilage volume (primary outcome) was assessed by magnetic resonance imaging (MRI) pre-operatively and 1 year post-operatively. Treatment efficacy (secondary outcomes) was evaluated with the Western Ontario and McMaster Universities OA Index (WOMAC) and by the comparison of the total rescue medication (paracetamol/diclofenac) used (weeks 6, 12, 24, 48). MRI studies showed a significant increase in total cartilage volume (p = 0.033), lateral femoral cartilage volume (p = 0.044) and lateral tibial cartilage volume (p = 0.027) in the study group. Cartilage volume loss was detected at the lateral tibial plateau in the control group. There were significant improvements after surgery in both groups for all subscales of WOMAC scores (p hyaluronic acid injections may be beneficial for increasing total cartilage volume and preventing the loss of lateral tibiofemoral joint cartilage after HTO. Therapeutic study, Level I.

  8. Longitudinal in vivo reproducibility of cartilage volume and surface in osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Brem, M.H.; Pauser, J.; Yoshioka, H.; Stratmann, J.; Kikinis, R.; Duryea, J.; Lang, P.; Brenning, A.; Hennig, F.F.; Winalski, C.S.

    2007-01-01

    The aim of this study was to evaluate the longitudinal reproducibility of cartilage volume and surface area measurements in moderate osteoarthritis (OA) of the knee. We analysed 5 MRI (GE 1.5T, sagittal 3D SPGR) data sets of patients with osteoarthritis (OA) of the knee (Kellgren Lawrence grade I-II). Two scans were performed: one baseline scan and one follow-up scan 3 months later (96 ± 10 days). For segmentation, 3D Slicer 2.5 software was used. Two segmentations were performed by two readers independently who were blinded to the scan dates. Tibial and femoral cartilage volume and surface were determined. Longitudinal and cross-sectional precision errors were calculated using the standard deviation (SD) and coefficient of variation (CV%=100 x [SD/mean]) from the repeated measurements in each patient. The in vivo reproducibility was then calculated as the root mean square of these individual reproducibility errors. The cross-sectional root mean squared coefficient of variation (RMSE-CV) was 1.2, 2.2 and 2.4% for surface area measurements (femur, medial and lateral tibia respectively) and 1.4, 1.8 and 1.3% for the corresponding cartilage volumes. Longitudinal RMSE-CV was 3.3, 3.1 and 3.7% for the surface area measurements (femur, medial and lateral tibia respectively) and 2.3, 3.3 and 2.4% for femur, medial and lateral tibia cartilage volumes. The longitudinal in vivo reproducibility of cartilage surface and volume measurements in the knee using this segmentation method is excellent. To the best of our knowledge we measured, for the first time, the longitudinal reproducibility of cartilage volume and surface area in participants with mild to moderate OA. (orig.)

  9. KNEE CARTILAGE AND SYNOVIAL MEMBRANE STRUCTURAL CHANGES DURING TIBIA DISTRACTION WITH PLATING

    Directory of Open Access Journals (Sweden)

    T. A. Stupina

    2017-01-01

    Full Text Available Purpose of the study — to analyze the changes in knee articular cartilage and synovial membrane during distraction external fixation of the tibia in combination with plating.Material and methods. Articular cartilage and synovial membrane of the knee joint were studied using histomorphometry methods in 9 mongrel dogs during distraction external fixation of the tibia combined with plating. Tibia and fibula osteotomies were performed at the border of middle and upper third, plate was fixed on tibia diaphysis. Lengthening was achieved at rate of 1 mm per day in four stages during 21–28 days. Animals were withdrawn from experiment in 30 and 90 days. After autopsy of knee joints the authors excised sections of synovial membrane from suprapatellar area, articular cartilage with underlying subchondral bone from loadable surface of femoral condyles. Thickness of articular cartilage, its area and volumetric density of chondrocytes was measured, proportion of chondrocytes within isogenic groups from the overall number of chondrocytes as well as proportion of empty lacunae. In synovial membrane the authors measured thickness of surface layer and numeric density of micro vessels. Articular cartilage of 5 intact animals was used as a control group.Results. After 30 days of plate fixation a hyperplasia of the integument layer, mild synovitis, and hypervascularization were observed in synovial membrane. Density of micro vessels increased to 363.93±33.71 (control group — 335.05±28.88. The authors also observed subperineural and endoneural edema as well as destruction of nerve fibers in subsynovial layer. Articular cartilage retained the zonal structure. Destructive changes were manifested by fibers separation in the superficial part of surface zone and by partial loss of chondrocytes. The following parameters were reduced: cartilage thickness, area and volumetric density of chondrocytes, proportion of isogenic groups; empty lacunae exceeded the values in

  10. Partial reversal by beta-D-xyloside of salicylate-induced inhibition of glycosaminoglycan synthesis in articular cartilage

    International Nuclear Information System (INIS)

    Palmoski, M.J.; Brandt, K.D.

    1982-01-01

    While net 35 S-glycosaminoglycan synthesis in normal canine articular cartilage was suppressed by 10(-3)M sodium salicylate to about 70% of the control value, addition of xyloside (10(-6)M-10(-3)M) to the salicylate-treated cultures led to a concentration-dependent increase in glycosaminoglycan synthesis, which rose to 120-237% of controls. Similar results were obtained when 3 H-glucosamine was used to measure glycosaminoglycan synthesis, confirming that salicylate suppresses and xyloside stimulates net glycosaminoglycan synthesis, and not merely sulfation. Salicylate (10-3)M) did not affect the activity of xylosyl or galactosyl transferase prepared from canine knee cartilage, and net protein synthesis was unaltered by either salicylate or xyloside. The proportion of newly synthesized proteoglycans existing as aggregates when cartilage was cultured with xyloside was similar to that in controls, although the average hydrodynamic size of disaggregated proteoglycans and of sulfated glycosaminoglycans was diminished

  11. Magnetic Resonance Imaging based Cartilage Loss in Painful Contra-Lateral Knees with and without Radiographic Joint Space Narrowing – Data from the Osteoarthritis Initiative (OAI)

    Science.gov (United States)

    Eckstein, Felix; Benichou, Olivier; Wirth, Wolfgang; Nelson, David R; Maschek, Susanne; Hudelmaier, Martin; Kwoh, C. Kent; Guermazi, Ali; Hunter, David

    2010-01-01

    Objective Magnetic resonance imaging (MRI) was used to assess whether knees with advanced radiographic disease (medial joint space narrowing = mJSN) encounter greater longitudinal cartilage loss than contra-lateral knees with earlier disease (no or less mJSN). Methods Participants were selected from 2678 cases in the Osteoarthritis Initiative, based on exhibition of bilateral pain, BMI>25, mJSN in one knee, no or less mJSN in the contra-lateral knee, and no lateral JSN in both knees. 80 participants (age 60.6±9.1 yrs) fulfilled these criteria. Medial tibial and femoral cartilage morphology was analyzed from baseline and 1-year follow-up sagittal DESSwe 3 Tesla MRI of both knees, by experienced readers blinded to the timepoint and mJSN status. Results Knees with more radiographic mJSN displayed greater medial cartilage loss (-80 μm), assessed by MRI, than contra-lateral knees with less mJSN (-57μm). The difference reached statistical significance in participants with mJSN grade 2 or 3 (p=0.005 to p=0.08), but not in participants with mJSN grade 1 (p=0.28 to 0.98). In knees with more mJSN, cartilage loss increased with higher grades of mJSN (p=0.003 in the medial femur). Knees with mJSN grade 2 or 3 displayed greater cartilage loss in the weight-bearing medial femur than in the posterior femur or in the medial tibia (p=0.048). Conclusion Knees with advanced mJSN displayed greater cartilage loss than contra-lateral knees with less mJSN. These data suggest that radiography can be used to stratify fast structural progressors, and that MRI cartilage thickness loss is more pronounced at advanced radiographic disease stage. PMID:19714595

  12. Articular cartilage defect detectability in human knees with MR-arthrography

    International Nuclear Information System (INIS)

    Engel, A.; Kramer, J.; Stiglbauer, R.; Hajek, P.C.; Imhof, H.

    1993-01-01

    One hundred and thirteen knee joints were examined, of which 48 showed damage of the hyaline cartilage in one or more locations. For the evaluation of the magnetic resonance (MR) arthrographic images we used the macroscopic staging according to Outerbridge, the defect staging according to Bauer, as well as a new MR-arthrographic staging. The results of the evaluation were compared with the surgical findings in 61 knee joints. This revealed a sensitivity of 86 %, a specificity of 100 % and accuracy of 90 %. All lesions that could not be classified on MR-arthrography were of stage-I chondromalacia. (orig.)

  13. Articular cartilage defect detectability in human knees with MR-arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Engel, A. [Orthopaedic Clinic, Univ. of Vienna (Austria); Kramer, J. [MR-Inst., Univ. of Vienna (Austria); Stiglbauer, R. [MR-Inst., Univ. of Vienna (Austria); Hajek, P.C. [MR-Inst., Univ. of Vienna (Austria); Imhof, H. [MR-Inst., Univ. of Vienna (Austria)

    1993-04-01

    One hundred and thirteen knee joints were examined, of which 48 showed damage of the hyaline cartilage in one or more locations. For the evaluation of the magnetic resonance (MR) arthrographic images we used the macroscopic staging according to Outerbridge, the defect staging according to Bauer, as well as a new MR-arthrographic staging. The results of the evaluation were compared with the surgical findings in 61 knee joints. This revealed a sensitivity of 86 %, a specificity of 100 % and accuracy of 90 %. All lesions that could not be classified on MR-arthrography were of stage-I chondromalacia. (orig.)

  14. MR imaging reflects cartilage proteoglycan degradation in the rabbit knee joint

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.M.; Blancuzzi, V.; Wilson, D.; Douglas, F.L.; Mezrich, R.S.

    1989-01-01

    Depletion of proteoglycan (PG) from articular cartilage is an early feature of osteoarthritis (OA). Noninvasive assessment of joint morphology corresponding to changes in cartilage PG is crucial for early diagnosis of OA and for demonstration of efficacy of drugs for OA. Intraarticular injection of papain causes a reversible loss of cartilage PG in intact joints. Both knees of NZW rabbits were scanned with a 1.5-T Signa MR imager with a 3-inch surface coil. A spin-echo technique was used, and coronal and sagittal MR images were obtained at 0, 24, 48, and 72 hours after injection of 5 U papain. An 8-cm field of view, a 3-mm section thickness, and a 128 x 256 matrix was used to obtain T1-, proton density-, and T2-weighted images. Cartilage was dissected from the femur for measurement of PG with 1,9-dimethylmethylene blue. Results are presented

  15. [Efficacy observation on knee osteoarthritis treated with electroacupuncture and its influence on articular cartilage with T2 mapping].

    Science.gov (United States)

    Bao, Fei; Zhang, Yan; Wu, Zhi-Hong; Wang, Yan; Sheng, Min; Hu, Na; Feng, Feng; Wang, Dao-Hai; Zhang, Yun-Xiang; Li, Tao; Sun, Hua

    2013-03-01

    To observe therapeutic efficacy of osteoarthritis treated by electroacupuncture, and explore its function of promoting cartilage restoration. According to random digital table, sixty cases of knee osteoarthritis (60 knees) were randomly divided into an electroacupuncture group and a physiotherapy group, 15 cases (30 knees) in each one. The electroacupuncture was applied at Neixiyan (EX-LE 4), Dubi (ST 35), Heding (EX-LE 2) and Xuehai (SP 10) in the electroacupuncture group, once every other day. The physiotherapy group was treated by medium-frequency therapeutic apparatus every day. For both groups, 4 weeks of treatment were required. The Lysholm knee scoring scale (LKSS) was used to evaluate and compare the knee joints function before and after treatment. At the same time, the GE Signa EXCITE Twin Speed HD 1.5T was used to take MRI examination of knee joints, and measure the T2 values in 10 sub-regions of the cartilage of tibiofemoral joints. Compared before treatment, the LKSS score of both groups were improved with significant differences except item demands for support (P electroacupuncture group was better than the physiotherapy group, but no significant difference on the other items (all P > 0.05). In the electroacupuncture group after treatment, T2 value in anterior lateral tibial sub-region (LTa) was significantly lowered (P 0.05). In the physiotherapy group, T2 value in any sub-region was not significantly different before and after treatment (all P > 0.05). Electroacupuncture could effectively improve the symptom, sign and knee joint's function of patients with knee osteoarthritis. Compared with physiotherapy, it has more superior effect and considered as a better non-operative treatment for osteoarthritis. Electroacupuncture also has positive influence on T2 value in cartilage, indicating that electroacupuncture may have the function of promoting cartilage restoration.

  16. Degenerated human articular cartilage at autopsy represents preclinical osteoarthritic cartilage: comparison with clinically defined osteoarthritic cartilage

    NARCIS (Netherlands)

    van Valburg, A. A.; Wenting, M. J.; Beekman, B.; te Koppele, J. M.; Lafeber, F. P.; Bijlsma, J. W.

    1997-01-01

    To investigate whether macroscopically fibrillated human articular knee cartilage observed at autopsy can be considered an early, preclinical phase of osteoarthritis (OA). Histological and biochemical characteristics of 3 types of articular knee cartilage were compared: macroscopically degenerated

  17. Magnetic resonance imaging (MRI) of articular cartilage of the knee using ultrashort echo time (uTE) sequences with spiral acquisition

    International Nuclear Information System (INIS)

    Goto, Hajimu; Fujii, Masahiko; Iwama, Yuki; Aoyama, Nobukazu; Ohno, Yoshiharu; Sugimura, Kazuro

    2012-01-01

    The objective of this study was to evaluate the sensitivity of ultrashort echo time (uTE) sequence for visualisation of calcified deep layers of articular cartilage. MRI with a uTE sequence was performed on five healthy volunteers. Signals from the calcified deep layers of the articular knee cartilage were evaluated on uTE subtraction images and computed tomography images. The calcified deep layers of the articular cartilage changed from having a low to a high signal when imaged with a uTE sequence. The reported uTE sequence was effective in imaging the deep layers of the knee cartilage.

  18. Biological, biochemical and biomechanical characterisation of articular cartilage from the porcine, bovine and ovine hip and knee.

    Science.gov (United States)

    Fermor, H L; McLure, S W D; Taylor, S D; Russell, S L; Williams, S; Fisher, J; Ingham, E

    2015-01-01

    This study aimed to determine the optimal starting material for the development of an acellular osteochondral graft. Osteochondral tissues from three different species were characterised; pig (6 months), cow (18 months) and two ages of sheep (8-12 months and >4 year old). Tissues from the acetabulum and femoral head of the hip, and the groove, medial and lateral condyles and tibial plateau of the knee were assessed. Histological analysis of each tissue allowed for qualification of cartilage histoarchitecture, glycosaminoglycan (GAG) distribution, assessment of cellularity and cartilage thickness. Collagen and GAG content were quantified and cartilage water content was defined. Following biomechanical testing, the percentage deformation, permeability and equilibrium elastic modulus was determined. Results showed that porcine cartilage had the highest concentration of sulphated proteoglycans and that the condyles and groove of the knee showed higher GAG content than other joint areas. Cartilage from younger tissues (porcine and young ovine) had higher cell content and was thicker, reflecting the effects of age on cartilage structure. Cartilage from older sheep had a much higher elastic modulus and was less permeable than other species.

  19. Does joint alignment affect the T2 values of cartilage in patients with knee osteoarthritis?

    International Nuclear Information System (INIS)

    Friedrich, Klaus M.; Shepard, Timothy; Chang, Gregory; Wang, Ligong; Babb, James S.; Regatte, Ravinder; Schweitzer, Mark

    2010-01-01

    To assess the relationship between T2 values of femorotibial cartilage and knee alignment in patients with clinical symptoms of medial osteoarthritis (OA). Twenty-four patients (mean age ± standard deviation, 62.5 ± 9.9 years) with clinical symptoms of medial knee OA, 12 with varus and 12 with valgus alignment of the femorotibial joint, were investigated on 3T MR using a 2D multi-echo spin echo (MESE) sequence for T2 mapping. Analysis of covariance, Spearman correlation coefficients, exact Mann-Whitney tests, and Fisher's exact tests were used for statistical analysis. Overall the T2 values of cartilage in the medial compartment (median ± interquartile-range, 49.44 ± 6.58) were significantly higher (P = 0.0043) than those in the lateral compartment (47.15 ± 6.87). Patients with varus alignment (50.83 ± 6.30 ms) had significantly higher T2 values of cartilage (P < 0.0001) than patients with valgus alignment (46.20 ± 6.00 ms). No statistically significant association between the T2 values of cartilage (in either location) and the Kellgren Lawrence score was found in the varus or in the valgus group. T2 measurements were increased in medial knee OA patients with varus alignment, adding support to the theory of an association of OA and joint alignment. (orig.)

  20. A study on MR images of the articular cartilage in medial-type osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Miyazaki, Hiroyuki; Ishii, Yoshiaki; Hayashi, Mitsutoshi; Kotani, Akihiro

    2001-01-01

    Changes in the articular cartilage of 88 knees of 73 cases (age range 40-78) diagnosed clinically and radiologically as OA (osteoarthritis) were studied by obtaining fat-suppressed MR images of the knee. On 27 knees out of the 88, moreover, macroscopic observation was performed to make a comparative study between the directly-observed findings and MR findings. Fat-suppressed MR images were obtained sagittally by 3D-FLASH (fast low angle shot) sequence. The examined regions consisted of the following 4 sites; the medial condyle of the femur, its lateral condyle, the medial condyle of the tibia, and its lateral condyle. The revealed conditions of the cartilage were morphologically classified into 4 Stages. The evidence of cartilage defect on MR images was most frequently found at the medial condyle of the femur, with the medial condyle of the tibia, the lateral condyle of the femur, and the lateral condyle of the tibia following in a less frequent order. Fat-suppressed MRI's sensitivity to cartilage defect against macroscopy was 94.5%, specificity 95.4%, and accuracy 95.2%. MR imaging using fat-suppression can reveal cartilaginous degeneration and defect so well that this technique provides an important indication for selecting a proper method of treatment. (author)

  1. MR appearance of cartilage defects of the knee: preliminary results of a spiral CT arthrography-guided analysis

    International Nuclear Information System (INIS)

    Berg, B.C. vande; Lecouvet, F.E.; Maldague, B.; Malghem, J.

    2004-01-01

    The aim of this study was to determine signal intensity patterns of cartilage defects at MR imaging. The MR imaging (3-mm-thick fat-suppressed intermediate-weighted fast spin-echo images) was obtained in 31 knees (21 male and 10 female patients; mean age 45.5 years) blindly selected from a series of 252 consecutive knees investigated by dual-detector spiral CT arthrography. Two radiologists determined in consensus the MR signal intensity of the cartilage areas where cartilage defects had been demonstrated on the corresponding reformatted CT arthrographic images. There were 83 cartilage defects at spiral CT arthrography. In 52 (63%) lesion areas, the MR signal intensity was higher than that of adjacent normal cartilage with signal intensity equivalent to (n=31) or lower than (n=21) that of articular fluid. The MR signal intensity was equivalent to that of adjacent normal cartilage in 17 (20%) lesion areas and lower than that of adjacent cartilage in 8 (10%) lesion areas. In 6 (7%) lesion areas, mixed low and high signal intensity was observed. The MR signal intensity of cartilage defects demonstrated on spiral CT arthrographic images varies from low to high on fat-suppressed intermediate-weighted fast spin-echo MR images obtained with our equipment and MR parameters. (orig.)

  2. Cartilage oligomeric matrix protein (COMP) in rheumatoid arthritis and its correlation with sonographic knee cartilage thickness and disease activity.

    Science.gov (United States)

    Sakthiswary, Rajalingham; Rajalingam, Shamala; Hussein, Heselynn; Sridharan, Radhika; Asrul, Abdul Wahab

    2017-12-01

    The aim of the study is to investigate the correlation of serum cartilage oligomeric matrix protein (COMP) levels with articular cartilage damage based on sonographic knee cartilage thickness (KCT) and disease activity in rheumatoid arthritis (RA). A total of 61 RA patients and 27 healthy controls were recruited in this study. Serum samples were obtained from all subjects to determine the serum COMP levels. All subjects had bilateral ultrasound scan of their knees. The KCT was based on the mean of measurements at three sites: the medial condyle, lateral condyle and intercondylar notch. Besides, the RA patients were assessed for their disease activity based on 28-joint-based Disease Activity Score (DAS 28). Serum COMP concentrations were significantly elevated in the RA patients compared to the controls (p = 0.001). The serum COMP levels had an inverse relationship with bilateral KCT in RA subjects and the healthy controls. COMP correlated significantly with disease activity based on DAS 28 (r = 0.299, p = 0.010), disease duration (r = 0.439, p = correlation between serum COMP and DAS 28 scores was comparable to the traditional markers of inflammation: erythrocyte sedimentation rate (ESR) (r = 0.372, p = 0.003) and C-reactive protein (CRP) (r = 0.305, p = 0.017). The serum COMP is a promising biomarker in RA which reflects disease activity and damage to the articular cartilage.

  3. Increasing lateral tibial slope: is there an association with articular cartilage changes in the knee?

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nasir; Shepel, Michael; Leswick, David A.; Obaid, Haron [University of Saskatchewan, Department of Medical Imaging, Royal University Hospital, and College of Medicine, Saskatoon, Saskatchewan (Canada)

    2014-04-15

    The geometry of the lateral tibial slope (LTS) plays an important role in the overall biomechanics of the knee. Through this study, we aim to assess the impact of LTS on cartilage degeneration in the knee. A retrospective analysis of 93 knee MRI scans (1.5 T or 3 T) for patients aged 20-45 years with no history of trauma or knee surgery, and absence of internal derangement. The LTS was calculated using the circle method. Chondropathy was graded from 0 (normal) to 3 (severe). Linear regression analysis was used for statistical analysis (p < 0.05). In our cohort of patients, a statistically significant association was seen between increasing LTS and worsening cartilage degenerative changes in the medial patellar articular surface and the lateral tibial articular surface (p < 0.05). There was no statistically significant association between increasing LTS and worsening chondropathy of the lateral patellar, medial trochlea, lateral trochlea, medial femoral, lateral femoral, and medial tibial articular surfaces. Our results show a statistically significant association between increasing LTS and worsening cartilage degenerative changes in the medial patella and the lateral tibial plateau. We speculate that increased LTS may result in increased femoral glide over the lateral tibial plateau with subsequent increased external rotation of the femur predisposing to patellofemoral articular changes. Future arthroscopic studies are needed to further confirm our findings. (orig.)

  4. Increasing lateral tibial slope: is there an association with articular cartilage changes in the knee?

    International Nuclear Information System (INIS)

    Khan, Nasir; Shepel, Michael; Leswick, David A.; Obaid, Haron

    2014-01-01

    The geometry of the lateral tibial slope (LTS) plays an important role in the overall biomechanics of the knee. Through this study, we aim to assess the impact of LTS on cartilage degeneration in the knee. A retrospective analysis of 93 knee MRI scans (1.5 T or 3 T) for patients aged 20-45 years with no history of trauma or knee surgery, and absence of internal derangement. The LTS was calculated using the circle method. Chondropathy was graded from 0 (normal) to 3 (severe). Linear regression analysis was used for statistical analysis (p < 0.05). In our cohort of patients, a statistically significant association was seen between increasing LTS and worsening cartilage degenerative changes in the medial patellar articular surface and the lateral tibial articular surface (p < 0.05). There was no statistically significant association between increasing LTS and worsening chondropathy of the lateral patellar, medial trochlea, lateral trochlea, medial femoral, lateral femoral, and medial tibial articular surfaces. Our results show a statistically significant association between increasing LTS and worsening cartilage degenerative changes in the medial patella and the lateral tibial plateau. We speculate that increased LTS may result in increased femoral glide over the lateral tibial plateau with subsequent increased external rotation of the femur predisposing to patellofemoral articular changes. Future arthroscopic studies are needed to further confirm our findings. (orig.)

  5. Prospective comparison of 3D FIESTA versus fat-suppressed 3D SPGR MRI in evaluating knee cartilage lesions

    International Nuclear Information System (INIS)

    Li, X.; Yu, C.; Wu, H.; Daniel, K.; Hu, D.; Xia, L.; Pan, C.; Xu, A.; Hu, J.; Wang, L.; Peng, W.; Li, F.

    2009-01-01

    Aim: To prospectively compare the accuracy of three-dimensional fast imaging employing steady-state acquisition (3D FIESTA) sequences with that of fat-suppressed three-dimensional spoiled gradient-recalled (3D SPGR) in the diagnosis of knee articular cartilage lesions, using arthroscopy as the reference standard. Materials and methods: Fifty-eight knees in 54 patients (age range 21-82 years; mean 36 years) were prospectively evaluated by using sagittal 3D FIESTA and sagittal fat-suppressed 3D SPGR sequences. Articular cartilage lesions were graded on MRI and during arthroscopy with a modified Noyes scoring system. Sensitivity, specificity, and accuracy were assessed. Interobserver agreement was determined with κ statistics. Results: The performance of 3D FIESTA sequences (sensitivity, specificity, and accuracy were 80, 94, and 92%, respectively, for reader 1 and 76, 94, and 90%, respectively, for reader 2) was similar to that of fat-suppressed 3D SPGR sequences (sensitivity, specificity, and accuracy were 82, 92, and 90%, respectively, for reader 1 and 82, 90, and 88%, respectively, for reader 2) in the detection of knee articular cartilage lesions. The interobserver agreement varied from fair to good to excellent (kappa values from 0.43-0.83). Conclusion: 3D FIESTA has good diagnostic performance, comparable with fat-suppressed 3D SPGR in evaluating knee cartilage lesions, and it can be incorporated into routine knee MRI protocols due to the short acquisition time.

  6. Prospective comparison of 3D FIESTA versus fat-suppressed 3D SPGR MRI in evaluating knee cartilage lesions

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Yu, C. [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Wu, H. [Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)], E-mail: lilyboston2002@163.com; Daniel, K. [Department of Radiology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Hu, D.; Xia, L.; Pan, C.; Xu, A.; Hu, J.; Wang, L.; Peng, W. [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Li, F. [Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-10-15

    Aim: To prospectively compare the accuracy of three-dimensional fast imaging employing steady-state acquisition (3D FIESTA) sequences with that of fat-suppressed three-dimensional spoiled gradient-recalled (3D SPGR) in the diagnosis of knee articular cartilage lesions, using arthroscopy as the reference standard. Materials and methods: Fifty-eight knees in 54 patients (age range 21-82 years; mean 36 years) were prospectively evaluated by using sagittal 3D FIESTA and sagittal fat-suppressed 3D SPGR sequences. Articular cartilage lesions were graded on MRI and during arthroscopy with a modified Noyes scoring system. Sensitivity, specificity, and accuracy were assessed. Interobserver agreement was determined with {kappa} statistics. Results: The performance of 3D FIESTA sequences (sensitivity, specificity, and accuracy were 80, 94, and 92%, respectively, for reader 1 and 76, 94, and 90%, respectively, for reader 2) was similar to that of fat-suppressed 3D SPGR sequences (sensitivity, specificity, and accuracy were 82, 92, and 90%, respectively, for reader 1 and 82, 90, and 88%, respectively, for reader 2) in the detection of knee articular cartilage lesions. The interobserver agreement varied from fair to good to excellent (kappa values from 0.43-0.83). Conclusion: 3D FIESTA has good diagnostic performance, comparable with fat-suppressed 3D SPGR in evaluating knee cartilage lesions, and it can be incorporated into routine knee MRI protocols due to the short acquisition time.

  7. Magnetic resonance imaging of articular cartilage in the knee. Evaluation of 3D-fat-saturation FLASH sequence in normal volunteer and patient with osteoarthritis

    International Nuclear Information System (INIS)

    Sato, Katsuhiko

    1996-01-01

    MR imaging of normal and abnormal articular cartilage of the knee was performed using 3D-fat-saturation FLASH sequence (FSF). Contrast-to-noise ratios between the cartilage and fluid, and cartilage and bone marrow were evaluated respectively in 10 normal volunteers. The optimal imaging parameters were determined as flip angle of 40deg and TE of 10 ms. Good correlation was noted between MR images and macroscopic appearance of the hyaline cartilages in the cadaver knees. Comparison of MR and radiographic findings was made in 39 cases of osteoarthritis. MR was significantly more sensitive than radiography in detecting cartilage abnormalities. In patient with radiographically normal joint spaces, cartilage abnormality was detected by MRI in the medial compartment of 13 cases and the lateral compartment of 19 cases. Signal intensity of joint effusion was sufficiently suppressed and did not hamper evaluation of the cartilages. FSF method was considered as a valuable imaging technique in the evaluation of cartilage abnormalities of the knee. (author)

  8. Magnetic resonance imaging of articular cartilage in the knee. Evaluation of 3D-fat-saturation FLASH sequence in normal volunteer and patient with osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Katsuhiko [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1996-07-01

    MR imaging of normal and abnormal articular cartilage of the knee was performed using 3D-fat-saturation FLASH sequence (FSF). Contrast-to-noise ratios between the cartilage and fluid, and cartilage and bone marrow were evaluated respectively in 10 normal volunteers. The optimal imaging parameters were determined as flip angle of 40deg and TE of 10 ms. Good correlation was noted between MR images and macroscopic appearance of the hyaline cartilages in the cadaver knees. Comparison of MR and radiographic findings was made in 39 cases of osteoarthritis. MR was significantly more sensitive than radiography in detecting cartilage abnormalities. In patient with radiographically normal joint spaces, cartilage abnormality was detected by MRI in the medial compartment of 13 cases and the lateral compartment of 19 cases. Signal intensity of joint effusion was sufficiently suppressed and did not hamper evaluation of the cartilages. FSF method was considered as a valuable imaging technique in the evaluation of cartilage abnormalities of the knee. (author)

  9. Knee cartilage segmentation using active shape models and local binary patterns

    Science.gov (United States)

    González, Germán.; Escalante-Ramírez, Boris

    2014-05-01

    Segmentation of knee cartilage has been useful for opportune diagnosis and treatment of osteoarthritis (OA). This paper presents a semiautomatic segmentation technique based on Active Shape Models (ASM) combined with Local Binary Patterns (LBP) and its approaches to describe the surrounding texture of femoral cartilage. The proposed technique is tested on a 16-image database of different patients and it is validated through Leave- One-Out method. We compare different segmentation techniques: ASM-LBP, ASM-medianLBP, and ASM proposed by Cootes. The ASM-LBP approaches are tested with different ratios to decide which of them describes the cartilage texture better. The results show that ASM-medianLBP has better performance than ASM-LBP and ASM. Furthermore, we add a routine which improves the robustness versus two principal problems: oversegmentation and initialization.

  10. A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data from the Osteoarthritis Initiative

    Science.gov (United States)

    Mononen, Mika E.; Tanska, Petri; Isaksson, Hanna; Korhonen, Rami K.

    2016-02-01

    We present a novel algorithm combined with computational modeling to simulate the development of knee osteoarthritis. The degeneration algorithm was based on excessive and cumulatively accumulated stresses within knee joint cartilage during physiological gait loading. In the algorithm, the collagen network stiffness of cartilage was reduced iteratively if excessive maximum principal stresses were observed. The developed algorithm was tested and validated against experimental baseline and 4-year follow-up Kellgren-Lawrence grades, indicating different levels of cartilage degeneration at the tibiofemoral contact region. Test groups consisted of normal weight and obese subjects with the same gender and similar age and height without osteoarthritic changes. The algorithm accurately simulated cartilage degeneration as compared to the Kellgren-Lawrence findings in the subject group with excess weight, while the healthy subject group’s joint remained intact. Furthermore, the developed algorithm followed the experimentally found trend of cartilage degeneration in the obese group (R2 = 0.95, p osteoarthritis (0-2 years, p  0.05). The proposed algorithm revealed a great potential to objectively simulate the progression of knee osteoarthritis.

  11. Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold.

    Science.gov (United States)

    Lv, Y M; Yu, Q S

    2015-04-01

    The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. The bone-cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid-hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56-64. ©2015 The British Editorial Society of Bone & Joint Surgery.

  12. Magnetic resonance imaging of the femoral trochlea: evaluation of anatomical landmarks and grading articular cartilage in cadaveric knees

    Energy Technology Data Exchange (ETDEWEB)

    Muhle, Claus [Marienhospital Vechta, Department of Radiology, Vechta (Germany); Veterans Affairs Medical Center, Department of Radiology, San Diego, CA (United States); Mo Ahn, Joong [University of Iowa, Department of Radiology, Iowa, IA (United States); Trudell, Debra; Resnick, Donald [Veterans Affairs Medical Center, Department of Radiology, San Diego, CA (United States)

    2008-06-15

    The purpose of the study was to define magnetic resonance imaging (MRI) findings before and after contrast medium opacification of the knee joint in cadaveric specimens to demonstrate anatomical landmarks of the trochlear surface in relation to the neighboring structures, and to evaluate different MRI sequences in the detection of cartilage defects of the trochlear and patellar surface of the knee. The morphology and relationship of the proximal trochlear surface to the prefemoral fat of the distal femur were investigated by use of different MR sequences before and after intra-articular gadolinium administration into the knee joint in ten cadaveric knees. Anatomic sections were subsequently obtained. In addition, evaluation of the articular surface of the trochlea was performed by two independent observers. The cartilage surfaces were graded using a 2-point system, and results were compared with macroscopic findings. Of 40 cartilage surfaces evaluated, histopathologic findings showed 9 normal surfaces, 20 containing partial-thickness defects, and 11 containing full-thickness defects. Compared with macroscopic data, sensitivity of MR sequences for the two reviewers was between 17 and 90%; specificity, 75 and 100%; positive predictive value, 75 and 100%; negative predictive value, 20 and 100%, depending on patellar or trochlea lesions. Interobserver variability for the presence of disease, which was measured using the kappa statistic, was dependent on the MR sequence used between 0.243 and 0.851. Magnetic resonance imaging sequences can be used to evaluate the cartilage of the trochlear surface with less accuracy when compared with the results of grading the articular cartilage of the patella. (orig.)

  13. Quantitative T2* assessment of knee joint cartilage after running a marathon

    International Nuclear Information System (INIS)

    Hesper, Tobias; Miese, Falk R.; Hosalkar, Harish S.; Behringer, Michael; Zilkens, Christoph; Antoch, Gerald; Krauspe, Rüdiger; Bittersohl, Bernd

    2015-01-01

    Highlights: • This is the first descriptive report on the effects of repetitive joint loading on the T2 ** relaxation assessment of articular cartilage. • This study on marathon runners who underwent MRI within 48 hours prior to and following the running event as well as after a period of convalescence of approximately four weeks confirms the feasibility of T2 ** mapping of knee joint cartilage under the consideration of repetitive joint loading prior to MRI as we noted only small differences in the T2 ** after running a marathon. • Despite the small study group (nn = 10) and the presence of morphologically normal appearing cartilage, we noted lower cartilage T2 ** values in the medial tibial plateau that may be related to functional demand or early signs of cartilage degeneration. - Abstract: Objective: To study the effect of repetitive joint loading on the T2 * assessment of knee joint cartilage. Materials and methods: T2 * mapping was performed in 10 non-professional marathon runners (mean age: 28.7 ± 3.97 years) with no morphologically evident cartilage damage within 48 h prior to and following the marathon and after a period of approximately four weeks. Bulk and zonal T2 * values at the medial and lateral tibiofemoral compartment and the patellofemoral compartment were assessed by means of region of interest analysis. Pre- and post-marathon values were compared. Results: There was a small increase in the T2 * after running the marathon (30.47 ± 5.16 ms versus 29.84 ± 4.97 ms, P < 0.05) while the T2 * values before the marathon and those after the period of convalescence were similar (29.84 ± 4.97 ms versus 29.81 ± 5.17 ms, P = 0.855). Regional analyses revealed lower T2 * values in the medial tibial plateau (P < 0.001). Conclusions: It appears that repetitive joint loading has a transient influence on the T2 * values. However, this effect is small and probably not clinically relevant. The low T2 * values in the medial tibial plateau may be related

  14. A preliminary study of the T1rho values of normal knee cartilage using 3 T-MRI

    International Nuclear Information System (INIS)

    Goto, Hajimu; Iwama, Yuki; Fujii, Masahiko; Aoyama, Nobukazu; Kubo, Seiji; Kuroda, Ryosuke; Ohno, Yoshiharu; Sugimura, Kazuro

    2012-01-01

    Introduction: To investigate the degree of the effect of aging and weight-bearing on T1rho values in normal cartilage. Materials and methods: Thirty-two asymptomatic patients were examined using 3.0-T magnetic resonance imaging (MRI) to determine knee cartilage T1rho values and T2 values. The femoral and tibial cartilage was divided into weight-bearing (WB-Rs) and less-weight-bearing (LWB-Rs) regions. Single regression analysis was used to assess the relationship between cartilage T1rho values and age and between T2 values and age. Analysis of variance and post hoc-testing were used to evaluate differences in WB-Rs and LWB-Rs cartilage T1rho values and T2 values. Multiple linear regression modeling was performed to predict cartilage T1rho values. Results: Cartilage T1rho values correlated positively with age for all cartilage regions tested (p < 0.001). There were no significant correlations between cartilage T2 values and age. In both the medial femoral and tibial cartilage, T1rho values were significantly higher in WB-Rs than in LWB-Rs (p < 0.05). There were no significant differences in T2 values between WB-Rs and LWB-Rs. Multiple linear regression analysis showed that both age and weight-bearing were significant predictors of increased medial knee cartilage T1rho values (p < 0.001). Conclusions: Aging and the degree of weight-bearing correlate with the change in cartilage T1rho values. Based on multiple regression modeling, aging may be a more important factor than weight-bearing for cartilage T1rho values.

  15. MR diffusion weighted imaging experimental study on early stages of articular cartilage degeneration of knee

    International Nuclear Information System (INIS)

    Dai Jingru; Dai Shipeng; Pang Jun; Xu Xiaokun; Wang Yuexin; Zhang Zhigang

    2008-01-01

    Objective: To study the appearance of MR diffusion weighted imaging in early stages of cartilage degeneration and to detect its values. Methods: In 20 goat left knees, intra- articular injection of 5 units of papain was performed causing a loss of cartilage proteoglycan. Twenty right knees were used as control group. MR diffusion weighted imaging was performed at 24 hours after intra-articular injection of papain. ADC of each part of articular cartilage was measured and compared with each other. The proteoglycan content was measured biochemically and histochemically. Routine MRI and DWI were performed in 100 patients with osteoarthritis and 20 healthy people. The ADC of each interested part of articular cartilage was measured and compared with each other. Results: In experimental control group, the ADCav of articular cartilage was (14.2±2.3) x 10 -4 mm 2 /s. In early stages of cartilage degeneration group, the ADCav of articular cartilage was (17.5±4.2) x 10 -4 mm 2 /s. The ADCav of the control group was lower than that of the early stages of cartilage degeneration group (t=2.709; P=0.016). The proteloglycan content of articular cartilage was 4.22 x 10 6 μg/kg in control group, and 0.82 x 10 6 μg/kg in experimental group at 24 hours after injection of papain. The difference between control group and experimental group was significant (t=2.705, P=0.018). In healthy people, the ADCav of articular cartilage was (7.6±2.2) x 10 -4 mm 2 /s. In osteoarthritis group, the ADCav of articular cartilage was (10.3±4.2) x 10 -4 mm 2 /s. The ADCav in the healthy group was significantly lower than that in the osteoarthritis group (t=2.609,P=0.014). Conclusion: DWI is an useful method in detecting early stages of cartilage degeneration which can not be showed on routine sequences. (authors)

  16. Quantitative (23) Na MRI of human knee cartilage using dual-tuned (1) H/(23) Na transceiver array radiofrequency coil at 7 tesla.

    Science.gov (United States)

    Moon, Chan Hong; Kim, Jung-Hwan; Zhao, Tiejun; Bae, Kyongtae Ty

    2013-11-01

    To develop quantitative dual-tuned (DT) (1) H/(23) Na MRI of human knee cartilage in vivo at 7 Tesla (T). A sensitive (23) Na transceiver array RF coil was developed at 7T. B1 fields generated by the transceiver array coil were characterized and corrected in the (23) Na images. Point spread function (PSF) of the (23) Na images was measured, and the signal decrease due to partial-volume-effect was compensated in [(23) Na] quantification of knee cartilage. SNR and [(23) Na] in anterior femoral cartilage were measured from seven healthy subjects. SNR of (23) Na image with the transceiver array coil was higher than that of birdcage coil. SNR in the cartilage at 2-mm isotropic resolution was 26.80 ± 3.69 (n = 7). B1 transmission and reception fields produced by the DT coil at 7T were similar to each other. Effective full-width-half-maximum of (23) Na image was ∼5 mm at 2-mm resolution. Mean [(23) Na] was 288.13 ± 29.50 mM (n = 7) in the anterior femoral cartilage of normal subjects. We developed a new high-sensitivity (23) Na RF coil for knee MRI at 7T. Our (1) H/(23) Na MRI allowed quantitative measurement of [(23) Na] in knee cartilage by measuring PSF and cartilage thickness from (23) Na and (1) H image, respectively. Copyright © 2013 Wiley Periodicals, Inc.

  17. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Pestka, Jan M; Kreuz, Peter C

    2008-01-01

    BACKGROUND: Although autologous chondrocyte implantation (ACI) is a well-established therapy for the treatment of isolated cartilage defects of the knee joint, little is known about typical complications and their treatment after ACI. HYPOTHESIS: Unsatisfactory outcome after ACI is associated...

  18. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats

    Science.gov (United States)

    Nagai, Momoko; Aoyama, Tomoki; Ito, Akira; Tajino, Junichi; Iijima, Hirotaka; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-01-01

    The purpose of this study was to examine the ultrastructural changes of surface cartilage collagen fibers, which differ by region and the length of the experimental period in an immobilization model of rat. Male Wistar rats were randomly divided into histological or macroscopic and ultrastructural assessment groups. The left knees of all the animals were surgically immobilized by external fixation for 1, 2, 4, 8 or 16 weeks (n = 5/time point). Sagittal histological sections of the medial mid-condylar region of the knee were obtained and assessed in four specific regions (contact and peripheral regions of the femur and tibia) and two zones (superficial and deep). To semi-quantify the staining intensity of the collagen fibers in the cartilage, picrosirius red staining was used. The cartilage surface changes of all the assessed regions were investigated by scanning electron microscopy (SEM). From histological and SEM observations, the fibrillation and irregular changes of the cartilage surface were more severe in the peripheral region than in the contact region. Interestingly, at 16 weeks post-immobilization, we observed non-fibrous structures at both the contact and peripheral regions. The collagen fiber staining intensity decreased in the contact region compared with the peripheral region. In conclusion, the alteration of surface collagen fiber ultrastructure and collagen staining intensity differed by the specific cartilage regions after immobilization. These results demonstrate that the progressive degeneration of cartilage is region specific, and depends on the length of the immobilization period. PMID:25939458

  19. Electromechanical Assessment of Human Knee Articular Cartilage with Compression-Induced Streaming Potentials.

    Science.gov (United States)

    Becher, Christoph; Ricklefs, Marcel; Willbold, Elmar; Hurschler, Christof; Abedian, Reza

    2016-01-01

    To assess the electromechanical properties of human knee articular cartilage with compression-induced streaming potentials for reliability among users and correlation with macroscopic and histological evaluation tools and sulfated glycosaminoglycan (sGAG) content. Streaming potentials are induced in cartilage in response to loading when mobile positive ions in the interstitial fluid temporarily move away from negatively charged proteoglycans. Streaming potential integrals (SPIs) were measured with an indentation probe on femoral condyles of 10 human knee specimens according to a standardized location scheme. Interobserver reliability was measured using an interclass correlation coefficient (ICC). The learning curves of 3 observers were evaluated by regression analysis. At each SPI measurement location the degradation level of the tissue was determined by means of the International Cartilage Repair Society (ICRS) score, Mankin score, and sGAG content. The computed ICC was 0.77 (0.70-0.83) indicating good to excellent linear agreement of SPI values among the 3 users. A significant positive linear correlation of the learning index values was observed for 2 of the 3 users. Statistically significant negative correlations between SPI and both ICRS and Mankin scores were observed (r = 0.502, P < 0.001, and r = 0.255, P = 0.02, respectively). No correlation was observed between SPI and sGAG content (r = 0.004, P = 0.973). SPI values may be used as a quantitative means of cartilage evaluation with sufficient reliability among users. Due to the significant learning curve, adequate training should be absolved before routine use of the technique.

  20. The pilot study of MR T2 mapping in the cartilage evaluation of knee joint

    International Nuclear Information System (INIS)

    Song Lingling; Liang Biling; Shen Jun; Zhong Jinglian; Ye Ruixin; Deng Jun

    2008-01-01

    Objective: To discuss the value of MR T 2 mapping in the research of the biomechanics and function of cartilage of knee joint. Methods: Knees of 20 healthy adults before and after jogging and 19 osteoarthritis patients were examined with sagittal 8-echo SE sequence. The T 2 value of cartilage was selected and calculated. The T 2 values in the superficial and deep cartilage of femoral and tibial joint before and after jogging were compared, so did between the osteoarthritis patients and healthy adults. The source images were sent to the workstation to get T 2 mappings. The T 2 value of cartilage between before and after jogging was compared with paired-samples t test. The T 2 value between superficial and deep cartilage before jogging was compared with independent-samples t test, so did between the osteoarthritis patients and healthy adults. Results: The T 2 values in the superficial and the deep tibial cartilage were (48.8±6.3) ms, (44.3±5.7) ms before jogging and (43.4±5.0) ms, (40.3±6.1) ms after jogging. The T 2 values were significantly different between before and after jogging (t=6.004 and t=5.037, P 2 values in the superficial and deep femoral cartilage were (52.1±5.7) ms, (47.7±5.3) ms before jogging and (47.2±4.5) ms, (43.6±4.1) ms after jogging. The T 2 values were significantly different between before and after jogging (t=6.169 and t=5.957, P 2 mapping showed those changes. The mean T 2 value in the tibial cartilage of osteoarthritis patients was (56.0±9.1) ms and was higher than that of healthy adults. There was a significent difference between osteoarthritis patients and healthy adults (t=-3.446, P 2 mapping can be used in the research of biomechanics and function of cartilage and has a prelimilary value in the diagnosis of cartilage degeneration. (authors)

  1. Frequency and topography of lesions of the femoro-tibial cartilage at spiral CT arthrography of the knee: a study in patients with normal knee radiographs and without history of trauma

    International Nuclear Information System (INIS)

    Vande Berg, B.C.; Lecouvet, F.E.; Malghem, J.

    2002-01-01

    To determine the frequency and topography of cartilage lesions involving the femoro-tibial joints in patients with normal knee radiographs and without a remembered history of trauma.Design and patients. A radiologist retrospectively reviewed the dual-detector spiral CT knee arthrograms performed in 209 consecutive patients (mean age 37.6 years) with normal knee radiographs. Images were analyzed for the presence, grade (Noyes classification system) and location of cartilage lesions, the location being designated by dividing each articular surface into a grid of 16 parts.Results. Fifty-three percent of knees had cartilage lesions of grade 2A or higher that involved articular surfaces to a variable extent: lateral tibial plateau (31%), medial femoral condyle (27%), medial tibial plateau (14%) and lateral femoral condyle (5%). Areas of the posterior half of the lateral tibial plateau and of the inner half of the medial femoral condyle were statistically more frequently involved than their counterparts (P<0.0001). The bare area of the medial tibial plateau, but not that of the lateral tibial plateau, was more frequently involved than the corresponding meniscus-covered area (P<0.0001).Conclusion. Cartilage lesions of grade 2A or higher, detected at spiral CT arthrography in 53% of the knees, predominantly involved the posterior half of the lateral tibial plateau, the inner half of the medial femoral condyle and the bare area of the medial tibial plateau. (orig.)

  2. Chondrogenic potential of canine articular cartilage derived cells (cACCs

    Directory of Open Access Journals (Sweden)

    Nowak Urszula

    2016-01-01

    Full Text Available In the present paper, the potential of canine articular cartilage-derived cells (cACCs for chondrogenic differentiation was evaluated. The effectiveness of cACCs’ lineage commitment was analyzed after 14 days of culture in chondorgenic and non-chondrogenic conditions. Formation of proteoglycan-rich extracellular matrix was assessed using histochemical staining – Alcian Blue and Safranin-O, while elemental composition was determined by means of SEM-EDX. Additionally, ultrastructure of cACCs was evaluated using TEM. The expression of genes involved in chondrogenesis was monitored with quantitative Real Time PCR. Results obtained indicate that the potential of cACCs for cartilagous extracellular matrix formation may be maintained only in chondrogenic cultures. The formation of specific chondro-nodules was not observed in a non-chondrogenic culture environment. The analysis of cACCs’ ultrastructure, both in non-chondrogenic and chondrogenic cultures, revealed well-developed rough endoplasmatic reticulum and presence of mitochondria. The cACCs in chondrogenic medium shed an increased number of microvesicles. Furthermore, it was shown that the extracellular matrix of cACCs in chondrogenic cultures is rich in potassium and molybdenum. Additionally, it was determined that gene expression of collagen type II, aggrecan and SOX-9 was significantly increased during chondrogenic differentiation of cACCs. Results obtained indicate that the culture environment may significantly influence the cartilage phenotype of cACCs during long term culture.

  3. Quantitative T2{sup *} assessment of knee joint cartilage after running a marathon

    Energy Technology Data Exchange (ETDEWEB)

    Hesper, Tobias [University Düsseldorf, Medical Faculty, Department of Orthopaedics, Düsseldorf (Germany); Miese, Falk R. [University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Düsseldorf (Germany); Hosalkar, Harish S. [Center of Hip Preservation and Children' s Orthopaedics, San Diego, CA (United States); Behringer, Michael [German Sport University, Cologne (Germany); Zilkens, Christoph [University Düsseldorf, Medical Faculty, Department of Orthopaedics, Düsseldorf (Germany); Antoch, Gerald [University Düsseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Düsseldorf (Germany); Krauspe, Rüdiger [University Düsseldorf, Medical Faculty, Department of Orthopaedics, Düsseldorf (Germany); Bittersohl, Bernd, E-mail: bbittersohl@partners.org [University Düsseldorf, Medical Faculty, Department of Orthopaedics, Düsseldorf (Germany)

    2015-02-15

    Highlights: • This is the first descriptive report on the effects of repetitive joint loading on the T2{sup **} relaxation assessment of articular cartilage. • This study on marathon runners who underwent MRI within 48 hours prior to and following the running event as well as after a period of convalescence of approximately four weeks confirms the feasibility of T2{sup **} mapping of knee joint cartilage under the consideration of repetitive joint loading prior to MRI as we noted only small differences in the T2{sup **} after running a marathon. • Despite the small study group (nn = 10) and the presence of morphologically normal appearing cartilage, we noted lower cartilage T2{sup **} values in the medial tibial plateau that may be related to functional demand or early signs of cartilage degeneration. - Abstract: Objective: To study the effect of repetitive joint loading on the T2{sup *} assessment of knee joint cartilage. Materials and methods: T2{sup *} mapping was performed in 10 non-professional marathon runners (mean age: 28.7 ± 3.97 years) with no morphologically evident cartilage damage within 48 h prior to and following the marathon and after a period of approximately four weeks. Bulk and zonal T2{sup *} values at the medial and lateral tibiofemoral compartment and the patellofemoral compartment were assessed by means of region of interest analysis. Pre- and post-marathon values were compared. Results: There was a small increase in the T2{sup *} after running the marathon (30.47 ± 5.16 ms versus 29.84 ± 4.97 ms, P < 0.05) while the T2{sup *} values before the marathon and those after the period of convalescence were similar (29.84 ± 4.97 ms versus 29.81 ± 5.17 ms, P = 0.855). Regional analyses revealed lower T2{sup *} values in the medial tibial plateau (P < 0.001). Conclusions: It appears that repetitive joint loading has a transient influence on the T2{sup *} values. However, this effect is small and probably not clinically relevant. The low T2

  4. MRI of the cartilages of the knee, 3-D imaging with a rapid computer system

    Energy Technology Data Exchange (ETDEWEB)

    Adam, G.; Bohndorf, K.; Prescher, A.; Drobnitzky, M.; Guenther, R.W.

    1989-01-01

    2-D spin-echo sequences were compared with 3-D gradient-echo sequences using normal and cadaver knee joints. The important advantages of 3-D-imaging are: sections of less than 1 mm, reconstruction in any required plane, which can be related to the complex anatomy of the knee joint, and very good distinction between intra-articular fluid, fibrocartilage and hyaline cartilage. (orig./GDG).

  5. Thirty Minutes of Running Exercise Decreases T2 Signal Intensity but Not Thickness of the Knee Joint Cartilage: A 3.0-T Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Karanfil, Yiğitcan; Babayeva, Naila; Dönmez, Gürhan; Diren, H Barış; Eryılmaz, Muzaffer; Doral, Mahmut Nedim; Korkusuz, Feza

    2018-04-01

    Objective Recent studies showed a potential of magnetic resonance imaging (MRI), which can be used as an additional tool for diagnosing cartilage degeneration in the early stage. We designed a cross-sectional study in order to evaluate knee joint cartilage adaptation to running, using 3.0-T MRI equipped with the 3-dimensional turbo spin echo (VISTA = Volume ISotropic Turbo spin echo Acquisition) software. By this thickness (mm) and signal intensity (mean pixel value) can be quantified, which could be closely related to the fluid content of the knee joint cartilage, before and after running. Methods A total of 22 males, aged 18 to 35 years, dominant (right) and nondominant (left) knees were assessed before and after 30 minutes of running. Cartilage thickness and signal intensity of surfaces of the patella, medial and lateral femoral and tibial condyles were measured. Results Cartilage thickness of the lateral condyle decreased at the dominant knee, while it increased at the medial tibial plateau. Signal intensity decreased at all locations, except the lateral patella in both knees. The most obvious decrease in signal intensity (10.6%) was at the medial tibial plateau from 949.8 to 849.0 of the dominant knee. Conclusion There was an increase in thickness measurements and decrease in signal intensity in medial tibial plateau of the dominant knee after 30 minutes of running. This outcome could be related to fluid outflow from the tissue. Greater reductions in the medial tibial plateau cartilage indicate greater load sharing by these areas of the joint during a 30-minute running.

  6. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage.

    Science.gov (United States)

    Siebelt, Michiel; Groen, Harald C; Koelewijn, Stuart J; de Blois, Erik; Sandker, Marjan; Waarsing, Jan H; Müller, Cristina; van Osch, Gerjo J V M; de Jong, Marion; Weinans, Harrie

    2014-01-29

    Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced

  7. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage

    Science.gov (United States)

    2014-01-01

    Introduction Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. Methods sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology to measure sGAG content and cartilage thickness. Results All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. Conclusions Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage

  8. Magnetic resonance imaging of articular cartilage abnormalities of the far posterior femoral condyle of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Shuhei; Huang, Thomas; Watanabe, Atsuya; Iranpour-Boroujeni, Tannaz; Yoshioka, Hiroshi (Dept. of Radiology, Brigham and Women' s Hospital, Boston, MA (United States)), e-mail: hiroshi@uci.edu

    2010-01-15

    Background: Incidental articular cartilage lesions of the far posterior femoral condyle (FPFC) are commonly detected. Whether or not these cartilage lesions are symptomatic or clinically significant is unknown. Purpose: To characterize and assess prevalence of articular cartilage abnormalities of the FPFC and associated bone marrow edema (BME) and/or internal derangements through magnetic resonance (MR) images. Material and Methods: 654 knee MR examinations were reviewed retrospectively. Sagittal fast spin-echo proton density-weighted images with and without fat suppression were acquired with a 1.5T scanner, and were evaluated by two readers by consensus. The following factors were assessed: 1) the prevalence of cartilage abnormalities, 2) laterality, 3) the type of cartilage abnormalities, 4) cartilage abnormality grading, 5) associated BME, 6) complications such as meniscal injury and cruciate ligament injury, and 7) knee alignment (femorotibial angle [FTA]). Results: Articular cartilage abnormalities of the FPFC were demonstrated in 157 of the 654 patients (24%). Of these, 40 patients demonstrated medial and lateral FPFC cartilage abnormalities and were thus counted as 80 cases. Focal lateral FPFC abnormalities were demonstrated in 117 of 197 cases (59.4%), while diffuse lateral FPFC abnormalities were demonstrated in 24 of 197 cases (12.2%). Focal medial FPFC abnormalities were demonstrated in 23 of 197 cases (11.6%), while diffuse medial FPFC abnormalities were demonstrated in 33 of 197 cases (16.8%). No statistically significant pattern of associated BME, FTA, or internal derangements including meniscal and cruciate ligament injury was demonstrated. Conclusion: Articular cartilage abnormalities of the FPFC are common and were demonstrated in 24% of patients or 30% of cases. Lateral FPFC abnormalities occur 2.5 times more frequently than medial FPFC abnormalities and were more frequently focal compared with medial cohorts. BME is associated in 36.5% of cases

  9. T2* measurement of the knee articular cartilage in osteoarthritis at 3T

    NARCIS (Netherlands)

    Newbould, Rexford D.; Miller, Sam R.; Toms, Laurence D.; Swann, Peter; Tielbeek, Jeroen A. W.; Gold, Garry E.; Strachan, Robin K.; Taylor, Peter C.; Matthews, Paul M.; Brown, Andrew P.

    2012-01-01

    To measure reproducibility, longitudinal and cross-sectional differences in T2* maps at 3 Tesla (T) in the articular cartilage of the knee in subjects with osteoarthritis (OA) and healthy matched controls. MRI data and standing radiographs were acquired from 33 subjects with OA and 21 healthy

  10. Association of childhood adiposity measures with adulthood knee cartilage defects and bone marrow lesions: a 25-year cohort study.

    Science.gov (United States)

    Meng, Tao; Thayer, Shaun; Venn, Alison; Wu, Feitong; Cicuttini, Flavia; March, Lyn; Dwyer, Terence; Halliday, Andrew; Cross, Marita; Laslett, Laura L; Jones, Graeme; Ding, Changhai; Antony, Benny

    2018-05-15

    To describe the associations between childhood adiposity measures and adulthood knee cartilage defects and bone marrow lesions (BMLs) measured 25 years later. 327 participants from the Australian Schools Health and Fitness Survey of 1985 (aged 7-15 years) were followed up 25 years later (aged 31-41 years). Childhood measures (weight, height and skinfolds) were collected in 1985. Body mass index (BMI), overweight status and fat mass were calculated. Participants underwent 1.5T knee magnetic resonance imaging (MRI) during 2008-2010, and cartilage defects and BMLs were scored from knee MRI scans. Log binomial regressions were used to examine the associations. Among 327 participants (47.1% females), 21 (6.4%) were overweight in childhood. Childhood adiposity measures were associated with the increased risk of adulthood patellar cartilage defects (Weight relative risk (RR) 1.05/kg, 95% confidence interval (CI) 1.01 to 1.09; BMI 1.10/kg/m 2 , 1.01 to 1.19; Overweight 2.22/yes, 1.21 to 4.08; fat mass 1.11/kg, 1.01 to 1.22), but not tibiofemoral cartilage defects. Childhood adiposity measures were not significantly associated with adulthood knee BMLs except for the association between childhood overweight status and adulthood patellar BMLs (RR 2.87/yes, 95% CI 1.10 to 7.53). These significant associations persisted after adjustment for corresponding adulthood adiposity measure. Childhood adiposity measures were associated with the increased risk of adulthood patellar cartilage defects and, to a lesser extent, BMLs, independent of adulthood adiposity measures. These results suggest that adiposity in childhood has long-term effects on patellar structural abnormalities in young adults. Copyright © 2018. Published by Elsevier Ltd.

  11. Analysis of human knee osteoarthritic cartilage using polarization sensitive second harmonic generation microscopy

    Science.gov (United States)

    Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.

    2014-05-01

    Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.

  12. The acutely ACL injured knee assessed by MRI: changes in joint fluid, bone marrow lesions, and cartilage during the first year

    DEFF Research Database (Denmark)

    Frobell, R B; Le Graverand, M-P; Buck, R

    2008-01-01

    OBJECTIVES: To investigate changes in the knee during the first year after acute rupture of the anterior cruciate ligament (ACL) of volumes of joint fluid (JF), bone marrow lesions (BMLs), and cartilage volume (VC), and cartilage thickness (ThCcAB) and cartilage surface area (AC). To identify fac...

  13. Autologous chondrocyte implantation: Is it likely to become a saviour of large-sized and full-thickness cartilage defect in young adult knee?

    Science.gov (United States)

    Zhang, Chi; Cai, You-Zhi; Lin, Xiang-Jin

    2016-05-01

    A literature review of the first-, second- and third-generation autologous chondrocyte implantation (ACI) technique for the treatment of large-sized (>4 cm(2)) and full-thickness knee cartilage defects in young adults was conducted, examining the current literature on features, clinical scores, complications, magnetic resonance image (MRI) and histological outcomes, rehabilitation and cost-effectiveness. A literature review was carried out in the main medical databases to evaluate the several studies concerning ACI treatment of large-sized and full-thickness knee cartilage defects in young adults. ACI technique has been shown to relieve symptoms and improve functional assessment in large-sized (>4 cm(2)) and full-thickness knee articular cartilage defect of young adults in short- and medium-term follow-up. Besides, low level of evidence demonstrated its efficiency and durability at long-term follow-up after implantation. Furthermore, MRI and histological evaluations provided the evidence that graft can return back to the previous nearly normal cartilage via ACI techniques. Clinical outcomes tend to be similar in different ACI techniques, but with simplified procedure, low complication rate and better graft quality in the third-generation ACI technique. ACI based on the experience of cell-based therapy, with the high potential to regenerate hyaline-like tissue, represents clinical development in treatment of large-sized and full-thickness knee cartilage defects. IV.

  14. Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference

    International Nuclear Information System (INIS)

    Saadat, Ehsan; Jobke, Bjoern; Chu, Bill; Lu, Ying; Cheng, Jonathan; Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M.; Ries, Michael D.

    2008-01-01

    The purpose of this study was (1) to evaluate the sensitivity, specificity and accuracy of sagittal in vivo 3-T intermediate-weighted fast spin-echo (iwFSE) sequences in the assessment of knee cartilage pathologies using histology as the reference standard in patients undergoing total knee replacement, and (2) to correlate MR imaging findings typically associated with osteoarthritis such as bone marrow edema pattern (BMEP) and cartilage swelling with histological findings. Tibial plateaus and femoral condyles of eight knees of seven patients were resected during surgery, and sagittal histological sections were prepared for histology. Preoperative MRI findings were compared to the corresponding region in histological sections for thickness, surface integrity and signal pattern of cartilage, and histological findings in areas of BMEP and swelling were documented. The overall sensitivity, specificity and accuracy were 72%, 69% and 70% for thickness, 69%, 74% and 73% for surface and 36%, 62% and 45% for intracartilaginous signal pattern. For all cases of BMEP on MRI subchondral ingrowth of fibrovascular tissue and increased bone remodeling were observed. MRI using fat-saturated iwFSE sequences showed good performance in assessing cartilage thickness and surface lesions, while signal changes of cartilage were not suited to characterize the severity of cartilage degeneration as validated by histology. (orig.)

  15. Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference

    Energy Technology Data Exchange (ETDEWEB)

    Saadat, Ehsan [University of California San Francisco, School of Medicine and Department of Radiology, San Francisco, CA (United States); Jobke, Bjoern; Chu, Bill; Lu, Ying; Cheng, Jonathan; Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Ries, Michael D. [University of California San Francisco, Department of Orthopaedic Surgery, San Francisco, CA (United States)

    2008-10-15

    The purpose of this study was (1) to evaluate the sensitivity, specificity and accuracy of sagittal in vivo 3-T intermediate-weighted fast spin-echo (iwFSE) sequences in the assessment of knee cartilage pathologies using histology as the reference standard in patients undergoing total knee replacement, and (2) to correlate MR imaging findings typically associated with osteoarthritis such as bone marrow edema pattern (BMEP) and cartilage swelling with histological findings. Tibial plateaus and femoral condyles of eight knees of seven patients were resected during surgery, and sagittal histological sections were prepared for histology. Preoperative MRI findings were compared to the corresponding region in histological sections for thickness, surface integrity and signal pattern of cartilage, and histological findings in areas of BMEP and swelling were documented. The overall sensitivity, specificity and accuracy were 72%, 69% and 70% for thickness, 69%, 74% and 73% for surface and 36%, 62% and 45% for intracartilaginous signal pattern. For all cases of BMEP on MRI subchondral ingrowth of fibrovascular tissue and increased bone remodeling were observed. MRI using fat-saturated iwFSE sequences showed good performance in assessing cartilage thickness and surface lesions, while signal changes of cartilage were not suited to characterize the severity of cartilage degeneration as validated by histology. (orig.)

  16. Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage - initial evaluation of a technique for paired scans

    International Nuclear Information System (INIS)

    Brem, M.H.; Lang, P.K.; Neumann, G.; Schlechtweg, P.M.; Yoshioka, H.; Pappas, G.; Duryea, J.; Schneider, E.; Jackson, R.; Yu, J.; Eaton, C.B.; Hennig, F.F.

    2009-01-01

    Software-based image analysis is important for studies of cartilage changes in knee osteoarthritis (OA). This study describes an evaluation of a semi-automated cartilage segmentation software tool capable of quantifying paired images for potential use in longitudinal studies of knee OA. We describe the methodology behind the analysis and demonstrate its use by determination of test-retest analysis precision of duplicate knee magnetic resonance imaging (MRI) data sets. Test-retest knee MR images of 12 subjects with a range of knee health were evaluated from the Osteoarthritis Initiative (OAI) pilot MR study. Each subject was removed from the magnet between the two scans. The 3D DESS (sagittal, 0.456 mm x 0.365 mm, 0.7 mm slice thickness, TR 16.5 ms, TE 4.7 ms) images were obtained on a 3-T Siemens Trio MR system with a USA Instruments quadrature transmit-receive extremity coil. Segmentation of one 3D-image series was first performed and then the corresponding retest series was segmented by viewing both image series concurrently in two adjacent windows. After manual registration of the series, the first segmentation cartilage outline served as an initial estimate for the second segmentation. We evaluated morphometric measures of the bone and cartilage surface area (tAB and AC), cartilage volume (VC), and mean thickness (ThC.me) for medial/lateral tibia (MT/LT), total femur (F) and patella (P). Test-retest reproducibility was assessed using the root-mean square coefficient of variation (RMS CV%). For the paired analyses, RMS CV % ranged from 0.9% to 1.2% for VC, from 0.3% to 0.7% for AC, from 0.6% to 2.7% for tAB and 0.8% to 1.5% for ThC.me. Paired image analysis improved the measurement precision of cartilage segmentation. Our results are in agreement with other publications supporting the use of paired analysis for longitudinal studies of knee OA. (orig.)

  17. Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage - initial evaluation of a technique for paired scans

    Energy Technology Data Exchange (ETDEWEB)

    Brem, M.H. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Friedrich-Alexander-University Erlangen Nurenberg, Division of Orthopaedic and Trauma Surgery, Department of Surgery, Erlangen (Germany); Lang, P.K.; Neumann, G.; Schlechtweg, P.M.; Yoshioka, H.; Pappas, G.; Duryea, J. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Schneider, E. [LLC, SciTrials, Rocky River, OH (United States); Cleveland Clinic, Imaging Institute, Cleveland, OH (United States); Jackson, R.; Yu, J. [Ohio State University, Diabetes and Metabolism and Radiology, Department of Endocrinology, Columbus, OH (United States); Eaton, C.B. [Center for Primary Care and Prevention and the Warren Alpert Medical School of Brown University, Memorial Hospital of Rhode Island, Providence, RI (United States); Hennig, F.F. [Friedrich-Alexander-University Erlangen Nurenberg, Division of Orthopaedic and Trauma Surgery, Department of Surgery, Erlangen (Germany)

    2009-05-15

    Software-based image analysis is important for studies of cartilage changes in knee osteoarthritis (OA). This study describes an evaluation of a semi-automated cartilage segmentation software tool capable of quantifying paired images for potential use in longitudinal studies of knee OA. We describe the methodology behind the analysis and demonstrate its use by determination of test-retest analysis precision of duplicate knee magnetic resonance imaging (MRI) data sets. Test-retest knee MR images of 12 subjects with a range of knee health were evaluated from the Osteoarthritis Initiative (OAI) pilot MR study. Each subject was removed from the magnet between the two scans. The 3D DESS (sagittal, 0.456 mm x 0.365 mm, 0.7 mm slice thickness, TR 16.5 ms, TE 4.7 ms) images were obtained on a 3-T Siemens Trio MR system with a USA Instruments quadrature transmit-receive extremity coil. Segmentation of one 3D-image series was first performed and then the corresponding retest series was segmented by viewing both image series concurrently in two adjacent windows. After manual registration of the series, the first segmentation cartilage outline served as an initial estimate for the second segmentation. We evaluated morphometric measures of the bone and cartilage surface area (tAB and AC), cartilage volume (VC), and mean thickness (ThC.me) for medial/lateral tibia (MT/LT), total femur (F) and patella (P). Test-retest reproducibility was assessed using the root-mean square coefficient of variation (RMS CV%). For the paired analyses, RMS CV % ranged from 0.9% to 1.2% for VC, from 0.3% to 0.7% for AC, from 0.6% to 2.7% for tAB and 0.8% to 1.5% for ThC.me. Paired image analysis improved the measurement precision of cartilage segmentation. Our results are in agreement with other publications supporting the use of paired analysis for longitudinal studies of knee OA. (orig.)

