WorldWideScience

Sample records for canine kidney cells

  1. Cyclooxygenase expression in canine platelets and Madin-Darby canine kidney cells.

    Science.gov (United States)

    Kay-Mugford, P A; Benn, S J; LaMarre, J; Conlon, P D

    2000-12-01

    To examine cyclooxygenase (COX) expression in canine platelets and Madin-Darby canine kidney (MDCK) cells in culture. Canine platelets and MDCK cells. Total RNA was recovered from isolated canine platelets and MDCK cells. Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR), using complementary DNA probes and primers designed from the human COX sequences, were used to determine COX-1 and -2 (cyclooxygenase isoforms 1 and 2) messenger RNA (mRNA) expression. Following northern blot analysis, canine platelets were found to express only the 2.8-kb COX-1 transcript; COX-2 was not detected. Canine MDCK cells expressed the 4.5-kb COX-2 transcript, in addition to the 2.8-kb COX-1 transcript. A single DNA band of 270 base pairs was identified following gel electrophoresis of the product obtained from RT-PCR of mRNA from canine platelets. Sequencing revealed that this PCR product was 90% homologous to a portion of the human COX-1 gene (Genbank M59979). Detection of COX-1 by RT-PCR of RNA obtained from canine platelets is a novel finding. The 90% homology of the PCR product with the human sequence suggests strong conservation between the canine and human COX-1 gene. Cloning and sequencing of the canine gene will be required to fully characterize homologous regions. Because of the importance of COX in the inflammatory process and as a potential target of currently available nonsteroidal anti-inflammatory drugs (NSAID), a better understanding of canine COX may improve our ability to use NSAID appropriately, achieve efficacy, and avoid potential adverse drug effects in dogs.

  2. Characterization of a Madin-Darby canine kidney cell line stably expressing TRPV5.

    NARCIS (Netherlands)

    Dekker, E. den; Schoeber, J.P.H.; Topala, C.N.; Graaf, S.F.J. van de; Hoenderop, J.G.J.; Bindels, R.J.M.

    2005-01-01

    To provide a cell model for studying specifically the regulation of Ca2+ entry by the epithelial calcium channel transient receptor potential-vanilloid-5 (TRPV5), green fluorescent protein (GFP)-tagged TRPV5 was expressed stably in Madin-Darby canine kidney type I (MDCK) cells. The localization of

  3. Changes in ceramide metabolism are essential in Madin-Darby canine kidney cell differentiation.

    Science.gov (United States)

    Pescio, Lucila Gisele; Santacreu, Bruno Jaime; Lopez, Vanina Gisela; Paván, Carlos Humberto; Romero, Daniela Judith; Favale, Nicolás Octavio; Sterin-Speziale, Norma Beatriz

    2017-07-01

    Ceramides (Cers) and complex sphingolipids with defined acyl chain lengths play important roles in numerous cell processes. Six Cer synthase (CerS) isoenzymes (CerS1-6) are the key enzymes responsible for the production of the diversity of molecular species. In this study, we investigated the changes in sphingolipid metabolism during the differentiation of Madin-Darby canine kidney (MDCK) cells. By MALDI TOF TOF MS, we analyzed the molecular species of Cer, glucosylceramide (GlcCer), lactosylceramide (LacCer), and SM in nondifferentiated and differentiated cells (cultured under hypertonicity). The molecular species detected were the same, but cells subjected to hypertonicity presented higher levels of C24:1 Cer, C24:1 GlcCer, C24:1 SM, and C16:0 LacCer. Consistently with the molecular species, MDCK cells expressed CerS2, CerS4, and CerS6, but with no differences during cell differentiation. We next evaluated the different synthesis pathways with sphingolipid inhibitors and found that cells subjected to hypertonicity in the presence of amitriptyline, an inhibitor of acid sphingomyelinase, showed decreased radiolabeled incorporation in LacCer and cells did not develop a mature apical membrane. These results suggest that hypertonicity induces the endolysosomal degradation of SM, generating the Cer used as substrate for the synthesis of specific molecular species of glycosphingolipids that are essential for MDCK cell differentiation. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Pretranslational regulation of Na-K-ATPase in cultured canine kidney cells by low K

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, J.W.; McDonough, A.

    1987-02-01

    Long-term upregulation of the sodium pump (Na-K-adenosine triphosphatase (Na-K-ATPase)) entails an increase in the number of enzyme molecules. The authors incubated Madin-Darby canine kidney (MDCK) cells in low K medium and studied the time course and magnitude of change in the relative abundance of the two Na-K-ATPase subunits ( and US ), in the synthesis rate of the subunits, and in the relative abundance of - and US -mRNA. When cells were incubated in medium containing 0.25 mM K , intracellular Na increased. The relative abundance of Na-K-ATPase subunits, measured with ( SVI)-labelled immunoblots of cell homogenates, increases such that after 24 h was 1.71 +/- 0.33 and US was 1.67 +/- 0.22 times control. After 8 h of K depletion, -synthesis rate, measured by immunoprecipitation of pulse-labelled cells, increased to 2.30 +/- 0.50 and beta increased to 2.07 +/- 0.42 times control. The - and US -subunit mRNA abundance, measured by hybridizing - and US -cDNA probes to total RNA, increased within 30 min to 1.93 +/- 0.24 and 2.29 +/- 0.64 times control, respectively. They conclude that regulatory adjustments of Na-K-ATPase abundance involve an increase in translation after a rapid and coordinate increase in the concentrations of - and US -subunit mRNA.

  5. Transepithelial transport of aliphatic carboxylic acids studied in Madin Darby canine kidney (MDCK) cell monolayers

    International Nuclear Information System (INIS)

    Cho, M.J.; Adson, A.; Kezdy, F.J.

    1990-01-01

    Transport of 14C-labeled acetic, propionic (PA), butyric, valeric, heptanoic (HA), and octanoic (OA) acids across the Madin Darby canine kidney (MDCK) epithelial cell monolayer grown on a porous polycarbonate membrane was studied in Hanks' balanced salt solution (HBSS) at 37 degrees C in both apical-to-basolateral and basolateral-to-apical directions. At micromolar concentrations of solutes, metabolic decomposition was significant as evidenced by [14C]CO2 production during the OA transport. The apparent permeability (Pe) indicates that as lipophilicity increases, diffusion across the unstirred boundary layer becomes rate limiting. In support of this notion, transport of OA and HA was enhanced by agitation, showed an activation energy of 3.7 kcal/mol for OA, and resulted in identical Pe values for both transport directions. Analysis of Pe changes with varying alkyl chain length resulted in a delta G of -0.68 +/- 0.09 kcal/mol for -CH2-group transfer from an aqueous phase to the MDCK cells. When the intercellular tight junctions were opened by the divalent chelator EGTA in Ca2+/Mg2(+)-free HBSS, transport of the fluid-phase marker Lucifer yellow greatly increased because of paracellular leakage. PA transport also showed a significant increase, but OA transport was independent of EGTA. Although albumin also undergoes paracellular transport in the presence of EGTA and OA binds strongly to albumin, OA transport in EGTA solution was unchanged by albumin. These observations indicate that transmembrane transport is the major mechanism for lipophilic substances. The present study, together with earlier work on the transport of polar substances, shows that the MDCK cell monolayer is an excellent model of the transepithelial transport barrier

  6. Failure-to-thrive syndrome associated with tumor formation by Madin-Darby canine kidney cells in newborn nude mice.

    Science.gov (United States)

    Brinster, Lauren R; Omeir, Romelda L; Foseh, Gideon S; Macauley, Juliete N; Snoy, Philip J; Beren, Joel J; Teferedegne, Belete; Peden, Keith; Lewis, Andrew M

    2013-08-01

    Tumors that formed in newborn nude mice that were inoculated with 10(7) Madin-Darby canine kidney (MDCK) cells were associated with a failure-to-thrive (FTT) syndrome consisting of growth retardation, lethargy, weakness, and dehydration. Scoliosis developed in 41% of affected pups. Pups were symptomatic by week 2; severely affected pups became moribund and required euthanasia within 3 to 4 wk. Mice with FTT were classified into categories of mild, moderate, and severe disease by comparing their weight with that of age-matched normal nude mice. The MDCK-induced tumors were adenocarcinomas that invaded adjacent muscle, connective tissue, and bone; 6 of the 26 pups examined had lung metastases. The induction of FTT did not correlate with cell-line aggressiveness as estimated by histopathology or the efficiency of tumor formation (tumor-forming dose 50% endpoint range = 10(2.8) to 10(7.5)); however, tumor invasion of the paravertebral muscles likely contributed to the scoliosis noted. In contrast to the effect of MDCK cells, tumor formation observed in newborn mice inoculated with highly tumorigenic, human-tumor-derived cell lines was not associated with FTT development. We suggest that tumor formation and FTT are characteristics of these MDCK cell inocula and that FTT represents a new syndrome that may be similar to the cachexia that develops in humans with cancer or other diseases.

  7. Expression Profile of Drug and Nutrient Absorption Related Genes in Madin-Darby Canine Kidney (MDCK Cells Grown under Differentiation Conditions

    Directory of Open Access Journals (Sweden)

    Balvinder S. Vig

    2012-06-01

    Full Text Available The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days or on Transwell® membranes (for 3, 5, 7, and 9 days. The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2 genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05 between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.

  8. Radioresistant canine hematopoietic cells

    International Nuclear Information System (INIS)

    Kawakami, T.G.; Shimizu, J.; Rosenblatt, L.S.; Goldman, M.

    1987-01-01

    Survival of dogs that are continuously exposed to a moderate dose-rate of gamma radiation (10 cGy/day) is dependent on the age of the dog at the time of exposure. Most dogs exposed postpartum to gamma radiation suffered from suppressed hematopoiesis and died of aplasia. On the other hand, none of the in utero-exposed dogs suffered from suppressed hematopoiesis and most became long-term survivors, tolerating 10-fold greater total dose, but dying of myeloproliferative disease (MPD). Using acute gamma irradiation of hematopoietic cells and colony forming unit cell assay (CFU), they observed that a canine hematopoietic cell line established from a myeloid leukemic dog that was a long-term survivor of continuous irradiation was approximately 4-fold more radioresistant than a hematopoietic cell line established from a dog with nonradiation-induced myeloid leukemia or hematopoietic cells from normal canine bone marrow. In utero dogs that are long-term survivors of continuous irradiation have radioresistant hematopoietic cells, and radioresistance that is a constitutive property of the cells

  9. Inhibitory actions by ibandronate sodium, a nitrogen-containing bisphosphonate, on calcium-activated potassium channels in Madin–Darby canine kidney cells

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2015-01-01

    Full Text Available The nitrogen-containing bisphosphonates used for management of the patients with osteoporosis were reported to influence the function of renal tubular cells. However, how nitrogen-containing bisphosphates exert any effects on ion currents remains controversial. The effects of ibandronate (Iban, a nitrogen-containing bisphosphonate, on ionic channels, including two types of Ca2+-activated K+ (KCa channels, namely, large-conductance KCa (BKCa and intermediate-conductance KCa (IKCa channels, were investigated in Madin–Darby canine kidney (MDCK cells. In whole-cell current recordings, Iban suppressed the amplitude of voltage-gated K+ current elicited by long ramp pulse. Addition of Iban caused a reduction of BKCa channels accompanied by a right shift in the activation curve of BKCa channels, despite no change in single-channel conductance. Ca2+ sensitivity of these channels was modified in the presence of this compound; however, the magnitude of Iban-mediated decrease in BKCa-channel activity under membrane stretch with different negative pressure remained unchanged. Iban suppressed the probability of BKCa-channel openings linked primarily to a shortening in the slow component of mean open time in these channels. The dissociation constant needed for Iban-mediated suppression of mean open time in MDCK cells was 12.2 μM. Additionally, cell exposure to Iban suppressed the activity of IKCa channels, and DC-EBIO or 9-phenanthrol effectively reversed its suppression. Under current-clamp configuration, Iban depolarized the cells and DC-EBIO or PF573228 reversed its depolarizing effect. Taken together, the inhibitory action of Iban on KCa-channel activity may contribute to the underlying mechanism of pharmacological or toxicological actions of Iban and its structurally similar bisphosphonates on renal tubular cells occurring in vivo.

  10. The Madin-Darby canine kidney cell culture derived influenza A/H5N1 vaccine: a phase I trial in Taiwan.

    Science.gov (United States)

    Pan, Sung-Ching; Kung, Hsiang-Chi; Kao, Tsui-Mai; Wu, Hsio; Dong, Shao-Xing; Hu, Mei-Hua; Chou, Ai-Hsiang; Chong, Pele; Hsieh, Szu-Min; Chang, Shan-Chwen

    2013-12-01

    Avian H5N1 influenza has caused human infections globally and has a high mortality rate. Rapid production of effective vaccines is needed. A phase 1, randomized, observer-blinded clinical trial was conducted to examine the safety and immunogenicity of an inactivated whole virion vaccine against the influenza A/H5N1 virus produced from the Madin-Darby canine kidney (MDCK) cell line. Participants were randomized to four groups and administered two intramuscular doses of vaccine containing 3 μg hemagglutinin (HA), 3 μg HA with 300 μg aluminum phosphate (AlPO4), 6 μg HA, and 6 μg HA with 300 μg AlPO4, respectively, at two visits, 21 days apart. Serum hemagglutination inhibition (HAI) and neutralizing antibody levels were determined at baseline and on Days 21 and 42. Sixty healthy individuals were enrolled. The neutralization assay showed a significant immune response in the 6 μg with ALPO4 group on Day 42 compared to pre-vaccination levels (11.32±9.77 vs. 4.00±0, p=0.02). The adjuvant effect in neutralization assay was also significant on Day 42 in the 6 μg group (4.52±1.94 without adjuvant vs. 11.32±9.77 with adjuvant, p=0.02). HAI assay also showed an aluminum adjuvant-induced increasing trend in HAI geometric mean titer on Day 42 in the 3 μg and 6 μg groups (6.02 versus 8.20, p=0.05 and 5.74 versus 8.21, p=0.14). The most frequent adverse event was local pain (20% to 60%). There were no vaccine-related severe adverse effects. MDCK cell line-derived H5N1 vaccine was well tolerated. It is necessary to investigate further the immunogenicity of higher antigen doses and the role of aluminum adjuvant in augmenting the effect of the vaccine. Copyright © 2012. Published by Elsevier B.V.

  11. Compartmentalization of prostaglandins in the canine kidney

    International Nuclear Information System (INIS)

    Morgan-Boyd, R.L.

    1986-01-01

    The kidney has been shown to synthesize all of the naturally occurring major prostaglandins which may be restricted to a discrete part of the kidney where their actions are physiologically important, such as the vascular compartment and the tubular compartment. In order to examine this concept of compartmentalization, the authors conducted a series of experiments to determine whether PGl 2 , measured as 6-keto-pGF/sub 1α/, produced in the kidney is restricted to the renal vascular compartment or whether it also has access to the tubular compartment. Experiments were performed in the pentobarbital-anesthetized dog. Increasing pre-glomerular levels of 6-keto-PFG/sub 1α/ caused marked increases in both the urinary excretion and the renal venous outflow to 6-keto-PGF/sub 1α/. When 3 H-6-keto-PGF/sub 1α/ was co-infused with inulin into the renal artery, 33% of the radioactivity and 23% of the inulin was recovered on first pass. With infusion of 3 H-PGl 2 and inulin, 20% of the radioactivity and 28% of the inulin reached the urine on first pass. Radioactive PGl 2 appeared to be less filterable at the glomeruli than either 3 H-6-keto-PGF/sub 1α/ or inulin. In the final set of experiments, in which dogs were prepared for a ureteral stopped-flow study, the PGE 2 /U/P/sub In/ ratio a peak was observed proximal to the Na + plateau but distal to the Na+ nadir. In light of the results from the stopped-flow study and the intrarenal infusion studies, they conclude that PGE 2 synthesized in the kidney enters both the renal and tubular compartments. In contrast, they find that 6-keto-PGF/sub 1α/ of renal origin enters only the renal origin enters only the renal vascular compartment and not the tubular compartment

  12. Alpha 1-adrenergic receptor-mediated phosphoinositide hydrolysis and prostaglandin E2 formation in Madin-Darby canine kidney cells. Possible parallel activation of phospholipase C and phospholipase A2

    International Nuclear Information System (INIS)

    Slivka, S.R.; Insel, P.A.

    1987-01-01

    alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2

  13. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    Science.gov (United States)

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  14. Platelets Inhibit Migration of Canine Osteosarcoma Cells.

    Science.gov (United States)

    Bulla, S C; Badial, P R; Silva, R C; Lunsford, K; Bulla, C

    2017-01-01

    The interaction between platelets and tumour cells is important for tumour growth and metastasis. Thrombocytopenia or antiplatelet treatment negatively impact on cancer metastasis, demonstrating potentially important roles for platelets in tumour progression. To our knowledge, there is no information regarding the role of platelets in cancer progression in dogs. This study was designed to test whether canine platelets affected the migratory behaviour of three canine osteosarcoma cell lines and to give insights of molecular mechanisms. Intact platelets, platelet lysate and platelet releasate inhibited the migration of canine osteosarcoma cell lines. Addition of blood leucocytes to the platelet samples did not alter the inhibitory effect on migration. Platelet treatment also significantly downregulated the transcriptional levels of SNAI2 and TWIST1 genes. The interaction between canine platelets or molecules released during platelet activation and these tumour cell lines inhibits their migration, which suggests that canine platelets might antagonize metastasis of canine osteosarcoma. This effect is probably due to, at least in part, downregulation of genes related to epithelial-mesenchymal transition. Copyright © 2016. Published by Elsevier Ltd.

  15. Echobiometrics kidney and renal artery triplex doppler of canine fetuses

    Directory of Open Access Journals (Sweden)

    M.A.R. Feliciano

    2014-04-01

    Full Text Available The aim of this study was to assess the sogographic parameters and biometry of canine fetal kidneys using the B mode, and to determinate the vascular index of the fetal renal arteries using the Doppler Triplex. Twenty four Shi-tzu and Pug, weighting between 4 and 10kg, aging between 4 and 6 years old were evaluated. The B mode, the fetal renal echobiometry and regularity of the renal surface, echotexture and cortex:medular ratio were evaluated during the 5th, 6th, 7th and 8th weeks of pregnancy. At the same time point of the B mode evaluation, the Doppler Triplex was carried out to assess the sistolic peak velocity (SPV, end diastolic velocity (EDV, vascular resistive (RI and pulsatility index (PI. B mode revealed no fetal renal abnormalities and echobiometry showed important measurements during fetal development (P0.05. B mode and Doppler Triplex were important tools for the assessment of fetal renal development, using echobiometry and renal arterial index in canie fetuses.

  16. The Use of Orthogonal Polarizations in Microwave Imagery of Isolated Canine Kidney

    Science.gov (United States)

    Larsen, L. E.; Jacobi, J. H.

    1980-06-01

    A method of imaging biological targets using microwave radiation at a frequency of 4 GHz is presented. Linearly polarized radiation is transmitted through an isolated canine kidney and received with co-polarized and cross-polarized antennas. Images are displayed as the spatial variation of the magnitude of the transmission scattering parameter S21 for each mode of polarization. The relationship between the spatial variation of the magnitude of S21 and canine renal anatomy is discussed. It is shown that within the kidney the cross-polarized image tends to emphasize linear or piecewise linear structures, whereas the co-polarized image balances renal cortical lobulations.

  17. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production

    OpenAIRE

    Nuno Carinhas; Daniel A. M. Pais; Alexey Koshkin; Paulo Fernandes; Ana S. Coroadinha; Manuel J. T. Carrondo; Paula M. Alves; Ana P. Teixeira

    2016-01-01

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-13C]glucose and [U-13C]glutamine, we apply for the first time 13C-Metabolic flux analysis (13C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells meta...

  18. Urine neutrophil gelatinase-associated lipocalin (NGAL as a biomarker for acute canine kidney injury

    Directory of Open Access Journals (Sweden)

    Lee Ya-Jane

    2012-12-01

    Full Text Available Abstract Background Biomarkers for the early prediction of canine acute kidney injury (AKI are clinically important. Recently, neutrophil gelatinase-associated lipocalin (NGAL was found to be a sensitive biomarker for the prediction of human AKI at a very early stage and the development of AKI after surgery. However, NGAL has not yet been studied with respect to dog kidney diseases. The application of NGAL canine AKI was investigated in this study. Results The canine NGAL gene was successfully cloned and expressed. Polyclonal antibodies against canine NGAL were generated and used to develop an ELISA for measuring NGAL protein in serum and urine samples that were collected from 39 dogs at different time points after surgery. AKI was defined by the standard method, namely a serum creatinine increase of greater than or equal to 26.5 μmol/L from baseline within 48 h. At 12 h after surgery, compared to the group without AKI (12 dogs, the NGAL level in the urine of seven dogs with AKI was significantly increased (median 178.4 pg/mL vs. 88.0 pg/mL, and this difference was sustained to 72 h. Conclusion As the increase in NGAL occurred much earlier than the increase in serum creatinine, urine NGAL seems to be able to serve as a sensitive and specific biomarker for the prediction of AKI in dogs.

  19. Histologic features of harvested canine kidneys preserved in four ...

    African Journals Online (AJOL)

    Endless efforts are required in the investigation of the best organ preservative. Normal Saline, 5% dextrose, Darrows and Ringers' Lactate were used as preservatives with the view to investigate the prospect of kidney survival in these solutions post harvest at the Veterinary Teaching Hospital, Ahmadu Bello University-Zaria.

  20. Kidney (Renal Cell) Cancer—Patient Version

    Science.gov (United States)

    Kidney cancer can develop in adults and children. The main types of kidney cancer are renal cell cancer, transitional cell cancer, and Wilms tumor. Certain inherited conditions increase the risk of kidney cancer. Start here to find information on kidney cancer treatment, research, and statistics.

  1. Attenuation changes of the normal and ischemic canine kidney

    International Nuclear Information System (INIS)

    Jaschke, W.; Lipton, M.J.; Boyd, D.P.; Cann, C.; Strauss, L.; Sievers, R.S.; California Univ., San Francisco

    1985-01-01

    The potential of CT scanning to explore total and regional renal blood flow was evaluated in a dog model with unilateral renal artery stenosis (n=7, reduction of renal blood flow: 32-75% of base line flow). Attenuation versus time curves were generated for the renal cortex and medulla, as well as for the aorta and renal vein. A fast CT scanner was used which allowed for up to 24 scans/minute at the same level (slice thickness: 10 mm). A total of 10 ml contrast medim was injected into a peripheral vein for each scan series taken. During baseline conditions, the curve of the renal cortex and medulla demonstrated 2 peaks. The first peak was mainly related to early vascular enhancement, whereas the second peak corresponded mainly to the appearance of contrast medium in the distal convolutes and collecting ducts. Ischemia of the kidney resulted in a reduction of the first peak and a flattening of the leading edge slope. Transport of contrast medium through the extravascular compartments of the kidney was delayed during ischemia. Relative renal blood flow was obtained from the CT data by dividing peak enhancement by rise-time as assessed from the cortical curve. All measurements were related to baseline flow and validated by flow measurements using radioactive labeled microspheres (n=5). Correlation was found to be r=0.97. (orig.)

  2. Drugs Approved for Kidney (Renal Cell) Cancer

    Science.gov (United States)

    ... Your Treatment Research Drugs Approved for Kidney (Renal Cell) Cancer This page lists cancer drugs approved by the ... not listed here. Drugs Approved for Kidney (Renal Cell) Cancer Afinitor (Everolimus) Aldesleukin Avastin (Bevacizumab) Axitinib Bevacizumab Cabometyx ( ...