  18. Radiation synovectomy stimulates glycosaminoglycan synthesis by normal articular cartilage

    International Nuclear Information System (INIS)

    Myers, S.L.; Slowman, S.D.; Brandt, K.D.

    1989-01-01

    Radiation synovectomy has been considered a therapeutic alternative to surgical synovectomy. Whether intraarticular irradiation affects the composition or biochemistry, and therefore the biomechanical properties, of normal articular cartilage has not been established. In the present study, yttrium 90 silicate was injected into one knee of nine normal adult dogs, and three other dogs received nonradioactive yttrium silicate. When the animals were killed 4 to 13 weeks after the injection, synovium from the irradiated knees showed areas of necrosis and fibrosis. Up to 29% less hyaluronate was synthesized in vitro by the synovial intima from irradiated knees than by the intima from the contralateral knees (mean difference 18%). Morphologic abnormalities were not observed in articular cartilage from either the irradiated or control knees, nor did the water content or concentrations of uronic acid or DNA in cartilage from the irradiated knees differ from that in cartilage from the contralateral knees. However, net 35 SO 4 -labeled glycosaminoglycan synthesis in organ cultures of cartilage from irradiated knees was increased (mean difference 21%, p = 0.03) in comparison with that in cultures of contralateral knee cartilage

  19. Bipolar and monopolar radiofrequency treatment of osteoarthritic knee articular cartilage: acute and temporal effects on cartilage compressive stiffness, permeability, cell synthesis, and extracellular matrix composition.

    Science.gov (United States)

    Cook, James L; Kuroki, Keiichi; Kenter, Keith; Marberry, Kevin; Brawner, Travis; Geiger, Timothy; Jayabalan, Prakash; Bal, B Sonny

    2004-04-01

    The cellular, biochemical, biomechanical, and histologic effects of radiofrequency-generated heat on osteoarthritic cartilage were assessed. Articular cartilage explants (n=240) from 26 patients undergoing total knee arthroplasty were divided based on Outerbridge grade (I or II/III) and randomly assigned to receive no treatment (controls) or monopolar or bipolar radiofrequency at 15 or 30 W. Both potentially beneficial and harmful effects of radiofrequency treatment of articular cartilage were noted. It will be vital to correlate data from in vitro and in vivo study of radiofrequency thermal chondroplasty to determine the clinical usefulness of this technique.

  20. Comparison of T1rho and T2 mapping of knee articular cartilage in an asymptomatic population

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Min A; Hong, Suk Joo; Im, A Lan [Dept. of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul (Korea, Republic of); Kang, Chang Ho [Dept. of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul (Korea, Republic of); Kim, Baek Hyun [Dept. of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan (Korea, Republic of); Kim, In Seong [Siemens Healthcare, Seoul (Korea, Republic of)

    2016-11-15

    To analyze subregional differences in T1rho (T1ρ) and T2 values and their correlation in asymptomatic knee cartilage, and to evaluate angular dependence with magic angles. Six asymptomatic volunteers underwent knee MRI with T1ρ and T2 mapping. T1ρ and T2 values were measured by two radiologists independently, at nine subregions in the medial femoral condyle (MFC) cartilage, at angles of ± 0°, 15°, 35°, 55°, 75° respective to a vertical line (B0) bisecting the width of the distal femur, and at two locations in the patella. Subregional values of T1ρ and T2 were analyzed and significant differences in three divided portions of the MFC (anterior, central, and posterior) were statistically evaluated. Correlation between T1ρ and T2 and angular dependence with magic angles were also assessed for statistical significance. T1ρ values were lowest at +15° and highest at -55°. T2 values were lowest at +75° and highest at +35°. Both T1ρ and T2 were higher in superior patella than inferior patella. T1ρ showed significant differences in the three divided portions of the MFC, while T2 showed significant differences only between central and posterior portions. There was a weak correlation between T1ρ and T2 (r = 0.217, p = 0.127). T1ρ showed more angular dependence than T2. T1ρ and T2 showed different subregional values and angular dependence in asymptomatic knee cartilage with a weak correlation. Awareness of these differences will aid in assessment of cartilage in a specific subregion of the knee.

  1. Precision of hyaline cartilage thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, K.; Buckwalter, K.; Helvie, M.; Niklason, L.; Martel, W. (Univ. of Michigan Hospitals, Ann Arbor, MI (United States). Dept. of Radiology)

    1992-05-01

    Measurement of cartilage thickness in vivo is an important indicator of the status of a joint as the various degenerative and inflammatory arthritides directly affect the condition of the cartilage. In order to assess the precision of thickness measurements of hyaline articular cartilage, we undertook a pilot study using MR imaging, plain radiography, and ultrasonography (US). We measured the cartilage of the hip and knee joints in 10 persons (4 healthy volunteers and 6 patients). The joints in each patient were examined on two separate occasions using each modality. In the hips a swell as the knee joints, the most precise measuring method was plain film radiography. For radiographs of the knees obtained in the standing position, the coefficient of variation was 6.5%; in the hips this figure was 6.34%. US of the knees and MR imaging of the hips were the second best modalities in the measurement of cartilage thickness. In addition, MR imaging enabled the most complete visualization of the joint cartilage. (orig.).

  2. Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage.

    Science.gov (United States)

    Schooler, J; Kumar, D; Nardo, L; McCulloch, C; Li, X; Link, T M; Majumdar, S

    2014-01-01

    To investigate longitudinal changes in laminar and spatial distribution of knee articular cartilage magnetic resonance imaging (MRI) T1ρ and T2 relaxation times, in individuals with and without medial compartment cartilage defects. All subjects (at baseline n = 88, >18 years old) underwent 3-Tesla knee MRI at baseline and annually thereafter for 3 years. The MR studies were evaluated for presence of cartilage defects (modified Whole-Organ Magnetic Resonance Imaging Scoring - mWORMS), and quantitative T1ρ and T2 relaxation time maps. Subjects were segregated into those with (mWORMS ≥2) and without (mWORMS ≤1) cartilage lesions at the medial tibia (MT) or medial femur (MF) at each time point. Laminar (bone and articular layer) and spatial (gray level co-occurrence matrix - GLCM) distribution of the T1ρ and T2 relaxation time maps were calculated. Linear regression models (cross-sectional) and Generalized Estimating Equations (GEEs) (longitudinal) were used. Global T1ρ, global T2 and articular layer T2 relaxation times at the MF, and global and articular layer T2 relaxation times at the MT, were higher in subjects with cartilage lesions compared to those without lesions. At the MT global T1ρ relaxation times were higher at each time point in subjects with lesions. MT T1ρ and T2 became progressively more heterogeneous than control compartments over the course of the study. Spatial distribution of T1ρ and T2 relaxation time maps in medial knee OA using GLCM technique may be a sensitive indicator of cartilage deterioration, in addition to whole-compartment relaxation time data. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Extension of knee immobilization delays recovery of histological damages in the anterior cruciate ligament insertion and articular cartilage in rabbits.

    Science.gov (United States)

    Mutsuzaki, Hirotaka; Nakajima, Hiromi; Sakane, Masataka

    2018-01-01

    [Purpose] To investigate the influence of knee immobilization period on recovery of histological damages in the anterior cruciate ligament (ACL) insertion and articular cartilage in rabbits. This knowledge is important for determining the appropriate rehabilitation approach for patients with ligament injuries, fracture, disuse atrophy, and degenerative joint disease. [Materials and Methods] Forty-eight male Japanese white rabbits were divided equally into the remobilization and control groups. The remobilization group had the right knee surgically immobilized, and was divided equally into four subgroups according to the duration of immobilization (1, 2, 4 and 8 weeks). After the immobilization was removed, the rabbits moved freely for 8 weeks. The control group underwent sham operation and followed the same time course as the remobilization group. The chondrocyte apoptosis rate and chondrocyte proliferation rate in the ACL insertion and articular cartilage were analyzed after remobilization. [Results] In the ACL insertion, the remobilization group had a higher chondrocyte apoptosis rate than the control group after 8 weeks of immobilization, and a lower chondrocyte proliferation rate than the control group after 4 and 8 weeks of immobilization. In the articular cartilage, the remobilization group had a lower chondrocyte proliferation rate than the control group after 8 weeks of immobilization. After 8 weeks of remobilization, the ACL insertion and articular cartilage are not completely recovered after 4 and 8 weeks of immobilization, respectively. [Conclusion] Our results suggest that 8 weeks of remobilization will result in recovery of the ACL insertion after 2 weeks of knee immobilization, and recovery of the articular cartilage after 4 weeks of knee immobilization. If 8 weeks of immobilization occurs, a remobilization duration of more than 8 weeks may be necessary.

  4. Sequential change in T2* values of cartilage, meniscus, and subchondral bone marrow in a rat model of knee osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Ping-Huei Tsai

    Full Text Available BACKGROUND: There is an emerging interest in using magnetic resonance imaging (MRI T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA. However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX. MATERIALS AND METHODS: Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group. Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery. RESULTS: Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001. In the ACLX group (compared to the sham and control groups, T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001, then in the anterior horn of the medial meniscus at 13 weeks (p<0.001, and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043. CONCLUSION: Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression.

  5. Radiation synovectomy stimulates glycosaminoglycan synthesis by normal articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Myers, S.L.; Slowman, S.D.; Brandt, K.D.

    1989-07-01

    Radiation synovectomy has been considered a therapeutic alternative to surgical synovectomy. Whether intraarticular irradiation affects the composition or biochemistry, and therefore the biomechanical properties, of normal articular cartilage has not been established. In the present study, yttrium 90 silicate was injected into one knee of nine normal adult dogs, and three other dogs received nonradioactive yttrium silicate. When the animals were killed 4 to 13 weeks after the injection, synovium from the irradiated knees showed areas of necrosis and fibrosis. Up to 29% less hyaluronate was synthesized in vitro by the synovial intima from irradiated knees than by the intima from the contralateral knees (mean difference 18%). Morphologic abnormalities were not observed in articular cartilage from either the irradiated or control knees, nor did the water content or concentrations of uronic acid or DNA in cartilage from the irradiated knees differ from that in cartilage from the contralateral knees. However, net /sup 35/SO/sub 4/-labeled glycosaminoglycan synthesis in organ cultures of cartilage from irradiated knees was increased (mean difference 21%, p = 0.03) in comparison with that in cultures of contralateral knee cartilage.

  6. Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Ralph M. Jeuken

    2016-06-01

    Full Text Available Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using a wide variety of polymers, cell sources, and signaling molecules have been evaluated. We start this review with basic background information on cartilage structure, its intrinsic repair, and an overview of the cartilage repair treatments from a historical perspective. Next, we thoroughly discuss polymer construct components and their current use in commercially available constructs. Finally, we provide an in-depth discussion about construct considerations such as degradation rates, cell sources, mechanical properties, joint homeostasis, and non-degradable/hybrid resurfacing techniques. As future prospects in cartilage repair, we foresee developments in three areas: first, further optimization of degradable scaffolds towards more biomimetic grafts and improved joint environment. Second, we predict that patient-specific non-degradable resurfacing implants will become increasingly applied and will provide a feasible treatment for older patients or failed regenerative treatments. Third, we foresee an increase of interest in hybrid construct, which combines degradable with non-degradable materials.

  7. Spatial and temporal changes of subchondral bone proceed to articular cartilage degeneration in rats subjected to knee immobilization.

    Science.gov (United States)

    Xu, Lei; Li, Zhe; Lei, Lei; Zhou, Yue-Zhu; Deng, Song-Yun; He, Yong-Bin; Ni, Guo-Xin

    2016-03-01

    This study was aimed to investigate the spatial and temporal changes of subchondral bone and its overlying articular cartilage in rats following knee immobilization. A total of 36 male Wistar rats (11-13 months old) were assigned randomly and evenly into 3 groups. For each group, knee joints in 6 rats were immobilized unilaterally for 1, 4, or 8 weeks, respectively, while the remaining rats were allowed free activity and served as external control groups. For each animal, femurs at both sides were dissected after sacrificed. The distal part of femur was examined by micro-CT. Subsequently, femoral condyles were collected for further histological observation and analysis. For articular cartilage, significant changes were observed only at 4 and 8 weeks of immobilization. The thickness of articular cartilage and chondrocytes numbers decreased with time. However, significant changes in subchondral bone were defined by micro-CT following immobilization in a time-dependent manner. Immobilization led to a thinner and more porous subchondral bone plate, as well as a reduction in trabecular thickness and separation with a more rod-like architecture. Changes in subchondral bone occurred earlier than in articular cartilage. More importantly, immobilization-induced changes in subchondral bone may contribute, at least partially, to changes in its overlying articular cartilage. © 2016 Wiley Periodicals, Inc.

  8. Porous polymers for repair and replacement of the knee joint meniscus and articular cartilage

    NARCIS (Netherlands)

    Klompmaker, Jan

    1992-01-01

    The studies presented here were initiated to answer a variety of questions concerning firstly the repair and replacement of the knee joint meniscus and, secondly, the repair of full-thickness defects of articular cartilage. AIMS OF THE STUDIES I To assess the effect of implantation of a porous

  9. Longitudinal study of sodium MRI of articular cartilage in patients with knee osteoarthritis: initial experience with 16-month follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Madelin, Guillaume; Xia, Ding; Brown, Ryan; Babb, James; Chang, Gregory; Regatte, Ravinder R. [New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, New York, NY (United States); Krasnokutsky, Svetlana [New York University School of Medicine, Department of Medicine, Rheumatology Division, New York, NY (United States)

    2018-01-15

    To evaluate the potential of sodium MRI to detect changes over time of apparent sodium concentration (ASC) in articular cartilage in patients with knee osteoarthritis (OA). The cartilage of 12 patients with knee OA were scanned twice over a period of approximately 16 months with two sodium MRI sequences at 7 T: without fluid suppression (radial 3D) and with fluid suppression by adiabatic inversion recovery (IR). Changes between baseline and follow-up of mean and standard deviation of ASC (in mM), and their rate of change (in mM/day), were measured in the patellar, femorotibial medial and lateral cartilage regions for each subject. A matched-pair Wilcoxon signed rank test was used to assess significance of the changes. Changes in mean and in standard deviation of ASC, and in their respective rate of change over time, were only statistically different when data was acquired with the fluid-suppressed sequence. A significant decrease (p = 0.001) of approximately 70 mM in mean ASC was measured between the two IR scans. Quantitative sodium MRI with fluid suppression by adiabatic IR at 7 T has the potential to detect a decrease of ASC over time in articular cartilage of patients with knee osteoarthritis. (orig.)

  10. Longitudinal study of sodium MRI of articular cartilage in patients with knee osteoarthritis: initial experience with 16-month follow-up

    International Nuclear Information System (INIS)

    Madelin, Guillaume; Xia, Ding; Brown, Ryan; Babb, James; Chang, Gregory; Regatte, Ravinder R.; Krasnokutsky, Svetlana

    2018-01-01

    To evaluate the potential of sodium MRI to detect changes over time of apparent sodium concentration (ASC) in articular cartilage in patients with knee osteoarthritis (OA). The cartilage of 12 patients with knee OA were scanned twice over a period of approximately 16 months with two sodium MRI sequences at 7 T: without fluid suppression (radial 3D) and with fluid suppression by adiabatic inversion recovery (IR). Changes between baseline and follow-up of mean and standard deviation of ASC (in mM), and their rate of change (in mM/day), were measured in the patellar, femorotibial medial and lateral cartilage regions for each subject. A matched-pair Wilcoxon signed rank test was used to assess significance of the changes. Changes in mean and in standard deviation of ASC, and in their respective rate of change over time, were only statistically different when data was acquired with the fluid-suppressed sequence. A significant decrease (p = 0.001) of approximately 70 mM in mean ASC was measured between the two IR scans. Quantitative sodium MRI with fluid suppression by adiabatic IR at 7 T has the potential to detect a decrease of ASC over time in articular cartilage of patients with knee osteoarthritis. (orig.)

  11. Assessment of the patellofemoral cartilage: Correlation of knee pain score with magnetic resonance cartilage grading and magnetization transfer ratio asymmetry of glycosaminoglycan chemical exchange saturation transfer.

    Science.gov (United States)

    Lee, Young Han; Yang, Jaemoon; Jeong, Ha-Kyu; Suh, Jin-Suck

    2017-01-01

    Biochemical imaging of glycosaminoglycan chemical exchange saturation transfer (gagCEST) could predict the depletion of glycosaminoglycans (GAG) in early osteoarthritis. The purpose of this study was to evaluate the relationship between the magnetization transfer ratio asymmetry (MTR asym ) of gagCEST images and visual analog scale (VAS) pain scores in the knee joint. This retrospective study was approved by the institutional review board. A phantom study was performed using hyaluronic acid to validate the MTR asym values of gagCEST images. Knee magnetic resonance (MR) images of 22 patients (male, 9; female, 13; mean age, 50.3years; age range; 25-79years) with knee pain were included in this study. The MR imaging (MRI) protocol involved standard knee MRI as well as gagCEST imaging, which allowed region-of-interest analyses of the patellar facet and femoral trochlea. The MTR asym at 1.0ppm was calculated at each region. The cartilages of the patellar facets and femoral trochlea were graded according to the Outerbridge classification system. Data regarding the VAS scores of knee pain were collected from the electronic medical records of the patients. Statistical analysis was performed using Spearman's correlation. The results of the phantom study revealed excellent correlation between the MTR asym values and the concentration of GAGs (r=0.961; p=0.003). The cartilage grades on the MR images showed significant negative correlation with the MTR asym values in the patellar facet and femoral trochlea (r=-0.460; p=0.031 and r=-0.543; p=0.009, respectively). The VAS pain scores showed significant negative correlation with the MTR asym values in the patellar facet and femoral trochlea (r=-0.435; p=0.043 and r=-0.671; p=0.001, respectively). The pain scores were associated with the morphological and biochemical changes in articular cartilages visualized on knee MR images. The biochemical changes, visualized in terms of the MTR asym values of the gagCEST images, exhibited

  12. Basic science and surgical treatment options for articular cartilage injuries of the knee.

    Science.gov (United States)

    Tetteh, Elizabeth S; Bajaj, Sarvottam; Ghodadra, Neil S

    2012-03-01

    The complex structure of articular cartilage allows for diverse knee function throughout range of motion and weight bearing. However, disruption to the structural integrity of the articular surface can cause significant morbidity. Due to an inherently poor regenerative capacity, articular cartilage defects present a treatment challenge for physicians and therapists. For many patients, a trial of nonsurgical treatment options is paramount prior to surgical intervention. In instances of failed conservative treatment, patients can undergo an array of palliative, restorative, or reparative surgical procedures to treat these lesions. Palliative methods include debridement and lavage, while restorative techniques include marrow stimulation. For larger lesions involving subchondral bone, reparative procedures such as osteochondral grafting or autologous chondrocyte implantation are considered. Clinical success not only depends on the surgical techniques but also requires strict adherence to rehabilitation guidelines. The purpose of this article is to review the basic science of articular cartilage and to provide an overview of the procedures currently performed at our institution for patients presenting with symptomatic cartilage lesions.

  13. Diagnosis of osteoarthritis by cartilage surface smoothness quantified automatically from knee MRI

    DEFF Research Database (Denmark)

    Tummala, Sudhakar; Bay-Jensen, Anne-Christine; Karsdal, Morten A.

    2011-01-01

    Objective: We investigated whether surface smoothness of articular cartilage in the medial tibiofemoral compartment quantified from magnetic resonance imaging (MRI) could be appropriate as a diagnostic marker of osteoarthritis (OA). Method: At baseline, 159 community-based subjects aged 21 to 81...... with normal or OA-affected knees were recruited to provide a broad range of OA states. Smoothness was quantified using an automatic framework from low-field MRI in the tibial, femoral, and femoral subcompartments. Diagnostic ability of smoothness was evaluated by comparison with conventional OA markers......, correlations between smoothness and pain values and smoothness loss and cartilage loss supported a link to progression of OA. Thereby, smoothness markers may allow detection and monitoring of OA-supplemented currently accepted markers....

  14. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging.

    Science.gov (United States)

    Murphy, B J

    2001-06-01

    To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee.

  15. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging

    International Nuclear Information System (INIS)

    Murphy, B.J.

    2001-01-01

    Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)

  16. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.J. [Dept. of Radiology, Univ. of Miami School of Medicine, FL (United States)

    2001-06-01

    Objective. To determine the accuracy of T2*-weighted three-dimensional (3D) gradient-echo articular cartilage imaging in the identification of grades 3 and 4 chondromalacia of the knee.Design and patients. A retrospective evaluation of 80 patients who underwent both arthroscopic and MRI evaluation was performed. The 3D images were interpreted by one observer without knowledge of the surgical results. The medial and lateral femoral condyles, the medial and lateral tibial plateau, the patellar cartilage and trochlear groove were evaluated. MR cartilage images were considered positive if focal reduction of cartilage thickness was present (grade 3 chondromalacia) or if complete loss of cartilage was present (grade 4 chondromalacia). Comparison of the 3D MR results with the arthroscopic findings was performed.Results. Eighty patients were included in the study group. A total of 480 articular cartilage sites were evaluated with MRI and arthroscopy. Results of MR identification of grades 3 and 4 chondromalacia, all sites combined, were: sensitivity 83%, specificity 97%, false negative rate 17%, false positive rate 3%, positive predictive value 87%, negative predictive value 95%, overall accuracy 93%.Conclusion. The results demonstrate that T2*-weighted 3D gradient-echo articular cartilage imaging can identify grades 3 and 4 chondromalacia of the knee. (orig.)

  17. Bilateral cartilage T2 mapping 9 years after Mega-OATS implantation at the knee: a quantitative 3T MRI study.

    Science.gov (United States)

    Jungmann, P M; Brucker, P U; Baum, T; Link, T M; Foerschner, F; Minzlaff, P; Banke, I J; Saier, T; Imhoff, A B; Rummeny, E J; Bauer, J S

    2015-12-01

    To evaluate morphological and quantitative MR findings 9 years after autograft transfer of the posterior femoral condyle (Mega-OATS) and to correlate these findings with clinical outcomes. Quantitative MR measurements were also obtained of the contralateral knee and the utility as reference standard was investigated. Both knees of 20 patients with Mega-OATS osteochondral repair at the medial femoral condyle (MFC) were studied using 3T MRI 9 years after the procedure. MR-sequences included morphological sequences and a 2D multislice multiecho (MSME) spin echo (SE) sequence for quantitative cartilage T2 mapping. Cartilage segmentation was performed at the cartilage repair site and six additional knee compartments. Semi-quantitative MR observation of cartilage repair tissue (MOCART) scores and clinical Lysholm scores were obtained. Paired t-tests and Spearman correlations were used for statistical analysis. Global T2-values were significantly higher at ipsilateral knees compared to contralateral knees (42.1 ± 3.0 ms vs 40.4 ± 2.6 ms, P = 0.018). T2-values of the Mega-OATS site correlated significantly with MOCART scores (R = -0.64, P = 0.006). The correlations between MOCART and Lysholm scores and between absolute T2-values and Lysholm scores were not significant (P > 0.05). However, higher T2 side-to-side differences at the femoral condyles correlated significantly with more severe clinical symptoms (medial, R = -0.53, P = 0.030; lateral, R = -0.51, P = 0.038). Despite long-term survival, 9 years after Mega-OATS procedures, T2-values of the grafts were increased compared to contralateral knees. Clinical scores correlated best with T2 side-to-side differences of the femoral condyles, indicating that intraindividual adjustment may be beneficial for outcome evaluation. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Does Loading Influence the Severity of Cartilage Degeneration in the Canine Groove-Model of OA?

    NARCIS (Netherlands)

    Vos, Petra; Intema, Femke; van El, Benno; DeGroot, Jeroen; Bijlsma, J. W. J.; Lafeber, Floris; Mastbergen, Simon

    2009-01-01

    Many animal models are used to study osteoarthritis (OA). In these models the role of joint loading in the development of CA is not fully understood. We studied the effect of loading on the development of CIA in the canine Groove-model. In ten female beagle dogs OA was induced in one knee according

  19. T1ρ is superior to T2 mapping for the evaluation of articular cartilage denaturalization with osteoarthritis: radiological-pathological correlation after total knee arthroplasty.

    Science.gov (United States)

    Takayama, Yukihisa; Hatakenaka, Masamitsu; Tsushima, Hidetoshi; Okazaki, Ken; Yoshiura, Takashi; Yonezawa, Masato; Nishikawa, Kei; Iwamoto, Yukihide; Honda, Hiroshi

    2013-04-01

    We compared the diagnostic performance of T1ρ and T2 mappings in the evaluation of denatured articular cartilage with osteoarthritis of the knee. 2D-Sagittal T1ρ and T2 mappings of the knee were obtained from 16 patients before total knee arthroplasty. After surgery, specimens of the femur and tibia were regionally segmented according to a 5-point scale of the severity of denaturalization. The T1ρ and T2 values in the full thickness of the articular cartilage in each region were measured by two observers. The two mappings were compared for their ability to differentiate between normal and denatured articular cartilage and also for their usefulness in grading the severity of the denaturalization using the area under receiver operating characteristic curves (Az). A pT2 mapping for the differentiation between normal and denatured articular cartilage (pT2 mapping could not. However, there were no significant differences between the two mappings in the discrimination of mild versus moderate denaturalization or of moderate versus severe denaturalization. The two observers showed good agreement in the results (intraclass correlation coefficient=0.81 for T1ρ and 0.92 for T2). T1ρ mapping is superior to T2 mapping for the evaluation of denatured articular cartilage with osteoarthritis of the knee. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. The identification of CD163 expressing phagocytic chondrocytes in joint cartilage and its novel scavenger role in cartilage degradation.

    Directory of Open Access Journals (Sweden)

    Kai Jiao

    Full Text Available BACKGROUND: Cartilage degradation is a typical characteristic of arthritis. This study examined whether there was a subset of phagocytic chondrocytes that expressed the specific macrophage marker, CD163, and investigated their role in cartilage degradation. METHODS: Cartilage from the knee and temporomandibular joints of Sprague-Dawley rats was harvested. Cartilage degradation was experimentally-induced in rat temporomandibular joints, using published biomechanical dental methods. The expression levels of CD163 and inflammatory factors within cartilage, and the ability of CD163(+ chondrocytes to conduct phagocytosis were investigated. Cartilage from the knees of patients with osteoarthritis and normal cartilage from knee amputations was also investigated. RESULTS: In the experimentally-induced degrading cartilage from temporomandibular joints, phagocytes were capable of engulfing neighboring apoptotic and necrotic cells, and the levels of CD163, TNF-α and MMPs were all increased (P0.05. CD163(+ chondrocytes were found in the cartilage mid-zone of temporomandibular joints and knee from healthy, three-week old rats. Furthermore, an increased number of CD163(+ chondrocytes with enhanced phagocytic activity were present in Col-II(+ chondrocytes isolated from the degraded cartilage of temporomandibular joints in the eight-week experimental group compared with their age-matched controls. Increased number with enhanced phagocytic activity of CD163(+ chondrocytes were also found in isolated Col-II(+ chondrocytes stimulated with TNF-α (P<0.05. Mid-zone distribution of CD163(+ cells accompanied with increased expression of CD163 and TNF-α were further confirmed in the isolated Col-II(+ chondrocytes from the knee cartilage of human patients with osteoarthritis, in contrast to the controls (both P<0.05. CONCLUSIONS: An increased number of CD163(+ chondrocytes with enhanced phagocytic activity were discovered within degraded joint cartilage, indicating a

  1. The Influence of Articular Cartilage Thickness Reduction on Meniscus Biomechanics.

    Science.gov (United States)

    Łuczkiewicz, Piotr; Daszkiewicz, Karol; Chróścielewski, Jacek; Witkowski, Wojciech; Winklewski, Pawel J

    2016-01-01

    Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint.

  2. Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative three-dimensional MR imaging

    International Nuclear Information System (INIS)

    Faber, S.C.; Reiser, M.; Englmeier, K.H.

    2001-01-01

    Objective: To compare the cartilage thickness, volume, and articular surface areas of the knee joint between young healthy, non-athletic female and male individuals. Subjects and design. MR imaging was performed in 18 healthy subjects without local or systemic joints disease (9 female, age 22.3±2.4 years, and 9 male, age 22.2.±1.9 years), using a fat-suppressed FLASH 3D pulse sequence (TR=41 ms, TE=11 ms, FA=30 ) with sagittal orientation and a spatial resolution of 2x0.31x0.31 mm 3 . After three-dimensional reconstruction and triangulation of the knee joint cartilage plates, the cartilage thickness (mean and maximal), volume, and size of the articular surface area were quantified, independent of the original section orientation. Results and conclusions: Women displayed smaller cartilage volumes than men, the percentage difference ranging from 19.9% in the patella, to 46.6% in the medial tibia. The gender differences of the cartilage thickness were smaller, ranging from 2.0% in the femoral trochlea to 13.3% in the medial tibia for the mean thickness, and from 4.3% in the medial femoral condyle to 18.3% in the medial tibia for the maximal cartilage thickness. The differences between the cartilage surface areas were similar to those of the volumes, with values ranging from 21.0% in the femur to 33.4% in the lateral tibia. Gender differences could be reduced for cartilage volume and surface area when normalized to body weight and body weight x body height. The study demonstrates significant gender differences in cartilage volume and surface area of men and women, which need to be taken into account when retrospectively estimating articular cartilage loss in patients with symptoms of degenerative joint disease. Differences in cartilage volume are primarily due to differences in joint surface areas (epiphyseal bone size), not to differences in cartilage thickness. (orig.)

  3. Treatment of Knee Osteochondral Lesions Using a Novel Clot of Autologous Plasma Rich in Growth Factors Mixed with Healthy Hyaline Cartilage Chips and Intra-Articular Injection of PRGF.

    Science.gov (United States)

    Cugat, Ramón; Alentorn-Geli, Eduard; Steinbacher, Gilbert; Álvarez-Díaz, Pedro; Cuscó, Xavier; Seijas, Roberto; Barastegui, David; Navarro, Jordi; Laiz, Patricia; García-Balletbó, Montserrat

    2017-01-01

    Knee cartilage or osteochondral lesions are common and challenging injuries. To date, most symptomatic lesions warrant surgical treatment. We present two cases of patients with knee osteochondral defects treated with a one-step surgical procedure consisting of an autologous-based matrix composed of healthy hyaline cartilage chips, mixed plasma poor-rich in platelets clot, and plasma rich in growth factors (PRGF). Both patients returned to playing soccer at the preinjury activity level and demonstrated excellent defect filling in both magnetic resonance imaging and second-look arthroscopy (in one of them). The use of a clot of autologous plasma poor in platelets with healthy hyaline cartilage chips and intra-articular injection of plasma rich in platelets is an effective, easy, and cheap option to treat knee cartilage injuries in young and athletic patients.

  4. Treatment of Knee Osteochondral Lesions Using a Novel Clot of Autologous Plasma Rich in Growth Factors Mixed with Healthy Hyaline Cartilage Chips and Intra-Articular Injection of PRGF

    Directory of Open Access Journals (Sweden)

    Ramón Cugat

    2017-01-01

    Full Text Available Knee cartilage or osteochondral lesions are common and challenging injuries. To date, most symptomatic lesions warrant surgical treatment. We present two cases of patients with knee osteochondral defects treated with a one-step surgical procedure consisting of an autologous-based matrix composed of healthy hyaline cartilage chips, mixed plasma poor-rich in platelets clot, and plasma rich in growth factors (PRGF. Both patients returned to playing soccer at the preinjury activity level and demonstrated excellent defect filling in both magnetic resonance imaging and second-look arthroscopy (in one of them. The use of a clot of autologous plasma poor in platelets with healthy hyaline cartilage chips and intra-articular injection of plasma rich in platelets is an effective, easy, and cheap option to treat knee cartilage injuries in young and athletic patients.

  5. Contact Mechanics and Failure Modes of Compliant Polymeric Bearing Materials for Knee Cartilage Replacement

    Science.gov (United States)

    Tohfafarosh, Mariya Shabbir

    Osteoarthritis (OA) is the most common cause of disability affecting millions of people worldwide. Total knee replacement is the current state-of-the-art treatment to alleviate pain and improve mobility among patients in the late stage of knee OA. The current gold standard materials for total knee arthroplasty are cobalt-chromium and ultra-high molecular weight polyethylene (UHMWPE). However, wear debris and implant loosening-related revision persists; consequently, total knee replacements are not universally recommended for all patient subgroups with OA. This work explores the potential of using compliant polymeric materials in knee cartilage replacement devices, which are closer in lubrication and mechanical properties of articular cartilage, to prevent excessive removal of underlying bone and prolong the need for a total knee replacement. Two materials investigated in this thesis are polycarbonate urethane, Bionate 80A, and a novel hydrogel, Cyborgel, both of which have shown promising wear and lubrication properties under physiological loads. Polycarbonate urethane has been previously tested for the effects of gamma sterilization and has shown no significant changes in its mechanical strength or chemical bonds. Since an important aspect of medical device development is the sterilization process, this thesis first evaluated the effect of 30-35 kGy electron beam and gamma radiation on the polymer swell ratio, and the mechanical, chemical and tribological behavior of the novel hydrogel. Three different formulations were mechanically tested, and biphasic material properties were identified using finite element analysis. Fourier transform infrared spectroscopy was used to investigate chemical changes, while the wear properties were tested for 2 million cycles in bovine serum. The results showed no significant difference (p > 0.05) in the swell ratio, mechanical and tribological properties of the electron beam and gamma sterilized hydrogel sample as compared to the

  6. Preclinical Multimodal Molecular Imaging Using 18F-FDG PET/CT and MRI in a Phase I Study of a Knee Osteoarthritis in In Vivo Canine Model

    Directory of Open Access Journals (Sweden)

    Maria I. Menendez DVM, PhD

    2017-03-01

    Full Text Available The aim of this study was to use a multimodal molecular imaging approach to serially assess regional metabolic changes in the knee in an in vivo anterior cruciate ligament transection (ACLT canine model of osteoarthritis (OA. Five canine underwent ACLT in one knee and the contralateral knee served as uninjured control. Prior, 3, 6, and 12 weeks post-ACLT, the dogs underwent 18F-fluoro-d-glucose (18F-FDG positron emission tomography (PET/computed tomography (CT and magnetic resonance imaging (MRI. The MRI was coregistered with the PET/CT, and 3-dimensional regions of interest (ROIs were traced manually and maximum standardized uptake values (SUVmax were evaluated. 18F-fluoro-d-glucose SUVmax in the ACLT knee ROIs was significantly higher compared to the uninjured contralateral knees at 3, 6, and 12 weeks. Higher 18F-FDG uptake observed in ACLT knees compared to the uninjured knees reflects greater metabolic changes in the injured knees over time. Knee 18F-FDG uptake in an in vivo ACLT canine model using combined PET/CT and MRI demonstrated to be highly sensitive in the detection of metabolic alterations in osseous and nonosteochondral structures comprising the knee joint. 18F-fluoro-d-glucose appeared to be a capable potential imaging biomarker for early human knee OA diagnosis, prognosis, and management.

  7. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee.

    Science.gov (United States)

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (posteophyte formation and subchondral sclerotic bone (psubchondral bone repair in all ESWT groups compared to OA group (p T(M+L) > F(M) in OA rat knees.

  8. MRI demonstration of hypertrophic articular cartilage repair in osteoarthritis

    International Nuclear Information System (INIS)

    Braunstein, E.M.; Brandt, K.D.; Albrecht, M.

    1990-01-01

    Transection of the anterior cruciate ligament in the dog produces changes in the unstable joint typical of osteoarthritis, although full-thickness catilage ulceration is rare. Information concerning the late fate of the cartilage after transection is meager. In the present study magnetic resonance imaging (MRI) was used to evaluate cartilage abnormalities 3 years after transection. Plain radiographs of the osteoarthritic and contralateral knees were obtained serially. MRI was performed 3 years after anterior cruciate ligament transection, at which time all three animals exhibited knee instability. Radiographs of the osteoarthritic knees showed osteophytes and subchondral sclerosis with progression between 2 and 3 years. On MRI, articular cartilage margins in the knee were indistinct, and the cartilage was thicker than that in the contralateral knee (maximum difference = 2.7 mm). This increase in thickness is consistent with biochemical data from dogs killed up to 64 weeks after creation of knee instability, which showed marked increases in cartilage bulk and in proteoglycan synthesis and concentration. The findings emphasize that increased matrix synthesis after anterior cruciate ligament transection leads to functional cartilage repair sustained even in the presence of persistent alteration of joint mechanics. (orig.)

  9. Point of no return for improvement of cartilage quality indicated by dGEMRIC before and after weight loss in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Hangaard, Stine; Gudbergsen, Henrik; Skougaard, Marie

    2018-01-01

    Background It has been demonstrated that weight loss improves symptoms in obese subjects with knee osteoarthritis (KOA). A parallel change in cartilage morphology remains to be demonstrated. Purpose To demonstrate a parallel change in cartilage morphology. Material and Methods Obese patients...... with KOA were examined before and after weight loss over 16 weeks. Target knee joints were radiographically assessed by the Kellgren/Lawrence grading (KLG) system. Patients with KLG-1 and 2 changes in the lateral compartment were included. Delayed gadolinium-enhanced MRI of cartilage (d...... in body mass index (BMI) after 16 weeks: 12.8% versus 11.4% ( P = 0.74). In the KLG-1 group, several cases of increased dGEMRIC T1 values were seen and median value decreased significantly less than in KLG-2 group (15 ms versus 41 ms, P = 0.03) after weight loss. Conclusion Improvement of cartilage...

  10. Cartilage volume quantification with multi echo data image combination sequence in swine knee at 3.0 T MRI

    International Nuclear Information System (INIS)

    Zhang Lirong; Wang Dongqing; Wei Chuanshe; Ma Cong; Wang Dehang

    2010-01-01

    Objective: To investigate the accuracy and reproducibility of multi echo data imagine combination (MEDIC) sequence with water excitation at 3.0 T in swine knee cartilage. Methods: Sagittal MEDIC sequences (0.6 mm slice thickness, isotropic) were acquired twice at 3.0 T MRI in 30 swine knees. The knee cartilage was then removed and the volume was directly measured with water substitution method. The cartilage volume was also determined with a validated open source image software OsiriX by two observers (A and B). The cartilage volumes obtained by two methods were compared. The reproducibility of MEDIC for quantitative measurement was accessed by the root-mean-square (RMS) of variation coefficient. Interobserver and intraobserver precision errors were compared using a paired students t-test. The accuracy of MEDIC for quantitative measurement was determined by the random pairwise differences, systematic pairwise differences and the Pearson, correlation coefficients. Time of semiautomatic and manual segmentation were recorded. Results: Time was saved about 75% by using semiautomatic segmentation methods [(4.0± 1.5) min] versus manual segmentation [(16.0±0.9) min]. Interobserver precision errors (RMS CV% for paired analysis) between A and B for cartilage volume measurement were (2.66±0.82) ml and(2.61± 0.81) ml, t=0.24, P=0.81 (patella); (2.40±0.69) ml and (2.49±0.85) ml, t=-0.45, P=0.65 (medial femoral condyle); (2.28±0.74) ml and(2.41±0.78) ml, t=-0.66, P=0.51 (lateral femoral condyle); (3.43±1.28) ml and (3.51±1.08) ml, t=-0.26, P=0.79 (femora trochlea) with sagittal MEDIC. Intraobserver precision errors (RMS CV% for paired analysis) of observer A for the first and second cartilage volume measurement were (2.64±0.62) ml and (2.67±0.60) ml, t=-0.19, P=0.85 (patella); (2.43±0.60) ml and (2.39±0.59) ml, t=0.26, P=0.80 (medial femoral condyle); (2.26±0.56) ml and (2.30±0.57) ml, t=-0.27, P=0.78 (lateral femoral condyle); (3.40± 1.20) ml and (3.47±1

  11. Changes in Cartilage Morphology of the Knee after 14-days of Bed Rest

    Science.gov (United States)

    Liphardt, A.-M.; Mündermann, A.; Koo, S.; Bäcker, N.; Andriacchi, T.; Zange, J.; Mester, J.; Heer, M.

    Introduction While there are still many unanswered questions related to the effects of space flight and disuse on cartilage health and cartilage morphology the number of in vivo experiments in humans is small For muscle and bone tissue it is well known that unloading results in degeneration of those tissues Also for cartilage previous studies in patients suggest that unloading causes cartilage degeneration Studies using immobilization as a model of unloading help to investigate the importance of experiencing mechanical loads for the maintenance of healthy biological tissues The goal of our study was to investigate whether bed rest induced immobilization has a negative effect on articular cartilage in healthy subjects and if vibration training is a potential counter-measure for these negative effects Methods Eight male healthy subjects 78 1 pm 9 5 kg 179 pm 9 6 cm 26 pm 5 years performed a 14-day bed rest in 6 r -head down tilt HDT The study was designed in a cross-over-design where each subject received a training intervention vib in one phase and no intervention con in the other phase During the training intervention subjects trained 2 x 5-minutes per day at 20 Hz with 2 -- 4 mm amplitude on a vibration plate Galileo 900 Magnet resonance MR imaging of the right knee was performed to measure articular cartilage thickness MR-images 2 mm slice thickness 0 35 mm x 0 35 mm in-plane resolution 448 x 512 pixels were taken before and after bed rest to investigate the effects of bed rest

  12. Relationship between weight loss in obese knee osteoarthritis patients and serum biomarkers of cartilage breakdown

    DEFF Research Database (Denmark)

    Bartels, E M; Henrotin, Y; Bliddal, H

    2017-01-01

    OBJECTIVE: To explore effects of weight loss and maintenance on serum cartilage biomarkers denaturation neoepitope for Collagen2 (Coll2-1) and Fibulin3 fragment (Fib3-2), as well as correlations between Coll2-1 and Fib3-2 and symptomatic improvement, in a knee osteoarthritis (KOA) population....... DESIGN: 192 obese KOA patients followed a 16 week weight loss intervention and 52 weeks weight maintenance (ClinicalTrials.gov identifier: NCT00655941). Assessments were at 0, 8, 16 and 68 weeks. Serum Coll2-1 and Fib3-2 were determined with ELISA, and symptoms by the Knee Osteoarthritis Outcome Score...

  13. Evaluation of cartilage repair tissue in the knee and ankle joint using sodium magnetic resonance imaging at 7 Tesla

    International Nuclear Information System (INIS)

    Zbyn, S.

    2015-01-01

    Articular cartilage of adults shows no or very limited intrinsic capacity for self-repair. Since untreated chondral defects often progress to osteoarthritis, symptomatic defects should be treated. Different cartilage repair procedures have been developed with the goal to restore joint function and prevent further cartilage degeneration by providing repair tissue of the same structure, composition, and biomechanical properties as native cartilage. Various cartilage repair procedures have been developed; including bone marrow stimulation (BMS) techniques such as microfracture (MFX), cell-based techniques such as matrix-associated autologous chondrocyte transplantation (MACT), and others. Since biopsies of cartilage repair tissue are invasive and cannot be repeated, a noninvasive method is needed that could follow-up the quality of cartilage and repair tissue. Negatively charged glycosaminoglycans (GAG) are very important for cartilage function as they attract positive ions such as sodium. The high concentration of ions in cartilage is responsible for osmotic pressure providing cartilage its resilience to compression. Since GAGs are counterbalanced by sodium ions, sodium magnetic resonance imaging (MRI) was validated as a sensitive method for the in vivo evaluation of GAG concentration in native cartilage but not for repair tissue. Thus, the main goal of this thesis was to optimize and validate sodium 7 Tesla MRI for the evaluation of cartilage repair tissue quality in patients after different cartilage repair surgeries in the knee and ankle joint. In our studies, sodium MRI was used for the first time for the clinical evaluation of cartilage repair tissue. A strong correlation found between sodium imaging and dGEMRIC (another GAG-sensitive technique) in patients after MACT on femoral cartilage proved sensitivity of sodium MRI to GAG changes in native cartilage and repair tissue in vivo. Comparison between BMS and MACT patients showed significantly lower sodium values

  14. Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee

    International Nuclear Information System (INIS)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K; Ourselin, Sebastien

    2007-01-01

    The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis

  15. Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Fripp, Jurgen [BioMedIA Lab, Autonomous Systems Laboratory, CSIRO ICT Centre, Level 20, 300 Adelaide street, Brisbane, QLD 4001 (Australia); Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Warfield, Simon K [Computational Radiology Laboratory, Harvard Medical School, Children' s Hospital Boston, 300 Longwood Avenue, Boston, MA 02115 (United States); Ourselin, Sebastien [BioMedIA Lab, Autonomous Systems Laboratory, CSIRO ICT Centre, Level 20, 300 Adelaide street, Brisbane, QLD 4001 (Australia)

    2007-03-21

    The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.

  16. Human osteoarthritic cartilage is synthetically more active but in culture less vital than normal cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; van Roy, H.; Wilbrink, B.; Huber-Bruning, O.; Bijlsma, J. W.

    1992-01-01

    The proteoglycan turnover of human osteoarthritic (OA) cartilage was compared to that of normal (N) cartilage. The cartilage was obtained postmortem from human femoral knee condyles. Short term cultures were compared to longterm cultures, and proteoglycan synthesis rate, content and release

  17. Quantitative evaluation of knee cartilage and meniscus destruction in patients with rheumatoid arthritis using T1ρ and T2 mapping.

    Science.gov (United States)

    Meng, Xiang Hong; Wang, Zhi; Guo, Li; Liu, Xiu Chan; Zhang, Yu Wei; Zhang, Ze Wei; Ma, Xin Long

    2017-11-01

    To calculate T1ρ and T2 values of articular cartilage and menisci in knee joints of patients with RA, and compare the values between RA patients and healthy volunteers, to gain insight into the pathogenesis of cartilage and meniscus degradation in patients with RA. Nine patients with RA and knee joints symptoms were enrolled in the study, twenty healthy volunteers without knee joint diseases were included as controls. Sagittal fat-saturated T1ρ and T2 mapping images were obtained on a 3T MR scanner (GE750, GE Healthcare, Waukesha, WI), using a dedicated 8-channel knee coil. In the T1rho mapping sequence, the amplitude of the spin-lock pulse was 500Hz, spin lock durations=10/20/30/50ms. In the T2 mapping sequence,TR/TE were 1794/6.5, 13.4, 27, 40.7ms. Both sequences were performed with the following parameters: flip angle (FA)=90°, matrix: 320×256, FOV: 16×16cm 2 , slice thickness: 3mm, bandwidth: 62.5kHZ, and a total scan time of 5:11min. T1ρ- and T2-mapping images were used for the segmentation of the articular cartilage of the patella, femoral trochlea, medial and lateral femoral condyle, medial and lateral tibial plateau. These images were also used for the segmentation of the anterior and posterior horns of the medial and lateral menisci with livewire semi-automatic segmentation algorithm of MATLAB. A Mann-Whitney U test was performed to compare the T1ρ and T2 values of the above mentioned regions between the two groups. T1ρ (Z=-3.913 to -2.121, P=0.000-0.034) and T2 (Z=-3.866 to -2.216, P=0.000-0.026) values of knee cartilage in patients with RA were higher than that in healthy volunteers, except the cartilage of the patella (T1ρ: Z=-1.273, P=0.203,T2: Z=-0.236, P=0.814) and lateral tibial plateau (T1ρ:Z=-1.037, P=0.317). The T1ρ (Z=-1.462 to 0.572, P=0.095-0.908) and T2 (Z=-1.461 to 0.278, P=0.153-0.764) values of medial and lateral menisci showed no difference between the two groups. Patients with RA exhibit diffuse knee cartilage destruction in

  18. Gel-type autologous chondrocyte (Chondron™ implantation for treatment of articular cartilage defects of the knee

    Directory of Open Access Journals (Sweden)

    Chun Chung-Woo

    2010-05-01

    Full Text Available Abstract Background Gel-type autologous chondrocyte (Chondron™ implantations have been used for several years without using periosteum or membrane. This study involves evaluations of the clinical results of Chondron™ at many clinical centers at various time points during the postoperative patient follow-up. Methods Data from 98 patients with articular cartilage injury of the knee joint and who underwent Chondron™ implantation at ten Korean hospitals between January 2005 and November 2008, were included and were divided into two groups based on the patient follow-up period, i.e. 13~24-month follow-up and greater than 25-month follow-up. The telephone Knee Society Score obtained during telephone interviews with patients, was used as the evaluation tool. Results On the tKSS-A (telephone Knee Society Score-A, the score improved from 43.52 ± 20.20 to 89.71 ± 13.69 (P Conclusion Gel-type autologous chondrocyte implantation for chondral knee defects appears to be a safe and effective method for both decreasing pain and improving knee function.

  19. Vessel architecture in human knee cartilage in children: an in vivo susceptibility-weighted imaging study at 7 T.

    Science.gov (United States)

    Kolb, Alexander; Robinson, Simon; Stelzeneder, David; Schreiner, Markus; Chiari, Catharina; Windhager, Reinhard; Trattnig, Siegfried; Bohndorf, Klaus

    2018-02-26

    To evaluate the clinical feasibility of ultrahigh field 7-T SWI to visualize vessels and assess their density in the immature epiphyseal cartilage of human knee joints. 7-T SWI of 12 knees (six healthy volunteers, six patients with osteochondral abnormalities; mean age 10.7 years; 3 female, 9 male) were analysed by two readers, classifying intracartilaginous vessel densities (IVD) in three grades (no vessels, low IVD and high IVD) in defined femoral, tibial and patellar zones. Differences between patients and volunteers, IVDs in different anatomic locations, differences between cartilage overlying osteochondral abnormalities and corresponding normal zones, and differences in age groups were analysed. Interrater reliability showed moderate agreement between the two readers (κ = 0.58, p < 0.001). The comparison of IVDs between patients and volunteers revealed no significant difference (p = 0.706). The difference between zones in the cartilage overlying osteochondral abnormalities to corresponding normal zones showed no significant difference (p = 0.564). IVDs were related to anatomic location, with decreased IVDs in loading areas (p = 0.003). IVD was age dependent, with more vessels present in the younger participants (p = 0.001). The use of SWI in conjunction with ultrahigh field MRI makes the in vivo visualization of vessels in the growing cartilage of humans feasible, providing insights into the role of the vessel network in acquired disturbances. • SWI facilitates in vivo visualization of vessels in the growing human cartilage. • Interrater reliability of the intracartilaginous vessel grading was moderate. • Intracartilaginous vessel densities are dependent on anatomical location and age.

  20. The associations between indices of patellofemoral geometry and knee pain and patella cartilage volume: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Urquhart Donna M

    2010-05-01

    Full Text Available Abstract Background Whilst patellofemoral pain is one of the most common musculoskeletal disorders presenting to orthopaedic clinics, sports clinics, and general practices, factors contributing to its development in the absence of a defined arthropathy, such as osteoarthritis (OA, are unclear. The aim of this cross-sectional study was to describe the relationships between parameters of patellofemoral geometry (patella inclination, sulcus angle and patella height and knee pain and patella cartilage volume. Methods 240 community-based adults aged 25-60 years were recruited to take part in a study of obesity and musculoskeletal health. Magnetic resonance imaging (MRI of the dominant knee was used to determine the lateral condyle-patella angle, sulcus angle, and Insall-Salvati ratio, as well as patella cartilage and bone volumes. Pain was assessed by the Western Ontario and McMaster University Osteoarthritis Index (WOMAC VA pain subscale. Results Increased lateral condyle-patella angle (increased medial patella inclination was associated with a reduction in WOMAC pain score (Regression coefficient -1.57, 95% CI -3.05, -0.09 and increased medial patella cartilage volume (Regression coefficient 51.38 mm3, 95% CI 1.68, 101.08 mm3. Higher riding patella as indicated by increased Insall-Salvati ratio was associated with decreased medial patella cartilage volume (Regression coefficient -3187 mm3, 95% CI -5510, -864 mm3. There was a trend for increased lateral patella cartilage volume associated with increased (shallower sulcus angle (Regression coefficient 43.27 mm3, 95% CI -2.43, 88.98 mm3. Conclusion These results suggest both symptomatic and structural benefits associated with a more medially inclined patella while a high-riding patella may be detrimental to patella cartilage. This provides additional theoretical support for the current use of corrective strategies for patella malalignment that are aimed at medial patella translation, although

  1. The associations between indices of patellofemoral geometry and knee pain and patella cartilage volume: a cross-sectional study.

    Science.gov (United States)

    Tanamas, Stephanie K; Teichtahl, Andrew J; Wluka, Anita E; Wang, Yuanyuan; Davies-Tuck, Miranda; Urquhart, Donna M; Jones, Graeme; Cicuttini, Flavia M

    2010-05-10

    Whilst patellofemoral pain is one of the most common musculoskeletal disorders presenting to orthopaedic clinics, sports clinics, and general practices, factors contributing to its development in the absence of a defined arthropathy, such as osteoarthritis (OA), are unclear.The aim of this cross-sectional study was to describe the relationships between parameters of patellofemoral geometry (patella inclination, sulcus angle and patella height) and knee pain and patella cartilage volume. 240 community-based adults aged 25-60 years were recruited to take part in a study of obesity and musculoskeletal health. Magnetic resonance imaging (MRI) of the dominant knee was used to determine the lateral condyle-patella angle, sulcus angle, and Insall-Salvati ratio, as well as patella cartilage and bone volumes. Pain was assessed by the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) VA pain subscale. Increased lateral condyle-patella angle (increased medial patella inclination) was associated with a reduction in WOMAC pain score (Regression coefficient -1.57, 95% CI -3.05, -0.09) and increased medial patella cartilage volume (Regression coefficient 51.38 mm3, 95% CI 1.68, 101.08 mm3). Higher riding patella as indicated by increased Insall-Salvati ratio was associated with decreased medial patella cartilage volume (Regression coefficient -3187 mm3, 95% CI -5510, -864 mm3). There was a trend for increased lateral patella cartilage volume associated with increased (shallower) sulcus angle (Regression coefficient 43.27 mm3, 95% CI -2.43, 88.98 mm3). These results suggest both symptomatic and structural benefits associated with a more medially inclined patella while a high-riding patella may be detrimental to patella cartilage. This provides additional theoretical support for the current use of corrective strategies for patella malalignment that are aimed at medial patella translation, although longitudinal studies will be needed to further substantiate this.

  2. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Science.gov (United States)

    Touraine, Sébastien; Bouhadoun, Hamid; Engelke, Klaus; Laredo, Jean Denis; Chappard, Christine

    2017-01-01

    Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals. We assessed the hyaline cartilage, subchondral cortical plate (SCP), and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration). Bone cores harvested from the medial tibial plateau at locations uncovered (central), partially covered (posterior), and completely covered (peripheral) by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3) and thickness (Cart.Th, mm); SCP thickness (SCP.Th, μm) and porosity (SCP.Por, %); bone volume to total volume fraction (BV/TV, %); trabecular thickness (Tb.Th, μm), spacing (Tb.Sp, μm), and number (Tb.N, 1/mm); structure model index (SMI); trabecular pattern factor (Tb.Pf); and degree of anisotropy (DA). Among the 28 specimens studied (18 females) from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf), a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly. The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  3. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Directory of Open Access Journals (Sweden)

    Sébastien Touraine

    Full Text Available Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals.We assessed the hyaline cartilage, subchondral cortical plate (SCP, and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration. Bone cores harvested from the medial tibial plateau at locations uncovered (central, partially covered (posterior, and completely covered (peripheral by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3 and thickness (Cart.Th, mm; SCP thickness (SCP.Th, μm and porosity (SCP.Por, %; bone volume to total volume fraction (BV/TV, %; trabecular thickness (Tb.Th, μm, spacing (Tb.Sp, μm, and number (Tb.N, 1/mm; structure model index (SMI; trabecular pattern factor (Tb.Pf; and degree of anisotropy (DA.Among the 28 specimens studied (18 females from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf, a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly.The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  4. MR imaging of the articular cartilage of the knee with arthroscopy as gold standard: assessment of methodological quality of clinical studies

    International Nuclear Information System (INIS)

    Duchateau, Florence; Berg, Bruno C. vande

    2002-01-01

    The purpose of this study was to assess the methodological quality of articles addressing the value of MR imaging of the knee cartilage with arthroscopy as a standard. Relevant papers were selected after Medline review (MEDLINE database search including the terms ''cartilage'' ''knee'', ''MR'' and ''arthroscopy''). Two observers reviewed independently 29 selected articles to determine how each study had met 15 individual standards that had been previously developed to assess the methodological quality of clinical investigations. The following criteria were met in variable percentage of articles including adequate definition of purpose (100%), statistical analysis (90%), avoidance of verification bias (86%), patient population description (83%), reference standard (79%), review bias (79%), study design (66%), inclusion criteria (41%) and method of analysis (41.5%), avoidance of diagnostic-review bias (24%), exclusion criteria (21%), indeterminate examination results (17%), analysis criteria (14%), interobserver reliability (14%) and intraobserver reliability (7%). The assessment of the methodological quality of clinical investigations addressing the value of MR imaging in the evaluation of the articular cartilage of the knee with arthroscopy as the standard of reference demonstrated that several standards were rarely met in the literature. Efforts should be made to rely on clearly defined lesion criteria and to determine reliability of the observations. (orig.)

  5. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  6. Osteoarthritic cartilage is more homogeneous than healthy cartilage

    DEFF Research Database (Denmark)

    Qazi, Arish A; Dam, Erik B; Nielsen, Mads

    2007-01-01

    it evolves as a consequence to disease and thereby can be used as a progression biomarker. MATERIALS AND METHODS: A total of 283 right and left knees from 159 subjects aged 21 to 81 years were scanned using a Turbo 3D T1 sequence on a 0.18-T MRI Esaote scanner. The medial compartment of the tibial cartilage...... sheet was segmented using a fully automatic voxel classification scheme based on supervised learning. From the segmented cartilage sheet, homogeneity was quantified by measuring entropy from the distribution of signal intensities inside the compartment. Each knee was examined by radiography...... of the region was evaluated by testing for overfitting. Three different regularization techniques were evaluated for reducing overfitting errors. RESULTS: The P values for separating the different groups based on cartilage homogeneity were 2 x 10(-5) (KL 0 versus KL 1) and 1 x 10(-7) (KL 0 versus KL >0). Using...

  7. Isotropic morphometry and multicomponent T1 ρ mapping of human knee articular cartilage in vivo at 3T.

    Science.gov (United States)

    Baboli, Rahman; Sharafi, Azadeh; Chang, Gregory; Regatte, Ravinder R

    2018-05-02

    The progressive loss of hyaline articular cartilage due to osteoarthritis (OA) changes the functional and biochemical properties of cartilage. Measuring the T 1 ρ along with the morphological assessment can potentially be used as noninvasive biomarkers in detecting early-stage OA. To correlate the biochemical and morphological data, submillimeter isotropic resolution for both studies is required. To implement a high spatial resolution 3D-isotropic-MRI sequence for simultaneous assessment of morphological and biexponential T 1 ρ relaxometry of human knee cartilage in vivo. Prospective. Ten healthy volunteers with no known inflammation, trauma, or pain in the knee. Standard FLASH sequence and customized Turbo-FLASH sequence to acquire 3D-isotropic-T 1 ρ-weighted images on a 3T MRI scanner. The mean volume and thickness along with mono- and biexponential T 1 ρ relaxations were assessed in the articular cartilage of 10 healthy volunteers. Nonparametric rank-sum tests. Bland-Altman analysis and coefficient of variation. The mean monoexponential T 1 ρ relaxation was 40.7 ± 4.8 msec, while the long and short components were 58.2 ± 3.9 msec and 6.5 ± 0.6 msec, respectively. The mean fractions of long and short T 1 ρ relaxation components were 63.7 ± 5.9% and 36.3 ± 5.9%, respectively. Statistically significant (P ≤ 0.03) differences were observed in the monoexponential and long components between some of the regions of interest (ROIs). No gender differences between biexponential components were observed (P > 0.05). Mean cartilage volume and thickness were 25.9 ± 6.4 cm 3 and 2.2 ± 0.7 mm, respectively. Cartilage volume (P = 0.01) and thickness (P = 0.03) were significantly higher in male than female participants across all ROIs. Bland-Altman analysis showed agreement between two morphological methods with limits of agreement between -1000 mm 3 and +1100 mm 3 for volume, and -0.78 mm and +0.46 mm for

  8. Knee microfracture surgery

    Science.gov (United States)

    Cartilage regeneration - knee ... Three types of anesthesia may be used for knee arthroscopy surgery: Medicine to relax you, and shots of painkillers to numb the knee Spinal (regional) anesthesia General anesthesia (you will be ...

  9. Effect of 12 months treatment with chondroitin sulfate on cartilage volume in knee osteoarthritis patients: a randomized, double-blind, placebo-controlled pilot study using MRI.

    Science.gov (United States)

    Railhac, J-J; Zaim, M; Saurel, A-S; Vial, J; Fournie, B

    2012-09-01

    This pilot study aimed to evaluate the correlation between clinical symptoms and cartilage volume through MRI in patients with knee osteoarthritis after 48 weeks of treatment with Structum®. Multicenter, double-blind, placebo-controlled, parallel-group study. Symptomatic knee osteoarthritis patients aged 50-75 years received either Structum® (500 mg twice daily; N = 22) or placebo (N = 21) during 48 weeks. Inclusion criteria were global pain in the target knee ≥30 mm (VAS 0-100) and radiological Kellgren-Lawrence grade 2 or 3. Clinical assessments included Lequesne index and VAS for pain on motion, at baseline, 24 and 48 weeks, and MRI at baseline and at 24 and 48 weeks. Global and compartments cartilage volume, joint cartilage abnormalities, meniscal lesions, ligaments abnormalities, synovitis, synovial effusion, osteophytes, subchondral cysts, popliteal cysts and subchondral oedema were quantified. The quantitative and qualitative reproducibility of MRI was tested by the Spearman correlation coefficient and kappa coefficients, respectively. Treatments were compared by an analysis of covariance with baseline value as covariate. Groups were comparable at baseline for demographics, disease characteristics, and cartilage volumes. A significant inter-readers correlation was seen for the assessment of cartilage volumes, number of cysts, and osteophytes (correlation coefficients from 0.951 to 0.980 within investigator and from 0.714 to 0.957). After 48 weeks, symptoms improved in both groups. The total cartilage volume increased in the Structum® group (+180 mm(3) + SD) which opposed to a loss in the placebo (-46 mm(3) + SD; NS). No statistically significant differences between groups were observed for the other MRI parameters. No correlations were evidenced between key MRI parameters changes and symptoms. The difference in the evolution of cartilage volume between the two groups could reflect a structure modifying effect of Structum

  10. Micromechanical properties of canine femoral articular cartilage following multiple freeze-thaw cycles.

    Science.gov (United States)

    Peters, Abby E; Comerford, Eithne J; Macaulay, Sophie; Bates, Karl T; Akhtar, Riaz

    2017-07-01

    Tissue material properties are crucial to understanding their mechanical function, both in healthy and diseased states. However, in certain circumstances logistical limitations can prevent testing on fresh samples necessitating one or more freeze-thaw cycles. To date, the nature and extent to which the material properties of articular cartilage are altered by repetitive freezing have not been explored. Therefore, the aim of this study is to quantify how articular cartilage mechanical properties, measured by nanoindentation, are affected by multiple freeze-thaw cycles. Canine cartilage plugs (n = 11) from medial and lateral femoral condyles were submerged in phosphate buffered saline, stored at 3-5°C and tested using nanoindentation within 12h. Samples were then frozen at -20°C and later thawed at 3-5°C for 3h before material properties were re-tested and samples re-frozen under the same conditions. This process was repeated for all 11 samples over three freeze-thaw cycles. Overall mean and standard deviation of shear storage modulus decreased from 1.76 ± 0.78 to 1.21 ± 0.77MPa (p = 0.91), shear loss modulus from 0.42 ± 0.19 to 0.39 ± 0.17MPa (p=0.70) and elastic modulus from 5.13 ± 2.28 to 3.52 ± 2.24MPa (p = 0.20) between fresh and three freeze-thaw cycles respectively. The loss factor increased from 0.31 ± 0.38 to 0.71 ± 1.40 (p = 0.18) between fresh and three freeze-thaw cycles. Inter-sample variability spanned as much as 10.47MPa across freezing cycles and this high-level of biological variability across samples likely explains why overall mean "whole-joint" trends do not reach statistical significance across the storage conditions tested. As a result multiple freeze-thaw cycles cannot be explicitly or statistically linked to mechanical changes within the cartilage. However, the changes in material properties observed herein may be sufficient in magnitude to impact on a variety of clinical and scientific studies of cartilage, and should be considered

  11. Associations Between Knee Effusion-synovitis and Joint Structural Changes in Patients with Knee Osteoarthritis.

    Science.gov (United States)

    Wang, Xia; Jin, Xingzhong; Blizzard, Leigh; Antony, Benny; Han, Weiyu; Zhu, Zhaohua; Cicuttini, Flavia; Wluka, Anita E; Winzenberg, Tania; Jones, Graeme; Ding, Changhai

    2017-11-01

    To describe the associations between effusion-synovitis and joint structural abnormalities in patients with knee osteoarthritis (OA) over 24 months. A posthoc analysis using data from a randomized controlled trial in 413 patients with symptomatic OA (aged 63 ± 7 yrs, 208 women). Knee effusion-synovitis volume and score, cartilage defects, cartilage volume, and bone marrow lesions (BML) were assessed using magnetic resonance imaging. Joint space narrowing (JSN) and osteophytes were assessed using radiograph. Least significant change criterion was used to define change in effusion-synovitis volume. Knee symptoms were assessed by Western Ontario and McMaster University OA Index. Multivariable linear/logistic regression and multilevel generalized mixed-effects models were used in longitudinal analyses. Total effusion-synovitis volume increased modestly from baseline (8.0 ± 8.5 ml) to followup (9.0 ± 10.5 ml). Baseline BML, cartilage defect, JSN, and osteophyte scores were positively associated with change in effusion-synovitis volume (p effusion-synovitis score (p effusion-synovitis score nor volume consistently predicted change in the above structures except cartilage volume. In the mixed-effects models, knee effusion-synovitis was positively associated with BML (volume: β = 1.19 ml/grade; score: OR = 1.75/grade) and cartilage defects (volume: β = 1.87 ml/grade; score: OR = 2.22/grade), while negatively associated with cartilage volume loss. Change in effusion-synovitis volume was positively correlated with changes in knee pain and stiffness scores (p effusion-synovitis, but effusion-synovitis did not predict knee structural changes. These findings suggest that synovial inflammation is likely the result of joint structural abnormalities in established OA. ClinicalTrials.gov identifier: NCT01176344. Australian New Zealand Clinical Trials Registry: ACTRN12610000495022.

  12. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol.