  3. Nuclear Glycogen Inclusions in Canine Parietal Cells.

    Science.gov (United States)

    Silvestri, S; Lepri, E; Dall'Aglio, C; Marchesi, M C; Vitellozzi, G

    2017-05-01

    Nuclear glycogen inclusions occur infrequently in pathologic conditions but also in normal human and animal tissues. Their function or significance is unclear. To the best of the authors' knowledge, no reports of nuclear glycogen inclusions in canine parietal cells exist. After initial observations of nuclear inclusions/pseudoinclusions during routine histopathology, the authors retrospectively examined samples of gastric mucosa from dogs presenting with gastrointestinal signs for the presence of intranuclear inclusions/pseudoinclusions and determined their composition using histologic and electron-microscopic methods. In 24 of 108 cases (22%), the authors observed various numbers of intranuclear inclusions/pseudoinclusions within scattered parietal cells. Nuclei were characterized by marked karyomegaly and chromatin margination around a central optically empty or slightly eosinophilic area. The intranuclear inclusions/pseudoinclusions stained positive with periodic acid-Schiff (PAS) and were diastase sensitive, consistent with glycogen. Several PAS-positive/diastase-sensitive sections were further examined by transmission electron microscopy, also using periodic acid-thiocarbohydrazide-silver proteinate (PA-TCH-SP) staining to identify polysaccharides. Ultrastructurally, the nuclear inclusions were composed of electron-dense particles that were not membrane bound, without evidence of nuclear membrane invaginations or cytoplasmic organelles in the nuclei, and positive staining with PA-TCH-SP, confirming a glycogen composition. No cytoplasmic glycogen deposits were observed, suggesting that the intranuclear glycogen inclusions were probably synthesized in loco. Nuclear glycogen inclusions were not associated with gastritis or colonization by Helicobacter-like organisms ( P > .05). Our findings suggest that nuclear glycogen inclusions in canine parietal cells could be an incidental finding. Nevertheless, since nuclear glycogen is present in several pathologic

  4. Elastography of the normal canine liver, spleen and kidneys.

    Science.gov (United States)

    Holdsworth, Andrew; Bradley, Kate; Birch, Sally; Browne, William J; Barberet, Virginie

    2014-01-01

    Elastography is a simple, expedient and noninvasive technique that may be used to assess the elasticity or stiffness of a tissue, in conjunction with traditional B-mode ultrasonography. Quantitative assessment of tissue stiffness can be made which involves measurement of the shear wave velocity within the tissue of interest. The goal of this study was to assess the feasibility of elastography for clinical use in the abdomen of conscious small animals and to investigate factors that affect shear wave velocity measurement. Elastography was performed on the liver, spleen, and kidneys of 15 dogs at predefined depths within the parenchyma. Breed, age, gender, neuter status, and weight were documented for each animal. Depth at which measurements were taken had a significant negative relationship with the shear wave velocity value obtained. Individual dog effects, such as weight and gender, also appeared to have a significant effect on the shear wave velocity measurement for specific organs; weight had a significant positive effect on the shear wave velocity for each of the organs examined, whereas the effect of gender was inconsistent between organs (having a positive effect for the liver and a negative effect for the spleen). It is hoped that these results may act as a baseline to guide further work into the field of elastography in companion animals. © 2014 American College of Veterinary Radiology.

  5. Functional and morphologic damage in the neonatally irradiated canine kidney

    International Nuclear Information System (INIS)

    Peneyra, R.S.; Jaenke, R.S.

    1985-01-01

    Perinatal irradiation of the developing kidney results in progressive glomerulosclerosis (PGS) and renal failure. This syndrome may result from direct radiation damage to mature deep cortical nephrons and/or nephron functional adaptations resulting from outer cortical nephron ablation. Beagle dogs received single, whole-body exposures (330 R) to 60 Co gamma radiation at 4 days of age (IR4) to study the combined effects of direct radiation damage and nephron loss, or at 30 days of age (IR30) to study the effects of renal irradiation alone. To study the effects of nephron loss alone, dogs underwent unilateral nephrectomy (UN4) or superficial hyperthermic renal ablation (HY4) at 4 days of age. Nephron loss due to irradiation (IR4) and partial renal ablation (UN4 and HY4) was associated with compensatory nephron hypertrophy and increased single nephron glomerular filtration rate (SNGFR), while irradiation at 30 days resulted in transitory decreased SNGFR. Similar degrees of PGS occurred in IR4 dogs which experienced both irradiation and loss of nephrons and UN4 and HY4 dogs which experienced only loss of nephrons. PGS of lesser severity also occurred in IR30 dogs. These findings indicate that PGS associated with perinatal renal irradiation results from direct radiation damage to deep cortical nephrons and compensatory functional changes occurring in response to loss of renal mass

  6. Genomic instability and telomere fusion of canine osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Junko Maeda

    Full Text Available Canine osteosarcoma (OSA is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA.

  7. Myogenic potential of canine craniofacial satellite cells

    Directory of Open Access Journals (Sweden)

    Rita Maria Laura La Rovere

    2014-05-01

    Full Text Available The skeletal fibres have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterise also the adult muscle stem cells, known as satellite cells (SCs and responsible for the fibre growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here we isolated SCs from canine somitic (SDM: vastus lateralis, rectus abdominus, gluteus superficialis, biceps femoris, psoas and presomitic (PSDM: lateral rectus, temporalis and retractor bulbi muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM satellite cells were obtained also from Golden retrievers affected by muscular dystrophy (GRMD. We characterised the lifespan, the myogenic potential and functions and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with ageing and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD and late (MyHC, Myogenin myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD satellite cells and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches.

  8. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    Science.gov (United States)

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. © 2016 The Histochemical Society.

  9. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    Science.gov (United States)

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. PMab-38 Recognizes Canine Podoplanin of Squamous Cell Carcinomas.

    Science.gov (United States)

    Kaneko, Mika K; Honma, Ryusuke; Ogasawara, Satoshi; Fujii, Yuki; Nakamura, Takuro; Saidoh, Noriko; Takagi, Michiaki; Kagawa, Yumiko; Konnai, Satoru; Kato, Yukinari

    2016-10-01

    Podoplanin, a type I transmembrane protein, is expressed in lymphatic endothelial cells. Although we previously developed an anticanine podoplanin monoclonal antibody (mAb), PMab-38, immunohistochemistry (IHC) showed that it did not react with canine lymphatic endothelial cells. Here, we determined whether PMab-38 recognizes canine podoplanin of squamous cell carcinomas (SCCs) and clarified its epitope. In IHC, PMab-38 reacted with 83% of SCCs (15/18 cases). Flow cytometry showed that the epitope of PMab-38 was different from that of the platelet aggregation-stimulating domain of the N-terminus, which was detected by almost all antipodoplanin mAbs such as D2-40 or NZ-1. PMab-38 is expected to be useful for investigating the function of podoplanin in canine tumors.

  11. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine

    Directory of Open Access Journals (Sweden)

    Jonna Nykky

    2010-06-01

    Full Text Available Jonna Nykky, Jenni E Tuusa, Sanna Kirjavainen, Matti Vuento, Leona GilbertNanoscience Center and Department of Biological and Environmental Science, University of Jyväskylä, FinlandAbstract: Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK cells and canine fibroma cells (A72 displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments.Keywords: canine parvovirus, apoptosis, necrosis, nanoparticle, virotherapy

  12. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production.

    Science.gov (United States)

    Carinhas, Nuno; Pais, Daniel A M; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P

    2016-03-23

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.

  13. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  14. Migrastatin analogues inhibit canine mammary cancer cell migration and invasion.

    Directory of Open Access Journals (Sweden)

    Kinga Majchrzak

    Full Text Available BACKGROUND: Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6 on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. RESULTS: OUR RESULTS SHOWED THAT TWO OF SIX FULLY SYNTHETIC ANALOGUES OF MIGRASTATIN: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6 disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. CONCLUSION: Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6 were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs

  15. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  16. VAMP7 modulates ciliary biogenesis in kidney cells.

    Directory of Open Access Journals (Sweden)

    Christina M Szalinski

    Full Text Available Epithelial cells elaborate specialized domains that have distinct protein and lipid compositions, including the apical and basolateral surfaces and primary cilia. Maintaining the identity of these domains is required for proper cell function, and requires the efficient and selective SNARE-mediated fusion of vesicles containing newly synthesized and recycling proteins with the proper target membrane. Multiple pathways exist to deliver newly synthesized proteins to the apical surface of kidney cells, and the post-Golgi SNAREs, or VAMPs, involved in these distinct pathways have not been identified. VAMP7 has been implicated in apical protein delivery in other cell types, and we hypothesized that this SNARE would have differential effects on the trafficking of apical proteins known to take distinct routes to the apical surface in kidney cells. VAMP7 expressed in polarized Madin Darby canine kidney cells colocalized primarily with LAMP2-positive compartments, and siRNA-mediated knockdown modulated lysosome size, consistent with the known function of VAMP7 in lysosomal delivery. Surprisingly, VAMP7 knockdown had no effect on apical delivery of numerous cargoes tested, but did decrease the length and frequency of primary cilia. Additionally, VAMP7 knockdown disrupted cystogenesis in cells grown in a three-dimensional basement membrane matrix. The effects of VAMP7 depletion on ciliogenesis and cystogenesis are not directly linked to the disruption of lysosomal function, as cilia lengths and cyst morphology were unaffected in an MDCK lysosomal storage disorder model. Together, our data suggest that VAMP7 plays an essential role in ciliogenesis and lumen formation. To our knowledge, this is the first study implicating an R-SNARE in ciliogenesis and cystogenesis.

  17. Characterization and modulation of canine mast cell derived eicosanoids

    Science.gov (United States)

    Lin, Tzu-Yin; London, Cheryl A.

    2013-01-01

    Mast cells play an important role in both innate and acquired immunity as well as several pathological conditions including allergy, arthritis and neoplasia. They influence these processes by producing a variety of mediators including cytokines, chemokines and eicosanoids. Very little is currently known about the spectrum of inflammatory mediators, particularly eicosanoids (prostaglandins and leukotrienes), produced by canine mast cells. This is important since modulating mast cell derived eicosanoids may help in the treatment of autoimmune and inflammatory disorders. The purpose of this study was to investigate the spectrum of eicosanoids produced by normal canine mast cells and to evaluate the effects of cytokines and non-steroidal anti-inflammatory mediators (NSAIDS) on eicosanoid production and release. Canine bone marrow derived cultured mast cells (cBMCMCs) expressed COX-1, COX-2, and 5-LOX and synthesized and released PGD2, PGE2, LTB4, and LTC4 following activation by a variety of stimuli. The selective COX-2 NSAIDs carprofen (Rimadyl®) and deracoxib (Deramaxx®) inhibited PGD2 and PGE2 production but only slightly inhibited LTB4 and LTC4. The mixed COX-1/COX-2 inhibitor piroxicam blocked PGD2 and PGE2 production, but upregulated LTC4 following treatment while tepoxilan (Zubrin®), a pan COX/LOX inhibitor, markedly reduced the production of all eicosanoids. The LOX inhibitor nordihydroguaiaretic acid (NDGA) prevented LTB4/LTC4 release and BMBMC degranulation. Pre-incubation of cBMCMCs with IL-4 and SCF sensitized these cells to degranulation in response to substance P. In conclusion, canine BMCMCs produce an array of eicosanoids similar to those produced by mast cells from other species. Tepoxilan appeared to be the most effective NSAID for blocking eicosanoid production and thus may be useful for modulating mast cell mediated responses in dogs. PMID:20036014

  18. How Kidney Cell Death Induces Renal Necroinflammation.

    Science.gov (United States)

    Mulay, Shrikant R; Kumar, Santhosh V; Lech, Maciej; Desai, Jyaysi; Anders, Hans-Joachim

    2016-05-01

    The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Tumor-promoting phorbol esters effect alkalinization of canine renal proximal tubular cells

    International Nuclear Information System (INIS)

    Mellas, J.; Hammerman, M.R.

    1986-01-01

    We have demonstrated the presence of specific receptors for tumor-promoting phorbol esters in the plasma membrane of the canine renal proximal tubular cell. These compounds affect proximal tubular metabolism in vitro. For example, we have shown that they inhibit gluconeogenesis in canine renal proximal tubular segments. Tumor-promoting phorbol esters have been shown to effect alkalinization of non-renal cells, by enhancing Na + -H + exchange across the plasma membrane. To determine whether the actions of tumor-promoting phorbol esters in proximal tubular segments might be mediated by a similar process, we incubated suspensions of segments from dog kidney with these compounds and measured changes in intracellular pH using [ 14 C]-5,5-dimethoxazoladine-2-4-dione (DMO) and flow dialysis. Incubation of segments with phorbol 12,13 dibutyrate, but not inactive phorbol ester, 4 γ phorbol, effected alkalinization of cells within the segments in a concentration-dependent manner. Alkalinization was dependent upon the presence of extracellular [Na + ] > intracellular [Na + ], was prevented by amiloride and was demonstrable in the presence of SITS. Our findings suggest that tumor-promoting esters stimulate the Na + -H + exchanger known to be present in the brush border membrane of the renal proximal tubular cell. It is possible that the stimulation reflects a mechanism by which phorbol esters affect metabolic processes in these cells

  20. Canine osteosarcoma cells exhibit resistance to aurora kinase inhibitors.

    Science.gov (United States)

    Cannon, C M; Pozniak, J; Scott, M C; Ito, D; Gorden, B H; Graef, A J; Modiano, J F

    2015-03-01

    We evaluated the effect of Aurora kinase inhibitors AZD1152 and VX680 on canine osteosarcoma cells. Cytotoxicity was seen in all four cell lines; however, half-maximal inhibitory concentrations were significantly higher than in human leukaemia and canine lymphoma cells. AZD1152 reduced Aurora kinase B phosphorylation, indicating resistance was not because of failure of target recognition. Efflux mediated by ABCB1 and ABCG2 transporters is one known mechanism of resistance against these drugs and verapamil enhanced AZD1152-induced apoptosis; however, these transporters were only expressed by a small percentage of cells in each line and the effects of verapamil were modest, suggesting other mechanisms contribute to resistance. Our results indicate that canine osteosarcoma cells are resistant to Aurora kinase inhibitors and suggest that these compounds are unlikely to be useful as single agents for this disease. Further investigation of these resistance mechanisms and the potential utility of Aurora kinase inhibitors in multi-agent protocols is warranted. © 2013 Blackwell Publishing Ltd.

  1. Transcutaneous glomerular filtration rate measurement in a canine animal model of chronic kidney disease.

    Science.gov (United States)

    Mondritzki, Thomas; Steinbach, Sarah M L; Boehme, Philip; Hoffmann, Jessica; Kullmann, Maximilian; Schock-Kusch, Daniel; Vogel, Julia; Kolkhof, Peter; Sandner, Peter; Bischoff, Erwin; Hüser, Jörg; Dinh, Wilfried; Truebel, Hubert

    Quantitative assessment of renal function by measurement of glomerular filtration rate (GFR) is an important part of safety and efficacy evaluation in preclinical drug development. Existing methods are often time consuming, imprecise and associated with animal burden. Here we describe the comparison between GFR determinations with sinistrin (PS-GFR) and fluorescence-labelled sinistrin-application and its transcutaneous detection (TD-GFR) in a large animal model of chronic kidney disease (CKD). TD-GFR measurements compared to a standard method using i.v. sinistrin were performed in a canine model. Animals were treated with one-sided renal wrapping (RW) followed by renal artery occlusion (RO). Biomarker and remote hemodynamic measurements were performed. Plasma sinistrin in comparison to transcutaneous derived GFR data were determined during healthy conditions, after RW and RW+RO. RW alone did not led to any significant changes in renal function, neither with PS-GFR nor TD-GFR. Additional RO showed a rise in blood pressure (+68.0mmHg), plasma urea (+28.8mmol/l), creatinine (+224,4μmol/l) and symmetric dimethylarginine (SDMA™; +12.6μg/dl). Plasma sinistrin derived data confirmed the expected drop (-44.7%, p<0.0001) in GFR. The calculated transcutaneous determined Fluorescein Isothiocyanate (FITC)-sinistrin GFR showed no differences to plasma sinistrin GFR at all times. Both methods were equaly sensitive to diagnose renal dysfunction in the affected animals. Renal function assessment using TD-GFR is a valid method to improve preclinical drug discovery and development. Furthermore, TD-GFR method offers advantages in terms of reduced need for blood sampling and thus decreasing animal burden compared to standard procedures. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Ann Foltz

    2016-11-01

    Full Text Available Canines spontaneously develop many cancers similar to humans - including osteosarcoma, leukemia, and lymphoma - offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46, the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3-/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3-/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3-/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and GM-CSF as measured by Luminex. Like human NK cells, CD3-/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median= 20,283-fold in 21 days. Further, we identify a minor Null population (CD3-/CD21-/CD14-/NKp46- with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3-/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells, and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46- subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy.

  3. MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas.

    Science.gov (United States)

    Noguchi, S; Mori, T; Hoshino, Y; Yamada, N; Maruo, K; Akao, Y

    2013-06-01

    Malignant melanoma (MM) is one of the most aggressive cancers in dogs and in humans. However, the molecular mechanisms of its development and progression remain unclear. Presently, we examined the expression profile of microRNAs (miRs) in canine oral MM tissues and paired normal oral mucosa tissues by using the microRNA-microarray assay and quantitative RT-PCR. Importantly, a decreased expression of miR-203 was significantly associated with a shorter survival time. Also, miR-203 and -205 were markedly down-regulated in canine and human MM cell lines tested. Furthermore, the ectopic expression of miR-205 had a significant inhibitory effect on the cell growth of canine and human melanoma cells tested by targeting erbb3. Our data suggest that miR-203 is a new prognostic factor in canine oral MMs and that miR-205 functions as a tumour suppressor by targeting erbb3 in both canine and human MM cells. © 2011 John Wiley & Sons Ltd.

  4. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    Science.gov (United States)

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. © 2015 The Authors. Anatomia, Histologia, Embryologia Published by Blackwell Verlag GmbH.

  5. Kidney dysfunction after allogeneic stem cell transplantation

    NARCIS (Netherlands)

    Kersting, S.

    2008-01-01

    Allogeneic stem cell transplantation (SCT) is a widely accepted approach for malignant and nonmalignant hematopoietic diseases. Unfortunately complications can occur because of the treatment, leading to treatment-related mortality. We studied kidney dysfunction after allogeneic SCT in 2 cohorts of

  6. Concise Review: Kidney Generation with Human Pluripotent Stem Cells.

    Science.gov (United States)

    Morizane, Ryuji; Miyoshi, Tomoya; Bonventre, Joseph V

    2017-11-01

    Chronic kidney disease (CKD) is a worldwide health care problem, resulting in increased cardiovascular mortality and often leading to end-stage kidney disease, where patients require kidney replacement therapies such as hemodialysis or kidney transplantation. Loss of functional nephrons contributes to the progression of CKD, which can be attenuated but not reversed due to inability to generate new nephrons in human adult kidneys. Human pluripotent stem cells (hPSCs), by virtue of their unlimited self-renewal and ability to differentiate into cells of all three embryonic germ layers, are attractive sources for kidney regenerative therapies. Recent advances in stem cell biology have identified key signals necessary to maintain stemness of human nephron progenitor cells (NPCs) in vitro, and led to establishment of protocols to generate NPCs and nephron epithelial cells from human fetal kidneys and hPSCs. Effective production of large amounts of human NPCs and kidney organoids will facilitate elucidation of developmental and pathobiological pathways, kidney disease modeling and drug screening as well as kidney regenerative therapies. We summarize the recent studies to induce NPCs and kidney cells from hPSCs, studies of NPC expansion from mouse and human embryonic kidneys, and discuss possible approaches in vivo to regenerate kidneys with cell therapies and the development of bioengineered kidneys. Stem Cells 2017;35:2209-2217. © 2017 AlphaMed Press.

  7. Kidney (Renal Cell) Cancer—Health Professional Version

    Science.gov (United States)

    Kidney cancer has three main types. Renal cell cancer, or renal cell adenocarcinoma, forms in the tubules of the kidney. Transitional cell carcinoma forms in the renal pelvis and ureter. Wilms tumors are common in children. Find evidence-based information on kidney cancer treatment, research, genetics, and statistics.

  8. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes.

    Directory of Open Access Journals (Sweden)

    Emily J Shields

    Full Text Available The pathophysiology of canine diabetes remains poorly understood, in part due to enigmatic clinical features and the lack of detailed histopathology studies. Canine diabetes, similar to human type 1 diabetes, is frequently associated with diabetic ketoacidosis at onset or after insulin omission. However, notable differences exist. Whereas human type 1 diabetes often occurs in children, canine diabetes is typically described in middle age to elderly dogs. Many competing theories have been proposed regarding the underlying cause of canine diabetes, from pancreatic atrophy to chronic pancreatitis to autoimmune mediated β-cell destruction. It remains unclear to what extent β-cell loss contributes to canine diabetes, as precise quantifications of islet morphometry have not been performed. We used high-throughput microscopy and automated image processing to characterize islet histology in a large collection of pancreata of diabetic dogs. Diabetic pancreata displayed a profound reduction in β-cells and islet endocrine cells. Unlike humans, canine non-diabetic islets are largely comprised of β-cells. Very few β-cells remained in islets of diabetic dogs, even in pancreata from new onset cases. Similarly, total islet endocrine cell number was sharply reduced in diabetic dogs. No compensatory proliferation or lymphocyte infiltration was detected. The majority of pancreata had no evidence of pancreatitis. Thus, canine diabetes is associated with extreme β-cell deficiency in both new and longstanding disease. The β-cell predominant composition of canine islets and the near-total absence of β-cells in new onset elderly diabetic dogs strongly implies that similar to human type 1 diabetes, β-cell loss underlies the pathophysiology of canine diabetes.

  9. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Grassi Rici Rose

    2012-02-01

    Full Text Available Abstract Background The bone morphogenetic proteins (BMPs belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p

  10. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells.

    Science.gov (United States)

    Rici, Rose Eli Grassi; Alcântara, Dayane; Fratini, Paula; Wenceslau, Cristiane Valverde; Ambrósio, Carlos Eduardo; Miglino, Maria Angelica; Maria, Durvanei Augusto

    2012-02-22

    The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. We propose that rhBMP-2 has great

  11. Papillary renal cell carcinoma in allograft kidney

    International Nuclear Information System (INIS)

    Roy, Catherine; El Ghali, Sofiane; Buy, Xavier; Gangi, Afshin; Lindner, Veronique

    2005-01-01

    Papillary renal cell carcinoma is a subgroup of malignant renal epithelial neoplasms. Its occurrence in allograft transplanted kidney has not been debated in the literature. We report two pathologically proven cases and discuss the clinical hypothesis for such neoplasms and the aspect on MR images. The paramagnetic effect of the iron associated with an absence of signal coming from calcifications is a plausible explanation for this unusual hypointense appearance on T2-weighted sequence. (orig.)

  12. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    Science.gov (United States)

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.

  13. Comparison of Radiofrequency Ablation with Saturated Saline Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Byung Seok; Ahn, Moon Sang [Chungnam National University Hospital, Daejeon (Korea, Republic of); Park, Mi Hyun [Dept. of Radiology, Dankook University Hospital, Cheonan (Korea, Republic of); Jeon, Gyeong Sik [Dept. of Radiology, CHA Bundang Medical Center, CHA University College of Medicine, Seongnam (Korea, Republic of); Lee, Byung Mo [Dept. of Surgery, Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of); Lee, Ki Chang [Dept. of Veterinary Radiology, Chonbuk National University College of VeterinaryMedicine, Seoul (Korea, Republic of); Kim, Ho Jun [Dept. of Radiology, Konyang University Hospital, Daejeon (Korea, Republic of); Ohm, Joon Young [Dept. of Radiology, Bucheon St. Mary Hospital, The Catholic University of Korea College of Medicine, Bucheon (Korea, Republic of)

    2012-04-15

    To compare the ablation zone after radiofrequency ablation (RFA) with saturated saline preinjection and renal artery occlusion in canine kidneys. RFA was induced in the kidneys of six mongrel dogs. A total of 24 ablation zones were induced using a 1-cm tip internally cooled needle electrode in three groups: RFA (Control group), RFA with 0.5 mL saturated saline preinjection (SS group), and RFA with renal artery occlusion by atraumatic vascular clamp (Occlusion group). Ablation zone diameters were measured along transverse and longitudinal sections of the needle axis, and volumes were calculated. Temperature, applied voltage, current, and impedance during RFA were recorded automatically. The RFA zone volume was the largest in the SS group (1.33 {+-} 0.34 cm{sup 3}), followed by the Occlusion group (1.07 {+-} 0.38 cm{sup 3}) and then the Control group (0.62 {+-} 0.09 cm{sup 3}). Volumes for the SS and Occlusion groups were significantly larger than those for the Control group (p = 0.001, p = 0.012). There was no significant difference in volumes between the SS and Occlusion groups (p = 0.178). Saturated saline preinjection is as effective as renal arterial occlusion for expanding the ablation zone. RFA with saturated saline preinjection could help to treat large renal tumors.

  14. Comparison of Radiofrequency Ablation with Saturated Saline Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys Preinjection and Renal Artery Occlusion: In Vivo Study in Canine Kidneys

    International Nuclear Information System (INIS)

    Shin, Byung Seok; Ahn, Moon Sang; Park, Mi Hyun; Jeon, Gyeong Sik; Lee, Byung Mo; Lee, Ki Chang; Kim, Ho Jun; Ohm, Joon Young

    2012-01-01

    To compare the ablation zone after radiofrequency ablation (RFA) with saturated saline preinjection and renal artery occlusion in canine kidneys. RFA was induced in the kidneys of six mongrel dogs. A total of 24 ablation zones were induced using a 1-cm tip internally cooled needle electrode in three groups: RFA (Control group), RFA with 0.5 mL saturated saline preinjection (SS group), and RFA with renal artery occlusion by atraumatic vascular clamp (Occlusion group). Ablation zone diameters were measured along transverse and longitudinal sections of the needle axis, and volumes were calculated. Temperature, applied voltage, current, and impedance during RFA were recorded automatically. The RFA zone volume was the largest in the SS group (1.33 ± 0.34 cm 3 ), followed by the Occlusion group (1.07 ± 0.38 cm 3 ) and then the Control group (0.62 ± 0.09 cm 3 ). Volumes for the SS and Occlusion groups were significantly larger than those for the Control group (p = 0.001, p = 0.012). There was no significant difference in volumes between the SS and Occlusion groups (p = 0.178). Saturated saline preinjection is as effective as renal arterial occlusion for expanding the ablation zone. RFA with saturated saline preinjection could help to treat large renal tumors.