    Science.gov (United States)

    Kijowski, Richard; Blankenbaker, Donna G; Munoz Del Rio, Alejandro; Baer, Geoffrey S; Graf, Ben K

    2013-05-01

    To determine whether the addition of a T2 mapping sequence to a routine magnetic resonance (MR) imaging protocol could improve diagnostic performance in the detection of surgically confirmed cartilage lesions within the knee joint at 3.0 T. This prospective study was approved by the institutional review board, and the requirement to obtain informed consent was waived. The study group consisted of 150 patients (76 male and 74 female patients with an average age of 41.2 and 41.5 years, respectively) who underwent MR imaging and arthroscopy of the knee joint. MR imaging was performed at 3.0 T by using a routine protocol with the addition of a sagittal T2 mapping sequence. Images from all MR examinations were reviewed in consensus by two radiologists before surgery to determine the presence or absence of cartilage lesions on each articular surface, first by using the routine MR protocol alone and then by using the routine MR protocol with T2 maps. Each articular surface was then evaluated at arthroscopy. Generalized estimating equation models were used to compare the sensitivity and specificity of the routine MR imaging protocol with and without T2 maps in the detection of surgically confirmed cartilage lesions. The sensitivity and specificity in the detection of 351 cartilage lesions were 74.6% and 97.8%, respectively, for the routine MR protocol alone and 88.9% and 93.1% for the routine MR protocol with T2 maps. Differences in sensitivity and specificity were statistically significant (P T2 maps to the routine MR imaging protocol significantly improved the sensitivity in the detection of 24 areas of cartilage softening (from 4.2% to 62%, P T2 mapping sequence to a routine MR protocol at 3.0 T improved sensitivity in the detection of cartilage lesions within the knee joint from 74.6% to 88.9%, with only a small reduction in specificity. The greatest improvement in sensitivity with use of the T2 maps was in the identification of early cartilage degeneration. © RSNA

  13. Quantitative Assessment of Degenerative Cartilage and Subchondral Bony Lesions in a Preserved Cadaveric Knee: Propagation-Based Phase-Contrast CT Versus Conventional MRI and CT.

    Science.gov (United States)

    Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie

    2018-04-09

    The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.

  14. Differences in tibial subchondral bone structure evaluated using plain radiographs between knees with and without cartilage damage or bone marrow lesions. The Oulu knee osteoarthritis study

    International Nuclear Information System (INIS)

    Hirvasniemi, Jukka; Thevenot, Jerome; Podlipska, Jana; Guermazi, Ali; Roemer, Frank W.; Nieminen, Miika T.; Saarakkala, Simo

    2017-01-01

    To investigate whether subchondral bone structure from plain radiographs is different between subjects with and without articular cartilage damage or bone marrow lesions (BMLs). Radiography-based bone structure was assessed from 80 subjects with different stages of knee osteoarthritis using entropy of Laplacian-based image (E Lap ) and local binary patterns (E LBP ), homogeneity index of local angles (HI Angles,mean ), and horizontal (FD Hor ) and vertical fractal dimensions (FD Ver ). Medial tibial articular cartilage damage and BMLs were scored using the magnetic resonance imaging osteoarthritis knee score. Level of statistical significance was set to p < 0.05. Subjects with medial tibial cartilage damage had significantly higher FD Ver and E LBP as well as lower E Lap and HI Angles,mean in the medial tibial subchondral bone region than subjects without damage. FD Hor , FD Ver , and E LBP were significantly higher, whereas E Lap and HI Angles,mean were lower in the medial trabecular bone region. Subjects with medial tibial BMLs had significantly higher FD Ver and E LBP as well as lower E Lap and HI Angles,mean in medial tibial subchondral bone. FD Hor , FD Ver , and E LBP were higher, whereas E Lap and HI Angles,mean were lower in medial trabecular bone. Our results support the use of bone structural analysis from radiographs when examining subjects with osteoarthritis or at risk of having it. (orig.)

  15. Comparative assessment of intrinsic mechanical stimuli on knee cartilage and compressed agarose constructs.

    Science.gov (United States)

    Completo, A; Bandeiras, C; Fonseca, F

    2017-06-01

    A well-established cue for improving the properties of tissue-engineered cartilage is mechanical stimulation. However, the explicit ranges of mechanical stimuli that correspond to favorable metabolic outcomes are elusive. Usually, these outcomes have only been associated with the applied strain and frequency, an oversimplification that can hide the fundamental relationship between the intrinsic mechanical stimuli and the metabolic outcomes. This highlights two important key issues: the firstly is related to the evaluation of the intrinsic mechanical stimuli of native cartilage; the second, assuming that the intrinsic mechanical stimuli will be important, deals with the ability to replicate them on the tissue-engineered constructs. This study quantifies and compares the volume of cartilage and agarose subjected to a given magnitude range of each intrinsic mechanical stimulus, through a numerical simulation of a patient-specific knee model coupled with experimental data of contact during the stance phase of gait, and agarose constructs under direct-dynamic compression. The results suggest that direct compression loading needs to be parameterized with time-dependence during the initial culture period in order to better reproduce each one of the intrinsic mechanical stimuli developed in the patient-specific cartilage. A loading regime which combines time periods of low compressive strain (5%) and frequency (0.5Hz), in order to approach the maximal principal strain and fluid velocity stimulus of the patient-specific cartilage, with time periods of high compressive strain (20%) and frequency (3Hz), in order to approach the pore pressure values, may be advantageous relatively to a single loading regime throughout the full culture period. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Cartilage repair in the degenerative ageing knee

    Science.gov (United States)

    Brittberg, Mats; Gomoll, Andreas H; Canseco, José A; Far, Jack; Lind, Martin; Hui, James

    2016-01-01

    Background and purpose Cartilage damage can develop due to trauma, resulting in focal chondral or osteochondral defects, or as more diffuse loss of cartilage in a generalized organ disease such as osteoarthritis. A loss of cartilage function and quality is also seen with increasing age. There is a spectrum of diseases ranging from focal cartilage defects with healthy surrounding cartilage to focal lesions in degenerative cartilage, to multiple and diffuse lesions in osteoarthritic cartilage. At the recent Aarhus Regenerative Orthopaedics Symposium (AROS) 2015, regenerative challenges in an ageing population were discussed by clinicians and basic scientists. A group of clinicians was given the task of discussing the role of tissue engineering in the treatment of degenerative cartilage lesions in ageing patients. We present the outcomes of our discussions on current treatment options for such lesions, with particular emphasis on different biological repair techniques and their supporting level of evidence. Results and interpretation Based on the studies on treatment of degenerative lesions and early OA, there is low-level evidence to suggest that cartilage repair is a possible treatment for such lesions, but there are conflicting results regarding the effect of advanced age on the outcome. We concluded that further improvements are needed for direct repair of focal, purely traumatic defects before we can routinely use such repair techniques for the more challenging degenerative lesions. Furthermore, we need to identify trigger mechanisms that start generalized loss of cartilage matrix, and induce subchondral bone changes and concomitant synovial pathology, to maximize our treatment methods for biological repair in degenerative ageing joints. PMID:27910738

  17. Runner's Knee

    Science.gov (United States)

    ... require a lot of knee bending, such as biking, jumping, or skiing. Runner's knee happens when the ... is out of alignment, activities like running or biking can wear down the cartilage of the kneecap ( ...

  18. Knee Injuries and Disorders

    Science.gov (United States)

    Your knee joint is made up of bone, cartilage, ligaments and fluid. Muscles and tendons help the knee joint move. When any of these structures is hurt or diseased, you have knee problems. Knee problems can cause pain and difficulty ...

  19. Comparison of T2* relaxation times of articular cartilage of the knee in elite professional football players and age-and BMI-matched amateur athletes

    Energy Technology Data Exchange (ETDEWEB)

    Behzadi, C., E-mail: c.behzadi@uke.de [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Welsch, G.H. [Department of Sports Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Laqmani, A.; Henes, F.O.; Kaul, M.G. [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany); Schoen, G. [Department of Medical Biometry and Epidemiology, University Medical Center, Hamburg-Eppendorf, Hamburg, 20246 (Germany); Adam, G.; Regier, M. [Department of Diagnostic and Interventional Radiology and Nuclearmedicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 (Germany)

    2017-01-15

    Objective: Recent investigation has underlined the potential of quantitative MR imaging to be used as a complementary tool for the diagnosis of cartilage degeneration at an early state. The presented study analyses T2* relaxation times of articular cartilage of the knee in professional athletes and compares the results to age- and BMI (Body Mass Index)-matched healthy amateur athletes. Materials and methods: 22 professional football players and 22 age- and BMI-matched individuals were underwent knee Magnetic Resonance Imaging (MRI) at 3T including qualitative and quantitative analysis. Qualitative analysis included e.g. meniscal tears, joint effusion and bone edema. For quantitative analysis T2* (22 ET: 4.6-53.6 ms) measurements in 3D data acquisition were performed. Deep and superficial layers of 22 predefined cartilage segments were analysed. All data sets were postprocessed using a dedicated software tool. Statistical analysis included Student t-test, confidence intervals and a random effects model. Results: In both groups, T2* relaxation times were significantly higher in the superficial compared to the deep layers (p < 0.001). Professional athletes had significantly higher relaxation times in eight superficial and three deep cartilage layers in the predefined cartilage segments (p < 0.05). Highly significant differences were found in the weight-bearing segments of the lateral superficial femoral condyle (p < 0.001). Conclusion: Elevated T2* values in cartilage layers of professional football players compared to amateur athletes were noted. The effects seem to predominate in superficial cartilage layers.

  20. Comparison of T2* relaxation times of articular cartilage of the knee in elite professional football players and age-and BMI-matched amateur athletes

    International Nuclear Information System (INIS)

    Behzadi, C.; Welsch, G.H.; Laqmani, A.; Henes, F.O.; Kaul, M.G.; Schoen, G.; Adam, G.; Regier, M.

    2017-01-01

    Objective: Recent investigation has underlined the potential of quantitative MR imaging to be used as a complementary tool for the diagnosis of cartilage degeneration at an early state. The presented study analyses T2* relaxation times of articular cartilage of the knee in professional athletes and compares the results to age- and BMI (Body Mass Index)-matched healthy amateur athletes. Materials and methods: 22 professional football players and 22 age- and BMI-matched individuals were underwent knee Magnetic Resonance Imaging (MRI) at 3T including qualitative and quantitative analysis. Qualitative analysis included e.g. meniscal tears, joint effusion and bone edema. For quantitative analysis T2* (22 ET: 4.6-53.6 ms) measurements in 3D data acquisition were performed. Deep and superficial layers of 22 predefined cartilage segments were analysed. All data sets were postprocessed using a dedicated software tool. Statistical analysis included Student t-test, confidence intervals and a random effects model. Results: In both groups, T2* relaxation times were significantly higher in the superficial compared to the deep layers (p < 0.001). Professional athletes had significantly higher relaxation times in eight superficial and three deep cartilage layers in the predefined cartilage segments (p < 0.05). Highly significant differences were found in the weight-bearing segments of the lateral superficial femoral condyle (p < 0.001). Conclusion: Elevated T2* values in cartilage layers of professional football players compared to amateur athletes were noted. The effects seem to predominate in superficial cartilage layers.

  1. In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking.

    Science.gov (United States)

    Liu, Betty; Lad, Nimit K; Collins, Amber T; Ganapathy, Pramodh K; Utturkar, Gangadhar M; McNulty, Amy L; Spritzer, Charles E; Moorman, Claude T; Sutter, E Grant; Garrett, William E; DeFrate, Louis E

    2017-10-01

    There are currently limited human in vivo data characterizing the role of the meniscus in load distribution within the tibiofemoral joint. Purpose/Hypothesis: The purpose was to compare the strains experienced in regions of articular cartilage covered by the meniscus to regions of cartilage not covered by the meniscus. It was hypothesized that in response to walking, tibial cartilage covered by the meniscus would experience lower strains than uncovered tibial cartilage. Descriptive laboratory study. Magnetic resonance imaging (MRI) of the knees of 8 healthy volunteers was performed before and after walking on a treadmill. Using MRI-generated 3-dimensional models of the tibia, cartilage, and menisci, cartilage thickness was measured in 4 different regions based on meniscal coverage and compartment: covered medial, uncovered medial, covered lateral, and uncovered lateral. Strain was defined as the normalized change in cartilage thickness before and after activity. Within each compartment, covered cartilage before activity was significantly thinner than uncovered cartilage before activity ( P meniscus experiences lower strains than uncovered cartilage in the medial compartment. These findings provide important baseline information on the relationship between in vivo tibial compressive strain responses and meniscal coverage, which is critical to understanding normal meniscal function.

  2. Delayed gadolinium-enhanced MRI of cartilage and T2 mapping for evaluation of reparative cartilage-like tissue after autologous chondrocyte implantation associated with Atelocollagen-based scaffold in the knee

    Energy Technology Data Exchange (ETDEWEB)

    Tadenuma, Taku; Uchio, Yuji; Kumahashi, Nobuyuki; Iwasa, Junji [Shimane University School of Medicine, Department of Orthopaedic Surgery, Izumo-shi, Shimane-ken (Japan); Fukuba, Eiji; Kitagaki, Hajime [Shimane University School of Medicine, Department of Radiology, Izumo-shi, Shimane-ken (Japan); Ochi, Mitsuo [Hiroshima University, Department of Orthopaedic Surgery, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Minami-ku, Hiroshima (Japan)

    2016-10-15

    To elucidate the quality of tissue-engineered cartilage after an autologous chondrocyte implantation (ACI) technique with Atelocollagen gel as a scaffold in the knee in the short- to midterm postoperatively, we assessed delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T2 mapping and clarified the relationship between T1 and T2 values and clinical results. In this cross-sectional study, T1 and T2 mapping were performed on 11 knees of 8 patients (mean age at ACI, 37.2 years) with a 3.0-T MRI scanner. T1{sub implant} and T2{sub implant} values were compared with those of the control cartilage region (T1{sub control} and T2{sub control}). Lysholm scores were also assessed for clinical evaluation. The relationships between the T1 and T2 values and the clinical Lysholm score were also assessed. There were no significant differences in the T1 values between the T1{sub implant} (386.64 ± 101.78 ms) and T1{sub control} (375.82 ± 62.89 ms) at the final follow-up. The implants showed significantly longer T2 values compared to the control cartilage (53.83 ± 13.89 vs. 38.21 ± 4.43 ms). The postoperative Lysholm scores were significantly higher than the preoperative scores. A significant correlation was observed between T1{sub implant} and clinical outcomes, but not between T2{sub implant} and clinical outcomes. Third-generation ACI implants might have obtained an almost equivalent glycosaminoglycan concentration compared to the normal cartilage, but they had lower collagen density at least 3 years after transplantation. The T1{sub implant} value, but not the T2 value, might be a predictor of clinical outcome after ACI. (orig.)

  3. Delayed gadolinium-enhanced MRI of cartilage and T2 mapping for evaluation of reparative cartilage-like tissue after autologous chondrocyte implantation associated with Atelocollagen-based scaffold in the knee

    International Nuclear Information System (INIS)

    Tadenuma, Taku; Uchio, Yuji; Kumahashi, Nobuyuki; Iwasa, Junji; Fukuba, Eiji; Kitagaki, Hajime; Ochi, Mitsuo

    2016-01-01

    To elucidate the quality of tissue-engineered cartilage after an autologous chondrocyte implantation (ACI) technique with Atelocollagen gel as a scaffold in the knee in the short- to midterm postoperatively, we assessed delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T2 mapping and clarified the relationship between T1 and T2 values and clinical results. In this cross-sectional study, T1 and T2 mapping were performed on 11 knees of 8 patients (mean age at ACI, 37.2 years) with a 3.0-T MRI scanner. T1 implant and T2 implant values were compared with those of the control cartilage region (T1 control and T2 control ). Lysholm scores were also assessed for clinical evaluation. The relationships between the T1 and T2 values and the clinical Lysholm score were also assessed. There were no significant differences in the T1 values between the T1 implant (386.64 ± 101.78 ms) and T1 control (375.82 ± 62.89 ms) at the final follow-up. The implants showed significantly longer T2 values compared to the control cartilage (53.83 ± 13.89 vs. 38.21 ± 4.43 ms). The postoperative Lysholm scores were significantly higher than the preoperative scores. A significant correlation was observed between T1 implant and clinical outcomes, but not between T2 implant and clinical outcomes. Third-generation ACI implants might have obtained an almost equivalent glycosaminoglycan concentration compared to the normal cartilage, but they had lower collagen density at least 3 years after transplantation. The T1 implant value, but not the T2 value, might be a predictor of clinical outcome after ACI. (orig.)

  4. Delayed gadolinium-enhanced MRI of cartilage and T2 mapping for evaluation of reparative cartilage-like tissue after autologous chondrocyte implantation associated with Atelocollagen-based scaffold in the knee.

    Science.gov (United States)

    Tadenuma, Taku; Uchio, Yuji; Kumahashi, Nobuyuki; Fukuba, Eiji; Kitagaki, Hajime; Iwasa, Junji; Ochi, Mitsuo

    2016-10-01

    To elucidate the quality of tissue-engineered cartilage after an autologous chondrocyte implantation (ACI) technique with Atelocollagen gel as a scaffold in the knee in the short- to midterm postoperatively, we assessed delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) and T2 mapping and clarified the relationship between T1 and T2 values and clinical results. In this cross-sectional study, T1 and T2 mapping were performed on 11 knees of 8 patients (mean age at ACI, 37.2 years) with a 3.0-T MRI scanner. T1implant and T2implant values were compared with those of the control cartilage region (T1control and T2control). Lysholm scores were also assessed for clinical evaluation. The relationships between the T1 and T2 values and the clinical Lysholm score were also assessed. There were no significant differences in the T1 values between the T1implant (386.64 ± 101.78 ms) and T1control (375.82 ± 62.89 ms) at the final follow-up. The implants showed significantly longer T2 values compared to the control cartilage (53.83 ± 13.89 vs. 38.21 ± 4.43 ms). The postoperative Lysholm scores were significantly higher than the preoperative scores. A significant correlation was observed between T1implant and clinical outcomes, but not between T2implant and clinical outcomes. Third-generation ACI implants might have obtained an almost equivalent glycosaminoglycan concentration compared to the normal cartilage, but they had lower collagen density at least 3 years after transplantation. The T1implant value, but not the T2 value, might be a predictor of clinical outcome after ACI.

  5. Radiological imaging of osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Wick, M.C.; Jaschke, W.; Klauser, A.S.

    2012-01-01

    Osteoarthritis is the most common degenerative age-related joint disease leading to typical degradation of articular cartilage with severe pain and limitation of joint motion. Although knee radiographs are widely considered as the gold standard for the assessment of knee osteoarthritis in clinical and scientific settings they increasingly have significant limitations in situations when resolution and assessment of cartilage is required. Analysis of osteoarthritis of the knee with conventional x-ray is associated with many technical limitations and is increasingly being replaced by high-quality assessment using magnetic resonance imaging (MRI) or sonography both in the clinical routine and scientific studies. Novel imaging modalities such as MRI or ultrasound enable in vivo visualization of the quality of the cartilaginous structure and bone as well as all articular and periarticular tissue. Therefore, the limitations of radiographs in assessment of knee osteoarthritis could be overcome by these techniques. This review article aims to provide insights into the most important radiological features of knee osteoarthritis and systematic visualization with different imaging approaches. The demographic development in western industrialized countries predicts an increase of ageing-related osteoarthritis of the knee for the next decades. A systematic radiological evaluation of patients with knee osteoarthritis includes the assessment of the periarticular soft tissue, cartilaginous thickness, cartilage volume, possible cartilage defects, the macromodular network of hyaline cartilage, bone marrow edema, menisci and articular ligaments. Modern imaging modalities, such as MRI and sonography allow the limitations of conventional radiography to be overcome and to visualize the knee structures in great detail to quantitatively assess the severity of knee osteoarthritis. (orig.) [de

  6. Effects of collagen matrix and bioreactor cultivation on cartilage regeneration of a full-thickness critical-size knee joint cartilage defects with subchondral bone damage in a rabbit model.

    Directory of Open Access Journals (Sweden)

    Kuo-Hwa Wang

    Full Text Available Cartilage has limited self-repair ability. The purpose of this study was to investigate the effects of different species of collagen-engineered neocartilage for the treatment of critical-size defects in the articular joint in a rabbit model. Type II and I collagen obtained from rabbits and rats was mixed to form a scaffold. The type II/I collagen scaffold was then mixed with rabbit chondrocytes to biofabricate neocartilage constructs using a rotating cell culture system [three-dimensional (3D-bioreactor]. The rabbit chondrocytes were mixed with rabbit collagen scaffold and rat collagen scaffold to form neoRBT (neo-rabbit cartilage and neoRAT (neo-rat cartilage constructs, respectively. The neocartilage matrix constructs were implanted into surgically created defects in rabbit knee chondyles, and histological examinations were performed after 2 and 3 months. Cartilage-like lacunae formation surrounding the chondrocytes was noted in the cell cultures. After 3 months, both the neoRBT and neoRAT groups showed cartilage-like repair tissue covering the 5-mm circular, 4-mm-deep defects that were created in the rabbit condyle and filled with neocartilage plugs. Reparative chondrocytes were aligned as apparent clusters in both the neoRAT and neoRBT groups. Both neoRBT and neoRAT cartilage repair demonstrated integration with healthy adjacent tissue; however, more integration was obtained using the neoRAT cartilage. Our data indicate that different species of type II/I collagen matrix and 3D bioreactor cultivation can facilitate cartilage engineering in vitro for the repair of critical-size defect.

  7. Knee braces - unloading

    Science.gov (United States)

    ... most people talk about the arthritis in their knees, they are referring to a type of arthritis ... is caused by wear and tear inside your knee joints. Cartilage, the firm, rubbery tissue that cushions ...

  8. HISTOMORPHOMETRIC ANALYSIS OF THE KNEE ARTICULAR CARTILAGE AND SYNOVIUM FOR METADIAPHYSEAL LEG LENGTHENING (EXPERIMENTAL-AND-MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    T. A. Stupina

    2013-01-01

    Full Text Available The knee articular cartilage and synovial membrane have been studied for metadiaphyseal leg lengthening using the methods of light miscroscopy, computer morpho- and stereometry. The manner of bone integrity breaking, the rate and rhythm of distraction conformed to the lengthening technique most often used in the clinic. The results of the histomorphometric analysis have demonstrated that when osteotomy at the level of metadiaphysis and manual distraction by 1 mm a day for 4 times is performed, synovitis of mild and moderate degree develops through subsynovial layer hypervascularization, as well as reactive-destructive changes in nerve fibers with the tendency to regeneration. The structural-functional changes of reactive and/or destructive-reparative character have been revealed in the articular cartilage, and the manifestation degree of these changes correlates with synovial membrane changes. The intensity of the destructive-reparative processes in the articular cartilage and synovial membrane depends on fixation stability.

  9. Articular cartilage explant culture; an appropriate in vitro system to compare osteoarthritic and normal human cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; Vander Kraan, P. M.; van Roy, J. L.; Huber-Bruning, O.; Bijlsma, J. W.

    1993-01-01

    Proteoglycan metabolism of normal and histologically mild to moderate osteoarthritic cartilage explants were studied. Explants were obtained from the human knee of donors aged over 40 years. Proteoglycan content, synthesis and release were very similar in normal cartilage obtained from donors with

  10. Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence.

    Science.gov (United States)

    Cotter, Eric J; Wang, Kevin C; Yanke, Adam B; Chubinskaya, Susan

    2018-04-01

    Objective To critically evaluate the current basic science, translational, and clinical data regarding bone marrow aspirate concentrate (BMAC) in the setting of focal cartilage defects of the knee and describe clinical indications and future research questions surrounding the clinical utility of BMAC for treatment of these lesions. Design A literature search was performed using the PubMed and Ovid MEDLINE databases for studies in English (1980-2017) using keywords, including ["bone marrow aspirate" and "cartilage"], ["mesenchymal stem cells" and "cartilage"], and ["bone marrow aspirate" and "mesenchymal stem cells" and "orthopedics"]. A total of 1832 articles were reviewed by 2 independent authors and additional literature found through scanning references of cited articles. Results BMAC has demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant procedure or as an independent management technique. A subcomponent of BMAC, bone marrow derived-mesenchymal stem cells (MSCs) possess the ability to differentiate into cells important for osteogenesis and chondrogenesis. Modulation of paracrine signaling is perhaps the most important function of BM-MSCs in this setting. In an effort to increase the cellular yield, authors have shown the ability to expand BM-MSCs in culture while maintaining phenotype. Conclusions Translational studies have demonstrated good clinical efficacy of BMAC both concomitant with cartilage restoration procedures, at defined time points after surgery, and as isolated injections. Early clinical data suggests BMAC may help stimulate a more robust hyaline cartilage repair tissue response. Numerous questions remain regarding BMAC usage, including cell source, cell expansion, optimal pathology, and injection timing and quantity.

  11. Comparison of Different Approaches for Measuring Tibial Cartilage Thickness

    Directory of Open Access Journals (Sweden)

    Maier Jennifer

    2017-07-01

    Full Text Available Osteoarthritis is a degenerative disease affecting bones and cartilage especially in the human knee. In this context, cartilage thickness is an indicator for knee cartilage health. Thickness measurements are performed on medical images acquired in-vivo. Currently, there is no standard method agreed upon that defines a distance measure in articular cartilage. In this work, we present a comparison of different methods commonly used in literature. These methods are based on nearest neighbors, surface normal vectors, local thickness and potential field lines. All approaches were applied to manual segmentations of tibia and lateral and medial tibial cartilage performed by experienced raters. The underlying data were contrast agent-enhanced cone-beam C-arm CT reconstructions of one healthy subject’s knee. The subject was scanned three times, once in supine position and two times in a standing weight-bearing position. A comparison of the resulting thickness maps shows similar distributions and high correlation coefficients between the approaches above 0.90. The nearest neighbor method results on average in the lowest cartilage thickness values, while the local thickness approach assigns the highest values. We showed that the different methods agree in their thickness distribution. The results will be used for a future evaluation of cartilage change under weight-bearing conditions.

  12. Clinical high-resolution mapping of the proteoglycan-bound water fraction in articular cartilage of the human knee joint.

    Science.gov (United States)

    Bouhrara, Mustapha; Reiter, David A; Sexton, Kyle W; Bergeron, Christopher M; Zukley, Linda M; Spencer, Richard G

    2017-11-01

    We applied our recently introduced Bayesian analytic method to achieve clinically-feasible in-vivo mapping of the proteoglycan water fraction (PgWF) of human knee cartilage with improved spatial resolution and stability as compared to existing methods. Multicomponent driven equilibrium single-pulse observation of T 1 and T 2 (mcDESPOT) datasets were acquired from the knees of two healthy young subjects and one older subject with previous knee injury. Each dataset was processed using Bayesian Monte Carlo (BMC) analysis incorporating a two-component tissue model. We assessed the performance and reproducibility of BMC and of the conventional analysis of stochastic region contraction (SRC) in the estimation of PgWF. Stability of the BMC analysis of PgWF was tested by comparing independent high-resolution (HR) datasets from each of the two young subjects. Unlike SRC, the BMC-derived maps from the two HR datasets were essentially identical. Furthermore, SRC maps showed substantial random variation in estimated PgWF, and mean values that differed from those obtained using BMC. In addition, PgWF maps derived from conventional low-resolution (LR) datasets exhibited partial volume and magnetic susceptibility effects. These artifacts were absent in HR PgWF images. Finally, our analysis showed regional variation in PgWF estimates, and substantially higher values in the younger subjects as compared to the older subject. BMC-mcDESPOT permits HR in-vivo mapping of PgWF in human knee cartilage in a clinically-feasible acquisition time. HR mapping reduces the impact of partial volume and magnetic susceptibility artifacts compared to LR mapping. Finally, BMC-mcDESPOT demonstrated excellent reproducibility in the determination of PgWF. Published by Elsevier Inc.

  13. Comparison of MRI T2 Relaxation Changes of Knee Articular Cartilage before and after Running between Young and Old Amateur Athletes

    International Nuclear Information System (INIS)

    Cha, Jang Gyu; Jeon, Chan Hong; Lee, Eun Hye; Lee, Jae Chul; Kim, Hyun Joo; Han, Jong Kyu; Kim, Yong Dai

    2012-01-01

    To compare changes in T2 relaxation on magnetic resonance (MR) images of knee articular cartilage in younger and older amateur athletes before and after running. By using a 3.0-T MR imager, quantitative T2 maps of weight-bearing femoral and tibial articular cartilages in 10 younger and 10 older amateur athletes were acquired before, immediately after, and 2 hours after 30 minutes of running. Changes in global cartilage T2 signals of the medial and lateral condyles of the femur and tibia and regional cartilage T2 signals in the medial condyles of femoral and tibia in response to exercise were compared between the two age groups. Changes in global cartilage T2 values after running did not differ significantly between the age groups. In terms of the depth variation, relatively higher T2 values in the older group than in the younger group were observed mainly in the superficial layers of the femoral and tibial cartilage (p < 0.05). Age-related cartilage changes may occur mainly in the superficial layer of cartilage where collagen matrix degeneration is primarily initiated. However, no trend is observed regarding a global T2 changes between the younger and older age groups in response to exercise.

  14. One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status

    Science.gov (United States)

    Eckstein, F; Maschek, S; Wirth, W; Hudelmaier, M; Hitzl, W; Wyman, B; Nevitt, M; Hellio Le Graverand, M-P

    2010-01-01

    Objective The Osteoarthritis Initiative (OAI) is a multicentre study targeted at identifying biomarkers for evaluating the progression and risk factors of symptomatic knee OA. Here cartilage loss using 3 Tesla (3 T) MRI is analysed over 1 year in a subset of the OAI, together with its association with various risk factors. Methods An age- and gender-stratified subsample of the OAI progression subcohort (79 women and 77 men, mean (SD) age 60.9 (9.9) years, body mass index (BMI) 30.3 (4.7)) with both frequent symptoms and radiographic OA in at least one knee was studied. Coronal FLASHwe (fast low angle shot with water excitation) MRIs of the right knee were acquired at 3 T. Seven readers segmented tibial and femoral cartilages blinded to order of acquisition. Segmentations were quality controlled by one expert. Results The reduction in mean cartilage thickness (ThC) was greater (p = 0.004) in the medial than in the lateral compartment, greater (p = 0.001) in the medial femur (−1.9%) than in the medial tibia (−0.5%) and greater (p = 0.011) in the lateral tibia (−0.7%) than in the lateral femur (0.1%). Multifactorial analysis of variance did not reveal significant differences in the rate of change in ThC by sex, BMI, symptoms and radiographic knee OA status. Knees with Kellgren–Lawrence grade 2 or 3 and with a BMI >30 tended to display greater changes. Conclusions In this sample of the OAI progression subcohort, the greatest, but overall very modest, rate of cartilage loss was observed in the weight-bearing medial femoral condyle. Knees with radiographic OA in obese participants showed trends towards higher rates of change than those of other participants, but these trends did not reach statistical significance. PMID:18519425

  15. Influence of Knee Immobilization on Chondrocyte Apoptosis and Histological Features of the Anterior Cruciate Ligament Insertion and Articular Cartilage in Rabbits.

    Science.gov (United States)

    Mutsuzaki, Hirotaka; Nakajima, Hiromi; Wadano, Yasuyoshi; Furuhata, Syogo; Sakane, Masataka

    2017-01-26

    This study examined the influence of immobilization on chondrocyte apoptosis and histological features of the anterior cruciate ligament (ACL) insertion and knee articular cartilage in rabbits. Forty-eight male Japanese white rabbits were assigned to an immobilization ( n = 24) or sham ( n = 24) group. Rabbits in the immobilization group underwent complete unilateral surgical knee immobilization and rabbits in the sham group underwent a sham surgery. The average thickness of the glycosaminoglycan (GAG) stained red area by safranin O staining, the chondrocyte apoptosis rate and the chondrocyte proliferation rate in the cartilage layer in the ACL insertion and the articular cartilage of the medial tibial condyle were measured at one, two, four and eight weeks in six animals from each group. In the ACL insertion, the chondrocyte apoptosis rate was higher in the immobilization group than in the sham group at two and eight weeks after surgery ( p immobilization group. The GAG layer was thinner in the immobilization group than in the sham group at two, four and eight weeks after surgery ( p immobilization group was higher than in the sham group at four and eight weeks after surgery ( p immobilization group than that in the sham group at four and eight weeks after surgery ( p immobilization significantly increased chondrocyte apoptosis at two and eight weeks after surgery in the ACL insertion and at four and eight weeks after surgery in the articular cartilage of the medial tibial condyle, and decreased GAG layer thickness from two to eight weeks after surgery in the ACL insertion and from four to eight weeks after surgery in the articular cartilage.

  16. Differences in tibial subchondral bone structure evaluated using plain radiographs between knees with and without cartilage damage or bone marrow lesions. The Oulu knee osteoarthritis study

    Energy Technology Data Exchange (ETDEWEB)

    Hirvasniemi, Jukka [University of Oulu, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, Oulu (Finland); Oulu University Hospital and University of Oulu, Medical Research Center Oulu, Oulu (Finland); Thevenot, Jerome; Podlipska, Jana [University of Oulu, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, Oulu (Finland); University of Oulu, Infotech Oulu, Oulu (Finland); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Roemer, Frank W. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); University of Erlangen-Nuremberg, Department of Radiology, Erlangen (Germany); Nieminen, Miika T.; Saarakkala, Simo [University of Oulu, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, Oulu (Finland); Oulu University Hospital and University of Oulu, Medical Research Center Oulu, Oulu (Finland); University of Oulu, Infotech Oulu, Oulu (Finland); Oulu University Hospital, Department of Diagnostic Radiology, Oulu (Finland)

    2017-11-15

    To investigate whether subchondral bone structure from plain radiographs is different between subjects with and without articular cartilage damage or bone marrow lesions (BMLs). Radiography-based bone structure was assessed from 80 subjects with different stages of knee osteoarthritis using entropy of Laplacian-based image (E{sub Lap}) and local binary patterns (E{sub LBP}), homogeneity index of local angles (HI{sub Angles,mean}), and horizontal (FD{sub Hor}) and vertical fractal dimensions (FD{sub Ver}). Medial tibial articular cartilage damage and BMLs were scored using the magnetic resonance imaging osteoarthritis knee score. Level of statistical significance was set to p < 0.05. Subjects with medial tibial cartilage damage had significantly higher FD{sub Ver} and E{sub LBP} as well as lower E{sub Lap} and HI{sub Angles,mean} in the medial tibial subchondral bone region than subjects without damage. FD{sub Hor}, FD{sub Ver}, and E{sub LBP} were significantly higher, whereas E{sub Lap} and HI{sub Angles,mean} were lower in the medial trabecular bone region. Subjects with medial tibial BMLs had significantly higher FD{sub Ver} and E{sub LBP} as well as lower E{sub Lap} and HI{sub Angles,mean} in medial tibial subchondral bone. FD{sub Hor}, FD{sub Ver}, and E{sub LBP} were higher, whereas E{sub Lap} and HI{sub Angles,mean} were lower in medial trabecular bone. Our results support the use of bone structural analysis from radiographs when examining subjects with osteoarthritis or at risk of having it. (orig.)

  17. Quadriceps Strength in Patients With Isolated Cartilage Defects of the Knee: Results of Isokinetic Strength Measurements and Their Correlation With Clinical and Functional Results.

    Science.gov (United States)

    Hirschmüller, Anja; Andres, Tasja; Schoch, Wolfgang; Baur, Heiner; Konstantinidis, Lukas; Südkamp, Norbert P; Niemeyer, Philipp

    2017-05-01

    Recent studies have found a significant deficit of maximum quadriceps strength after autologous chondrocyte implantation (ACI) of the knee. However, it is unclear whether muscular strength deficits in patients with cartilage damage exist prior to operative treatment. To isokinetically test maximum quadriceps muscle strength and quantify the impact of possible strength deficits on functional and clinical test results. Cross-sectional study; Level of evidence, 3. To identify clinically relevant muscular strength deficits, 24 patients (5 females, 19 males; mean age, 34.5 years; body mass index, 25.9 kg/m 2 ) with isolated cartilage defects (mean onset, 5.05 years; SD, 7.8 years) in the knee joint underwent isokinetic strength measurements. Maximal quadriceps strength was recorded in 3 different testing modes: pure concentric contraction (flexors and extensors alternating work; con1), concentric-eccentric (only the extensors work concentrically and eccentrically; con2), and eccentric contraction in the alternating mode (ecc). Results were compared for functional performance (single-leg hop test), pain scales (visual analog scale [VAS], numeric rating scale [NRS]), self-reported questionnaires (International Knee Documentation Committee [IKDC], Knee Injury and Osteoarthritis Outcome Scale [KOOS]), and defect size (cm 2 ). Compared with the uninjured leg, significantly lower quadriceps strength was detected in the injured leg in all isokinetic working modes (con1 difference, 27.76 N·m [SD 17.47; P = .003]; con2 difference, 21.45 N·m [SD, 18.45; P =.025]; ecc difference, 29.48 N·m [SD, 21.51; P = .001]), with the largest deficits found for eccentric muscle performance. Moderate negative correlations were observed for the subjective pain scales NRS and VAS. The results of the IKDC and KOOS questionnaires showed low, nonsignificant correlations with findings in the isokinetic measurement. Moreover, defect sizes (mean, 3.13 cm 2 ) were of no importance regarding the

  18. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    of sensitive biomarkers for monitoring disease progression. This thesis investigates how subregional measures of cartilage thickness can be used to improve upon current imaging biomarkers. The first part of this investigation aims to discover discriminative areas in the cartilage using machine......-learning techniques specifically developed to take advantage of the spatial nature of the problem. The methods were evaluated on data from a longitudinal study where detailed cartilage thickness maps were quantified from magnetic resonance images. The results showed that focal differences in cartilage thickness may...... be relevant for both OA diagnosis and for prediction of future cartilage loss. The second part of the thesis investigates spatial patterns of longitudinal cartilage thickness changes in healthy and OA knees. Based on our findings, we propose a new, conceptually simple biomarker that embraces the heterogeneous...

  19. Strenuous running exacerbates knee cartilage erosion induced by low amount of mono-iodoacetate in rats

    OpenAIRE

    Saito, Ryusuke; Muneta, Takeshi; Ozeki, Nobutake; Nakagawa, Yusuke; Udo, Mio; Yanagisawa, Katsuaki; Tsuji, Kunikazu; Tomita, Makoto; Koga, Hideyuki; Sekiya, Ichiro

    2017-01-01

    Background It is still debated whether strenuous running in the inflammatory phase produces beneficial or harmful effect in rat knees. We examined (1) the dropout rate of rats during a 30-km running protocol, (2) influences of strenuous running and/or low amounts of mono-iodoacetate injection on cartilage, and (3) the effect of strenuous running on synovitis. Methods Rats were forced to run 30?km over 6?weeks and the dropout rate was examined. One week after 0.1?mg mono-iodoacetate was inject...

  20. Comparison of MRI-based estimates of articular cartilage contact area in the tibiofemoral joint.

    Science.gov (United States)

    Henderson, Christopher E; Higginson, Jill S; Barrance, Peter J

    2011-01-01

    Knee osteoarthritis (OA) detrimentally impacts the lives of millions of older Americans through pain and decreased functional ability. Unfortunately, the pathomechanics and associated deviations from joint homeostasis that OA patients experience are not well understood. Alterations in mechanical stress in the knee joint may play an essential role in OA; however, existing literature in this area is limited. The purpose of this study was to evaluate the ability of an existing magnetic resonance imaging (MRI)-based modeling method to estimate articular cartilage contact area in vivo. Imaging data of both knees were collected on a single subject with no history of knee pathology at three knee flexion angles. Intra-observer reliability and sensitivity studies were also performed to determine the role of operator-influenced elements of the data processing on the results. The method's articular cartilage contact area estimates were compared with existing contact area estimates in the literature. The method demonstrated an intra-observer reliability of 0.95 when assessed using Pearson's correlation coefficient and was found to be most sensitive to changes in the cartilage tracings on the peripheries of the compartment. The articular cartilage contact area estimates at full extension were similar to those reported in the literature. The relationships between tibiofemoral articular cartilage contact area and knee flexion were also qualitatively and quantitatively similar to those previously reported. The MRI-based knee modeling method was found to have high intra-observer reliability, sensitivity to peripheral articular cartilage tracings, and agreeability with previous investigations when using data from a single healthy adult. Future studies will implement this modeling method to investigate the role that mechanical stress may play in progression of knee OA through estimation of articular cartilage contact area.

  1. Effect of gender and sports on the risk of full-thickness articular cartilage lesions in anterior cruciate ligament-injured knees: a nationwide cohort study from Sweden and Norway of 15 783 patients.

    Science.gov (United States)

    Røtterud, Jan Harald; Sivertsen, Einar A; Forssblad, Magnus; Engebretsen, Lars; Årøen, Asbjørn

    2011-07-01

    The presence of an articular cartilage lesion in anterior cruciate ligament-injured knees is considered a predictor of osteoarthritis. This study was undertaken to evaluate risk factors for full-thickness articular cartilage lesions in anterior cruciate ligament-injured knees, in particular the role of gender and the sport causing the initial injury. Cohort study (prognosis); Level of evidence, 2. Primary unilateral anterior cruciate ligament reconstructions prospectively registered in the Swedish and the Norwegian National Knee Ligament Registry during 2005 through 2008 were included (N = 15 783). Logistic regression analyses were used to evaluate risk factors for cartilage lesions. A total of 1012 patients (6.4%) had full-thickness cartilage lesions. The median time from injury to surgery was 9 months (range, 0 days-521 months). Male patients had an increased odds of full-thickness cartilage lesions compared with females (odds ratio = 1.22; 95% confidence interval, 1.04-1.42). In males, team handball had an increase in the odds of full-thickness cartilage lesions compared with soccer (odds ratio = 2.36; 95% confidence interval, 1.33-4.19). Among female patients, no sport investigated showed a significant decrease or increase in the odds of full-thickness cartilage lesions. The odds of a full-thickness cartilage lesion increased by 1.006 (95% confidence interval, 1.005-1.008) for each month elapsed from time of injury until anterior cruciate ligament reconstruction when all patients were considered, while time from injury to surgery did not affect the odds significantly in those patients reconstructed within 1 year of injury (odds ratio = 0.98; 95% confidence interval, 0.95-1.02). Previous surgery increased the odds of having a full-thickness cartilage lesion (odds ratio = 1.40; 95% confidence interval, 1.21-1.63). One year of increasing patient age also increased the odds (odds ratio = 1.05; 95% confidence interval, 1.05-1.06). Male gender is associated with an

  2. Comparison of a 28 Channel-Receive Array Coil and Quadrature Volume Coil for Morphologic Imaging and T2 Mapping of Knee Cartilage at 7 Tesla

    Science.gov (United States)

    Chang, Gregory; Wiggins, Graham C.; Xia, Ding; Lattanzi, Riccardo; Madelin, Guillaume; Raya, Jose G.; Finnerty, Matthew; Fujita, Hiroyuki; Recht, Michael P.; Regatte, Ravinder R.

    2011-01-01

    Purpose To compare a new birdcage-transmit, 28 channel-receive array (28 Ch) coil and a quadrature volume coil for 7 Tesla morphologic MRI and T2 mapping of knee cartilage. Methods The right knees of ten healthy subjects were imaged on a 7 Tesla whole body MR scanner using both coils. 3-dimensional fast low-angle shot (3D-FLASH) and multi-echo spin-echo (MESE) sequences were implemented. Cartilage signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), thickness, and T2 values were assessed. Results SNR/CNR was 17–400% greater for the 28 Ch compared to the quadrature coil (p≤0.005). Bland-Altman plots show mean differences between measurements of tibial/femoral cartilage thickness and T2 values obtained with each coil to be small (−0.002±0.009 cm/0.003±0.011 cm) and large (−6.8±6.7 ms/−8.2±9.7 ms), respectively. For the 28 Ch coil, when parallel imaging with acceleration factors (AF) 2, 3, and 4 was performed, SNR retained was: 62–69%, 51–55%, and 39–45%. Conclusion A 28 Ch knee coil provides increased SNR/CNR for 7T cartilage morphologic imaging and T2 mapping. Coils should be switched with caution during clinical studies because T2 values may differ. The greater SNR of the 28 Ch coil could be used to perform parallel imaging with AF2 and obtain similar SNR as the quadrature coil. PMID:22095723

  3. Clinical and MRI outcome of an osteochondral scaffold plug for the treatment of cartilage lesions in the knee.

    Science.gov (United States)

    Dhollander, Aad; Verdonk, Peter; Almqvist, Karl Fredrik; Verdonk, Rene; Victor, Jan

    2015-12-01

    Conflicting clinical outcomes have been reported recently with the use of an osteochondral scaffold plugs for cartilage repair in the knee. In this study, twenty patients were consecutively treated for their cartilage lesions with the synthetic plug technique. These patients were prospectively clinically evaluated with a mean follow-up of 34.15 months. Magnetic resonance imaging (MRI) was used for morphologic analysis of the cartilage repair. The patients included in this study showed a significant gradual clinical improvement after the osteochondral scaffold plug. However, this clinical improvement was not confirmed by the MRI findings of this cohort study. Subchondral bone changes were seen in all patients on MRI and deficient filling of the defect was noticed in in 30.7% of the cases at 24 months of follow-up. There was no evidence found to support osteoconductive bone ingrowth. Therefore, the use of this type of osteochondral scaffold plug in osteochondral repair is questionable. Level of evidence: IV.

  4. Hyaline cartilage degenerates after autologous osteochondral transplantation.

    Science.gov (United States)

    Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S

    2004-11-01

    Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.

  5. Study of the Artroscopic Anatomy of the Knee in Canine Cadavers Using 2.4 Mm Diameter Lens

    Directory of Open Access Journals (Sweden)

    Gabriel Oswaldo Alonso Cuéllar

    2013-05-01

    Full Text Available Mainly by a limited access to new techniques and technologies, veterinary medicine in developing countries, has been far behind from the human medicine. One of the causes is the limited access to technology and specific techniques. Moreover, it is clear that many new technologies have proven their benefits in the two disciplines, making necessary and almost mandatory their massive implementation in humans and animals. The possibility to use human elements for veterinary techniques would improve the technology access and veterinarians training, at lower costs. The purpose of this study is to verify the feasibility to perform a knee arthroscopy in dogs with small human joints arthroscopic lenses. Under protocols established in veterinary 12 knee arthroscopies were performed in canine cadaver, using a wrist and ankle arthroscope human of 2.4 mm in diameter and 30° of angulation. All the structures reported in the literature were possible to visualize using a 2.4 mm arthroscope. In this sense, it is possible to develop training activities and subsequent implementation of endoscopic techniques in canine femorotibiopatellar joint, using a lens of small joints of human medicine.

  6. Effects of low molecular weight hyaluronan combined with carprofen on canine osteoarthritis articular chondrocytes and cartilage explants in vitro.

    Science.gov (United States)

    Euppayo, Thippaporn; Siengdee, Puntita; Buddhachat, Kittisak; Pradit, Waranee; Viriyakhasem, Nawarat; Chomdej, Siriwadee; Ongchai, Siriwan; Harada, Yasuji; Nganvongpanit, Korakot

    2015-09-01

    Intra-articular injection with non-steroidal anti-inflammatory drugs (NSAIDs) is used to treat inflammatory joint disease, but the side effects of NSAIDs include chondrotoxicity. Hyaluronan has shown positive effects on chondrocytes by reducing apoptosis and increasing proteoglycan synthesis. The purposes of this study were to evaluate the effects of low molecular weight hyaluronan (low MW HA), carprofen 25 mg/ml, carprofen 12.5 mg/ml, and a combination of HA and carprofen on canine osteoarthritis (OA) articular chondrocytes and a cartilage explant model in terms of cell viability, extracellular matrix remaining, and gene expression after exposure. In chondrocyte culture, MTT assay was used to evaluate the chondrotoxicity of IC50 and IC80 of carprofen with HA. In cartilage explant culture, two kinds of extracellular matrix (uronic acid and collagen) remaining in cartilage were used to evaluate cartilage damage for 14 d after treatment. Expression of COL2A1, AGG, and MMP3 was used to evaluate the synthesis and degradation of the matrix for 7 d after treatment. In chondrocyte culture, low MW HA could preserve OA chondrocyte viability but could not reduce the chondrotoxicity level of carprofen (P carprofen caused less destruction of uronic acid and collagen structure when compared with the control (P carprofen resulted in higher COL2A1 and AGG expression levels than carprofen alone.

  7. Mechanical Characterization of Femoral Cartilage Under Unicompartimental Osteoarthritis

    OpenAIRE

    Vidal-Lesso, A.; Ledesma-Orozco, E.; Daza-Benítez, L.; Lesso-Arroyo, R.

    2014-01-01

    The aim of this study was to determine the mechanical properties and thickness of articular cartilage in the unaffected femoral regions in cases of unicompartimental osteoarthritis on the knees. The specimens were tested using a 3mm plane-ended cylindrical indenter and a displacement of 0.5mm was applied at specific points in seven femoral knee cartilages with unicompartimental osteoarthritis. The thickness, stiffness, elastic modulus, shear modulus and bulk modulus were obtained. These prope...

  8. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation

    OpenAIRE

    Boopalan, P. R. J. V. C.; Sathishkumar, Solomon; Kumar, Senthil; Chittaranjan, Samuel

    2006-01-01

    Articular cartilage defects have a poor capacity for repair. Most of the current treatment options result in the formation of fibro-cartilage, which is functionally inferior to normal hyaline articular cartilage. We studied the effectiveness of allogenic chondrocyte transplantation for focal articular cartilage defects in rabbits. Chondrocytes were cultured in vitro from cartilage harvested from the knee joints of a New Zealand White rabbit. A 3 mm defect was created in the articular cartilag...

  9. Structural effects of sprifermin in knee osteoarthritis: a post-hoc analysis on cartilage and non-cartilaginous tissue alterations in a randomized controlled trial.

    Science.gov (United States)

    Roemer, Frank W; Aydemir, Aida; Lohmander, Stefan; Crema, Michel D; Marra, Monica Dias; Muurahainen, Norma; Felson, David T; Eckstein, Felix; Guermazi, Ali

    2016-07-09

    A recent publication on efficacy of Sprifermin for knee osteoarthritis (OA) using quantitatively MRI-defined central medial tibio-femoral compartment cartilage thickness as the structural primary endpoint reported no statistically significant dose response. However, Sprifermin was associated with statistically significant, dose-dependent reductions in loss of total and lateral tibio-femoral cartilage thickness. Based on these preliminary promising data a post-hoc analysis of secondary assessment and endpoints was performed to evaluate potential effects of Sprifermin on semi-quantitatively evaluated structural MRI parameters. Aim of the present analysis was to determine effects of sprifermin on several knee joint tissues over a 12 month period. 1.5 T or 3 T MRIs were acquired at baseline and 12 months follow-up using a standard protocol. MRIs were read according to the Whole-Organ Magnetic Resonance Imaging Score (WORMS) scoring system (in 14 articular subregions) by four muskuloskeletal radiologists independently. Analyses focused on semiquantitative changes in the 100 μg subgroup and matching placebo of multiple MRI-defined structural alterations. Analyses included a delta-subregional and delta-sum approach for the whole knee and the medial and lateral tibio-femoral (MTFJ, LTFJ), and patello-femoral (PFJ) compartments, taking into account number of subregions showing no change, improvement or worsening and changes in the sum of subregional scores. Mann-Whitney - Wilcoxon tests assessed differences between groups. Fifty-seven and 18 patients were included in the treatment and matched placebo subgroups. Less worsening of cartilage damage was observed from baseline to 12 months in the PFJ (0.02, 95 % confidence interval (CI) (-0.04, 0.08) vs. placebo 0.22, 95 % CI (-0.05, 0.49), p = 0.046). For bone marrow lesions (BMLs), more improvement was observed from 6 to 12 months for whole knee analyses (-0.14, 95 % CI (-0.48, 0.19) vs. placebo 0.44, 95

  10. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome.

    Science.gov (United States)

    Vanlommel, Jan; De Corte, Ronny; Luyckx, Jean Philippe; Anderson, Melissa; Labey, Luc; Bellemans, Johan

    2017-01-01

    Oxidized zirconium (OxZr) is produced by thermally driven oxidization creating an oxidized surface with the properties of a ceramic at the top of the Zr metal substrate. OxZr is much harder and has a lower coefficient of friction than cobalt-chrome (CoCr), both leading to better wear characteristics. We evaluated and compared damage to the cartilage of porcine patella plugs, articulating against OxZr vs CoCr. Our hypothesis was that, owing to its better wear properties, OxZr would damage cartilage less than CoCr. If this is true, OxZr might be a better material for the femoral component during total knee arthroplasty if the patella is not resurfaced. Twenty-one plugs from porcine patellae were prepared and tested in a reciprocating pin-on-disk machine while lubricated with bovine serum and under a constant load. Three different configurations were tested: cartilage-cartilage as the control group, cartilage-OxZr, and cartilage-CoCr. Macroscopic appearance, cartilage thickness, and the modified Mankin score were evaluated after 400,000 wear cycles. The control group showed statistically significant less damage than plugs articulating against both other materials. Cartilage plugs articulating against OxZr were statistically significantly less damaged than those articulating against CoCr. Although replacing cartilage by an implant always leads to deterioration of the cartilage counterface, OxZr results in less damage than CoCr. The use of OxZr might thus be preferable to CoCr in case of total knee arthroplasty without patella resurfacing. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-02-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH.

  12. Arthroscopic Transplantation of Synovial Stem Cells Improves Clinical Outcomes in Knees With Cartilage Defects.

    Science.gov (United States)

    Sekiya, Ichiro; Muneta, Takeshi; Horie, Masafumi; Koga, Hideyuki

    2015-07-01

    Transplantation of mesenchymal stem cells (MSCs) is one possible strategy to achieve articular cartilage repair. We previously reported that synovial MSCs were highly proliferative and able to undergo chondrogenesis. We also found that placing a suspension of synovial MSCs on a cartilage defect for 10 minutes promoted cartilage repair in rabbit and pig models. However, the in vivo efficacy of this approach has not been tested clinically. We asked whether transplantation of synovial MSCs improves (1) MRI features, (2) histologic features, and (3) clinical evaluation scores in patients with cartilage defects in the knee? Patients with a symptomatic single cartilage lesion of the femoral condyle were indicated for inclusion in our study, and between April 2008 and April 2011, 10 patients were enrolled in this study. All patients completed followups of 3 years or more. The average followup period was 52 months (range, 37-80 months). Synovial MSCs were expanded with 10% autologous human serum for 14 days after digestion. For transplantation, the patient was positioned so that the cartilage defect was facing upward, and synovial MSC suspension was placed on the cartilage defect with a syringe under arthroscopic control. The defect with the applied suspension then was held in the upward position for 10 minutes. Five patients underwent concomitant ACL reconstructions, among whom two had meniscus suturing performed simultaneously. For MRI quantification, the cartilage defect was scored from 0 to 5. Second-look arthroscopy was performed for four patients and biopsy specimens were evaluated histologically. Clinical outcome was assessed using the Lysholm score and Tegner Activity Level Scale at final followup. Comparisons of MRI and Lysholm scores before and after treatment for each patient were analyzed using the Wilcoxon signed-rank test. MRI score (median ± 95% CI) was 1.0 ± 0.3 before and 5.0 ± 0.7 after, and increased after treatment in each patient (p = 0.005). Second

  13. MR appearance of autologous chondrocyte implantation in the knee: correlation with the knee features and clinical outcome

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Tomoki [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Kumamoto University, Department of Orthopaedic and Neuro-Musculoskeletal Surgery, Kumamoto (Japan); Tins, Bernhard; McCall, Iain W.; Ashton, Karen [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Department of Diagnostic Imaging, Oswestry, Shropshire (United Kingdom); Richardson, James B. [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); RJAH Orthopaedic Hospital, Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Takagi, Katsumasa [Department of Radiology and Institute of Orthopaedics, Oswestry, Shropshire (United Kingdom); Kumamoto Aging Research Institute, Kumamoto (Japan)

    2006-01-01

    To relate the magnetic resonance imaging (MRI) appearance of autologous chondrocyte implantation (ACI) in the knee in the 1st postoperative year with other knee features on MRI and with clinical outcome. Forty-nine examinations were performed in 49 patients at 1 year after ACI in the knee. Forty-one preoperative magnetic resonance (MR) examinations were also available. The grafts were assessed for smoothness, thickness in comparison with that of adjacent cartilage, signal intensity, integration to underlying bone and adjacent cartilage, and congruity of subchondral bone. Presence of overgrowth and bone marrow appearance beneath the graft were also assessed. Presence of osteophyte formation, further cartilage defects, appearance of the cruciate ligaments and the menisci were also recorded. An overall graft score was constructed, using the graft appearances. This was correlated with the knee features and the Lysholm score, a clinical self-assessment score. The data were analysed by a Kruskal-Wallis H test followed by a Mann-Whitney U test with Bonferroni correction as post-hoc test. Of 49 grafts, 32 (65%) demonstrated complete defect filling 1 year postoperatively. General overgrowth was seen in eight grafts (16%), and partial overgrowth in 13 grafts (26%). Bone marrow change underneath the graft was seen; oedema was seen in 23 grafts (47%), cysts in six grafts (12%) and sclerosis in two grafts (4%). Mean graft score was 8.7 (of maximal 12) (95% CI 8.0-9.5). Knees without osteophyte formation or additional other cartilage defects (other than the graft site) had a significantly higher graft score than knees with multiple osteophytes (P=0.0057) or multiple further cartilage defects (P=0.014). At 1 year follow-up improvement in the clinical scores was not significantly different for any subgroup. (orig.)

  14. Stem cell application for osteoarthritis in the knee joint: A minireview.

    Science.gov (United States)

    Uth, Kristin; Trifonov, Dimitar

    2014-11-26

    Knee osteoarthritis is a chronic, indolent disease that will affect an ever increasing number of patients, especially the elderly and the obese. It is characterized by degeneration of the cartilage substance inside the knee which leads to pain, stiffness and tenderness. By some estimations in 2030, only in the United States, this medical condition will burden 67 million people. While conventional treatments like physiotherapy or drugs offer temporary relief of clinical symptoms, restoration of normal cartilage function has been difficult to achieve. Moreover, in severe cases of knee osteoarthritis total knee replacement may be required. Total knee replacements come together with high effort and costs and are not always successful. The aim of this review is to outline the latest advances in stem cell therapy for knee osteoarthritis as well as highlight some of the advantages of stem cell therapy over traditional approaches aimed at restoration of cartilage function in the knee. In addition to the latest advances in the field, challenges associated with stem cell therapy regarding knee cartilage regeneration and chondrogenesis in vitro and in vivo are also outlined and analyzed. Furthermore, based on their critical assessment of the present academic literature the authors of this review share their vision about the future of stem cell applications in the treatment of knee osteoarthritis.

  15. Stem cell application for osteoarthritis in the knee joint: A minireview

    Institute of Scientific and Technical Information of China (English)

    Kristin; Uth; Dimitar; Trifonov

    2014-01-01

    Knee osteoarthritis is a chronic, indolent disease that will affect an ever increasing number of patients, especially the elderly and the obese. It is characterized by degeneration of the cartilage substance inside the knee which leads to pain, stiffness and tenderness. By some estimations in 2030, only in the United States, this medical condition will burden 67 million people. While conventional treatments like physiotherapy or drugs offer temporary relief of clinical symptoms, restoration of normal cartilage function has been difficult to achieve. Moreover, in severe cases of knee osteoarthritis total knee replacement may be required. Total knee replacements come together with high effort and costs and are not always successful. The aim of this review is to outline the latest advances in stem cell therapy for knee osteoarthritis as well as highlight some of the advantages of stem cell therapy over traditional approaches aimed at restoration of cartilage function in the knee. In addition to the latest advances in the field, challenges associated with stem cell therapy regarding knee cartilage regeneration and chondrogenesis in vitro and in vivo are also outlined and analyzed. Furthermore, based on their critical assessment of the present academic literature the authors of this review share their vision about the future of stem cell applications in the treatment of knee osteoarthritis.

  16. HISTOMORPHOMETRIC ANALYSIS OF THE KNEE ARTICULAR CARTILAGE AND SYNOVIUM FOR METADIAPHYSEAL LEG LENGTHENING (EXPERIMENTAL-AND-MORPHOLOGICAL STUDY)

    OpenAIRE

    T. A. Stupina; N. A. Schoudlo; N. V. Petrovskaya; M. A. Stepanov

    2013-01-01

    The knee articular cartilage and synovial membrane have been studied for metadiaphyseal leg lengthening using the methods of light miscroscopy, computer morpho- and stereometry. The manner of bone integrity breaking, the rate and rhythm of distraction conformed to the lengthening technique most often used in the clinic. The results of the histomorphometric analysis have demonstrated that when osteotomy at the level of metadiaphysis and manual distraction by 1 mm a day for 4 times is performed...

  17. The Use of Osteochondral Allograft Transplantation for Primary Treatment of Cartilage Lesions in the Knee.

    Science.gov (United States)

    Briggs, Dustin T; Sadr, Kamran N; Pulido, Pamela A; Bugbee, William D

    2015-10-01

    To assess the outcome of osteochondral allograft (OCA) transplantation as the primary treatment for cartilage injury in patients with no previous surgical treatment. Case series. Patients were identified in our outcomes database. Patients undergoing primary OCA transplantation with no prior surgical treatment and a minimum of 2 years follow-up were selected. Pain and function were evaluated preoperatively and postoperatively. Patient satisfaction was assessed. Reoperations following OCA transplantation were captured. Failure was defined as revision OCA or conversion to arthroplasty. Fifty-five patients (61 knees) were included in the analysis. The study consisted of 30 males and 25 females (mean age = 32.9 years; range = 15.7-67.8 years). The most common diagnoses for the OCA transplantation were osteochondritis dissecans (44.3%) and avascular necrosis (31.1%). Pain and function improved preoperatively to postoperatively on all outcome scales (P OCA survivorship was 89.5% at 5 years and 74.7% at 10 years. At latest follow-up (mean = 7.6 years; range = 1.9-22.6 years), OCA remained in situ in 50 knees (82%). Eighteen knees (29.5%) had further surgery; 11 OCA failures and 7 other surgical procedure(s). Of the failed knees (mean time to failure = 3.5 years; range = 0.5-13.7 years), 8 were converted to arthroplasty, 2 had OCA revisions, and 1 had a patellectomy. OCA transplantation is an acceptable primary treatment method for some chondral and osteochondral defects of the knee. Failure of previous treatment(s) is not a prerequisite for OCA transplantation.

  18. Effects of Qi-Fang-Xi-Bi-Granules on Cartilage Morphology and C/ebpα Promoter Methylation in Rats with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Xinxin Wang

    2018-01-01

    Full Text Available Objective. To investigate the effects of Qi-Fang-Xi-Bi-Granules (QFXBGs on cartilage morphology and methylation of C/ebpα (CCAAT/enhancer binding proteinα at the promoter region. Methods. Knee osteoarthritis (KOA modeling was performed in rats in accordance with Hulth’s method, and control group received sham operation. Eight weeks after KOA modeling, the rats in the KOA modeling group were further divided into 6 groups. Each group was given the appropriate drug. After 8 weeks, half of the rats were used for Micro-CT scan, HE staining, ABH/OG staining, immunohistochemistry, and TUNNEL staining of the knee joint tissue, and the other half were used to examine C/ebpα promoter methylation. Results. The three dose groups of QFXBGs all showed lower degrees of surface fissures and flaking, thicker cartilage layer, and restored chondrocyte and subchondral bone morphology, compared with the KOA model group. C/ebpα-22 promoter methylation levels in the high- and low-dose groups were significantly higher than that in the KOA modeling group (p<0.05, while C/ebpα-2 promoter methylation level in the medium-dose group was significantly higher than that in the KOA modeling group (p<0.05. Conclusions. QFXBGs may alleviate articular cartilage degeneration through promoting C/ebpα-2 or C/ebpα-22 methylation at specific promoter sites.

  19. Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model

    NARCIS (Netherlands)

    Tsuchida, Anika I.; Beekhuizen, Michiel; Rutgers, Marijn; van Osch, Gerjo J.V.M.; Bekkers, Joris E.J.; Bot, Arjan G.J.; Geurts, Bernd; Dhert, Wouter J.A.; Saris, Daniël B.F.; Creemers, Laura B.

    2012-01-01

    Introduction This study aimed to determine whether, as in osteoarthritis, increased levels of interleukin-6 (IL-6) are present in the synovial fluid of patients with symptomatic cartilage defects and whether this IL-6 affects cartilage regeneration as well as the cartilage in the degenerated knee.

  20. Cartilage biomarkers in the osteoarthropathy of alkaptonuria reveal low turnover and accelerated ageing.

    Science.gov (United States)

    Taylor, Adam M; Hsueh, Ming-Feng; Ranganath, Lakshminarayan R; Gallagher, James A; Dillon, Jane P; Huebner, Janet L; Catterall, Jon B; Kraus, Virginia B

    2017-01-01

    Alkaptonuria (AKU) is a rare autosomal recessive disease resulting from a single enzyme deficiency in tyrosine metabolism. As a result, homogentisic acid cannot be metabolized, causing systemic increases. Over time, homogentisic acid polymerizes and deposits in collagenous tissues, leading to ochronosis. Typically, this occurs in joint cartilages, leading to an early onset, rapidly progressing osteoarthropathy. The aim of this study was to examine tissue turnover in cartilage affected by ochronosis and its role in disease initiation and progression. With informed patient consent, hip and knee cartilages were obtained at surgery for arthropathy due to AKU (n = 6; 2 knees/4 hips) and OA (n = 12; 5 knees/7 hips); healthy non-arthritic (non-OA n = 6; 1 knee/5 hips) cartilages were obtained as waste from trauma surgery. We measured cartilage concentrations (normalized to dry weight) of racemized aspartate, GAG, COMP and deamidated COMP (D-COMP). Unpaired AKU, OA and non-OA samples were compared by non-parametric Mann-Whitney U test. Despite more extractable total protein being obtained from AKU cartilage than from OA or non-OA cartilage, there was significantly less extractable GAG, COMP and D-COMP in AKU samples compared with OA and non-OA comparators. Racemized Asx (aspartate and asparagine) was significantly enriched in AKU cartilage compared with in OA cartilage. These novel data represent the first examination of cartilage matrix components in a sample of patients with AKU, representing almost 10% of the known UK alkaptonuric population. Compared with OA and non-OA, AKU cartilage demonstrates a very low turnover state and has low levels of extractable matrix proteins. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Effects of counteracting external valgus moment on lateral tibial cartilage contact conditions and tibial rotation.

    Science.gov (United States)

    Shriram, Duraisamy; Parween, Rizuwana; Lee, Yee Han Dave; Subburaj, Karupppasamy

    2017-07-01

    Knee osteoarthritis that prevalently occurs at the medial compartment is a progressive chronic disorder affecting the articular cartilage of the knee joint, and lead to loss of joint functionality. Valgus braces have been used as a treatment procedure to unload the medial compartment for patients with medial osteoarthritis. Valgus braces through the application of counteracting external valgus moment shift the load from medial compartment towards the lateral compartment. Previous biomechanical studies focused only on the changes in varus moments before and after wearing the brace. The objective of this study was to investigate the influence of opposing external valgus moment applied by knee braces on the lateral tibial cartilage contact conditions using a 3D finite element model of the knee joint. Finite element simulations were performed on the knee joint model without and with the application of opposing valgus moment to mimic the unbraced and braced conditions. Lateral tibial cartilage contact pressures and contact area, and tibial rotation (varus-valgus and internal-external) were estimated for the complete walking gait cycle. The opposing valgus moment increased the maximum contact pressure and contact area on the lateral tibial cartilage compared to the normal gait moment. A peak contact pressure of 8.2 MPa and maximum cartilage loaded area of 28% (loaded cartilage nodes) on the lateral cartilage with the application of external valgus moment were induced at 50% of the gait cycle. The results show that the use of opposing valgus moment may significantly increase the maximum contact pressures and contact area on the lateral tibial cartilage and increases the risk of articular cartilage damage on the lateral compartment.

  2. Local changes in proteoglycan synthesis during culture are different for normal and osteoarthritic cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; van der Kraan, P. M.; van Roy, H. L.; Vitters, E. L.; Huber-Bruning, O.; van den Berg, W. B.; Bijlsma, J. W.