  15. Molecular biological and immunohistological characterization of canine dermal papilla cells and the evaluation of culture conditions.

    Science.gov (United States)

    Kobayashi, Tetsuro; Fujisawa, Akiko; Amagai, Masayuki; Iwasaki, Toshiroh; Ohyama, Manabu

    2011-10-01

    The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, our understanding of the biology of the canine DP is extremely limited. The aim of this study was to elucidate molecular biological and immunohistochemical characteristics of canine DP cells and determine appropriate conditions for in vitro expansion. Histological investigation revealed that the canine DP expressed biomarkers of human and rodent DP, including alkaline phosphatase (ALP) and versican. When microdissected, canine DP, but not fibroblasts, strongly expressed the DP-related genes for alkaline phosphatase, Wnt inhibitory factor 1 and lymphoid enhancer-binding factor 1, confirming successful isolation. The growth rate of isolated canine DP cells was moderate in conventional culture conditions for rodent and human DP; however, AmnioMAX-C100 complete medium allowed more efficient cultivation. Dermal papilla marker gene expression was maintained in early passage cultured DP cells, but gradually lost after the third passage. Approaches to mimic the in vivo DP environment in culture, such as supplementation of keratinocyte-conditioned medium or use of extracellular matrix-coated dishes, moderately ameliorated loss of DP gene expression in canine DP cells. It is possible that constituent factors in AmnioMAX may influence culture. These findings suggested that further refinements of culture conditions may enable DP cell expansion without impairing intrinsic properties and, importantly, demonstrated that AmnioMAX-cultured early passage canine DP cells partly maintained the biological characteristics of in vivo canine DP cells. This study provides crucial information necessary for further optimization of culture conditions of canine DP. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.

  16. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  17. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    Science.gov (United States)

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    International Nuclear Information System (INIS)

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development

  19. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  20. Comparative analysis of the surface exposed proteome of two canine osteosarcoma cell lines and normal canine osteoblasts.

    Science.gov (United States)

    Milovancev, Milan; Hilgart-Martiszus, Ian; McNamara, Michael J; Goodall, Cheri P; Seguin, Bernard; Bracha, Shay; Wickramasekara, Samanthi I

    2013-06-13

    Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data

  1. Molecular detection of Leptospira spp. from canine kidney tissues and its association with renal lesions

    Directory of Open Access Journals (Sweden)

    Biswajit R. Dash

    2018-04-01

    Full Text Available Aim: The study aimed to detect the prevalence of Leptospira spp. in kidney tissues collected during necropsy and to establish its association with renal lesions in dogs of Mumbai region. Materials and Methods: Kidney tissues from 40 dogs were collected during necropsy after gross examination and then fixed in neutral buffered formalin and Bouin's fluid for histopathology and histochemistry, respectively. Kidney tissues were also collected for the detection of Leptospira spp. by polymerase chain reaction (PCR in a sterile container and stored at -80°C until further processing. Results: Of 40 cases studied, 13 (32.5% cases showed lesions of nephritis of varying histotype and severity. Glomerulonephritis was reported as the most common type of nephritis in 9 (69.23% cases, and interstitial nephritis was recorded in 4 (30.76% cases. Chronic and acute interstitial nephritis was observed in two cases each. Renal failure as a cause of death was found in 7 (17.5% dogs. Of a total of 40 cases, 9 were found positive for pathogenic Leptospira spp. genome by PCR. However, of nine PCR-positive cases, only four cases showed lesions in kidneys as glomerulonephritis and interstitial nephritis in two cases each. The rest five cases positive for Leptospira spp. by PCR did not show any appreciable lesions in the kidneys. Conclusion: Leptospiral DNA was detected in 9 (22.5% cases by PCR. Of these nine cases, only four cases showed renal lesions. Other five cases which were positive for Leptospira spp. by PCR did not show any appreciable gross and microscopic lesions in the kidneys which might be carriers for Leptospira spp. Considering variable reports on types of nephritis in Leptospira spp. infection and also the prevalence of non-pathogenic Leptospira spp., it is important to conduct an extensive study on the prevalence of Leptospira spp. and its association with renal lesions involving batteries of tests.

  2. Stimulation with Concanavalin-A Induces IL-17 Production by Canine Peripheral T Cells

    Directory of Open Access Journals (Sweden)

    Michelle G. Ritt

    2015-04-01

    Full Text Available The characteristics of canine IL-17-producing cells are incompletely understood. Expression of mRNA encoding orthologs of IL-17 and the IL-17 receptor has been documented in tissues from dogs with arthritis, inflammatory bowel disease, and lymphoma; however, no associations have been found between IL-17 gene expression and disease phenotype in these conditions. Robust assessment of the role of IL-17-producing cells in dogs will require measuring the frequency of these cells in health and disease in balance with other lymphocyte subsets. The aim of this study was to confirm that the T-cell IL-17 response in dogs is evolutionarily conserved. Canine peripheral blood mononuclear cells were stimulated with Concanavalin A with or without polarizing cytokines. We used a canine specific IL-17 ELISA and flow cytometry to identify IL-17-producing T cells. Accumulation of intracellular IL-17 was observed in stimulated CD4 and CD8 T cells. The addition of pro-inflammatory cytokines appeared to enhance polarization of canine CD4 T cells to the Th17 phenotype. Conversely, the addition of IL-2 in the presence of TGF-β resulted in expansion of Treg cells. We conclude that canine IL-17-producing cells behave similarly to those from humans and mice when stimulated with mitogens and polarized with pro-inflammatory or immune regulatory cytokines.

  3. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Directory of Open Access Journals (Sweden)

    Moges Woldemeskel

    2014-11-01

    Full Text Available Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4 was significantly higher (p < 0.05 than that in the control (0.83 ± 0.3 and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009. Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended.

  4. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Science.gov (United States)

    Mann, Elizabeth; Whittington, Lisa

    2014-01-01

    Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752

  5. Cell proliferation markers in the transplanted canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    F.G.A. Santos

    2011-12-01

    Full Text Available Adult male mongrel dogs were subcutaneously transplanted with the canine transmissible venereal tumor (TVT on the hypogastric region. Twelve specimens of tumors were collected, half during the proliferative phase and the other half during the regressive phase. Fragments of the tumor were fixed in 10% buffered formalin and routinely processed for light microscopy. Sections of 4µm were stained by Schorr or AgNOR or either immunostained for MIB1 (Ki67. Schorr stain, AgNOR and MIB1 showed an increased proliferative activity through mitotic index, nuclear argyrophilic protein stain and cycling tumoral cells in the growing tumors, respectively. All of the three cell proliferation markers were able to distinguish the TVT in both evolution phases. MIB1 monoclonal antibody was the best in the morphologic evaluation of growth and regression of TVT. This resulted in higher values than AgNORs counting and mitotic index. MIB1 immunostaining was the most effective parameter of the proliferative activity of TVT. However, a significant correlation has been detected only between mitosis counting and AgNORs.

  6. Cell-cell communication in the kidney microcirculation

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    the postglomerular vasculature. Cxs form gap junctions between neighboring cells, and as in other organ systems, the major function of Cxs in the kidney appears to be mediation of intercellular communication. Cxs may also form hemichannels that allow cellular secretion of signaling molecules like ATP, and thereby...... mediate paracrine signaling. Renal Cxs facilitate vascular conduction, juxtaglomerlar apparatus calcium signaling, and enable ECs and VSMCs to communicate. Thus, current research suggests multiple roles for Cxs in important regulatory mechanisms within the kidney, including the renin-angiotensin system...

  7. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    International Nuclear Information System (INIS)

    Pang, Lisa Y.; Cervantes-Arias, Alejandro; Else, Rod W.; Argyle, David J.

    2011-01-01

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology

  8. Canine Mammary Cancer Stem Cells are Radio- and Chemo-Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Lisa Y., E-mail: lisa.pang@ed.ac.uk; Cervantes-Arias, Alejandro; Else, Rod W.; Argyle, David J. [Royal (Dick) School of Veterinary Studies and Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG (United Kingdom)

    2011-03-30

    Canine mammary carcinoma is the most common cancer among female dogs and is often fatal due to the development of distant metastases. In humans, solid tumors are made up of heterogeneous cell populations, which perform different roles in the tumor economy. A small subset of tumor cells can hold or acquire stem cell characteristics, enabling them to drive tumor growth, recurrence and metastasis. In veterinary medicine, the molecular drivers of canine mammary carcinoma are as yet undefined. Here we report that putative cancer stem cells (CSCs) can be isolated form a canine mammary carcinoma cell line, REM134. We show that these cells have an increased ability to form tumorspheres, a characteristic of stem cells, and that they express embryonic stem cell markers associated with pluripotency. Moreover, canine CSCs are relatively resistant to the cytotoxic effects of common chemotherapeutic drugs and ionizing radiation, indicating that failure of clinical therapy to eradicate canine mammary cancer may be due to the survival of CSCs. The epithelial to mesenchymal transition (EMT) has been associated with cancer invasion, metastasis, and the acquisition of stem cell characteristics. Our results show that canine CSCs predominantly express mesenchymal markers and are more invasive than parental cells, indicating that these cells have a mesenchymal phenotype. Furthermore, we show that canine mammary cancer cells can be induced to undergo EMT by TGFβ and that these cells have an increased ability to form tumorspheres. Our findings indicate that EMT induction can enrich for cells with CSC properties, and provide further insight into canine CSC biology.

  9. Canine Distemper Viral Inclusions in Blood Cells of Four Vaccinated Dogs

    OpenAIRE

    McLaughlin, Bruce G.; Adams, Pamela S.; Cornell, William D.; Elkins, A. Darrel

    1985-01-01

    Four cases of canine distemper were detected by the presence of numerous cytoplasmic inclusions in various circulating blood cells. Fluorescent antibody techniques and electron microscopy confirmed the identity of the viral inclusions. The cases occurred in the same geographic area and within a short time span. All four dogs had been vaccinated against canine distemper, but stress or other factors may have compromised their immune status. The possibility of an unusually virulent virus strain ...

  10. Engineering kidney cells: reprogramming and directed differentiation to renal tissues.

    Science.gov (United States)

    Kaminski, Michael M; Tosic, Jelena; Pichler, Roman; Arnold, Sebastian J; Lienkamp, Soeren S

    2017-07-01

    Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.

  11. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Cecilia M Lopez

    Full Text Available Osteosarcoma (OSA is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease.RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes.These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.

  12. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines.

    Science.gov (United States)

    Lopez, Cecilia M; Yu, Peter Y; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A; Fenger, Joelle M

    2018-01-01

    Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA.

  13. Delineation of canine parvovirus T cell epitopes with peripheral blood mononuclear cells and T cell clones from immunized dogs.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); M.C.M. Poelen (Martien); R.H. Meloen; J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree synthetic peptides derived from the amino acid sequence of VP2 of canine parvovirus (CPV) which were recently shown to represent three distinct T cell epitopes for BALB/c mice could prime BALB/c mice for a CPV-specific proliferative T cell response upon immunization. Proliferative

  14. CD117 immunoexpression in canine mast cell tumours: correlations with pathological variables and proliferation markers

    Directory of Open Access Journals (Sweden)

    Pires Maria A

    2007-08-01

    Full Text Available Abstract Background Cutaneous mast cell tumours are one of the most common neoplasms in dogs and show a highly variable biologic behaviour. Several prognosis tools have been proposed for canine mast cell tumours, including histological grading and cell proliferation markers. CD117 is a receptor tyrosine kinase thought to play a key role in human and canine mast cell neoplasms. Normal (membrane-associated and aberrant (cytoplasmic, focal or diffuse CD117 immunoexpression patterns have been identified in canine mast cell tumours. Cytoplasmic CD117 expression has been found to correlate with higher histological grade and with a worsened post-surgical prognosis. This study addresses the role of CD117 in canine mast cell tumours by studying the correlations between CD117 immunoexpression patterns, two proliferation markers (Ki67 and AgNORs histological grade, and several other pathological variables. Results Highly significant (p Conclusion These findings highlight the key role of CD117 in the biopathology of canine MCTs and confirm the relationship between aberrant CD117 expression and increased cell proliferation and higher histological grade. Further studies are needed to unravel the cellular mechanisms underlying focal and diffuse cytoplasmic CD117 staining patterns, and their respective biopathologic relevance.

  15. Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors

    International Nuclear Information System (INIS)

    Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma

    2006-01-01

    Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs

  16. Potential Use of Stem Cells for Kidney Regeneration

    Directory of Open Access Journals (Sweden)

    Takashi Yokoo

    2011-01-01

    Full Text Available Significant advances have been made in stem cell research over the past decade. A number of nonhematopoietic sources of stem cells (or progenitor cells have been identified, including endothelial stem cells and neural stem cells. These discoveries have been a major step toward the use of stem cells for potential clinical applications of organ regeneration. Accordingly, kidney regeneration is currently gaining considerable attention to replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, due to anatomic complications, the kidney is believed to be the hardest organ to regenerate; it is virtually impossible to imagine such a complicated organ being completely rebuilt from pluripotent stem cells by gene or chemical manipulation. Nevertheless, several groups are taking on this big challenge. In this manuscript, current advances in renal stem cell research are reviewed and their usefulness for kidney regeneration discussed. We also reviewed the current knowledge of the emerging field of renal stem cell biology.

  17. Kidney stem cells in development, regeneration and cancer.

    Science.gov (United States)

    Dziedzic, Klaudyna; Pleniceanu, Oren; Dekel, Benjamin

    2014-12-01

    The generation of nephrons during development depends on differentiation via a mesenchymal to epithelial transition (MET) of self-renewing, tissue-specific stem cells confined to a specific anatomic niche of the nephrogenic cortex. These cells may transform to generate oncogenic stem cells and drive pediatric renal cancer. Once nephron epithelia are formed the view of post-MET tissue renal growth and maintenance by adult tissue-specific epithelial stem cells becomes controversial. Recently, genetic lineage tracing that followed clonal evolution of single kidney cells showed that the need for new cells is constantly driven by fate-restricted unipotent clonal expansions in varying kidney segments arguing against a multipotent adult stem cell model. Lineage-restriction was similarly maintained in kidney organoids grown in culture. Importantly, kidney cells in which Wnt was activated were traced to give significant clonal progeny indicating a clonogenic hierarchy. In vivo nephron epithelia may be endowed with the capacity akin to that of unipotent epithelial stem/progenitor such that under specific stimuli can clonally expand/self renew by local proliferation of mature differentiated cells. Finding ways to ex vivo preserve and expand the observed in vivo kidney-forming capacity inherent to both the fetal and adult kidneys is crucial for taking renal regenerative medicine forward. Some of the strategies used to achieve this are sorting human fetal nephron stem/progenitor cells, growing adult nephrospheres or reprogramming differentiated kidney cells toward expandable renal progenitors. Copyright © 2014. Published by Elsevier Ltd.

  18. Experimental tumor growth of canine osteosarcoma cell line on chick embryo chorioallantoic membrane (in vivo studies).

    Science.gov (United States)

    Walewska, Magdalena; Dolka, Izabella; Małek, Anna; Wojtalewicz, Anna; Wojtkowska, Agata; Żbikowski, Artur; Lechowski, Roman; Zabielska-Koczywąs, Katarzyna

    2017-05-12

    The chick embryo chorioallantoic membrane (CAM) model is extensively used in human medicine in preclinical oncological studies. The CAM model has several advantages: low cost, simple experimental approach, time saving and following "3R principles". Research has shown that the human osteosarcoma cell lines U2OS, MMNG-HOS, and SAOS can form tumors on the CAM. In veterinary medicine, this has been described only for feline fibrosarcomas, feline mammary carcinomas and canine osteosarcomas. However, in case of canine osteosarcomas, it has been shown that only non-adherent osteosarcoma stem cells isolated from KTOSA5 and CSKOS cell lines have the ability to form microtumors on the CAM after an incubation period of 5 days, in contrast to adherent KTOSA5 and CSKOS cells. In the presented study, we have proven that the commercial adherent canine osteosarcoma cell line (D-17) can form vascularized tumors on the CAM after the incubation period of 10 days.

  19. Bilateral clear cell sarcoma of the kidney

    International Nuclear Information System (INIS)

    Zekri, W.; Yehia, D.; Alfaar, A.S.; Elshafie, M.M.; Younes, A.A.; Zaghloul, M.S.; El-Kinaai, N.; Taha, H.; Refaat, A.; Zekri, W.; Elshafie, M.M.; Zaghloul, M.S.; Taha, H.; Refaat, A.; Younes, A.A.; Alfaar, A.S.; Yehia, D.

    2015-01-01

    Clear cell sarcoma of the kidney (CCSK) accounts for 2-5% of all pediatric renal malignancies, and is known for its propensity to metastasize to bone and other sites. We are reporting two cases with bilateral CCSK that were diagnosed at our institution. One patient initially presented with bilateral renal masses, as well as pulmonary, hepatic and bone metastasis; while other present only with bilateral masses with no evident distant metastasis. Both patients received aggressive neo-adjuvant chemotherapy to decrease tumor size. One patient completed his designated treatment and initially showed complete remission (CR); eventually suffering from relapse. The other patient’s tumor progressed during the course of chemotherapy. Both cases manifested brain dissemination at the time of relapse or progression. This emphasizes the importance of staging stratification in CCSK. This also illustrates CCSK’s ability to metastasize to bone and other sites including the brain (a primary relapse site in our cases)

  20. In vitro development of canine somatic cell nuclear transfer embryos in different culture media.

    Science.gov (United States)

    Kim, Dong-Hoon; No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.

  1. [The growth of attenuated strains of canine parvovirus, mink enteritis virus, feline panleukopenia virus, and rabies virus on various types of cell cultures].

    Science.gov (United States)

    Zuffa, T

    1987-10-01

    The growth characteristics were studied in the attenuated strains of canine parvovirus CPVA-BN 80/82, mink enteritis virus MEVA-BN 63/82 and feline panleucopenia virus FPVA-BN 110/83 on the stable feline kidney cell line FE, and in the attenuated canine distemper virus CDV-F-BN 10/83 on chicken embryo cell cultures (KEB) and cultures of the stable cell line VERO. When the FE cultures were infected with different parvoviruses in cell suspension at MOI 2-4 TKID50 per cell, the first multiplication of the intracellular virus was recorded 20 hours p. i. In the canine parvovirus, the content of intracellular and extracellular virus continued increasing parallelly until the fourth day; then, from the fourth to the sixth day, the content of extracellular virus still increased whereas that of intracellular virus fell rapidly. In the case of the mink enteritis virus the release of the virus into the culture medium continued parallelly with the production of the cellular virus until the sixth day. In the case of the feline panleucopenia virus the values concerning free virus and virus bound to cells were lower, starting from the second day p. i. When KEB or VERO cultures were infected in cell suspension with the canine distemper virus at MOI about 0.004 per 1 cell, the replicated intracellular virus was first recorded in the KEB cultures five hours after infection but in the VERO cultures only 20 hours after infection, with a timely release of the virus into the culture medium in both kinds of tissue. In the KEB and VERO cultures the highest values of infection titres were recorded on the fourth day p. i., the course of virus multiplication on the cells being parallel with its release into the culture medium.

  2. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level.

    Directory of Open Access Journals (Sweden)

    Deli Liu

    2015-06-01

    Full Text Available Spontaneous canine head and neck squamous cell carcinoma (HNSCC represents an excellent model of human HNSCC but is greatly understudied. To better understand and utilize this valuable resource, we performed a pilot study that represents its first genome-wide characterization by investigating 12 canine HNSCC cases, of which 9 are oral, via high density array comparative genomic hybridization and RNA-seq. The analyses reveal that these canine cancers recapitulate many molecular features of human HNSCC. These include analogous genomic copy number abnormality landscapes and sequence mutation patterns, recurrent alteration of known HNSCC genes and pathways (e.g., cell cycle, PI3K/AKT signaling, and comparably extensive heterogeneity. Amplification or overexpression of protein kinase genes, matrix metalloproteinase genes, and epithelial-mesenchymal transition genes TWIST1 and SNAI1 are also prominent in these canine tumors. This pilot study, along with a rapidly growing body of literature on canine cancer, reemphasizes the potential value of spontaneous canine cancers in HNSCC basic and translational research.

  3. Biochemical characterization of prostate-specific membrane antigen from canine prostate carcinoma cells.

    Science.gov (United States)

    Wu, Lisa Y; Johnson, Jacqueline M; Simmons, Jessica K; Mendes, Desiree E; Geruntho, Jonathan J; Liu, Tiancheng; Dirksen, Wessel P; Rosol, Thomas J; Davis, William C; Berkman, Clifford E

    2014-05-01

    Prostate-specific membrane antigen (PSMA) remains an important target for diagnostic and therapeutic application for human prostate cancer. Model cell lines have been recently developed to study canine prostate cancer but their PSMA expression and enzymatic activity have not been elucidated. The present study was focused on determining PSMA expression in these model canine cell lines and the use of fluorescent small-molecule enzyme inhibitors to detect canine PSMA expression by flow cytometry. Western blot and RT-PCR were used to determine the transcriptional and translational expression of PSMA on the canine cell lines Leo and Ace-1. An endpoint HPLC-based assay was used to monitor the enzymatic activity of canine PSMA and the potency of enzyme inhibitors. Flow cytometry was used to detect the PSMA expressed on Leo and Ace-1 cells using a fluorescently tagged PSMA enzyme inhibitor. Canine PSMA expression on the Leo cell line was confirmed by Western blot and RT-PCR, the enzyme activity, and flow cytometry. Kinetic parameters Km and Vmax of PSMA enzymatic activity for the synthetic substrate (PABGγG) were determined to be 393 nM and 220 pmol min(-1)  mg protein(-1) , respectively. The inhibitor core 1 and fluorescent inhibitor 2 were found to be potent reversible inhibitors (IC50  = 13.2 and 1.6 nM, respectively) of PSMA expressed on the Leo cell line. Fluorescent labeling of Leo cells demonstrated that the fluorescent PSMA inhibitor 2 can be used for the detection of PSMA-positive canine prostate tumor cells. Expression of PSMA on Ace-1 was low and not detectable by flow cytometry. The results described herein have demonstrated that PSMA is expressed on canine prostate tumor cells and exhibits similar enzymatic characteristics as human PSMA. The findings show that the small molecule enzyme inhibitors currently being studied for use in diagnosis and therapy of human prostate cancer can also be extended to include canine prostate cancer. Importantly

  4. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells.

    Science.gov (United States)

    Mantovani, Fernanda B; Morrison, Jodi A; Mutsaers, Anthony J

    2016-05-31

    Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of

  5. Stem cell factor supports migration in canine mesenchymal stem cells.

    Science.gov (United States)

    Enciso, Nathaly; Ostronoff, Luciana L K; Mejías, Guillermo; León, Leticia G; Fermín, María Luisa; Merino, Elena; Fragio, Cristina; Avedillo, Luis; Tejero, Concepción

    2018-03-01

    Adult Mesenchymal Stem Cells (MSC) are cells that can be defined as multipotent cells able to differentiate into diverse lineages, under appropriate conditions. These cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Initially discovered in bone marrow, MSC can now be isolated from a wide spectrum of adult and foetal tissues. Studies to evaluate the therapeutic potential of these cells are based on their ability to arrive to damaged tissues. In this paper we have done a comparative study analyzing proliferation, surface markers and OCT4, SOX9, RUNX2, PPARG genes expression in MSC cells from Bone marrow (BMMSC) and Adipose tissue (ASC). We also analyzed the role of Stem Cell Factor (SCF) on MSC proliferation and on ASCs metalloproteinases MMP-2, MMP-9 secretion. Healthy dogs were used as BMMSC donors, and ASC were collected from omentum during elective ovariohysterectomy surgery. Both cell types were cultured in IMDM medium with or without SCF, 10% Dog Serum (DS), and incubated at 38 °C with 5% CO2. Growth of BMMSCs and ASCs was exponential until 25-30 days. Flow citometry of MSCs revealed positive results for CD90 and negative for CD34, CD45 and MCH-II. Genes were evaluated by RT-PCR and metalloproteinases by zymografy. Our findings indicate morphological and immunological similarities as well as expression of genes from both origins on analyzed cells. Furthermore, SCF did not affect proliferation of MSCs, however it up-regulated MMP-2 and MMP-9 secretion in ASCs. These results suggest that metalloproteinases are possibly essential molecules pivoting migration.