    1992-01-01

    Proteoglycan synthesis of mild-to-moderate osteoarthritic human knee cartilage was compared with that of normal cartilage of the same donor. Immediately after cartilage was obtained, the synthesis rate of proteoglycans was higher for osteoarthritic cartilage than for normal cartilage. Proteoglycan

  3. Relationship between patellar mobility and patellofemoral joint cartilage degeneration after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Ota, Susumu; Kurokouchi, Kazutoshi; Takahashi, Shigeo; Yoda, Masaki; Yamamoto, Ryuichiro; Sakai, Tadahiro

    2017-11-01

    Patellofemoral cartilage degeneration is a potential complication of anterior cruciate ligament reconstruction (ACLR) surgery. Hypomobility of the patella in the coronal plane is often observed after ACLR. Few studies, however, have examined the relationship between cartilage degeneration in the patellofemoral joint and mobility after ACLR. The present study investigated 1) the coronal mobility of the patella after ACLR, 2) the relationship between patellar mobility and cartilage degeneration of the patellofemoral joint, and 3) the relationship between patellar mobility and knee joint function after ACLR. Forty patients who underwent medial hamstring-based ACLR participated in the study. Lateral and medial patellar displacements were assessed with a modified patellofemoral arthrometer, and the absolute values of the displacements were normalized to patient height. The International Cartilage Repair Society (ICRS) cartilage injury classification of the patellar and femoral (trochlear) surfaces, and the Lysholm Knee Scoring Scale were used to evaluate knee function. Lateral and medial patellar displacements were reduced compared with the non-operated knee at the second-look arthroscopy and bone staple extraction operation (second operation; 24.4 ± 7.9 months after ACLR, Ppatellofemoral joint (patella and trochlea) were significantly worse than those pre-ACLR. Neither lateral nor medial patellar mobility, however, were significantly correlated with the ICRS grade or the Lysholm score. Although patellar mobility at approximately 2 years after ACLR was decreased compared to the non-operated knee, small displacement of the patella was not related to cartilage degeneration or knee joint function at the time of the second operation.

  4. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: Fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Yeon; Jee, Won-Hee; Kim, Sun Ki (Dept. of Radiology, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea)), e-mail: whjee@catholic.ac.kr; Koh, In-Jun (Dept. of Joint Reconstruction Center, Seoul National Univ. Bundang Hospital, Seoul (Korea)); Kim, Jung-Man (Dept. of Orthopedic Surgery, Seoul St Mary' s Hospital, Catholic Univ. of Korea, Seoul (Korea))

    2010-05-15

    Background: Fat-suppressed (FS) proton density (PD)-weighted magnetic resonance imaging (MRI) and FS three-dimensional (3D) gradient-echo imaging such as spoiled gradient-recalled (SPGR) sequence have been established as accurate methods for detecting articular cartilage defects. Purpose: To retrospectively compare the diagnostic efficacy between FS PD-weighted and FS 3D gradient-echo MRI for differentiating between grade 3 and grade 4 cartilage defects of the knee with arthroscopy as the standard of reference. Material and Methods: Twenty-one patients who had grade 3 or 4 cartilage defects in medial femoral condyle at arthroscopy and knee MRI were included in this study: grade 3, >50% cartilage defects; grade 4, full thickness cartilage defects exposed to the bone. Sagittal FS PD-weighted MR images and FS 3D gradient-echo images with 1.5 T MR images were independently graded for the cartilage abnormalities of medial femoral condyle by two musculoskeletal radiologists. Statistical analysis was performed by Fisher's exact test. Inter-observer agreement in grading of cartilage was assessed using ? coefficients. Results: Arthroscopy revealed grade 3 defects in 17 patients and grade 4 defects in 4 patients in medial femoral condyles. For FS 3D gradient-echo images grade 3 defects were graded as grade 3 (n=15) and grade 4 (n=2), and all grade 4 defects (n=4) were correctly graded. However, for FS PD-weighted MR images all grade 3 defects were misinterpreted as grade 1 (n=1) and grade 4 (n=16), whereas all grade 4 defects (n=4) were correctly graded. FS 3D gradient-echo MRI could differentiate grade 3 from grade 4 defects (P=0.003), whereas FS PD-weighted imaging could not (P=1.0). Inter-observer agreement was substantial (?=0.70) for grading of cartilage using FS PD-weighted imaging, whereas it was moderate (?=0.46) using FS 3D gradient-echo imaging. Conclusion: FS 3D gradient-echo MRI is more helpful for differentiating between grade 3 and grade 4 cartilage

  5. Chronic Changes in the Articular Cartilage and Meniscus Following Traumatic Impact to the Lapine Knee

    Science.gov (United States)

    Fischenich, Kristine M.; Button, Keith D.; Coatney, Garrett A.; Fajardo, Ryan S.; Leikert, Kevin M.; Haut, Roger C.; Haut Donahue, Tammy L.

    2014-01-01

    The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (p=0.018) and femurs (p<0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (p=0.026), 34.8% increase in tibial plateau permeability (p=0.054), 40.8% increase in femoral condyle permeability (p=0.029), and 20.1% decrease in femoral condyle matrix modulus (p=0.012) in impacted joints compared to controls. Both the instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (p<0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (p = 0.036). In both the meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee. PMID:25523754

  6. In vivo tibiofemoral cartilage-to-cartilage contact area of females with medial osteoarthritis under acute loading using MRI.

    Science.gov (United States)

    Shin, Choongsoo S; Souza, Richard B; Kumar, Deepak; Link, Thomas M; Wyman, Bradley T; Majumdar, Sharmila

    2011-12-01

    To investigate the effect of acute loading on in vivo tibiofemoral contact area changes in both compartments, and to determine whether in vivo tibiofemoral contact area differs between subjects with medial knee osteoarthritis (OA) and healthy controls. Ten subjects with medial knee OA (KL3) and 11 control subjects (KL0) were tested. Coronal three-dimensional spoiled gradient-recalled (3D-SPGR) and T(2) -weighted fast spin-echo FSE magnetic resonance imaging (MRI) of the knee were acquired under both unloaded and loaded conditions. Tibiofemoral cartilage contact areas were measured using image-based 3D models. Tibiofemoral contact areas in both compartments significantly increased under loading (P contact area in the medial compartment was significantly larger than in the lateral compartment (P contact area was significantly larger in KL3 subjects than KL0 subjects, both at unloaded and loaded conditions (P Contact areas measured from 3D-SPGR and T(2) -weighted FSE images were strongly correlated (r = 0.904). Females with medial OA increased tibiofemoral contact area in the medial compartment compared to healthy subjects under both unloaded and loaded conditions. The contact area data presented in this study may provide a quantitative reference for further cartilage contact biomechanics such as contact stress analysis and cartilage biomechanical function difference between osteoarthritic and healthy knees. Copyright © 2011 Wiley Periodicals, Inc.

  7. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    Science.gov (United States)

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Routine clinical knee MR reports: comparison of diagnostic performance at 1.5 T and 3.0 T for assessment of the articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, Jacob C.; Rhodes, Jeffrey A.; Shah, Nehal; Gaviola, Glenn C.; Smith, Stacy E. [Brigham and Women' s Hospital, Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Gomoll, Andreas H. [Brigham and Women' s Hospital, Cartilage Repair Center, Department of Orthopedic Surgery, Boston, MA (United States)

    2017-11-15

    Accurate assessment of knee articular cartilage is clinically important. Although 3.0 Tesla (T) MRI is reported to offer improved diagnostic performance, literature regarding the clinical impact of MRI field strength is lacking. The purpose of this study is to compare the diagnostic performance of clinical MRI reports for assessment of cartilage at 1.5 and 3.0 T in comparison to arthroscopy. This IRB-approved retrospective study consisted of 300 consecutive knees in 297 patients who had routine clinical MRI and arthroscopy. Descriptions of cartilage from MRI reports of 165 knees at 1.5 T and 135 at 3.0 T were compared with arthroscopy. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade of the arthroscopic grading were calculated for each articular surface at 1.5 and 3.0 T. Agreement between MRI and arthroscopy was calculated with the weighted-kappa statistic. Significance testing was performed utilizing the z-test after bootstrapping to obtain the standard error. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade were 61.4%, 82.7%, 62.2%, and 77.5% at 1.5 T and 61.8%, 80.6%, 59.5%, and 75.6% at 3.0 T, respectively. The weighted kappa statistic was 0.56 at 1.5 T and 0.55 at 3.0 T. There was no statistically significant difference in any of these parameters between 1.5 and 3.0 T. Factors potentially contributing to the lack of diagnostic advantage of 3.0 T MRI are discussed. (orig.)

  9. Extension of knee immobilization delays recovery of histological damages in the anterior cruciate ligament insertion and articular cartilage in rabbits

    OpenAIRE

    Mutsuzaki,, Hirotaka; Nakajima,, Hiromi; Sakane,, Masataka

    2018-01-01

    [Purpose] To investigate the influence of knee immobilization period on recovery of histological damages in the anterior cruciate ligament (ACL) insertion and articular cartilage in rabbits. This knowledge is important for determining the appropriate rehabilitation approach for patients with ligament injuries, fracture, disuse atrophy, and degenerative joint disease. [Materials and Methods] Forty-eight male Japanese white rabbits were divided equally into the remobilization and control groups...

  10. Autologous Cartilage Chip Transplantation Improves Repair Tissue Composition Compared With Marrow Stimulation.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Olesen, Morten Lykke; Lind, Martin; Foldager, Casper Bindzus

    2017-06-01

    Repair of chondral injuries by use of cartilage chips has recently demonstrated clinical feasibility. To investigate in vivo cartilage repair outcome of autologous cartilage chips compared with marrow stimulation in full-thickness cartilage defects in a minipig model. Controlled laboratory study. Six Göttingen minipigs received two 6-mm chondral defects in the medial and lateral trochlea of each knee. The two treatment groups were (1) autologous cartilage chips embedded in fibrin glue (ACC) (n = 12) and (2) marrow stimulation (MST) (n = 12). The animals were euthanized after 6 months, and the composition of repair tissue was quantitatively determined using histomorphometry. Semiquantitative evaluation was performed by means of the International Cartilage Repair Society (ICRS) II score. Collagen type II staining was used to further evaluate the repair tissue composition. Significantly more hyaline cartilage was found in the ACC (17.1%) compared with MST (2.9%) group ( P cartilage repair tissue compared with MST at 6 months postoperatively. Further studies are needed to investigate ACC as a possible alternative first-line treatment for focal cartilage injuries in the knee.

  11. The frequency of cartilage lesions in non-injured knees with symptomatic meniscus tears: results from an arthroscopic and NIR- (near-infrared) spectroscopic investigation.

    Science.gov (United States)

    Spahn, Gunter; Plettenberg, Holger; Hoffmann, Martin; Klemm, Holm-Torsten; Brochhausen-Delius, Christoph; Hofmann, Gunther O

    2017-06-01

    Are symptomatic tear injuries to the menisci of the knee frequently or always associated with cartilage damage to the corresponding articular surfaces and other joint surfaces, respectively? A total of 137 patients (medial n = 127; lateral n = 10) underwent a meniscus resection. These patients showed no signs of a clear radiographic arthrosis and no MRI-detectable cartilage lesions > grade II. Traumatic injury was ruled out with a thorough medical history. The indication for operation was made exclusively on the basis of distinct, clinically apparent meniscus signs. In addition to the ICRS classification, all articular surfaces were examined spectroscopically (NIRS, near-infrared spectroscopy). In 76.6% (n = 105) of all knees examined, clear cartilage damage (ICRS-grade III/IV) was found. For 43.8%, these were in the area of the patella, while for 34.3% they were in the area of the medial femur, and for 17.5%, in the area of the medial tibial plateau. More rarely, this damage was localized to the area of the trochlea (8.8%) or the lateral joint compartment (femoral 2.2%, tibial 15.3%). There were no significant differences between patients with medial or lateral meniscus lesions with respect to the distribution pattern of the joint injuries. During spectroscopic examination, pathological values were demonstrated (objective evidence of cartilage degeneration) in at least one of the examined articular surfaces (media n = 6, range 1-6). Through our investigations, a high, if not complete, concomitance of degenerative cartilage lesions and degenerative meniscus damage was demonstrated. From this it can be concluded that the entity of "isolated degenerative meniscus damage" clearly does not exist in practice. It is therefore highly probable that degenerative meniscus lesions, as a part of general joint degeneration, are to be interpreted in the context of the development of arthrosis. The practical consequences still are unclear. Patients after partial

  12. Magnetic resonance tomography (MRT) of the knee joint: Meniscus, cruciate ligaments and hyaline cartilage. Magnetresonanztomographie (MRT) des Kniegelenks: Meniskus, Kreuzbaender und hyaliner Gelenkknorpel

    Energy Technology Data Exchange (ETDEWEB)

    Hodler, J. (Radiologie, Universitaetsspital, Zurich (Switzerland) Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland). Radiologische Abt.); Buess, E. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland)); Rodriguez, M. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland)); Imhoff, A. (Orthopaedische Universitaetsklinik Balgrist, Zurich (Switzerland))

    1993-08-01

    The use of MRT for diagnosing injury to the meniscus, the cruciate ligaments and hyaline cartilage was evaluated retrospectively in 82 knee joints without any knowledge of operative findings. In 49 cases the results were verified by arthroscopy and in 33 cases by arthrotomy. Sensitivity, specificity and diagnostic accuracy of MRT for meniscus lesions was 73.9%, 96.9%, and 94.6%. Corresponding values for lesions of the anterior cruciate ligament were 88.9%, 96.6%, and 94.7%, and for lesions of the hyaline cartilage 62.6%, 96.1%, and 87.9%, respectively. In addition to its high specificity, MRT proved accurate in excluding lesions of the meniscus (97.1%) of the anterior cruciate ligament (96.6%) and of hyaline cartilage (88.8%). A negative finding on MRT therefore makes the presence of a lesion of the meniscus, cruciate ligaments of cartilage unlikely. In such cases one is justified in delaying the use of arthroscopy or arthrotomy. (orig.)

  13. Influence of delayed gadolinium enhanced MRI of cartilage (dGEMRIC) protocol on T2-mapping: is it possible to comprehensively assess knee cartilage composition in one post-contrast MR examination at 3 Tesla?

    Science.gov (United States)

    Verschueren, J; van Tiel, J; Reijman, M; Bron, E E; Klein, S; Verhaar, J A N; Bierma-Zeinstra, S M A; Krestin, G P; Wielopolski, P A; Oei, E H G

    2017-09-01

    To evaluate the possibility of assessing knee cartilage with T2-mapping and delayed gadolinium enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in one post-contrast MR examination at 3 Tesla (T). T2 mapping was performed in 10 healthy volunteers at baseline; directly after baseline; after 10 min of cycling; and after 90 min delay, and in 16 osteoarthritis patients before and after intravenous administration of a double dose gadolinium dimeglumine contrast agent, reflecting key dGEMRIC protocol elements. Differences in T2 relaxation times between each timepoint and baseline were calculated for 6 cartilage regions using paired t tests or Wilcoxon signed-rank tests and the smallest detectable change (SDC). After cycling, a significant change in T2 relaxation times was found in the lateral weight-bearing tibial plateau (+1.0 ms, P = 0.04). After 90 min delay, significant changes were found in the lateral weight-bearing femoral condyle (+1.2 ms, P = 0.03) and the lateral weight-bearing tibial plateau (+1.3 ms, P = 0.01). In these regions of interests (ROIs), absolute differences were small and lower than the corresponding SDCs. T2-mapping after contrast administration only showed statistically significantly lower T2 relaxation times in the medial posterior femoral condyle (-2.4 ms, P T2 relaxation times that were not consistent and lower than the SDC in the majority of regions, our results suggest that T2-mapping and dGEMRIC can be performed reliably in a single imaging session to assess cartilage biochemical composition in knee osteoarthritis (OA) at 3 T. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. Human articular cartilage: in vitro correlation of MRI and histologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, M.; Allmann, K.H.; Laubenberger, J.; Langer, M. [Department of Diagnostic Radiology, University Hospital of Freiburg (Germany); Ihling, C.; Tauer, U.; Adler, C.P. [Department of Pathology, University Hospital of Freiburg (Germany)

    1998-09-01

    The aim of our study was to correlate MRI with histologic findings in normal and degenerative cartilage. Twenty-two human knees derived from patients undergoing amputation were examined with 1.0- and 1.5-T MR imaging units. Firstly, we optimized two fat-suppressed 3D gradient-echo sequences. In this pilot study two knees were examined with fast imaging with steady precession (FISP) sequences and fast low-angle shot (FLASH, SPGR) sequence by varying the flip angles (40, 60, 90 ) and combining each flip angle with different echo time (7, 10 or 11, 20 ms). We chose the sequences with the best visual contrast between the cartilage layers and the best measured contrast-to-noise ratio between cartilage and bone marrow. Therefore, we used a 3D FLASH fat-saturated sequence (TR/TE/flip angle = 50/11 ms/40 ) and a 3D FISP fat-saturated sequence (TR/TE/flip angle = 40/10 ms/40 ) for cartilage imaging in 22 human knees. The images were obtained at various angles of the patellar cartilage in relation to the main magnetic field (0, 55, 90 ). The MR appearances were classified into five categories: normal, intracartilaginous signal changes, diffuse thinning (cartilage thickness < 3 mm), superficial erosions, and cartilage ulcers. After imaging, the knees were examined macroscopically and photographed. In addition, we performed histologic studies using light microscopy with several different stainings, polarization, and dark field microscopy as well as electron microscopy. The structural characteristics with the cartilage lesions were correlated with the MR findings. We identified a hyperintense superficial zone in the MR image which did not correlate to the histologically identifiable superficial zone. The second lamina was hypointense on MRI and correlated to the bulk of the radial zone. The third (or deep) cartilage lamina in the MR image seemed to represent the combination of the lowest portion of the radial zone and the calcified cartilage. The width of the hypointense second

  15. Human articular cartilage: in vitro correlation of MRI and histologic findings

    International Nuclear Information System (INIS)

    Uhl, M.; Allmann, K.H.; Laubenberger, J.; Langer, M.; Ihling, C.; Tauer, U.; Adler, C.P.

    1998-01-01

    The aim of our study was to correlate MRI with histologic findings in normal and degenerative cartilage. Twenty-two human knees derived from patients undergoing amputation were examined with 1.0- and 1.5-T MR imaging units. Firstly, we optimized two fat-suppressed 3D gradient-echo sequences. In this pilot study two knees were examined with fast imaging with steady precession (FISP) sequences and fast low-angle shot (FLASH, SPGR) sequence by varying the flip angles (40, 60, 90 ) and combining each flip angle with different echo time (7, 10 or 11, 20 ms). We chose the sequences with the best visual contrast between the cartilage layers and the best measured contrast-to-noise ratio between cartilage and bone marrow. Therefore, we used a 3D FLASH fat-saturated sequence (TR/TE/flip angle = 50/11 ms/40 ) and a 3D FISP fat-saturated sequence (TR/TE/flip angle = 40/10 ms/40 ) for cartilage imaging in 22 human knees. The images were obtained at various angles of the patellar cartilage in relation to the main magnetic field (0, 55, 90 ). The MR appearances were classified into five categories: normal, intracartilaginous signal changes, diffuse thinning (cartilage thickness < 3 mm), superficial erosions, and cartilage ulcers. After imaging, the knees were examined macroscopically and photographed. In addition, we performed histologic studies using light microscopy with several different stainings, polarization, and dark field microscopy as well as electron microscopy. The structural characteristics with the cartilage lesions were correlated with the MR findings. We identified a hyperintense superficial zone in the MR image which did not correlate to the histologically identifiable superficial zone. The second lamina was hypointense on MRI and correlated to the bulk of the radial zone. The third (or deep) cartilage lamina in the MR image seemed to represent the combination of the lowest portion of the radial zone and the calcified cartilage. The width of the hypointense second

  16. Comparison of Diagnostic Performance of Semi-Quantitative Knee Ultrasound and Knee Radiography with MRI: Oulu Knee Osteoarthritis Study

    Science.gov (United States)

    Podlipská, Jana; Guermazi, Ali; Lehenkari, Petri; Niinimäki, Jaakko; Roemer, Frank W.; Arokoski, Jari P.; Kaukinen, Päivi; Liukkonen, Esa; Lammentausta, Eveliina; Nieminen, Miika T.; Tervonen, Osmo; Koski, Juhani M.; Saarakkala, Simo

    2016-01-01

    Osteoarthritis (OA) is a common degenerative musculoskeletal disease highly prevalent in aging societies worldwide. Traditionally, knee OA is diagnosed using conventional radiography. However, structural changes of articular cartilage or menisci cannot be directly evaluated using this method. On the other hand, ultrasound is a promising tool able to provide direct information on soft tissue degeneration. The aim of our study was to systematically determine the site-specific diagnostic performance of semi-quantitative ultrasound grading of knee femoral articular cartilage, osteophytes and meniscal extrusion, and of radiographic assessment of joint space narrowing and osteophytes, using MRI as a reference standard. Eighty asymptomatic and 79 symptomatic subjects with mean age of 57.7 years were included in the study. Ultrasound performed best in the assessment of femoral medial and lateral osteophytes, and medial meniscal extrusion. In comparison to radiography, ultrasound performed better or at least equally well in identification of tibio-femoral osteophytes, medial meniscal extrusion and medial femoral cartilage morphological degeneration. Ultrasound provides relevant additional diagnostic information on tissue-specific morphological changes not depicted by conventional radiography. Consequently, the use of ultrasound as a complementary imaging tool along with radiography may enable more accurate and cost-effective diagnostics of knee osteoarthritis at the primary healthcare level. PMID:26926836

  17. Fresh osteochondral allograft transplantation for isolated patellar cartilage injury.

    Science.gov (United States)

    Gracitelli, Guilherme C; Meric, Gokhan; Pulido, Pamela A; Görtz, Simon; De Young, Allison J; Bugbee, William D

    2015-04-01

    The treatment of patellofemoral cartilage injuries can be challenging. Osteochondral allograft (OCA) transplantation has been used as a treatment option for a range of cartilage disorders. To evaluate functional outcomes and survivorship of the grafts among patients who underwent OCA for patellar cartilage injuries. Case series; Level of evidence, 4. An institutional review board-approved OCA database was used to identify 27 patients (28 knees) who underwent isolated OCA transplantation of the patella between 1983 and 2010. All patients had a minimum 2-year follow-up. The mean age of the patients was 33.7 years (range, 14-64 years); 54% were female. Twenty-six (92.9%) knees had previous surgery (mean, 3.2 procedures; range, 1-10 procedures). The mean allograft area was 10.1 cm(2) (range, 4.0-18.0 cm(2)). Patients returned for clinical evaluation or were contacted via telephone for follow-up. The number and type of reoperations were assessed. Any reoperation resulting in removal of the allograft was considered a failure of the OCA transplantation. Patients were evaluated pre- and postoperatively using the modified Merle d'Aubigné-Postel (18-point) scale, the International Knee Documentation Committee (IKDC) pain, function, and total scores, and the Knee Society function (KS-F) score. Patient satisfaction was assessed at latest follow-up. Seventeen of the 28 knees (60.7%) had further surgery after the OCA transplantation; 8 of the 28 knees (28.6%) were considered OCA failures (4 conversions to total knee arthroplasty, 2 conversions to patellofemoral knee arthroplasty, 1 revision OCA, 1 patellectomy). Patellar allografting survivorship was 78.1% at 5 and 10 years and 55.8% at 15 years. Among the 20 knees (71.4%) with grafts in situ, the mean follow-up duration was 9.7 years (range, 1.8-30.1 years). Pain and function improved from the preoperative visit to latest follow-up, and 89% of patients were extremely satisfied or satisfied with the results of the OCA

  18. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.

    Science.gov (United States)

    Mumme, Marcus; Barbero, Andrea; Miot, Sylvie; Wixmerten, Anke; Feliciano, Sandra; Wolf, Francine; Asnaghi, Adelaide M; Baumhoer, Daniel; Bieri, Oliver; Kretzschmar, Martin; Pagenstert, Geert; Haug, Martin; Schaefer, Dirk J; Martin, Ivan; Jakob, Marcel

    2016-10-22

    Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm 2 ) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of

  19. Cell Therapy and Tissue Engineering Products for Chondral Knee Injuries

    Directory of Open Access Journals (Sweden)

    Adriana Flórez Cabrera

    2017-07-01

    Full Text Available The articular cartilage is prone to suffer lesions of different etiology, being the articular cartilage lesions of the knee the most common. Although most conventional treatments reduce symptoms they lead to the production of fibrocartilage, which has different characteristics than the hyaline cartilage of the joint. There are few therapeutic approaches that promote the replacement of damaged tissue by functional hyaline cartilage. Among them are the so-called advanced therapies, which use cells and tissue engineering products to promote cartilage regeneration. Most of them are based on scaffolds made of different biomaterials, which seeded or not with endogenous or exogenous cells, can be used as cartilage artificial replacement to improve joint function. This paper reviews some therapeutic approaches focused on the regeneration of articular cartilage of the knee and the biomaterials used to develop scaffolds for cell therapy and tissue engineering of cartilage.

  20. Tenascin-C Prevents Articular Cartilage Degeneration in Murine Osteoarthritis Models.

    Science.gov (United States)

    Matsui, Yuriyo; Hasegawa, Masahiro; Iino, Takahiro; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro

    2018-01-01

    Objective The objective of this study was to determine whether intra-articular injections of tenascin-C (TNC) could prevent cartilage damage in murine models of osteoarthritis (OA). Design Fluorescently labeled TNC was injected into knee joints and its distribution was examined at 1 day, 4 days, 1 week, 2 weeks, and 4 weeks postinjection. To investigate the effects of TNC on cartilage degeneration after surgery to knee joints, articular spaces were filled with 100 μg/mL (group I), 10 μg/mL (group II) of TNC solution, or control (group III). TNC solution of 10 μg/mL was additionally injected twice after 3 weeks (group IV) or weekly after 1 week, 2 weeks, and 3 weeks (group V). Joint tissues were histologically assessed using the Mankin score and the modified Chambers system at 2 to 8 weeks after surgery. Results Exogenous TNC was maintained in the cartilage and synovium for 1 week after administration. Histological scores in groups I and II were better than scores in group III at 4 and 6 weeks, but progressive cartilage damage was seen in all groups 8 weeks postoperatively. Sequential TNC injections (groups IV and V) showed significantly better Mankin score than single injection (group II) at 8 weeks. Conclusion TNC administered exogenously remained in the cartilage of knee joints for 1 week, and could decelerate articular cartilage degeneration in murine models of OA. We also showed that sequential administration of TNC was more effective than a single injection. TNC could be an important molecule for prevention of articular cartilage damage.

  1. Magnetic Resonance Imaging of Cartilage Repair

    Science.gov (United States)

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  2. Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator.

    Science.gov (United States)

    Liu, Aiqin; Jennings, Louise M; Ingham, Eileen; Fisher, John

    2015-09-18

    The successful development of early-stage cartilage and meniscus repair interventions in the knee requires biomechanical and biotribological understanding of the design of the therapeutic interventions and their tribological function in the natural joint. The aim of this study was to develop and validate a porcine knee model using a whole joint knee simulator for investigation of the tribological function and biomechanical properties of the natural knee, which could then be used to pre-clinically assess the tribological performance of cartilage and meniscal repair interventions prior to in vivo studies. The tribological performance of standard artificial bearings in terms of anterior-posterior (A/P) shear force was determined in a newly developed six degrees of freedom tribological joint simulator. The porcine knee model was then developed and the tribological properties in terms of shear force measurements were determined for the first time for three levels of biomechanical constraints including A/P constrained, spring force semi-constrained and A/P unconstrained conditions. The shear force measurements showed higher values under the A/P constrained condition (predominantly sliding motion) compared to the A/P unconstrained condition (predominantly rolling motion). This indicated that the shear force simulation model was able to differentiate between tribological behaviours when the femoral and tibial bearing was constrained to slide or/and roll. Therefore, this porcine knee model showed the potential capability to investigate the effect of knee structural, biomechanical and kinematic changes, as well as different cartilage substitution therapies on the tribological function of natural knee joints. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Biotribology of Cartilage Wear in Knee and Hip Joints Review of Recent Developments

    Science.gov (United States)

    Gulsen, Akdogan; Merve, Goncu; Meltem, Parlak

    2018-01-01

    Nowadays, the problem of wear in the knee and hip joints is an important issue that concerns many people and still requires new solutions. In recent years, researchers dealing with knee and hip articular cartilage erosion continue to investigate the subject in terms of biotribology. In this study, recent developments and studies in this relevant area are been examined. By using the basic principles of tribology, useful new methods that can be used in the field of biotribology can be produced. Artificial joints designed using various materials such as metals, ceramics, polymers and composites are still being studied. New studies in this area will affect the development of implant technology. Different alloys or composites are currently being tested for new implant designs. Moving implants with a risk of wear are tested in laboratory conditions in simulator devices before they are used in the human body. Major topics such as nanotechnology, tissue engineering, orthopedics, tribology, biotribology, lubrication, organ transplantation and artificial organs, which are still important today, will be useful in the search for finding suitable solutions in the future in biotribological studies. This review article aims to provide an overview of in-vitro studies at the theoretical and laboratory conditions that must be performed prior to clinical investigation.

  4. MR arthrography of the knee

    International Nuclear Information System (INIS)

    Kramer, J.; Engel, A. Jr.; Stiglbauer, R. Jr.; Prayer, L. Jr.; Hajek, P. Jr.; Imhof, H.

    1991-01-01

    This paper demonstrates the diagnostic value of MR arthrography in the assessment of cartilaginous lesions, including osteochondritis dissecans. One hundred thirty-two knees of 125 patients were examined with MR arthrography performed on a 1.5-T magnet with a knee resonator. T1-weighted spin-echo and T2*-weighted three-dimensional gradient-echo sequences were obtained after intraarticular administration of 40 mL of 2-mmol GD-DTPA solution. Seventy-five patients were also imaged without contrast agent. The description of the articular surface was classified into four types: I, normal cartilage surface and thickness; II, surface normal or slightly irregular; III, severe surface irregularities and cartilage defects; and IV, extensive cartilage defects, scar formation. MR findings were correlated with those of arthroscopy/arthrotomy (n = 75)

  5. Association of gastrocnemius tendon calcification with chondrocalcinosis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Foldes, K. [Department of Radiology, Veterans Administration Medical Center (VAMC), San Diego, CA (United States)]|[University of California San Diego Medical Center (UCSD), San Diego, CA (United States)]|[National Institute of Rheumatology and Physiotherapy, Budapest (Hungary); Lenchik, L. [Department of Radiology, Veterans Administration Medical Center (VAMC), San Diego, CA (United States)]|[University of California San Diego Medical Center (UCSD), San Diego, CA (United States); Jaovisidha, S. [Department of Radiology, Veterans Administration Medical Center (VAMC), San Diego, CA (United States)]|[University of California San Diego Medical Center (UCSD), San Diego, CA (United States); Clopton, P. [Department of Radiology, Veterans Administration Medical Center (VAMC), San Diego, CA (United States); Sartoris, D.J. [Department of Radiology, Veterans Administration Medical Center (VAMC), San Diego, CA (United States)]|[University of California San Diego Medical Center (UCSD), San Diego, CA (United States); Resnick, D. [Department of Radiology, Veterans Administration Medical Center (VAMC), San Diego, CA (United States)]|[University of California San Diego Medical Center (UCSD), San Diego, CA (United States)

    1996-10-01

    Objective. Chondrocalcinosis of the knee is a common radiological finding in the elderly. However, visualization of chondrocalcinosis may be difficult in patients with advanced cartilage loss.The purpose of this study was to determine sensitivity, specificity, and accuracy of gastrocnemius tendon calcification that might serve as a radiographic marker of chondrocalcinosis in patients with painful knees. Design and patients. We prospectively evaluated 37 knee radiographs in 30 consecutive patients (29 men, 8 women; mean age 67 years, age range 37-90 years) with painful knees who had radiographic evidence of chondrocalcinosis. The frequency of fibrocartilage, hyaline cartilage, and gastrocnemius tendon calcification was determined. For a control group, we evaluated knee radiographs in 65 consecutive patients with knee pain (54 men, 11 women; mean age 59 years, age range 40-93 years) who had no radiological signs of chondrocalcinosis. The frequency of gastrocnemius tendon calcification in the control group was determined. Results. Gastrocnemius tendon calcification was 41% sensitive, 100% specific, and 78% accurate in predicting chondrocalcinosis. The gastrocnemius tendon was calcified on 15 of 37 (41%) radiographs in the experimental group and on 0 of 67 radiographs in the control group. In the chondrocalcinosis group, 23 (62%) had posterior hyaline cartilage calcification, 14 (38%) had anterior hyaline cartilage calcification, 31 (84%) had medial meniscus calcification, and 36 (97%) had lateral meniscus calcification. Conclusions. Our results show that gastrocnemius tendon calcification is an accurate radiographic marker of chondrocalcinosis in patients with knee pain. (orig.). With 2 figs., 2 tabs.

  6. Association of gastrocnemius tendon calcification with chondrocalcinosis of the knee

    International Nuclear Information System (INIS)

    Foldes, K.; Lenchik, L.; Jaovisidha, S.; Clopton, P.; Sartoris, D.J.; Resnick, D.

    1996-01-01

    Objective. Chondrocalcinosis of the knee is a common radiological finding in the elderly. However, visualization of chondrocalcinosis may be difficult in patients with advanced cartilage loss.The purpose of this study was to determine sensitivity, specificity, and accuracy of gastrocnemius tendon calcification that might serve as a radiographic marker of chondrocalcinosis in patients with painful knees. Design and patients. We prospectively evaluated 37 knee radiographs in 30 consecutive patients (29 men, 8 women; mean age 67 years, age range 37-90 years) with painful knees who had radiographic evidence of chondrocalcinosis. The frequency of fibrocartilage, hyaline cartilage, and gastrocnemius tendon calcification was determined. For a control group, we evaluated knee radiographs in 65 consecutive patients with knee pain (54 men, 11 women; mean age 59 years, age range 40-93 years) who had no radiological signs of chondrocalcinosis. The frequency of gastrocnemius tendon calcification in the control group was determined. Results. Gastrocnemius tendon calcification was 41% sensitive, 100% specific, and 78% accurate in predicting chondrocalcinosis. The gastrocnemius tendon was calcified on 15 of 37 (41%) radiographs in the experimental group and on 0 of 67 radiographs in the control group. In the chondrocalcinosis group, 23 (62%) had posterior hyaline cartilage calcification, 14 (38%) had anterior hyaline cartilage calcification, 31 (84%) had medial meniscus calcification, and 36 (97%) had lateral meniscus calcification. Conclusions. Our results show that gastrocnemius tendon calcification is an accurate radiographic marker of chondrocalcinosis in patients with knee pain. (orig.). With 2 figs., 2 tabs

  7. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  8. Joint immobilization inhibits spontaneous hyaline cartilage regeneration induced by a novel double-network gel implantation.

    Science.gov (United States)

    Arakaki, Kazunobu; Kitamura, Nobuto; Kurokawa, Takayuki; Onodera, Shin; Kanaya, Fuminori; Gong, Jian-Ping; Yasuda, Kazunori

    2011-02-01

    We have recently discovered that spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect in the rabbit, when we implant a novel double-network (DN) gel plug at the bottom of the defect. To clarify whether joint immobilization inhibits the spontaneous hyaline cartilage regeneration, we conducted this study with 20 rabbits. At 4 or 12 weeks after surgery, the defect in the mobile knees was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen, while no cartilage tissues were observed in the defect in the immobilized knees. Type-2 collagen, Aggrecan, and SOX9 mRNAs were expressed only in the mobile knees at each period. This study demonstrated that joint immobilization significantly inhibits the spontaneous hyaline cartilage regeneration induced by the DN gel implantation. This fact suggested that the mechanical environment is one of the significant factors to induce this phenomenon.

  9. Partial meniscectomy is associated with increased risk of incident radiographic osteoarthritis and worsening cartilage damage in the following year

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, Frank W. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); University of Erlangen-Nuremberg, Department of Radiology, Erlangen (Germany); Kwoh, C.K. [University of Arizona Arthritis Center and University of Arizona College of Medicine, Tucson, AZ (United States); Hannon, Michael J.; Grago, Jason [University of Pittsburgh School of Medicine, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA (United States); Hunter, David J. [University of Sydney, Department of Rheumatology, Royal North Shore Hospital and Kolling Institute, St Leonards (Australia); Eckstein, Felix [Paracelsus Medical University, Institute of Anatomy, Salzburg (Austria); Boudreau, Robert M. [University of Pittsburgh Graduate School of Public Health, Department of Epidemiology, Pittsburgh, PA (United States); Englund, Martin [Lund University, Clinical Epidemiology Unit, Orthopaedics, Department of Clinical Sciences Lund, Lund (Sweden); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States)

    2017-01-15

    To assess whether partial meniscectomy is associated with increased risk of radiographic osteoarthritis (ROA) and worsening cartilage damage in the following year. We studied 355 knees from the Osteoarthritis Initiative that developed ROA (Kellgren-Lawrence grade ≥ 2), which were matched with control knees. The MR images were assessed using the semi-quantitative MOAKS system. Conditional logistic regression was applied to estimate risk of incident ROA. Logistic regression was used to assess the risk of worsening cartilage damage in knees with partial meniscectomy that developed ROA. In the group with incident ROA, 4.4 % underwent partial meniscectomy during the year prior to the case-defining visit, compared with none of the knees that did not develop ROA. All (n = 31) knees that had partial meniscectomy and 58.9 % (n = 165) of the knees with prevalent meniscal damage developed ROA (OR = 2.51, 95 % CI [1.73, 3.64]). In knees that developed ROA, partial meniscectomy was associated with an increased risk of worsening cartilage damage (OR = 4.51, 95 % CI [1.53, 13.33]). The probability of having had partial meniscectomy was higher in knees that developed ROA. When looking only at knees that developed ROA, partial meniscectomy was associated with greater risk of worsening cartilage damage. (orig.)

  10. Effect of intra-articular injection of intermediate-weight hyaluronic acid on hip and knee cartilage: in-vivo evaluation using T2 mapping.

    Science.gov (United States)

    Ferrero, Giulio; Sconfienza, Luca Maria; Fiz, Francesco; Fabbro, Emanuele; Corazza, Angelo; Dettore, Daniele; Orlandi, Davide; Castellazzo, Carlo; Tornago, Stefano; Serafini, Giovanni

    2018-06-01

    We used T2 mapping to quantify the effect of intra-articular hyaluronic acid administration (IAHAA) on cartilage with correlation to clinical symptoms. One hundred two patients with clinical and MRI diagnosis of hip or knee grade I-III chondropathy were prospectively included. All patients received a standard MRI examination of the affected hip/knee (one joint/patient) and T2-mapping multiecho sequence for cartilage evaluation. T2 values of all slices were averaged and used for analysis. One month after MR evaluation 72 patients (38 males; mean age 51±10 years) underwent IAHAA. As a control group, 30 subjects (15 males; 51 ± 9 years) were not treated. MR and WOMAC evaluation was performed at baseline and after 3, 9, and 15 months in all patients. T2 mapping in hyaluronic acid (HA) patients showed a significant increase in T2 relaxation times from baseline to the first time point after therapy in knees (40.7 ± 9.8 ms vs. 45.8 ± 8.6 ms) and hips (40.9 ± 9.7 ms; 45.9 ± 9.5 ms) (p evaluations, T2 relaxation dropped to values similar to the baseline ones (p T2 increase and pain reduction after IAHAA was statistically significant (r = 0.54, p T2 mapping can be used to evaluate the effect over time of IAHAA in patients with hip and knee chondropathy. • T2 relaxation times change over time after hyaluronic acid intra-articular administration • T2 relaxation times of the medial femoral condyle correlate with WOMAC variation • T2 relaxation times are different between Outerbridge I and II-III.

  11. Cartilage repair: Generations of autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Zeller, Philip; Singer, Philipp; Resinger, Christoph; Vecsei, Vilmos

    2006-01-01

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation

  12. Cartilage repair: Generations of autologous chondrocyte transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Marlovits, Stefan [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)]. E-mail: stefan.marlovits@meduniwien.ac.at; Zeller, Philip [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Singer, Philipp [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Resinger, Christoph [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Vecsei, Vilmos [Department of Traumatology, Center for Joint and Cartilage, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2006-01-15

    Articular cartilage in adults has a limited capacity for self-repair after a substantial injury. Surgical therapeutic efforts to treat cartilage defects have focused on delivering new cells capable of chondrogenesis into the lesions. Autologous chondrocyte transplantation (ACT) is an advanced cell-based orthobiologic technology used for the treatment of chondral defects of the knee that has been in clinical use since 1987 and has been performed on 12,000 patients internationally. With ACT, good to excellent clinical results are seen in isolated post-traumatic lesions of the knee joint in the younger patient, with the formation of hyaline or hyaline-like repair tissue. In the classic ACT technique, chondrocytes are isolated from small slices of cartilage harvested arthroscopically from a minor weight-bearing area of the injured knee. The extracellular matrix is removed by enzymatic digestion, and the cells are then expanded in monolayer culture. Once a sufficient number of cells has been obtained, the chondrocytes are implanted into the cartilage defect, using a periosteal patch over the defect as a method of cell containment. The major complications are periosteal hypertrophy, delamination of the transplant, arthrofibrosis and transplant failure. Further improvements in tissue engineering have contributed to the next generation of ACT techniques, where cells are combined with resorbable biomaterials, as in matrix-associated autologous chondrocyte transplantation (MACT). These biomaterials secure the cells in the defect area and enhance their proliferation and differentiation.

  13. Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy

    NARCIS (Netherlands)

    Wilson, W.; Rietbergen, van B.; Donkelaar, van C.C.; Huiskes, R.

    2003-01-01

    Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why

  14. Comparative digital cartilage histology for human and common osteoarthritis models

    Directory of Open Access Journals (Sweden)

    Pedersen DR

    2013-02-01

    Full Text Available Douglas R Pedersen, Jessica E Goetz, Gail L Kurriger, James A MartinDepartment of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, USAPurpose: This study addresses the species-specific and site-specific details of weight-bearing articular cartilage zone depths and chondrocyte distributions among humans and common osteoarthritis (OA animal models using contemporary digital imaging tools. Histological analysis is the gold-standard research tool for evaluating cartilage health, OA severity, and treatment efficacy. Historically, evaluations were made by expert analysts. However, state-of-the-art tools have been developed that allow for digitization of entire histological sections for computer-aided analysis. Large volumes of common digital cartilage metrics directly complement elucidation of trends in OA inducement and concomitant potential treatments.Materials and methods: Sixteen fresh human knees, 26 adult New Zealand rabbit stifles, and 104 bovine lateral plateaus were measured for four cartilage zones and the cell densities within each zone. Each knee was divided into four weight-bearing sites: the medial and lateral plateaus and femoral condyles.Results: One-way analysis of variance followed by pairwise multiple comparisons (Holm–Sidak method at a significance of 0.05 clearly confirmed the variability between cartilage depths at each site, between sites in the same species, and between weight-bearing articular cartilage definitions in different species.Conclusion: The present study clearly demonstrates multisite, multispecies differences in normal weight-bearing articular cartilage, which can be objectively quantified by a common digital histology imaging technique. The clear site-specific differences in normal cartilage must be taken into consideration when characterizing the pathoetiology of OA models. Together, these provide a path to consistently analyze the volume and variety of histologic slides necessarily generated

  15. [Knee disarticulation and through-knee amputation].

    Science.gov (United States)

    Baumgartner, R

    2011-10-01

    A knee disarticulation or a through-knee stump is superior compared to a transfemoral stump. The thigh muscles are all preserved, and the muscle balance remains undisturbed. The range of motion of the hip joint is not limited. The bulbous shape of the stump allows full weight bearing at the stump end and can easily be fitted with a prosthesis. An amputee with a bilateral knee disarticulation is able to walk "barefoot". A more distal amputation level, e.g., an ultra-short transtibial amputation, is not possible. Important alternative to transfemoral amputations. Possible for any etiology except for Buerger-Winiwarter's disease. New indications are infected and loosened total knee replacements. Preservation of the knee joint is possible. Knee disarticulation is a very atraumatic procedure, compared to transfemoral amputations. Neither bones nor muscles have to be severed, just skin, ligaments, vessels, and nerves. Even the meniscal cartilages may be left in place to act as axial shock absorbers. The cartilage of the femur is not resected, but only bevelled in case of osteoarthritis. There are no tendon attachments or myoplastic procedures necessary. The patella remains in place and is held in position only by the retinacula. Skin closure must be performed without the slightest tension, and if possible not in the weight-bearing area. Transcondylar amputations across the femoral condyles only are indicated when there are not sufficient soft tissues for wound closure of a knee disarticulation. Alternatives as the techniques of Gritti, Klaes, and Eigler, the shortening of the femur and the Sauerbruch's rotation plasty [14] are presented and discussed. The risk of decubital ulcers is rather high. Correct bandaging of the stump is, therefore, particularly important. Prosthetic fitting is possible 3-6 weeks after surgery. The type of prosthesis depends on the amputee's activity level. The superior performance of amputees with knee disarticulations in sports prove the

  16. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds

    NARCIS (Netherlands)

    Mulder, E.L.W. de; Hannink, G.J.; Kuppevelt, T.H. van; Daamen, W.F.; Buma, P.

    2014-01-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular

  17. Routine clinical knee MR reports: comparison of diagnostic performance at 1.5 T and 3.0 T for assessment of the articular cartilage.

    Science.gov (United States)

    Mandell, Jacob C; Rhodes, Jeffrey A; Shah, Nehal; Gaviola, Glenn C; Gomoll, Andreas H; Smith, Stacy E

    2017-11-01

    Accurate assessment of knee articular cartilage is clinically important. Although 3.0 Tesla (T) MRI is reported to offer improved diagnostic performance, literature regarding the clinical impact of MRI field strength is lacking. The purpose of this study is to compare the diagnostic performance of clinical MRI reports for assessment of cartilage at 1.5 and 3.0 T in comparison to arthroscopy. This IRB-approved retrospective study consisted of 300 consecutive knees in 297 patients who had routine clinical MRI and arthroscopy. Descriptions of cartilage from MRI reports of 165 knees at 1.5 T and 135 at 3.0 T were compared with arthroscopy. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade of the arthroscopic grading were calculated for each articular surface at 1.5 and 3.0 T. Agreement between MRI and arthroscopy was calculated with the weighted-kappa statistic. Significance testing was performed utilizing the z-test after bootstrapping to obtain the standard error. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade were 61.4%, 82.7%, 62.2%, and 77.5% at 1.5 T and 61.8%, 80.6%, 59.5%, and 75.6% at 3.0 T, respectively. The weighted kappa statistic was 0.56 at 1.5 T and 0.55 at 3.0 T. There was no statistically significant difference in any of these parameters between 1.5 and 3.0 T. Factors potentially contributing to the lack of diagnostic advantage of 3.0 T MRI are discussed.

  18. Attenuated synovial fluid ghrelin levels are linked with cartilage damage, meniscus injury, and clinical symptoms in patients with knee anterior cruciate ligament deficiency.

    Science.gov (United States)

    Zou, Yu-Cong; Chen, Liang-Hua; Ye, Yong-Liang; Yang, Guang-Gang; Mao, Zheng; Liu, Dan-Dan; Chen, Jun-Qi; Chen, Jing-Jie; Liu, Gang

    2016-12-01

    The meniscus injury and post-traumatic knee osteoarthritis (PTOA) following anterior cruciate ligament (ACL) lesions often cause great burdens to patients. Ghrelin, a recently identified 28-amino-acid peptide, has been shown to inhibit inflammation and perform as a growth factor for chondrocyte. This study was aimed at investigating ghrelin concentration in synovial fluid and its association with the degree of meniscus injury, articular degeneration, and clinical severity in patients suffering from anterior cruciate ligament (ACL) deficiency. 61 ACL deficiency patients admitted to our hospital were drafted in the current study. The Noyes scale and Mankin scores were used to assess articular cartilage damage arthroscopically and histopathologically, respectively. The Lysholm scores and International Knee Documentation Committee (IKDC) subjective scores were utilized to evaluate the clinical severity. The radiological severity of meniscus injury was assessed by MR imaging. Serum and synovial fluid ghrelin levels were determined using enzyme linked immunosorbent assay (ELISA). The cartilage degradation markers collagen type II C-telopeptide (CTX-II) and cartilage oligomeric matrix protein (COMP) in addition to inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) were also examined. Receiver operating characteristic (ROC) curve was performed and the area under curve (AUC) was calculated to assess the diagnostic value of ghrelin levels for the prediction of the MRI grading for meniscus injury by comparing with other biomarkers. SF ghrelin levels were positively related to Lysholm and IKDC scores. PTOA patients with grade 3 showed significantly decreased levels of ghrelin in SF compared with those with grade 2. The ghrelin levels in SF were negatively related to MRI signal grades for meniscus injury. SF ghrelin levels were also inversely associated with Noyes scale and Mankin scores, and levels of inflammation markers IL-6, TNF-α, and

  19. Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI

    Directory of Open Access Journals (Sweden)

    Dragana Savic MSc

    2016-12-01

    Full Text Available Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA. Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki and the normalized uptake (standardized uptake value of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and

  20. Ochronosis of the knee with secondary osteoarthritis requiring total knee replacement in a patient with cryptogenic organising pneumonia.

    Science.gov (United States)

    Jasper, Jorrit; Metsaars, Wieneke; Jansen, Joris

    2016-05-20

    Ochronosis is a rare autosomal recessive metabolic disease caused by homogentisic acid oxidase enzyme deficiency. High homogentisic acid levels will eventually result in black deposits in skin, sclerae, connective tissues and urine (alkaptonuria). It can lead to early degeneration of connective tissues and cartilage. Ochronosis can damage normal cartilage, leading to secondary osteoarthritis. The diagnosis is often delayed because of its low prevalence and non-specific early symptoms. In our patient, the secondary osteoarthritis due to ochronosis deposits in the cartilage was treated by total knee arthroplasty, with good clinical outcome. This article reports the first case of ochronosis with secondary osteoarthritis of the knee in a patient previously diagnosed with cryptogenic organising pneumonia (COP). 2016 BMJ Publishing Group Ltd.

  1. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning.

    Science.gov (United States)

    Sowers, Maryfran; Karvonen-Gutierrez, Carrie A; Jacobson, Jon A; Jiang, Yebin; Yosef, Matheos

    2011-02-02

    The prevalence of knee osteoarthritis is traditionally based on radiographic findings, but magnetic resonance imaging is now being used to provide better visualization of bone, cartilage, and soft tissues as well as the patellar compartment. The goal of this study was to estimate the prevalences of knee features defined on magnetic resonance imaging in a population and to relate these abnormalities to knee osteoarthritis severity scores based on radiographic findings, physical functioning, and reported knee pain in middle-aged women. Magnetic resonance images of the knee were evaluated for the location and severity of cartilage defects, bone marrow lesions, osteophytes, subchondral cysts, meniscal and/or ligamentous tears, effusion, and synovitis among 363 middle-aged women (724 knees) from the Michigan Study of Women's Health Across the Nation. These findings were related to Kellgren-Lawrence osteoarthritis severity scores from radiographs, self-reported knee pain, self-reported knee injury, perception of physical functioning, and physical performance measures to assess mobility. Radiographs, physical performance assessment, and interviews were undertaken at the 1996 study baseline and again (with the addition of magnetic resonance imaging assessment) at the follow-up visit during 2007 to 2008. The prevalence of moderate-to-severe knee osteoarthritis changed from 3.7% at the baseline assessment to 26.7% at the follow-up visit eleven years later. Full-thickness cartilage defects of the medial, lateral, and patellofemoral compartments were present in 14.5% (105 knees), 4.6% (thirty-three knees), and 26.2% (190 knees), respectively. Synovitis was identified in 24.7% (179) of the knees, and joint effusions were observed in 70% (507 knees); 21.7% (157) of the knees had complex or macerated meniscal tears. Large osteophytes, marked synovitis, macerated meniscal tears, and full-thickness tibial cartilage defects were associated with increased odds of knee pain and with

  2. Photoshop-based image analysis of canine articular cartilage after subchondral damage.

    Science.gov (United States)

    Lahm, A; Uhl, M; Lehr, H A; Ihling, C; Kreuz, P C; Haberstroh, J

    2004-09-01

    The validity of histopathological grading is a major problem in the assessment of articular cartilage. Calculating the cumulative strength of signal intensity of different stains gives information regarding the amount of proteoglycan, glycoproteins, etc. Using this system, we examined the medium-term effect of subchondral lesions on initially healthy articular cartilage. After cadaver studies, an animal model was created to produce pure subchondral damage without affecting the articular cartilage in 12 beagle dogs under MRI control. Quantification of the different stains was provided using a Photoshop-based image analysis (pixel analysis) with the histogram command 6 months after subchondral trauma. FLASH 3D sequences revealed intact cartilage after impact in all cases. The best detection of subchondral fractures was achieved with fat-suppressed TIRM sequences. Semiquantitative image analysis showed changes in proteoglycan and glycoprotein quantities in 9 of 12 samples that had not shown any evidence of damage during the initial examination. Correlation analysis showed a loss of the physiological distribution of proteoglycans and glycoproteins in the different zones of articular cartilage. Currently available software programs can be applied for comparative analysis of histologic stains of hyaline cartilage. After subchondral fractures, significant changes in the cartilage itself occur after 6 months.

  3. MRI monitoring of autologous hyaline cartilage grafts in the knee joint: a follow-up study over 12 months; MRT-Monitoring autologer Chondrozytentransplantate im Kniegelenk: Eine Verlaufsstudie ueber 12 Monate

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Horvat, C.; Schick, F.; Claussen, C.D.; Groenewaeller, E. [Abt. fuer Radiologische Diagnostik, Eberhard-Karls-Univ. Tuebingen (Germany)

    2004-12-01

    Purpose: To evaluate the suitability of different MR sequences for monitoring the stage of maturation of hyaline cartilage grafts in the knee joint and the early detection of complications like hypertrophy. In addition, it was analyzed whether indirect MR arthrography can indicate debonding of the graft. Materials and Methods: MRI examinations were performed in 19 patients, aged 17-43 years, with autologous transplantation of a hyaline cartilage tissue graft after knee trauma. Examination dates were prior to transplantation to localize the defect, and 6 weeks, 3, 6 and 12 months after transplantation to control morphology and maturation of the autologous graft. Standard T2- and protondensity-weighted turbo spin echo (TSE) sequences and T1-weighted spin echo (SE) sequences were used, as well as gradient echo (GRE) sequences with and without magnetization transfer (MT) prepulses. In some cases, indirect MR arthrography was performed. Results: Cartilage defect and the hyaline cartilage graft could be detected in all 19 patients. Hypertrophy of the graft could be found early in 3 patients and debonding in 1 patient. For depicting the graft a short time after surgery. T2-weighted TSE-sequences showed the best results. Six and 12 months after transplantation, spoiled 3D-GRE-sequences like FLASH3D (fast low angle shot) showed reduced artifacts due to magnetic residues from the surgery. Difference images from GRE-sequences with and without MT pulse provided high contrast between cartilage and surrounding tissue. The quantification of the MT effect showed an assimilation of the graft to the original cartilage within 12 months. Indirect MR arthrography showed subchondral contrast medium even 12 months after transplantation in 3 patients. (orig.)

  4. Changes of rabbit meniscus influenced by hyaline cartilage injury of osteoarthritis.

    Science.gov (United States)

    Zhao, Jiajun; Huang, Suizhu; Zheng, Jia; Zhong, Chunan; Tang, Chao; Zheng, Lei; Zhang, Zhen; Xu, Jianzhong

    2014-01-01

    Osteoarthritis (OA) is a common disease in the elderly population. Most of the previous OA-related researches focused on articular cartilage degeneration, osteophyte formation and synovitis etc. However, the role of the meniscus in these pathological changes has not been given enough attention. The goal of our study was to find the pathological changes of the meniscus in OA knee and determine their relationship. 20 months old female Chinese rabbits received either knee damaging operations with articular cartilage scratch method or sham operation randomly on one of their knees. They were sacrificed after 1-6 weeks post-operation. Medial Displacement Index (MDI) for meniscus dislocation, hematoxylin and eosin (HE) for routine histological evaluation, Toluidine blue (TB) stains for evaluating proteoglycans were carried out. Immunohistochemical (IHC) staining was performed with a two-step detection kit. Histological analysis showed chondrocyte clusters around cartilage lesions and moderate loss of proteoglycans in the operation model, as well as MDI increase and all characteristics of OA. High expression of MMP-3 and TIMP-1 also were found in both hyaline cartilage and meniscus. Biomechanical and biochemistry environment around the meniscus is altered when OA occur. If meniscus showed degeneration, subluxation and dysfunction, OA would be more severe. Prompt repair or reconstruction of hyaline cartilage in weight bearing area when it injured could prevent meniscus degeneration and subluxation, then prevent the development of OA.

  5. Femoral cartilage thickness measurements in healthy individuals: learning, practicing and publishing with TURK-MUSCULUS.

    Science.gov (United States)

    Özçakar, Levent; Tunç, Hakan; Öken, Öznur; Ünlü, Zeliha; Durmuş, Bekir; Baysal, Özlem; Altay, Zuhal; Tok, Fatih; Akkaya, Nuray; Doğu, Beril; Çapkın, Erhan; Bardak, Ayşenur; Çarlı, Alparslan Bayram; Buğdaycı, Derya; Toktaş, Hasan; Dıraçoğlu, Demirhan; Gündüz, Berrin; Erhan, Belgin; Kocabaş, Hilal; Erden, Gül; Günendi, Zafer; Kesikburun, Serdar; Omaç, Özlem Köroğlu; Taşkaynatan, Mehmet Ali; Şenel, Kazım; Uğur, Mahir; Yalçınkaya, Ebru Yılmaz; Öneş, Kadriye; Atan, Çiğdem; Akgün, Kenan; Bilgici, Ayhan; Kuru, Ömer; Özgöçmen, Salih

    2014-01-01

    Measurement of the femoral cartilage thickness by using in-vivo musculoskeletal ultrasonography (MSUS) has been previously shown to be a valid and reliable method in previous studies; however, to our best notice, normative data has not been provided before in the healthy population.The aim of our study was to provide normative data regarding femoral cartilage thicknesses of healthy individuals with collaborative use of MSUS. This is across-sectional study run at Physical and Rehabilitation Medicine Departments of 18 Secondary and Tertiary Centers in Turkey. 1544 healthy volunteers (aged between 25-40 years) were recruited within the collaboration of TURK-MUSCULUS (Turkish Musculoskeletal Ultrasonography Study Group). Subjects who had a body mass index value of less than 30 and who did not have signs and symptoms of any degenerative/inflammatory arthritis or other rheumatic diseases, history of knee trauma and previous knee surgery were enrolled. Ultrasonographic measurements were performed axially from the suprapatellar window by using linear probes while subjects' knees were in maximum flexion. Three (mid-point) measurements were taken from both knees (lateral condyle, intercondylar area, medial condyle). A total of 2876 knees (of 817 M, 621 F subjects) were taken into analysis after exclusion of inappropriate images. Mean cartilage thicknesses were significantly lower in females than males (all p< 0.001). Thickness values negatively correlated with age; negatively (females) and positively (males) correlated with smoking. Men who regularly exercised had thicker cartilage than who did not exercise (all p < 0.05). Increased age (in both sexes) and absence of exercise (males) were found to be risk factors for decreased cartilage thicknesses. Further data pertaining to other countries would be interesting to uncover whether ethnic differences also affect cartilage thickness. Collaborative use of MSUS seems to be promising in this regard.

  6. OW FREQUENCY ULTRASOUND APPLICATION IN KNEE ARTHROSCOPY

    Directory of Open Access Journals (Sweden)

    V. V. Pedder

    2016-01-01

    Full Text Available Purpose: in vitro study of ultrasound dissection devices' impact on meniscus and knee cartilage as well as comparison of outcomes with familiar arthroscopic techniques.Materials and methods. Meniscus and joint cartilage specimen obtained during total knee replacement were placed in a normal saline. All experiments were conducted no later than in 2 hours after obtaining and followed by histology of biopsy specimens. In the first series of experiment the authors performed meniscus dissection with ultrasound instrument «Scalpel», cold plasm ablator and surgical scalpel.Results. The first series of experiments demonstrated disruption of fibers orientation on meniscus rim after dissection with scalpel; necrosis depth after coblation is 0,7-0,8 mm. Ultrasound dissection devices leave necrosis depth of 0,1-0,2 mm and smooth cartilage surface. The second series of experiments proved that after shaver application cartilage surface was coarse; certain necrosis sections of 16-90 nm were observed on relatively smooth cartilage surface after coblation. Application of ultrasound «Miller» device leaves smooth cartilage surface with no fibers, no signs of cartilage thinning and necrosis not exceeding 15 nm.Conclusion. The results of experiments confirm that use of low frequency ultrasound dissection devices is advantageous as compared to mechanical and ablation cutting techniques while ensuring histologically proven atraumatic handling of biopsy specimens of meniscus and hyaline cartilage.

  7. In vivo cartilage contact deformation in the healthy human tibiofemoral joint.

    Science.gov (United States)

    Bingham, J T; Papannagari, R; Van de Velde, S K; Gross, C; Gill, T J; Felson, D T; Rubash, H E; Li, G

    2008-11-01

    In vivo cartilage contact deformation is instrumental for understanding human joint function and degeneration. This study measured the total deformation of contacting articular cartilage in the human tibiofemoral joint during in vivo weight-bearing flexion. Eleven healthy knees were magnetic resonance (MR) scanned and imaged with a dual fluoroscopic system while the subject performed a weight-bearing single-leg lunge. The tibia, femur and associated articulating cartilage were constructed from the MR images and combined with the dual fluoroscopic images to determine in vivo cartilage contact deformation from full extension to 120 degrees of flexion. In both compartments, minimum peak compartmental contact deformation occurred at 30 degrees of flexion (24 +/- 6% medial, 17 +/- 7% lateral) and maximum peak compartmental deformation occurred at 120 degrees of flexion (30 +/- 13% medial, 30 +/- 10% lateral) during the weight-bearing flexion from full extension to 120 degrees. Average medial contact areas and peak contact deformations were significantly greater than lateral compartment values (P In addition, cartilage thickness in regions of contact was on average 1.4- and 1.1-times thicker than the average thickness of the tibial and femoral cartilage surfaces, respectively (P line knowledge for investigating the effects of various knee injuries on joint contact biomechanics and the aetiology of cartilage degeneration.

  8. 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil

    Energy Technology Data Exchange (ETDEWEB)

    Notohamiprodjo, Mike, E-mail: mike.notohamiprodjo@med.uni-muenchen.de [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Horng, Annie; Kuschel, Bernhard [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Paul, Dominik [Siemens Healthcare, Erlangen, Henkestr. 127, 91054 Erlangen (Germany); Li, Guobin [Siemens Mindit Magnetic Resonance Ltd., Shenzhen, Guang Dong (China); Raya, Jose G. [Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States); Reiser, Maximilian F. [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Glaser, Christian [Department of Clinical Radiology, University Hospitals Munich, Marchioninistrasse 15, 81377 Munich (Germany); Department of Radiology, Langone Medical Center, Bernard and Irene Schwartz Center for Biomedical Imaging New York University, 660 First Avenue, 4th Floor, New York, NY 10016 (United States)

    2012-11-15

    Objectives: To evaluate the clinical usefulness of an optimized 3D-Fast-Spin-Echo-sequence (3D-SPACE) in combination with a 15-channel knee-coil for 3D-imaging of the knee at 3 T. Methods: 15 volunteers and 50 consecutive patients were examined at 3 T with fat-saturated moderately T2-weighted 3D-SPACE (Voxel-size (VS): 0.6 mm Multiplication-Sign 0.5 mm Multiplication-Sign 0.5 mm/acquisition-time (AT) 10:44 min) using a 15-channel knee-coil. Flip angle optimization and radial k-space reordering were applied. Signal- and contrast-to-noise-ratios (SNR, CNR) were compared to non-optimized 3D-SPACE (8-channel knee-coil) and conventional 2D-FSE (VS: 0.4 mm Multiplication-Sign 0.4 mm Multiplication-Sign 3 mm/total AT: 12 min). Two radiologists independently rated depiction of internal knee structures and assessed detection and depiction of cartilage and meniscus abnormalities compared to conventional 2D-FSE-sequences. Sensitivity and specificity were calculated for a subgroup with arthroscopy as reference standard. Statistical analysis was performed with paired t-tests, confidence intervals and weighted-{kappa}-coefficients. Results: SNR and CNR particularly of fluid/cartilage of optimized 3D-SPACE were significantly higher (p < 0.05) than of the non-optimized 3D-sequence and conventional 2D-sequence. Blurring and image inhomogeneity were reduced in the optimized sequence. The thin slice-thickness was beneficial for depiction of problematical anatomical structures such as meniscal roots. 3D-SPACE showed significantly higher diagnostic confidence (p < 0.05) for diagnosis of cartilage lesions of the femoral trochlea. Overall sensitivity and specificity of 3D-SPACE and 2D-FSE for cartilage lesions was 82.3%/80.2% and 79.4%/84.2% and 100%/86.4% and 92.3%/81.8% for meniscus lesions. Conclusions: Optimized 3D-SPACE provides significantly higher signal and contrast compared to conventional 2D-FSE, particularly for fluid and cartilage, leading to improved diagnostic confidence

  9. Magnetization transfer contrast MR imaging of the knee at 0.3 T

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Onaya, Hiroaki; Niitsu, Mamoru; Anno, Izumi; Itai, Yuji; Nishimura, Hiroshi; Kajiyama, Koji; Masuda, Tomonori; Nakajima, Kotaro.

    1994-01-01

    It has been reported that magnetization transfer contrast (MTC) images were effective in evaluating the articular cartilage. However, only one in vivo study of the articular cartilage in the knee has been demonstrated at 1.5T. The purpose of this study was to evaluate the optimal off-resonance MTC pulse at 0.3T MR imager and assess its clinical usefulness. Five normal volunteers and eleven patients with suspected knee injuries were investigated using off-resonance sinc, gaussian, constant shaped irradiation pulses. All MTC images revealed higher contrast and contrast-to-noise (C/N) ratio between articular cartilage and external reference (saline) in the normal volunteers' knee than conventional gradient recalled echo images. MTC images with the gaussian or sinc shaped pulse were judged superior to those with constant wave pulse because the former images showed a fewer artifact with lower specific absorption rate than the latter images. The sinc MTC images were performed with the lowest SAR. The gaussian MTC images revealed better contrast and C/N between articular cartilage and joint fluid than the sinc MTC images in patients. 3D MTC images using Guassian pulse were also performed within a clinically tolerable imaging time (13 min 39 sec). Thus, MTC images in the knee at 0.3T using off-resonance pulse may be effective to assess knee injury due to better contrast between articular cartilage and joint fluid. (author)

  10. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Science.gov (United States)

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  11. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  12. Induction of spontaneous hyaline cartilage regeneration using a double-network gel: efficacy of a novel therapeutic strategy for an articular cartilage defect.

    Science.gov (United States)

    Kitamura, Nobuto; Yasuda, Kazunori; Ogawa, Munehiro; Arakaki, Kazunobu; Kai, Shuken; Onodera, Shin; Kurokawa, Takayuki; Gong, Jian Ping

    2011-06-01

    A double-network (DN) gel, which was composed of poly-(2-acrylamido-2-methylpropanesulfonic acid) and poly-(N,N'-dimetyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. To establish the efficacy of a therapeutic strategy for an articular cartilage defect using a DN gel. Controlled laboratory study. A 4.3-mm-diameter osteochondral defect was created in rabbit trochlea. A DN gel plug was implanted into the defect of the right knee so that a defect 2 mm in depth remained after surgery. An untreated defect of the left knee provided control data. The osteochondral defects created were examined by histological and immunohistochemical evaluations, surface assessment using confocal laser scanning microscopy, and real-time polymerase chain reaction (PCR) analysis at 4 and 12 weeks. Samples were quantitatively evaluated with 2 scoring systems reported by Wayne et al and O'Driscoll et al. The DN gel-implanted defect was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type 2 collagen. Quantitative evaluation using the grading scales revealed a significantly higher score in the DN gel-implanted defects compared with the untreated control at each period (P cartilage at 12 weeks (P = .0106), while there was no statistical difference between the DN gel-implanted and normal knees. This study using the mature rabbit femoral trochlea osteochondral defect model demonstrated that DN gel implantation is an effective treatment to induce cartilage regeneration in vivo without any cultured cells or mammalian-derived scaffolds. This study has prompted us to develop a potential innovative strategy to repair cartilage lesions in the field of joint surgery.