  6. Detection of canine distemper virus nucleocapsid protein gene in canine peripheral blood mononuclear cells by RT-PCR.

    Science.gov (United States)

    Shin, Y; Mori, T; Okita, M; Gemma, T; Kai, C; Mikami, T

    1995-06-01

    For a rapid diagnosis of canine distemper virus (CDV) infection, the reverse transcription-PCR (RT-PCR) was carried out to detect CDV nucleoprotein (NP) gene from canine peripheral blood mononuclear cells (PBMCs). Two sets of primers were targeted to two regions of NP gene of CDV Onderstepoort strain. The NP gene fragments were well amplified by the RT-PCR in each of the RNA extracts from Vero cells infected with 6 laboratory strains of CDV including Onderstepoort strain, and from PBMCs of a dog experimentally infected with CDV. The amplified NP gene was detected in 17 of 32 samples from dogs which were clinically suspected for CDV infection at veterinary hospitals. No RT-PCR product was found in 52 samples from healthy dogs including 40 specific pathogen free beagles vaccinated with an attenuated live virus-vaccine for CDV and 12 stray dogs. The RT-PCR provides a fast, sensitive, and supplementary method for the diagnosis of CDV infection in dogs.

  7. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models.

    Science.gov (United States)

    Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J

    2012-12-01

    The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria. © 2011 Blackwell Publishing Ltd.

  8. Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133.

    Directory of Open Access Journals (Sweden)

    Kristina Thamm

    Full Text Available The pentaspan membrane glycoprotein prominin-1 (CD133 is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.

  9. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury.

    Science.gov (United States)

    Canaud, Guillaume; Bonventre, Joseph V

    2015-04-01

    For several decades, acute kidney injury (AKI) was generally considered a reversible process leading to complete kidney recovery if the individual survived the acute illness. Recent evidence from epidemiologic studies and animal models, however, have highlighted that AKI can lead to the development of fibrosis and facilitate the progression of chronic renal failure. When kidney injury is mild and baseline function is normal, the repair process can be adaptive with few long-term consequences. When the injury is more severe, repeated, or to a kidney with underlying disease, the repair can be maladaptive and epithelial cell cycle arrest may play an important role in the development of fibrosis. Indeed, during the maladaptive repair after a renal insult, many tubular cells that are undergoing cell division spend a prolonged period in the G2/M phase of the cell cycle. These tubular cells recruit intracellular pathways leading to the synthesis and the secretion of profibrotic factors, which then act in a paracrine fashion on interstitial pericytes/fibroblasts to accelerate proliferation of these cells and production of interstitial matrix. Thus, the tubule cells assume a senescent secretory phenotype. Characteristic features of these cells may represent new biomarkers of fibrosis progression and the G2/M-arrested cells may represent a new therapeutic target to prevent, delay or arrest progression of chronic kidney disease. Here, we summarize recent advances in our understanding of the biology of the cell cycle and how cell cycle arrest links AKI to chronic kidney disease. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  10. Development of a Vaccine Incorporating Killed Virus of Canine Origin for the Prevention of Canine Parvovirus Infection

    OpenAIRE

    Povey, C.

    1982-01-01

    A parvovirus of canine origin, cultured in a feline kidney cell line, was inactivated with formalin. Three pilot serials were produced and three forms of finished vaccine (nonadjuvanted, single adjuvanted and double adjuvanted) were tested in vaccination and challenge trials. A comparison was also made with two inactivated feline panleukopenia virus vaccines, one of which has official approval for use in dogs. The inactivated canine vaccine in nonadjuvanted, adjuvanted or double adjuvanted fo...

  11. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    Science.gov (United States)

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  12. BMI1 is expressed in canine osteosarcoma and contributes to cell growth and chemotherapy resistance.

    Directory of Open Access Journals (Sweden)

    Mehdi Hayat Shahi

    Full Text Available BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA. Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17 expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.

  13. BMI1 is expressed in canine osteosarcoma and contributes to cell growth and chemotherapy resistance.

    Science.gov (United States)

    Shahi, Mehdi Hayat; York, Daniel; Gandour-Edwards, Regina; Withers, Sita S; Holt, Roseline; Rebhun, Robert B

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.

  14. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    Science.gov (United States)

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  15. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells.

    Science.gov (United States)

    Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven

    2017-12-01

    Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.

  16. Targeting HSP70 and GRP78 in canine osteosarcoma cells in combination with doxorubicin chemotherapy.

    Science.gov (United States)

    Asling, Jonathan; Morrison, Jodi; Mutsaers, Anthony J

    2016-11-01

    Heat shock proteins (HSPs) are molecular chaperones subdivided into several families based on their molecular weight. Due to their cytoprotective roles, these proteins may help protect cancer cells against chemotherapy-induced cell death. Investigation into the biologic activity of HSPs in a variety of cancers including primary bone tumors, such as osteosarcoma (OSA), is of great interest. Both human and canine OSA tumor samples have aberrant production of HSP70. This study assessed the response of canine OSA cells to inhibition of HSP70 and GRP78 by the ATP-mimetic VER-155008 and whether this treatment strategy could sensitize cells to doxorubicin chemotherapy. Single-agent VER-155008 treatment decreased cellular viability and clonogenic survival and increased apoptosis in canine OSA cell lines. However, combination schedules with doxorubicin after pretreatment with VER-155008 did not improve inhibition of cellular viability, apoptosis, or clonogenic survival. Treatment with VER-155008 prior to chemotherapy resulted in an upregulation of target proteins HSP70 and GRP78 in addition to the co-chaperone proteins Herp, C/EBP homologous transcription protein (CHOP), and BAG-1. The increased GRP78 was more cytoplasmic in location compared to untreated cells. Single-agent treatment also revealed a dose-dependent reduction in activated and total Akt. Based on these results, targeting GRP78 and HSP70 may have biologic activity in canine osteosarcoma. Further studies are required to determine if and how this strategy may impact the response of osteosarcoma cells to chemotherapy.

  17. Cytotoxic action of Brazilian propolis in vitro on canine osteosarcoma cells.

    Science.gov (United States)

    Cinegaglia, N C; Bersano, P R O; Búfalo, M C; Sforcin, J M

    2013-09-01

    Osteosarcoma (OSA) is a primary bone neoplasm frequently diagnosed in dogs. The biology of OSA in pet dogs is identical to that of pediatric patients, and it has been considered an excellent model in vivo to study human OSA. Since the individual response to chemotherapy is unpredictable and considering that propolis is a natural product with several biological properties, this work evaluated the cytotoxic action of propolis on canine OSA cells. The primary cell culture of canine OSA was obtained from the tumor of a dog with OSA. Cell viability was assessed after incubation with propolis, 70% ethanol (propolis solvent), and carboplatin after 6, 24, 48, and 72 h. Cell viability was analyzed by the crystal violet method. Data showed that canine OSA cells were sensitive to propolis in a dose- and time-dependent manner and had a distinct morphology compared to control. Its solvent (70% ethanol) had no effect on cell viability, suggesting that the cytotoxic action was exclusively due to propolis. Our propolis sample exerted a cytotoxic effect on canine OSA cells, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Increased release of norepinephrine and dopamine from canine kidney during bilateral carotid occlusion

    International Nuclear Information System (INIS)

    Bradley, T.; Hjemdahl, P.; DiBona, G.F.

    1987-01-01

    The renal overflow of norepinephrine (NE) and dopamine (DA) to plasma from the innervated kidney was studied at rest and during sympathetic nervous system activation by bilateral carotid artery occlusion (BCO) in vagotomized dogs under barbiturate or barbiturate/nitrous oxide anesthesia. BCO elevated arterial pressure and the arterial plasma concentration of NE, DA, and epinephrine (Epi). Renal vascular resistance (renal arterial pressure kept constant) increased by 15 +/- 7% and the net renal venous outflows (renal veno-arterial concentration difference x renal plasma flow) of NE and DA were enhanced. To obtain more correct estimates of the renal contribution to the renal venous catecholamine outflow, they corrected for the renal extraction of arterial catecholamines, assessed as the extractions of [ 3 H]NE, [ 3 H]DA, or endogenous Epi. The [ 3 H]NE corrected renal NE overflow to plasma increased from 144 +/- 40 to 243 +/- 64 pmol-min -1 during BCO, which, when compared with a previous study of the [ 3 H]NE corrected renal NE overflow to plasma evoked by electrical renal nerve stimulation, corresponds to a 40% increase in nerve impulse frequency from ∼ 0.6 Hz. If the renal catecholamine extraction was not taken into account the effect of BCO was underestimated. The renal DA overflow to plasma was about one-fifth of the NE overflow both at rest and during BCO, indicating that there was no preferential activation of noradrenergic or putative dopaminergic nerves by BCO

  19. Effect of imidazole and indomethacin on hemodynamics of the obstructed canine kidney

    International Nuclear Information System (INIS)

    Balint, P.; Laszlo, K.

    1985-01-01

    In the anesthetized dog renal blood flow (RBF) and its intrarenal distribution were investigated by the radioactive microsphere technique 24 hr after bilateral (BUL) and unilateral (UUL) ureteral ligation. In the control series indomethacin (IM) led to a decrease in RBF with outward shifting of zonal perfusions; imidazole (IA) did not cause significant changes in renal hemodynamics. In the BUL series there was a sharp drop in RBF with a proportional decrease in outer (OC) and inner (IC) cortical perfusion; IM treatment resulted in a further decrease in overall and zonal perfusions. IA, a selective inhibitor of thromboxane synthetase, relieved IC vasoconstriction. In the ligated kidney of the UUL preparations decrease in RBF was due to OC vasoconstriction, while IC perfusion equalled controls. IM led to an overall vasoconstriction in all cortical layers; IA did not influence either total RBF or its distribution. It was concluded that BUL ''unmasked'' TXA2 production in the IC layers, while IM treatment, by inhibiting the production of PGE2, PGI2, and TXA2, resulted in an overall vasoconstriction both in controls and the BUL and UUL preparations

  20. Developmental and radiobiologic characteristics of canine multinucleated, osteoclast-like cells generated in vitro from canine bone marrow

    International Nuclear Information System (INIS)

    Seed, T.M.; Kaspar, L.V.; Domann, F.; Niiro, G.K.; LeBuis, D.A.

    1988-01-01

    We report here our initial observations on the growth and morphology, and developmental radiosensitivity of giant, multinucleated, osteoclast-like cells (MN-OS) generated through in vitro cultivation of hematopoietic progenitor-enriched canine bone marrow samples. Maximum cell densities of 5.5 x 10(3) to 6.5 x 10(3) MN-OS per cm2 of growth area were achieved following 10 to 14 days of culture at 37 degrees C. Acute gamma irradiation of the initial marrow inocula resulted in significant, dose-dependent perturbations of MN-OS formation, growth, and development. Attempts to estimate radiosensitivity of MN-OS progenitors from canine marrow yielded a range of Do values from a low of 212 cGy measured at six days of culture to higher values of 405 to 542 cGy following 10 to 22 days of culture. At the intermediate times of culture (10 to 14 days), the radiation-induced responses were clearly biphasic, reflecting either (a) the presence of multiple subpopulations of MN-OS progenitors with varying degrees of radiosensitivity or (b) the inherent biphasic nature of MN-OS development involving early progenitor cell proliferation followed by maturation and subsequent fusion. Morphologically, MN-OS generated from irradiated marrow inocula appeared only marginally altered, with alterations expressed largely in a biphasic, dose-dependent fashion in terms of smaller cell size, reduced number of nuclei, increased expression of both surface microprojections, and a unique set of crystalloid cytoplasmic inclusions. Functionally, MN-OS appeared to be impaired by irradiation of marrow progenitors, as evidenced by failure to initiate resorptive attachments to devitalized bone spicules in vitro

  1. Towards immunotherapy with redirected T cells in a large animal model: Ex vivo activation, expansion, and genetic modification of canine T cells

    Science.gov (United States)

    Mata, Melinda; Vera, Juan; Gerken, Claudia; Rooney, Cliona M.; Miller, Tasha; Pfent, Catherine; Wang, Lisa L.; Wilson-Robles, Heather M.; Gottschalk, Stephen

    2014-01-01

    Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has shown promising anti-tumor activity in early phase clinical studies, especially for hematological malignancies. However, most preclinical models do not reliably mimic human disease. We reasoned that developing an adoptive T-cell therapy approach for spontaneous osteosarcoma (OS) occurring in dogs would more closely reproduce the condition in human cancer. To generate CAR-expressing canine T cells we developed expansion and transduction protocols that allow for the generation of sufficient numbers of CAR-expressing canine T cells for future clinical studies in dogs within 2 weeks of ex vivo culture. To evaluate the functionality of CAR-expressing canine T cells we targeted HER2-positive OS. We demonstrate that canine OS is positive for HER2, and that canine T cells expressing a HER2-specific CAR with human-derived transmembrane and CD28.ζ signaling domains recognize and kill HER2-positive canine OS cell lines in an antigen-dependent manner. To reduce the potential immunogenicity of the CAR we evaluated a CAR with canine-derived transmembrane and signaling domains, and found no functional difference between human and canine CARs. Hence, we have successfully developed a strategy to generate CAR-expressing canine T cells for future preclinical studies in dogs. Testing T-cell therapies in an immunocompetent, outbred animal model may improve our ability to predict their safety and efficacy prior to conducting studies in humans. PMID:25198528

  2. Expression of PD-L1 on canine tumor cells and enhancement of IFN-γ production from tumor-infiltrating cells by PD-L1 blockade.

    Directory of Open Access Journals (Sweden)

    Naoya Maekawa

    Full Text Available Programmed death 1 (PD-1, an immunoinhibitory receptor, and programmed death ligand 1 (PD-L1, its ligand, together induce the "exhausted" status in antigen-specific lymphocytes and are thus involved in the immune evasion of tumor cells. In this study, canine PD-1 and PD-L1 were molecularly characterized, and their potential as therapeutic targets for canine tumors was discussed. The canine PD-1 and PD-L1 genes were conserved among canine breeds. Based on the sequence information obtained, the recombinant canine PD-1 and PD-L1 proteins were constructed; they were confirmed to bind each other. Antibovine PD-L1 monoclonal antibody effectively blocked the binding of recombinant PD-1 with PD-L1-expressing cells in a dose-dependent manner. Canine melanoma, mastocytoma, renal cell carcinoma, and other types of tumors examined expressed PD-L1, whereas some did not. Interestingly, anti-PD-L1 antibody treatment enhanced IFN-γ production from tumor-infiltrating cells. These results showed that the canine PD-1/PD-L1 pathway is also associated with T-cell exhaustion in canine tumors and that its blockade with antibody could be a new therapeutic strategy for canine tumors. Further investigations are needed to confirm the ability of anti-PD-L1 antibody to reactivate canine antitumor immunity in vivo, and its therapeutic potential has to be further discussed.

  3. Genomic Knockout of Endogenous Canine P-Glycoprotein in Wild-Type, Human P-Glycoprotein and Human BCRP Transfected MDCKII Cell Lines by Zinc Finger Nucleases.

    Science.gov (United States)

    Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert

    2015-06-01

    To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.

  4. The regulation of growth and metabolism of kidney stem cell with regional specificity using extracellular matrix derived from kidney

    OpenAIRE

    O’Neill, John D.; Freytes, Donald O.; Anandappa, Annabelle; Oliver, Juan A.; Vunjak-Novakovic, Gordana

    2013-01-01

    Native extracellular matrix (ECM) that is secreted and maintained by resident cells is of great interest for cell culture and cell delivery. We hypothesized that specialized bioengineered niches for stem cells can be established using ECM-derived scaffolding materials. Kidney was selected as a model system because of the high regional diversification of renal tissue matrix. By preparing the ECM from three specialized regions of the kidney (cortex, medulla, and papilla; whole kidney, heart, an...

  5. Antitumor effects of celecoxib in COX-2 expressing and non-expressing canine melanoma cell lines.

    Science.gov (United States)

    Seo, Kyoung-Won; Coh, Ye-Rin; Rebhun, Robert B; Ahn, Jin-Ok; Han, Sei-Myung; Lee, Hee-Woo; Youn, Hwa-Young

    2014-06-01

    Cyclooxygenase-2 (COX-2) is a potential target for chemoprevention and cancer therapy. Celecoxib, a selective COX-2 inhibitor, inhibits cell growth of various types of human cancer including malignant melanoma. In dogs, oral malignant melanoma represents the most common oral tumor and is often a fatal disease. Therefore, there is a desperate need to develop additional therapeutic strategies. The purpose of this study was to investigate the anticancer effects of celecoxib on canine malignant melanoma cell lines that express varying levels of COX-2. Celecoxib induced a significant anti-proliferative effect in both LMeC and CMeC-1 cells. In the CMeC cells, treatment of 50 μM celecoxib caused an increase in cells in the G0/G1 and a decreased proportion of cells in G-2 phase. In the LMeC cells, 50 μM of celecoxib led to an increase in the percentage of cells in the sub-G1 phase and a significant activation of caspase-3 when compared to CMeC-1 cells. In conclusion, these results demonstrate that celecoxib exhibits antitumor effects on canine melanoma LMeC and CMeC-1 cells by induction of G1-S cell cycle arrest and apoptosis. Our data suggest that celecoxib might be effective as a chemotherapeutic agent against canine malignant melanoma. Copyright © 2014. Published by Elsevier Ltd.

  6. T cell cytokine gene polymorphisms in canine diabetes mellitus.

    Science.gov (United States)

    Short, Andrea D; Catchpole, Brian; Kennedy, Lorna J; Barnes, Annette; Lee, Andy C; Jones, Chris A; Fretwell, Neale; Ollier, William E R

    2009-03-15

    Insulin-deficiency diabetes in dogs shares some similarities with human latent autoimmune diabetes of adults (LADA). Canine diabetes is likely to have a complex pathogenesis with multiple genes contributing to overall susceptibility and/or disease progression. An association has previously been shown between canine diabetes and MHC class II genes, although other genes are also likely to contribute to the genetic risk. Potential diabetes susceptibility genes include immuno-regulatory TH1/TH2 cytokines such as IFNgamma, IL-12, IL-4 and IL-10. We screened these candidate genes for single nucleotide polymorphisms (SNPs) in a range of different dog breeds using dHPLC analysis and DNA sequencing. Thirty-eight of the SNPs were genotyped in crossbreed dogs and seven other breed groups (Labrador Retriever, West Highland White Terrier, Collie, Schnauzer, Cairn Terrier, Samoyed and Cavalier King Charles Spaniel), which demonstrated substantial intra-breed differences in allele frequencies. When SNPs were examined for an association with diabetes by case:control analysis significant associations were observed for IL-4 in three breeds, the Collie, Cairn Terrier and Schnauzer and for IL-10 in the Cavalier King Charles Spaniel. These results suggest that canine cytokine genes regulating the TH1/TH2 immune balance might play a contributory role in determining susceptibility to diabetes in some breeds.

  7. Purification of infectious canine parvovirus from cell culture by affinity chromatography with monoclonal antibodies.

    NARCIS (Netherlands)

    J. Groen (Jan); N. Juntti; J.S. Teppema; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)

    1987-01-01

    textabstractImmuno affinity chromatography with virus neutralizing monoclonal antibodies, directed to the haemagglutinating protein of canine parvovirus (CPV) was used to purify and concentrate CPV from infected cell culture. The procedure was monitored by testing the respective fractions in an

  8. In vitro regeneration of kidney from pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Osafune, Kenji, E-mail: osafu@cira.kyoto-u.ac.jp [Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); JST Yamanaka iPS Cell Special Project, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2010-10-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  9. In vitro regeneration of kidney from pluripotent stem cells

    International Nuclear Information System (INIS)

    Osafune, Kenji

    2010-01-01

    Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.

  10. Progenitor cells in the kidney: biology and therapeutic perspectives

    NARCIS (Netherlands)

    Rookmaaker, M.B.; Verhaar, M.C.; Zonneveld, A.J. van; Rabelink, T.J.

    2004-01-01

    Progenitor cells in the kidney: Biology and therapeutic perspectives. The stem cell may be viewed as an engineer who can read the blue print and become the building. The role of this fascinating cell in physiology and pathophysiology has recently attracted a great deal of interest. The archetype of

  11. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    Science.gov (United States)

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  12. The effects of piroxicam and deracoxib on canine mammary tumour cell line.

    Science.gov (United States)

    Ustün Alkan, Fulya; Ustüner, Oya; Bakırel, Tülay; Cınar, Suzan; Erten, Gaye; Deniz, Günnur

    2012-01-01

    Cyclooxygenase (COX) inhibitors, already widely used for the treatment of pain and inflammation, are considered as promising compounds for the prevention and treatment of neoplasia. The aim of our study was to determine the direct antiproliferative effects of nonsteroidal anti-inflammatory drugs (NSAIDs), piroxicam and deracoxib, at a variety of concentrations as both single and combined treatments on canine mammary carcinoma cell line CMT-U27 and to understand the mechanisms of cell death. MTT assay was performed to determine cell viability, and flow cytometric analyses were performed to evaluate apoptosis and cell cycle alterations. Significant decrease in cell viability was observed at high concentrations of piroxicam and deracoxib in both single and combined treatments after 72 h incubation. Combined treatment produced a significantly greater inhibition than that caused by either agent alone. Also apoptotic cell number was increased by both drugs at the cytotoxic concentrations. However, concomitant treatment of cells with piroxicam and deracoxib resulted in significant induction of apoptosis at lower concentrations and accumulation of cells in the G₀/G₁ phase. Significant cytotoxic effects exhibited by the combination of piroxicam and deracoxib against canine mammary carcinoma cells in vitro suggest an attractive approach for the treatment of canine mammary carcinoma.

  13. Isolation, culture expansion and characterization of canine bone marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    D Kazemi

    2016-07-01

    Full Text Available The purpose of the present study was to isolate, culture expand and characterize canine bone marrow derived mesenchymal stem cells. Bone marrow aspirates of 15 adult male dogs were collected to this end and their mononuclear cells isolated by centrifugation and cultured in standard media. The adherent cells were isolated and their mesenchymal origin was confirmed at 3rd passage by cellular morphology, expression of surface antigens and differentiation to osteogenic and adipogenic lineage. After 4 days, spindle shaped fibroblast like cells which were apparently bone marrow derived mesenchymal stem cells appeared in culture medium and their numbers increased over time. The cells reached 3rd passage with over 75% confluent after a mean of 22.89±5.75 days. Flow cytometric analysis revealed that the cells negatively expressed CD34 and CD45 antigens while positively expressing CD44 and CD105 antigens. Differentiation into osteogenic and adipogenic lineage had taken place after one month culture in induction medium. VDR, COL1A1, BGLAP and SPARC gene expression indicated that mesenchymal stem cells isolated from canine bone marrow had differentiated into osteogenic lineage. These findings can form the basis of any forthcoming clinical studies involving the use of canine mesenchymal stem cells particularly in the field of bone and cartilage regeneration.

  14. The Effects of Piroxicam and Deracoxib on Canine Mammary Tumour Cell Line

    Directory of Open Access Journals (Sweden)

    Fulya Üstün Alkan

    2012-01-01

    Full Text Available Cyclooxygenase (COX inhibitors, already widely used for the treatment of pain and inflammation, are considered as promising compounds for the prevention and treatment of neoplasia. The aim of our study was to determine the direct antiproliferative effects of nonsteroidal anti-inflammatory drugs (NSAIDs, piroxicam and deracoxib, at a variety of concentrations as both single and combined treatments on canine mammary carcinoma cell line CMT-U27 and to understand the mechanisms of cell death. MTT assay was performed to determine cell viability, and flow cytometric analyses were performed to evaluate apoptosis and cell cycle alterations. Significant decrease in cell viability was observed at high concentrations of piroxicam and deracoxib in both single and combined treatments after 72 h incubation. Combined treatment produced a significantly greater inhibition than that caused by either agent alone. Also apoptotic cell number was increased by both drugs at the cytotoxic concentrations. However, concomitant treatment of cells with piroxicam and deracoxib resulted in significant induction of apoptosis at lower concentrations and accumulation of cells in the G0/G1 phase. Significant cytotoxic effects exhibited by the combination of piroxicam and deracoxib against canine mammary carcinoma cells in vitro suggest an attractive approach for the treatment of canine mammary carcinoma.

  15. Enrofloxacin enhances the effects of chemotherapy in canine osteosarcoma cells with mutant and wild-type p53.

    Science.gov (United States)

    York, D; Withers, S S; Watson, K D; Seo, K W; Rebhun, R B

    2017-09-01

    Adjuvant chemotherapy improves survival time in dogs receiving adequate local control for appendicular osteosarcoma, but most dogs ultimately succumb to metastatic disease. The fluoroquinolone antibiotic enrofloxacin has been shown to inhibit survival and proliferation of canine osteosarcoma cells in vitro. Others have reported that fluoroquinolones may modulate cellular responses to DNA damaging agents and that these effects may be differentially mediated by p53 activity. We therefore determined p53 status and activity in three canine osteosarcoma cell lines and examined the effects of enrofloxacin when used alone or in combination with doxorubicin or carboplatin chemotherapy. Moresco and Abrams canine osteosarcoma cell lines contained mutations in p53, while no mutations were identified in the D17 cells or in a normal canine osteoblast cell line. The addition of enrofloxacin to either doxorubicin or carboplatin resulted in further reductions in osteosarcoma cell viability; this effect was apparent regardless of p53 mutational status or downstream activity. © 2016 John Wiley & Sons Ltd.