  13. Osteoarthritic Cartilage is more Homogeneous than Healthy Cartilage – Identification of a Superior ROI Co-localised with a Major Risk Factor for Osteoarthritis

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Dam, Erik B.; Nielsen, Mads

    2007-01-01

    Rationale and Objectives Cartilage loss as determined by magnetic resonance imaging (MRI) or joint space narrowing as determined by x-ray is the result of cartilage erosion. However, metabolic processes within the cartilage that later result in cartilage loss may be a more sensitive assessment...... method for early changes. Recently, it was shown that cartilage homogeneity visualized by MRI representing the biochemical changes undergoing in the cartilage is a potential marker for early detection of knee osteoarthritis (OA) and is also able to significantly separate groups of healthy subjects from...... those with OA. The purpose of this study was twofold. First, we wished to evaluate whether the results on cartilage homogeneity from the previous study can be reproduced using an independent population. Second, based on the homogeneity framework, we present an automatic technique that partitions...

  14. Impact of exercise on articular cartilage: Systematic reviews and meta-analyses of randomised controlled trials

    DEFF Research Database (Denmark)

    Bricca, Alessio

    2018-01-01

    This thesis summarizes the evidence on the impact of exercise on articular cartilage. No evidence was found to support beneficial effects of exercise on articular cartilage, although in people at risk of, or with, knee osteoarthritis, exercise is not harmful for articular cartilage structure and ...

  15. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3 T system scientific research

    International Nuclear Information System (INIS)

    Milewski, Matthew D.; Smitaman, Edward; Moukaddam, Hicham; Katz, Lee D.; Essig, David A.; Medvecky, Michael J.; Haims, Andrew H.

    2012-01-01

    Highlights: ► Compared 3D to 2D MR sequences for articular cartilage in the knee. ► 3D imaging acquired in a single plane, 2D acquired in 3 separate planes. ► No significant difference in accuracy between 3D and 2D sequences. - Abstract: Purpose: We sought to retrospectively compare the accuracy of a three-dimensional fat-suppressed, fast spin-echo sequences acquired in the sagittal plane, with multiplanar reconstructions to that of two-dimensional fat-suppressed, fast spin echo sequences acquired in three planes on a 3 T MR system for the evaluation of articular cartilage in the knee. Materials and methods: Our study group consisted of all patients (N = 34) that underwent 3 T MR imaging of the knee at our institution with subsequent arthroscopy over an 18-month period. There were 21 males and 13 females with an average age of 36 years. MR images were reviewed by 3 musculoskeletal radiologists, blinded to operative results. 3D and 2D sequences were reviewed at different sittings separated by 4 weeks to prevent bias. Six cartilage surfaces were evaluated both with MR imaging and arthroscopically with a modified Noyes scoring system and arthroscopic results were used as the gold standard. Sensitivity, specificity, and accuracy were calculated for each reader along with Fleiss Kappa assessment agreement between the readers. Accuracies for each articular surface were compared using a difference in proportions test with a 95% confidence interval and statistical significance was calculated using a Fisher's Exact Test. Results: Two hundred and four articular surfaces were evaluated and 49 articular cartilage lesions were present at arthroscopy. For the patellofemoral surfaces, the sensitivity, specificity, and accuracy were 76.5%, 83%, and 78.2% for the 3D sequences and were 82.3%, 76%, and 82% respectively for the 2D sequences. For the medial compartment surfaces, the sensitivity, specificity, and accuracy were 81.1%, 65.1%, and 78.5% for the 3D sequences and were

  16. Musculoskeletal MR: knee

    International Nuclear Information System (INIS)

    Staebler, A.; Glaser, C.; Reiser, M.

    2000-01-01

    Magnetic resonance imaging is the most sensitive, specific, and accurate noninvasive method for diagnosing internal derangement of the knee. During the past 15 years knowledge of pathologic conditions of the knee had evolved significantly. Beyond the basic principles of imaging knee injuries great impact was made on the understanding of indirect or collateral findings, even in rare diseases. In this article the spectrum of disorders of the knee are reviewed and an overview of the current literature is given. This includes considerations about how to achieve a high-standard MR imaging study of the knee, and principles of imaging anterior cruciate ligament and meniscal tears. A focus is put on distinct diseases including intra-articular and intraosseous ganglion cysts, iliotibial band friction syndrome, transient osteoporosis, osteonecrosis, osteochondritis dissecans, and imaging of the articular cartilage. (orig.)

  17. T1rho, T{sub 2} and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients - a 3.0-Tesla MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Robert [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); University Hospitals-Campus Grosshadern, Ludwig Maximilians University of Munich, Department of Clinical Radiology, Munich (Germany); Luke, Anthony; Ma, C.B. [University of California, San Francisco, Department of Orthopedic Surgery, San Francisco, CA (United States); Li, Xiaojuan; Carballido-Gamio, Julio; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States)

    2009-01-15

    (1) To assess the degree of focal cartilage abnormalities in physically active and sedentary healthy subjects as well as in patients with early osteoarthritis (OA). (2) To determine the diagnostic value of T2 and T1rho measurements in identifying asymptomatic physically active subjects with focal cartilage lesions. Thirteen asymptomatic physically active subjects, 7 asymptomatic sedentary subjects, and 17 patients with mild OA underwent 3.0-T MRI of the knee joint. T1rho and T2 values, cartilage volume and thickness, as well as the WORMS scores were obtained. Nine out of 13 active healthy subjects had focal cartilage abnormalities. T1rho and T2 values in active subjects with and without focal cartilage abnormalities differed significantly (p<0.05). T1rho and T2 values were significantly higher (p<0.05) in early OA patients compared to healthy subjects. T1rho measurements were superior to T2 in differentiating OA patients from healthy subjects, yet T1rho was moderately age-dependent. (1) Active subjects showed a high prevalence of focal cartilage abnormalities and (2) active subjects with and without focal cartilage abnormalities had different T1rho and T2 composition of cartilage. Thus, T1rho and T2 could be a parameter suited to identify active healthy subjects at higher risk for developing cartilage pathology. (orig.)

  18. RNA Microarray Analysis of Macroscopically Normal Articular Cartilage from Knees Undergoing Partial Medial Meniscectomy: Potential Prediction of the Risk for Developing Osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Rai

    Full Text Available (i To provide baseline knowledge of gene expression in macroscopically normal articular cartilage, (ii to test the hypothesis that age, body-mass-index (BMI, and sex are associated with cartilage RNA transcriptome, and (iii to predict individuals at potential risk for developing "pre-osteoarthritis" (OA based on screening of genetic risk-alleles associated with OA and gene transcripts differentially expressed between normal and OA cartilage.Healthy-appearing cartilage was obtained from the medial femoral notch of 12 knees with a meniscus tear undergoing arthroscopic partial meniscectomy. Cartilage had no radiographic, magnetic-resonance-imaging or arthroscopic evidence for degeneration. RNA was subjected to Affymetrix microarrays followed by validation of selected transcripts by microfluidic digital polymerase-chain-reaction. The underlying biological processes were explored computationally. Transcriptome-wide gene expression was probed for association with known OA genetic risk-alleles assembled from published literature and for comparison with gene transcripts differentially expressed between healthy and OA cartilage from other studies.We generated a list of 27,641 gene transcripts in healthy cartilage. Several gene transcripts representing numerous biological processes were correlated with age and BMI and differentially expressed by sex. Based on disease-specific Ingenuity Pathways Analysis, gene transcripts associated with aging were enriched for bone/cartilage disease while the gene expression profile associated with BMI was enriched for growth-plate calcification and OA. When segregated by genetic risk-alleles, two clusters of study patients emerged, one cluster containing transcripts predicted by risk studies. When segregated by OA-associated gene transcripts, three clusters of study patients emerged, one of which is remarkably similar to gene expression pattern in OA.Our study provides a list of gene transcripts in healthy

  19. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint

    International Nuclear Information System (INIS)

    Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; De Smet, Arthur; Fine, Jason

    2006-01-01

    To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation. (orig.)

  20. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint

    Energy Technology Data Exchange (ETDEWEB)

    Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; De Smet, Arthur [University of Wisconsin Hospital Clinical Science Center-E3/311, Department of Radiology, Madison, WI (United States); Fine, Jason [University of Wisconsin Clinical Science Center-K6/4675, Department of Statistics, Madison, WI (United States)

    2006-12-15

    To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation. (orig.)

  1. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint.

    Science.gov (United States)

    Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; Fine, Jason; De Smet, Arthur

    2006-12-01

    To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation.

  2. Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions

    Science.gov (United States)

    Schneider, E; Nevitt, M; McCulloch, C; Cicuttini, FM; Duryea, J; Eckstein, F; Tamez-Pena, J

    2012-01-01

    Objective To compare precision and evaluate equivalence of femorotibial cartilage volume (VC) and mean cartilage thickness (ThCtAB.Me) from independent segmentation teams using identical MR images from three series: sagittal 3D Dual Echo in the Steady State (DESS), coronal multi-planar reformat (DESS-MPR) of DESS and coronal 3D Fast Low Angle SHot (FLASH). Design 19 subjects underwent test-retest MR imaging at 3 Tesla. Four teams segmented the cartilage using prospectively defined plate regions and rules. Mixed models analysis of the pooled data were used to evaluate the effect of acquisition, team and plate on precision and Pearson correlations and mixed models to evaluate equivalence. Results Segmentation team differences dominated measurement variability in most cartilage regions for all image series. Precision of VC and ThCtAB.Me differed significantly by team and cartilage plate, but not between FLASH and DESS. Mean values of VC and ThCtAB.Me differed by team (P<0.05) for DESS, FLASH and DESS-MPR, FLASH VC was 4–6% larger than DESS in the medial tibia and lateral central femur, and FLASH ThCtAB.Me was 5–6% larger in the medial tibia, but 4–8% smaller in the medial central femur. Correlations betweenDESS and FLASH for VC and ThCtAB.Me were high (r=0.90–0.97), except for DESS versus FLASH medial central femur ThCtAB.Me (r=0.81–0.83). Conclusions Cartilage morphology metrics from different image contrasts had similar precision, were generally equivalent, and may be combined for cross-sectional analyses if potential systematic offsets are accounted for. Data from different teams should not be pooled unless equivalence is demonstrated for cartilage metrics of interest. PMID:22521758

  3. [Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group "Tissue Regeneration" of the German Society of Orthopaedic Surgery and Traumatology (DGOU)].

    Science.gov (United States)

    Niemeyer, P; Andereya, S; Angele, P; Ateschrang, A; Aurich, M; Baumann, M; Behrens, P; Bosch, U; Erggelet, C; Fickert, S; Fritz, J; Gebhard, H; Gelse, K; Günther, D; Hoburg, A; Kasten, P; Kolombe, T; Madry, H; Marlovits, S; Meenen, N M; Müller, P E; Nöth, U; Petersen, J P; Pietschmann, M; Richter, W; Rolauffs, B; Rhunau, K; Schewe, B; Steinert, A; Steinwachs, M R; Welsch, G H; Zinser, W; Albrecht, D

    2013-02-01

    Autologous chondrocyte transplantation/implantation (ACT/ACI) is an established and recognised procedure for the treatment of localised full-thickness cartilage defects of the knee. The present review of the working group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Traumatology (DGOU) describes the biology and function of healthy articular cartilage, the present state of knowledge concerning potential consequences of primary cartilage lesions and the suitable indication for ACI. Based on current evidence, an indication for ACI is given for symptomatic cartilage defects starting from defect sizes of more than 3-4 cm2; in the case of young and active sports patients at 2.5 cm2. Advanced degenerative joint disease is the single most important contraindication. The review gives a concise overview on important scientific background, the results of clinical studies and discusses advantages and disadvantages of ACI. Georg Thieme Verlag KG Stuttgart · New York.

  4. Effects of Platelet-Rich Plasma & Platelet-Rich Fibrin with and without Stromal Cell-Derived Factor-1 on Repairing Full-Thickness Cartilage Defects in Knees of Rabbits

    Directory of Open Access Journals (Sweden)

    Soghra Bahmanpour

    2016-11-01

    Full Text Available Background: The purpose of this study was to create biomaterial scaffolds like platelet-rich plasma (PRP and platelet-rich fibrin (PRF containing stromal cell-derived factor-1 (SDF1 as a chemokine to induce hyaline cartilage regeneration of rabbit knee in a full thickness defect. Methods: We created a full thickness defect in the trochlear groove of thirty-six bilateral knees of eighteen mature male rabbits. The knees were randomly divided into six groups (group I: untreated control, group II: PRP, group III: PRF, group IV: Gelatin+SDF1, group V: PRP+SDF1, and group VI: PRF+SDF1. After four weeks, the tissue specimens were evaluated by macroscopic examination and histological grading, immunofluorescent staining for collagen type II, and analyzed for cartilage marker genes by real-time PCR. The data were compared using statistical methods (SPSS 20, Kruskal-Wallis test, Bonferroni post hoc test and P<0.05. Results: Macroscopic evaluations revealed that international cartilage repair society (ICRS scores of the PRF+SDF1 group were higher than other groups. Microscopic analysis showed that the ICRS score of the PRP group was significantly lower than other groups. Immunofluorescent staining for collagen II demonstrated a remarkable distribution of type II collagen in the Gel+SDF1, PRP+SDF1 and PRF+SDF1 groups compared with other groups. Real-time PCR analysis revealed that mRNA expression of SOX9 and aggrecan were significantly greater in the PRF+SDF1, PRP+SDF1, Gel+SDF1 and PRF groups than the control group (P<0.05. Conclusion: Our results indicate that implantation of PRF scaffold containing SDF1 led to the greatest evaluation scores of full-thickness lesions in rabbits.

  5. Postero-anterior radiogram of the knee in weight-bearing and semiflexion. Comparison with MR imaging

    International Nuclear Information System (INIS)

    Boegaard, T.; Rudling, O.; Sanfridsson, J.; Jonsson, K.; Saxne, T.; Svensson, B.

    1997-01-01

    Purpose: The purpose was four-fold: to assess the reproducibility of p.a. weight-bearing radiograms of the knee and the minimal joint-space (MJS) width measurements in these radiograms; to compare the MJS with MR-detected cartilage defects; to evaluate the location of these cartilage defects; and to estimate the relation between meniscal abnormalities and joint-space narrowing. Material and Methods: Fifty-nine individuals, aged 41-58 years (mean 50), with chronic knee pain were examined by means of p.a. weight-bearing radiograms in semiflexion with fluoroscopic guidance of the knee joint. The MJS was measured with a standard ruler. On the same day MR imaging was performed with proton-density- and T2-weighted turbo spin-echo on a 1.0 T imager. Meniscal abnormalities and cartilage defects in the tibiofemoral joint (TFJ) were noted. Results and Conclusion: The p.a. view of the knee and the MJS measurements were reproducible. MJS of 3 mm is a limit in diagnosing joint-space narrowing in knees with MR-detected cartilage defects. There was a high proportion (p<0.001) of meniscal abnormality within the narrowed compartments in comparison with those that were not narrowed. A larger number of the cartilage defects (p<0.05) was found in the medial femoral condyle than in any of the other condyles of the TFJ. The defects had a dorsal location (p<0.001) as shown in the weight-bearing radiograms of the knee in semiflexion. (orig.)

  6. An evaluation of the histological effects of intra-articular methadone in the canine model.

    Science.gov (United States)

    Jones, Timothy A; Hand, Walter R; Ports, Michael D; Unger, Daniel V; Herbert, Daniel; Pellegrini, Joseph E

    2003-02-01

    Methadone hydrochloride is an opiate that has pharmacodynamic and pharmacokinetic properties that suggest it may provide longer analgesia than morphine when administered via the intra-articular route. However, no studies to date have been conducted examining the effects of intra-articular methadone hydrochloride on local tissues. Therefore, the purpose of this study was to determine the histopathologic effects of intra-articular methadone hydrochloride on local tissues in the canine knee. Nine canines, 1 to 4 years old, weighing between 20 kg and 23 kg were used. All canines had their knees randomized to receive either bupivacaine, 0.5% with epinephrine 1:200,000 (4.5 mL), and 5 mg methadone hydrochloride (0.5 mL) for the study knee, or bupivacaine, 0.5% with epinephrine 1:200,000 (4.5 mL), and 0.5 mL normal saline for the control knee. Serum methadone hydrochloride levels were obtained on all canines at 6 and 24 hours. Canines were randomly assigned to 1 of 3 groups to be euthanized at either 24 hours, 14 days, or 28 days. Following euthanization and necropsy, synovial fluid levels and tissue samples were obtained and examined for histopathologic changes. Synovial fluid samples noted a few white blood cells at 24 hours and none at 14 and 28 days. Tissue samples showed no histopathologic changes, and serum concentration levels of methadone hydrochloride were negligible.

  7. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong; Min, Byoung-Hyun; Yoon, Seung-Hyun

    2009-01-01

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  8. T2 Relaxation Time Mapping of Proximal Tibiofibular Cartilage by 3-Tesla Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kwack, Kyu-Sung; Cho, Jae Hyun; Kim, Jun Man; Kim, Sun Yong (Dept. of Radiology, Ajou Univ. Medical Center, Suwon (Korea)); Min, Byoung-Hyun; Yoon, Seung-Hyun (Cartilage Regeneration Center, Ajou Univ. Medical Center, Suwon (Korea))

    2009-11-15

    Background: The proximal tibiofibular joint (PTFJ) can be considered the fourth compartment of the knee joint. However, there have been no studies of the T2 values (T2 relaxation time) of PTFJ cartilage. Purpose: To assess the T2 values of PTFJ cartilage at 3T magnetic resonance imaging (MRI), and to show the clinical utility of T2 values of PTFJ cartilage for the diagnosis of osteoarthritis (OA). Material and Methods: 118 patients who had knee MR imaging and knee radiography were enrolled. MRI was performed using a 3T MRI scanner, and T2 maps were calculated from a sagittal multi-echo acquisition. Two regions of interest (ROIs) were positioned within PTFJ cartilage and medial femoral condyle (MFC) cartilage. The average T2 value and standard deviation (SD) of each ROI were recorded. Using PTFJ cartilage as a standard reference, the T2 index ((MFC/PTFJ)x100) and T2SD index ((MFCSD/PTFJSD)x100) were calculated. A paired t test was performed to compare the mean and SD of ROIs within PTFJ and MFC cartilage. Correlation analyses were performed among the parameters age, Kellgren-Lawrence (KL) score, means and SDs of ROIs within PTFJ and MFC cartilage, T2 index, and T2SD index. Results: PTFJ cartilage had a significantly shorter T2 value than did MFC cartilage (P<0.0001). ROIs within PTFJ cartilage showed significantly smaller SDs than did those within MFC cartilage (P<0.0001). The average T2 value and SD of MFC and the T2SD index showed a positive correlation to the KL score (P<0.05). The correlation coefficients for the average T2 value, SD, and T2SD index of MFC were R=0.203, 0.254, and 0.268, respectively. However, there was no significant correlation between T2 values of PTFJ cartilage and KL score (P=0.643). Conclusion: PTFJ cartilage showed shorter and more homogeneous T2 values with a small SD than did MFC cartilage, regardless of the degree of OA at femorotibial compartments. PTFJ cartilage may be a useful internal standard reference to diagnose OA and would be

  9. Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention

    Science.gov (United States)

    Sabaawy, Hatem E.

    2015-01-01

    Osteoarthritis (OA) is associated with articular cartilage abnormalities and affects people of older age: preventative or therapeutic treatment measures for OA and related articular cartilage disorders remain challenging. In this perspective review, we have integrated multiple biological, morphological, developmental, stem cell and homeostasis concepts of articular cartilage to develop a paradigm for cartilage regeneration. OA is conceptually defined as an injury of cartilage that initiates chondrocyte activation, expression of proteases and growth factor release from the matrix. This regenerative process results in the local activation of inflammatory response genes in cartilage without migration of inflammatory cells or angiogenesis. The end results are catabolic and anabolic responses, and it is the balance between these two outcomes that controls remodelling of the matrix and regeneration. A tantalizing clinical clue for cartilage regrowth in OA joints has been observed in surgically created joint distraction. We hypothesize that cartilage growth in these distracted joints may have a biological connection with the size of organs and regeneration. Therefore we propose a novel, practical and nonsurgical intervention to validate the role of distraction in cartilage regeneration in OA. The approach permits normal wake-up activity while during sleep; the index knee is subjected to distraction with a pull traction device. Comparison of follow-up magnetic resonance imaging (MRI) at 3 and 6 months of therapy to those taken before therapy will provide much-needed objective evidence for the use of this mode of therapy for OA. We suggest that the paradigm presented here merits investigation for treatment of OA in knee joints. PMID:26029269

  10. Runners with Patellofemoral Pain Exhibit Greater Peak Patella Cartilage Stress Compared to Pain-Free Runners.

    Science.gov (United States)

    Liao, Tzu-Chieh; Keyak, Joyce H; Powers, Christopher M

    2018-02-27

    The purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared to pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress during running. Twenty-two female recreational runners participated (12 with PFP and 10 pain-free controls). Patella cartilage stress profiles were quantified using subject-specific finite element models simulating the maximum knee flexion angle during stance phase of running. Input parameters to the finite element model included subject-specific patellofemoral joint geometry, quadriceps muscle forces, and lower extremity kinematics in the frontal and transverse planes. Tibiofemoral joint kinematics and kinetics were quantified to determine the best predictor of stress using stepwise regression analysis. Compared to the pain-free runners, those with PFP exhibited greater peak hydrostatic pressure (PFP vs. control, 21.2 ± 5.6 MPa vs. 16.5 ± 4.6 MPa) and maximum shear stress (11.3 ± 4.6 MPa vs. 8.7 ± 2.3 MPa). Knee external rotation was the best predictor of peak hydrostatic pressure and peak maximum shear stress (38% and 25% of variances, respectively) followed by the knee extensor moment (21% and 25% of variances, respectively). Runners with PFP exhibit greater peak patella cartilage stress during running compared to pain-free individuals. The combination of knee external rotation and a high knee extensor moment best predicted elevated peak stress during running.

  11. Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis

    International Nuclear Information System (INIS)

    Srinivasan, Padma P; McCoy, Sarah Y; Yang Weidong; Farach-Carson, Mary C; Kirn-Safran, Catherine B; Jha, Amit K; Jia Xinqiao

    2012-01-01

    The goal of this study was to use bioengineered injectable microgels to enhance the action of bone morphogenetic protein 2 (BMP2) and stimulate cartilage matrix repair in a reversible animal model of osteoarthritis (OA). A module of perlecan (PlnD1) bearing heparan sulfate (HS) chains was covalently immobilized to hyaluronic acid (HA) microgels for the controlled release of BMP2 in vivo. Articular cartilage damage was induced in mice using a reversible model of experimental OA and was treated by intra-articular injection of PlnD1-HA particles with BMP2 bound to HS. Control injections consisted of BMP2-free PlnD1-HA particles, HA particles, free BMP2 or saline. Knees dissected following these injections were analyzed using histological, immunostaining and gene expression approaches. Our results show that knees treated with PlnD1-HA/BMP2 had lesser OA-like damage compared to control knees. In addition, the PlnD1-HA/BMP2-treated knees had higher mRNA levels encoding for type II collagen, proteoglycans and xylosyltransferase 1, a rate-limiting anabolic enzyme involved in the biosynthesis of glycosaminoglycan chains, relative to control knees (PlnD1-HA). This finding was paralleled by enhanced levels of aggrecan in the articular cartilage of PlnD1-HA/BMP2-treated knees. Additionally, decreases in the mRNA levels encoding for cartilage-degrading enzymes and type X collagen were seen relative to controls. In conclusion, PlnD1-HA microgels constitute a formulation improvement compared to HA for efficient in vivo delivery and stimulation of proteoglycan and cartilage matrix synthesis in mouse articular cartilage. Ultimately, PlnD1-HA/BMP2 may serve as an injectable therapeutic agent for slowing or inhibiting the onset of OA after knee injury.

  12. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    International Nuclear Information System (INIS)

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R.

    2015-01-01

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively

  13. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R., E-mail: DRHaudenschild@ucdavis.edu

    2015-05-08

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively.

  14. Glucosamine but not ibuprofen alters cartilage turnover in osteoarthritis patients in response to physical training

    DEFF Research Database (Denmark)

    Petersen, Susanne Germann; Saxne, T; Heinegard, D

    2010-01-01

    OBJECTIVE: To investigate changes in levels of serum cartilage oligomeric matrix protein (COMP) and urine c-telopeptide of type-2 collagen (CTX-II) as markers for cartilage turnover in patients with osteoarthritis (OA) of the knee, in response to muscle strength training in combination with treat......OBJECTIVE: To investigate changes in levels of serum cartilage oligomeric matrix protein (COMP) and urine c-telopeptide of type-2 collagen (CTX-II) as markers for cartilage turnover in patients with osteoarthritis (OA) of the knee, in response to muscle strength training in combination......). RESULTS: All three groups increased their muscle strength following 12 weeks of strength training (Preduced in the glucosamine-treated group after the training period (P=0.012), whereas they did not change in the two other groups. Glucosamine reduced COMP statistically...

  15. Effect of low-dose irradiation on structural and mechanical properties of hyaline cartilage-like fibrocartilage.

    Science.gov (United States)

    Öncan, Tevfik; Demirağ, Burak; Ermutlu, Cenk; Yalçinkaya, Ulviye; Özkan, Lütfü

    2013-01-01

    The aim of this study was to analyze the effect of low-dose irradiation on fibrous cartilage and to obtain a hyaline cartilage-like fibrocartilage (HCLF) with similar structural and mechanical properties to hyaline cartilage. An osteochondral defect was created in 40 knees of 20 rabbits. At the 7th postoperative day, a single knee of each rabbit was irradiated with a total dose of 5.0 Gy in 1.0 Gy fractions for 5 days (radiotherapy group), while the other knee was not irradiated (control group). Rabbits were then divided into four groups of 5 rabbits each. The first three groups were sacrificed at the 4th, 8th and the 12th postoperative weeks and cartilage defects were macroscopically and microscopically evaluated. The remaining group of 5 rabbits was sacrificed at the 12th week and biomechanical compression tests were performed on the cartilage defects. There was no significant biomechanical difference between the radiotherapy and the control group (p=0.686). There was no significant macroscopic and microscopic difference between groups (p=0.300). Chondrocyte clustering was observed in the irradiated group. Low-dose irradiation does not affect the mechanical properties of HCLF in vivo. However, structural changes such as chondrocyte clustering were observed.

  16. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    Science.gov (United States)

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  17. Associations between MRI-defined structural pathology and generalized and localized knee pain - the Oulu Knee Osteoarthritis study.

    Science.gov (United States)

    Kaukinen, P; Podlipská, J; Guermazi, A; Niinimäki, J; Lehenkari, P; Roemer, F W; Nieminen, M T; Koski, J M; Arokoski, J P A; Saarakkala, S

    2016-09-01

    To determine the associations between multi-feature structural pathology assessed using magnetic resonance imaging (MRI) and the presence of knee pain, and to determine the associations between the locations of structural changes and different knee pain patterns. Eighty symptomatic subjects with knee pain and suspicion or diagnosis of knee OA and 63 asymptomatic subjects underwent knee MRI. Severity of structural changes was graded by MRI Osteoarthritis Knee Score (MOAKS) in separate knee locations. The associations between cartilage damage, bone marrow lesions (BMLs), osteophytes, Hoffa's synovitis, effusion-synovitis, meniscal damage and structural pathologies in ligaments, tendons and bursas and both the presence of pain and the knee pain patterns were assessed. The presence of Hoffa's synovitis (adjusted RR 1.6, 95% CI 1.2-1.3) and osteophytes in any region (2.07, 1.19-3.60) was significantly associated with the presence of pain. Any Hoffa's synovitis was associated with patellar pain (adjusted RR 4.70, 95% CI 1.19-3.60) and moderate-to-severe Hoffa's synovitis with diffuse pain (2.25, 1.13-4.50). Medial knee pain was associated with cartilage loss in the medial tibia (adjusted RR 2.66, 95% CI 1.22-5.80), osteophytes in the medial tibia (2.66, 1.17-6.07) and medial femur (2.55, 1.07-6.09), medial meniscal maceration (2.20, 1.01-4.79) and anterior meniscal extrusions (2.78, 1.14-6.75). Hoffa's synovitis and osteophytes were strongly associated with the presence of knee pain. Medial pain was associated most often with medially located structural pathologies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Cartilage immunoprivilege depends on donor source and lesion location.

    Science.gov (United States)

    Arzi, B; DuRaine, G D; Lee, C A; Huey, D J; Borjesson, D L; Murphy, B G; Hu, J C Y; Baumgarth, N; Athanasiou, K A

    2015-09-01

    The ability to repair damaged cartilage is a major goal of musculoskeletal tissue engineering. Allogeneic (same species, different individual) or xenogeneic (different species) sources can provide an attractive source of chondrocytes for cartilage tissue engineering, since autologous (same individual) cells are scarce. Immune rejection of non-autologous hyaline articular cartilage has seldom been considered due to the popular notion of "cartilage immunoprivilege". The objective of this study was to determine the suitability of allogeneic and xenogeneic engineered neocartilage tissue for cartilage repair. To address this, scaffold-free tissue engineered articular cartilage of syngeneic (same genetic background), allogeneic, and xenogeneic origin were implanted into two different locations of the rabbit knee (n=3 per group/location). Xenogeneic engineered cartilage and control xenogeneic chondral explants provoked profound innate inflammatory and adaptive cellular responses, regardless of transplant location. Cytological quantification of immune cells showed that, while allogeneic neocartilage elicited an immune response in the patella, negligible responses were observed when implanted into the trochlea; instead the responses were comparable to microfracture-treated empty defect controls. Allogeneic neocartilage survived within the trochlea implant site and demonstrated graft integration into the underlying bone. In conclusion, the knee joint cartilage does not represent an immune privileged site, strongly rejecting xenogeneic but not allogeneic chondrocytes in a location-dependent fashion. This difference in location-dependent survival of allogeneic tissue may be associated with proximity to the synovium. Through a series of in vivo studies this research demonstrates that articular cartilage is not fully immunoprivileged. In addition, we now show that anatomical location of the defect, even within the same joint compartment, strongly influences the degree of the

  19. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.

    Science.gov (United States)

    White, Lawrence M; Sussman, Marshall S; Hurtig, Mark; Probyn, Linda; Tomlinson, George; Kandel, Rita

    2006-11-01

    To prospectively assess T2 mapping characteristics of normal articular cartilage and of cartilage at sites of arthroscopic repair, including comparison with histologic results and collagen organization assessed at polarized light microscopy (PLM). Study protocol was compliant with the Canadian Council on Animal Care Guidelines and approved by the institutional animal care committee. Arthroscopic osteochondral autograft transplantation (OAT) and microfracture arthroplasty (MFx) were performed in knees of 10 equine subjects (seven female, three male; age range, 3-5 years). A site of arthroscopically normal cartilage was documented in each joint as a control site. Joints were harvested at 12 (n = 5) and 24 (n = 5) weeks postoperatively and were imaged at 1.5-T magnetic resonance (MR) with a 10-echo sagittal fast spin-echo acquisition. T2 maps of each site (21 OAT harvest, 10 MFx, 12 OAT plug, and 10 control sites) were calculated with linear least-squares curve fitting. Cartilage T2 maps were qualitatively graded as "organized" (normal transition of low-to-high T2 signal from deep to superficial cartilage zones) or "disorganized." Quantitative mean T2 values were calculated for deep, middle, and superficial cartilage at each location. Results were compared with histologic and PLM assessments by using kappa analysis. T2 maps were qualitatively graded as organized at 20 of 53 sites and as disorganized at 33 sites. Perfect agreement was seen between organized T2 and histologic findings of hyaline cartilage and between disorganized T2 and histologic findings of fibrous reparative tissue (kappa = 1.0). Strong agreement was seen between organized T2 and normal PLM findings and between disorganized T2 and abnormal PLM findings (kappa = .92). Quantitative assessment of the deep, middle, and superficial cartilage, respectively, showed mean T2 values of 53.3, 58.6, and 54.9 msec at reparative fibrous tissue sites and 40.7, 53.6, and 61.6 msec at hyaline cartilage sites. A

  20. Hyaline cartilage involvement in patients with gout and calcium pyrophosphate deposition disease. An ultrasound study.

    Science.gov (United States)

    Filippucci, E; Riveros, M Gutierrez; Georgescu, D; Salaffi, F; Grassi, W

    2009-02-01

    The main aim of the present study was to determine the sensitivity, specificity and accuracy of ultrasonography (US) in detecting monosodium urate and calcium pyrophosphate dihydrate crystals deposits at knee cartilage level using clinical definite diagnosis as standard reference. A total of 32 patients with a diagnosis of gout and 48 patients with pyrophosphate arthropathy were included in the study. Fifty-two patients with rheumatoid arthritis (RA), psoriatic arthritis or osteoarthritis (OA) were recruited as disease controls. All diagnoses were made using an international clinical criterion. US examinations were performed by an experienced sonographer, blind to clinical and laboratory data. Hyaline cartilage was assessed to detect two US findings recently indicated as indicative of crystal deposits: hyperechoic enhancement of the superficial margin of the hyaline cartilage and hyperechoic spots within the cartilage layer not generating a posterior acoustic shadow. Hyperechoic enhancement of the chondrosynovial margin was found in at least one knee of 14 out of 32 (43.7%) patients with gout and in a single knee of only one patient affected by pyrophosphate arthropathy (specificity=99%). Intra-cartilaginous hyperechoic spots were detected in at least one knee of 33 out of 48 (68.7%) patients with pyrophosphate arthropathy and in two disease controls one with OA and the second with RA (specificity=97.6%). The results of the present study indicate that US may play a relevant role in distinguishing cartilage involvement in patients with crystal-related arthropathy. The selected US findings were found to be highly specific.

  1. Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model.

    Science.gov (United States)

    Ha, Chul-Won; Park, Yong-Beom; Chung, Jun-Young; Park, Yong-Geun

    2015-09-01

    The cartilage regeneration potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with a hyaluronic acid (HA) hydrogel composite has shown remarkable results in rat and rabbit models. The purpose of the present study was to confirm the consistent regenerative potential in a pig model using three different cell lines. A full-thickness chondral injury was intentionally created in the trochlear groove of each knee in 6 minipigs. Three weeks later, an osteochondral defect, 5 mm wide by 10 mm deep, was created, followed by an 8-mm-wide and 5-mm-deep reaming. A mixture (1.5 ml) of hUCB-MSCs (0.5×10(7) cells per milliliter) and 4% HA hydrogel composite was then transplanted into the defect on the right knee. Each cell line was used in two minipigs. The osteochondral defect created in the same manner on the left knee was untreated to act as the control. At 12 weeks postoperatively, the pigs were sacrificed, and the degree of subsequent cartilage regeneration was evaluated by gross and histological analysis. The transplanted knee resulted in superior and more complete hyaline cartilage regeneration compared with the control knee. The cellular characteristics (e.g., cellular proliferation and chondrogenic differentiation capacity) of the hUCB-MSCs influenced the degree of cartilage regeneration potential. This evidence of consistent cartilage regeneration using composites of hUCB-MSCs and HA hydrogel in a large animal model could be a stepping stone to a human clinical trial in the future. To date, several studies have investigated the chondrogenic potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs); however, the preclinical studies are still limited in numbers with various results. In parallel, in the past several years, the cartilage regeneration potential of hUCB-MSCs with a hyaluronic acid (HA) hydrogel composite have been investigated and remarkable results in rat and rabbit models have been attained. (These

  2. Infrapatellar fat pad of patients with end-stage osteoarthritis inhibits catabolic mediators in cartilage

    NARCIS (Netherlands)

    Bastiaansen-Jenniskens, Y.M.; Clockaerts, S.; Feijt, C.; Zuurmond, A.-M.; Stojanovic-Susulic, V.; Bridts, C.; Clerck, L. de; Groot, J. de; Verhaar, J.A.N.; Kloppenburg, M.; Osch, G.J.V.M. van

    2012-01-01

    Objective: Adipose tissue is known to release inflammatory cytokines and growth factors. In this exploratory study, the authors examined whether the infrapatellar fat pad (IPFP) closely located to cartilage in the knee joint can affect cartilage metabolism. In addition, the authors analysed whether

  3. Development of a Rapid Cartilage Damage Quantification Method for the Lateral Tibiofemoral Compartment Using Magnetic Resonance Images: Data from the Osteoarthritis Initiative

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2015-01-01

    Full Text Available The purpose of this study was to expand and validate the cartilage damage index (CDI to detect cartilage damage in the lateral tibiofemoral compartment. We used an iterative 3-step process to develop and validate the lateral CDI: development (100 knees, testing (80 knees, and validation (100 knees. The validation set included 100 knees from the Osteoarthritis Initiative that was enriched to include all grades of lateral joint space narrowing (JSN, 0–3. Measurement of the CDI was rapid at 7.4 (s.d. 0.73 minutes per knee pair (baseline and follow-up of one knee. The intratester reliability is good (intraclass correlation coefficient (3, 1 model = 0.86 to 0.98. At baseline, knees with greater KL grade and lateral JSN had a lower mean CDI (i.e., greater cartilage damage. Baseline lateral CDI is associated with both lateral JSW (r=0.81 to 0.85, p<0.01 and HKA (r=-0.30 to −0.33, p<0.05. The SRM is good (lateral femur SRM = −0.76; lateral tibia SRM = −0.73; lateral tibiofemoral total SRM = −0.87. The lateral tibiofemoral CDI quantification allows for rapid evaluation and is reliable and responsive, with good construct validity. It may be an efficient method to measure lateral tibiofemoral articular cartilage in large clinical and epidemiologic studies.

  4. Uptake studies with chondrotropic 99mTc-chondroitin sulfate in articular cartilage. Implications for imaging osteoarthritis in the knee

    International Nuclear Information System (INIS)

    Sobal, Grazyna; Dorotka, Ronald; Menzel, Johannes; Sinzinger, Helmut

    2013-01-01

    Chondroitin sulfate (CS) is an endogenous component of extracellular matrix in the cartilage and can be valuable for imaging of cartilage degeneration after radiolabeling. Data monitoring the uptake of 99m TcCS by human cartilage are rare. Radiolabeling was performed by 99m TcO 4 − /tin method at pH 5.0 in 0.5 M sodium acetate. For uptake studies human articular cartilage (n = 4, 65–79a) derived from individuals undergoing knee replacement (pieces of 3–5 mg wet weight), or frozen tissue sections (5 μ) for autoradiography (10 μCi) were used. The uptake was monitored from 10 min up to 96 h to achieve saturation. As the commercially available drug Condrosulf (IBSA, Lugano) contains Mg-stearate (0.25%) as additive (to improve its gastrointestinal resorption), we investigated the uptake ± additive. The washout of the tracer was examined by tissue incubation after uptake experiments (3 h and 24 h) with PBS-buffer for 10 min to 3 h. Using human articular cartilage the maximal uptake of 99m TcCS (specific activity of 4.1–6.1 Ci/mmol) was continuously increasing with time amounting to a maximum of 53.2% ± 3.2% with additive, versus 39.4% ± 2.3%, without additive, at saturation. Additive increased the resorption of the drug and consecutively its uptake. The washout of the tracer from cartilage after 3 h uptake amounted to 1.5% ± 0.2% with additive, versus 2.6% ± 0.5%, without. After 24 h washout was lower amounting to 1.1% ± 0.1% versus 1.75% ± 0.15%, respectively. Autoradiography revealed also a continuous increase in uptake of 99m TcCS with time. After 10 min of incubation the uptake increase was proportional to the incubation time, reaching the maximum at 48–72 h. Enhanced uptake at the surface (superficial zone) as compared to the subchondral part (deep zone) of slices, was observed. The non-specific uptake in the presence of 50-fold excess of cold CS was time-dependent up to a maximum of 15% (tissue) and 10% (autoradiography), at saturation. The

  5. The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Damir Hudetz

    2017-10-01

    Full Text Available Osteoarthritis (OA is one of the leading musculoskeletal disorders in the adult population. It is associated with cartilage damage triggered by the deterioration of the extracellular matrix tissue. The present study explores the effect of intra-articular injection of autologous microfragmented adipose tissue to host chondrocytes and cartilage proteoglycans in patients with knee OA. A prospective, non-randomized, interventional, single-center, open-label clinical trial was conducted from January 2016 to April 2017. A total of 17 patients were enrolled in the study, and 32 knees with osteoarthritis were assessed. Surgical intervention (lipoaspiration followed by tissue processing and intra-articular injection of the final microfragmented adipose tissue product into the affected knee(s was performed in all patients. Patients were assessed for visual analogue scale (VAS, delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC and immunoglobulin G (IgG glycans at the baseline, three, six and 12 months after the treatment. Magnetic resonance sequence in dGEMRIC due to infiltration of the anionic, negatively charged contrast gadopentetate dimeglumine (Gd-DTPA2− into the cartilage indicated that the contents of cartilage glycosaminoglycans significantly increased in specific areas of the treated knee joint. In addition, dGEMRIC consequently reflected subsequent changes in the mechanical axis of the lower extremities. The results of our study indicate that the use of autologous and microfragmented adipose tissue in patients with knee OA (measured by dGEMRIC MRI increased glycosaminoglycan (GAG content in hyaline cartilage, which is in line with observed VAS and clinical results.

  6. Repair of articular cartilage and subchondral defects in rabbit knee joints with a polyvinyl alcohol/nano-hydroxyapatite/polyamide 66 biological composite material.

    Science.gov (United States)

    Guo, Tao; Tian, Xiaobin; Li, Bo; Yang, Tianfu; Li, Yubao

    2017-11-15

    This study sought to prepare a new PVA/n-HA/PA66 composite to investigate the repair of articular cartilage and subchondral defects in rabbit knee joints. A 5 × 5 × 5 mm-sized defect was created in the patellofemoral joints of 72 healthy adult New Zealand rabbits. The rabbits were then randomly divided into three groups (n = 24): PVA/n-HA+PA66 group, polyvinyl alcohol (PVA) group, and control (untreated) group. Cylindrical PVA/n-HA+PA66, 5 × 5 mm, comprised an upper PVA layer and a lower n-HA+PA66 layer. Macroscopic and histological evaluations were performed at 4, 8, 12, and 24 weeks, postoperatively. Type II collagen was measured by immunohistochemical staining. The implant/cartilage and bone interfaces were observed by scanning electron microscopy. At 24 weeks postoperatively, the lower PVA/n-HA+PA66 layer became surrounded by cartilage, with no obvious degeneration. In the PVA group, an enlarged space was observed between the implant and the host tissue that had undergone degeneration. In the control group, the articular cartilage had become calcified. In the PVA/n-HA+PA66 group, positive type II collagen staining was observed between the composite and the surrounding cartilage and on the implant surface. In the PVA group, positive staining was slightly increased between the PVA and the surrounding cartilage, but reduced on the PVA surface. In the control group, reduced staining was observed throughout. Scanning electron microscopy showed increased bone tissue in the lower n-HA+PA66 layer that was in close approximation with the upper PVA layer of the composite. In the PVA group, the bone tissue around the material had receded, and in the control group, the defect was filled with bone tissue, while the superior aspect of the defect was filled with disordered, fibrous tissue. The diphase biological composite material PVA/n-HA+PA66 exhibits good histocompatibility and offers a satisfactory substitute for articular cartilage and subchondral bone.

  7. Impact of a daily exercise dose on knee joint cartilage

    DEFF Research Database (Denmark)

    Bricca, A; Juhl, C B; Grodzinsky, A J

    2017-01-01

    -analysis of 14 studies investigating cartilage thickness showed no effect in the low dose exercise group (SMD -0.02; 95% CI -0.42 to 0.38; I(2) = 0.0%), large but non-significant cartilage thickening in the moderate dose exercise group (SMD 0.95; 95% CI -0.33 to 2.23; I(2) = 72.1%) and non-significant cartilage...... thinning in the high dose exercise group (SMD -0.19; 95% CI -0.49 to 0.12; I(2) = 0.0%). Results were independent of analyzed covariates. The overall quality of the studies was poor because of inadequate reporting of data and high risk of bias. CONCLUSIONS: Our results suggest that the relationship between...

  8. Does patellar rim electrocautery have deleterious effects on patellar cartilage?

    Science.gov (United States)

    Namazi, Niloofar; Jaberi, Fereidoon Mojtahed; Pakbaz, Sara; Vosoughi, Amir Reza; Jaberi, Mahrad Mojtahed

    2014-03-01

    Circumpatellar electrocauterization to destroy pain receptors during total knee arthroplasty without patellar resurfacing is commonly used to decrease postoperative knee pain. We aimed to evaluate the effect of denervation with electrocauterization on patellar cartilage. Twenty rabbits were randomly assigned to two equally sized case and control groups. The rabbits in the case group underwent surgery via the anterior midline skin incision and medial parapatellar arthrotomy, followed by denervation electrocauterization at a depth of 1 mm and a distance of 3 mm from the outer border of the patella. In the control group, surgery was identical to that performed in the case group, but without patellar denervation. Twelve weeks after surgery, all rabbits were sacrificed. Range of motion, macroscopic evaluation of cartilage using modified Outerbridge scoring, and histopathological assessment using a modified histologic scoring system for cartilage were evaluated. Three rabbits died during the study. Nine cases and eight animals from the control group were included in the final evaluation. All rabbits had passive full range of motion. Mean Outerbridge score was 2.0 in the case group and 0.37 in the control group (p=0.002). There were statistically significant differences in cellularity (p=0.016), loss of matrix (p=0.004), and clustering of chondrocytes (p=0.008) between the two groups. Microscopic variables as a whole were statistically significant (p=0.001). Circumpatellar electrocauterization may result in cartilage destruction. So, we encourage caution in using routine electrocauterization in patients undergoing total knee arthroplasty. level II. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Intra-articular enzyme replacement therapy with rhIDUA is safe, well-tolerated, and reduces articular GAG storage in the canine model of mucopolysaccharidosis type I.

    Science.gov (United States)

    Wang, Raymond Y; Aminian, Afshin; McEntee, Michael F; Kan, Shih-Hsin; Simonaro, Calogera M; Lamanna, William C; Lawrence, Roger; Ellinwood, N Matthew; Guerra, Catalina; Le, Steven Q; Dickson, Patricia I; Esko, Jeffrey D

    2014-08-01

    Treatment with intravenous enzyme replacement therapy and hematopoietic stem cell transplantation for mucopolysaccharidosis (MPS) type I does not address joint disease, resulting in persistent orthopedic complications and impaired quality of life. A proof-of-concept study was conducted to determine the safety, tolerability, and efficacy of intra-articular recombinant human iduronidase (IA-rhIDUA) enzyme replacement therapy in the canine MPS I model. Four MPS I dogs underwent monthly rhIDUA injections (0.58 mg/joint) into the right elbow and knee for 6 months. Contralateral elbows and knees concurrently received normal saline. No intravenous rhIDUA therapy was administered. Monthly blood counts, chemistries, anti-rhIDUA antibody titers, and synovial fluid cell counts were measured. Lysosomal storage of synoviocytes and chondrocytes, synovial macrophages and plasma cells were scored at baseline and 1 month following the final injection. All injections were well-tolerated without adverse reactions. One animal required prednisone for spinal cord compression. There were no clinically significant abnormalities in blood counts or chemistries. Circulating anti-rhIDUA antibody titers gradually increased in all dogs except the prednisone-treated dog; plasma cells, which were absent in all baseline synovial specimens, were predominantly found in synovium of rhIDUA-treated joints at study-end. Lysosomal storage in synoviocytes and chondrocytes following 6 months of IA-rhIDUA demonstrated significant reduction compared to tissues at baseline, and saline-treated tissues at study-end. Mean joint synovial GAG levels in IA-rhIDUA joints were 8.62 ± 5.86 μg/mg dry weight and 21.6 ± 10.4 μg/mg dry weight in control joints (60% reduction). Cartilage heparan sulfate was also reduced in the IA-rhIDUA joints (113 ± 39.5 ng/g wet weight) compared to saline-treated joints (142 ± 56.4 ng/g wet weight). Synovial macrophage infiltration, which was present in all joints at baseline, was

  10. Similar hyaline-like cartilage repair of osteochondral defects in rabbits using isotropic and anisotropic collagen scaffolds.

    Science.gov (United States)

    de Mulder, Eric L W; Hannink, Gerjon; van Kuppevelt, Toin H; Daamen, Willeke F; Buma, Pieter

    2014-02-01

    Lesions in knee joint articular cartilage (AC) have limited repair capacity. Many clinically available treatments induce a fibrous-like cartilage repair instead of hyaline cartilage. To induce hyaline cartilage repair, we hypothesized that type I collagen scaffolds with fibers aligned perpendicular to the AC surface would result in qualitatively better tissue repair due to a guided cellular influx from the subchondral bone. By specific freezing protocols, type I collagen scaffolds with isotropic and anisotropic fiber architectures were produced. Rabbits were operated on bilaterally and two full thickness defects were created in each knee joint. The defects were filled with (1) an isotropic scaffold, (2) an anisotropic scaffold with pores parallel to the cartilage surface, and (3) an anisotropic scaffold with pores perpendicular to the cartilage surface. Empty defects served as controls. After 4 (n=13) and 12 (n=13) weeks, regeneration was scored qualitatively and quantitatively using histological analysis and a modified O'Driscoll score. After 4 weeks, all defects were completely filled with partially differentiated hyaline cartilage tissue. No differences in O'Driscoll scores were measured between empty defects and scaffold types. After 12 weeks, all treatments led to hyaline cartilage repair visualized by increased glycosaminoglycan staining. Total scores were significantly increased for parallel anisotropic and empty defects over time (phyaline-like cartilage repair. Fiber architecture had no effect on cartilage repair.

  11. Simple geometry tribological study of osteochondral graft implantation in the knee.

    Science.gov (United States)

    Bowland, Philippa; Ingham, Eileen; Fisher, John; Jennings, Louise M

    2018-03-01

    Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates that had 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm 3 ) and cartilage defect (0.99 mm 3 ) groups were low and not significantly different (p > 0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model.

  12. Radiological evaluation of cartilage after microfracture treatment: A long-term follow-up study

    International Nuclear Information System (INIS)

    Von Keudell, A.; Atzwanger, J.; Forstner, R.; Resch, H.; Hoffelner, T.; Mayer, M.

    2012-01-01

    Introduction: Recent literature revealed good short-term results after microfracturing (MFX) of isolated focal cartilage defects in the knee joint. Study purpose was a long-term evaluation of patients who received MFX through a multimodal approach, correlating clinical scores and morphological pre- and postoperative MRI-scans. Materials and methods: Between 2000 and 2007 158 patients were treated with MFX for focal femoral or tibial defects at our department. Patients with instabilities, secondary surgical intervention, patellofemoral lesions, a plica mediopatellaris or more than one cartilage defect site and age >55 were excluded. 15 patients were included. Minimum postoperative follow-up (FU) was 18 months (18–78 m). Mean age at surgery was 45 years (27–54), mean FU-interval 48 months (18–78 m). Male to female ratio was 9:6. For clinical assessment the Knee Osteoarthritis Outcome Score (KOOS) and Lysholm Score were used, radiological evaluation was performed with radiographs and 3Tesla-MRI. Results: Clinical knee function was rated good to excellent in 1 patient, fair in 2 and poor in 10 patients. 2/15 patients received full knee replacement due to insufficient cartilage repair through MFX during FU period. Evaluation of pre- and postoperative MRI showed good cartilage repair tissue in 1 (7.7%), moderate repair in 2 (15.4%) and poor fill in 10 patients (76.9%). In these 10 patients the defect size increased. Average defect size preoperatively was 187 mm 2 (range 12–800 mm 2 ) and postoperatively 294 mm 2 (40–800 mm 2 ). The KOOS-Pain averaged 60 (39–94), KOOS-Symptoms 60.6 (21–100), KOOS-ADL 69 (21–91), KOOS-Sports 35.7 (5–60) and KOOS-QUL 37.2 (6–81). The average Lysholm Score was 73.9 (58–94). 10 patients showed a varus leg axis deviation (Ø 5.9°), 3 had a neutral alignment. The alignment correlated positively with KOOS and especially with the Lysholm Score. Conclusion: Our study demonstrated that MFX as a treatment option for cartilage

  13. In Vivo Patellar Tracking and Patellofemoral Cartilage Contacts during Dynamic Stair Ascending

    Science.gov (United States)

    Suzuki, Takashi; Hosseini, Ali; Li, Jing-Sheng; Gill, Thomas J; Li, Guoan

    2012-01-01

    The knowledge of normal patellar tracking is essential for understanding of the knee joint function and for diagnosis of patellar instabilities. This paper investigated the patellar tracking and patellofemoral joint contact locations during a stair ascending activity using a validated dual-fluoroscopic imaging system. The results showed that the patellar flexion angle decreased from 41.9° to 7.5° with the knee extension during stair ascending. During first 80% of the activity, the patella shifted medially about 3.9 mm and then slightly shifted laterally during the last 20% of the ascending activity. Anterior translation of 13 mm of the patella was measured at the early 80% of the activity and then slightly moved posteriorly by about 2 mm at the last 20% of the activity. The path of the cartilage contact points was slightly lateral on the cartilage surfaces of patella and femur. On the patellar cartilage surface, the cartilage contact locations were about 2 mm laterally from heel strike to 60% of the stair ascending activity and moved laterally and reached 5.3 mm at full extension. However, the cartilage contact locations were relatively constant on the femoral cartilage surface (~5 mm lateral). The patellar tracking pattern was consistent with the patellofemoral cartilage contact location pattern. These data could provide baseline knowledge for understanding of normal physiology of the patellofemoral joint and can be used as a reference for clinical evaluation of patellofemoral disorder symptoms. PMID:22840488

  14. Relationship of bone mineral density to progression of knee osteoarthritis

    Science.gov (United States)

    Objective. To evaluate the longitudinal relationship between bone mineral density (BMD) and BMD changes and the progression of knee osteoarthritis (OA), as measured by cartilage outcomes. Methods. We used observational cohort data from the Vitamin D for Knee Osteoarthritis trial. Bilateral femoral ...

  15. Protective effect of exogenous chondroitin 4,6-sulfate in the acute degradation of articular cartilage in the rabbit.

    Science.gov (United States)

    Uebelhart, D; Thonar, E J; Zhang, J; Williams, J M

    1998-05-01

    The injection of 2.0 mg chymopapain into the adolescent rabbit knee causes severe loss of articular cartilage proteoglycans (PG). Although chondrocytes attempt to restore lost PG, failure to repair ensues. Pure chondroitin 4,6-sulfate (Condrosulf, IBSA Lugano, Switzerland) has been used in clinical studies of human osteoarthritis (OA) as a slow-acting drug for OA (SYSADOA). Using our model of articular cartilage injury, we examined the effects of oral and intramuscular administration of Condrosulf after chymopapain-induced cartilage injury. In this study, animals received an injection of 2.0 mg chymopapain (Chymodiactin, Boots Pharmaceuticals) into the left knee and were sacrificed after 84 days. The contralateral right knee served as a noninjected control. Some animals received oral Condrosulf while others received intramuscular injections of Condrosulf. Serum keratan sulfate (KS) levels were monitored to ensure degradation of the cartilage PG. Those animals not exhibiting at least a 100% increase of serum KS following chymopapain injection were excluded from the study. At sacrifice, cartilage PG contents were markedly reduced in animals receiving an injection of 2.0 mg chymopapain with no further treatment. In contrast, oral administration of Condrosulf beginning 11 days prior to chymopapain injury resulted in significantly higher (P = 0.0036) cartilage PG contents. Intramuscular administration of Condrosulf resulted in higher, but less significantly so (P = 0.0457), cartilage PG contents. These results suggest that daily Condrosulf treatment prior to and continuing after chymopapain injury may have a protective effect on the damaged cartilage, allowing it to continue to re-synthesize matrix PG after the treatment is discontinued.

  16. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Saito, Taku; Yano, Fumiko; Mori, Daisuke; Kawata, Manabu; Hoshi, Kazuto; Takato, Tsuyoshi; Masaki, Hideki; Otsu, Makoto; Eto, Koji; Nakauchi, Hiromitsu; Chung, Ung-il; Tanaka, Sakae

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are a promising cell source for cartilage regenerative medicine. Meanwhile, the risk of tumorigenesis should be considered in the clinical application of human iPSCs (hiPSCs). Here, we report in vitro chondrogenic differentiation of hiPSCs and maturation of the differentiated hiPSCs through transplantation into mouse knee joints. Three hiPSC clones showed efficient chondrogenic differentiation using an established protocol for human embryonic stem cells. The differentiated hiPSCs formed hyaline cartilage tissues at 8 weeks after transplantation into the articular cartilage of NOD/SCID mouse knee joints. Although tumors were not observed during the 8 weeks after transplantation, an immature teratoma had developed in one mouse at 16 weeks. In conclusion, hiPSCs are a potent cell source for regeneration of hyaline articular cartilage. However, the risk of tumorigenesis should be managed for clinical application in the future.

  17. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    International Nuclear Information System (INIS)

    Kwon, Jong Won; Kang, Heung Sik; Hong, Sung Hwan

    2010-01-01

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices

  18. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jong Won [Samsung Medical Center, Sungkyunkwan University, Seoul (Korea, Republic of); Kang, Heung Sik [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Hong, Sung Hwan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2010-10-15

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices.

  19. Use of the second harmonic generation microscopy to evaluate chondrogenic differentiation of mesenchymal stem cells for cartilage repair

    Science.gov (United States)

    Bordeaux-Rego, P.; Baratti, M. O.; Duarte, A. S. S.; Ribeiro, T. B.; Andreoli-Risso, M. F.; Vidal, B.; Miranda, J. B.; Adur, J.; de Thomaz, A. A.; Pelegati, V. B.; Costa, F. F.; Carvalho, H. F.; Cesar, C. L.; Luzo, A.; Olalla Saad, S. T.

    2012-03-01

    Articular cartilage injury remains one of the major concerns in orthopedic surgery. Mesenchymal stem cell (MSC) transplantation has been introduced to avoid some of the side effects and complications of current techniques.. With the aim to evaluate chondrogenic differentiation of mesenchymal stem cells, we used Second Harmonic Generation (SHG) microscopy to analyze the aggregation and orientation of collagen fibrils in the hyaline cartilage of rabbit knees. The experiment was performed using implants with type II collagen hydrogel (a biomaterial that mimics the microenvironment of the cartilage), one implant containing MSC and one other without MSC (control). After 10 weeks, the rabbit knees were dissected and fibril collagen distribution and spatial organization in the extracellular matrix of the lesions were verified by SHG. The result showed significant differences, whereas in histological sections of the cartilaginous lesions with MSC the collagen fibers are organized and regular; in the control sections the collagen fibers are more irregular, with absence of cells. A macroscopic analysis of the lesions confirmed this difference, showing a greater percentage of lesions filling in knees treated with MSC than in the knees used as controls. This study demonstrates that SHG microscopy will be an excellent tool to help in the evaluation of the effectiveness of MSC-based cell therapy for cartilage repair.

  20. Magnetic Resonance Imaging of Asymptomatic Knees in Collegiate Basketball Players: The Effect of One Season of Play.

    Science.gov (United States)

    Pappas, George P; Vogelsong, Melissa A; Staroswiecki, Ernesto; Gold, Garry E; Safran, Marc R

    2016-11-01

    To determine the prevalence of abnormal structural findings using 3.0-T magnetic resonance imaging (MRI) in the asymptomatic knees of male and female collegiate basketball players before and after a season of high-intensity basketball. Institutional review board-approved prospective case series. Asymptomatic knees of 24 NCAA Division I collegiate basketball players (12 male, 12 female) were imaged using a 3.0-T MRI scanner before and after the end of the competitive season. Three subjects did not undergo scanning after the season. Images were evaluated for prepatellar bursitis, fat pad edema, patellar and quadriceps tendinopathy, bone marrow edema, and articular cartilage and meniscal injury. Every knee imaged had at least 1 structural abnormality both preseason and postseason. A high preseason and postseason prevalence of fat pad edema (75% and 81%), patellar tendinopathy (83% and 90%), and quadriceps tendinopathy (75% and 90%) was seen. Intrameniscal signal change was observed in 50% preseason knees and 62% of postseason knees, but no discrete tears were found. Bone marrow edema was seen in 75% and 86% of knees in the preseason and postseason, respectively. Cartilage findings were observed in 71% and 81% of knees in the preseason and postseason, respectively. The cartilage injury score increased significantly in the postseason compared with the preseason (P = 0.0009). A high prevalence of abnormal knee MRI findings was observed in a population of asymptomatic young elite athletes. These preliminary data suggest that high-intensity basketball may have potentially deleterious effects on articular cartilage.

  1. Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study

    International Nuclear Information System (INIS)

    Tsavalas, Nikolaos; Karantanas, Apostolos H.; Katonis, Pavlos

    2012-01-01

    To evaluate patellofemoral congruency measurements on MRI and correlate the findings with severity of ipsilateral osteoarthritis. We retrospectively reviewed 650 consecutive knee MRI examinations from 622 patients divided into two age groups: ≤50 and >50 year-old. The femoral sulcus angle (SA) and depth (SD), lateral patellar displacement (LPD), lateral patellofemoral angle (LPFA), tibial tubercle-trochlear groove (TT-TG) distance and Insall-Salvati index as well as the grade of focal cartilage defects (ranging from I to IV) in the patellofemoral region were assessed in each subject on axial and sagittal fat-saturated intermediate-w MR images. A significant difference exists between normal and knees with patellofemoral joint osteoarthritis regarding SA (p = 0.0002 and 50 respectively). Significant correlation was found between grading of cartilage defects and SA (rho = 0.21, p = 0.0001 and 0.443, <0.0001), SD (rho = -0.198, p = 0.0003 and -0.418, <0.0001), LPD (rho = 0.176, p = 0.0013 and 0.251, 0.0002) and LPFA (rho = -0.204, p = 0.0002 and -0.239, 0.0005) in both age groups. Knee joint anterior malalignment is multivariably associated with patellofemoral osteoarthritis. circle MRI is an excellent method to evaluate knee alignment and articular cartilage damage. (orig.)

  2. Locoregional deformation pattern of the patellar cartilage after different loading types. High-resolution 3D-MRI volumetry at 3 T in-vivo

    International Nuclear Information System (INIS)

    Horng, Annie; Raya, J.; Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Grosshadern; Zscharn, M.

    2011-01-01

    Purpose: To analyze locoregional deformation patterns indicative of contact areas in patellar cartilage after different loading exercises. Materials and Methods: 7 healthy patellae were examined in-vivo before and immediately after standardized loading (kneeling, squatting or knee bends) and after 90 minutes of rest using a sagittal 3D-T1-w FLASH WE sequence (22 msec/ 9.8msec/ 15 / 0.3 x 0.3 x 1.5 mm 3 ) at 3 T. After cartilage segmentation and 3D reconstruction, voxel-based and global precision errors (PR) were calculated. The former were used to determine significant differences in local cartilage thickness. Voxel-based 2σ-thickness difference maps were calculated to visualize locoregional deformation patterns. Global changes in volume (Vol), mean thickness (mTh) and cartilage-bone-interface area (CBIA) were calculated. Results: The voxel-based PR depended on cartilage thickness (D) ranging from 0.12 - 0.35 mm. For D ≥ 1 mm the RF was 3 (2.4 %) for Vol, 0.06 mm (2.0 %) for mTh and 16 mm 2 (1.4 %) for CBIA. The focal cartilage deformation equaled 14 % of the local thickness reduction. The deformation areas were oval and located in the peripheral medial (more vertically oriented, all exercises) and caudo-lateral (more horizontally oriented, kneeling and knee bends) aspects of the patella and were least pronounced in knee bends. Significant changes for Vol/mTh ranged from 2.1 to 3.7 %. Conclusion: This MRI-based study is the first to identify in-vivo voxel-based patellar cartilage deformation patterns indicating contact and loading zones after kneeling and squatting. These zones are anatomically and functionally plausible and may represent areas where stress induced degeneration and subsequent OA can originate. The data may facilitate understanding of individual knee loading properties and help to improve and validate biomechanical models for the knee. (orig.)

  3. Hyaluronic acid and chondroitin sulfate content of osteoarthritic human knee cartilage: site-specific correlation with weight-bearing force based on femorotibial angle measurement.

    Science.gov (United States)

    Otsuki, Shuhei; Nakajima, Mikio; Lotz, Martin; Kinoshita, Mitsuo

    2008-09-01

    This study analyzed glycosaminoglycan (GAG) content in specific compartments of the knee joint to determine the impact of malalignment and helped refine indications for osteotomy. To assess malalignment, the radiological femorotibial angle (FTA) was measured and knee joints were also graded for OA severity with the Kellgren/Lawrence (K/L) classification. Cartilage samples were obtained from 36 knees of 32 OA patients undergoing total knee replacement surgery. Explants were harvested from the medial femoral condyle (MFC), lateral femoral condyle (LFC), patellar groove (PG), and lateral posterior femoral condyle (LPC). Concentrations of hyaluronic acid (HA) and chondroitin sulfate (CS) were measured by high-performance liquid chromatography (HPLC). With OA severity, the average FTA significantly increased. HA and CS content in MFC was negatively correlated with radiographic FTA. In LFC, HA ratio, which is HA content in lateral condyle divided by medial condyle and chondroitin 6 sulfate, increased until about 190 degrees FTA. Importantly, at >190 degrees these contents were significantly decreased. HA and CS content of the femoral condyle shows topographic differences that are related to OA grade and weight-bearing force based on FTA. The clinical relevance is that osteotomy may not be indicated for patients with severe varus (>190 degrees) abnormalities. (c) 2008 Orthopaedic Research Society

  4. Particulated articular cartilage: CAIS and DeNovo NT.

    Science.gov (United States)

    Farr, Jack; Cole, Brian J; Sherman, Seth; Karas, Vasili

    2012-03-01

    Cartilage Autograft Implantation System (CAIS; DePuy/Mitek, Raynham, MA) and DeNovo Natural Tissue (NT; ISTO, St. Louis, MO) are novel treatment options for focal articular cartilage defects in the knee. These methods involve the implantation of particulated articular cartilage from either autograft or juvenile allograft donor, respectively. In the laboratory and in animal models, both CAIS and DeNovo NT have demonstrated the ability of the transplanted cartilage cells to "escape" from the extracellular matrix, migrate, multiply, and form a new hyaline-like cartilage tissue matrix that integrates with the surrounding host tissue. In clinical practice, the technique for both CAIS and DeNovo NT is straightforward, requiring only a single surgery to affect cartilage repair. Clinical experience is limited, with short-term studies demonstrating both procedures to be safe, feasible, and effective, with improvements in subjective patient scores, and with magnetic resonance imaging evidence of good defect fill. While these treatment options appear promising, prospective randomized controlled studies are necessary to refine the indications and contraindications for both CAIS and DeNovo NT.

  5. Gadolinium-enhanced magnetic resonance imaging of the knee: an experimental approach

    International Nuclear Information System (INIS)

    Liu, Sirun; Shen, Si; Zhu, Tianyuan; Liang, Wenbin; Huang, Li; Chen, Hanfang; Wu, Hejia

    2010-01-01

    The purpose of this study was to examine gadolinium-enhanced magnetic resonance imaging (MRI) for monitoring cartilage degeneration. This is a proof-of-concept study in an animal model. Adult New Zealand rabbits were randomly stratified into five groups. Papain was injected intra-articularly in the right knee in four groups to establish the stages of cartilage degeneration. The left knee and group 5 served as controls. Bilateral MRI was performed 24 h after the initial injection of papain, and 1 week, 1 month, and 3 months following three papain injections. Injection of the contrast agent was followed by bilateral MRI examination immediately upon injection, and at 2 and 4 h post-injection. Signal intensities of articular cartilage and peripheral soft tissues were obtained before animals were sacrificed. Post-mortem bilateral cartilage specimens were studied histologically. Histopathology results verified the staged degeneration of papain-treated articular cartilage. Differences in cartilage signal intensity were significant for the staged model using a special three-dimensional MRI method (P 0.05). Contrast-enhanced MRI examination may be a viable tool for early diagnosis of osteoarticular disease. Prospective studies are warranted to evaluate the potential for clinical application. (orig.)