  16. In vitro anti-tubulin effects of mebendazole and fenbendazole on canine glioma cells.

    Science.gov (United States)

    Lai, S R; Castello, S A; Robinson, A C; Koehler, J W

    2017-12-01

    Benzimidazole anthelmintics have reported anti-neoplastic effects both in vitro and in vivo. The purpose of this study was to evaluate the in vitro chemosensitivity of three canine glioma cell lines to mebendazole and fenbendazole. The mean inhibitory concentration (IC 50 ) (±SD) obtained from performing the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay after treating J3T, G06-A, and SDT-3G cells for 72 h with mebendazole were 0.030 ± 0.003, 0.080 ± 0.015 and 0.030 ± 0.006 μM respectively, while those for fenbendazole were 0.550  ± 0.015, 1.530 ± 0.159 and 0.690 ± 0.095 μM; treatment of primary canine fibroblasts for 72 h at IC 50 showed no significant effect. Immunofluorescence studies showed disruption of tubulin after treatment. Mebendazole and fenbendazole are cytotoxic in canine glioma cell lines in vitro and may be good candidates for treatment of canine gliomas. Further in vivo studies are required. © 2017 John Wiley & Sons Ltd.

  17. Guanine nucleotide regulation of α1-adrenergic receptors of muscle and kidney eptihelial cells

    International Nuclear Information System (INIS)

    Terman, B.I.; Hughes, R.J.; Slivka, S.R.; Insel, P.A.

    1986-01-01

    The authors have examined the effect of guanine nucleotides on the interaction of adrenergic agents with α 1 -adrenergic receptors of two cell lines, the Madin-Darby Canine Kidney (MDCK) and BC3H-1 muscle cells. While gaunylylimidodiphosphoate (Gpp(NH)p) had no effect on the affinity or the total number of [ -3 H]prazosin binding sites in membranes prepared from these cells, the nucleotide decreased the apparent affinity of the agonist epinephrine in competing for [ 3 H]prazosin binding sites in both cell types. The EC 50 of Gpp(NH)p was ∼100 μM, and a maximal effect was seen at 500 μM. In contrast, 100 μM Gpp(NH)p yielding maximal shifts in binding of epinephrine to β-adrenergic receptors in BC3H-1 cell membranes. Guanine nucleotides were significantly more effective than adenine nucleotides in shifting agonist affinity for the α 1 -receptor and Mg ++ was required to observe a maximal effect. α 1 -receptor agonists activated phosphatidylinositol (PI) hydrolysis in both cell types, but have no direct effect on membrane adenylate cyclase activity. In intact BC3H-1 cells, α 1 -agonists inhibited β-adrenergic cAMP production, an effect which appears in preliminary studies not to result from enhanced phosphodieterase activity. These results show that agonist binding to α 1 -adrenergic receptors in mammalian kidney and muscle cells is regulated by guanine nucleotides. This regulation and inturn transmembrane signalling (PI hydrolysis) by these receptors appear to involve a guanine nucleotide binding (G) protein, which may be different than G/sub s/ and G/sub i/

  18. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells

    International Nuclear Information System (INIS)

    Nadeau, Marie-Ève; Rico, Charlène; Tsoi, Mayra; Vivancos, Mélanie; Filimon, Sabin; Paquet, Marilène; Boerboom, Derek

    2015-01-01

    Valosin containing protein (VCP) is a critical mediator of protein homeostasis and may represent a valuable therapeutic target for several forms of cancer. Overexpression of VCP occurs in many cancers, and often in a manner correlating with malignancy and poor outcome. Here, we analyzed VCP expression in canine lymphoma and assessed its potential as a therapeutic target for this disease. VCP expression in canine lymphomas was evaluated by immunoblotting and immunohistochemistry. The canine lymphoma cell lines CLBL-1, 17–71 and CL-1 were treated with the VCP inhibitor Eeyarestatin 1 (EER-1) at varying concentrations and times and were assessed for viability by trypan blue exclusion, apoptosis by TUNEL and caspase activity assays, and proliferation by propidium iodide incorporation and FACS. The mechanism of EER-1 action was determined by immunoblotting and immunofluorescence analyses of Lys48 ubiquitin and markers of ER stress (DDIT3), autophagy (SQSTM1, MAP1LC3A) and DNA damage (γH2AFX). TRP53/ATM-dependent signaling pathway activity was assessed by immunoblotting for TRP53 and phospho-TRP53 and real-time RT-PCR measurement of Cdkn1a mRNA. VCP expression levels in canine B cell lymphomas were found to increase with grade. EER-1 treatment killed canine lymphoma cells preferentially over control peripheral blood mononuclear cells. EER-1 treatment of CLBL-1 cells was found to both induce apoptosis and cell cycle arrest in G1. Unexpectedly, EER-1 did not appear to act either by inducing ER stress or inhibiting the aggresome-autophagy pathway. Rather, a rapid and dramatic increase in γH2AFX expression was noted, indicating that EER-1 may act by promoting DNA damage accumulation. Increased TRP53 phosphorylation and Cdkn1a mRNA levels indicated an activation of the TRP53/ATM DNA damage response pathway in response to EER-1, likely contributing to the induction of apoptosis and cell cycle arrest. These results correlate VCP expression with malignancy in canine B cell

  19. Inhibition of survivin influences the biological activities of canine histiocytic sarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hiroki Yamazaki

    Full Text Available Canine histiocytic sarcoma (CHS is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS.

  20. Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis

    Directory of Open Access Journals (Sweden)

    Cassali Geovanni D

    2010-02-01

    Full Text Available Abstract Background It has been suggested that columnar cell lesions indicate an alteration of the human mammary gland involved in the development of breast cancer. They have not previously been described in canine mammary gland. The aim of this paper is describe the morphologic spectrum of columnar cell lesions in canine mammary gland specimens and their association with other breast lesions. Methods A total of 126 lesions were subjected to a comprehensive morphological review based upon the human breast classification system for columnar cell lesions. The presence of preinvasive (epithelial hyperplasia and in situ carcinoma and invasive lesions was determined and immunophenotypic analysis (estrogen receptor (ER, progesterone receptor (PgR, high molecular weight cytokeratin (34βE-12, E-cadherin, Ki-67, HER-2 and P53 was perfomed. Results Columnar cell lesions were identified in 67 (53.1% of the 126 canine mammary glands with intraepithelial alterations. They were observed in the terminal duct lobular units and characterized at dilated acini may be lined by several layers of columnar epithelial cells with elongated nuclei. Of the columnar cell lesions identified, 41 (61.2% were without and 26 (38.8% with atypia. Association with ductal hyperplasia was observed in 45/67 (67.1%. Sixty (89.5% of the columnar cell lesions coexisted with neoplastic lesions (20 in situ carcinomas, 19 invasive carcinomas and 21 benign tumors. The columnar cells were ER, PgR and E-cadherin positive but negative for cytokeratin 34βE-12, HER-2 and P53. The proliferation rate as measured by Ki-67 appeared higher in the lesions analyzed than in normal TDLUs. Conclusions Columnar cell lesions in canine mammary gland are pathologically and immunophenotypically similar to those in human breast. This may suggest that dogs are a suitable model for the comparative study of noninvasive breast lesions.

  1. Columnar cell lesions of the canine mammary gland: pathological features and immunophenotypic analysis

    International Nuclear Information System (INIS)

    Ferreira, Enio; Gobbi, Helenice; Saraiva, Bruna S; Cassali, Geovanni D

    2010-01-01

    It has been suggested that columnar cell lesions indicate an alteration of the human mammary gland involved in the development of breast cancer. They have not previously been described in canine mammary gland. The aim of this paper is describe the morphologic spectrum of columnar cell lesions in canine mammary gland specimens and their association with other breast lesions. A total of 126 lesions were subjected to a comprehensive morphological review based upon the human breast classification system for columnar cell lesions. The presence of preinvasive (epithelial hyperplasia and in situ carcinoma) and invasive lesions was determined and immunophenotypic analysis (estrogen receptor (ER), progesterone receptor (PgR), high molecular weight cytokeratin (34βE-12), E-cadherin, Ki-67, HER-2 and P53) was perfomed. Columnar cell lesions were identified in 67 (53.1%) of the 126 canine mammary glands with intraepithelial alterations. They were observed in the terminal duct lobular units and characterized at dilated acini may be lined by several layers of columnar epithelial cells with elongated nuclei. Of the columnar cell lesions identified, 41 (61.2%) were without and 26 (38.8%) with atypia. Association with ductal hyperplasia was observed in 45/67 (67.1%). Sixty (89.5%) of the columnar cell lesions coexisted with neoplastic lesions (20 in situ carcinomas, 19 invasive carcinomas and 21 benign tumors). The columnar cells were ER, PgR and E-cadherin positive but negative for cytokeratin 34βE-12, HER-2 and P53. The proliferation rate as measured by Ki-67 appeared higher in the lesions analyzed than in normal TDLUs. Columnar cell lesions in canine mammary gland are pathologically and immunophenotypically similar to those in human breast. This may suggest that dogs are a suitable model for the comparative study of noninvasive breast lesions

  2. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Oduvaldo Câmara Marques Pereira-Junior

    2013-05-01

    Full Text Available PURPOSE: To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC intending bone tissue engineering. METHODS: MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS: The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION: All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.

  3. Fish kidney cells show higher tolerance to hyperosmolality than amphibian

    Directory of Open Access Journals (Sweden)

    Lang Gui

    2018-05-01

    Full Text Available In contrast to fish, amphibians inhabit both aquatic and terrestrial environments. To better understand osmoregulation in fish and amphibian, we have investigated the morphological changes in kidney cells to osmotic stress. To address this, kidney cell line isolated from the freshwater grass carp (CIK and Chinese giant salamander (GSK were challenged to different mediums with distinct osmotic pressures (100, 300 and 700 mOsm. Morphological alterations of the fish and amphibian cells were compared by optical and electron microscopy. Following hyposmotic treatment (100 mOsm, both CIK and GSK cells became unhealthy and show condensed chromatin, swollen mitochondria and cytoplasmic vacuole. Meanwhile, after hyperosmotic treatment (700 mOsm, shrunken CIK cells with multipolar shape, pale or lightly stained cytoplasm, condensed chromatin, vacuoles and swollen mitochondria were detected. GSK cells were seriously damaged and most were completely lysed. The results suggest that fish kidney cells show a higher degree of tolerance to hyperosmoticity by comparing to amphibians and provide novel insights on the osmoregulatory capacity and adaptability of kidney cells between the two animal groups.

  4. Basement membrane and interstitial proteoglycans produced by MDCK cells correspond to those expressed in the kidney cortex

    DEFF Research Database (Denmark)

    Erickson, A C; Couchman, J R

    2001-01-01

    Multiple proteoglycans (PGs) are present in all basement membranes (BM) and may contribute to their structure and function, but their effects on cell behavior are not well understood. Their postulated functions include: a structural role in maintaining tissue histoarchitecture, or aid in selective...... filtration processes; sequestration of growth factors; and regulation of cellular differentiation. Furthermore, expression PGs has been found to vary in several disease states. In order to elucidate the role of PGs in the BM, a well-characterized model of polarized epithelium, Madin-Darby canine kidney (MDCK...... core proteins or CS stubs generated by cABC treatment, revealed that both basement membrane and interstitial PGs are secreted by MDCK cells. HSPGs expressed by MDCK cells are perlecan, agrin, and collagen XVIII. Various CSPG core proteins are made by MDCK cells and have been identified as biglycan...

  5. Effects of calcitriol, seocalcitol, and medium-chain triglyceride on a canine transitional cell carcinoma cell line

    DEFF Research Database (Denmark)

    Kaewsakhorn, T.; Kisseberth, W.C.; Capen, C.C.

    2005-01-01

    Background: Transitional cell carcinoma (TCC) in dogs is associated with high morbidity and mortality. Calcitriol and its analog seocalcitol, combined with medium-chain triglyceride (MCT), have potential for the treatment of this disease. Materials and Methods: TCC cells were treated with calcitr...... inhibited TCC cell growth via induction of cell cycle arrest and MCT enhanced this effect. Therefore, calcitriol and seocalcitol with MCT may have therapeutic potential for canine bladder cancer....... with calcitriol or seocalcitol, alone or combined with MCT. Cell growth, cell cycle kinetics, vitamin D receptor (VDR) localization and expression, and Bcl-2 expression were measured. Results: Canine TCC expresses high levels of nuclear VDR. Furthermore, calcitriol and seocalcitol significantly inhibited cell...

  6. Anticancer Effects of Geopropolis Produced by Stingless Bees on Canine Osteosarcoma Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Naiara Costa Cinegaglia

    2013-01-01

    Full Text Available Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent, and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment.

  7. Anticancer effects of geopropolis produced by stingless bees on canine osteosarcoma cells in vitro.

    Science.gov (United States)

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Araújo, Maria José Abigail Mendes; Búfalo, Michelle Cristiane; Sforcin, José Maurício

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent), and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent) had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment.

  8. Apoptotic intrinsic pathway proteins predict survival in canine cutaneous mast cell tumours.

    Science.gov (United States)

    Barra, C N; Macedo, B M; Cadrobbi, K G; Pulz, L H; Huete, G C; Kleeb, S R; Xavier, J G; Catão-Dias, J L; Nishiya, A T; Fukumasu, H; Strefezzi, R F

    2018-03-01

    Mast cell tumours (MCTs) are the most frequent canine round cell neoplasms and show variable biological behaviours with high metastatic and recurrence rates. The disease is treated surgically and wide margins are recommended. Adjuvant chemotherapy and radiotherapy used in this disease cause DNA damage in neoplastic cells, which is aimed to induce apoptotic cell death. Resisting cell death is a hallmark of cancer, which contributes to the development and progression of tumours. The aim of this study was to investigate the expression of the proteins involved in the apoptotic intrinsic pathway and to evaluate their potential use as prognostic markers for canine cutaneous MCTs. Immunohistochemistry for BAX, BCL2, APAF1, Caspase-9, and Caspase-3 was performed in 50 canine cases of MCTs. High BAX expression was associated with higher mortality rate and shorter survival. BCL2 and APAF1 expressions offered additional prognostic information to the histopathological grading systems. The present results indicate that variations in the expression of apoptotic proteins are related to malignancy of cutaneous MCTs in dogs. © 2017 John Wiley & Sons Ltd.

  9. Modeling Kidney Disease with iPS Cells

    Science.gov (United States)

    Freedman, Benjamin S.

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are somatic cells that have been transcriptionally reprogrammed to an embryonic stem cell (ESC)-like state. iPSCs are a renewable source of diverse somatic cell types and tissues matching the original patient, including nephron-like kidney organoids. iPSCs have been derived representing several kidney disorders, such as ADPKD, ARPKD, Alport syndrome, and lupus nephritis, with the goals of generating replacement tissue and ‘disease in a dish’ laboratory models. Cellular defects in iPSCs and derived kidney organoids provide functional, personalized biomarkers, which can be correlated with genetic and clinical information. In proof of principle, disease-specific phenotypes have been described in iPSCs and ESCs with mutations linked to polycystic kidney disease or focal segmental glomerulosclerosis. In addition, these cells can be used to model nephrotoxic chemical injury. Recent advances in directed differentiation and CRISPR genome editing enable more specific iPSC models and present new possibilities for diagnostics, disease modeling, therapeutic screens, and tissue regeneration using human cells. This review outlines growth opportunities and design strategies for this rapidly expanding and evolving field. PMID:26740740

  10. Canine distemper virus induces apoptosis in cervical tumor derived cell lines

    Directory of Open Access Journals (Sweden)

    Rajão Daniela S

    2011-06-01

    Full Text Available Abstract Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi, by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  11. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines.

    Science.gov (United States)

    Seo, Kyoung won; Holt, Roseline; Jung, Yong-Sam; Rodriguez, Carlos O; Chen, Xinbin; Rebhun, Robert B

    2012-01-01

    Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1) expression resulting in decreased proliferation and increased S-G(2)/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma.

  12. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Kyoung won Seo

    Full Text Available Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1 expression resulting in decreased proliferation and increased S-G(2/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma.

  13. 17-AAG and Apoptosis, Autophagy, and Mitophagy in Canine Osteosarcoma Cell Lines.

    Science.gov (United States)

    Massimini, M; Palmieri, C; De Maria, R; Romanucci, M; Malatesta, D; De Martinis, M; Maniscalco, L; Ciccarelli, A; Ginaldi, L; Buracco, P; Bongiovanni, L; Della Salda, L

    2017-05-01

    Canine osteosarcoma is highly resistant to current chemotherapy; thus, clarifying the mechanisms of tumor cell resistance to treatments is an urgent need. We tested the geldanamycin derivative 17-AAG (17-allylamino-17-demethoxygeldanamycin) prototype of Hsp90 (heat shock protein 90) inhibitors in 2 canine osteosarcoma cell lines, D22 and D17, derived from primary and metastatic tumors, respectively. With the aim to understand the interplay between cell death, autophagy, and mitophagy, in light of the dual effect of autophagy in regulating cancer cell viability and death, D22 and D17 cells were treated with different concentrations of 17-AAG (0.5 μM, 1 μM) for 24 and 48 hours. 17-AAG-induced apoptosis, necrosis, autophagy, and mitophagy were assessed by transmission electron microscopy, flow cytometry, and immunofluorescence. A simultaneous increase in apoptosis, autophagy, and mitophagy was observed only in the D22 cell line, while D17 cells showed low levels of apoptotic cell death. These results reveal differential cell response to drug-induced stress depending on tumor cell type. Therefore, pharmacological treatments based on proapoptotic chemotherapy in association with autophagy regulators would benefit from a predictive in vitro screening of the target cell type.

  14. Anticancer Effects of Geopropolis Produced by Stingless Bees on Canine Osteosarcoma Cells In Vitro

    OpenAIRE

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Ara?jo, Maria Jos? Abigail Mendes; B?falo, Michelle Cristiane; Sforcin, Jos? Maur?cio

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geop...

  15. Controversial results of therapy with mesenchymal stem cells in the acute phase of canine distemper disease.

    Science.gov (United States)

    Pinheiro, A O; Cardoso, M T; Vidane, A S; Casals, J B; Passarelli, D; Alencar, A L F; Sousa, R L M; Fantinato-Neto, P; Oliveira, V C; Lara, V M; Ambrósio, C E

    2016-05-23

    Distemper disease is an infectious disease reported in several species of domestic and wild carnivores. The high mortality rate of animals infected with canine distemper virus (CDV) treated with currently available therapies has driven the study of new efficacious treatments. Mesenchymal stem cell (MSC)-based therapy is a promising therapeutic option for many degenerative, hereditary, and inflammatory diseases. Therefore, the aim of this study was to characterize stem cells derived from the canine fetal olfactory epithelium and to assess the systemic response of animals infected with CDV to symptomatic therapy and treatment with MSCs. Eight domestic mongrel dogs (N = 8) were divided into two groups: support group (SG) (N = 5) and support group + cell therapy (SGCT) (N = 3), which were monitored over 15 days. Blood samples were collected on days 0, 6, 9, 12, and 15 to assess blood count and serum biochemistry (urea, creatinine, alanine transferase, alkaline phosphatase, gamma-glutamyl transferase, total protein, albumin, and globulin), and urine samples were obtained on days 0 and 15 for urinary evaluation (urine I). The results showed a high mortality rate (SG = 4 and SGCT = 2), providing inadequate data on the clinical course of CDV infection. MSC therapy resulted in no significant improvement when administered during the acute phase of canine distemper disease, and a prevalence of animals with high mortality rate was found in both groups due to the severity of symptoms.

  16. The effects of baicalein on canine osteosarcoma cell proliferation and death.

    Science.gov (United States)

    Helmerick, E C; Loftus, J P; Wakshlag, J J

    2014-12-01

    Flavonoids are a group of modified triphenolic compounds from plants with medicinal properties. Baicalein, a specific flavone primarily isolated from plant roots (Scutellaria baicalensis), is commonly used in Eastern medicine for its anti-inflammatory and antineoplastic properties. Previous research shows greater efficacy for baicalein than most flavonoids; however, there has been little work examining their effects on sarcoma cells, let alone canine cells. Three canine osteosarcoma cell lines (HMPOS, D17 and OS 2.4) were treated with baicalein to examine cell viability, cell cycle kinetics, anchorage-independent growth and apoptosis. Results showed that osteosarcoma cells were sensitive to baicalein at concentrations from approximately 1 to 25 μM. Modest cell cycle changes were observed in one cell line. Baicalein was effective in inducing apoptosis and did not prevent doxorubicin cell proliferation inhibition in all the cell lines. The mechanism for induction of apoptosis has not been fully elucidated; however, changes in mitochondrial permeability supersede the apoptotic response. © 2012 Blackwell Publishing Ltd.

  17. Cell-based therapies for chronic kidney disease

    NARCIS (Netherlands)

    van Koppen, A.N.

    2013-01-01

    Chronic kidney disease (CKD) may lead to end-stage renal failure, requiring renal replacement strategies. Development of new therapies to reduce progression of CKD is therefore a major global public health target. The aim of this thesis was to investigate whether cell-based therapies have the

  18. cfa-miR-143 Promotes Apoptosis via the p53 Pathway in Canine Influenza Virus H3N2-Infected Cells.

    Science.gov (United States)

    Zhou, Pei; Tu, Liqing; Lin, Xi; Hao, Xiangqi; Zheng, Qingxu; Zeng, Weijie; Zhang, Xin; Zheng, Yun; Wang, Lifang; Li, Shoujun

    2017-11-25

    MicroRNAs regulate multiple aspects of the host response to viral infection. This study verified that the expression of cfa-miR-143 was upregulated in vivo and in vitro by canine influenza virus (CIV) H3N2 infection. To understand the role of cfa-miR-143 in CIV-infected cells, the target gene of cfa-miR-143 was identified and assessed for correlations with proteins involved in the apoptosis pathway. A dual luciferase reporter assay showed that cfa-miR-143 targets insulin-like growth factor binding protein 5 (Igfbp5). Furthermore, a miRNA agomir and antagomir of cfa-miR-143 caused the downregulation and upregulation of Igfbp5, respectively, in CIV-infected madin-darby canine kidney (MDCK) cells. This study demonstrated that cfa-miR-143 stimulated p53 and caspase3 activation and induced apoptosis via the p53 pathway in CIV H3N2-infected cells. In conclusion, CIV H3N2 induced the upregulation of cfa-miR-143, which contributes to apoptosis via indirectly activating the p53-caspase3 pathway.

  19. Effect of bevacizumab on angiogenesis and growth of canine osteosarcoma cells xenografted in athymic mice.

    Science.gov (United States)

    Scharf, Valery F; Farese, James P; Coomer, Alastair R; Milner, Rowan J; Taylor, David P; Salute, Marc E; Chang, Myron N; Neal, Dan; Siemann, Dietmar W

    2013-05-01

    Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.

  20. Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Das K

    2017-04-01

    Full Text Available Kinsuk Das,1 AP Madhusoodan,1 Bhabesh Mili,1 Ajay Kumar,2 AC Saxena,3 Kuldeep Kumar,1 Mihir Sarkar,1 Praveen Singh,4 Sameer Srivastava,5 Sadhan Bag1 1Division of Physiology and Climatology, 2Biochemistry and Food Science Section, 3Division of Surgery, 4Biophysics, Electron Microscopy and Instrumentation Section, 5Division of Veterinary Biotechnology, Indian Council of Agricultural Research – Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India Abstract: In the field of regenerative medicine, numerous potential applications of mesenchymal stem cells (MSCs can be envisaged, due to their ability to differentiate into a range of tissues on the basis of the substrate on which they grow. With the advances in nanotechnology, carbon nanotubes (CNTs have been widely explored for use as cell culture substrate in tissue engineering applications. In this study, canine bone marrow-derived MSCs were considered as the cellular model for an in vitro study to elucidate the collective cellular processes, using three different varieties of thin films of functionalized carbon nanotubes (COOH-single-walled CNTs [SWCNTs], COOH-multiwalled CNTs [MWCNTs] and polyethylene glycol [PEG]-SWCNTs, which were spray dried onto preheated cover slips. Cells spread out better on the CNT films, resulting in higher cell surface area and occurrence of filopodia, with parallel orientation of stress fiber bundles. Canine MSCs proliferated at a slower rate on all types of CNT substrates compared to the control, but no decline in cell number was noticed during the study period. Expression of apoptosis-associated genes decreased on the CNT substrates as time progressed. On flow cytometry after AnnexinV-fluorescein isothiocyanate/propidium iodide (PI staining, total number of apoptotic and necrotic cells remained lower in COOH-functionalized films compared to PEG-functionalized ones. Collectively, these results indicate that COOH-MWCNT substrate provided an

  1. Stem cell extracellular vesicles and kidney injury

    OpenAIRE

    Grange, Cristina; Iampietro, Corinne; Bussolati, Benedetta

    2017-01-01

    Extracellular vesicles (EVs) appear as a new promising cell-free therapy for acute and chronic renal diseases. EVs retain characteristics of the cell of origin and those derived from stem cells may mimic their regenerative properties per se. In fact, EVs contain many active molecules such as proteins and RNA species that act on target cells through different mechanisms, stimulating proliferation and angiogenesis and reducing apoptosis and inflammation. There are several reports that demonstra...

  2. Radiation up-regulated the expression of VEGF in a canine oral melanoma cell line

    International Nuclear Information System (INIS)

    Flickinger, I.; Rütgen, B.C.; Gerner, W.; Tichy, A.; Saalmüller, A.; Kleiter, M.; Calice, I.

    2013-01-01

    To evaluate radiosensitivity and the effects of radiation on the expression of vascular endothelial growth factor (VEGF) and VEGF receptors in the canine oral melanoma cell line, TLM 1, cells were irradiated with doses of 0, 2, 4, 6, 8 and 10 Gray (Gy). Survival rates were then determined by a MTT assay, while vascular endothelial growth factor receptor (VEGFR)-1 and -2 expression was measured by flow cytometry and apoptotic cell death rates were investigated using an Annexin assay. Additionally, a commercially available canine VEGF ELISA kit was used to measure VEGF. Radiosensitivity was detected in TLM 1 cells, and mitotic and apoptotic cell death was found to occur in a radiation dose dependent manner. VEGF was secreted constitutively and significant up-regulation was observed in the 8 and 10 Gy irradiated cells. In addition, a minor portion of TLM 1 cells expressed vascular endothelial growth factor receptor (VEGFR)-1 intracellularly. VEGFR-2 was detected in the cytoplasm and was down-regulated following radiation with increasing dosages. In TLM 1 cells, apoptosis plays an important role in radiation induced cell death. It has also been suggested that the significantly higher VEGF production in the 8 and 10 Gy group could lead to tumour resistance. (author)

  3. Mast cells in Canine parvovirus-2-associated enteritis with crypt abscess.

    Science.gov (United States)

    Woldemeskel, M W; Saliki, J T; Blas-Machado, U; Whittington, L

    2013-11-01

    The role of mast cells (MCs) in allergic reactions and parasitic infections is well established. Their involvement in host immune response against bacterial and viral infections is reported. In this study, investigation is made to determine if MCs are associated with Canine parvovirus-2 (CPV-2)-induced enteritis with crypt abscess (ECA). Mast cell count (MCC) was made on toluidine blue-stained intestinal sections from a total of 34 dogs. These included 16 dogs exhibiting ECA positive for CPV-2 and negative for Canine distemper virus and Canine coronavirus by immunohistochemistry and fluorescent antibody test, 12 dogs with inflammatory bowel disease (IBD), and 6 non-ECA/non-IBD (control) dogs. The average total MCC per high-power field in ECA (40.8 ± 2.2) and IBD (24.7 ± 2.1) was significantly higher (P .05), MCC was also higher in ECA than in IBD. The present study for the first time has documented significantly increased MCs in CPV-2-associated ECA as was previously reported for IBD, showing that MCs may also play an important role in CPV-2-associated ECA. Further studies involving more CPV-infected dogs are recommended to substantiate the findings.

  4. Authentication of Primordial Characteristics of the CLBL-1 Cell Line Prove the Integrity of a Canine B-Cell Lymphoma in a Murine In Vivo Model

    OpenAIRE

    Rütgen, Barbara C.; Willenbrock, Saskia; Reimann-Berg, Nicola; Walter, Ingrid; Fuchs-Baumgartinger, Andrea; Wagner, Siegfried; Kovacic, Boris; Essler, Sabine E.; Schwendenwein, Ilse; Nolte, Ingo; Saalmüller, Armin; Escobar, Hugo Murua

    2012-01-01

    Cell lines are key tools in cancer research allowing the generation of neoplasias in animal models resembling the initial tumours able to mimic the original neoplasias closely in vivo. Canine lymphoma is the major hematopoietic malignancy in dogs and considered as a valuable spontaneous large animal model for human Non-Hodgkin's Lymphoma (NHL). Herein we describe the establishment and characterisation of an in vivo model using the canine B-cell lymphoma cell line CLBL-1 analysing the stabilit...

  5. Isolation, culture, characterization, and osteogenic differentiation of canine endometrial mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    A. K. Sahoo

    2017-12-01

    Full Text Available Aim: In this study, the canine endometrium tissue is characterized for its stem cell properties such as adherence to tissue culture plate (plasticity, short population doubling time, serial clonal passaging, long-term culturing properties, stem cell marker expression, and multilineage differentiation potential. Materials and Methods: The present work describes a novel isolation protocol for obtaining mesenchymal stem cells from the uterine endometrium and is compared with cells derived from umbilical cord matrix as a positive control. These cells are clonogenic, can undergo several population doublings in vitro, and can be differentiated to the osteocytes in mature mesenchymal tissues when grown in osteogenic differentiation media as detected by Alizarin Red-S staining. Results: It is reported for the first time that the cells derived from the canine endometrium (e-multipotent stem cells [MSCs] were able to differentiate into a heterologous cell type: Osteocytes, thus demonstrating the presence of MSCs. Thus, the endometrium may be told as a potential source of MSCs which can be used for various therapeutic purposes. Conclusion: The endometrium can be used as a potential source of MSCs, which can be used for various therapeutic purposes.

  6. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression.

    Directory of Open Access Journals (Sweden)

    Ana Gracanin

    Full Text Available Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1 and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand-independent mechanisms.

  7. Preclinical Evaluation of the Novel BTK Inhibitor Acalabrutinib in Canine Models of B-Cell Non-Hodgkin Lymphoma.

    Directory of Open Access Journals (Sweden)

    Bonnie K Harrington

    Full Text Available Acalabrutinib (ACP-196 is a second-generation inhibitor of Bruton agammaglobulinemia tyrosine kinase (BTK with increased target selectivity and potency compared to ibrutinib. In this study, we evaluated acalabrutinib in spontaneously occurring canine lymphoma, a model of B-cell malignancy similar to human diffuse large B-cell lymphoma (DLBCL. First, we demonstrated that acalabrutinib potently inhibited BTK activity and downstream effectors in CLBL1, a canine B-cell lymphoma cell line, and primary canine lymphoma cells. Acalabrutinib also inhibited proliferation in CLBL1 cells. Twenty dogs were enrolled in the clinical trial and treated with acalabrutinib at dosages of 2.5 to 20mg/kg every 12 or 24 hours. Acalabrutinib was generally well tolerated, with adverse events consisting primarily of grade 1 or 2 anorexia, weight loss, vomiting, diarrhea and lethargy. Overall response rate (ORR was 25% (5/20 with a median progression free survival (PFS of 22.5 days. Clinical benefit was observed in 30% (6/20 of dogs. These findings suggest that acalabrutinib is safe and exhibits activity in canine B-cell lymphoma patients and support the use of canine lymphoma as a relevant model for human non-Hodgkin lymphoma (NHL.

  8. Identification and characterisation of side population cells in the canine pituitary gland.

    Science.gov (United States)

    van Rijn, Sarah J; Gremeaux, Lies; Riemers, Frank M; Brinkhof, Bas; Vankelecom, Hugo; Penning, Louis C; Meij, Björn P

    2012-06-01

    To date, stem/progenitor cells have not been identified in the canine pituitary gland. Cells that efficiently exclude the vital dye Hoechst 33342 can be visualised and identified using fluorescence activated cell sorting (FACS) as a 'side population' (SP), distinct from the main population (MP). Such SPs have been identified in several tissues and display stem/progenitor cell characteristics. In this study, a small SP (1.3%, n=6) was detected in the anterior pituitary glands of healthy dogs. Quantitative PCR indicated significantly higher expression of CD34 and Thy1 in this SP, but no differences in the expression of CD133, Bmi-1, Axin2 or Shh. Pro-opiomelanocortin (POMC) and Lhx3 expression were significantly higher in the MP than in the SP, but no differences in the expression of Tpit, GH or PRL were found. The study demonstrated the existence of an SP of cells in the normal canine pituitary gland, encompassing cells with stem cell characteristics and without POMC expression. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Couto Jason I

    2012-12-01

    Full Text Available Abstract Background STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS. Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. Results We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. Conclusion LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS.

  10. Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells.

    Science.gov (United States)

    Shahi, Mehdi Hayat; Holt, Roseline; Rebhun, Robert B

    2014-01-01

    The Hedgehog-GLI signaling pathway is active in a variety of human malignancies and is known to contribute to the growth and survival of human osteosarcoma cells. In this study, we examined the expression and regulation of GLI transcription factors in multiple canine osteosarcoma cell lines and analyzed the effects of inhibiting GLI with GANT61, a GLI-specific inhibitor. Compared with normal canine osteoblasts, real-time PCR showed that GLI1 and GLI2 were highly expressed in two out of three cell lines and correlated with downstream target gene expression of PTCH1and PAX6. Treatment of canine osteosarcoma cells with GANT61 resulted in decreased expression of GLI1, GLI2, PTCH1, and PAX6. Furthermore, GANT61 inhibited proliferation and colony formation in all three canine osteosarcoma cell lines. The finding that GLI signaling activity is present and active in canine osteosarcoma cells suggests that spontaneously arising osteosarcoma in dogs might serve as a good model for future preclinical testing of GLI inhibitors.

  11. Blocking signaling at the level of GLI regulates downstream gene expression and inhibits proliferation of canine osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Mehdi Hayat Shahi

    Full Text Available The Hedgehog-GLI signaling pathway is active in a variety of human malignancies and is known to contribute to the growth and survival of human osteosarcoma cells. In this study, we examined the expression and regulation of GLI transcription factors in multiple canine osteosarcoma cell lines and analyzed the effects of inhibiting GLI with GANT61, a GLI-specific inhibitor. Compared with normal canine osteoblasts, real-time PCR showed that GLI1 and GLI2 were highly expressed in two out of three cell lines and correlated with downstream target gene expression of PTCH1and PAX6. Treatment of canine osteosarcoma cells with GANT61 resulted in decreased expression of GLI1, GLI2, PTCH1, and PAX6. Furthermore, GANT61 inhibited proliferation and colony formation in all three canine osteosarcoma cell lines. The finding that GLI signaling activity is present and active in canine osteosarcoma cells suggests that spontaneously arising osteosarcoma in dogs might serve as a good model for future preclinical testing of GLI inhibitors.

  12. Generation of a Three-Dimensional Kidney Structure from Pluripotent Stem Cells.

    Science.gov (United States)

    Yoshimura, Yasuhiro; Taguchi, Atsuhiro; Nishinakamura, Ryuichi

    2017-01-01

    The kidney is a vital organ that has an important role in the maintenance of homeostasis by fluid volume regulation and waste product excretion. This role cannot be performed without the three-dimensional (3D) structure of the kidney. Therefore, it is important to generate the 3D structure of the kidney when inducing functional kidney tissue or the whole organ from pluripotent stem cells. In this chapter, we describe the detailed methods to induce kidney progenitor cells from pluripotent stem cells, which are based on embryological development. We also provide a method to generate 3D kidney tissue with vascularized glomeruli upon transplantation.

  13. Comparative proteome analysis of monolayer and spheroid culture of canine osteosarcoma cells.

    Science.gov (United States)

    Gebhard, Christiane; Miller, Ingrid; Hummel, Karin; Neschi Née Ondrovics, Martina; Schlosser, Sarah; Walter, Ingrid

    2018-04-15

    Osteosarcoma is an aggressive bone tumor with high metastasis rate in the lungs and affects both humans and dogs in a similar way. Three-dimensional tumor cell cultures mimic the in vivo situation of micro-tumors and metastases and are therefore better experimental in vitro models than the often applied two-dimensional monolayer cultures. The aim of the present study was to perform comparative proteomics of standard monolayer cultures of canine osteosarcoma cells (D17) and three-dimensional spheroid cultures, to better characterize the 3D model before starting with experiments like migration assays. Using DIGE in combination with MALDI-TOF/TOF we found 27 unique canine proteins differently represented between these two culture systems, most of them being part of a functional network including mainly chaperones, structural proteins, stress-related proteins, proteins of the glycolysis/gluconeogenesis pathway and oxidoreductases. In monolayer cells, a noticeable shift to more acidic pI values was noticed for several proteins of medium to high abundance; two proteins (protein disulfide isomerase A3, stress-induced-phosphoprotein 1) showed an increase of phosphorylated protein species. Protein distribution within the cells, as detected by immunohistochemistry, displayed a switch of stress-induced-phosphoprotein 1 from the cytoplasm (in monolayer cultures) to the nucleus (in spheroid cultures). Additionally, Western blot testing revealed upregulated concentrations of metastasin (S100A4), triosephosphate isomerase 1 and septin 2 in spheroid cultures, in contrast to decreased concentrations of CCT2, a subunit of the T-complex. Results indicate regulation of stress proteins in the process of three-dimensional organization characterized by a hypoxic and nutrient-deficient environment comparable to tumor micro-metastases. Osteosarcoma is an aggressive bone tumor that early spreads to the lungs. Three-dimensional tumor cell cultures represent the avascular stage of micro

  14. Variations in cell morphology in the canine cruciate ligament complex.

    Science.gov (United States)

    Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J

    2012-08-01

    Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells.

    Science.gov (United States)

    Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P

    2013-03-01

    Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.

  16. Eimeria tenella: in vitro development in irradiated bovine kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Crane, M.St.J.; Schmatz, D.M.; Stevens, S.; Habbersett, M.C.; Murray, P.K. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA))

    1984-06-01

    The initial infection and first-generation development of Eimeria tenella was quantified using a cloned MDBK (Madin-Darby Bovine Kidney) cell line, irradiated with gamma radiation prior to infection, as the host cell. Irradiated cell cultures were found to be more susceptible to infection and had a greater capacity to support parasite development than non-irradiated cultures. It was suggested that the larger proportion of cells in the G/sub 2/ phase of the cell cycle, the larger individual cell size and the inhibition of cell division in the irradiated cultures were all factors contributing to the increased susceptibility to infection and capacity to support parasite growth and development. The application of this technique (host cell irradiation) to the cultivation of other intracellular, protozoan parasites is discussed.

  17. Eimeria tenella: in vitro development in irradiated bovine kidney cells

    International Nuclear Information System (INIS)

    Crane, M. St.J.; Schmatz, D.M.; Stevens, S.; Habbersett, M.C.; Murray, P.K.

    1984-01-01

    The initial infection and first-generation development of Eimeria tenella was quantified using a cloned MDBK (Madin-Darby Bovine Kidney) cell line, irradiated with gamma radiation prior to infection, as the host cell. Irradiated cell cultures were found to be more susceptible to infection and had a greater capacity to support parasite development than non-irradiated cultures. It was suggested that the larger proportion of cells in the G 2 phase of the cell cycle, the larger individual cell size and the inhibition of cell division in the irradiated cultures were all factors contributing to the increased susceptibility to infection and capacity to support parasite growth and development. The application of this technique (host cell irradiation) to the cultivation of other intracellular, protozoan parasites is discussed. (author)

  18. Derivation of Mesenchymal Stromal Cells from Canine Induced Pluripotent Stem Cells by Inhibition of the TGFβ/Activin Signaling Pathway

    Science.gov (United States)

    Frith, Jessica E.; Frith, Thomas J.R.; Ovchinnikov, Dmitry A.; Cooper-White, Justin J.; Wolvetang, Ernst J.

    2014-01-01

    In this study we have generated canine mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, from canine induced pluripotent stem cells (ciPSCs) by small-molecule inhibition of the transforming growth factor beta (TGFβ)/activin signaling pathway. These ciPSC-derived MSCs (ciPSC-MSCs) express the MSC markers CD73, CD90, CD105, STRO1, cPDGFRβ and cKDR, in addition to the pluripotency factors OCT4, NANOG and REX1. ciPSC-MSCs lack immunostaining for H3K27me3, suggesting that they possess two active X chromosomes. ciPSC-MSCs are highly proliferative and undergo robust differentiation along the osteo-, chondro- and adipogenic pathways, but do not form teratoma-like tissues in vitro. Of further significance for the translational potential of ciPSC-MSCs, we show that these cells can be encapsulated and maintained within injectable hydrogel matrices that, when functionalized with bound pentosan polysulfate, dramatically enhance chondrogenesis and inhibit osteogenesis. The ability to efficiently derive large numbers of highly proliferative canine MSCs from ciPSCs that can be incorporated into injectable, functionalized hydrogels that enhance their differentiation along a desired lineage constitutes an important milestone towards developing an effective MSC-based therapy for osteoarthritis in dogs, but equally provides a model system for assessing the efficacy and safety of analogous approaches for treating human degenerative joint diseases. PMID:25055193

  19. Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation.

    Science.gov (United States)

    Fang, Jia; Wei, Yudong; Teng, Xin; Zhao, Shanting; Hua, Jinlian

    2018-04-01

    Adipose-derived mesenchymal stem cells (ADSCs) are proven to provide good effects in numerous tissue engineering application and other cell-based therapies. However, the difficulty in the proliferation of ADSCs, known as the "Hayflick limit" in vitro, limits their clinical application. Here, we immortalized canine ADSCs (cADSCs) with SV40 gene and transplanted them into busulfan-induced seminiferous tubules of infertile mice. The proliferation of these immortalized cells was improved significantly. Then, cellular differentiation assays showed that the immortalized cADSCs could differentiate into three-germ-layer cells, osteogenesis, chondrogenesis, adipogenesis phenotypes, and primordial germ cell-like cells (PGCLCs). In addition, the immortalized cADSCs can proliferate in the busulfan-induced seminiferous tubules of infertile mice. These findings confirmed that the immortalized cADSCs maintain the criteria of cADSCs. © 2017 Wiley Periodicals, Inc.

  20. Radiation-induced DNA damage in canine hemopoietic cells and stromal cells as measured by the comet assay

    International Nuclear Information System (INIS)

    Kreja, L.; Selig, C.; Plappert, U.; Nothdurft, W.

    1996-01-01

    Stromal cell progenitors (fibroblastoid colony-forming unit; CFU-Fs) are representative of the progenitor cell population of the hemopoietic microenvironment in bone marrow (BM). Previous studies of the radiation dose-effect relationships for colony formation have shown that canine CFU-Fs are relatively radioresistant as characterized by a D 0 value of about 2.4 Gy. In contrast, hemopoietic progenitors are particularly radiosensitive (D 0 values = 0.12-0.60 Gy). In the present study, the alkaline single-cell gel electrophoresis technique for the in situ quantitation of DNA strand breaks and alkalilabile site was employed. Canine buffy coat cells from BM aspirates and cells harvested from CFU-F colonies or from mixed populations of adherent BM stromal cell (SC) layers were exposed to increasing doses of X-rays, embedded in agarose gel on slides, lysed with detergents, and placed in an electric field. DNA migrating from single cells in the gel was made visible as open-quotes cometsclose quotes by ethidium bromide staining. Immediate DNA damage was much less in cultured stromal cells than in hemopoietic cells in BM aspirates. These results suggest that the observed differences in clonogenic survival could be partly due to differences in the type of the initial DNA damage between stromal cells and hemopoietic cells. 37 refs., 2 figs., 1 tab

  1. The energy cost of kidney proton dialysis in sickle cell anaemia

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-18

    Jan 18, 2007 ... kidney as most of the energy for proton dialysis is wasted as a result of high entropy. Key words: Sickle cell, anaemia, energy, kidney, dialysis, proton, and enthalpy. INTRODUCTION. Evidence exists that for those with sickle cell syndromes. “kidney damage starts very early and progresses throu- ghout life” ...

  2. Giant kidney worms in a patient with renal cell carcinoma.

    Science.gov (United States)

    Kuehn, Jemima; Lombardo, Lindsay; Janda, William M; Hollowell, Courtney M P

    2016-03-07

    Dioctophyma renale (D. renale), or giant kidney worms, are the largest nematodes that infect mammals. Approximately 20 cases of human infection have been reported. We present a case of a 71-year-old man with a recent history of unintentional weight loss and painless haematuria, passing elongated erythematous tissue via his urethra. CT revealed a left renal mass with pulmonary nodules and hepatic lesions. On microscopy, the erythematous tissue passed was identified as D. renale. On subsequent renal biopsy, pathology was consistent with renal cell carcinoma. This is the first reported case of concomitant D. renale infection and renal cell carcinoma, and the second reported case of D. renale infection of the left kidney alone. 2016 BMJ Publishing Group Ltd.

  3. A novel derivative of doxorubicin, AD198, inhibits canine transitional cell carcinoma and osteosarcoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Rathore K

    2015-09-01

    Full Text Available Kusum Rathore, Maria Cekanova Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Doxorubicin (DOX is one of the most commonly used chemotherapeutic treatments for a wide range of cancers. N-benzyladriamycin-14-valerate (AD198 is a lipophilic anthracycline that has been shown to target conventional and novel isoforms of protein kinase C (PKC in cytoplasm of cells. Because of the adverse effects of DOX, including hair loss, nausea, vomiting, liver dysfunction, and cardiotoxicity, novel derivatives of DOX have been synthesized and validated. In this study, we evaluated the effects of DOX and its derivative, AD198, on cell viability of three canine transitional cell carcinoma (K9TCC (K9TCC#1-Lillie, K9TCC#2-Dakota, K9TCC#4-Molly and three canine osteosarcoma (K9OSA (K9OSA#1-Zoe, K9OSA#2-Nashville, K9OSA#3-JJ primary cancer cell lines. DOX and AD198 significantly inhibited cell proliferation in all tested K9TCC and K9OSA cell lines in a dose-dependent manner. AD198 inhibited cell viability of tested K9TCC and K9OSA cell lines more efficiently as compared to DOX at the same concentration using MTS (3-(4,5-dimethyl-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2h-tetrazolium assay. AD198 had lower IC50 values as compared to DOX for all tested K9TCC and K9OSA cell lines. In addition, AD198 increased apoptosis in all tested K9TCC and K9OSA cell lines. AD198 increased the caspase activity in tested K9TCC and K9OSA cell lines, which was confirmed by caspase-3/7 assay, and cleavage of poly (ADP-ribose polymerase (PARP was confirmed by Western blotting analysis. In addition, AD198 cleaved PKC-δ, which subsequently activated the p38 signaling pathway, resulting in the apoptosis of tested K9TCC and K9OSA cell lines. Inhibition of the p38 signaling pathway by SB203580 rescued DOX- and AD198-induced apoptosis in tested K9TCC and K9OSA cell lines. Our in vitro results suggest

  4. Evaluation of mRNA expression levels and electrophysiological function of neuron-like cells derived from canine bone marrow stromal cells.

    Science.gov (United States)

    Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro

    2013-10-01

    To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.

  5. Canine Platelet Lysate Is Inferior to Fetal Bovine Serum for the Isolation and Propagation of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells

    Science.gov (United States)

    Russell, Keith A.; Gibson, Thomas W. G.; Chong, Andrew; Co, Carmon; Koch, Thomas G.

    2015-01-01

    Background Mesenchymal stromal cells (MSC) are increasingly investigated for their clinical utility in dogs. Fetal bovine serum (FBS) is a common culture supplement used for canine MSC expansion. However, FBS content is variable, its clinical use carries risk of an immune response, and its cost is increasing due to global demand. Platelet lysate (PL) has proven to be a suitable alternative to FBS for expansion of human MSC. Hypothesis and Objectives We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC could be isolated and expanded equally in PL and FBS at conventionally-used concentrations with differentiation of these MSC unaffected by choice of supplement. Our objectives were to evaluate the use of canine PL in comparison with FBS at four stages: 1) isolation, 2) proliferation, 3) spontaneous differentiation, and 4) directed differentiation. Results 1) Medium with 10% PL was unable to isolate MSC. 2) MSC, initially isolated in FBS-supplemented media, followed a dose-dependent response with no significant difference between PL and FBS cultures at up to 20% (AT) or 30% (BM) enrichment. Beyond these respective peaks, proliferation fell in PL cultures only, while a continued dose-dependent proliferation response was noted in FBS cultures. 3) Further investigation indicated PL expansion culture was inducing spontaneous adipogenesis in concentrations as low as 10% and as early as 4 days in culture. 4) MSC isolated in FBS, but expanded in either FBS or PL, maintained ability to undergo directed adipogenesis and osteogenesis, but not chondrogenesis. Conclusions/Significance Canine PL did not support establishment of MSC colonies from AT and BM, nor expansion of MSC, which appear to undergo spontaneous adipogenesis in response to PL exposure. In vivo studies are warranted to determine if concurrent use of MSC with any platelet-derived products such as platelet-rich plasma are associated with synergistic, neutral or antagonistic effects. PMID:26353112

  6. Canine Platelet Lysate Is Inferior to Fetal Bovine Serum for the Isolation and Propagation of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.