  6. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Robert [University of California, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); University Hospitals - Campus Grosshadern, Ludwig Maximilians University of Munich, Department of Clinical Radiology, Munich (Germany); Krug, Roland; Zuo, Jin; Majumdar, Sharmila; Link, Thomas M. [University of California, Musculoskeletal and Quantitative Imaging Group, Department of Radiology, San Francisco, CA (United States); Kelley, Douglas A.C. [General Electrics Healthcare Technologies, San Francisco, CA (United States); Ma, C.B. [University of California, Department of Orthopedic Surgery, San Francisco, CA (United States)

    2009-08-15

    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p<0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p<0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p<0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use. (orig.)

  7. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint

    International Nuclear Information System (INIS)

    Stahl, Robert; Krug, Roland; Zuo, Jin; Majumdar, Sharmila; Link, Thomas M.; Kelley, Douglas A.C.; Ma, C.B.

    2009-01-01

    The objectives of the study were to optimize three cartilage-dedicated sequences for in vivo knee imaging at 7.0 T ultra-high-field (UHF) magnetic resonance imaging (MRI) and to compare imaging performance and diagnostic confidence concerning osteoarthritis (OA)-induced changes at 7.0 and 3.0 T MRI. Optimized MRI sequences for cartilage imaging at 3.0 T were tailored for 7.0 T: an intermediate-weighted fast spin-echo (IM-w FSE), a fast imaging employing steady-state acquisition (FIESTA) and a T1-weighted 3D high-spatial-resolution volumetric fat-suppressed spoiled gradient-echo (SPGR) sequence. Three healthy subjects and seven patients with mild OA were examined. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), diagnostic confidence in assessing cartilage abnormalities, and image quality were determined. Abnormalities were assessed with the whole organ magnetic resonance imaging score (WORMS). Focal cartilage lesions and bone marrow edema pattern (BMEP) were also quantified. At 7.0 T, SNR was increased (p<0.05) for all sequences. For the IM-w FSE sequence, limitations with the specific absorption rate (SAR) required modifications of the scan parameters yielding an incomplete coverage of the knee joint, extensive artifacts, and a less effective fat saturation. CNR and image quality were increased (p<0.05) for SPGR and FIESTA and decreased for IM-w FSE. Diagnostic confidence for cartilage lesions was highest (p<0.05) for FIESTA at 7.0 T. Evaluation of BMEP was decreased (p < 0.05) at 7.0 T due to limited performance of IM-w FSE. Gradient echo-based pulse sequences like SPGR and FIESTA are well suited for imaging at UHF which may improve early detection of cartilage lesions. However, UHF IM-w FSE sequences are less feasible for clinical use. (orig.)

  8. Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: A longitudinal case-control study from the Osteoarthritis Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Felix; Wirth, Wolfgang; Cotofana, Sebastian [Paracelsus Medical University Salzburg and Nuremberg Austria and Chondrometrics GmbH, Institute of Anatomy, Ainring (Germany); Boudreau, Robert [University of Pittsburgh, Department of Epidemiology, Graduate School of Public Health, Pittsburgh, PA (United States); Wang, Zhijie; Hannon, Michael J. [University of Pittsburgh and Pittsburgh VAHS, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA (United States); Duryea, Jeff [Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Guermazi, Ali [Boston University School of Medicine and Boston Imaging Core Lab (BICL), LLC, Boston, MA (United States); Roemer, Frank [Boston University School of Medicine and Boston Imaging Core Lab (BICL), LLC, Boston, MA (United States); University of Erlangen-Nuremberg, Department of Radiology, Erlangen (Germany); Nevitt, Michael [OAI Coordinating Ctr., UCSF, San Francisco, CA (United States); John, Markus R. [Novartis Pharma AG, Basel (Switzerland); Ladel, Christoph [Merck KGaA, Darmstadt (Germany); Sharma, Leena [Northwestern University, Department of Medicine, Feinberg School of Medicine, Chicago, IL (United States); Hunter, David J. [University Sydney, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, Sydney, NSW (Australia); Kwoh, C.K. [University of Arizona, Division of Rheumatology and the University of Arizona Arthritis Center, Tucson, AZ (United States); Collaboration: OAI Investigators

    2016-06-15

    To evaluate whether change in fixed-location measures of radiographic joint space width (JSW) and cartilage thickness by MRI predict knee replacement. Knees replaced between 36 and 60 months' follow-up in the Osteoarthritis Initiative were each matched with one control by age, sex and radiographic status. Radiographic JSW was determined from fixed flexion radiographs and subregional femorotibial cartilage thickness from 3 T MRI. Changes between the annual visit before replacement (T{sub 0}) and 2 years before T{sub 0} (T{sub -2}) were compared using conditional logistic regression. One hundred and nineteen knees from 102 participants (55.5 % women; age 64.2 ± 8.7 [mean ± SD] years) were studied. Fixed-location JSW change at 22.5 % from medial to lateral differed more between replaced and control knees (case-control [cc] OR = 1.57; 95 % CI: 1.23-2.01) than minimum medial JSW change (ccOR = 1.38; 95 % CI: 1.11-1.71). Medial femorotibial cartilage loss displayed discrimination similar to minimum JSW, and central tibial cartilage loss similar to fixed-location JSW. Location-independent thinning and thickening scores were elevated prior to knee replacement. Discrimination of structural progression between knee pre-placement cases versus controls was stronger for fixed-location than minimum radiographic JSW. MRI displayed similar discrimination to radiography and suggested greater simultaneous cartilage thickening and loss prior to knee replacement. (orig.)

  9. Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: A longitudinal case-control study from the Osteoarthritis Initiative

    International Nuclear Information System (INIS)

    Eckstein, Felix; Wirth, Wolfgang; Cotofana, Sebastian; Boudreau, Robert; Wang, Zhijie; Hannon, Michael J.; Duryea, Jeff; Guermazi, Ali; Roemer, Frank; Nevitt, Michael; John, Markus R.; Ladel, Christoph; Sharma, Leena; Hunter, David J.; Kwoh, C.K.

    2016-01-01

    To evaluate whether change in fixed-location measures of radiographic joint space width (JSW) and cartilage thickness by MRI predict knee replacement. Knees replaced between 36 and 60 months' follow-up in the Osteoarthritis Initiative were each matched with one control by age, sex and radiographic status. Radiographic JSW was determined from fixed flexion radiographs and subregional femorotibial cartilage thickness from 3 T MRI. Changes between the annual visit before replacement (T 0 ) and 2 years before T 0 (T -2 ) were compared using conditional logistic regression. One hundred and nineteen knees from 102 participants (55.5 % women; age 64.2 ± 8.7 [mean ± SD] years) were studied. Fixed-location JSW change at 22.5 % from medial to lateral differed more between replaced and control knees (case-control [cc] OR = 1.57; 95 % CI: 1.23-2.01) than minimum medial JSW change (ccOR = 1.38; 95 % CI: 1.11-1.71). Medial femorotibial cartilage loss displayed discrimination similar to minimum JSW, and central tibial cartilage loss similar to fixed-location JSW. Location-independent thinning and thickening scores were elevated prior to knee replacement. Discrimination of structural progression between knee pre-placement cases versus controls was stronger for fixed-location than minimum radiographic JSW. MRI displayed similar discrimination to radiography and suggested greater simultaneous cartilage thickening and loss prior to knee replacement. (orig.)

  10. Magnetic resonance tomography of the knee joint

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Stefan; Kuruvilla, Yojena Chittazhathu Kurian; Ebner, Lukas [University Hospital, University of Berne, Department of Interventional, Pediatric and Diagnostic Radiology Inselspital, Berne (Switzerland); Endel, Gottfried [Main Association of Austrian Social Insurance Institutions, Vienna (Austria)

    2015-10-15

    To compare the diagnostic performance of magnetic resonance imaging (MRI) in terms of sensitivity and specificity using a field strength of <1.0 T (T) versus ≥1.5 T for diagnosing or ruling out knee injuries or knee pathologies. The systematic literature research revealed more than 10,000 references, of which 1598 abstracts were reviewed and 87 full-text articles were retrieved. The further selection process resulted in the inclusion of four systematic reviews and six primary studies. No differences could be identified in the diagnostic performance of low- versus high-field MRI for the detection or exclusion of meniscal or cruciate ligament tears. Regarding the detection or grading of cartilage defects and osteoarthritis of the knee, the existing evidence suggests that high-field MRI is tolerably specific but not very sensitive, while there is literally no evidence for low-field MRI because only a few studies with small sample sizes and equivocal findings have been performed. We can recommend the use of low-field strength MRI systems in suspected meniscal or cruciate ligament injuries. This does, however, not apply to the diagnosis and grading of knee cartilage defects and osteoarthritis because of insufficient evidence. (orig.)

  11. Magnetic resonance tomography of the knee joint

    International Nuclear Information System (INIS)

    Puig, Stefan; Kuruvilla, Yojena Chittazhathu Kurian; Ebner, Lukas; Endel, Gottfried

    2015-01-01

    To compare the diagnostic performance of magnetic resonance imaging (MRI) in terms of sensitivity and specificity using a field strength of <1.0 T (T) versus ≥1.5 T for diagnosing or ruling out knee injuries or knee pathologies. The systematic literature research revealed more than 10,000 references, of which 1598 abstracts were reviewed and 87 full-text articles were retrieved. The further selection process resulted in the inclusion of four systematic reviews and six primary studies. No differences could be identified in the diagnostic performance of low- versus high-field MRI for the detection or exclusion of meniscal or cruciate ligament tears. Regarding the detection or grading of cartilage defects and osteoarthritis of the knee, the existing evidence suggests that high-field MRI is tolerably specific but not very sensitive, while there is literally no evidence for low-field MRI because only a few studies with small sample sizes and equivocal findings have been performed. We can recommend the use of low-field strength MRI systems in suspected meniscal or cruciate ligament injuries. This does, however, not apply to the diagnosis and grading of knee cartilage defects and osteoarthritis because of insufficient evidence. (orig.)

  12. A radiological study of the patella and the cartilage of patella by computed tomography following double-contrast arthrography

    International Nuclear Information System (INIS)

    Kim, Myung Joon; Yang, Seoung Oh

    1987-01-01

    Recurrent subluxation or dislocation of the patella is a painful condition that frequently leads to chondromalacia or arthrosis of the patellofemoral joint. A radiographic evaluation of the patella and patella cartilage is important in the diagnosis of chondromalacia and mal alignment. Authors performed the patellofemoral joint CT following the double contrast arthrography in 53 patients with knee joint pains who had visited to Capital Armed Forces General Hospital from July to December, 1986. Authors analysed the shape and position of patella and the shape of patella cartilage. The results were as follows; 1. shape of patella:The most common types are type II/III (14 cases) and type III (14 cases). type III → IV-9 cases, type I-5 cases, type IV-5 cases, other type-4 cases, type II-2 cases, no type V. 2. position of patella:Only 2 cases showed subluxation and external rotation of patella. 3. shape of patella cartilage:a)congruous cartilage-21 cases (39.6%) b)regular cartilage-22 cases (41.5%) c)irregular cartilage-10 cases (18.9%) irregular imbibition of contrast media-7 cases localized loss of cartilage or erosion-2 cases thinning of cartilage-1 case 4. Fissure and erosions of cartilages in 3 cases were confirmed by operation and knee arthroscopy

  13. A radiological study of the patella and the cartilage of patella by computed tomography following double-contrast arthrography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Joon; Yang, Seoung Oh [Capital Armed Forces General Hospital, Seoul (Korea, Republic of)

    1987-04-15

    Recurrent subluxation or dislocation of the patella is a painful condition that frequently leads to chondromalacia or arthrosis of the patellofemoral joint. A radiographic evaluation of the patella and patella cartilage is important in the diagnosis of chondromalacia and mal alignment. Authors performed the patellofemoral joint CT following the double contrast arthrography in 53 patients with knee joint pains who had visited to Capital Armed Forces General Hospital from July to December, 1986. Authors analysed the shape and position of patella and the shape of patella cartilage. The results were as follows; 1. shape of patella:The most common types are type II/III (14 cases) and type III (14 cases). type III {yields} IV-9 cases, type I-5 cases, type IV-5 cases, other type-4 cases, type II-2 cases, no type V. 2. position of patella:Only 2 cases showed subluxation and external rotation of patella. 3. shape of patella cartilage:a)congruous cartilage-21 cases (39.6%) b)regular cartilage-22 cases (41.5%) c)irregular cartilage-10 cases (18.9%) irregular imbibition of contrast media-7 cases localized loss of cartilage or erosion-2 cases thinning of cartilage-1 case 4. Fissure and erosions of cartilages in 3 cases were confirmed by operation and knee arthroscopy.

  14. Segmenting articular cartilage automatically using a voxel classification approach

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2007-01-01

    We present a fully automatic method for articular cartilage segmentation from magnetic resonance imaging (MRI) which we use as the foundation of a quantitative cartilage assessment. We evaluate our method by comparisons to manual segmentations by a radiologist and by examining the interscan...... reproducibility of the volume and area estimates. Training and evaluation of the method is performed on a data set consisting of 139 scans of knees with a status ranging from healthy to severely osteoarthritic. This is, to our knowledge, the only fully automatic cartilage segmentation method that has good...... agreement with manual segmentations, an interscan reproducibility as good as that of a human expert, and enables the separation between healthy and osteoarthritic populations. While high-field scanners offer high-quality imaging from which the articular cartilage have been evaluated extensively using manual...

  15. Imaging of the knee joint with emphasis on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, M.F. [Radiologische Universitaetsklinik, Rheinische Friedrich-Wilhelms-Univ., Bonn (Germany); Vahlensieck, M. [Radiologische Universitaetsklinik, Rheinische Friedrich-Wilhelms-Univ., Bonn (Germany); Schueller, H. [Radiologische Universitaetsklinik, Rheinische Friedrich-Wilhelms-Univ., Bonn (Germany)

    1992-04-01

    The knee joint is frequently affected by trauma as well as degenerative and inflammatory disorders, involving the internal structures (i.e. ligaments, menisci, cartilage, synovial membrane) and the adjacent bones. Plain radiographs represent an indispensable basis for diagnosis. For further analysis magnetic resonance imaging (MRI) has become the method of choice, and has widely replaced computed tomography, arthrography and stress examinations. Extensive experience has been accumulated in MRI of the knee joint in recent years. In addition, advances in MRI technology have had a major impact on diagnostic accuracy. In this paper, diagnosis of various lesions of the knee joint, such as meniscal and ligamental injuries, aseptic necrosis, lesions of the hyaline cartilage, occult fractures and inflammatory lesions will be discussed. (orig.)

  16. Increased expression of damage-associated molecular patterns (DAMPs) in osteoarthritis of human knee joint compared to hip joint.

    Science.gov (United States)

    Rosenberg, John H; Rai, Vikrant; Dilisio, Matthew F; Sekundiak, Todd D; Agrawal, Devendra K

    2017-12-01

    Osteoarthritis (OA) is a degenerative disease characterized by the destruction of cartilage. The greatest risk factors for the development of OA include age and obesity. Recent studies suggest the role of inflammation in the pathogenesis of OA. The two most common locations for OA to occur are in the knee and hip joints. The knee joint experiences more mechanical stress, cartilage degeneration, and inflammation than the hip joint. This could contribute to the increased incidence of OA in the knee joint. Damage-associated molecular patterns (DAMPs), including high-mobility group box-1, receptor for advanced glycation end products, and alarmins (S100A8 and S100A9), are released in the joint in response to stress-mediated chondrocyte and cartilage damage. This facilitates increased cartilage degradation and inflammation in the joint. Studies have documented the role of DAMPs in the pathogenesis of OA; however, the comparison of DAMPs and its influence on OA has not been discussed. In this study, we compared the DAMPs between OA knee and hip joints and found a significant difference in the levels of DAMPs expressed in the knee joint compared to the hip joint. The increased levels of DAMPs suggest a difference in the underlying pathogenesis of OA in the knee and the hip and highlights DAMPs as potential therapeutic targets for OA in the future.

  17. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

    Science.gov (United States)

    2014-01-01

    Background Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA2-. Methods The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA2- (0.2 or 0.3 mmol/kg body weight). The relaxation time (T1) and relaxation rate (R1 = 1/T1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results The triple dose yielded higher concentrations of Gd-DTPA2- in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR1 were similar for double and triple doses of the contrast agent. ΔR1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR1 increased until 90-180 minutes in both the cartilage and the meniscus (p meniscus at all time points (p meniscus, than in the avascular central part of the posterior medial meniscus during the first 60 minutes (p meniscus and cartilage simultaneously using dGEMRIC, preferably 90 minutes after the injection of a

  18. Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits

    Directory of Open Access Journals (Sweden)

    Vyacheslav Ogay

    2014-01-01

    Full Text Available Introduction: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs with low molecular weight hyaluronic acid (HA could promote regeneration of massive cartilage in rabbits. Material and methods: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek. The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml were suspended in 0.5% low molecular weight HA (0.15 ml and injected into the left knee, and HA solution (0.30 ml alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days. Results: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC- treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage. Conclusion: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits.

  19. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Science.gov (United States)

    Ude, Chinedu C; Sulaiman, Shamsul B; Min-Hwei, Ng; Hui-Cheng, Chen; Ahmad, Johan; Yahaya, Norhamdan M; Saim, Aminuddin B; Idrus, Ruszymah B H

    2014-01-01

    In this study, Adipose stem cells (ADSC) and bone marrow stem cells (BMSC), multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7) autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008). Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan) compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013). Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001). Fluorescence of the tracking dye (PKH26) in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  20. Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model.

    Directory of Open Access Journals (Sweden)

    Chinedu C Ude

    Full Text Available OBJECTIVES: In this study, Adipose stem cells (ADSC and bone marrow stem cells (BMSC, multipotent adult cells with the potentials for cartilage regenerations were induced to chondrogenic lineage and used for cartilage regenerations in surgically induced osteoarthritis in sheep model. METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of the anterior cruciate ligament and medial meniscus following a 3-weeks exercise regimen. Stem cells from experimental sheep were culture expanded and induced to chondrogenic lineage. Test sheep received a single dose of 2 × 10(7 autologous PKH26-labelled, chondrogenically induced ADSCs or BMSCs as 5 mls injection, while controls received 5 mls culture medium. RESULTS: The proliferation rate of ADSCs 34.4 ± 1.6 hr was significantly higher than that of the BMSCs 48.8 ± 5.3 hr (P = 0.008. Chondrogenic induced BMSCs had significantly higher expressions of chondrogenic specific genes (Collagen II, SOX9 and Aggrecan compared to chondrogenic ADSCs (P = 0.031, 0.010 and 0.013. Grossly, the treated knee joints showed regenerated de novo cartilages within 6 weeks post-treatment. On the International Cartilage Repair Society grade scores, chondrogenically induced ADSCs and BMSCs groups had significantly lower scores than controls (P = 0.0001 and 0.0001. Fluorescence of the tracking dye (PKH26 in the injected cells showed that they had populated the damaged area of cartilage. Histological staining revealed loosely packed matrixes of de novo cartilages and immunostaining demonstrated the presence of cartilage specific proteins, Collagen II and SOX9. CONCLUSION: Autologous chondrogenically induced ADSCs and BMSCs could be promising cell sources for cartilage regeneration in osteoarthritis.

  1. Functioning Before and After Total Hip or Knee Arthroplasty

    NARCIS (Netherlands)

    I.B. de Groot (Ingrid)

    2009-01-01

    textabstractOsteoarthritis (OA) of the hip or knee is a common locomotor disease characterized by degradation of articular cartilage. In the Netherlands, in the year 2000 about 257,400 persons above the age of 55 years had hip OA and about 335,700 persons had knee OA. Because the prevalence of OA

  2. Intra-articular administration of hyaluronic acid increases the volume of the hyaline cartilage regenerated in a large osteochondral defect by implantation of a double-network gel.

    Science.gov (United States)

    Fukui, Takaaki; Kitamura, Nobuto; Kurokawa, Takayuki; Yokota, Masashi; Kondo, Eiji; Gong, Jian Ping; Yasuda, Kazunori

    2014-04-01

    Implantation of PAMPS/PDMAAm double-network (DN) gel can induce hyaline cartilage regeneration in the osteochondral defect. However, it is a problem that the volume of the regenerated cartilage tissue is gradually reduced at 12 weeks. This study investigated whether intra-articular administration of hyaluronic acid (HA) increases the volume of the cartilage regenerated with the DN gel at 12 weeks. A total of 48 rabbits were used in this study. A cylindrical osteochondral defect created in the bilateral femoral trochlea was treated with DN gel (Group DN) or left without any implantation (Group C). In both Groups, we injected 1.0 mL of HA in the left knee, and 1.0 mL of saline solution in the right knee. Quantitative histological evaluations were performed at 2, 4, and 12 weeks, and PCR analysis was performed at 2 and 4 weeks after surgery. In Group DN, the proteoglycan-rich area was significantly greater in the HA-injected knees than in the saline-injected knees at 12 weeks (P = 0.0247), and expression of type 2 collagen, aggrecan, and Sox9 mRNAs was significantly greater in the HA-injected knees than in the saline-injected knees at 2 weeks (P = 0.0475, P = 0.0257, P = 0.0222, respectively). The intra-articular administration of HA significantly enhanced these gene expression at 2 weeks and significantly increased the volume of the hyaline cartilage regenerated by implantation of a DN gel at 12 weeks. This information is important to develop an additional method to increase the volume of the hyaline cartilage tissue in a potential cartilage regeneration strategy using the DN gel.

  3. Vitamin C Intakeand Risk Factors for Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Nadia Ayu Destiani

    2017-06-01

    Full Text Available Background: Knee osteoarthritis (OA is a degenerative disease of the knee joints characterized by progressive softening and disintegration of articular cartilage. In OA, which is influenced by several risk factors, free radicals are increased by local ischemia in the cartilage. As an exogenous antioxidant, vitamin C also plays an important role in collagen and glycosaminoglycan synthesis. This study was carried out to identify vitamin C intake as well as risk factors in knee OA. Methods: The study population was determined by non-probability sampling with convenient approach to knee OA patients at the Rheumatology Outpatient Clinic of Dr. Hasan Sadikin General Hospital in October–November 2013. Data were obtained through questionnaire interview about risk factors, severity index of OA and vitamin C intake profile. Data presentation was conducted by descriptive method. Results: There were 47 patients diagnosed with knee OA in the Rheumatology Outpatient Clinic. The result showed that 7 patients (14.9% had low vitamin C intake for the last 3 months. There were 30 patients with family history of OA (63.8%. Thirty two patients (68.1% were passive smokers, 44 patients (93.6% had history of repeated use of knee joints and majority of respondents had obesity.  Conclusions: Most of the subjects have sufficient vitamin C intake and more than half have risk factors that may contribute to the incidence of knee OA.   DOI: 10.15850/amj.v4n2.1067

  4. MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea Arthroscopic correlation and clinical significance

    International Nuclear Information System (INIS)

    Huegli, Rolf W.; Moelleken, Sonja M.C.; Stork, Alexander; Bonel, Harald M.; Bredella, Miriam A.; Meckel, Stephan; Genant, Harry K.; Tirman, Phillip F.J.

    2005-01-01

    Objective: To assess and describe post-traumatic articular cartilage injuries isolated to the trochlear groove and provide insight into potential mechanism of injury. Materials and methods: We retrospectively evaluated MR imaging findings of all knee MRIs performed at our institution over the last 2 years (2450). Thirty patients met the criteria of a cartilage injury confined to the trochlear groove. In 15 cases, which were included in our study, arthroscopic correlation was available. Each plane was evaluated and graded for the presence and appearance of articular cartilage defects using a standard arthroscopic grading scheme adapted to MR imaging. Any additional pathological derangement was documented and information about the mechanism of injury was retrieved by chart review. Results: In all cases the cartilaginous injury was well demonstrated on MRI. In 13 patients additional pathological findings could be observed. The most frequently associated injury was a meniscal tear in nine patients. In eight cases, the arthroscopic grading of the trochlear injury matched exactly with the MRI findings. In the remaining seven cases, the discrepancy between MRI and arthroscopy was never higher than one grade. In 13 out of 15 of patients trauma mechanism could be evaluated. Twelve patients suffered an indirect twisting injury and one suffered a direct trauma to their knee. Conclusion: The findings of this study demonstrate that MR imaging allows reliable grading of isolated injury to the trochlear groove cartilage and assists in directing surgical diagnosis and treatment. These injuries may be the only hyaline cartilage injury in the knee and meniscal tears are a frequently associated finding. Therefore, it is important to search specifically for cartilage injuries of the trochlear groove in patients with anterior knee pain, even if other coexistent pathology could potentially explain the patient's symptoms

  5. MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea Arthroscopic correlation and clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Huegli, Rolf W. E-mail: rhuegli@uhbs.ch; Moelleken, Sonja M.C.; Stork, Alexander; Bonel, Harald M.; Bredella, Miriam A.; Meckel, Stephan; Genant, Harry K.; Tirman, Phillip F.J

    2005-01-01

    Objective: To assess and describe post-traumatic articular cartilage injuries isolated to the trochlear groove and provide insight into potential mechanism of injury. Materials and methods: We retrospectively evaluated MR imaging findings of all knee MRIs performed at our institution over the last 2 years (2450). Thirty patients met the criteria of a cartilage injury confined to the trochlear groove. In 15 cases, which were included in our study, arthroscopic correlation was available. Each plane was evaluated and graded for the presence and appearance of articular cartilage defects using a standard arthroscopic grading scheme adapted to MR imaging. Any additional pathological derangement was documented and information about the mechanism of injury was retrieved by chart review. Results: In all cases the cartilaginous injury was well demonstrated on MRI. In 13 patients additional pathological findings could be observed. The most frequently associated injury was a meniscal tear in nine patients. In eight cases, the arthroscopic grading of the trochlear injury matched exactly with the MRI findings. In the remaining seven cases, the discrepancy between MRI and arthroscopy was never higher than one grade. In 13 out of 15 of patients trauma mechanism could be evaluated. Twelve patients suffered an indirect twisting injury and one suffered a direct trauma to their knee. Conclusion: The findings of this study demonstrate that MR imaging allows reliable grading of isolated injury to the trochlear groove cartilage and assists in directing surgical diagnosis and treatment. These injuries may be the only hyaline cartilage injury in the knee and meniscal tears are a frequently associated finding. Therefore, it is important to search specifically for cartilage injuries of the trochlear groove in patients with anterior knee pain, even if other coexistent pathology could potentially explain the patient's symptoms.

  6. The coupled effects of crouch gait and patella alta on tibiofemoral and patellofemoral cartilage loading in children.

    Science.gov (United States)

    Brandon, Scott C E; Thelen, Darryl G; Smith, Colin R; Novacheck, Tom F; Schwartz, Michael H; Lenhart, Rachel L

    2018-02-01

    Elevated tibiofemoral and patellofemoral loading in children who exhibit crouch gait may contribute to skeletal deformities, pain, and cessation of walking ability. Surgical procedures used to treat crouch frequently correct knee extensor insufficiency by advancing the patella. However, there is little quantitative understanding of how the magnitudes of crouch and patellofemoral correction affect cartilage loading in gait. We used a computational musculoskeletal model to simulate the gait of twenty typically developing children and fifteen cerebral palsy patients who exhibited mild, moderate, and severe crouch. For each walking posture, we assessed the influence of patella alta and baja on tibiofemoral and patellofemoral cartilage contact. Tibiofemoral and patellofemoral contact pressures during the stance phase of normal gait averaged 2.2 and 1.0 MPa. Crouch gait increased pressure in both the tibofemoral (2.6-4.3 MPa) and patellofemoral (1.8-3.3 MPa) joints, while also shifting tibiofemoral contact to the posterior tibial plateau. For extended-knee postures, normal patellar positions (Insall-Salvatti ratio 0.8-1.2) concentrated contact on the middle third of the patellar cartilage. However, in flexed knee postures, both normal and baja patellar positions shifted pressure toward the superior edge of the patella. Moving the patella into alta restored pressure to the middle region of the patellar cartilage as crouch increased. This work illustrates the potential to dramatically reduce tibiofemoral and patellofemoral cartilage loading by surgically correcting crouch gait, and highlights the interaction between patella position and knee posture in modulating the location of patellar contact during functional activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Prevalence of knee abnormalities in patients with osteoarthritis and anterior cruciate ligament injury identified with peripheral magnetic resonance imaging: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H. [McMaster Univ., Dept. of Medical Sciences, Hamilton, Ontario (Canada)]. E-mail: wuh5@mcmaster.ca; Webber, C. [Hamilton Health Sciences, Dept. of Nuclear Medicine, Hamilton, Ontario (Canada); McMaster Univ., Dept. of Radiology, Hamilton, Ontario (Canada); Fuentes, C.O. [Hamilton Health Sciences, Dept. of Radiology, Hamilton, Ontario (Canada); Benson, R.; Beattie, K. [McMaster Univ., Dept. of Medical Sciences, Hamilton, Ontario (Canada); Adachi, J.D.; Xie, X. [McMaster Univ., Dept. of Medical Sciences, Hamilton, Ontario (Canada); Jabbari, F. [Hamilton Health Sciences, Hamilton, Ontario (Canada); Levy, D.R. [McMaster Univ., Sports Medicine, Dept. of Family Medicine and Dept. of Medicine, Hamilton, Ontario (Canada)

    2007-06-15

    To assess, with a peripheral magnetic resonance imaging system (pMRI), the prevalence of bony and soft tissue abnormalities in the knee joints of normal subjects, osteoarthritis (OA) patients, and individuals who have suffered an anterior cruciate ligament (ACL) rupture; and 2) to compare the prevalence among groups. Magnetic resonance (MR) images of 28 healthy, 32 OA, and 26 ACL damaged knees were acquired with a 1.0-T pMRI system. Two radiologists grade the presence and severity of 9 MR image features: cartilage degeneration, osteophytes, subchondral cyst, bone marrow edema, meniscal abnormality, ligament integrity, loose bodies, popliteal cysts, and joint effusion. Ten of 28 healthy (35.7%), 24 of 26 ACL (92.3%), and all OA knees (100%) showed prevalent cartilage defects; 5 healthy (17.9%), 20 ACL (76.9%), and all OA knees (100%) had osteophytes; and 9 normal (32.1%), 21 ACL (80.8%), and 29 OA knees (90.6%) had meniscal abnormalities. One-half of the knees in the OA group (16 of 32, 50%) had subchondral cysts, and almost one-half had bone marrow edema (15 of 32, 46.9%). These features were not common in the ACL group (7.7%, and 11.5%, respectively) and were not observed in healthy knees. The OA group had the most severe cartilage defects, osteophytes, bone marrow edema, subchondral cysts, and meniscal abnormalities; the ACL group showed more severe cartilage defects, osteophytes, and meniscal abnormalities than did normal subjects. The results suggest that knees that have sustained ACL damage have OA-like features, most subjects (19 of 26, 73.1%) could be identified as in the early stage of OA. The prominent abnormalities present in ACL-damaged knees are cartilage defects, osteophytes, and meniscal abnormalities. (author)

  8. Prevalence of knee abnormalities in patients with osteoarthritis and anterior cruciate ligament injury identified with peripheral magnetic resonance imaging: a pilot study

    International Nuclear Information System (INIS)

    Wu, H.; Webber, C.; Fuentes, C.O.; Benson, R.; Beattie, K.; Adachi, J.D.; Xie, X.; Jabbari, F.; Levy, D.R.

    2007-01-01

    To assess, with a peripheral magnetic resonance imaging system (pMRI), the prevalence of bony and soft tissue abnormalities in the knee joints of normal subjects, osteoarthritis (OA) patients, and individuals who have suffered an anterior cruciate ligament (ACL) rupture; and 2) to compare the prevalence among groups. Magnetic resonance (MR) images of 28 healthy, 32 OA, and 26 ACL damaged knees were acquired with a 1.0-T pMRI system. Two radiologists grade the presence and severity of 9 MR image features: cartilage degeneration, osteophytes, subchondral cyst, bone marrow edema, meniscal abnormality, ligament integrity, loose bodies, popliteal cysts, and joint effusion. Ten of 28 healthy (35.7%), 24 of 26 ACL (92.3%), and all OA knees (100%) showed prevalent cartilage defects; 5 healthy (17.9%), 20 ACL (76.9%), and all OA knees (100%) had osteophytes; and 9 normal (32.1%), 21 ACL (80.8%), and 29 OA knees (90.6%) had meniscal abnormalities. One-half of the knees in the OA group (16 of 32, 50%) had subchondral cysts, and almost one-half had bone marrow edema (15 of 32, 46.9%). These features were not common in the ACL group (7.7%, and 11.5%, respectively) and were not observed in healthy knees. The OA group had the most severe cartilage defects, osteophytes, bone marrow edema, subchondral cysts, and meniscal abnormalities; the ACL group showed more severe cartilage defects, osteophytes, and meniscal abnormalities than did normal subjects. The results suggest that knees that have sustained ACL damage have OA-like features, most subjects (19 of 26, 73.1%) could be identified as in the early stage of OA. The prominent abnormalities present in ACL-damaged knees are cartilage defects, osteophytes, and meniscal abnormalities. (author)

  9. Three-dimensional double-echo steady-state (3D-DESS) magnetic resonance imaging of the knee. Establishment of flip angles for evaluation of cartilage at 1.5 T and 3.0 T

    International Nuclear Information System (INIS)

    Moriya, Susumu; Miki, Yukio; Matsuno, Yukako; Okada, Masayo

    2012-01-01

    Background: The effect of flip angle (FA) on synovial fluid and cartilage signal and on image contrast using three-dimensional double-echo steady-state (3D-DESS) sequence have only been performed with 1.0-T but not with 1.5-T or 3.0-T scanners. Purpose: To identify the FA that gives the maximum synovial fluid and cartilage values, and to identify the FA at which maximum values of synovial fluid-cartilage contrast-to-noise ratio (CNR) in 3D-DESS sequences when 1.5-T and 3.0-T scanners are used. Material and Methods: Using 3D-DESS with water-excitation pulse, mid-sagittal plane images of the knees of 10 healthy volunteers (5 men, 5 women; age range, 21-42 years) were obtained with FA varying from 10 deg to 90 deg. Synovial fluid signals, cartilage signals, and background were measured at each FA, and the FA that gave the highest synovial fluid and cartilage values was obtained. Synovial fluid-cartilage CNR was also calculated, and the FA that gave the largest CNR was obtained. Results: At 1.5 T, the maximum synovial fluid signal was at FA 90 deg, and the maximum cartilage signal was at FA 30 deg. Synovial fluid-cartilage CNR was highest at FA 90 deg (P < 0.05). At 3.0 T, the maximum synovial fluid signal was at FA 90 deg, and the maximum cartilage signal was at FA 20 deg. Synovial fluid-cartilage CNR was highest at FA 90 deg (P < 0.05). Conclusion: In order to improve the visibility of cartilage itself, FA settings of 30 deg at 1.5 T and 20 deg at 3.0 T are apparently ideal. For observing the cartilage surface, the most effective FA setting is 90 deg for both 1.5 T and 3.0 T

  10. Anterior knee pain and evidence of osteoarthritis of the patellofemoral joint should not be considered contraindications to mobile-bearing unicompartmental knee arthroplasty: a 15-year follow-up.

    Science.gov (United States)

    Hamilton, T W; Pandit, H G; Maurer, D G; Ostlere, S J; Jenkins, C; Mellon, S J; Dodd, C A F; Murray, D W

    2017-05-01

    It is not clear whether anterior knee pain and osteoarthritis (OA) of the patellofemoral joint (PFJ) are contraindications to medial unicompartmental knee arthroplasty (UKA). Our aim was to investigate the long-term outcome of a consecutive series of patients, some of whom had anterior knee pain and PFJ OA managed with UKA. We assessed the ten-year functional outcomes and 15-year implant survival of 805 knees (677 patients) following medial mobile-bearing UKA. The intra-operative status of the PFJ was documented and, with the exception of bone loss with grooving to the lateral side, neither the clinical or radiological state of the PFJ nor the presence of anterior knee pain were considered a contraindication. The impact of radiographic findings and anterior knee pain was studied in a subgroup of 100 knees (91 patients). There was no relationship between functional outcomes, at a mean of ten years, or 15-year implant survival, and pre-operative anterior knee pain, or the presence or degree of cartilage loss documented intra-operatively at the medial patella or trochlea, or radiographic evidence of OA in the medial side of the PFJ. In 6% of cases there was full thickness cartilage loss on the lateral side of the patella. In these cases, the overall ten-year function and 15-year survival was similar to those without cartilage loss; however they had slightly more difficulty with descending stairs. Radiographic signs of OA seen in the lateral part of the PFJ were not associated with a definite compromise in functional outcome or implant survival. Severe damage to the lateral side of the PFJ with bone loss and grooving remains a contraindication to mobile-bearing UKA. Less severe damage to the lateral side of the PFJ and damage to the medial side, however severe, does not compromise the overall function or survival, so should not be considered to be a contraindication. However, if a patient does have full thickness cartilage loss on the lateral side of the PFJ they may

  11. Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence

    Energy Technology Data Exchange (ETDEWEB)

    Hyhlik-Duerr, A. [Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-Universitaet, Muenchen (Germany); Klinik fuer Orthopaedie und Sportorthopaedie der Technischen Universitaet, Muenchen (Germany); Faber, S.; Reiser, M. [Klinik fuer Orthopaedie und Sportorthopaedie der Technischen Universitaet, Muenchen (Germany); Burgkart, R. [Institut fuer Medizinische Informatik und Systemforschung (MEDIS), GSF-Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg, Oberschleissheim (Germany); Stammberger, T.; Englmeier, K.H. [Institut fuer Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Klinikum Grosshadern, Marchioninistrasse 15, D-81377 Munich (Germany); Maag, K.P. [Institut fuer Radiologische Diagnostik, Klinikum der Ludwig-Maximilians-Universitaet, Muenchen (Germany); Eckstein, F. [Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2000-02-01

    The aim of this study was to analyze the precision of tibial cartilage morphometry, by using a fast, coronal water-excitation sequence with high spatial resolution, to compare the reproducibility of 3D thickness vs volume estimates, and to test the technique in patients with severe osteoarthritis. The tibiae of 8 healthy volunteers and 3 patients selected for total knee arthroplasty were imaged repeatedly with a water-excitation sequence (image time 6 h 19 min, resolution 1.2 x 0.31 x 0.31 mm{sup 3}), with the knee being repositioned between each replicate acquisition. After 3D reconstruction, the cartilage volume, the mean, and the maximal tibial cartilage thickness were determined by 3D Euclidean distance transformation. In the volunteers, the precision of the volume measurements was 2.3 % (CV%) in the medial and 2.6 % in the lateral tibia. The reproducibility of the mean cartilage thickness was similar (2.6 and 2.5 %, respectively), and that of the maximal thickness lower (6.5 and 4.4 %). The patients showed a considerable reduction in volume and thickness, the precision being comparable with that in the volunteers. We find that, using a new imaging protocol and computational algorithm, it is possible to determine tibial cartilage morphometry with high precision in healthy individuals as well as in patients with osteoarthritis. (orig.)

  12. Analysis of Outcomes for High Tibial Osteotomies Performed With Cartilage Restoration Techniques.

    Science.gov (United States)

    Kahlenberg, Cynthia A; Nwachukwu, Benedict U; Hamid, Kamran S; Steinhaus, Michael E; Williams, Riley J

    2017-02-01

    To evaluate reported medium- to long-term outcomes after high tibial osteotomy (HTO) with associated cartilage restoration procedures. A review of the MEDLINE database was performed. The inclusion criteria were English language, clinical outcome study with HTO as the primary procedure, use of a form of cartilage repair included, and the mean follow-up period of at least 2 years. Each identified study was reviewed for study design, patient demographics, type of procedures performed, clinical outcomes, progression to total knee arthroplasty, and complications. Eight hundred and twenty-seven patients (839 knees) were included. The most common cartilage preservation technique used in conjunction with HTO was microfracture (4 studies; 22.2%). The mean Lyscholm scores, reported in 50% of the studies, ranged from 40 to 65.7 preoperatively and improved to a range of 67 to 94.6 postoperatively. Four studies (22.2%) used a visual analog scale for evaluation of pain and all had a mean visual analog scale of less than 3 postoperatively. Among studies evaluating conversion to arthroplasty, the rate of conversion was 6.8% and the range of mean number of years from HTO to conversion was 4.9 to 13.0. The overall reported complication rate was 10.3%. HTO with cartilage restoration procedures provides reliable improvement in functional status in the medium- to long-term period after surgery and has potential to delay or avoid the need for knee arthroplasty surgery. Level IV, systematic review of Level I to IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. MRI findings associated with development of incident knee pain over 48 months: data from the osteoarthritis initiative

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Gabby B.; Hou, Stephanie W.; Nardo, Lorenzo; Heilmeier, Ursula; Link, Thomas M. [University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Nevitt, Michael C.; McCulloch, Charles E. [University of California, San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA (United States)

    2016-05-15

    The purpose of this nested case-control study was to identify baseline, incident, and progressive MRI findings visible on standard MRI clinical sequences that were associated with development of incident knee pain in subjects at risk for OA over a period of 48 months. We analyzed 60 case knees developing incident pain (WOMAC{sub pain} = 0 at baseline and WOMAC{sub pain} ≥ 5 at 48 months) and 60 control knees (WOMAC{sub pain} = 0 at baseline and WOMAC{sub pain} = 0 at 48 months) from the Osteoarthritis Initiative. 3 T knee MRIs were analyzed using a modified WORMS score (cartilage, meniscus, bone marrow) at baseline and after 48 months. Baseline and longitudinal findings were grouped into logistic regression models and compared using likelihood-ratio tests. For each model that was significant, a stepwise elimination was used to isolate significant MRI findings. One baseline MRI finding and three findings that changed from baseline to 48 months were associated with the development of pain: at baseline, the severity of a cartilage lesion in the medial tibia was associated with incident pain - (odds ratio (OR) for incident pain = 3.05; P = 0.030). Longitudinally, an incident effusion (OR = 9.78; P = 0.005), a progressive cartilage lesion of the patella (OR = 4.59; P = 0.009), and an incident medial meniscus tear (OR = 4.91; P = 0.028) were associated with the development of pain. Our results demonstrate that baseline abnormalities of the medial tibia cartilage as well as an incident joint effusion, progressive patella cartilage defects, and an incident medial meniscus tear over 48 months may be associated with incident knee pain. Clinically, this study helps identify MRI findings that are associated with the development of knee pain. (orig.)

  14. MRI findings associated with development of incident knee pain over 48 months: data from the osteoarthritis initiative

    International Nuclear Information System (INIS)

    Joseph, Gabby B.; Hou, Stephanie W.; Nardo, Lorenzo; Heilmeier, Ursula; Link, Thomas M.; Nevitt, Michael C.; McCulloch, Charles E.

    2016-01-01

    The purpose of this nested case-control study was to identify baseline, incident, and progressive MRI findings visible on standard MRI clinical sequences that were associated with development of incident knee pain in subjects at risk for OA over a period of 48 months. We analyzed 60 case knees developing incident pain (WOMAC pain = 0 at baseline and WOMAC pain ≥ 5 at 48 months) and 60 control knees (WOMAC pain = 0 at baseline and WOMAC pain = 0 at 48 months) from the Osteoarthritis Initiative. 3 T knee MRIs were analyzed using a modified WORMS score (cartilage, meniscus, bone marrow) at baseline and after 48 months. Baseline and longitudinal findings were grouped into logistic regression models and compared using likelihood-ratio tests. For each model that was significant, a stepwise elimination was used to isolate significant MRI findings. One baseline MRI finding and three findings that changed from baseline to 48 months were associated with the development of pain: at baseline, the severity of a cartilage lesion in the medial tibia was associated with incident pain - (odds ratio (OR) for incident pain = 3.05; P = 0.030). Longitudinally, an incident effusion (OR = 9.78; P = 0.005), a progressive cartilage lesion of the patella (OR = 4.59; P = 0.009), and an incident medial meniscus tear (OR = 4.91; P = 0.028) were associated with the development of pain. Our results demonstrate that baseline abnormalities of the medial tibia cartilage as well as an incident joint effusion, progressive patella cartilage defects, and an incident medial meniscus tear over 48 months may be associated with incident knee pain. Clinically, this study helps identify MRI findings that are associated with the development of knee pain. (orig.)

  15. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    Science.gov (United States)

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  16. MR imaging of the knee: findings in asymptomatic collegiate basketball players.

    Science.gov (United States)

    Major, Nancy M; Helms, Clyde A

    2002-09-01

    The purpose of our study was to evaluate the knees of asymptomatic high-level collegiate basketball players before the beginning of the basketball season to gain an understanding of nonclinical findings in this patient population. Bilateral knee MR imaging examinations of 17 varsity basketball players (12 men and five women) were performed before basketball season began. All of the subjects were imaged on a 1.5-T magnet. The MR imaging studies were reviewed by two musculoskeletal radiologists. Structures analyzed were the menisci, ligaments, cartilage, plicae, and bone marrow. The presence of a joint effusion was also noted. Fourteen (41%) of the 34 knees had bone marrow edema, eight (24%) showed signal in the patellar tendon, and 14 (41%) had abnormal cartilage signal or a focal abnormality. Twelve (35%) of the 34 knees showed a joint effusion. Two knees (6%) showed abnormal signal along the infrapatellar plica. Four knees (12%) were noted to have a discoid meniscus. An MR examination of the knees of high-level collegiate basketball players may show changes unique to this population. The changes seen on MR imaging in these athletes may be asymptomatic abnormalities. For instance, changes suggestive of patellar tendinopathy were identified in these asymptomatic subjects.

  17. Orientation-dependent changes in MR signal intensity of articular cartilage: a manifestation of the ``magic angle`` effect

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, F.K.; Bolze, X.; Felsenberg, D.; Wolf, K.J. [Department of Radiology, Benjamin Franklin University Hospital, Free University Berlin, D-12200 Berlin (Germany)

    1998-06-01

    Objective: To study magnetic resonance (MR) imaging pattern of normal hyaline articular cartilage in the knee joint with regard to the contribution of the ``magic angle`` effect to the MR signal. Design. Thirty-two healthy volunteers were imaged in a standard supine position in a 1.5-T unit using spin echo and gradient echo sequences. Nine volunteers were reimaged with the knee flexed. The signal behavior of the hyaline cartilage of the femoral condyles was evaluated qualitatively and quantitatively. The extended and flexed positions of the nine volunteers were compared. Results. A superficial and a deep hyperintense layer and a hypointense middle cartilage layer were observed. Segments of increased signal intensity were visible along the condyles; a magic angle effect on signal intensity was evident in the hypointense middle layer with both gradient echo and spin echo images. Conclusion. The MR signal behavior of hyaline cartilage is influenced by the alignment of the collagen fibers within the cartilage in relation to the magnetic field. Failure to recognize this effect may lead to inaccurate diagnosis. (orig.) With 4 figs., 17 refs.

  18. MR findings in knee osteoarthritis

    International Nuclear Information System (INIS)

    Guermazi, Ali; Taouli, Bachir; Genant, Harry K.; Zaim, Souhil; Miaux, Yves; Peterfy, Charles G.

    2003-01-01

    Knee osteoarthritis (OA) is a leading cause of disability. Recent advances in drug discovery techniques and improvements in understanding the pathophysiology of osteoarthritic disorders have resulted in an unprecedented number of new therapeutic agents. Of all imaging modalities, radiography has been the most widely used for the diagnosis and management of the progression of knee OA. Magnetic resonance imaging is a relatively recent technique and its applications to osteoarthritis have been limited. Compared with conventional radiography, MR imaging offers unparalleled discrimination among articular soft tissues by directly visualizing all components of the knee joint simultaneously and therefore allowing the knee joint to be evaluated as a whole organ. In this article we present the MR findings in knee OA including cartilage abnormalities, osteophytes, bone edema, subarticular cysts, bone attrition, meniscal tears, ligament abnormalities, synovial thickening, joint effusion, intra-articular loose bodies, and periarticular cysts. (orig.)

  19. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus.

    Science.gov (United States)

    Honkanen, Juuso T J; Turunen, Mikael J; Freedman, Jonathan D; Saarakkala, Simo; Grinstaff, Mark W; Ylärinne, Janne H; Jurvelin, Jukka S; Töyräs, Juha

    2016-10-01

    Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p < 0.05) in cartilage. Based on these results, diffusion kinematics vary between cartilage and meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.

  20. MR imaging of the knee using fat suppression technique: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jin Suck; Kim, Mi Hye; Cho, Jae Hyun; Park, Chang Yun; Lee, Yeon Hee [Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Yong Soo [Inje University College of Medicine, Kimhae (Korea, Republic of)

    1994-03-15

    The purpose of this study is to evaluate the usefulness of fat suppression technique for MR imaging of the knee. Twenty-eight knees of 26 patients were imaged at a 1.5 T MR system. Sagittal and coronal T2-weighted spin echo imaged (SET2) and sagittal fat suppression SET2(FSSE) were obtained in all cases. We used a chemical shift imaging method for fat suppression. We compared FSSE with SET2 in terms of the conspicuity of lesions of menisci, cruciate ligaments, cartilage, bone and soft tissue of the knee. Meniscal lesions were detected on FSSE and SET2 as well. FSSE depicted the lesion more conspicuously in 6 cases. For the depiction of ACL tear, SET2 was superior to FSSE in 5 cases. FSSE was better for the visualization of the normal structure of cartilage and it also depicted the cartilaginous lesions more conspicuously in 3 cases. Though bone bruise could be detected on both techniques, FSSE was better. FSSE could provide the improved delineation of menisci, cartilage, bone bruise and other soft tissues except the injuries of anterior cruciate ligament. Although FSSE is a reliable method, it can not replace SET2. It may be used as a complemental method in the imaging of the knee.

  1. Comparison of Radiographic Joint Space Width and Magnetic-Resonance-Imaging for Prediction of Knee Replacement – A Longitudinal Case-Control Study from the Osteoarthritis Initiative

    Science.gov (United States)

    Eckstein, Felix; Boudreau, Robert; Wang, Zhijie; Hannon, Michael J.; Duryea, Jeff; Wirth, Wolfgang; Cotofana, Sebastian; Guermazi, Ali; Roemer, Frank; Nevitt, Michael; John, Markus R.; Ladel, Christoph; Sharma, Leena; Hunter, David J.; Kwoh, C. Kent

    2015-01-01

    Objective To evaluate whether change in fixed location measures of radiographic joint space width (JSW) and in cartilage thickness by MRI predict knee replacement. Methods Knees replaced between 36-60 months follow-up (M) in the Osteoarthritis Initiative were each matched with one control by age, sex, and radiographic status. Radiographic JSW was determined from fixed flexion radiographs, and subregional femorotibial cartilage thickness from 3 Tesla MRI. Changes between the annual visit before replacement (T0) and 2 years before T0 (T-2) were compared using conditional logistic regression. Results One hundred and nineteen knees from 102 participants (55.5% women; age 64.2±8.7 [mean±SD]) were studied. Fixed location JSW change at 22.5% from medial to lateral differed more between replaced and control knees (case-control [cc] OR=1.57; 95%CI: 1.23,2.01) than minimum medial JSW change (ccOR=1.38; 95%CI: 1.11,1.71). Medial femorotibial cartilage loss displayed discrimination similar to minimum JSW, and central tibial cartilage loss similar to fixed location JSW. Location-independent thinning and thickening scores were both elevated prior to knee replacement. Conclusions Discrimination of structural progression between knee pre-placement cases versus controls was stronger for fixed-location than for minimum radiographic JSW. MRI displayed similar discrimination to radiography and suggested greater simultaneous cartilage thickening and loss prior to knee replacement. PMID:26376884

  2. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  3. Comparison of arthroscopy and magnetic resonance imaging in investigation of the knee joint

    International Nuclear Information System (INIS)

    Zazyirnij, Yi.M.; Rogozhin, V.O.; Ternovij, M.K.

    2002-01-01

    MRI was done in 41 patients aged 18-56 who were treated for stage 1 and 2 osteoarthrosis of the knee joint. The analysis of accuracy, sensitivity, specificity suggests that MRI facilitates assessment of the state of the knee cartilage and menisci. High negative preliminary data of MRI allow to avoid unnecessary arthroscopy of the knee joint

  4. T2 values of femoral cartilage of the knee joint: Comparison between pre-contrast and post-contrast images

    International Nuclear Information System (INIS)

    Yoon, Hyun Jung; Yoon, Young Cheol; Choe, Bong Keun

    2014-01-01

    To retrospectively evaluate the relationship between T2 values of pre- and post-contrast magnetic resonance (MR) images of femoral cartilage in patients with varying degrees of osteoarthritis. A total of 19 patients underwent delayed gadolinium-enhanced MRI of cartilage. Six regions of interest for T2 value measurement were obtained from pre- and post-contrast T2-weighted, sagittal, multi-slice, multi-echo, source images in each subject. Regions with modified Noyes classification grade 2B and 3 were excluded. Comparison of T2 values between pre- and post-contrast images and T2 values among regions with the grade 0, 1 and 2A groups were statistically analyzed. Of a total of 114 regions, 79 regions showing grade 0 (n = 46), 1 (n = 18), or 2A (n = 15) were analyzed. The overall and individual T2 values of post-contrast images were significantly lower than those of pre-contrast images (overall, 35.3 ± 9.2 [mean ± SD] vs. 29.9 ± 8.2, p < 0.01; range of individual, 28.9-37.6 vs. 27.1-36.4, p < 0.01). Pearson correlation coefficients showed a strong positive correlation between pre- and post-contrast images (rho-Pearson = 0.712-0.905). T2 values of pre- and post-contrast images of the grade 0 group were significantly lower than those of the grade 1/2A group (pre T2, p = 0.003; post T2, p = 0.006). T2 values of the femoral cartilage of the knee joint are significantly lower on post-contrast images than on pre-contrast images. Furthermore, these T2 values have a strong positive correlation between pre- and post-contrast images.

  5. T2 values of femoral cartilage of the knee joint: Comparison between pre-contrast and post-contrast images

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyun Jung; Yoon, Young Cheol [Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choe, Bong Keun [Department of Preventive Medicine, Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    2014-02-15

    To retrospectively evaluate the relationship between T2 values of pre- and post-contrast magnetic resonance (MR) images of femoral cartilage in patients with varying degrees of osteoarthritis. A total of 19 patients underwent delayed gadolinium-enhanced MRI of cartilage. Six regions of interest for T2 value measurement were obtained from pre- and post-contrast T2-weighted, sagittal, multi-slice, multi-echo, source images in each subject. Regions with modified Noyes classification grade 2B and 3 were excluded. Comparison of T2 values between pre- and post-contrast images and T2 values among regions with the grade 0, 1 and 2A groups were statistically analyzed. Of a total of 114 regions, 79 regions showing grade 0 (n = 46), 1 (n = 18), or 2A (n = 15) were analyzed. The overall and individual T2 values of post-contrast images were significantly lower than those of pre-contrast images (overall, 35.3 ± 9.2 [mean ± SD] vs. 29.9 ± 8.2, p < 0.01; range of individual, 28.9-37.6 vs. 27.1-36.4, p < 0.01). Pearson correlation coefficients showed a strong positive correlation between pre- and post-contrast images (rho-Pearson = 0.712-0.905). T2 values of pre- and post-contrast images of the grade 0 group were significantly lower than those of the grade 1/2A group (pre T2, p = 0.003; post T2, p = 0.006). T2 values of the femoral cartilage of the knee joint are significantly lower on post-contrast images than on pre-contrast images. Furthermore, these T2 values have a strong positive correlation between pre- and post-contrast images.

  6. Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis.

    Science.gov (United States)

    Boileau, C; Martel-Pelletier, J; Abram, F; Raynauld, J-P; Troncy, E; D'Anjou, M-A; Moreau, M; Pelletier, J-P

    2008-07-01

    Osteoarthritis (OA) structural changes take place over decades in humans. MRI can provide precise and reliable information on the joint structure and changes over time. In this study, we investigated the reliability of quantitative MRI in assessing knee OA structural changes in the experimental anterior cruciate ligament (ACL) dog model of OA. OA was surgically induced by transection of the ACL of the right knee in five dogs. High resolution three dimensional MRI using a 1.5 T magnet was performed at baseline, 4, 8 and 26 weeks post surgery. Cartilage volume/thickness, cartilage defects, trochlear osteophyte formation and subchondral bone lesion (hypersignal) were assessed on MRI images. Animals were killed 26 weeks post surgery and macroscopic evaluation was performed. There was a progressive and significant increase over time in the loss of knee cartilage volume, the cartilage defect and subchondral bone hypersignal. The trochlear osteophyte size also progressed over time. The greatest cartilage loss at 26 weeks was found on the tibial plateaus and in the medial compartment. There was a highly significant correlation between total knee cartilage volume loss or defect and subchondral bone hypersignal, and also a good correlation between the macroscopic and the MRI findings. This study demonstrated that MRI is a useful technology to provide a non-invasive and reliable assessment of the joint structural changes during the development of OA in the ACL dog model. The combination of this OA model with MRI evaluation provides a promising tool for the evaluation of new disease-modifying osteoarthritis drugs (DMOADs).

  7. MR imaging of the knee

    International Nuclear Information System (INIS)

    Kramer, J.

    2006-01-01

    Full text: Although assessment of internal derangements of the knee begins with clinical evaluation including careful physical examination, imaging is fundamental to accurate diagnosis of many of these derangements. MRI has become a valuable diagnostic modality for the evaluation of neoplastic, traumatic, and inflammatory disorders of the musculoskeletal system. MRI not only depicts osseous lesions, but provides information on the cartilage, menisci, ligaments and surrounding soft-tissues. The menisci of the knee are composed of fibrocartilage. Advanced degeneration is observed during aging, although it is difficult to determine which changes are age-related alone and which are caused by prior overuse of trauma. Although meniscal tears may be discovered incidentally, they may have a variety of clinical manifestations. Two categories of meniscal tears commonly are identified: traumatic and degenerative. This categorization generally is based on analysis of the clinical history, the age of the patients, and the gross morphology of the meniscus at the time of arthroscopy. Sometimes torn meniscal fragments may be displaced and lead to restriction of movement in the knee joint. MRI is the method of choice in the preoperative diagnosis of meniscal injuries of the knee. Sensitivities and specificities for meniscal tears above 95% with a negative predictive value of almost 100% are reported. In the evaluation of postoperative menisci, however, the above mentioned criteria have proved more problematic if diagnosis is uncertain, therefore, MR-arthrography seems to be a reasonable alternative to repeat arthroscopy in patients who have had surgical treatment of meniscal tears. MR imaging diagnosis of injuries to the anterior acruciate ligament is based on direct signs and abnormalities in the surrounding structures (indirect or secondary signs). The two major alterations occurring within the ligament itself are changes in this morphology or courses and changes in its signal

  8. Early Articular Cartilage MRI T2 Changes After Anterior Cruciate Ligament Reconstruction Correlate With Later Changes in T2 and Cartilage Thickness

    Science.gov (United States)

    Williams, Ashley; Winalski, Carl S.; Chu, Constance R.

    2018-01-01

    Anterior cruciate ligament (ACL) injury is a known risk factor for future development of osteoarthritis (OA). This human clinical study seeks to determine if early changes to cartilage MRI T2 maps between baseline and 6 months following ACL reconstruction (ACLR) are associated with changes to cartilage T2 and cartilage thickness between baseline and 2 years after ACLR. Changes to T2 texture metrics and T2 mean values in medial knee cartilage of 17 human subjects 6 months after ACLR were compared to 2-year changes in T2 and in cartilage thickness of the same areas. T2 texture and mean assessments were also compared to that of 11 uninjured controls. In ACLR subjects, six-month changes in mean T2 correlated to 2-year changes in mean T2 (R = 0.80, p = 0.0001), and 6-month changes to T2 texture metrics, but not T2 mean, correlated with 2-year changes in medial femoral cartilage thickness in 9 of the 20 texture features assessed (R = 0.48–0.72, p ≤ 0.05). Both mean T2 and texture differed (p evaluation of T2 map and textural changes may provide early warning of cartilage at risk for progressive degeneration after ACL injury and reconstruction. PMID:27381512

  9. Hierarchical imaging of the human knee

    Science.gov (United States)

    Schulz, Georg; Götz, Christian; Deyhle, Hans; Müller-Gerbl, Magdalena; Zanette, Irene; Zdora, Marie-Christine; Khimchenko, Anna; Thalmann, Peter; Rack, Alexander; Müller, Bert

    2016-10-01

    Among the clinically relevant imaging techniques, computed tomography (CT) reaches the best spatial resolution. Sub-millimeter voxel sizes are regularly obtained. For investigations on true micrometer level lab-based μCT has become gold standard. The aim of the present study is the hierarchical investigation of a human knee post mortem using hard X-ray μCT. After the visualization of the entire knee using a clinical CT with a spatial resolution on the sub-millimeter range, a hierarchical imaging study was performed using a laboratory μCT system nanotom m. Due to the size of the whole knee the pixel length could not be reduced below 65 μm. These first two data sets were directly compared after a rigid registration using a cross-correlation algorithm. The μCT data set allowed an investigation of the trabecular structures of the bones. The further reduction of the pixel length down to 25 μm could be achieved by removing the skin and soft tissues and measuring the tibia and the femur separately. True micrometer resolution could be achieved after extracting cylinders of several millimeters diameters from the two bones. The high resolution scans revealed the mineralized cartilage zone including the tide mark line as well as individual calcified chondrocytes. The visualization of soft tissues including cartilage, was arranged by X-ray grating interferometry (XGI) at ESRF and Diamond Light Source. Whereas the high-energy measurements at ESRF allowed the simultaneous visualization of soft and hard tissues, the low-energy results from Diamond Light Source made individual chondrocytes within the cartilage visual.

  10. Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review.

    Science.gov (United States)

    Oussedik, Sam; Tsitskaris, Konstantinos; Parker, David

    2015-04-01

    We performed a systematic review of the treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation to determine the differences in patient outcomes after these procedures. We searched PubMed/Medline, Embase, and The Cochrane Library databases in the period from January 10 through January 20, 2013, and included 34 articles in our qualitative analysis. All studies showed improvement in outcome scores in comparison with baseline values, regardless of the treatment modality. The heterogeneity of the results presented in the studies precluded a meta-analysis. Microfracture appears to be effective in smaller lesions and is usually associated with a greater proportion of fibrocartilage production, which may have an effect on durability and eventual failure. Autologous chondrocyte implantation is an effective treatment that may result in a greater proportion of hyaline-like tissue at the repair site, which may in turn have a beneficial effect on durability and failure; it appears to be effective in larger lesions. Autologous chondrocyte implantation with periosteum has been shown to be associated with symptomatic cartilage hypertrophy more frequently than autologous chondrocyte implantation with collagen membrane. Matrix-associated autologous chondrocyte implantation is technically less challenging than the other techniques available, and in lesions greater than 4 cm(2), it has been shown to be more effective than microfracture. Level IV, systematic review of Level I-IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Multimodal imaging of the human knee down to the cellular level

    Science.gov (United States)

    Schulz, G.; Götz, C.; Müller-Gerbl, M.; Zanette, I.; Zdora, M.-C.; Khimchenko, A.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    Computed tomography reaches the best spatial resolution for the three-dimensional visualization of human tissues among the available nondestructive clinical imaging techniques. Nowadays, sub-millimeter voxel sizes are regularly obtained. Regarding investigations on true micrometer level, lab-based micro-CT (μCT) has become gold standard. The aim of the present study is firstly the hierarchical investigation of a human knee post mortem using hard X-ray μCT and secondly a multimodal imaging using absorption and phase contrast modes in order to investigate hard (bone) and soft (cartilage) tissues on the cellular level. After the visualization of the entire knee using a clinical CT, a hierarchical imaging study was performed using the lab-system nanotom® m. First, the entire knee was measured with a pixel length of 65 μm. The highest resolution with a pixel length of 3 μm could be achieved after extracting cylindrically shaped plugs from the femoral bones. For the visualization of the cartilage, grating-based phase contrast μCT (I13-2, Diamond Light Source) was performed. With an effective voxel size of 2.3 μm it was possible to visualize individual chondrocytes within the cartilage.

  12. Exercise increases interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Helmark, Ida C; Mikkelsen, Ulla R; Børglum, Jens

    2010-01-01

    The microdialysis method was applied to the human knee joint with osteoarthritis (OA) in order to reveal changes in biochemical markers of cartilage and inflammation, intraarticularly and in the synovium, in response to a single bout of mechanical joint loading.......The microdialysis method was applied to the human knee joint with osteoarthritis (OA) in order to reveal changes in biochemical markers of cartilage and inflammation, intraarticularly and in the synovium, in response to a single bout of mechanical joint loading....

  13. Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Tsavalas, Nikolaos; Karantanas, Apostolos H. [University Hospital, University of Crete, Department of Medical Imaging, Heraklion, Crete (Greece); Katonis, Pavlos [University Hospital, University of Crete, Department of Orthopaedic Surgery, Heraklion, Crete (Greece)

    2012-02-15

    To evaluate patellofemoral congruency measurements on MRI and correlate the findings with severity of ipsilateral osteoarthritis. We retrospectively reviewed 650 consecutive knee MRI examinations from 622 patients divided into two age groups: {<=}50 and >50 year-old. The femoral sulcus angle (SA) and depth (SD), lateral patellar displacement (LPD), lateral patellofemoral angle (LPFA), tibial tubercle-trochlear groove (TT-TG) distance and Insall-Salvati index as well as the grade of focal cartilage defects (ranging from I to IV) in the patellofemoral region were assessed in each subject on axial and sagittal fat-saturated intermediate-w MR images. A significant difference exists between normal and knees with patellofemoral joint osteoarthritis regarding SA (p = 0.0002 and <0.0001), SD (p = 0.0004 and <0.0001), LPD (p = 0.0014 and 0.0009) and LPFA (p = 0.0002 and 0.0003) in both age groups ({<=}50 and >50 respectively). Significant correlation was found between grading of cartilage defects and SA (rho = 0.21, p = 0.0001 and 0.443, <0.0001), SD (rho = -0.198, p = 0.0003 and -0.418, <0.0001), LPD (rho = 0.176, p = 0.0013 and 0.251, 0.0002) and LPFA (rho = -0.204, p = 0.0002 and -0.239, 0.0005) in both age groups. Knee joint anterior malalignment is multivariably associated with patellofemoral osteoarthritis. circle MRI is an excellent method to evaluate knee alignment and articular cartilage damage. (orig.)

  14. Experimental joint immobilization in guinea pigs. Effects on the knee joint

    Science.gov (United States)

    Marcondesdesouza, J. P.; Machado, F. F.; Sesso, A.; Valeri, V.

    1980-01-01

    In young and adult guinea pigs, the aftermath experimentally induced by the immobilization of the knee joint in hyperextended forced position was studied. Joint immobilization which varied from one to nine weeks was attained by plaster. Eighty knee joints were examined macro and microscopically. Findings included: (1) muscular hypotrophy and joint stiffness in all animals, directly proportional to the length of immobilization; (2) haemoarthrosis in the first week; (3) intra-articular fibrous tissue proliferation ending up with fibrous ankylosis; (4) hyaline articular cartilage erosions; (5) various degrees of destructive menisci changes. A tentative explanation of the fibrous tissue proliferation and of the cartilage changes is offered.