    Directory of Open Access Journals (Sweden)

    Keith A Russell

    Full Text Available Mesenchymal stromal cells (MSC are increasingly investigated for their clinical utility in dogs. Fetal bovine serum (FBS is a common culture supplement used for canine MSC expansion. However, FBS content is variable, its clinical use carries risk of an immune response, and its cost is increasing due to global demand. Platelet lysate (PL has proven to be a suitable alternative to FBS for expansion of human MSC.We hypothesized that canine adipose tissue (AT and bone marrow (BM MSC could be isolated and expanded equally in PL and FBS at conventionally-used concentrations with differentiation of these MSC unaffected by choice of supplement. Our objectives were to evaluate the use of canine PL in comparison with FBS at four stages: 1 isolation, 2 proliferation, 3 spontaneous differentiation, and 4 directed differentiation.1 Medium with 10% PL was unable to isolate MSC. 2 MSC, initially isolated in FBS-supplemented media, followed a dose-dependent response with no significant difference between PL and FBS cultures at up to 20% (AT or 30% (BM enrichment. Beyond these respective peaks, proliferation fell in PL cultures only, while a continued dose-dependent proliferation response was noted in FBS cultures. 3 Further investigation indicated PL expansion culture was inducing spontaneous adipogenesis in concentrations as low as 10% and as early as 4 days in culture. 4 MSC isolated in FBS, but expanded in either FBS or PL, maintained ability to undergo directed adipogenesis and osteogenesis, but not chondrogenesis.Canine PL did not support establishment of MSC colonies from AT and BM, nor expansion of MSC, which appear to undergo spontaneous adipogenesis in response to PL exposure. In vivo studies are warranted to determine if concurrent use of MSC with any platelet-derived products such as platelet-rich plasma are associated with synergistic, neutral or antagonistic effects.

  7. Expression of the MDR1 gene and P-glycoprotein in canine mast cell tumor cell lines

    OpenAIRE

    NAKAICHI, Munekazu; TAKESHITA, Yoko; OKUDA, Masaru; NAKAMOTO, Yuya; ITAMOTO, Kazuhito; UNE, Satoshi; SASAKI, Nobuo; KADOSAWA, Tsuyoshi; TAKAHASHI, Tomoko; TAURA, Yasuho

    2007-01-01

    Cellular drug resistance to antineoplastic drugs is often due to the presence of a drug efflux pump that reduces intracellular drug accumulation and chemosensitivity. P-glycoprotein (P-gp), which is encoded by the MDR1 gene, is considered to function as an ATP-driven membrane drug efflux pump and appears to play an important role in tumor cell resistance. In the present report, we assessed the expression of MDR1 by RT-PCR in three canine mast cell tumor cell lines, TiMC, CoMS and LuMC, origin...

  8. Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation.

    Science.gov (United States)

    Pang, Lisa Y; Gatenby, Emma L; Kamida, Ayako; Whitelaw, Bruce A; Hupp, Ted R; Argyle, David J

    2014-01-01

    Osteosarcoma is the most common primary bone tumour of both children and dogs. It is an aggressive tumour in both species with a rapid clinical course leading ultimately to metastasis. In dogs and children distant metastasis occurs in >80% of individuals treated by surgery alone. Both canine and human osteosarcoma has been shown to contain a sub-population of cancer stem cells (CSCs), which may drive tumour growth, recurrence and metastasis, suggesting that naturally occurring canine osteosarcoma could act as a preclinical model for the human disease. Here we report the successful isolation of CSCs from primary canine osteosarcoma, as well as established cell lines. We show that these cells can form tumourspheres, and demonstrate relative resistance to chemotherapy. We demonstrate similar results for the human osteosarcma cell lines, U2OS and SAOS2. Utilizing the Affymetrix canine microarray, we are able to definitively show that there are significant differences in global gene expression profiles of isolated osteosarcoma stem cells and the daughter adherent cells. We identified 13,221 significant differences (p = 0.05), and significantly, COX-2 was expressed 141-fold more in CSC spheres than daughter adherent cells. To study the role of COX-2 expression in CSCs we utilized the COX-2 inhibitors meloxicam and mavacoxib. We found that COX-2 inhibition had no effect on CSC growth, or resistance to chemotherapy. However inhibition of COX-2 in daughter cells prevented sphere formation, indicating a potential significant role for COX-2 in tumour initiation.

  9. Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation.

    Directory of Open Access Journals (Sweden)

    Lisa Y Pang

    Full Text Available Osteosarcoma is the most common primary bone tumour of both children and dogs. It is an aggressive tumour in both species with a rapid clinical course leading ultimately to metastasis. In dogs and children distant metastasis occurs in >80% of individuals treated by surgery alone. Both canine and human osteosarcoma has been shown to contain a sub-population of cancer stem cells (CSCs, which may drive tumour growth, recurrence and metastasis, suggesting that naturally occurring canine osteosarcoma could act as a preclinical model for the human disease. Here we report the successful isolation of CSCs from primary canine osteosarcoma, as well as established cell lines. We show that these cells can form tumourspheres, and demonstrate relative resistance to chemotherapy. We demonstrate similar results for the human osteosarcma cell lines, U2OS and SAOS2. Utilizing the Affymetrix canine microarray, we are able to definitively show that there are significant differences in global gene expression profiles of isolated osteosarcoma stem cells and the daughter adherent cells. We identified 13,221 significant differences (p = 0.05, and significantly, COX-2 was expressed 141-fold more in CSC spheres than daughter adherent cells. To study the role of COX-2 expression in CSCs we utilized the COX-2 inhibitors meloxicam and mavacoxib. We found that COX-2 inhibition had no effect on CSC growth, or resistance to chemotherapy. However inhibition of COX-2 in daughter cells prevented sphere formation, indicating a potential significant role for COX-2 in tumour initiation.

  10. Propagation of Asian isolates of canine distemper virus (CDV in hamster cell lines

    Directory of Open Access Journals (Sweden)

    Yamaguchi Ryoji

    2009-10-01

    Full Text Available Abstract Backgrounds The aim of this study was to confirm the propagation of various canine distemper viruses (CDV in hamster cell lines of HmLu and BHK, since only a little is known about the possibility of propagation of CDV in rodent cells irrespective of their epidemiological importance. Methods The growth of CDV in hamster cell lines was monitored by titration using Vero.dogSLAMtag (Vero-DST cells that had been proven to be susceptible to almost all field isolates of CDV, with the preparations of cell-free and cell-associated virus from the cultures infected with recent Asian isolates of CDV (13 strains and by observing the development of cytopathic effect (CPE in infected cultures of hamster cell lines. Results Eleven of 13 strains grew in HmLu cells, and 12 of 13 strains grew in BHK cells with apparent CPE of cell fusion in the late stage of infection. Two strains and a strain of Asia 1 group could not grow in HmLu cells and BHK cells, respectively. Conclusion The present study demonstrates at the first time that hamster cell lines can propagate the majority of Asian field isolates of CDV. The usage of two hamster cell lines suggested to be useful to characterize the field isolates biologically.

  11. Establishment and Characterization of New Canine and Feline Osteosarcoma Primary Cell Lines

    Directory of Open Access Journals (Sweden)

    Florian R. L. Meyer

    2016-06-01

    Full Text Available Osteosarcomas are the most abundant form of bone malignancies in multiple species. Canine osteosarcomas are considered a valuable model for human osteosarcomas because of their similar features. Feline osteosarcomas, on the other hand, are rarely studied but have interesting characteristics, such as a better survival prognosis than dogs or humans, and less likelihood of metastasis. To enable experimental approaches to study these differences we have established five new canine osteosarcoma cell lines out of three tumors, COS_1186h, COS_1186w, COS_1189, and COS_1220, one osteosarcoma-derived lung metastasis, COS_1033, and two new feline osteosarcoma cell lines, FOS_1077 and FOS_1140. Their osteogenic and neoplastic origin, as well as their potential to produce calcified structures, was determined by the markers osteocalcin, osteonectin, tissue unspecific alkaline phosphatase, p53, cytokeratin, vimentin, and alizarin red. The newly developed cell lines retained most of their markers in vitro but only spontaneously formed spheroids produced by COS_1189 showed calcification in vitro.

  12. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin.

    Directory of Open Access Journals (Sweden)

    Jahnabi Roy

    Full Text Available Osteosarcoma is the most common bone cancer in dogs and people. In order to improve clinical outcomes, it is necessary to identify proteins that are differentially expressed by metastatic cells. Membrane bound proteins are responsible for multiple pro-metastatic functions. Therefore characterizing the differential expression of membranous proteins between metastatic and non-metastatic clonal variants will allow the discovery of druggable targets and consequently improve treatment methodology. The objective of this investigation was to systemically identify the membrane-associated proteomics of metastatic and non-metastatic variants of human and canine origin. Two clonal variants of divergent in vivo metastatic potential from human and canine origins were used. The plasma membranes were isolated and peptide fingerprinting was used to identify differentially expressed proteins. Selected proteins were further validated using western blotting, flow cytometry, confocal microscopy and immunohistochemistry. Over 500 proteins were identified for each cell line with nearly 40% of the proteins differentially regulated. Conserved between both species, metastatic variants demonstrated significant differences in expression of membrane proteins that are responsible for pro-metastatic functions. Additionally, CD147, CD44 and vimentin were validated using various biochemical techniques. Taken together, through a comparative proteomic approach we have identified several differentially expressed cell membrane proteins that will help in the development of future therapeutics.

  13. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin.

    Science.gov (United States)

    Roy, Jahnabi; Wycislo, Kathryn L; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2017-01-01

    Osteosarcoma is the most common bone cancer in dogs and people. In order to improve clinical outcomes, it is necessary to identify proteins that are differentially expressed by metastatic cells. Membrane bound proteins are responsible for multiple pro-metastatic functions. Therefore characterizing the differential expression of membranous proteins between metastatic and non-metastatic clonal variants will allow the discovery of druggable targets and consequently improve treatment methodology. The objective of this investigation was to systemically identify the membrane-associated proteomics of metastatic and non-metastatic variants of human and canine origin. Two clonal variants of divergent in vivo metastatic potential from human and canine origins were used. The plasma membranes were isolated and peptide fingerprinting was used to identify differentially expressed proteins. Selected proteins were further validated using western blotting, flow cytometry, confocal microscopy and immunohistochemistry. Over 500 proteins were identified for each cell line with nearly 40% of the proteins differentially regulated. Conserved between both species, metastatic variants demonstrated significant differences in expression of membrane proteins that are responsible for pro-metastatic functions. Additionally, CD147, CD44 and vimentin were validated using various biochemical techniques. Taken together, through a comparative proteomic approach we have identified several differentially expressed cell membrane proteins that will help in the development of future therapeutics.

  14. Establishment and characterization of canine parvovirus-specific murine CD4+ T cell clones and their use for the delineation of T cell epitopes.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); R.W.J. van der Heijden (Roger); E.J. Tijhaar (Edwin); M.C.M. Poelen (Martien); J. Carlson; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1990-01-01

    textabstractCanine parvovirus (CPV)-specific T cell clones were generated by culturing lymph node cells from CPV-immunized BALB/c mice at limiting dilutions in the presence of CPV antigen and interleukin-2 (IL-2). All isolated T cell clones exhibited the cell surface phenotype Thy1+, CD4+, CD8- and

  15. Development of a Vaccine Incorporating Killed Virus of Canine Origin for the Prevention of Canine Parvovirus Infection

    Science.gov (United States)

    Povey, C.

    1982-01-01

    A parvovirus of canine origin, cultured in a feline kidney cell line, was inactivated with formalin. Three pilot serials were produced and three forms of finished vaccine (nonadjuvanted, single adjuvanted and double adjuvanted) were tested in vaccination and challenge trials. A comparison was also made with two inactivated feline panleukopenia virus vaccines, one of which has official approval for use in dogs. The inactivated canine vaccine in nonadjuvanted, adjuvanted or double adjuvanted form was immunogenic in 20 of 20 vaccinated dogs. The double adjuvanted vaccine is selected as the one of choice on the basis of best and most persistent seriological response. PMID:7039811

  16. Activation of the Canonical Wnt/β-Catenin Signalling Pathway is Rare in Canine Malignant Melanoma Tissue and Cell Lines

    Science.gov (United States)

    Chon, E.; Thompson, V.; Schmid, S.; Stein, T. J.

    2012-01-01

    Summary Canine malignant melanoma is a highly aggressive tumour associated with a poor overall survival rate due to both local disease recurrence and its highly metastatic nature. Similar to advanced melanoma in man, canine oral melanoma is poorly responsive to conventional anti-cancer therapies. The lack of sustainable disease control warrants investigation of novel therapies, preferably targeting features specific to the tumour and different from normal cells. The Wnt signalling pathway is known to contribute to melanocytic lineage development in vertebrates and perturbation of the Wnt/β-catenin pathway has been implicated in numerous cancer types. Alterations of the Wnt/β-catenin pathway are suggested to occur in a subset of human melanomas, although the precise role of the Wnt/β-catenin pathway in melanoma is yet to be defined. This study investigates the activation status of the canonical Wnt/β-catenin pathway in canine malignant melanoma and its potential as a therapeutic target for treating this disease. The data indicate canonical Wnt/β-catenin pathway activation is a rare event in canine oral malignant melanoma tissue and canine malignant melanoma cell lines. PMID:22901430

  17. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency.

    Science.gov (United States)

    de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J

    2017-03-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. © 2015 John Wiley & Sons Ltd.

  18. Effects of etoposide alone and in combination with piroxicam on canine osteosarcoma cell lines.

    Science.gov (United States)

    Ong, S M; Saeki, K; Tanaka, Y; Nishimura, R; Nakagawa, T

    2016-12-01

    Osteosarcoma (OSA) is the most common primary bone tumour in dogs. The poor survival rate in dogs with OSA highlights the need for new therapeutic approaches. This study evaluated the cytotoxic effects of etoposide, alone and in combination with piroxicam, on canine OSA cell cultures. Etoposide alone significantly suppressed cell growth and viability, whereas etoposide in combination with piroxicam exhibited concentration dependent cytotoxicity. The anti-proliferative effect was a result of inactivity of the Cdc2-cyclin B1 complex, which correlated with an increase in the G 2 /M fraction. This subsequently activated the apoptosis cascade, as indicated by elevated apoptosis levels and up-regulation of poly (ADP-ribose) polymerase proteolytic cleavage. Down-regulation of survivin expression induced by the combination treatment may have contributed to the enhanced cytotoxicity. The results of this study suggest that further investigation of etoposide and piroxicam as a therapeutic combination for canine OSA is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cadmium induced oxidative stress in kidney epithelia cells

    DEFF Research Database (Denmark)

    Bjerregaard, Henning F.

    2007-01-01

    Cadmium (Cd) is an important industrial and environmental pollutant. In humans exposed to Cd via oral and/or pulmonary routes, the kidney is by far the primary organ affected adversely by Cd. It have been estimated that 7% of the human population may develop renal dysfunction from Cd exposure...... of generation of ROS in this pathway remains unclear.     The aim of the present study was to monitor, in real time, the rates of ROS generation to be able to directly determine their production dynamics in living cells in response to drugs. Initial studies were planed in to use 2,7-dichlorofluorescein...... production from mitochondria due to an increase in the intracellular calcium concentration. Visual inspection of cultured cells showed that the Cd induced destruction of the cell membrane after three hours was abolished when cells were pretreated with N-acetylcysteine or CCCP, indicating that ROS generation...

  20. Evaluation of prognostic markers for canine mast cell tumors treated with vinblastine and prednisone

    Directory of Open Access Journals (Sweden)

    Yuzbasiyan-Gurkan Vilma

    2008-08-01

    Full Text Available Abstract Background Canine cutaneous mast cell tumor (MCT is a common neoplastic disease associated with a variable biologic behavior. Surgery remains the primary treatment for canine MCT; however, radiation therapy (RT and chemotherapy are commonly used to treat aggressive MCT. The goals of this study were to evaluate the prognostic utility of histologic grade, c-KIT mutations, KIT staining patterns, and the proliferation markers Ki67 and AgNORs in dogs postoperatively treated with vinblastine and prednisone +/- RT, and to compare the outcome of dogs treated with post-operative chemotherapy +/- RT to that of a prognostically matched group treated with surgery alone. Associations between prognostic markers and survival were evaluated. Disease-free intervals (DFI and overall survival times (OS of dogs with similar pretreatment prognostic indices postoperatively treated with chemotherapy were compared to dogs treated with surgery alone. Results Histologic grade 3 MCTs, MCTs with c-KIT mutations, MCTs with increased cytoplasmic KIT, and MCTs with increased Ki67 and AgNOR values were associated with decreased DFI and OS. Dogs with histologic grade 3 MCT had significantly increased DFI and OS when treated with chemotherapy vs. surgery alone. Although not statistically significant due to small sample sizes, MCTs with c-KIT mutations had increased DFI and OS when treated with chemotherapy vs. surgery alone. Conclusion and clinical importance This study confirms the prognostic value of histologic grade, c-KIT mutations, KIT staining patterns, and proliferation analyses for canine MCT. Additionally, the results of this study further define the benefit of postoperative vinblastine and prednisone for histologic grade 3 MCTs.

  1. Canine mast cell tumors: diagnosis, treatment, and prognosis

    Directory of Open Access Journals (Sweden)

    Garrett LD

    2014-08-01

    Full Text Available Laura D Garrett Department of Veterinary Clinical Medicine, University of Illinois College of Veterinary Medicine, Urbana, IL, USA Abstract: Mast cell tumors (MCTs are the most common malignant skin cancer in dogs, and significant variability exists in their biological behavior. Most MCTs are cured with appropriate local therapy, but a subset shows malignant behavior with the potential to spread to lymph nodes, liver, spleen, and other areas and to thus become a systemic cancer. Because of this variable behavior, it is difficult to predict how any individual tumor is going to behave. The variability thus creates uncertainty in deciding what a particular dog's prognosis is, whether staging tests to assess for metastasis are needed, and even what treatments will be necessary for best outcome. In addition to controversies over the potential for development of systemic disease, or diffuse metastasis, controversies also exist over what treatment is needed to best attain local control of these tumors. This article will briefly discuss the diagnosis of MCTs in dogs and will summarize the literature in regards to the controversial topics surrounding the more aggressive form of this disease, with recommendations made based on published studies. Keywords: mitotic index, mastocytosis, tyrosine kinase inhibitor, histologic grade

  2. Gene expression profiles of cell adhesion molecules, matrix metalloproteinases and their tissue inhibitors in canine oral tumors.

    Science.gov (United States)

    Pisamai, Sirinun; Rungsipipat, Anudep; Kalpravidh, Chanin; Suriyaphol, Gunnaporn

    2017-08-01

    Perturbation of cell adhesion can be essential for tumor cell invasion and metastasis, but the current knowledge on the gene expression of molecules that mediate cell adhesion in canine oral tumors is limited. The present study aimed to investigate changes in the gene expression of cell adhesion molecules (E-cadherin or CDH1, syndecan 1 or SDC1, NECTIN2 and NECTIN4), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), in canine oral tumors, including benign tumors, oral melanoma (OM) and non-tonsillar oral squamous cell carcinoma (OSCC), by quantitative real-time reverse transcription PCR. When compared with the normal gingival controls, decreased CDH1, SDC1 and NECTIN4 expression levels were observed in OSCC and OM, reflecting a possible role as cell adhesion molecules and tumor suppressors in canine oral cancers in contrast to the upregulation of MMP2 expression. Downregulated MMP7 was specifically revealed in the OM group. In the late-stage OM, the positive correlation of MMP7 and CDH1 expression was noticed as well as that of SDC1 and NECTIN4. Enhanced TIMP1 expression was shown in all tumor groups with prominent expression in the benign tumors and the early-stage OM. MMP14 expression was notable in the early-stage OM. Higher MMP9 and TIMP1 expression was observed in the acanthomatous ameloblastoma. In conclusion, this study revealed that the altered expression of cell adhesion molecules, MMP7 and MMP2 was correlated with clinicopathologic features in canine oral cancers whereas TIMP1 and MMP14 expression was probably associated with early-stage tumors; therefore, these genes might serve as molecular markers for canine oral tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Toxicity and oxidative stress of canine mesenchymal stromal cells from adipose tissue in different culture passages

    Directory of Open Access Journals (Sweden)

    Arícia Gomes Sprada

    2015-12-01

    Full Text Available Abstract: Stem cells in regenerative therapy have received attention from researchers in recent decades. The culture of these cells allows studies about their behavior and metabolism. Thus, cell culture is the basis for cell therapy and tissue engineering researches. A major concern regarding the use of cultivated stem cell in human or veterinary clinical routine is the risk of carcinogenesis. Cellular activities require a balanced redox state. However, when there is an imbalance in this state, oxidative stress occurs. Oxidative stress contributes to cytotoxicity, which may result in cell death or genomic alterations, favoring the development of cancer cells. The aim of this study was to determine whether there are differences in the behavior of cultured mesenchymal stem cells from canine adipose tissue according to its site of collection (omentum and subcutaneous evaluating the rate of proliferation, viability, level of oxidative stress and cytotoxicity over six passages. For this experiment, two samples of adipose tissue from subcutaneous and omentum where taken from a female dog corpse, 13 years old, Pitbull. The results showed greater levels of oxidative stress in the first and last passages of both groups, favoring cytotoxicity and cell death.

  4. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    Science.gov (United States)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  5. Renal Cell Carcinoma of the Kidney with Synchronous Ipsilateral Transitional Cell Carcinoma of the Renal Pelvis

    Directory of Open Access Journals (Sweden)

    Dogan Atilgan

    2013-01-01

    Full Text Available A 73-year-old man was admitted to our clinic with flank pain and gross macroscopic hematuria. Radiologic examination revealed a solid mass in the left kidney and additionally another mass in the ureteropelvic junction of the same kidney with severe hydronephrosis. Left nephroureterectomy with bladder cuff removel was performed, and histopathological evolution showed a Fuhrman grade 3 clear cell type RCC with low-grade TCC of the pelvis.

  6. The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney.

    Science.gov (United States)

    O'Neill, John D; Freytes, Donald O; Anandappa, Annabelle J; Oliver, Juan A; Vunjak-Novakovic, Gordana V

    2013-12-01

    Native extracellular matrix (ECM) that is secreted and maintained by resident cells is of great interest for cell culture and cell delivery. We hypothesized that specialized bioengineered niches for stem cells can be established using ECM-derived scaffolding materials. Kidney was selected as a model system because of the high regional diversification of renal tissue matrix. By preparing the ECM from three specialized regions of the kidney (cortex, medulla, and papilla; whole kidney, heart, and bladder as controls) in three forms: (i) intact sheets of decellularized ECM, (ii) ECM hydrogels, and (iii) solubilized ECM, we investigated how the structure and composition of ECM affect the function of kidney stem cells (with mesenchymal stem cells, MSCs, as controls). All three forms of the ECM regulated KSC function, with differential structural and compositional effects. KSCs cultured on papilla ECM consistently displayed lower proliferation, higher metabolic activity, and differences in cell morphology, alignment, and structure formation as compared to KSCs on cortex and medulla ECM, effects not observed in corresponding MSC cultures. These data suggest that tissue- and region-specific ECM can provide an effective substrate for in vitro studies of therapeutic stem cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Collective cell migration drives morphogenesis of the kidney nephron.

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyev

    2009-01-01

    Full Text Available Tissue organization in epithelial organs is achieved during development by the combined processes of cell differentiation and morphogenetic cell movements. In the kidney, the nephron is the functional organ unit. Each nephron is an epithelial tubule that is subdivided into discrete segments with specific transport functions. Little is known about how nephron segments are defined or how segments acquire their distinctive morphology and cell shape. Using live, in vivo cell imaging of the forming zebrafish pronephric nephron, we found that the migration of fully differentiated epithelial cells accounts for both the final position of nephron segment boundaries and the characteristic convolution of the proximal tubule. Pronephric cells maintain adherens junctions and polarized apical brush border membranes while they migrate collectively. Individual tubule cells exhibit basal membrane protrusions in the direction of movement and appear to establish transient, phosphorylated Focal Adhesion Kinase-positive adhesions to the basement membrane. Cell migration continued in the presence of camptothecin, indicating that cell division does not drive migration. Lengthening of the nephron was, however, accompanied by an increase in tubule cell number, specifically in the most distal, ret1-positive nephron segment. The initiation of cell migration coincided with the onset of fluid flow in the pronephros. Complete blockade of pronephric fluid flow prevented cell migration and proximal nephron convolution. Selective blockade of proximal, filtration-driven fluid flow shifted the position of tubule convolution distally and revealed a role for cilia-driven fluid flow in persistent migration of distal nephron cells. We conclude that nephron morphogenesis is driven by fluid flow-dependent, collective epithelial cell migration within the confines of the tubule basement membrane. Our results establish intimate links between nephron function, fluid flow, and morphogenesis.