  15. Radiological imaging of osteoarthritis of the knee; Radiologische Bildgebung der Kniegelenkarthrose

    Energy Technology Data Exchange (ETDEWEB)

    Wick, M.C.; Jaschke, W.; Klauser, A.S. [Medizinische Universitaet Innsbruck, Department Radiologie, Innsbruck (Austria)

    2012-11-15

    Osteoarthritis is the most common degenerative age-related joint disease leading to typical degradation of articular cartilage with severe pain and limitation of joint motion. Although knee radiographs are widely considered as the gold standard for the assessment of knee osteoarthritis in clinical and scientific settings they increasingly have significant limitations in situations when resolution and assessment of cartilage is required. Analysis of osteoarthritis of the knee with conventional x-ray is associated with many technical limitations and is increasingly being replaced by high-quality assessment using magnetic resonance imaging (MRI) or sonography both in the clinical routine and scientific studies. Novel imaging modalities such as MRI or ultrasound enable in vivo visualization of the quality of the cartilaginous structure and bone as well as all articular and periarticular tissue. Therefore, the limitations of radiographs in assessment of knee osteoarthritis could be overcome by these techniques. This review article aims to provide insights into the most important radiological features of knee osteoarthritis and systematic visualization with different imaging approaches. The demographic development in western industrialized countries predicts an increase of ageing-related osteoarthritis of the knee for the next decades. A systematic radiological evaluation of patients with knee osteoarthritis includes the assessment of the periarticular soft tissue, cartilaginous thickness, cartilage volume, possible cartilage defects, the macromodular network of hyaline cartilage, bone marrow edema, menisci and articular ligaments. Modern imaging modalities, such as MRI and sonography allow the limitations of conventional radiography to be overcome and to visualize the knee structures in great detail to quantitatively assess the severity of knee osteoarthritis. (orig.) [German] Die Arthrose ist die haeufigste chronische, altersassoziierte, degenerative Gelenkerkrankung

  16. Imaging diagnosis of the articular cartilage disorders

    International Nuclear Information System (INIS)

    Liu Sirun; Zhu Tianyuan; Huang Li; Leng Xiaoming

    2003-01-01

    Objective: To evaluate the diagnosis and differential diagnosis among the chronic osteoarthritis, rheumatoid arthritis and other chronic cartilage lesions on the plain films and MR images. Methods: Eighty-nine cases, including 115 joints, underwent plain film and MRI examination, and enhanced MRI scan was performed on 32 of them, including 44 joints. MRI scan sequences consisted of T 1 WI, T 2 WI + PDWI, STIR, and 3D FS SPGR. There were 90 knee joints in this group and each of the articular cartilage was divided into four parts: patella, femoral medial condyle, femoral lateral condyle, and tibia facet on MR images. The cartilage disorders were classified according to the outerbridge method. In addition, 61 cases including 75 joints were observed as a control group on the plain films and MR images. Results: 115 cartilage lesions were found on MR images, in which thinness of the cartilage (58 cases, 50.4%), bone changes under the cartilage (22 cases, 19.7%), medullar edema (22 cases, 19.7%), and synovial hyperplasia (52 cases, 45.2%) were seen. The patella cartilage was the most likely affected part (81/90, 90%). So the patellar cartilage lesions were divided as group 1 (grade I-II) and group 2 (grade III-IV) on MR images, which were compared with the plain film signs. The narrowing of the joint space and saccules under the articular surface were statistically significant with each other, and χ 2 values were 9.349 and 9.885, respectively (P=0.002). Conclusion: No constant signs could be seen on the plain films with grade I-II cartilage disorders. While the narrowing joint space and saccules under the joint surface could be seen on them with grade III-IV cartilage disorders, which were mainly correlated with the cartilage disorders and bone changes under the articular cartilages. A combination of the plain films and MR images is the best imaging method for examining the joints and joint cartilages. Enhanced MRI scan is very helpful on the diagnosis and differential

  17. Correlation between Focal Nodular Low Signal Changes in Hoffa’s Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    Directory of Open Access Journals (Sweden)

    Chermaine Deepa Antony

    2016-01-01

    Full Text Available Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa’s fat pad adjacent to anterior femoral cartilage of the knee (FNMHF and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA sagittal and axial images of the B1 and C1 region (described later of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p=0.00 between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%. Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.

  18. Collagene order of articular cartilage by clinical magnetic resonance images and its age dependency

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, P.; Gruender, W. [Inst. of Medical Physics and Biophysics, Univ. of Leipzig (Germany)

    2005-07-01

    The present papers describes a novel method to obtain information on the degree of order of the collagen network of the knee meniscal cartilage by means of a single clinical MRI. Images were obtained from 34 healthy volunteers aged between 6 and 76 years as well as from one patient with clinically-diagnosed arthrosis at the age of 32 and 37 years. A siemens vision (1.5 T) MRT with TR = 750 ms, TE = 50 ms, FoV = 160 mm, and Matrix 512 x 512 was used for this purpose. The MR signal intensities of the cartilage were read out along slices with constant height above the subchondral bone and plotted versus the actual angle to the external magnetic field. The obtained intensity curves were fitted by a model distribution, and the degree of order of the collagen fibers was calculated. For the knee meniscal cartilage, there was an age-dependency of the degree of order and a significant deviation of the volunteer with arthrosis from the normal curve. The results are discussed in view of the arcade model and of a possible use of non-invasive clinical MRT for the detection of early arthrotic changes of cartilage. (orig.)

  19. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study).

    Science.gov (United States)

    Guermazi, Ali; Niu, Jingbo; Hayashi, Daichi; Roemer, Frank W; Englund, Martin; Neogi, Tuhina; Aliabadi, Piran; McLennan, Christine E; Felson, David T

    2012-08-29

    To examine use of magnetic resonance imaging (MRI) of knees with no radiographic evidence of osteoarthritis to determine the prevalence of structural lesions associated with osteoarthritis and their relation to age, sex, and obesity. Population based observational study. Community cohort in Framingham, MA, United States (Framingham osteoarthritis study). 710 people aged >50 who had no radiographic evidence of knee osteoarthritis (Kellgren-Lawrence grade 0) and who underwent MRI of the knee. Prevalence of MRI findings that are suggestive of knee osteoarthritis (osteophytes, cartilage damage, bone marrow lesions, subchondral cysts, meniscal lesions, synovitis, attrition, and ligamentous lesions) in all participants and after stratification by age, sex, body mass index (BMI), and the presence or absence of knee pain. Pain was assessed by three different questions and also by WOMAC questionnaire. Of the 710 participants, 393 (55%) were women, 660 (93%) were white, and 206 (29%) had knee pain in the past month. The mean age was 62.3 years and mean BMI was 27.9. Prevalence of "any abnormality" was 89% (631/710) overall. Osteophytes were the most common abnormality among all participants (74%, 524/710), followed by cartilage damage (69%, 492/710) and bone marrow lesions (52%, 371/710). The higher the age, the higher the prevalence of all types of abnormalities detectable by MRI. There were no significant differences in the prevalence of any of the features between BMI groups. The prevalence of at least one type of pathology ("any abnormality") was high in both painful (90-97%, depending on pain definition) and painless (86-88%) knees. MRI shows lesions in the tibiofemoral joint in most middle aged and elderly people in whom knee radiographs do not show any features of osteoarthritis, regardless of pain.

  20. Calcineurin Inhibition at Physiological Osmolarity: Toward improving cartilage regeneration

    NARCIS (Netherlands)

    A.E. van der Windt (Anna)

    2017-01-01

    markdownabstractArticular hyaline cartilage is a white, smooth structure covering the ends of bones in synovial joints, like in the hip and knee. Because of its unique stiff yet flexible properties, it distributes the loads, as a consequence of weight bearing and locomotion, over the surface of the

  1. Shea Nut Oil Triterpene Concentrate Attenuates Knee Osteoarthritis Development in Rats: Evidence from Knee Joint Histology.

    Science.gov (United States)

    Kao, Jen-Hsin; Lin, Sheng-Hsiung; Lai, Chun-Fu; Lin, Yu-Chieh; Kong, Zwe-Ling; Wong, Chih-Shung

    2016-01-01

    Shea nut oil triterpene concentrate is considered to have anti-inflammatory and antioxidant properties. Traditionally, it has been used to treat arthritic conditions in humans. This study aimed to investigate the effect of attenuating osteoarthritis (OA)-induced pain and joint destruction in rats by administering shea nut oil triterpene concentrate (SheaFlex75, which is more than 50% triterpenes). An anterior cruciate ligament transaction (ACLT) with medial meniscectomy (MMx) was used to induce OA in male Wistar rats. Different doses of SheaFlex75 (111.6 mg/kg, 223.2 mg/kg, and 446.4 mg/kg) were then intragastrically administered daily for 12 weeks after surgery. Body weight and the width of the knee joint were measured weekly. Additionally, incapacitance tests were performed at weeks 2, 4, 6, 8, 10 and 12 to measure the weight bearing of the hind limbs, and the morphology and histopathology of the medial femoral condyles were examined and were evaluated using the Osteoarthritis Research Society International (OARSI) scoring system. This study showed that SheaFlex75 reduced the swelling of the knee joint with OA and rectified its weight bearing after ACLT plus MMx surgery in rats. Treatment with SheaFlex75 also decreased ACLT plus MMx surgery-induced knee joint matrix loss and cartilage degeneration. SheaFlex75 relieves the symptoms of OA and protects cartilage from degeneration. SheaFlex75 thus has the potential to be an ideal nutraceutical supplement for joint protection, particularly for injured knee joints.

  2. IDEAL 3D spoiled gradient echo of the articular cartilage of the knee on 3.0 T MRI: a comparison with conventional 3.0 T fast spin-echo T2 fat saturation image.

    Science.gov (United States)

    Han, Chul Hee; Park, Hee Jin; Lee, So Yeon; Chung, Eun Chul; Choi, Seon Hyeong; Yun, Ji Sup; Rho, Myung Ho

    2015-12-01

    Many two-dimensional (2D) morphologic cartilage imaging sequences have disadvantages such as long acquisition time, inadequate spatial resolution, suboptimal tissue contrast, and image degradation secondary to artifacts. IDEAL imaging can overcome these disadvantages. To compare sound-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and quality of two different methods of imaging that include IDEAL 3D SPGR and 3.0-T FSE T2 fat saturation (FS) imaging and to evaluate the utility of IDEAL 3D SPGR for knee joint imaging. SNR and CNR of the patellar and femoral cartilages were measured and calculated. Two radiologists performed subjective scoring of all images for three measures: general image quality, FS, and cartilage evaluation. SNR and CNR values were compared by paired Student's t-tests. Mean SNRs of patellar and femoral cartilages were 90% and 66% higher, respectively, for IDEAL 3D SPGR. CNRs of patellar cartilages and joint fluids were 2.4 times higher for FSE T2 FS, and CNR between the femoral cartilage and joint fluid was 2.2 times higher for FSE T2 FS. General image quality and FS were superior using FSE T2 FS compared to those of IDEAL 3D SPGR imaging according to both readers, while cartilage evaluation was superior using IDEAL 3D SPGR. Additionally, cartilage injuries were more prominent in IDEAL 3D SPGR than in FSE T2FS according to both readers. IDEAL 3D SPGR images show excellent visualization of patellar and femoral cartilages in 3.0 T and can compensate for the weaknesses of FSE T2 FS in the evaluation of cartilage injuries. © The Foundation Acta Radiologica 2014.

  3. Radiologic findings of hemophilic arthropathy of the knee : Focusing on MR imaging and plain radiography

    International Nuclear Information System (INIS)

    Lee, Byung Jin; Choi, Jae Young; Cha, Sung Suk; Eun, Choong Kie; Park, Dong Woo

    1996-01-01

    To evaluate the characteristic MR findings of hemophilic arthropathy of the knee. Seven keens in six patients with hemophilia (five hemophilia A and one hemophilia B) were retrospectively studied with MR images and plain radiographs. Patients were aged between 2 and 20 years (mean, 11) and all had a clinical history of repeated hemarthrosis. MR images of the knee were analyzed with respect to intra- and extra-articular hemorrhage, the state of synovial tissue, articular cartilage, bone, menisci, and ligaments. Synovial hypertrophy and articular cartilage destruction were revealed in all seven knees ; pannus was found in four, and was seen as low signal intensity on T1-weighted image and high signal intensity on T2-weighted images. All five instances of synovial hypertrophy and pannus were enhanced. Joint effusion, presented in five of seven knees, demonstrated slightly low signal intensity on T1-weighted image and high signal intensity on T2-weighted images, and was associated with peripheral low signal intensity of hemosiderin. Subchondral and marginal erosion was seen in six cases, patellar deformity in three, meniscal damage in four and cruciate ligament damage in one case. MR is superior to radiography in demonstrating chronic repeated hemarthrosis (manifested as thick intra-articular effusion), hemosidering, synovial hypertrophy, erosion or destruction of articular cartilage and bone, and meniscal or cruciate ligament injury of hemophilic arthropathy of the knee. MR is therefore thought to be a useful imaging study for accurate evaluation of hemophilic arthropathy of the knee

  4. Radiologic findings of hemophilic arthropathy of the knee : Focusing on MR imaging and plain radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jin; Choi, Jae Young; Cha, Sung Suk; Eun, Choong Kie [Inje Univ., College of Medicine, Pusan (Korea, Republic of); Park, Dong Woo [Hanyang Univ., College of Medicine, Seoul (Korea, Republic of)

    1996-12-01

    To evaluate the characteristic MR findings of hemophilic arthropathy of the knee. Seven keens in six patients with hemophilia (five hemophilia A and one hemophilia B) were retrospectively studied with MR images and plain radiographs. Patients were aged between 2 and 20 years (mean, 11) and all had a clinical history of repeated hemarthrosis. MR images of the knee were analyzed with respect to intra- and extra-articular hemorrhage, the state of synovial tissue, articular cartilage, bone, menisci, and ligaments. Synovial hypertrophy and articular cartilage destruction were revealed in all seven knees ; pannus was found in four, and was seen as low signal intensity on T1-weighted image and high signal intensity on T2-weighted images. All five instances of synovial hypertrophy and pannus were enhanced. Joint effusion, presented in five of seven knees, demonstrated slightly low signal intensity on T1-weighted image and high signal intensity on T2-weighted images, and was associated with peripheral low signal intensity of hemosiderin. Subchondral and marginal erosion was seen in six cases, patellar deformity in three, meniscal damage in four and cruciate ligament damage in one case. MR is superior to radiography in demonstrating chronic repeated hemarthrosis (manifested as thick intra-articular effusion), hemosidering, synovial hypertrophy, erosion or destruction of articular cartilage and bone, and meniscal or cruciate ligament injury of hemophilic arthropathy of the knee. MR is therefore thought to be a useful imaging study for accurate evaluation of hemophilic arthropathy of the knee.

  5. The effects of geometric uncertainties on computational modelling of knee biomechanics

    Science.gov (United States)

    Meng, Qingen; Fisher, John; Wilcox, Ruth

    2017-08-01

    The geometry of the articular components of the knee is an important factor in predicting joint mechanics in computational models. There are a number of uncertainties in the definition of the geometry of cartilage and meniscus, and evaluating the effects of these uncertainties is fundamental to understanding the level of reliability of the models. In this study, the sensitivity of knee mechanics to geometric uncertainties was investigated by comparing polynomial-based and image-based knee models and varying the size of meniscus. The results suggested that the geometric uncertainties in cartilage and meniscus resulting from the resolution of MRI and the accuracy of segmentation caused considerable effects on the predicted knee mechanics. Moreover, even if the mathematical geometric descriptors can be very close to the imaged-based articular surfaces, the detailed contact pressure distribution produced by the mathematical geometric descriptors was not the same as that of the image-based model. However, the trends predicted by the models based on mathematical geometric descriptors were similar to those of the imaged-based models.

  6. Urinary C-terminal telopeptide of type II collagen, radiological severity, and functional assessment in knee osteoarthritis: are these related?

    Directory of Open Access Journals (Sweden)

    Hayam M Abdel Ghany

    2016-01-01

    Conclusion This study further confirms that urinary CTX-II is an index of early cartilage degradation in knee OA even before radiological changes occurs. The functional assessment using the WOMAC is an easy inexpensive method in reflecting cartilage degradation. Moreover, this work supports the lack of association between the functional status of knee OA patients assessed using the WOMAC and their radiological severity measured using the Kellgren-Lawrence grading scale.

  7. Resistive Exercise for Arthritic Cartilage Health (REACH: A randomized double-blind, sham-exercise controlled trial

    Directory of Open Access Journals (Sweden)

    Smith Richard M

    2009-01-01

    Full Text Available Abstract Background This article provides the rationale and methodology, of the first randomised controlled trial to our knowledge designed to assess the efficacy of progressive resistance training on cartilage morphology in women with knee osteoarthritis. Development and progression of osteoarthritis is multifactorial, with obesity, quadriceps weakness, joint malalignment, and abnormal mechanical joint forces particularly relevant to this study. Progressive resistance training has been reported to improve pain and disability in osteoarthritic cohorts. However, the disease-modifying potential of progressive resistance training for the articular cartilage degeneration characteristic of osteoarthritis is unknown. Our aim was to investigate the effect of high intensity progressive resistance training on articular cartilage degeneration in women with knee osteoarthritis. Methods Our cohort consisted of women over 40 years of age with primary knee osteoarthritis, according to the American College of Rheumatology clinical criteria. Primary outcome was blinded measurement of cartilage morphology via magnetic resonance imaging scan of the tibiofemoral joint. Secondary outcomes included walking endurance, balance, muscle strength, endurance, power, and velocity, body composition, pain, disability, depressive symptoms, and quality of life. Participants were randomized into a supervised progressive resistance training or sham-exercise group. The progressive resistance training group trained muscles around the hip and knee at 80% of their peak strength and progressed 3% per session, 3 days per week for 6 months. The sham-exercise group completed all exercises except hip adduction, but without added resistance or progression. Outcomes were repeated at 3 and 6 months, except for the magnetic resonance imaging scan, which was only repeated at 6 months. Discussion Our results will provide an evaluation of the disease-modifying potential of progressive

  8. Visualisation of collagen fibrils in joint cartilage using STIM

    International Nuclear Information System (INIS)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gruender, W.

    2001-01-01

    The scanning transmission ion microscopy (STIM) method was used to investigate the collagen network structure of the articular cartilage from a pig's knee in comparison with high resolution nuclear magnetic resonance imaging (microscopic NMR-tomography) and polarised light microscopy (PLM). Single collagen fibrils down to 200 nm in diameter were visualised. It was proved that the cartilage collagen network consists partly of zones of oriented fibrils as suggested by NMR measurements. Radially oriented fibrils were found in the zone near the calcified zone (hypertrophic zone) of both tibia and femur, and in the tibial radial zone. Tangentially oriented fibrils were found in the femoral and tibial superficial zone and in a second zone of the femoral cartilage. Polarisation light microscopy reveals broader zones of orientation than it was found with STIM

  9. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.

    Science.gov (United States)

    Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-06-14

    Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Total knee arthroplasty in ochronosis

    Directory of Open Access Journals (Sweden)

    Vaibhav G. Patel, MBBS

    2015-09-01

    Full Text Available Alkaptonuria is disorder of tyrosine metabolism due to deficiency of homogentisic oxidase characterized by excretion of homogentisic acid in urine, deposition of oxidized homogensitate pigments in connective tissues and articular cartilages (ochronosis. The result is dark pigmentation and weakening of the tissues resulting in chronic inflammation and osteoarthritis. Management of alkaptonuric ochronic osteoarthritis is usually symptomatic and replacements have comparable outcomes to osteoarthritis in patients without ochronosis. I report a case of a patient with ochronosis of knee treated with total knee replacement and report operative pearls for surgery in this rare disorder.

  11. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    Science.gov (United States)

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  12. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage.

    Science.gov (United States)

    Zorzi, Alessandro R; Amstalden, Eliane M I; Plepis, Ana Maria G; Martins, Virginia C A; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S S; Luzo, Angela C M; Miranda, João B

    2015-11-09

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.

  13. Accuracy of magnetic resonance in identifying traumatic intraarticular knee lesions

    International Nuclear Information System (INIS)

    Vaz, Carlos Eduardo Sanches; Camargo, Olavo Pires de; Santana, Paulo Jose de; Valezi, Antonio Carlos

    2005-01-01

    Purpose: To evaluate the diagnostic accuracy of magnetic resonance imaging of the knee in identifying traumatic intraarticular knee lesions. Method: 300 patients with a clinical diagnosis of traumatic intraarticular knee lesions underwent prearthoscopic magnetic resonance imaging. The sensitivity, specificity, positive predictive value, negative predictive value, likelihood ratio for a positive test, likelihood ratio for a negative test, and accuracy of magnetic resonance imaging were calculated relative to the findings during arthroscopy in the studied structures of the knee (medial meniscus, lateral meniscus, anterior cruciate ligament, posterior cruciate ligament, and articular cartilage). Results: Magnetic resonance imaging produced the following results regarding detection of lesions: medial meniscus: sensitivity 97.5%, specificity 92.9%, positive predictive value 93.9%, positive negative value 97%, likelihood positive ratio 13.7, likelihood negative ratio 0.02, and accuracy 95.3%; lateral meniscus: sensitivity 91.9%, specificity 93.6%, positive predictive value 92.7%, positive negative value 92.9%, likelihood positive ratio 14.3, likelihood negative ratio 0.08, and accuracy 93.6%; anterior cruciate ligament: sensitivity 99.0%, specificity 95.9%, positive predictive value 91.9%, positive negative value 99.5%, likelihood positive ratio 21.5, likelihood negative ratio 0.01, and accuracy 96.6%; posterior cruciate ligament: sensitivity 100%, specificity 99%, positive predictive value 80.0%, positive negative value 100%, likelihood positive ratio 100, likelihood negative ratio 0.01, and accuracy 99.6%; articular cartilage: sensitivity 76.1%, specificity 94.9%, positive predictive value 94.7%, positive negative value 76.9%, likelihood positive ratio 14.9, likelihood negative ratio 0.25, and accuracy 84.6%. Conclusion: Magnetic resonance imaging is a satisfactory diagnostic tool for evaluating meniscal and ligamentous lesions of the knee, but it is unable to clearly

  14. Accuracy of magnetic resonance in identifying traumatic intraarticular knee lesions

    Directory of Open Access Journals (Sweden)

    Vaz Carlos Eduardo Sanches

    2005-01-01

    Full Text Available PURPOSE: To evaluate the diagnostic accuracy of magnetic resonance imaging of the knee in identifying traumatic intraarticular knee lesions. METHOD: 300 patients with a clinical diagnosis of traumatic intraarticular knee lesions underwent prearthoscopic magnetic resonance imaging. The sensitivity, specificity, positive predictive value, negative predictive value, likelihood ratio for a positive test, likelihood ratio for a negative test, and accuracy of magnetic resonance imaging were calculated relative to the findings during arthroscopy in the studied structures of the knee (medial meniscus, lateral meniscus, anterior cruciate ligament, posterior cruciate ligament, and articular cartilage. RESULTS: Magnetic resonance imaging produced the following results regarding detection of lesions: medial meniscus: sensitivity 97.5%, specificity 92.9%, positive predictive value 93.9%, positive negative value 97%, likelihood positive ratio 13.7, likelihood negative ratio 0.02, and accuracy 95.3%; lateral meniscus: sensitivity 91.9%, specificity 93.6%, positive predictive value 92.7%, positive negative value 92.9%, likelihood positive ratio 14.3, likelihood negative ratio 0.08, and accuracy 93.6%; anterior cruciate ligament: sensitivity 99.0%, specificity 95.9%, positive predictive value 91.9%, positive negative value 99.5%, likelihood positive ratio 21.5, likelihood negative ratio 0.01, and accuracy 96.6%; posterior cruciate ligament: sensitivity 100%, specificity 99%, positive predictive value 80.0%, positive negative value 100%, likelihood positive ratio 100, likelihood negative ratio 0.01, and accuracy 99.6%; articular cartilage: sensitivity 76.1%, specificity 94.9%, positive predictive value 94.7%, positive negative value 76.9%, likelihood positive ratio 14.9, likelihood negative ratio 0.25, and accuracy 84.6%. CONCLUSION: Magnetic resonance imaging is a satisfactory diagnostic tool for evaluating meniscal and ligamentous lesions of the knee, but it is

  15. DINAMICS OF KNEE JOINT SPACE ASYMMETRY ON X-RAY AS A MARKER OF KNEE OSTEOARTHRITIS REHABILITATION EFFICACY.

    Science.gov (United States)

    Sheveleva, N; Minbayeva, L; Belyayeva, Y

    2017-03-01

    Reducing of articular cartilage functional volume in knee joint osteoarthritis occurs unevenly and accompanied with pathological changes of lower limb axis as a result of connective tissue and muscle structures dysfunction. Evaluation of X-ray knee joint space asymmetry seems to be informative to analyze the dynamics of lower extremities biomechanical imbalances characteristic for knee joint osteoarthritis. However, standardized method of X-ray joint space determining does not include its symmetry calculation. The purpose of the study was optimization of knee joint radiological examination by developing of X-ray knee joint space asymmetry index calculation method. The proposed method was used for comparative analysis of extracorporeal shock-wave therapy efficacy in 30 patients with knee joint osteoarthritis of 2-3 degrees (Kellgren-Lawrence, 1957). As a result of the conducted treatment statistically significant decrease of the X-ray knee joint space asymmetry index was observed (Me(Q1;Q3): Z=5.20, pknee joint space asymmetry index, calculated according to the proposed method, allows to evaluate dynamics of articular surfaces congruency changes and provide differentiated approach to the treatment of knee joint osteoarthritis.

  16. Coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration.

    Science.gov (United States)

    Miyatake, Kazumasa; Muneta, Takeshi; Ojima, Miyoko; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Tsuji, Kunikazu

    2016-05-31

    Although osteoarthritis (OA) is a multifactorial disease, little has been reported regarding the cooperative interaction among these factors on cartilage metabolism. Here we examined the synergistic effect of ovariectomy (OVX) and excessive mechanical stress (forced running) on articular cartilage homeostasis in a mouse model resembling a human postmenopausal condition. Mice were randomly divided into four groups, I: Sham, II: OVX, III: Sham and forced running (60 km in 6 weeks), and IV: OVX and forced running. Histological and immunohistochemical analyses were performed to evaluate the degeneration of articular cartilage and synovitis in the knee joint. Morphological changes of subchondral bone were analyzed by micro-CT. Micro-CT analyses showed significant loss of metaphyseal trabecular bone volume/tissue volume (BV/TV) after OVX as described previously. Forced running increased the trabecular BV/TV in all mice. In the epiphyseal region, no visible alteration in bone morphology or osteophyte formation was observed in any of the four groups. Histological analysis revealed that OVX or forced running respectively had subtle effects on cartilage degeneration. However, the combination of OVX and forced running synergistically enhanced synovitis and articular cartilage degeneration. Although morphological changes in chondrocytes were observed during OA initiation, no signs of bone marrow edema were observed in any of the four experimental groups. We report the coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. Since no surgical procedure was performed on the knee joint directly in this model, this model is useful in addressing the molecular pathogenesis of naturally occurring OA.

  17. Longitudinal assessment of bone marrow edema-like lesions and cartilage degeneration in osteoarthritis using 3 T MR T1rho quantification

    International Nuclear Information System (INIS)

    Zhao, Jian; Li, Xiaojuan; Bolbos, Radu I.; Link, Thomas M.; Majumdar, Sharmila

    2010-01-01

    To quantitatively assess the relationship between bone marrow edema-like lesions (BMELs) and the associated cartilage in knee osteoarthritis (OA) using T 1ρ quantification at 3 T MRI. Twenty-four patients with knee OA and 14 control subjects underwent 3 T MRI. Nineteen patients and all control subjects had 1-year follow-up studies. The volume and signal intensity difference of BMELs were calculated. Cartilage degeneration was graded using the cartilage subscore of Whole-Organ MRI Score (WORMS) analysis. Cartilage T 1ρ values were calculated in each compartment as well as in cartilage overlying BMELs (OC) and surrounding cartilage (SC). At baseline, 25 BMELs were found in 16 out of 24 patients. The overall T 1ρ values were significantly higher in patients with BMELs than in those without BMELs. At baseline and follow-up, both T 1ρ values and WORMS cartilage subscore grading were significantly higher in OC than SC. Cartilage T 1ρ increase from baseline to follow-up in OC was significantly higher than that in SC. An increase in T 1ρ values in OC was correlated with signal intensity of BMEL at both baseline and follow-up, but was not correlated with BMEL volume. The results of this study suggest a local spatial correlation between BMELs and more advanced and accelerated cartilage degeneration. MRI T 1ρ quantification in cartilage provides a sensitive tool for evaluating such correlations. (orig.)

  18. Longitudinal assessment of bone marrow edema-like lesions and cartilage degeneration in osteoarthritis using 3 T MR T1rho quantification

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian [University of California, San Francisco (UCSF), Musculoskeletal and Quantitative Imaging Research (MQIR) Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Radiology Department of The Third Hospital of Hebei Medical University, Shijiazhuang (China); Li, Xiaojuan [University of California, San Francisco (UCSF), Musculoskeletal and Quantitative Imaging Research (MQIR) Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); University of California at San Francisco, Department of Radiology, San Francisco, CA (United States); Bolbos, Radu I.; Link, Thomas M.; Majumdar, Sharmila [University of California, San Francisco (UCSF), Musculoskeletal and Quantitative Imaging Research (MQIR) Group, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2010-06-15

    To quantitatively assess the relationship between bone marrow edema-like lesions (BMELs) and the associated cartilage in knee osteoarthritis (OA) using T{sub 1{rho}} quantification at 3 T MRI. Twenty-four patients with knee OA and 14 control subjects underwent 3 T MRI. Nineteen patients and all control subjects had 1-year follow-up studies. The volume and signal intensity difference of BMELs were calculated. Cartilage degeneration was graded using the cartilage subscore of Whole-Organ MRI Score (WORMS) analysis. Cartilage T{sub 1{rho}} values were calculated in each compartment as well as in cartilage overlying BMELs (OC) and surrounding cartilage (SC). At baseline, 25 BMELs were found in 16 out of 24 patients. The overall T{sub 1{rho}} values were significantly higher in patients with BMELs than in those without BMELs. At baseline and follow-up, both T{sub 1{rho}} values and WORMS cartilage subscore grading were significantly higher in OC than SC. Cartilage T{sub 1{rho}} increase from baseline to follow-up in OC was significantly higher than that in SC. An increase in T{sub 1{rho}} values in OC was correlated with signal intensity of BMEL at both baseline and follow-up, but was not correlated with BMEL volume. The results of this study suggest a local spatial correlation between BMELs and more advanced and accelerated cartilage degeneration. MRI T{sub 1{rho}} quantification in cartilage provides a sensitive tool for evaluating such correlations. (orig.)

  19. OSTEOARTHRITIS OF KNEE JOINT AND ITS RISK FACTOR IN POPULATION OF BIHAR

    Directory of Open Access Journals (Sweden)

    Mahesh

    2016-06-01

    Full Text Available BACKGROUND In study of Orthopaedic diseases, Osteoarthritis (OA is one of the most prevalent condition resulting to disability particularly in population of old age people and is a leading cause of chronic disability. The knee is the commonest of the large joints in the body to be affected by Osteoarthritis. Osteoarthritis is a very chronic joint disorder in which there is progressive softening and disintegration of articular cartilage accompanied by new growth of cartilage and bone at the joint margins (Osteophytes and the capsular fibrosis. METHODS A total of 100 cases and 100 controls were taken in the Bihari Population. For each case, an age matched control of same sex was taken, who had no complaints pertaining to knee. RESULTS In this study, old age, female sex, obesity, hypertension, family history of knee pain, Indian toilet habits, history of knee trauma/disease, sitting cross-legged for longer period, sitting before Computer for long hours, using cell phone with improper body posture and increased frequency of knee bending were found to be predisposing factors for knee Osteoarthritis. CONCLUSION Keeping weight under control, modifying daily habits such as sitting cross-legged and squatting along with using western toilet can significantly reduce the toll of knee osteoarthritis. Any trauma to knee should be dealt with utmost care, so as to maintain joint congruity and to prevent its progression to osteoarthritis in future is also strongly recommended.

  20. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  1. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    International Nuclear Information System (INIS)

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang; Li, Hong; Hua, Yinghui; Chen, Zhongqing

    2015-01-01

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r s = 0.745, P s = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r s = -0.715, P = 0.002; joint debridement: r s = -0.826, P < 0.001). Significant improvement over time after microfracture can be expected on the basis of the quantitative MRI finding and

  2. Shea Nut Oil Triterpene Concentrate Attenuates Knee Osteoarthritis Development in Rats: Evidence from Knee Joint Histology.

    Directory of Open Access Journals (Sweden)

    Jen-Hsin Kao

    Full Text Available Shea nut oil triterpene concentrate is considered to have anti-inflammatory and antioxidant properties. Traditionally, it has been used to treat arthritic conditions in humans. This study aimed to investigate the effect of attenuating osteoarthritis (OA-induced pain and joint destruction in rats by administering shea nut oil triterpene concentrate (SheaFlex75, which is more than 50% triterpenes.An anterior cruciate ligament transaction (ACLT with medial meniscectomy (MMx was used to induce OA in male Wistar rats. Different doses of SheaFlex75 (111.6 mg/kg, 223.2 mg/kg, and 446.4 mg/kg were then intragastrically administered daily for 12 weeks after surgery. Body weight and the width of the knee joint were measured weekly. Additionally, incapacitance tests were performed at weeks 2, 4, 6, 8, 10 and 12 to measure the weight bearing of the hind limbs, and the morphology and histopathology of the medial femoral condyles were examined and were evaluated using the Osteoarthritis Research Society International (OARSI scoring system.This study showed that SheaFlex75 reduced the swelling of the knee joint with OA and rectified its weight bearing after ACLT plus MMx surgery in rats. Treatment with SheaFlex75 also decreased ACLT plus MMx surgery-induced knee joint matrix loss and cartilage degeneration.SheaFlex75 relieves the symptoms of OA and protects cartilage from degeneration. SheaFlex75 thus has the potential to be an ideal nutraceutical supplement for joint protection, particularly for injured knee joints.

  3. [Evidence-based therapy for cartilage lesions in the knee - regenerative treatment options].

    Science.gov (United States)

    Proffen, B; von Keudell, A; Vavken, P

    2012-06-01

    The treatment of cartilage defects has seen a shift from replacement to regeneration in the last few years. The rationale behind this development is the improvement in the quality-of-care for the growing segment of young patients who are prone to arthroplasty complications because of their specific characteristics - young age, high level of activity, high demand for functionality. These days, two of the most popular regenerative treatments are microfracture and autologous chondrocyte implantation (ACI). Although these new options show promising results, no final algorithm for the treatment of cartilage lesions has been established as yet. The objective of this review is to describe and compare these two treatment options and to present an evidence-based treatment algorithm for focal cartilage defects. Microfracture is a cost-effective, arthroscopic one-stage procedure, in which by drilling of the subchondral plate, mesenchymal stem cells from the bone marrow migrate into the defect and rebuild the cartilage. ACI is a two-stage procedure in which first chondrocytes are harvested, expanded in cell culture and in a second open procedure reimplanted into the cartilage defect. Microfracture is usually used for focal cartilage defects osteophyte, and for the ACI patient, periosteal hypertrophy and the need for two procedures in ACI. Only a few studies provide detailed and evidence-based information on a comparative assessment. These studies, however, are showing widely similar clinical outcomes but better histological results for ACI, which are likely to translate into better long-term outcomes. Although evidence-based studies comparing microfracture and ACI have not found significant differences in the clinical outcome, the literature does show that choosing the treatment based on the size and characteristics of the osteochondral lesion might be beneficial. The American Association of Orthopedic Surgeons suggest that contained lesions < 4 cm2 should be treated by

  4. Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-β1 signaling in a mouse model of osteoarthritis.

    Science.gov (United States)

    Chen, Rebecca; Mian, Michelle; Fu, Martin; Zhao, Jing Ying; Yang, Liang; Li, Yefu; Xu, Lin

    2015-11-01

    Transforming growth factor beta 1 (TGF-β1) is implicated in osteoarthritis. We therefore studied the role of TGF-β1 signaling in the development of osteoarthritis in a developmental stage-dependent manner. Three different mouse models were investigated. First, the Tgf-β receptor II (Tgfbr2) was specifically removed from the mature cartilage of joints. Tgfbr2-deficient mice were grown to 12 months of age and were then euthanized for collection of knee and temporomandibular joints. Second, Tgfbr2-deficient mice were subjected to destabilization of the medial meniscus (DMM) surgery. Knee joints were then collected from the mice at 8 and 16 weeks after the surgery. Third, wild-type mice were subjected to DMM at the age of 8 weeks. Immediately after the surgery, these mice were treated with the Tgfbr2 inhibitor losartan for 8 weeks and then euthanized for collection of knee joints. All joints were characterized for evidences of articular cartilage degeneration. Initiation or acceleration of articular cartilage degeneration was not observed by the genetic inactivation of Tgfbr2 in the joints at the age of 12 months. In fact, the removal of Tgfbr2 and treatment with losartan both delayed the progression of articular cartilage degeneration induced by DMM compared with control littermates. Therefore, we conclude that inhibition of Tgf-β1 signaling protects adult knee joints in mice against the development of osteoarthritis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Osteoarthritis of the knee at 3.0 T: comparison of a quantitative and a semi-quantitative score for the assessment of the extent of cartilage lesion and bone marrow edema pattern in a 24-month longitudinal study

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Robert [University of California, San Francisco, Department of Radiology, San Francisco, CA (United States); Ludwig Maximilians University of Munich, Department of Clinical Radiology, University Hospitals, Campus Grosshadern, Munich (Germany); Jain, Sapna K.; Majumdar, Sharmila; Link, Thomas M. [University of California, San Francisco, Department of Radiology, San Francisco, CA (United States); Lutz, Juergen [Ludwig Maximilians University of Munich, Department of Neuroradiology, University Hospitals, Campus Grosshadern, Munich (Germany); Wyman, Bradley T.; Hellio Le Graverand-Gastineau, Marie-Pierre [Pfizer Inc., Groton, CT (United States); Vignon, Eric [Claude Bernard University Lyon I, Lyon (France)

    2011-10-15

    To compare a semi-quantitative and a quantitative morphological score for assessment of early osteoarthritis (OA) evolution. 3.0 T MRI of the knee was performed in 60 women, 30 with early OA (each 15 with Kellgren-Lawrence grade 2 and 3) and 30 age-matched controls at baseline and at 12 and 24 months. Pathological condition was assessed with the whole-organ magnetic resonance imaging score (WORMS). Cartilage abnormalities and bone marrow edema pattern (BMEP) were also quantified using a previously introduced morphological quantitative score. These data were correlated with changes in clinical parameters and joint space width using generalized estimation equations (GEE). At baseline, OA patients had significantly (p < 0.05) more and larger cartilage lesions and BMEP. During follow-up, cartilage lesions increased significantly (p < 0.05) in the patients compared with controls: WORMS showed progression only at the lateral patella, whereas the quantitative score revealed progression additionally at the trochlea and at the medial compartment. Both scores showed a significant (p < 0.05) increase in BMEP at the lateral femur in OA patients. In addition, quantitative scores of BMEP of the whole knee decreased significantly (p < 0.05) after 12 months and increased after 24 months in the patients, but showed an increase in controls at all follow-up examinations. Only weak correlations between structural imaging findings and clinical parameters were observed. Quantitative assessment of cartilage lesions and BMEP is more sensitive to changes during the course of the disease than semi-quantitative scoring. However, structural imaging findings do not correlate well with the clinical progression of OA. (orig.)

  6. Improved functional assessment of osteoarthritic knee joint after chondrogenically induced cell treatment.

    Science.gov (United States)

    Ude, C C; Ng, M H; Chen, C H; Htwe, O; Amaramalar, N S; Hassan, S; Djordjevic, I; Rani, R A; Ahmad, J; Yahya, N M; Saim, A B; Idrus, R B Hj

    2015-08-01

    Our previous studies on osteoarthritis (OA) revealed positive outcome after chondrogenically induced cells treatment. Presently, the functional improvements of these treated OA knee joints were quantified followed by evaluation of the mechanical properties of the engineered cartilages. Baseline electromyogram (EMGs) were conducted at week 0 (pre-OA), on the locomotory muscles of nine un-castrated male sheep (Siamese long tail cross) divided into controls, adipose-derived stem cells (ADSCs) and bone marrow stem cells (BMSCs), before OA inductions. Subsequent recordings were performed at week 7 and week 31 which were post-OA and post-treatments. Afterwards, the compression tests of the regenerated cartilage were performed. Post-treatment EMG analysis revealed that the control sheep retained significant reductions in amplitudes at the right medial gluteus, vastus lateralis and bicep femoris, whereas BMSCs and ADSCs samples had no further significant reductions (P < 0.05). Grossly and histologically, the treated knee joints demonstrated the presence of regenerated neo cartilages evidenced by the fluorescence of PKH26 tracker. Based on the International Cartilage Repair Society scores (ICRS), they had significantly lower grades than the controls (P < 0.05). The compression moduli of the native cartilages and the engineered cartilages differed significantly at the tibia plateau, patella femoral groove and the patella; whereas at the medial femoral condyle, they had similar moduli of 0.69 MPa and 0.40-0.64 MPa respectively. Their compression strengths at all four regions were within ±10 MPa. The tissue engineered cartilages provided evidence of functional recoveries associated to the structural regenerations, and their mechanical properties were comparable with the native cartilage. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Quadriceps Function and Knee Joint Ultrasonography after ACL Reconstruction.

    Science.gov (United States)

    Pamukoff, Derek N; Montgomery, Melissa M; Moffit, Tyler J; Vakula, Michael N

    2018-02-01

    Individuals with anterior cruciate ligament reconstruction (ACLR) are at greater risk for knee osteoarthritis, partially because of chronic quadriceps dysfunction. Articular cartilage is commonly assessed using magnetic resonance imaging and radiography, but these methods are expensive and lack portability. Ultrasound imaging may provide a cost-effective and portable alternative for imaging the femoral cartilage. The purpose of this study was to compare ultrasonography of the femoral cartilage between the injured and uninjured limbs of individuals with unilateral ACLR, and to examine the association between quadriceps function and ultrasonographic measures of femoral cartilage. Bilateral femoral cartilage thickness and quadriceps function were assessed in 44 individuals with unilateral ACLR. Quadriceps function was assessed using peak isometric strength, and early (RTD100) and late (RTD200) rate of torque development. Cartilage thickness at the medial femoral condyle (P accounting for time since ACLR, quadriceps peak isometric strength was associated with cartilage thickness at the medial femoral condyle (r = 0.35, P = 0.02) and femoral cartilage cross-sectional area (r = 0.28, P = 0.04). RTD100 and RTD200 were not associated with femoral cartilage thickness or cross-sectional area. Individuals with ACLR have thinner cartilage in their injured limb compared with uninjured limb, and cartilage thickness is associated with quadriceps function. These results indicate that ultrasonography may be useful for monitoring cartilage health and osteoarthritis progression after ACLR.

  8. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage.

    Science.gov (United States)

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-07-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, Ppatellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.

  9. ECHOGRAPHY POTENTIAL IN DIAGNOSTICS OF THE KNEE JOINT IMPAIRMENT IN THE EVENT OF THE JUVENILE ARTHRITIDES

    Directory of Open Access Journals (Sweden)

    N.V. Osipova

    2008-01-01

    Full Text Available The juvenile rheumatoid arthritis (JRA is one of the most widely spread rheumatic diseases among children, which is characterized by the steady progressive run, rapidly leading to the disability. Among numerous JRA manifestations, one of the leading is the joint syndrome with children mostly suffering from the knee joint impairment. With JRA, the initial changes in the joints affect the joint tissues and articular cartilage, while the bone changes evolve at the late stages of the disease. As a result, the echography plays an important role in the early arthritides diagnostics if compared to the x ray study and computerized tomography. To identify the typical features of the knee joint impairment, 97 children with JRA and 16 children with the juvenile spondyl arthritis (JSA underwent the high pitched linear transducer assisted echography. The overwhelming majority of patients showed the changes in the hyaline cartilage. The hyperechoic enlargements in the depth of the cartilage were typical of JRA, while the cartilage thinning was typical of JSA. About a half of the patients showed the effusion. Over a third of the patients showed the changes in the cortical layer of the articular bone surface.Key words: juvenile rheumatoid arthritis, juvenile spondyl arthritis, diagnostics, knee joint echography, children.

  10. Is increased joint loading detrimental to obese patients with knee osteoarthritis? A secondary data analysis from a randomized trial.

    Science.gov (United States)

    Henriksen, M; Hunter, D J; Dam, E B; Messier, S P; Andriacchi, T P; Lohmander, L S; Aaboe, J; Boesen, M; Gudbergsen, H; Bliddal, H; Christensen, R

    2013-12-01

    To investigate whether increased knee joint loading due to improved ambulatory function and walking speed following weight loss achieved over 16 weeks accelerates symptomatic and structural disease progression over a subsequent 1 year weight maintenance period in an obese population with knee osteoarthritis (OA). Data from a prospective study of weight loss in obese patients with knee OA (the CARtilage in obese knee OsteoarThritis (CAROT) study) were used to determine changes in knee joint compressive loadings (model estimated) during walking after a successful 16 week weight loss intervention. The participants were divided into 'Unloaders' (participants that reduced joint loads) and 'Loaders' (participants that increased joint loads). The primary symptomatic outcome was changes in knee symptoms, measured with the Knee injury and Osteoarthritis Outcome Score (KOOS) questionnaire, during a subsequent 52 weeks weight maintenance period. The primary structural outcome was changes in tibiofemoral cartilage loss assessed semi-quantitatively (Boston Leeds Knee Osteoarthritis Score (BLOKS) from MRI after the 52 weight maintenance period. 157 participants (82% of the CAROT cohort) with medial and/or lateral knee OA were classified as Unloaders (n = 100) or Loaders (n = 57). The groups showed similar significant changes in symptoms (group difference: -2.4 KOOS points [95% CI -6.8:1.9]) and cartilage loss (group difference: -0.06 BLOKS points [95% CI -0.22:0.11) after 1 year, with no statistically significant differences between Loaders and Unloaders. For obese patients undergoing a significant weight loss, increased knee joint loading for 1 year was not associated with accelerated symptomatic and structural disease progression compared to a similar weight loss group that had reduced ambulatory compressive knee joint loads. NCT00655941. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Effects of tibial plateau angle and spacer thickness applied during in vitro canine total knee replacement on three-dimensional kinematics and collateral ligament strain.

    Science.gov (United States)

    Baker, Katherine M; Foutz, Timothy L; Johnsen, Kyle J; Budsberg, Steven C

    2014-09-01

    To quantify the 3-D kinematics and collateral ligament strain of stifle joints in cadaveric canine limbs before and after cranial cruciate ligament transection followed by total knee replacement (TKR) involving various tibial plateau angles and spacer thicknesses. 6 hemi-pelvises collected from clinically normal nonchondrodystrophic dogs (weight range, 25 to 35 kg). Hemi-pelvises were mounted on a modified Oxford knee rig that allowed 6 degrees of freedom of the stifle joint but prevented mechanical movement of the hip and tarsal joints. Kinematics and collateral ligament strain were measured continuously while stifle joints were flexed. Data were again collected after cranial cruciate ligament transection and TKR with combinations of 3 plateau angles (0°, 4°, and 8°) and spacer thicknesses (5, 7, and 9 mm). Presurgical (ie, normal) stifle joint rotations were comparable to those previously documented for live dogs. After TKR, kinematics recorded for the 8°, 5-mm implant most closely resembled those of unaltered stifle joints. Decreasing the plateau angle and increasing spacer thickness altered stifle joint adduction, internal rotation, and medial translation. Medial collateral ligament strain was minimal in unaltered stifle joints and was unaffected by TKR. Lateral collateral ligament strain decreased with steeper plateau angles but returned to a presurgical level at the flattest plateau angle. Among the constructs tested, greatest normalization of canine stifle joint kinematics in vitro was achieved with the steepest plateau angle paired with the thinnest spacer. Furthermore, results indicated that strain to the collateral ligaments was not negatively affected by TKR.

  12. Anterior knee pain

    Energy Technology Data Exchange (ETDEWEB)

    LLopis, Eva [Hospital de la Ribera, Alzira, Valencia (Spain) and Carretera de Corbera km 1, 46600 Alzira Valencia (Spain)]. E-mail: ellopis@hospital-ribera.com; Padron, Mario [Clinica Cemtro, Ventisquero de la Condesa no. 42, 28035 Madrid (Spain)]. E-mail: mario.padron@clinicacemtro.com

    2007-04-15

    Anterior knee pain is a common complain in all ages athletes. It may be caused by a large variety of injuries. There is a continuum of diagnoses and most of the disorders are closely related. Repeated minor trauma and overuse play an important role for the development of lesions in Hoffa's pad, extensor mechanism, lateral and medial restrain structures or cartilage surface, however usually an increase or change of activity is referred. Although the direct relation of cartilage lesions, especially chondral, and pain is a subject of debate these lesions may be responsible of early osteoarthrosis and can determine athlete's prognosis. The anatomy and biomechanics of patellofemoral joint is complex and symptoms are often unspecific. Transient patellar dislocation has MR distinct features that provide evidence of prior dislocation and rules our complication. However, anterior knee pain more often is related to overuse and repeated minor trauma. Patella and quadriceps tendon have been also implicated in anterior knee pain, as well as lateral or medial restraint structures and Hoffa's pad. US and MR are excellent tools for the diagnosis of superficial tendons, the advantage of MR is that permits to rule out other sources of intraarticular derangements. Due to the complex anatomy and biomechanic of patellofemoral joint maltracking is not fully understood; plain films and CT allow the study of malalignment, new CT and MR kinematic studies have promising results but further studies are needed. Our purpose here is to describe how imaging techniques can be helpful in precisely defining the origin of the patient's complaint and thus improve understanding and management of these injuries.

  13. Anterior knee pain

    International Nuclear Information System (INIS)

    LLopis, Eva; Padron, Mario

    2007-01-01

    Anterior knee pain is a common complain in all ages athletes. It may be caused by a large variety of injuries. There is a continuum of diagnoses and most of the disorders are closely related. Repeated minor trauma and overuse play an important role for the development of lesions in Hoffa's pad, extensor mechanism, lateral and medial restrain structures or cartilage surface, however usually an increase or change of activity is referred. Although the direct relation of cartilage lesions, especially chondral, and pain is a subject of debate these lesions may be responsible of early osteoarthrosis and can determine athlete's prognosis. The anatomy and biomechanics of patellofemoral joint is complex and symptoms are often unspecific. Transient patellar dislocation has MR distinct features that provide evidence of prior dislocation and rules our complication. However, anterior knee pain more often is related to overuse and repeated minor trauma. Patella and quadriceps tendon have been also implicated in anterior knee pain, as well as lateral or medial restraint structures and Hoffa's pad. US and MR are excellent tools for the diagnosis of superficial tendons, the advantage of MR is that permits to rule out other sources of intraarticular derangements. Due to the complex anatomy and biomechanic of patellofemoral joint maltracking is not fully understood; plain films and CT allow the study of malalignment, new CT and MR kinematic studies have promising results but further studies are needed. Our purpose here is to describe how imaging techniques can be helpful in precisely defining the origin of the patient's complaint and thus improve understanding and management of these injuries

  14. Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures

    Directory of Open Access Journals (Sweden)

    Melissa Lo Monaco

    2018-01-01

    Full Text Available Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs or induced pluripotent stem cells (iPSCs have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.

  15. Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures.

    Science.gov (United States)

    Lo Monaco, Melissa; Merckx, Greet; Ratajczak, Jessica; Gervois, Pascal; Hilkens, Petra; Clegg, Peter; Bronckaers, Annelies; Vandeweerd, Jean-Michel; Lambrichts, Ivo

    2018-01-01

    Due to the restricted intrinsic capacity of resident chondrocytes to regenerate the lost cartilage postinjury, stem cell-based therapies have been proposed as a novel therapeutic approach for cartilage repair. Moreover, stem cell-based therapies using mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been used successfully in preclinical and clinical settings. Despite these promising reports, the exact mechanisms underlying stem cell-mediated cartilage repair remain uncertain. Stem cells can contribute to cartilage repair via chondrogenic differentiation, via immunomodulation, or by the production of paracrine factors and extracellular vesicles. But before novel cell-based therapies for cartilage repair can be introduced into the clinic, rigorous testing in preclinical animal models is required. Preclinical models used in regenerative cartilage studies include murine, lapine, caprine, ovine, porcine, canine, and equine models, each associated with its specific advantages and limitations. This review presents a summary of recent in vitro data and from in vivo preclinical studies justifying the use of MSCs and iPSCs in cartilage tissue engineering. Moreover, the advantages and disadvantages of utilizing small and large animals will be discussed, while also describing suitable outcome measures for evaluating cartilage repair.

  16. MRI-based analysis of patellofemoral cartilage contact, thickness, and alignment in extension, and during moderate and deep flexion.

    Science.gov (United States)

    Freedman, Benjamin R; Sheehan, Frances T; Lerner, Amy L

    2015-10-01

    Several factors are believed to contribute to patellofemoral joint function throughout knee flexion including patellofemoral (PF) kinematics, contact, and bone morphology. However, data evaluating the PF joint in this highly flexed state have been limited. Therefore, the purpose of this study was to evaluate patellofemoral contact and alignment in low (0°), moderate (60°), and deep (140°) knee flexion, and then correlate these parameters to each other, as well as to femoral morphology. Sagittal magnetic resonance images were acquired on 14 healthy female adult knees (RSRB approved) using a 1.5 T scanner with the knee in full extension, mid-flexion, and deep flexion. The patellofemoral cartilage contact area, lateral contact displacement (LCD), cartilage thickness, and lateral patellar displacement (LPD) throughout flexion were defined. Intra- and inter-rater repeatability measures were determined. Correlations between patellofemoral contact parameters, alignment, and sulcus morphology were calculated. Measurement repeatability ICCs ranged from 0.94 to 0.99. Patellofemoral cartilage contact area and thickness, LCD, and LPD were statistically different throughout all levels of flexion (ppatellofemoral joint throughout its range of motion. This study agrees with past studies that investigated patellofemoral measures at a single flexion angle, and provides new insights into the relationship between patellofemoral contact and alignment at multiple flexion angles. The study provides a detailed analysis of the patellofemoral joint in vivo, and demonstrates the feasibility of using standard clinical magnetic resonance imaging scanners to image the knee joint in deep flexion. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  18. Revisiting spatial distribution and biochemical composition of calcium-containing crystals in human osteoarthritic articular cartilage.

    OpenAIRE

    Nguyen, C.; Bazin, D.; Daudon, M.; Chatron-Colliet, A.; Hannouche, D.; Bianchi, A.; Côme, D.; So, A.; Busso, N.; Lioté, F.; Ea, H.K.

    2013-01-01

    International audience; INTRODUCTION: Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. METHODS: We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transfor...

  19. Cartilage Repair With Autologous Bone Marrow Mesenchymal Stem Cell Transplantation: Review of Preclinical and Clinical Studies.

    Science.gov (United States)

    Yamasaki, Shinya; Mera, Hisashi; Itokazu, Maki; Hashimoto, Yusuke; Wakitani, Shigeyuki

    2014-10-01

    Clinical trials of various procedures, including bone marrow stimulation, mosaicplasty, and autologous chondrocyte implantation, have been explored to treat articular cartilage defects. However, all of them have some demerits. We focused on autologous culture-expanded bone marrow mesenchymal stem cells (BMSC), which can proliferate without losing their capacity for differentiation. First, we transplanted BMSC into the defective articular cartilage of rabbit and succeeded in regenerating osteochondral tissue. We then applied this transplantation in humans. Our previous reports showed that treatment with BMSC relieves the clinical symptoms of chondral defects in the knee and elbow joint. We investigated the efficacy of BMSC for osteoarthritic knee treated with high tibial osteotomy, by comparing 12 BMSC-transplanted patients with 12 cell-free patients. At 16-month follow-up, although the difference in clinical improvement between both groups was not significant, the arthroscopic and histological grading score was better in the cell-transplanted group. At the over 10-year follow-up, Hospital for Special Surgery knee scores improved to 76 and 73 in the BMSC-transplanted and cell-free groups, respectively, which were better than preoperative scores. Additionally, neither tumors nor infections were observed in all patients, and in the clinical study, we have never observed hypertrophy of repaired tissue, thereby guaranteeing the clinical safety of this therapy. Although we have never observed calcification above the tidemark in rabbit model and human histologically, the repair cartilage was not completely hyaline cartilage. To elucidate the optimum conditions for cell therapy, other stem cells, culture conditions, growth factors, and gene transfection methods should be explored.

  20. Loading of the knee during 3.0 T MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Stehling, Christoph, E-mail: christoph.stehling@radiology.ucsf.edu [Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (United States); Department of Clinical Radiology, University of Muenster, Muenster (Germany); Souza, Richard B. [Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (United States); Graverand, Marie-Pierre Hellio Le; Wyman, Bradley T. [Pfizer Inc. New London, CT (United States); Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M. [Musculoskeletal and Quantitative Imaging Group (MQIR), Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (United States)

    2012-08-15

    Purpose: Standard knee MRI is performed under unloading (ULC) conditions and not much is known about changes of the meniscus, ligaments or cartilage under loading conditions (LC). The aim is to study the influence of loading of different knee structures at 3 Tesla (T) in subjects with osteoarthritis (OA) and normal controls. Materials and methods: 30 subjects, 10 healthy and 20 with radiographic evidence of OA (10 mild and 10 moderate) underwent 3 T MRI under ULC and LC at 50% body weight. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous abnormalities. The changes between ULC and LC were assessed. For meniscus, cartilage and ligaments the changes of lesions, signal and shape were evaluated. In addition, for the meniscus changes in extrusion were examined. A multivariate regression model was used for correlations to correct the data for the impact of age, gender, BMI. A paired T-Test was performed to calculate the differences in meniscus extrusion. Results: Subjects with degenerative knee abnormalities demonstrated significantly increased meniscus extrusion under LC when compared to normal subjects (p = 0.0008-0.0027). Subjects with knee abnormalities and higher KL scores showed significantly more changes in lesion, signal and shape of the meniscus (80% (16/20) vs. 20% (2/10); p = 0.0025), ligaments and cartilage during LC. Conclusion: The study demonstrates that axial loading has an effect on articular cartilage, ligament, and meniscus morphology, which is more significant in subjects with degenerative disease and may serve as an additional diagnostic tool for disease diagnosis and assessing progression in subjects with knee OA.

  1. Loading of the knee during 3.0 T MRI is associated with significantly increased medial meniscus extrusion in mild and moderate osteoarthritis

    International Nuclear Information System (INIS)

    Stehling, Christoph; Souza, Richard B.; Graverand, Marie-Pierre Hellio Le; Wyman, Bradley T.; Li, Xiaojuan; Majumdar, Sharmila; Link, Thomas M.

    2012-01-01

    Purpose: Standard knee MRI is performed under unloading (ULC) conditions and not much is known about changes of the meniscus, ligaments or cartilage under loading conditions (LC). The aim is to study the influence of loading of different knee structures at 3 Tesla (T) in subjects with osteoarthritis (OA) and normal controls. Materials and methods: 30 subjects, 10 healthy and 20 with radiographic evidence of OA (10 mild and 10 moderate) underwent 3 T MRI under ULC and LC at 50% body weight. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous abnormalities. The changes between ULC and LC were assessed. For meniscus, cartilage and ligaments the changes of lesions, signal and shape were evaluated. In addition, for the meniscus changes in extrusion were examined. A multivariate regression model was used for correlations to correct the data for the impact of age, gender, BMI. A paired T-Test was performed to calculate the differences in meniscus extrusion. Results: Subjects with degenerative knee abnormalities demonstrated significantly increased meniscus extrusion under LC when compared to normal subjects (p = 0.0008–0.0027). Subjects with knee abnormalities and higher KL scores showed significantly more changes in lesion, signal and shape of the meniscus (80% (16/20) vs. 20% (2/10); p = 0.0025), ligaments and cartilage during LC. Conclusion: The study demonstrates that axial loading has an effect on articular cartilage, ligament, and meniscus morphology, which is more significant in subjects with degenerative disease and may serve as an additional diagnostic tool for disease diagnosis and assessing progression in subjects with knee OA.

  2. Popliteal cysts and subgastrocnemius bursitis are associated with knee symptoms and structural abnormalities in older adults: a cross-sectional study.

    Science.gov (United States)

    Cao, Yuelong; Jones, Graeme; Han, Weiyu; Antony, Benny; Wang, Xia; Cicuttini, Flavia; Ding, Changhai

    2014-03-03

    The role of popliteal cysts and subgastrocnemius bursitis in knee joint homeostasis is uncertain. The aim of this study is to describe cross-sectional associations between popliteal cysts, subgastrocnemius bursitis, knee symptoms and structural abnormalities in older adults. A cross-sectional sample of 900 randomly-selected subjects (mean age 63 years, 48% female) were studied. Knee pain, stiffness and dysfunction were assessed by self-administered Western Ontario McMaster Osteoarthritis Index (WOMAC) questionnaire. Radiographic knee osteophyte and joint space narrowing (JSN) were recorded. Magnetic resonance imaging (MRI) was utilized to assess popliteal cysts, subgastrocnemius bursitis, cartilage defects and bone marrow lesions (BMLs). Popliteal cysts were present in 11.7% and subgastrocnemius bursitis in 12.7% of subjects. Subgastrocnemius bursitis was more common in those with popliteal cyst (36.2% versus 9.7%, P bursitis was associated with increased osteophytes and JSN in the medial tibiofemoral compartment. Both were significantly associated with cartilage defects in all compartments, and with BMLs in the medial tibiofemoral compartment. Furthermore, both popliteal cysts and subgastrocnemius bursitis were significantly associated with increased weight-bearing knee pain but these associations became non-significant after adjustment for cartilage defects and BMLs. Popliteal cysts and subgastrocnemius bursitis are associated with increased symptoms as well as radiographic and MRI-detected joint structural abnormalities. Longitudinal data will help resolve if they are a consequence or a cause of knee joint abnormalities.

  3. Topographic variation in redifferentiation capacity of chondrocytes in the adult human knee joint.

    Science.gov (United States)

    Stenhamre, H; Slynarski, K; Petrén, C; Tallheden, T; Lindahl, A

    2008-11-01

    The aim of this study was to investigate the topographic variation in matrix production and cell density in the adult human knee joint. Additionally, we have examined the redifferentiation potential of chondrocytes expanded in vitro from the different locations. Full thickness cartilage-bone biopsies were harvested from seven separate anatomical locations of healthy knee joints from deceased adult human donors. Chondrocytes were isolated, expanded in vitro and redifferentiated in a pellet mass culture. Biochemical analysis of total collagen, proteoglycans and cellular content as well as histology and immunohistochemistry were performed on biopsies and pellets. In the biochemical analysis of the biopsies, we found lower proteoglycan to collagen (GAG/HP) ratio in the non-weight bearing (NWB) areas compared to the weight bearing (WB) areas. The chondrocytes harvested from different locations in femur showed a significantly better attachment and proliferation ability as well as good post-expansion chondrogenic capacity in pellet mass culture compared with the cells harvested from tibia. These results demonstrate that there are differences in extra cellular content within the adult human knee in respect to GAG/HP ratio. Additionally, the data show that clear differences between chondrocytes harvested from femur and tibia from healthy human knee joints exist and that the differences are not completely abolished during the process of de- and redifferentiation. These findings emphasize the importance of the understanding of topographic variation in articular cartilage biology when approaching new cartilage repair strategies.

  4. MR imaging findings in early osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Karachalios, Theofilos; Zibis, Aristidis; Papanagiotou, Panagiotis; Karantanas, Apostolos H.; Malizos, Konstantinos N.; Roidis, Nikolaos

    2004-01-01

    Purpose: To carry out a modern diagnostic survey among patients with a clinical and radiological diagnosis of early osteoarthritis of the knee. Materials and methods:A magnetic resonance imaging survey was performed on 70 patients (82 knees) with a mean age of 59 years. (range, 40-71 years) who had chronic knee pain, clinical diagnosis of early osteoarthritis of the knee and conventional knee radiographs classified as 1 and 2 on the Kellgren-Lawrence scale. Results: A variety of different disorders was found; degenerative meniscal lesions with or without ruptures of the anterior cruciate ligament in 70.7% of the knees, osteonecrosis of the femoral and tibial condyles in 9.75%, osteophytes and degenerative articular cartilage lesions in 8.54%, transient osteoporosis in 2.44% and benign neoplasms and cysts in 6.1%. Conclusions: The existence of such a heterogenous group of disorders in these 'early osteoarthritic knees' may explain failures in treatment and it may justify a modern MRI imaging approach to proper diagnosis

  5. Kinematic analysis of the knee joint by cine MRI

    International Nuclear Information System (INIS)

    Niitsu, Mamoru; Akisada, Masayoshi; Anno, Izumi; Matsumoto, Kunihiko; Kuno, Shin-ya; Miyakawa, Shunpei; Inouye, Tamon; Kose, Katsumi.

    1989-01-01

    In order to obtain the MR imaging of a moving knee joint, we developed a drive system of the knee. A reciprocating reversible motor with a rope and pulleys drove a knee brace with the knee bending and extending every two seconds. Using photo sensor probe for gating cine acquisition, we got 16-time frames/cycle MR images. Such as articular cartilage, ligaments and synovial fluid, the fine components of a moving knee joint were clearly seen. In a dynamic display, these cine images demonstrated 'actual' movement of the knee joint. Moving joint fluid and defect of anterior cruciate ligament were demonstrated in the case of knee injury. These findings were not seen on static images. Cine MR imaging was also helpful for evaluating the chronic joint disease and ligament reconstruction. Through the use of the present drive system and cine acquisition, dynamic MR imaging of a moving knee joint is clearly demonstrated and it may provide useful information in the kinematic analysis of the normal and pathologic knee. (author)

  6. Knee Osteochondral Autologous Transplantation: Long-term MR findings and clinical correlations

    International Nuclear Information System (INIS)

    Tetta, Cecilia; Busacca, Maurizio; Moio, Antonio; Rinaldi, Raffaella; Delcogliano, Marco; Kon, Elizaveta; Filardo, Giuseppe; Marcacci, Maurilio; Albisinni, Ugo

    2010-01-01

    We evaluated long-term magnetic resonance imaging (MRI) features of Knee Osteochondral Autologous Transplantation (OAT)-Mosaicplasty and correlated MRI findings and clinical outcome. Twenty-four patients (mean age 29.9 ± 8.7, 70.8% male) undergoing arthroscopic OAT between 1997 and 2000 were prospectively enrolled. The International Cartilage Repair Society (ICRS)/International Knee Documentation Committee (IKDC) scores and Tegner scores were employed for clinical evaluation. The magnetic resonance observation of cartilage repair tissue (MOCART) was utilized for description and assessment of the repair tissue. Median follow up was 113 months (interquartile range [IQR] 106-122). MRI showed good survival of grafted cartilage in 62.5% of patients. The integration of the graft was complete in 75% of cases, while the repaired tissue was intact in 62.5% and had an homogeneous structure in 70.8%. The MOCART score significantly correlated with objective and subjective scores (p = 0.003 and p = 0.002). Contrastingly, overall MOCART showed no correlation with the Tegner score. MRI revealed to be a powerful tool for non-invasive long-term assessment of OAT.

  7. Correlation between histological outcome and surgical cartilage repair technique in the knee: A meta-analysis.

    Science.gov (United States)

    DiBartola, Alex C; Everhart, Joshua S; Magnussen, Robert A; Carey, James L; Brophy, Robert H; Schmitt, Laura C; Flanigan, David C

    2016-06-01

    Compare histological outcomes after microfracture (MF), autologous chondrocyte implantation (ACI), and osteochondral autograft transfer (OATS). Literature review using PubMed MEDLINE, SCOPUS, Cumulative Index for Nursing and Allied Health Literature (CINAHL), and Cochrane Collaboration Library. Inclusion criteria limited to English language studies International Cartilage Repair Society (ICRS) grading criteria for cartilage analysis after ACI (autologous chondrocyte implantation), MF (microfracture), or OATS (osteochondral autografting) repair techniques. Thirty-three studies investigating 1511 patients were identified. Thirty evaluated ACI or one of its subtypes, six evaluated MF, and seven evaluated OATS. There was no evidence of publication bias (Begg's p=0.48). No statistically significant correlation was found between percent change in clinical outcome and percent biopsies showing ICRS Excellent scores (R(2)=0.05, p=0.38). Percent change in clinical outcome and percent of biopsies showing only hyaline cartilage were significantly associated (R(2)=0.24, p=0.024). Mean lesion size and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Most common lesion location and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Microfracture has poorer histologic outcomes than other cartilage repair techniques. OATS repairs primarily are comprised of hyaline cartilage, followed closely by cell-based techniques, but no significant difference was found cartilage quality using ICRS grading criteria among OATS, ACI-C, MACI, and ACI-P. IV, meta-analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Harnessing biomechanics to develop cartilage regeneration strategies.

    Science.gov (United States)

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  9. PRP for Degenerative Cartilage Disease: A Systematic Review of Clinical Studies.

    Science.gov (United States)

    Laver, Lior; Marom, Niv; Dnyanesh, Lad; Mei-Dan, Omer; Espregueira-Mendes, João; Gobbi, Alberto

    2017-10-01

    To explore the utilization of platelet-rich plasma (PRP) for degenerative cartilage processes and evaluate whether there is sufficient evidence to better define its potential effects. Systematic literature reviews were conducted in PubMed/MEDLINE and Cochrane electronic databases till May 2015, using the keywords "platelet-rich plasma OR PRP OR autologous conditioned plasma OR ACP AND cartilage OR chondrocyte OR chondrogenesis OR osteoarthritis (OA) OR arthritis." The final result yielded 29 articles. Twenty-six studies examined PRP administration for knee OA and 3 involved PRP administration for hip OA. The results included 9 prospective randomized controlled trials (RCTs) (8 knee and 1 hip), 4 prospective comparative studies, 14 case series, and 2 retrospective comparative studies. Hyaluronic acid (HA) was used as a control in 11 studies (7 RCTs, 2 prospective comparative studies, and 2 retrospective cohort). Overall, all RCTs reported on improved symptoms compared to baseline scores. Only 2 RCTs-one for knee and one for hip-did not report significant superiority of PRP compared to the control group (HA). Nine out of 11 HA controlled studies showed significant better results in the PRP groups. A trend toward better results for PRP injections in patients with early knee OA and young age was observed; however, lack of uniformity was evident in terms of indications, inclusion criteria, and pathology definitions in the different studies. Current clinical evidence supports the benefit in PRP treatment for knee and hip OA, proven to temporarily relieve pain and improve function of the involved joint with superior results compared with several alternative treatments. Further research to establish the optimal preparation protocol and characteristics of PRP injections for OA is needed.

  10. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    Science.gov (United States)

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  11. Radiographic joint space narrowing in osteoarthritis of the knee: relationship to meniscal tears and duration of pain

    International Nuclear Information System (INIS)

    Chan, Wing P.; Huang, Guo-Shu; Hsu, Shu-Mei; Chang, Yue-Cune; Ho, Wei-Pin

    2008-01-01

    The objective of this study was to assess, with knee radiography, joint space narrowing (JSN) and its relationship to meniscal tears, anterior cruciate ligament (ACL) ruptures, articular cartilage erosion, and duration of pain in patients with knee osteoarthritis. A total of 140 patients who had knee osteoarthritis and underwent primary total knee replacement (TKR) surgery, with unicompartmental medial tibiofemoral JSN (grade 1 or greater) and normal lateral compartments, were recruited. Polytomous logistic regression was used to assess the relationship between JSN and risk factors. All patients with JSN were categorized as grade 1 (n=14, 10.0%), grade 2 (n=64, 45.7%), or grade 3 (n=62, 44.3%). Women presented with indications for a TKR at a younger age than men (mean age, 69 vs 73 years, P<0.05). There were 123 (87.9%) meniscal tears and 58 (41.4%) partial (insufficient or attenuated ACL fibers) and 10 (7.1%) complete ACL ruptures; 115 of 134 (85.8%) patients had moderate to severe cartilage erosion. A higher grade of JSN was correlated with a higher frequency of meniscal tears [odds ratio (OR) 6.00, 95% CI 1.29-27.96 for grade 2 vs grade 1 JSN] and duration of knee pain (OR 1.25, 95% CI 1.01-1.53 for grade 3 vs grade 1 JSN). A higher grade of JSN was not correlated with a higher frequency of ACL rupture or articular cartilage erosion. A higher grade of JSN is associated with a higher frequency of meniscal tears and long duration of knee pain in patients with knee osteoarthritis. (orig.)

  12. Radiographic joint space narrowing in osteoarthritis of the knee: relationship to meniscal tears and duration of pain

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Wing P. [Taipei Medical University, Department of Radiology, School of Medicine, Taipei (China); Taipei Medical University-Wan Fang Hospital, Department of Radiology, Taipei (China); Huang, Guo-Shu [Tri-Service General Hospital, National Defense Medical Center, Department of Radiology, Taipei (China); Hsu, Shu-Mei [Taipei Medical University, Department of Radiology, School of Medicine, Taipei (China); National Taiwan University, Department of Public Health, Taipei (China); Chang, Yue-Cune [Tamkang University, Department of Mathematics, Taipei County (China); Ho, Wei-Pin [Taipei Medical University-Wan Fang Hospital, Department of Orthopedic Surgery, Taipei (China)

    2008-10-15

    The objective of this study was to assess, with knee radiography, joint space narrowing (JSN) and its relationship to meniscal tears, anterior cruciate ligament (ACL) ruptures, articular cartilage erosion, and duration of pain in patients with knee osteoarthritis. A total of 140 patients who had knee osteoarthritis and underwent primary total knee replacement (TKR) surgery, with unicompartmental medial tibiofemoral JSN (grade 1 or greater) and normal lateral compartments, were recruited. Polytomous logistic regression was used to assess the relationship between JSN and risk factors. All patients with JSN were categorized as grade 1 (n=14, 10.0%), grade 2 (n=64, 45.7%), or grade 3 (n=62, 44.3%). Women presented with indications for a TKR at a younger age than men (mean age, 69 vs 73 years, P<0.05). There were 123 (87.9%) meniscal tears and 58 (41.4%) partial (insufficient or attenuated ACL fibers) and 10 (7.1%) complete ACL ruptures; 115 of 134 (85.8%) patients had moderate to severe cartilage erosion. A higher grade of JSN was correlated with a higher frequency of meniscal tears [odds ratio (OR) 6.00, 95% CI 1.29-27.96 for grade 2 vs grade 1 JSN] and duration of knee pain (OR 1.25, 95% CI 1.01-1.53 for grade 3 vs grade 1 JSN). A higher grade of JSN was not correlated with a higher frequency of ACL rupture or articular cartilage erosion. A higher grade of JSN is associated with a higher frequency of meniscal tears and long duration of knee pain in patients with knee osteoarthritis. (orig.)

  13. Centralization of extruded medial meniscus delays cartilage degeneration in rats.

    Science.gov (United States)

    Ozeki, Nobutake; Muneta, Takeshi; Kawabata, Kenichi; Koga, Hideyuki; Nakagawa, Yusuke; Saito, Ryusuke; Udo, Mio; Yanagisawa, Katsuaki; Ohara, Toshiyuki; Mochizuki, Tomoyuki; Tsuji, Kunikazu; Saito, Tomoyuki; Sekiya, Ichiro

    2017-05-01

    Meniscus extrusion often observed in knee osteoarthritis has a strong correlation with the progression of cartilage degeneration and symptom in the patients. We recently reported a novel procedure "arthroscopic centralization" in which the capsule was sutured to the edge of the tibial plateau to reduce meniscus extrusion in the human knee. However, there is no animal model to study the efficacy of this procedure. The purposes of this study were [1] to establish a model of centralization for the extruded medial meniscus in a rat model; and [2] to investigate the chondroprotective effect of this procedure. Medial meniscus extrusion was induced by the release of the anterior synovial capsule and the transection of the meniscotibial ligament. Centralization was performed by the pulled-out suture technique. Alternatively, control rats had only the medial meniscus extrusion surgery. Medial meniscus extrusion was evaluated by micro-CT and macroscopic findings. Cartilage degeneration of the medial tibial plateau was evaluated macroscopically and histologically. By micro-CT analysis, the medial meniscus extrusion was significantly improved in the centralization group in comparison to the extrusion group throughout the study. Both macroscopically and histologically, the cartilage lesion of the medial tibial plateau was prevented in the centralization group but was apparent in the control group. We developed medial meniscus extrusion in a rat model, and centralization of the extruded medial meniscus by the pull-out suture technique improved the medial meniscus extrusion and delayed cartilage degeneration, though the effect was limited. Centralization is a promising treatment to prevent the progression of osteoarthritis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Knee Osteoarthritis Is Associated With Previous Meniscus and Anterior Cruciate Ligament Surgery Among Elite College American Football Athletes.

    Science.gov (United States)

    Smith, Matthew V; Nepple, Jeffrey J; Wright, Rick W; Matava, Matthew J; Brophy, Robert H

    Football puts athletes at risk for knee injuries such meniscus and anterior cruciate ligament (ACL) tears, which are associated with the development of osteoarthritis (OA). Previous knee surgery, player position, and body mass index (BMI) may be associated with knee OA. In elite football players undergoing knee magnetic resonance imaging at the National Football League's Invitational Combine, the prevalence of knee OA is associated with previous knee surgery and BMI. Retrospective cohort. Level 4. A retrospective review was performed of all participants of the National Football League Combine from 2005 to 2009 who underwent magnetic resonance imaging of the knee because of prior knee injury, surgery, or knee-related symptoms or concerning examination findings. Imaging studies were reviewed for evidence of OA. History of previous knee surgery-including ACL reconstruction, meniscal procedures, and articular cartilage surgery-and position were recorded for each athlete. BMI was calculated based on height and weight. There was a higher prevalence of OA in knees with a history of previous knee surgery (23% vs 4.0%, P 30 kg/m 2 was also associated with a higher risk of OA ( P = 0.007) but player position was not associated with knee OA. Previous knee surgery, particularly ACL reconstruction and partial meniscectomy, and elevated BMI are associated with knee OA in elite football players. Future research should investigate ways to minimize the risk of OA after knee surgery in these athletes. Treatment of knee injuries in football athletes should consider chondroprotection, including meniscal preservation and cartilage repair, when possible.

  15. MR imaging of autologous chondrocyte implantation of the knee

    Energy Technology Data Exchange (ETDEWEB)

    James, S.L.J.; Connell, D.A.; Saifuddin, A.; Skinner, J.A.; Briggs, T.W.R. [RNOH Stanmore, Department of Radiology, Stanmore, Middlesex (United Kingdom)

    2006-05-15

    Autologous chondrocyte implantation (ACI) is a surgical technique that is increasingly being used in the treatment of full-thickness defects of articular cartilage in the knee. It involves the arthroscopic harvesting and in vitro culture of chondrocytes that are subsequently implanted into a previously identified chondral defect. The aim is to produce a repair tissue that closely resembles hyaline articular cartilage that gradually becomes incorporated, restoring joint congruity. Over the long term, it is hoped that this will prevent the progression of full-thickness articular cartilage defects to osteoarthritis. This article reviews the indications and operative procedure performed in ACI. Magnetic resonance imaging (MRI) sequences that provide optimal visualization of articular cartilage in the post-operative period are discussed. Normal appearances of ACI on MRI are presented along with common complications that are encountered with this technique. (orig.)

  16. Articular cartilage lesions increase early cartilage degeneration in knees treated by anterior cruciate ligament reconstruction: T1ρ mapping evaluation and 1-year follow-up.

    Science.gov (United States)

    Hirose, Jun; Nishioka, Hiroaki; Okamoto, Nobukazu; Oniki, Yasunari; Nakamura, Eiichi; Yamashita, Yasuyuki; Usuku, Koichiro; Mizuta, Hiroshi

    2013-10-01

    Articular cartilage degeneration can develop after anterior cruciate ligament reconstruction (ACLR). Although radiological studies have identified risk factors for the progression of degenerative cartilage changes in the long term, risk factors in the early postoperative period remain to be documented. Cartilage lesions that are present at surgery progress to cartilage degeneration in the early phase after ACLR. Case series; Level of evidence, 4. T1ρ is the spin-lattice relaxation in the rotating frame magnetic resonance imaging. Sagittal T1ρ maps of the femorotibial joint were obtained before and 1 year after ACLR in 23 patients with ACL injuries. Four regions of interest (ROIs) were placed on images of the cartilage in the medial and lateral femoral condyle (MFC, LFC) and the medial and lateral tibia plateau (MTP, LTP). Changes in the T1ρ value (milliseconds) of each ROI were recorded, and differences between patients with and without cartilage lesions were evaluated. The relationship between changes in the T1ρ value and meniscal tears was also studied. Arthroscopy at ACLR detected cartilage lesions in 15 MFCs, 7 LFCs, and 2 LTPs. The baseline T1ρ value of the MFC and LFC was significantly higher in patients with cartilage lesions (MFC, 40.7 ms; LFC, 42.2 ms) than in patients without cartilage lesions (MFC, 38.0 ms, P = .025; LFC, 39.4 ms, P = .010). At 1-year follow-up, the T1ρ value of the MFC and LFC was also significantly higher in patients with lesions (MFC, 43.1 ms; LFC, 42.7 ms) than in patients without such lesions (MFC, 39.1 ms, P = .002; LFC, 40.4 ms, P = .023, respectively). In patients with cartilage injury, the T1ρ value of the MFC increased during the year after treatment (P = .002). There was no significant difference in the baseline and follow-up T1ρ value in patients with or without meniscal tears on each side although the T1ρ value of the MFC, MTP, and LFC increased during the first year after surgery regardless of the presence or

  17. Long Intergenic Noncoding RNAs Mediate the Human Chondrocyte Inflammatory Response and Are Differentially Expressed in Osteoarthritis Cartilage.

    Science.gov (United States)

    Pearson, Mark J; Philp, Ashleigh M; Heward, James A; Roux, Benoit T; Walsh, David A; Davis, Edward T; Lindsay, Mark A; Jones, Simon W

    2016-04-01

    To identify long noncoding RNAs (lncRNAs), including long intergenic noncoding RNAs (lincRNAs), antisense RNAs, and pseudogenes, associated with the inflammatory response in human primary osteoarthritis (OA) chondrocytes and to explore their expression and function in OA. OA cartilage was obtained from patients with hip or knee OA following joint replacement surgery. Non-OA cartilage was obtained from postmortem donors and patients with fracture of the neck of the femur. Primary OA chondrocytes were isolated by collagenase digestion. LncRNA expression analysis was performed by RNA sequencing (RNAseq) and quantitative reverse transcriptase-polymerase chain reaction. Modulation of lncRNA chondrocyte expression was achieved using LNA longRNA GapmeRs (Exiqon). Cytokine production was measured with Luminex. RNAseq identified 983 lncRNAs in primary human hip OA chondrocytes, 183 of which had not previously been identified. Following interleukin-1β (IL-1β) stimulation, we identified 125 lincRNAs that were differentially expressed. The lincRNA p50-associated cyclooxygenase 2-extragenic RNA (PACER) and 2 novel chondrocyte inflammation-associated lincRNAs (CILinc01 and CILinc02) were differentially expressed in both knee and hip OA cartilage compared to non-OA cartilage. In primary OA chondrocytes, these lincRNAs were rapidly and transiently induced in response to multiple proinflammatory cytokines. Knockdown of CILinc01 and CILinc02 expression in human chondrocytes significantly enhanced the IL-1-stimulated secretion of proinflammatory cytokines. The inflammatory response in human OA chondrocytes is associated with widespread changes in the profile of lncRNAs, including PACER, CILinc01, and CILinc02. Differential expression of CILinc01 and CIinc02 in hip and knee OA cartilage, and their role in modulating cytokine production during the chondrocyte inflammatory response, suggest that they may play an important role in mediating inflammation-driven cartilage degeneration in

  18. Exogenous fibroblast growth factor 9 attenuates cartilage degradation and aggravates osteophyte formation in post-traumatic osteoarthritis.

    Science.gov (United States)

    Zhou, S; Wang, Z; Tang, J; Li, W; Huang, J; Xu, W; Luo, F; Xu, M; Wang, J; Wen, X; Chen, L; Chen, H; Su, N; Shen, Y; Du, X; Xie, Y; Chen, L

    2016-12-01

    The aim of the present study is to investigate the effects of exogenous fibroblast growth factor (FGF)9 on the progression of post-traumatic osteoarthritis (OA). The expression of FGF9 in articular cartilage with OA is detected by immunohistochemistry (IHC). The effects of intra-articular exogenous FGF9 injection on post-traumatic OA induced by the destabilization of the medial meniscus (DMM) surgery are evaluated. Cartilage changes and osteophyte formation in knee joints are investigated by histological analysis. Changes in subchondral bone are evaluated by microcomputed tomography (micro-CT). The effect of exogenous FGF9 on an interleukin-1β (IL-1β)-induced ex vivo OA model of human articular cartilage tissues is also evaluated. FGF9 expression was down-regulated in articular chondrocytes of OA but ectopically induced at sites of osteophyte formation. Intra-articular injection of exogenous FGF9 attenuated articular cartilage degradation in mice after DMM surgery. Exogenous FGF9 suppressed collagen X and MMP13 expressions in OA cartilage, while promoted collagen II expression. Similar results were observed in IL-1β-induced ex vivo OA model. Intra-articular injection of FGF9 had no significant effect on the subchondral bone of knee joints after DMM surgery, but aggravated osteophyte formation. The expressions of SOX9 and collagen II, and cell proliferation were up-regulated at sites of initial osteophyte formation in mice with exogenous FGF9 treatment. Intra-articular injection of exogenous FGF9 delays articular cartilage degradation in post-traumatic OA, while aggravates osteophyte formation. Copyright © 2016. Published by Elsevier Ltd.

  19. Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression.

    Science.gov (United States)

    Yang, Chih-Chang; Lin, Cheng-Yu; Wang, Hwai-Shi; Lyu, Shaw-Ruey

    2013-01-01

    Osteoarthritis (OA) is characterized by degradation of the cartilage matrix, leading to pathologic changes in the joints. However, the pathogenic effects of synovial tissue inflammation on OA knees are not clear. To investigate whether the inflammation caused by the medial plica is involved in the pathogenesis of osteoarthritis, we examined the expression of matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α in the medial plica and pannus-like tissue in the knees of patients with medial compartment OA who underwent either arthroscopic medial release (stage II; 15 knee joints from 15 patients) or total knee replacement (stage IV; 18 knee joints from 18 patients). MMP-2, MMP-3, MMP-9, IL-1β, and TNF-α mRNA and protein levels measured, respectively, by quantitative real-time PCR and Quantibody human MMP arrays, were highly expressed in extracts of medial plica and pannus-like tissue from stage IV knee joints. Immunohistochemical staining also demonstrated high expression of MMP-2, MMP-3, and MMP-9 in plica and pannus-like tissue of stage IV OA knees and not in normal cartilage. Some TIMP/MMP ratios decreased significantly in both medial plica and pannus-like tissue as disease progressed from stage II to stage IV. Furthermore, the migration of cells from the pannus-like tissue was enhanced by IL-1β, while plica cell migration was enhanced by TNF-α. The results suggest that medial plica and pannus-like tissue may be involved in the process of cartilage degradation in medial compartment OA of the knee.

  20. Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression.

    Directory of Open Access Journals (Sweden)

    Chih-Chang Yang

    Full Text Available Osteoarthritis (OA is characterized by degradation of the cartilage matrix, leading to pathologic changes in the joints. However, the pathogenic effects of synovial tissue inflammation on OA knees are not clear. To investigate whether the inflammation caused by the medial plica is involved in the pathogenesis of osteoarthritis, we examined the expression of matrix metalloproteinases (MMPs, tissue inhibitors of metalloproteinases (TIMPs, interleukin (IL-1β, and tumor necrosis factor (TNF-α in the medial plica and pannus-like tissue in the knees of patients with medial compartment OA who underwent either arthroscopic medial release (stage II; 15 knee joints from 15 patients or total knee replacement (stage IV; 18 knee joints from 18 patients. MMP-2, MMP-3, MMP-9, IL-1β, and TNF-α mRNA and protein levels measured, respectively, by quantitative real-time PCR and Quantibody human MMP arrays, were highly expressed in extracts of medial plica and pannus-like tissue from stage IV knee joints. Immunohistochemical staining also demonstrated high expression of MMP-2, MMP-3, and MMP-9 in plica and pannus-like tissue of stage IV OA knees and not in normal cartilage. Some TIMP/MMP ratios decreased significantly in both medial plica and pannus-like tissue as disease progressed from stage II to stage IV. Furthermore, the migration of cells from the pannus-like tissue was enhanced by IL-1β, while plica cell migration was enhanced by TNF-α. The results suggest that medial plica and pannus-like tissue may be involved in the process of cartilage degradation in medial compartment OA of the knee.

  1. Repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation

    International Nuclear Information System (INIS)

    Grande, D.A.; Pitman, M.I.; Peterson, L.; Menche, D.; Klein, M.

    1989-01-01

    Using the knee joints of New Zealand White rabbits, a baseline study was made to determine the intrinsic capability of cartilage for healing defects that do not fracture the subchondral plate. A second experiment examined the effect of autologous chondrocytes grown in vitro on the healing rate of these defects. To determine whether any of the reconstituted cartilage resulted from the chondrocyte graft, a third experiment was conducted involving grafts with chondrocytes that had been labeled prior to grafting with a nuclear tracer. Results were evaluated using both qualitative and quantitative light microscopy. Macroscopic results from grafted specimens displayed a marked decrease in synovitis and other degenerative changes. In defects that had received transplants, a significant amount of cartilage was reconstituted (82%) compared to ungrafted controls (18%). Autoradiography on reconstituted cartilage showed that there were labeled cells incorporated into the repair matrix

  2. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case-control study of relationship between collagen, glycosaminoglycan and cartilage swelling.

    Science.gov (United States)

    Hosseininia, Shahrzad; Lindberg, Lisbeth R; Dahlberg, Leif E

    2013-01-09

    It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA) joints. Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA) and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG) content, respectively. Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP) in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at early stages of the degenerative hip OA process. Our results

  3. Magnetization transfer contrast (MTC) and MTC-subtraction: enhancement of cartilage lesions and intracartilaginous degeneration in vitro

    International Nuclear Information System (INIS)

    Vahlensieck, M.; Dombrowski, F.; Leutner, C.; Wagner, U.; Reiser, M.

    1994-01-01

    Human articular cartilage from 16 cadaveric or amputated knees was studied using standard magnetic resonance imaging (MRI), on-resonance magnetization transfer contrast (MTC) and MTC-subtraction MRI. Results were compared with subsequent macroscopic and histopathological findings. MTC-subtraction and T2-weighted spin-echo images visualized cartilaginous surface defects with high sensitivity and specificity. MTC and T2-weighted spin-echo images revealed intra-cartilaginous signal loss without surface defects in 80% of the cases, corresponding to an increased collagen concentration. It is concluded that MTC is sensitive to early cartilage degeneration and MTC-subtraction can be helpful in detecting cartilage defects. (orig.)

  4. Radioimmunodetection of rat and rabbit cartilage using a monoclonal antibody specific to link proteins

    Energy Technology Data Exchange (ETDEWEB)

    Cassiede, P.; Amedee, J.; Rouais, F.; Bareille, R.; Bordenave, L.; Basse-Cathalinat, B.; Harmand, M.F. (Institut National de la Sante et de la Recherche Medicale (INSERM), 33 - Bordeaux (France)); Vuillemin, L.; Ducassou, D. (Hopital du Haut-Leveque, 33 - Pessac (France))

    1993-10-01

    Biodistribution analysis using [[sup 125]I]Fab-6F3 specific to link proteins from human articular cartilage performed in rats by autoradiography showed a high concentration of radioactivity in all cartilaginous tissues. Preliminary immunoscinitgraphic assays were performed in rabbits. Front and side view images of whole animals exhibited high uptake in cartilage tissue of the knee articulation, in the invertebral disk and the humeral head. This fixation was still detected 24 h post-injection, although high washout of radioactivity was observed. (Author).

  5. Structural and in vivo mechanical characterization of canine patellar cartilage: a closed chondromalacia patellae model.

    Science.gov (United States)

    LaBerge, M; Audet, J; Drouin, G; Rivard, C H

    1993-01-01

    The purpose of this project was to study the relationship between the structure of the patellar cartilage and its response to static compressive loading with a closed chondromalacia patellae model. An animal model was used to induce degeneration of the patella that was monitored quantitatively and qualitatively as a function of time. Ten adult mongrel dogs had their left patellofemoral groove replaced by a customized metallic implant covered with a thin film of polyethylene for periods of 3 months (five dogs) and 6 months (five dogs). An indenter was designed to perform mechanical indentation testing on the patellar cartilage in situ. The animals were anesthetized and the response of patellar cartilage to a static compressive load of 4.5 MPa was monitored for 20 min and its relaxation after load removal for 20 min. Indentation tests were performed every 3 months of the implantation period. At the end of the implantation period, the patellae were processed for histology, and sections were stained with Safranin-O indicative of the proteoglycans content. Macroscopically, no apparent degeneration or fibrillation of the patellar surfaces was observed after 3 or 6 months of implantation. However, the patellar surface showed a change in coloration after 6 months. A 17 +/- 3% and 37 +/- 8% deformation of the cartilage were calculated for the 3-month and 6-month specimens, respectively. Histologically, a progressive loss of proteoglycans was observed in the matrix as a function of implantation time. These results indicated that an increase in cartilage compliance is associated with an intrinsic remodeling of the cartilage matrix and that these changes might occur without external signs of degeneration and can be quantified.

  6. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Li, Hong; Hua, Yinghui [Fudan University, Department of Sports Medicine, Huashan Hospital, Shanghai (China); Chen, Zhongqing [Fudan University, Department of Pathology, Huashan Hospital, Shanghai (China)

    2014-11-26

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = 0.745, P < 0.001; joint debridement: r{sub s} = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = -0.715, P = 0.002; joint debridement: r{sub s} = -0.826, P < 0.001). Significant improvement over time after

  7. 2-photon laser scanning microscopy on native human cartilage

    Science.gov (United States)

    Martini, Joerg; Toensing, Katja; Dickob, Michael; Anselmetti, Dario

    2005-08-01

    Native hyaline cartilage from a human knee joint was directly investigated with laser scanning microscopy via 2-photon autofluorescence excitation with no additional staining or labelling protocols in a nondestructive and sterile manner. Using a femtosecond, near-infrared (NIR) Ti:Sa laser for 2-photon excitation and a dedicated NIR long distance objective, autofluorescence imaging and measurements of the extracellular matrix (ECM) tissue with incorporated chondrocytes were possible with a penetration depth of up to 460 μm inside the sample. Via spectral autofluorescence separation these experiments allowed the discrimination of chondrocytes from the ECM and therefore an estimate of chondrocytic cell density within the cartilage tissue to approximately 0.2-2•107cm3. Furthermore, a comparison of the relative autofluorescence signals between nonarthritic and arthritic cartilage tissue exhibited distinct differences in tissue morphology. As these morphological findings are in keeping with the macroscopic diagnosis, our measurement has the potential of being used in future diagnostic applications.

  8. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2017-10-01

    Full Text Available Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies. Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  9. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; van Kuppevelt, Toin H; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; de Vries, Rob B M; Daamen, Willeke F

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0-100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  10. Electrical and Thermal Modulation of Protein Synthesis in Cartilage: A Model for Field Effects on Biological Tissues.

    Science.gov (United States)

    1988-01-15

    76] under physiological conditions. Oscillatory streaming currents of 1-5 pA/cm’ were recently demonstrated in bovine knee articular cartilage...in cellular metabolism or cellular acidosis ). In general, these agents are lethal in high enough doses. The stress proteins are highly conserved...which under reducing conditions subdivides into subunits of 35 kD (on SDS-PAGE) in bovine fetal epiphyseal and articular cartilage [170]. The tissue

  11. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case–control study of relationship between collagen, glycosaminoglycan and cartilage swelling

    Directory of Open Access Journals (Sweden)

    Hosseininia Shahrzad

    2013-01-01

    Full Text Available Abstract Background It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA joints. Methods Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG content, respectively. Results Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Conclusions Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at

  12. Matrix-induced autologous chondrocyte implantation for the treatment of chondral defects of the knees in Chinese patients

    Directory of Open Access Journals (Sweden)

    Zhang ZW

    2014-12-01

    Full Text Available Zhongwen Zhang,1 Xin Zhong,2 Huiru Ji,1 Zibin Tang,1 Jianpeng Bai,1 Minmin Yao,1 Jianlei Hou,1 Minghao Zheng,3 David J Wood,3 Jiazhi Sun,4 Shu-Feng Zhou,4,5 Aibing Liu6 1Department of Orthopedics, General Hospital of Chinese People’s Armed Police Forces (CAPF, Beijing; 2Department of MRI Center, General Hospital of CAPF, Beijing, People’s Republic of China; 3Center for Orthopedic Research, School of Surgery and Pathology, University of Western Australia, Perth, Western Australia, Australia; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 5Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino–US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou; 6Medical Research Center, General Hospital of Chinese People’s Armed Police Forces (CAPF, Beijing, People’s Republic of China Abstract: Articular cartilage injury is the most common type of damage seen in clinical orthopedic practice. The matrix-induced autologous chondrocyte implant (MACI was developed to repair articular cartilage with an advance on the autologous chondrocyte implant procedure. This study aimed to evaluate whether MACI is a safe and efficacious cartilage repair treatment for patients with knee cartilage lesions. The primary outcomes were the Knee Injury and Osteoarthritis Outcome Score (KOOS domains and magnetic resonance imaging (MRI results, compared between baseline and postoperative months 3, 6, 12, and 24. A total of 15 patients (20 knees, with an average age of 33.9 years, had a mean defect size of 4.01 cm2. By 6-month follow-up, KOOS results demonstrated significant improvements in symptoms and knee-related quality of life. MRI showed significant improvements in four individual graft scoring parameters at 24 months postoperatively. At 24 months, 90% of MACI grafts had filled completely and 10% had good

  13. Activation of Indian Hedgehog Promotes Chondrocyte Hypertrophy and Upregulation of MMP-13 in Human Osteoarthritic Cartilage

    Science.gov (United States)

    Wei, Fangyuan; Zhou, Jingming; Wei, Xiaochun; Zhang, Juntao; Fleming, Braden C.; Terek, Richard; Pei, Ming; Chen, Qian; Liu, Tao; Wei, Lei

    2012-01-01

    Objective The objectives of this study were to 1) determine the correlation between osteoarthritis (OA) and Ihh expression, and 2) establish the effects of Ihh on expression of markers of chondrocyte hypertrophy and MMP-13 in human OA cartilage. Design OA cartilage and synovial fluid samples were obtained during total knee arthroplasty. Normal cartilage samples were obtained from intra-articular tumor resections, and normal synovial fluid samples were obtained from healthy volunteers and the contralateral uninjured knee of patients undergoing anterior cruciate ligament reconstruction. OA was graded using the Mankin score. Expression of Ihh in synovial fluid was determined by western blot. Ihh, type X collagen and MMP-13 mRNA were determined by real time PCR. Protein expression of type X collagen and MMP-13 in cartilage samples were analyzed with immunohistochemistry. Chondrocyte size was measured using image analysis. Results Ihh expression was increased 2.6 fold in OA cartilage and 37% in OA synovial fluid when compared to normal control samples. Increased expression of Ihh was associated with the severity of OA and expression of markers of chondrocyte hypertrophy: type X collagen and MMP-13, and chondocyte size. Chondrocytes were more spherical with increasing severity of OA. There was a significant correlation between Mankin score and cell size (r2= 0.80) and Ihh intensity (r2 = 0.89). Exogenous Ihh induced a 6.8 fold increase of type X collagen and 2.8 fold increase of MMP-13 mRNA expression in cultured chondrocytes. Conversely, knockdown of Ihh by siRNA and Hh inhibitor Cyclopamine had the opposite effect. Conclusions Ihh expression correlates with OA progression and changes in chondrocyte morphology and gene expression consistent with chondrocyte hypertrophy and cartilage degradation seen in OA cartilage. Thus, Ihh may be a potential therapeutic target to prevent OA progression. PMID:22469853

  14. Evaluation of cartilage surface injuries using 3D-double echo steady state (3D-DESS): Effect of changing flip angle from 40 deg to 90 deg

    International Nuclear Information System (INIS)

    Moriya, Susumu; Yokobayashi, Tsuneo; Ishikawa, Mitsunori; Miki, Yukio; Kanagaki, Mitsunori; Yamamoto, Akira; Okudaira, Shuzo; Nakamura, Shinichiro

    2011-01-01

    Background. In magnetic resonance imaging (MRI) with 3D-double-echo steady-state (3D-DESS) sequences, the cartilage-synovial fluid contrast is reported to be better with a flip angle of 90 deg than with the conventional flip angle of 40 deg, and the detection rate of knee cartilage injury may be improved. Purpose. To compare the diagnostic performance and certainty of diagnosis with 3D-DESS images made using two flip angle settings, 40 deg and 90 deg, for knee cartilage surface lesions of Grade 2 or above confirmed by arthroscopy. Material and Methods. Images were obtained with 3D-DESS flip angles of 40 deg and 90 deg at 1.0T in 13 consecutive patients (2 men, 11 women, age range 18-68 years) evaluated for superficial cartilage injury by arthroscopy. Two radiologists classified the presence or absence of cartilage damage of ≥Grade 2 as 'positive (p)' or 'negative (n)', respectively. The rate of agreement with arthroscopic diagnosis was then examined, and the diagnostic performance compared. Diagnostic confidence was assessed scoring the presence or absence of cartilage damage into three categories: 3 = can diagnose with absolute confidence; 2 = can diagnose with a level of certainty as probably present or probably absent; and 1 = cannot make a diagnosis. Results. In a comparison of the rate of agreement between diagnosis by 3D-DESS images and arthroscopy, the rate of agreement was significantly higher and diagnostic performance was better in 90 deg images for the medial femoral condyle only. Diagnostic confidence was significantly better with 90 deg flip angle images than with 40 deg flip angle images for all six cartilage surfaces. Conclusion. In evaluating knee cartilage surface lesions with 3D-DESS sequences, a flip angle setting of 90 deg is more effective than the conventional setting of 40 deg

  15. Evaluation of cartilage surface injuries using 3D-double echo steady state (3D-DESS): Effect of changing flip angle from 40 deg to 90 deg

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Susumu; Yokobayashi, Tsuneo; Ishikawa, Mitsunori (Ishikawa Clinic, Kyoto (Japan)), email: smoyari@yahoo.co.jp; Miki, Yukio (Dept. of Radiology, Osaka City Univ. Graduate School of Medicine, Osaka (Japan)); Kanagaki, Mitsunori; Yamamoto, Akira (Dept. of Diagnostic Imaging and Nuclear Medicine, Kyoto Univ., Kyoto (Japan)); Okudaira, Shuzo (Dept. of Orthopaedics, Kyoto Police Hospital, Kyoto (Japan)); Nakamura, Shinichiro (Center for Musculoskeletal Research, Univ. of Tennessee, Knoxville, TN (United States))

    2011-12-15

    Background. In magnetic resonance imaging (MRI) with 3D-double-echo steady-state (3D-DESS) sequences, the cartilage-synovial fluid contrast is reported to be better with a flip angle of 90 deg than with the conventional flip angle of 40 deg, and the detection rate of knee cartilage injury may be improved. Purpose. To compare the diagnostic performance and certainty of diagnosis with 3D-DESS images made using two flip angle settings, 40 deg and 90 deg, for knee cartilage surface lesions of Grade 2 or above confirmed by arthroscopy. Material and Methods. Images were obtained with 3D-DESS flip angles of 40 deg and 90 deg at 1.0T in 13 consecutive patients (2 men, 11 women, age range 18-68 years) evaluated for superficial cartilage injury by arthroscopy. Two radiologists classified the presence or absence of cartilage damage of >=Grade 2 as 'positive (p)' or 'negative (n)', respectively. The rate of agreement with arthroscopic diagnosis was then examined, and the diagnostic performance compared. Diagnostic confidence was assessed scoring the presence or absence of cartilage damage into three categories: 3 = can diagnose with absolute confidence; 2 = can diagnose with a level of certainty as probably present or probably absent; and 1 = cannot make a diagnosis. Results. In a comparison of the rate of agreement between diagnosis by 3D-DESS images and arthroscopy, the rate of agreement was significantly higher and diagnostic performance was better in 90 deg images for the medial femoral condyle only. Diagnostic confidence was significantly better with 90 deg flip angle images than with 40 deg flip angle images for all six cartilage surfaces. Conclusion. In evaluating knee cartilage surface lesions with 3D-DESS sequences, a flip angle setting of 90 deg is more effective than the conventional setting of 40 deg

  16. Effects of immobilization on thickness of superficial zone of articular cartilage of patella in rats

    Directory of Open Access Journals (Sweden)

    Khadija Iqbal

    2012-01-01

    Conclusion: Each segment of superficial zone behaves differentially on immobilization and remobilization. Perhaps a much longer duration of remobilization is required to reverse changes of immobilization in articular cartilage and plays a significant role in knee joint movements.

  17. Detecting ICRS grade 1 cartilage lesions in anterior cruciate ligament injury using T1ρ and T2 mapping

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Hiroaki, E-mail: kinuhnishiok@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Hirose, Jun, E-mail: hirojun-mk@umin.ac.jp [Department of Orthopaedic Surgery, Kumamoto University Hospital, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Nakamura, Eiichi, E-mail: h@kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Okamoto, Nobukazu, E-mail: nobuoka9999@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Karasugi, Tatsuki, E-mail: tatsukik@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Taniwaki, Takuya, E-mail: takuyataniwaki@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Okada, Tatsuya, E-mail: tatsuya-okada@fc.kuh.kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Yamashita, Yasuyuki, E-mail: yama@kumamoto-u.ac.jp [Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan); Mizuta, Hiroshi, E-mail: mizuta@kumamoto-u.ac.jp [Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556 (Japan)

    2013-09-15

    Objective: The purpose of this study was to clarify the detectability of the International Cartilage Repair Society (ICRS) grade 1 cartilage lesions in anterior cruciate ligament (ACL)–injured knees using T1ρ and T2 mapping. Materials and Methods: We performed preoperative T1ρ and T2 mapping and 3D gradient–echo with water–selective excitation (WATS) sequences on 37 subjects with ACL injuries. We determined the detectability on 3D WATS based on arthroscopic findings. The T1ρ and T2 values (ms) were measured in the regions of interest that were placed on the weight–bearing cartilage of the femoral condyle. The receiver operating characteristic (ROC) curve based on these values was constructed using the arthroscopic findings as a reference standard. The evaluation of cartilage was carried out only in the weight–bearing cartilage. The cut–off values for determining the presence of a cartilage injury were determined using each ROC curve, and the detectability was calculated for the T1ρ and T2 mapping. Results: The cut–off values for the T1ρ and T2 were 41.6 and 41.2, respectively. The sensitivity and specificity of T1ρ were 91.2% and 89.5%, respectively, while those of T2 were 76.5% and 81.6%, respectively. For the 3D WATS images, the same values were 58.8% and 78.9%, respectively. Conclusions: Our study demonstrated that the T1ρ and T2 values were significantly higher for ICRS grade 1 cartilage lesions than for normal cartilage and that the two mappings were able to non–invasively detect ICRS grade 1 cartilage lesions in the ACL–injured knee with a higher detectability than were 3D WATS images.

  18. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging

    International Nuclear Information System (INIS)

    Marlovits, Stefan; Striessnig, Gabriele; Resinger, Christoph T.; Aldrian, Silke M.; Vecsei, Vilmos; Imhof, Herwig; Trattnig, Siegfried

    2004-01-01

    To evaluate articular cartilage repair tissue after biological cartilage repair, we propose a new technique of non-invasive, high-resolution magnetic resonance imaging (MRI) and define a new classification system. For the definition of pertinent variables the repair tissue of 45 patients treated with three different techniques for cartilage repair (microfracture, autologous osteochondral transplantation, and autologous chondrocyte transplantation) was analyzed 6 and 12 months after the procedure. High-resolution imaging was obtained with a surface phased array coil placed over the knee compartment of interest and adapted sequences were used on a 1 T MRI scanner. The analysis of the repair tissue included the definition and rating of nine pertinent variables: the degree of filling of the defect, the integration to the border zone, the description of the surface and structure, the signal intensity, the status of the subchondral lamina and subchondral bone, the appearance of adhesions and the presence of synovitis. High-resolution MRI, using a surface phased array coil and specific sequences, can be used on every standard 1 or 1.5 T MRI scanner according to the in-house standard protocols for knee imaging in patients who have had cartilage repair procedures without substantially prolonging the total imaging time. The new classification and grading system allows a subtle description and suitable assessment of the articular cartilage repair tissue

  19. Treatment modalities for patients with varus medial knee osteoarthritis

    NARCIS (Netherlands)

    T. Duivenvoorden (Tijs)

    2015-01-01

    markdownabstractAbstract Osteoarthritis (OA) is one of the most common joint disorders in the Western population, which causes pain, stiffness, loss of function and disability. In patients with OA the cartilage, located at the ends of long bones, is damaged. OA is most prevalent in the knee

  20. Abnormal findings on knee magnetic resonance imaging in asymptomatic NBA players.

    Science.gov (United States)

    Walczak, Brian E; McCulloch, Patrick C; Kang, Richard W; Zelazny, Anthony; Tedeschi, Fred; Cole, Brian J

    2008-01-01

    The purpose of this study was to evaluate the knees of asymptomatic National Basketball Association (NBA) players via magnetic resonance imaging (MRI) and confirm or dispute findings reported in the previous literature. It is thought that a variety of significant abnormalities affecting the knee exist in asymptomatic patients and that these findings can be accurately identified on MRI. Two months prior to the 2005 season, bilateral knee MRI examinations of 14 asymptomatic NBA players (28 knees) were evaluated for abnormalities of the articular cartilage, menisci, and patellar and quadriceps tendons. The presence of joint effusion, subchondral edema, and cystic lesions and the integrity of the collateral and cruciate ligaments were also assessed.

  1. Evaluation on Cartilage Morphology after Intra-Articular Injection of Titanium Dioxide Nanoparticles in Rats

    International Nuclear Information System (INIS)

    Wang, J.; Gao, Y.; Hou, Y.; Zhao, F.; Pu, F.; Liu, X.; Fan, Y.; Wu, Z.

    2012-01-01

    Nano scale wear particles would generate from orthopedic implants with nano scale surface topography because of residual stress. In this study, the effect of TiO 2 nanoparticles on articular cartilage was investigated by intra-articular injection in rats. Using contrast-enhanced high-resolution micro computed tomography (micro-CT) technology, the decreased thickness of articular cartilage in distal femur was determined at 1, 7, 14, and 30 days after nanoparticle exposure. A strong linear correlation (r=0.928, P 2 nanoparticles, cartilage thickness showed time-dependent decrease, and cartilage volume was decreased too. Further, the histopathological examination showed the edema chondrocyte and shrinked nucleus in the radial and calcified zone of cartilage. The ultrastructure of articular cartilage implied that the chondrocytes was degenerated, expressing as the condensed chromatin, the dilated endoplasmic reticulum, and the rich mitochondria. Even, the fragments of ruptured endoplasmic reticulum were observed in the cytoplasm of chondrocytes at postexposure day 30. Results indicate that potential damage of articular cartilage was induced by particles existed in knee joint and imply that the bio monitoring should be strengthened in patients with prostheses replacement.

  2. MR-specific staging of chondromalacia patellae using a special knee compressor: Comparison with arthroscopic findings

    International Nuclear Information System (INIS)

    Andresen, R.; Radmer, S.; Koenig, H.; Wolf, K.J.

    1993-01-01

    The present study proposes a new MRI-specific staging of chondromalacia patellae (CMP) which is based on cartilage thickness decrease and signal intensity behaviour under compression as well as cartilage morphology in the plain image. The investigation was performed in 30 patients with varying knee complaints who underwent arthroscopy after MR imaging. It was demonstrated that three CMP stages can already be differentiated by MRI under compression in arthroscopically healthy cartilage. This proves a marked improvement in the early diagnosis of CMP. (orig.) [de

  3. Evaluation of knee-joint cartilage and menisci ten years after isolated and combined ruptures of the medial collateral ligament. Investigation by weight-bearing radiography, MR imaging and analysis of proteoglycan fragments in the joint fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, M. [Univ. Hospital, Linkoeping (Sweden). Dept. of Orthopaedics and Sports Medicine (Sweden); Thuomas, K.Aa. [Univ. Hospital, Linkoeping (Sweden). Dept. of Diagnostic Radiology; Messner, K. [Univ. Hospital, Linkoeping (Sweden). Dept. of Orthopaedics and Sports Medicine (Sweden)

    1997-01-01

    Purpose: To compare radiography, MR imaging, and chemical analysis in posttraumatic knees. Material and Methods: Ten matched pairs with either isolated partial rupture of the medial collateral ligament or combined medial collateral ligament/anterior cruciate ligament rupture were compared with matched controls 10 years after trauma. Weight-bearing radiographys and MR examinations were compared with proteoglycan fragment concentrations in the joint fluid. Results: The chemical analyses were similar in both trauma groups. The radiographs showed mild signs of arthrosis in half the patients with combined injury. MR images showed almost all injuried knees to have degenerative changes of various degrees in the cartilage and menisci. More frequent and more advanced changes were found after combined injury than after isolated injury (p<0.01). There were no changes in the controls. Conclusion: MR imaging is the best method for detecting and differentiating early posttraumatic knee arthrosis. (orig.).

  4. Evaluation of knee-joint cartilage and menisci ten years after isolated and combined ruptures of the medial collateral ligament. Investigation by weight-bearing radiography, MR imaging and analysis of proteoglycan fragments in the joint fluid

    International Nuclear Information System (INIS)

    Lundberg, M.; Thuomas, K.Aa.

    1997-01-01

    Purpose: To compare radiography, MR imaging, and chemical analysis in posttraumatic knees. Material and Methods: Ten matched pairs with either isolated partial rupture of the medial collateral ligament or combined medial collateral ligament/anterior cruciate ligament rupture were compared with matched controls 10 years after trauma. Weight-bearing radiographys and MR examinations were compared with proteoglycan fragment concentrations in the joint fluid. Results: The chemical analyses were similar in both trauma groups. The radiographs showed mild signs of arthrosis in half the patients with combined injury. MR images showed almost all injuried knees to have degenerative changes of various degrees in the cartilage and menisci. More frequent and more advanced changes were found after combined injury than after isolated injury (p<0.01). There were no changes in the controls. Conclusion: MR imaging is the best method for detecting and differentiating early posttraumatic knee arthrosis. (orig.)

  5. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year.

    Science.gov (United States)

    Siclari, Alberto; Mascaro, Gennaro; Gentili, Chiara; Cancedda, Ranieri; Boux, Eugenio

    2012-03-01

    Bone marrow stimulation techniques in cartilage repair such as drilling are limited by the formation of fibrous to hyaline-like repair tissue. It has been suggested such techniques can be enhanced by covering the defect with scaffolds. We present an innovative approach using a polyglycolic acid (PGA)-hyaluronan scaffold with platelet-rich-plasma (PRP) in drilling. We asked whether (1) PRP immersed in a cell-free PGA-hyaluronan scaffold improves patient-reported 1-year outcomes for the Knee injury and Osteoarthritis Score (KOOS), and (2) implantation of the scaffold in combination with bone marrow stimulation leads to the formation of hyaline-like cartilage repair tissue. We reviewed 52 patients who had arthroscopic implantation of the PGA-hyaluronan scaffold immersed with PRP in articular cartilage defects of the knee pretreated with Pridie drilling. Patients were assessed by KOOS. At 9 months followup, histologic staining was performed in specimens obtained from five patients to assess the repair tissue quality. The KOOS subscores improved for pain (55 to 91), symptoms (57 to 88), activities of daily living (69 to 86), sports and recreation (36 to 70), and quality of life (38 to 73). The histologic evaluation showed a homogeneous hyaline-like cartilage repair tissue. The cell-free PGA-hyaluronan scaffold combined with PRP leads to cartilage repair and improved patient-reported outcomes (KOOS) during 12 months of followup. Histologic sections showed morphologic features of hyaline-like repair tissue. Long-term followup is needed to determine if the cartilage repair tissue is durable. Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.

  6. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel.

    Science.gov (United States)

    Higa, Kotaro; Kitamura, Nobuto; Goto, Keiko; Kurokawa, Takayuki; Gong, Jian Ping; Kanaya, Fuminori; Yasuda, Kazunori

    2017-05-22

    There has been increased interest in one-step cell-free procedures to avoid the problems related to cell manipulation and its inherent disadvantages. We have studied the chondrogenic induction ability of a PAMPS/PDMAAm double-network (DN) gel and found it to induce chondrogenesis in animal osteochondral defect models. The purpose of this study was to investigate whether the healing process and the degree of cartilage regeneration induced by the cell-free method using DN gel are influenced by the size of osteochondral defects. A total of 63 mature female Japanese white rabbits were used in this study, randomly divided into 3 groups of 21 rabbits each. A 2.5-mm diameter osteochondral defect was created in the femoral trochlea of the patellofemoral joint of bilateral knees in Group I, a 4.3-mm osteochondral defect in Group II, and a 5.8-mm osteochondral defect in Group III. In the right knee of each animal, a DN gel plug was implanted so that a vacant space of 2-mm depth was left above the plug. In the left knee, we did not conduct any treatment to obtain control data. Animals were sacrificed at 2, 4, and 12 weeks after surgery, and gross and histological evaluations were made. The present study demonstrated that all sizes of the DN gel implanted defects as well as the 2.5mm untreated defects showed cartilage regeneration at 4 and 12 weeks. The 4.3-mm and 5.8-mm untreated defects did not show cartilage regeneration during the 12-week period. The quantitative score reported by O'Driscoll et al. was significantly higher in the 4.3-mm and 5.8-mm DN gel-implanted defects than the untreated defects at 4 and 12 weeks (p regeneration in defects between 2.5 and 5.8 mm, offering a promising device to establish a cell-free cartilage regeneration therapy and applicable to various sizes of osteochondral defects.

  7. Photodynamic damage to cartilage and synovial tissue grafted on a chick's chorioallantoic membrane

    Science.gov (United States)

    Fisher, M.; Nahir, A. M.; Kimel, Sol

    1997-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints causing pain deformities and disability. The highly vascular inflamed synovium has aggressive and destructive characteristics, it invades, erodes and gradually destroys cartilage and underlying bone. Photodynamic therapy (PDT) was performed using the chick chorioallantoic membrane (CAM) model to investigate the vitality of synovium and cartilage implanted on the CAM. Synovium, obtained from human patients, was grafted onto the CAM; gross microscopy and histology proved its vitality 7 days post grafting. Cartilage obtained from rabbit knee joint was also maintained on the CAM for 7 days. Its vitality was demonstrated by histology and by measuring metabolic and enzymatic activity of cartilage cells (chondrocytes) as well as the collagen and proteoglycans content. Selective PDT was performed using aluminum phthalocyanine tetrasulfonate (AlPcS4), a hydrophilic compound, soluble in biological solutions, as a photosensitizer. After irradiation with a diode laser (lambda equals 670 nm, 10 mW) damage was observed in vascularized synovium grafts, whereas avascular cartilage remained intact.

  8. A preclinical evaluation of an autologous living hyaline-like cartilaginous graft for articular cartilage repair: a pilot study.

    Science.gov (United States)

    Peck, Yvonne; He, Pengfei; Chilla, Geetha Soujanya V N; Poh, Chueh Loo; Wang, Dong-An

    2015-11-09

    In this pilot study, an autologous synthetic scaffold-free construct with hyaline quality, termed living hyaline cartilaginous graft (LhCG), was applied for treating cartilage lesions. Implantation of autologous LhCG was done at load-bearing regions of the knees in skeletally mature mini-pigs for 6 months. Over the course of this study, significant radiographical improvement in LhCG treated sites was observed via magnetic resonance imaging. Furthermore, macroscopic repair was effected by LhCG at endpoint. Microscopic inspection revealed that LhCG engraftment restored cartilage thickness, promoted integration with surrounding native cartilage, produced abundant cartilage-specific matrix molecules, and re-established an intact superficial tangential zone. Importantly, the repair efficacy of LhCG was quantitatively shown to be comparable to native, unaffected cartilage in terms of biochemical composition and biomechanical properties. There were no complications related to the donor site of cartilage biopsy. Collectively, these results imply that LhCG engraftment may be a viable approach for articular cartilage repair.

  9. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Directory of Open Access Journals (Sweden)

    Bo He

    Full Text Available Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  10. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    Science.gov (United States)

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  11. Quantitative T2 mapping evaluation for articular cartilage lesions in a rabbit model of anterior cruciate ligament transection osteoarthritis.

    Science.gov (United States)

    Wei, Zheng-mao; Du, Xiang-ke; Huo, Tian-long; Li, Xu-bin; Quan, Guang-nan; Li, Tian-ran; Cheng, Jin; Zhang, Wei-tao

    2012-03-01

    Quantitative T2 mapping has been a widely used method for the evaluation of pathological cartilage properties, and the histological assessment system of osteoarthritis in the rabbit has been published recently. The aim of the study was to investigate the effectiveness of quantitative T2 mapping evaluation for articular cartilage lesions of a rabbit model of anterior cruciate ligament transection (ACLT) osteoarthritis. Twenty New Zealand White (NZW) rabbits were divided into ACLT surgical group and sham operated group equally. The anterior cruciate ligaments of the rabbits in ACLT group were transected, while the joints were closed intactly in sham operated group. Magnetic resonance (MR) examinations were performed on 3.0T MR unit at week 0, week 6, and week 12. T2 values were computed on GE ADW4.3 workstation. All rabbits were killed at week 13, and left knees were stained with Haematoxylin and Eosin. Semiquantitative histological grading was obtained according to the osteoarthritis cartilage histopathology assessment system. Computerized image analysis was performed to quantitate the immunostained collagen type II. The average MR T2 value of whole left knee cartilage in ACLT surgical group ((29.05±12.01) ms) was significantly higher than that in sham operated group ((24.52±7.97) ms) (P=0.024) at week 6. The average T2 value increased to (32.18±12.79) ms in ACLT group at week 12, but remained near the baseline level ((27.66±8.08) ms) in the sham operated group (P=0.03). The cartilage lesion level of left knee in ACLT group was significantly increased at week 6 (P=0.005) and week 12 (PT2 values had positive correlation with histological grading scores, but inverse correlation with optical densities (OD) of type II collagen. This study demonstrated the reliability and practicability of quantitative T2 mapping for the cartilage injury of rabbit ACLT osteoarthritis model.

  12. 3T MRI of the knee with optimised isotropic 3D sequences. Accurate delineation of intra-articular pathology without prolonged acquisition times

    Energy Technology Data Exchange (ETDEWEB)

    Abdulaal, Osamah M.; Rainford, Louise; Galligan, Marie; McGee, Allison [University College Dublin, Radiography and Diagnostic Imaging, School of Medicine, Belfield, Dublin (Ireland); MacMahon, Peter; Kavanagh, Eoin [Mater Misericordiae University Hospital, Department of Radiology, Dublin (Ireland); University College Dublin, School of Medicine, Dublin (Ireland); Cashman, James [Mater Misericordiae University Hospital, Department of Orthopaedics, Dublin (Ireland); University College Dublin, School of Medicine, Dublin (Ireland)

    2017-11-15

    To investigate optimised isotropic 3D turbo spin echo (TSE) and gradient echo (GRE)-based pulse sequences for visualisation of articular cartilage lesions within the knee joint. Optimisation of experimental imaging sequences was completed using healthy volunteers (n=16) with a 3-Tesla (3T) MRI scanner. Imaging of patients with knee cartilage abnormalities (n=57) was then performed. Acquired sequences included 3D proton density-weighted (PDW) TSE (SPACE) with and without fat-suppression (FS), and T2*W GRE (TrueFISP) sequences, with acquisition times of 6:51, 6:32 and 5:35 min, respectively. One hundred sixty-one confirmed cartilage lesions were detected and categorised (Grade II n=90, Grade III n=71). The highest sensitivity and specificity for detecting cartilage lesions were obtained with TrueFISP with values of 84.7% and 92%, respectively. Cartilage SNR mean for PDW SPACE-FS was the highest at 72.2. TrueFISP attained the highest CNR means for joint fluid/cartilage (101.5) and joint fluid/ligament (156.5), and the lowest CNR for cartilage/meniscus (48.5). Significant differences were identified across the three sequences for all anatomical structures with respect to SNR and CNR findings (p-value <0.05). Isotropic TrueFISP at 3T, optimised for acquisition time, accurately detects cartilage defects, although it demonstrated the lowest contrast between cartilage and meniscus. (orig.)

  13. In situ measurements of human articular cartilage stiffness by means of a scanning force microscope

    International Nuclear Information System (INIS)

    Imer, Raphael; Akiyama, Terunobu; Rooij, Nico F de; Stolz, Martin; Aebi, Ueli; Kilger, Robert; Friederich, Niklaus F; Wirz, Dieter; Daniels, A U; Staufer, Urs

    2007-01-01

    Osteoarthritis is a painful and disabling progressive joint disease, characterized by degradation of articular cartilage. In order to study this disease at early stages, we have miniaturized and integrated a complete scanning force microscope into a standard arthroscopic device fitting through a standard orthopedic canula. This instrument will allow orthopedic surgeons to measure the mechanical properties of articular cartilage at the nanometer and micrometer scale in-vivo during a standard arthroscopy. An orthopedic surgeon assessed the handling of the instrument. First measurements of the elasticity-modulus of human cartilage were recorded in a cadaver knee non minimal invasive. Second, minimally invasive experiments were performed using arthroscopic instruments. Load-displacement curves were successfully recorded

  14. In situ measurements of human articular cartilage stiffness by means of a scanning force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Imer, Raphael [Institute of Microtechnology, University of Neuchatel, Jaquet-Droz 1, 2007 Neuchatel (Switzerland); Akiyama, Terunobu [Institute of Microtechnology, University of Neuchatel, Jaquet-Droz 1, 2007 Neuchatel (Switzerland); Rooij, Nico F de [Institute of Microtechnology, University of Neuchatel, Jaquet-Droz 1, 2007 Neuchatel (Switzerland); Stolz, Martin [Maurice E. Mueller Institute, University of Basel, Klingelbergstr. 70, 4056 Basel (Switzerland); Aebi, Ueli [Maurice E. Mueller Institute, University of Basel, Klingelbergstr. 70, 4056 Basel (Switzerland); Kilger, Robert [Clinics for Orthopedic Surgery and Traumatology, Kantonsspital, 4101 Bruderholz (Switzerland); Friederich, Niklaus F [Clinics for Orthopedic Surgery and Traumatology, Kantonsspital, 4101 Bruderholz (Switzerland); Wirz, Dieter [Lab. for Orthopaedic Biomechanics, University of Basel, Klingelbergstr. 50-70, 4056 Basel (Switzerland); Daniels, A U [Lab. for Orthopaedic Biomechanics, University of Basel, Klingelbergstr. 50-70, 4056 Basel (Switzerland); Staufer, Urs [Institute of Microtechnology, University of Neuchatel, Jaquet-Droz 1, 2007 Neuchatel (Switzerland)

    2007-03-15

    Osteoarthritis is a painful and disabling progressive joint disease, characterized by degradation of articular cartilage. In order to study this disease at early stages, we have miniaturized and integrated a complete scanning force microscope into a standard arthroscopic device fitting through a standard orthopedic canula. This instrument will allow orthopedic surgeons to measure the mechanical properties of articular cartilage at the nanometer and micrometer scale in-vivo during a standard arthroscopy. An orthopedic surgeon assessed the handling of the instrument. First measurements of the elasticity-modulus of human cartilage were recorded in a cadaver knee non minimal invasive. Second, minimally invasive experiments were performed using arthroscopic instruments. Load-displacement curves were successfully recorded.

  15. Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using magnetic resonance imaging.

    Science.gov (United States)

    Meredith, Dennis S; Losina, Elena; Neumann, Gesa; Yoshioka, Hiroshi; Lang, Philipp K; Katz, Jeffrey N

    2009-10-29

    In this cross-sectional study, we conducted a comprehensive assessment of all articular elements that could be measured using knee MRI. We assessed the association of pathological change in multiple articular structures involved in the pathoanatomy of osteoarthritis. Knee MRI scans from patients over 45 years old were assessed using a semi-quantitative knee MRI assessment form. The form included six distinct elements: cartilage, bone marrow lesions, osteophytes, subchondral sclerosis, joint effusion and synovitis. Each type of pathology was graded using an ordinal scale with a value of zero indicating no pathology and higher values indicating increasingly severe levels of pathology. The principal dependent variable for comparison was the mean cartilage disease score (CDS), which captured the aggregate extent of involvement of articular cartilage. The distribution of CDS was compared to the individual and cumulative distributions of each articular element using the Chi-squared test. The correlations between pathological change in the various articular structures were assessed in a Spearman correlation table. Data from 140 patients were available for review. The cohort had a median age of 61 years (range 45-89) and was 61% female. The cohort included a wide spectrum of OA severity. Our analysis showed a statistically significant trend towards pathological change involving more articular elements as CDS worsened (p-value for trend osteophytes (p-value for trend subchondral sclerosis (p = 0.009), but not joint effusion or synovitis. There was a moderate correlation between cartilage damage, osteophytes and BMLs as well as a moderate correlation between joint effusion and synovitis. However, cartilage damage and osteophytes were only weakly associated with synovitis or joint effusion. Our results support an inter-relationship of multiple articular elements in the pathoanatomy of knee OA. Prospective studies of OA pathogenesis in humans are needed to correlate these

  16. Comparison of T1rho imaging between spoiled gradient echo (SPGR) and balanced steady state free precession (b-FFE) sequence of knee cartilage at 3 T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Taiki; Kaneko, Yasuhito; Yu, Hon J. [Department of Radiological Sciences, University of California, Irvine, CA (United States); Kaneshiro, Kayleigh [School of Medicine, University of California, Irvine, CA (United States); Schwarzkopf, Ran [Department of Orthopaedic Surgery, University of California, Irvine, CA (United States); Yoshioka, Hiroshi, E-mail: hiroshi@uci.edu [Department of Radiological Sciences, University of California, Irvine, CA (United States)

    2015-07-15

    Highlights: • T1rho values on b-FFE tend to be higher than those on SPGR. • The reproducibility of T1rho cartilage segmentation is higher on SPGR than b-FFE. • There is angular variation of T1rho profiles. • Average T1rho values in the superficial layer are higher than in the deep layer. - Abstract: Purpose: To investigate the difference in T1rho profiles of the entire femoral cartilage between SPGR and b-FFE sequences at 3.0 T. Materials and methods: 20 healthy volunteers were enrolled in this study. T1rho images of each subject were acquired with two types of pulse sequences: SPGR and b-FFE. Femoral cartilage segmentation was performed by two independent raters slice-by-slice using Matlab. Inter- and intra-observer reproducibility between the two imaging protocols was calculated. The relative signal intensity (SI) of cartilage, subchondral bone marrow, joint effusion, and the relative signal contrast between structures of the knee were quantitatively measured. The difference in T1rho values between SPGR and b-FFE sequences was statistically analyzed using the Wilcoxon signed-rank test. Results: The average T1rho value of the entire femoral cartilage with b-FFE was significantly higher compared to SPGR (p < 0.05). The reproducibility of the segmented area and T1rho values was superior with SPGR compared to b-FFE. The inter-class correlation coefficient was 0.846 on SPGR and 0.824 on b-FFE. The intra-class correlation coefficient of T1rho values was 0.878 on SPGR and 0.836 on b-FFE. The two imaging techniques demonstrated different signal and contrast characteristics. The relative SI of fluid was significantly higher on SPGR, while the relative SI of subchondral bone was significantly higher on b-FFE (p < 0.001). There were also significant differences in the relative contrast between fluid–cartilage, fluid–subchondral bone, and cartilage–subchondral bone between the two sequences (all p < 0.001). Conclusion: We need to pay attention to differences in

  17. Relationship between the trochlear groove angle and patellar cartilage morphology defined by 3D spoiled gradient-echo imaging

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Yuko; Tokuda, Osamu; Matsunaga, Naofumi [Yamaguchi University Graduate School of Medicine, Department of Radiology, Yamaguchi (Japan); Fukuda, Kouji [Shunan Memorial Hospital, Division of Radiological Technology, Yamaguchi (Japan); Shiraishi, Gen; Motomura, Tetsuhisa [Shunan Memorial Hospital, Department of Orthopedics Surgery, Yamaguchi (Japan); Kimura, Motoichi [Customer Application Gr., GE Healthcare MR Sales and Marketing Department, Osaka (Japan)

    2012-05-15

    To examine whether the femoral trochlear groove angle (TGA) is a determinant of the patellar cartilage volume and patellar cartilage damage. Patellar cartilage was evaluated by MR imaging in 66 patients (22 males and 44 females) with knee pain. Fat-suppressed 3D spoiled gradient-echo images were used to calculate the cartilage volume and to grade the cartilage damage. The proximal and distal TGAs were measured from axial PD-weighted FSE MR images with fat suppression. For every increase in the TGA at the distal femur, the patellar cartilage volume was significantly increased by 6.07 x 10{sup -3} cm{sup 3} (95% CI: 1.27 x 10{sup -3}, 10.9 x 10{sup -3}) after adjustment for age, gender, and patellar bone volume (P < 0.05). The MR grade of medial patellar cartilage damage progressed as the distal TGA became narrower, although there was no significant correlation between the distal TGA and the MR grading of patellar cartilage damage. A more flattened distal TGA was associated with increased patellar cartilage volume. However, there was no association between TGA and patellar cartilage defects. (orig.)

  18. Integrative Approach in Haemophillic Arthropathy of The Knee: a Case Report

    Directory of Open Access Journals (Sweden)

    Andri Maruli T Lubis

    2016-05-01

    Full Text Available Haemophilic arthropathy is the most prevalent joint disorder in haemophilia. This disorder is characterized by chronic synovitis and progressive destruction of joint cartilage. We report a case of arthroscopic synovectomy to reduce bleeding frequency in haemophilic arthropathy of the knee. Patient was a 15 years old male with haemophilic arthropathy of the left knee. We performed an arthroscopic synovectomy under tightly regulated factor VIII replacement therapy. There were villous synovial hypertrophy at all part of the joint, multiple bone and cartilage defect, and also anterior cruciate ligament (ACL and posterior cruciate ligament (PCL deficiency found intraoperatively. After 6 month follow up, subjective complain and bleeding frequency decreased significantly. The visual analog scale improved from 5-6 to 1-2, and the International Knee Documentation Committee Score increased from 49 to 66. Bleeding frequency decreased from 4-8 times per month to less than 1 time per month. Arthroscopic synovectomy performed in this case could reduce the pain, decrease the frequency of bleeding, and improve patient’s functional outcome. Key words: arthroscopic synovectomy, haemophilic arthropathy, haemophilia, anterior cruciate ligament, posterior cruciate ligament.

  19. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage

    International Nuclear Information System (INIS)

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S.

    2016-01-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, P<0.05) with the longest time at the central area. Positive correlation was seen between mean T2 relaxation time and morphological grading (Pearson correlation coefficiency, P<0.001). T2 increased with severity of morphological grading from 0 to 3 (mixed model, P<0.001), but no statistical difference was seen between grades 3 and 4. In patellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage. (orig.)

  20. Evaluation of articular cartilage degeneration with contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Fujioka, Mikihiro

    1994-01-01

    The evaluation of glycosaminoglycan (GAG) concentration is important in the clinical diagnosis of articular cartilage degeneration. Glycosaminoglycan provides a large number of fixed negative charges. When manganese ion (Mn 2+ ) is administered to the cartilage matrix, this cation diffuses into the matrix and accumulates in accordance with the distribution of fixed negative charges owing to the electrostatic interaction. The accumulation of Mn 2+ causes a shortening of the relaxation times, resulting in high signal intensity in the MR image, when a T 1 -weighted image is obtained. The present study applied this new method to the articular cartilage to evaluate the degree of the cartilage degeneration. Small pieces of articular cartilage were dissected from the knee joints of young chickens. Experimentally degenerated articular cartilage was obtained by treating the specimen with various concentrations of papain solution. Then specimens were soaked in manganese solution until they obtained equilibrium and served for MR microimaging. The fixed charge density (FCD), the concentration of Mn 2+ and Na + , T 1 and T 2 relaxation times were also measured. In degenerated cartilage, lower accumulation of Mn 2+ due to lower GAG density caused a lower than normal signal intensity. Thus, administration of Mn 2+ enhances the biochemical change in the cartilage matrix in terms of differences in the relaxation time. The actual signal intensity on MRI of each specimen corresponded to the theoretical signal intensity, which was calculated from the FCD. It was concluded that MR images taken with contrast enhancement by Mn 2+ give direct visual information about the GAG density in the articular cartilage. MRI with cationic contrast agent could develop into a new method for early non-invasive diagnosis of cartilage dysfunction and degeneration. (author)