  8. Attenuation changes of the normal and ischemic canine kidney. Dynamic CT scanning after intravenous contrast medium bolus

    Energy Technology Data Exchange (ETDEWEB)

    Jaschke, W.; Lipton, M.J.; Boyd, D.P.; Cann, C.; Strauss, L.; Sievers, R.S.

    The potential of CT scanning to explore total and regional renal blood flow was evaluated in a dog model with unilateral renal artery stenosis (n=7, reduction of renal blood flow: 32-75% of base line flow). Attenuation versus time curves were generated for the renal cortex and medulla, as well as for the aorta and renal vein. A fast CT scanner was used which allowed for up to 24 scans/minute at the same level (slice thickness: 10 mm). A total of 10 ml contrast medim was injected into a peripheral vein for each scan series taken. During baseline conditions, the curve of the renal cortex and medulla demonstrated 2 peaks. The first peak was mainly related to early vascular enhancement, whereas the second peak corresponded mainly to the appearance of contrast medium in the distal convolutes and collecting ducts. Ischemia of the kidney resulted in a reduction of the first peak and a flattening of the leading edge slope. Transport of contrast medium through the extravascular compartments of the kidney was delayed during ischemia. Relative renal blood flow was obtained from the CT data by dividing peak enhancement by rise-time as assessed from the cortical curve. All measurements were related to baseline flow and validated by flow measurements using radioactive labeled microspheres (n=5). Correlation was found to be r=0.97. (orig.).

  9. Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells.

    Directory of Open Access Journals (Sweden)

    Keith A Russell

    Full Text Available Mesenchymal stromal cells (MSC hold promise for both cell replacement and immune modulation strategies owing to their progenitor and non-progenitor functions, respectively. Characterization of MSC from different sources is an important and necessary step before clinical use of these cells is widely adopted. Little is known about the biology and function of canine MSC compared to their mouse or human counterparts. This knowledge-gap impedes development of canine evidence-based MSC technologies.We hypothesized that canine adipose tissue (AT and bone marrow (BM MSC (derived from the same dogs will have similar differentiation and immune modulatory profiles. Our objectives were to evaluate progenitor and non-progenitor functions as well as other characteristics of AT- and BM-MSC including 1 proliferation rate, 2 cell surface marker expression, 3 DNA methylation levels, 4 potential for trilineage differentiation towards osteogenic, adipogenic, and chondrogenic cell fates, and 5 immunomodulatory potency in vitro.1 AT-MSC proliferated at more than double the rate of BM-MSC (population doubling times in days for passage (P 2, AT: 1.69, BM: 3.81; P3, AT: 1.80, BM: 4.06; P4, AT: 2.37, BM: 5.34; P5, AT: 3.20, BM: 7.21. 2 Canine MSC, regardless of source, strongly expressed cell surface markers MHC I, CD29, CD44, and CD90, and were negative for MHC II and CD45. They also showed moderate expression of CD8 and CD73 and mild expression of CD14. Minor differences were found in expression of CD4 and CD34. 3 Global DNA methylation levels were significantly lower in BM-MSC compared to AT-MSC. 4 Little difference was found between AT- and BM-MSC in their potential for adipogenesis and osteogenesis. Chondrogenesis was poor to absent for both sources in spite of adding varying levels of bone-morphogenic protein to our standard transforming growth factor (TGF-β3-based induction medium. 5 Immunomodulatory capacity was equal regardless of cell source when tested in

  10. Canine distemper virus utilizes different receptors to infect chicken embryo fibroblasts and vero cells.

    Science.gov (United States)

    Chen, Jun; Liang, Xiu; Chen, Pei-fu

    2011-04-01

    Inducing animal viruses to adapt to chicken embryos or chicken embryo fibroblasts (CEF) is a common method to develop attenuated live vaccines with full security. Canine distemper virus (CDV) also does this, but the mechanisms and particular receptors remain unclear. Virus overlay protein blot assays were carried out on CEF membrane proteins, which were extracted respectively with a Mem-PER™ kit, a radioimmunoprecipitation assay buffer or a modified co-immunoprecipitation method, and revealed a common 57 kDa positive band that differed from the 42-kDa positive band in Vero cells and also from those receptors reported in lymphocytes and 293 cells, indicating a receptor diversity of CDV and the possibility of the 57-kDa protein acting as a receptor that is involved in adaptive infection of CDV Kunming strain to CEF.

  11. Cell-Free DNA and Active Rejection in Kidney Allografts.

    Science.gov (United States)

    Bloom, Roy D; Bromberg, Jonathan S; Poggio, Emilio D; Bunnapradist, Suphamai; Langone, Anthony J; Sood, Puneet; Matas, Arthur J; Mehta, Shikha; Mannon, Roslyn B; Sharfuddin, Asif; Fischbach, Bernard; Narayanan, Mohanram; Jordan, Stanley C; Cohen, David; Weir, Matthew R; Hiller, David; Prasad, Preethi; Woodward, Robert N; Grskovic, Marica; Sninsky, John J; Yee, James P; Brennan, Daniel C

    2017-07-01

    Histologic analysis of the allograft biopsy specimen is the standard method used to differentiate rejection from other injury in kidney transplants. Donor-derived cell-free DNA (dd-cfDNA) is a noninvasive test of allograft injury that may enable more frequent, quantitative, and safer assessment of allograft rejection and injury status. To investigate this possibility, we prospectively collected blood specimens at scheduled intervals and at the time of clinically indicated biopsies. In 102 kidney recipients, we measured plasma levels of dd-cfDNA and correlated the levels with allograft rejection status ascertained by histology in 107 biopsy specimens. The dd-cfDNA level discriminated between biopsy specimens showing any rejection (T cell-mediated rejection or antibody-mediated rejection [ABMR]) and controls (no rejection histologically), P rejection at a cutoff of 1.0% dd-cfDNA were 61% and 84%, respectively. The AUC for discriminating ABMR from samples without ABMR was 0.87 (95% CI, 0.75 to 0.97). Positive and negative predictive values for ABMR at a cutoff of 1.0% dd-cfDNA were 44% and 96%, respectively. Median dd-cfDNA was 2.9% (ABMR), 1.2% (T cell-mediated types ≥IB), 0.2% (T cell-mediated type IA), and 0.3% in controls ( P =0.05 for T cell-mediated rejection types ≥IB versus controls). Thus, dd-cfDNA may be used to assess allograft rejection and injury; dd-cfDNA levels rejection (T cell-mediated type ≥IB or ABMR) and levels >1% indicate a probability of active rejection. Copyright © 2017 by the American Society of Nephrology.

  12. Canine Distemper Virus Infects Canine Keratinocytes and Immune Cells by Using Overlapping and Distinct Regions Located on One Side of the Attachment Protein▿

    Science.gov (United States)

    Langedijk, Johannes P. M.; Janda, Jozef; Origgi, Francesco C.; Örvell, Claes; Vandevelde, Marc; Zurbriggen, Andreas; Plattet, Philippe

    2011-01-01

    The morbilliviruses measles virus (MeV) and canine distemper virus (CDV) both rely on two surface glycoproteins, the attachment (H) and fusion proteins, to promote fusion activity for viral cell entry. Growing evidence suggests that morbilliviruses infect multiple cell types by binding to distinct host cell surface receptors. Currently, the only known in vivo receptor used by morbilliviruses is CD150/SLAM, a molecule expressed in certain immune cells. Here we investigated the usage of multiple receptors by the highly virulent and demyelinating CDV strain A75/17. We based our study on the assumption that CDV-H may interact with receptors similar to those for MeV, and we conducted systematic alanine-scanning mutagenesis on CDV-H throughout one side of the β-propeller documented in MeV-H to contain multiple receptor-binding sites. Functional and biochemical assays performed with SLAM-expressing cells and primary canine epithelial keratinocytes identified 11 residues mutation of which selectively abrogated fusion in keratinocytes. Among these, four were identical to amino acids identified in MeV-H as residues contacting a putative receptor expressed in polarized epithelial cells. Strikingly, when mapped on a CDV-H structural model, all residues clustered in or around a recessed groove located on one side of CDV-H. In contrast, reported CDV-H mutants with SLAM-dependent fusion deficiencies were characterized by additional impairments to the promotion of fusion in keratinocytes. Furthermore, upon transfer of residues that selectively impaired fusion induction in keratinocytes into the CDV-H of the vaccine strain, fusion remained largely unaltered. Taken together, our results suggest that a restricted region on one side of CDV-H contains distinct and overlapping sites that control functional interaction with multiple receptors. PMID:21849439

  13. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread.

    Science.gov (United States)

    Delpeut, Sebastien; Noyce, Ryan S; Richardson, Christopher D

    2014-04-01

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Exenatide Treatment Alone Improves β-Cell Function in a Canine Model of Pre-Diabetes.

    Directory of Open Access Journals (Sweden)

    Viorica Ionut

    Full Text Available Exenatide's effects on glucose metabolism have been studied extensively in diabetes but not in pre-diabetes.We examined the chronic effects of exenatide alone on glucose metabolism in pre-diabetic canines.After 10 weeks of high-fat diet (HFD, adult dogs received one injection of streptozotocin (STZ, 18.5 mg/kg. After induction of pre-diabetes, while maintained on HFD, animals were randomized to receive either exenatide (n = 7 or placebo (n = 7 for 12 weeks. β-Cell function was calculated from the intravenous glucose tolerance test (IVGTT, expressed as the acute insulin response, AIRG, the oral glucose tolerance test (OGTT, insulinogenic index and the graded-hyperglycemic clamp (clamp insulinogenic index. Whole-body insulin sensitivity was assessed by the IVGTT. At the end of the study, pancreatic islets were isolated to assess β-cell function in vitro.OGTT: STZ caused an increase in glycemia at 120 min by 22.0% (interquartile range, IQR, 31.5% (P = 0.011. IVGTT: This protocol also showed a reduction in glucose tolerance by 48.8% (IQR, 36.9% (P = 0.002. AIRG decreased by 54.0% (IQR, 40.7% (P = 0.010, leading to mild fasting hyperglycemia (P = 0.039. Exenatide, compared with placebo, decreased body weight (P<0.001 without altering food intake, fasting glycemia, insulinemia, glycated hemoglobin A1c, or glucose tolerance. Exenatide, compared with placebo, increased both OGTT- (P = 0.040 and clamp-based insulinogenic indexes (P = 0.016, improved insulin secretion in vitro (P = 0.041, but had no noticeable effect on insulin sensitivity (P = 0.405.In pre-diabetic canines, 12-week exenatide treatment improved β-cell function but not glucose tolerance or insulin sensitivity. These findings demonstrate partial beneficial metabolic effects of exenatide alone on an animal model of pre-diabetes.

  15. Establishment and characterization of a new cell line of canine inflammatory mammary cancer: IPC-366.

    Directory of Open Access Journals (Sweden)

    Sara Caceres

    Full Text Available Canine inflammatory mammary cancer (IMC shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as a natural model for human inflammatory breast cancer (IBC. The aim of this study was to characterize a new cell line from IMC (IPC-366 for the comparative study of both IMC and IBC. Tumors cells from a female dog with clinical IMC were collected. The cells were grown under adherent conditions. The growth, cytological, ultrastructural and immunohistochemical (IHC characteristics of IPC-366 were evaluated. Ten female Balb/SCID mice were inoculated with IPC-366 cells to assess their tumorigenicity and metastatic potential. Chromosome aberration test and Karyotype revealed the presence of structural aberration, numerical and neutral rearrangements, demonstrating a chromosomal instability. Microscopic examination of tumor revealed an epithelial morphology with marked anysocytosis. Cytological and histological examination of smears and ultrathin sections by electron microscopy revealed that IPC-366 is formed by highly malignant large round or polygonal cells characterized by marked atypia and prominent nucleoli and frequent multinucleated cells. Some cells had cytoplasmic empty spaces covered by cytoplasmic membrane resembling capillary endothelial cells, a phenomenon that has been related to s vasculogenic mimicry. IHC characterization of IPC-366 was basal-like: epithelial cells (AE1/AE3+, CK14+, vimentin+, actin-, p63-, ER-, PR-, HER-2, E-cadherin, overexpressed COX-2 and high Ki-67 proliferation index (87.15 %. At 2 weeks after inoculating the IPC-366 cells, a tumor mass was found in 100 % of mice. At 4 weeks metastases in lung and lymph nodes were found. Xenograph tumors maintained the original IHC characteristics of the female dog tumor. In summary, the cell line IPC-366 is a fast growing malignant triple negative cell line model of inflammatory mammary carcinoma that can be used for the

  16. Establishing an in vivo model of canine prostate carcinoma using the new cell line CT1258

    International Nuclear Information System (INIS)

    Fork, Melani AM; Bullerdiek, Jörn; Nolte, Ingo; Escobar, Hugo Murua; Soller, Jan T; Sterenczak, Katharina A; Willenbrock, Saskia; Winkler, Susanne; Dorsch, Martina; Reimann-Berg, Nicola; Hedrich, Hans J

    2008-01-01

    Prostate cancer is a frequent finding in man. In dogs, malignant disease of the prostate is also of clinical relevance, although it is a less common diagnosis. Even though there are numerous differences in origin and development of the disease, man and dog share many similarities in the pathological presentation. For this reason, the dog might be a useful animal model for prostate malignancies in man. Although prostate cancer is of great importance in veterinary medicine as well as in comparative medicine, there are only few cell lines available. Thus, it was the aim of the present study to determine whether the formerly established prostate carcinoma cell line CT1258 is a suitable tool for in vivo testing, and to distinguish the growth pattern of the induced tumours. For characterisation of the in vivo behaviour of the in vitro established canine prostate carcinoma cell line CT1258, cells were inoculated in 19 NOD.CB17-Prkdc Scid /J (in the following: NOD-Scid) mice, either subcutaneously or intraperitoneally. After sacrifice, the obtained specimens were examined histologically and compared to the pattern of the original tumour in the donor. Cytogenetic investigation was performed. The cell line CT 1258 not only showed to be highly tumourigenic after subcutaneous as well as intraperitoneal inoculation, but also mimicked the behaviour of the original tumour. Tumours induced by inoculation of the cell line CT1258 resemble the situation in naturally occurring prostate carcinoma in the dog, and thus could be used as in vivo model for future studies

  17. CSF-1R as an inhibitor of apoptosis and promoter of proliferation, migration and invasion of canine mammary cancer cells

    Science.gov (United States)

    2013-01-01

    Background Tumor-associated macrophages (TAMs) have high impact on the cancer development because they can facilitate matrix invasion, angiogenesis, and tumor cell motility. It gives cancer cells the capacity to invade normal tissues and metastasize. The signaling of colony-stimulating factor-1 receptor (CSF-1R) which is an important regulator of proliferation and differentiation of monocytes and macrophages regulates most of the tissue macrophages. However, CSF-1R is expressed also in breast epithelial tissue during some physiological stages i.g.: pregnancy and lactation. Its expression has been also detected in various cancers. Our previous study has showed the expression of CSF-1R in all examined canine mammary tumors. Moreover, it strongly correlated with grade of malignancy and ability to metastasis. This study was therefore designed to characterize the role of CSF-1R in canine mammary cancer cells proliferation, apoptosis, migration, and invasion. As far as we know, the study presented hereby is a pioneering experiment in this field of veterinary medicine. Results We showed that csf-1r silencing significantly increased apoptosis (Annexin V test), decreased proliferation (measured as Ki67 expression) and decreased migration (“wound healing” assay) of canine mammary cancer cells. Treatment of these cells with CSF-1 caused opposite effect. Moreover, csf-1r knock-down changed growth characteristics of highly invasive cell lines on Matrigel matrix, and significantly decreased the ability of these cells to invade matrix. CSF-1 treatment increased invasion of cancer cells. Conclusion The evidence of the expression and functional role of the CSF-1R in canine mammary cancer cells indicate that CSF-1R targeting may be a good therapeutic approach. PMID:23561040

  18. Squamous cell carcinoma of the canine nasal cavity and frontal sinus: eight cases

    International Nuclear Information System (INIS)

    Rogers, K.S.; Walker, M.A.; Helman, R.G.

    1996-01-01

    Squamous cell carcinoma of the canine nasal cavity and frontal sinus was diagnosed in eight cases between May 1988 and April 1994. The most common presenting complaints were nasal discharge, including epistaxis; sneezing; and facial deformity or exophthalmos. Metastasis was not identified in any case, but bone lysis and invasion into tissues outside the nasal cavity were noted in five cases. Computed tomograms were performed in five cases and were more useful than radiographs in determining the extent of neoplastic involvement. Euthanasia was performed within one week of diagnosis in three cases at the owner's request; one case died at home within one month; and the remaining four cases were euthanized within eight months due to progressive clinical signs. The mean survival time in these eight cases was three months, with a range of zero weeks to eight months

  19. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingli; Yin, Huancai; Bai, Pengli [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Miao, Peng [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Xudong [Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7 (Canada); Xu, Yingxue [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Jun [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China); Yin, Jian, E-mail: yinj@sibet.ac.cn [CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163 (China)

    2016-07-15

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity of QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.

  20. Tumour necrosis factor-alpha-induced protein 8 (TNFAIP8) expression associated with cell survival and death in cancer cell lines infected with canine distemper virus.

    Science.gov (United States)

    Garcia, J A; Ferreira, H L; Vieira, F V; Gameiro, R; Andrade, A L; Eugênio, F R; Flores, E F; Cardoso, T C

    2017-06-01

    Oncolytic virotherapy is a novel strategy for treatment of cancer in humans and companion animals as well. Canine distemper virus (CDV), a paramyxovirus, has proven to be oncolytic through induction of apoptosis in canine-derived tumour cells, yet the mechanism behind this inhibitory action is poorly understood. In this study, three human mammary tumour cell lines and one canine-derived adenofibrosarcoma cell line were tested regarding to their susceptibility to CDV infection, cell proliferation, apoptosis, mitochondrial membrane potential and expression of tumour necrosis factor-alpha-induced protein 8 (TNFAIP8). CDV replication-induced cytopathic effect, decrease of cell proliferation rates, and >45% of infected cells were considered death and/or under late apoptosis/necrosis. TNFAIP8 and CDVM gene expression were positively correlated in all cell lines. In addition, mitochondrial membrane depolarization was associated with increase in virus titres (p < 0.005). Thus, these results strongly suggest that both human and canine mammary tumour cells are potential candidates for studies concerning CDV-induced cancer therapy. © 2015 John Wiley & Sons Ltd.

  1. Investigation of cell-free DNA in canine plasma and its relation to disease.

    Science.gov (United States)

    Burnett, Deborah L; Cave, Nicholas J; Gedye, Kristene R; Bridges, Janis P

    2016-09-01

    DNA is released from dying cells during apoptosis and necrosis. This cell-free DNA (cfDNA) diffuses into the plasma where it can be measured. In humans, an increase in cfDNA correlates with disease severity and prognosis. It was hypothesized that when DNA in canine plasma was measured by emission fluorometry without prior DNA extraction, the concentration of cfDNA would increase with disease severity. The diseased population consisted of 97 client-owned dogs. The clinically normal population consisted of nine client-owned dogs presenting for 'wellness screens', and 15 colony-owned Harrier Hounds. Plasma cfDNA was measured by fluorometry without prior DNA extraction. The effects of ex vivo storage conditions were evaluated in plasma from two clinically normal dogs. In all other dogs, plasma was separated within two hours of collection. The association between the cfDNA concentration in hospitalized dogs and a variety of clinical, clinicopathological and outcome variables was tested. The concentration of cfDNA was reliably measured when plasma was separated within two hours of blood collection. The diseased dogs had significantly higher cfDNA than clinically normal dogs (P Dogs that did not survive to discharge had significantly higher cfDNA concentrations than survivors (P = 0.02). Conclusions/Clinical Importance: The concentration of cfDNA in the plasma of diseased dogs is associated with disease severity and prognosis. Measurement of canine cfDNA could be a useful non-specific disease indicator and prognostic tool.

  2. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Science.gov (United States)

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  3. Stem cell-derived kidney cells and organoids: Recent breakthroughs and emerging applications.

    Science.gov (United States)

    Chuah, Jacqueline Kai Chin; Zink, Daniele

    The global rise in the numbers of kidney patients and the shortage in transplantable organs have led to an increasing interest in kidney-specific regenerative therapies, renal disease modelling and bioartificial kidneys. Sources for large quantities of high-quality renal cells and tissues would be required, also for applications in in vitro platforms for compound safety and efficacy screening. Stem cell-based approaches for the generation of renal-like cells and tissues would be most attractive, but such methods were not available until recently. This situation has drastically changed since 2013, and various protocols for the generation of renal-like cells and precursors from pluripotent stem cells (PSC) have been established. The most recent breakthroughs were related to the establishment of various protocols for the generation of PSC-derived kidney organoids. In combination with recent advances in genome editing, bioprinting and the establishment of predictive renal screening platforms this results in exciting new possibilities. This review will give a comprehensive overview over current PSC-based protocols for the generation of renal-like cells, precursors and organoids, and their current and potential applications in regenerative medicine, compound screening, disease modelling and bioartificial organs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines.

    Science.gov (United States)

    Fenger, Joelle M; Roberts, Ryan D; Iwenofu, O Hans; Bear, Misty D; Zhang, Xiaoli; Couto, Jason I; Modiano, Jaime F; Kisseberth, William C; London, Cheryl A

    2016-10-10

    MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified

  5. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    Directory of Open Access Journals (Sweden)

    Noriyuki Otsuki

    Full Text Available Canine distemper virus (CDV becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  6. Characterization of canine herpesvirus glycoprotein C expressed by a recombinant baculovirus in insect cells.

    Science.gov (United States)

    Xuan, X; Maeda, K; Mikami, T; Otsuka, H

    1996-12-01

    The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.

  7. Biologic activity of the novel orally bioavailable selective inhibitor of nuclear export (SINE) KPT-335 against canine melanoma cell lines

    Science.gov (United States)

    2014-01-01

    Background Exportin 1 (XPO1, also known as CRM1), is a chaperone protein responsible for the export of over 200 target proteins out of the nucleus. The expression and activity of XPO1 is upregulated in several human cancers and its expression is also linked to the development of chemotherapy resistance. Recent studies using both human and murine cancer cell lines have demonstrated that XPO1 is a relevant target for therapeutic intervention. The present study sought to characterize the biologic activity of an orally bioavailable selective inhibitor of nuclear export (SINE), KPT-335, against canine melanoma cell lines as a prelude to future clinical trials in dogs with melanoma. Results We evaluated the effects of KPT-335 on 4 canine malignant melanoma cell lines and found that KPT-335 inhibited proliferation, blocked colony formation, and induced apoptosis of treated cells at biologically relevant concentrations of drug. Additionally, KPT-335 downregulated XPO1 protein while inducing a concomitant increase in XPO1 messenger RNA. Lastly, KPT-335 treatment of cell lines upregulated the expression of both protein and mRNA for the tumor suppressor proteins p53 and p21, and promoted their nuclear localization. Conclusions KPT-335 demonstrates biologic activity against canine melanoma cell lines at physiologically relevant doses, suggesting that KPT-335 may represent a viable treatment option for dogs with malignant melanoma. PMID:25022346

  8. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    Science.gov (United States)

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  9. CD25 is expressed by canine cutaneous mast cell tumors but not by cutaneous connective tissue mast cells.

    Science.gov (United States)

    Meyer, A; Gruber, A D; Klopfleisch, R

    2012-11-01

    Canine cutaneous mast cell tumors (MCT) of different histological grades have distinct biological behaviors. However, little is known about underlying molecular mechanisms that lead to tumor development and increasing malignancy with higher tumor grade. Recent studies have identified the interleukin-2 receptor (IL-2R) subunits CD25 and CD2 as markers that distinguish nonneoplastic from neoplastic mast cells in human systemic mastocytosis. In this study, their potential as a marker for canine MCT and their possible impact on MCT carcinogenesis were evaluated. mRNA expression levels of both genes were compared between grade 1 (n = 12) and grade 3 (n = 8) MCT, and protein expression levels of CD25 were compared in 90 MCT of different tumor grades. mRNA expression levels of both CD25 and CD2 were upregulated in grade 3 MCT. In contrast, CD25 protein was expressed by fewer tumor cells and at decreased levels in grade 3 tumors, while most grade 1 MCT had strong CD25 protein expression. Moreover, CD25 was not expressed by nonneoplastic, resting cutaneous mast cells, while few presumably activated mast cells in tissue samples from dogs with allergic dermatitis had weak CD25 expression. Taken together, these findings suggest that CD25 may play a critical role in early MCT development and may be a stimulatory factor in grade 1 MCT, while grade 3 MCT seem to be less dependent on CD25. Because of the low number of CD25-positive tumor cells in high-grade tumors, the usefulness of CD25 as a tumor marker is, however, questionable.

  10. Characterization of the Canine MHC Class I DLA-88*50101 Peptide Binding Motif as a Prerequisite for Canine T Cell Immunotherapy.

    Directory of Open Access Journals (Sweden)

    Sharon M Barth

    Full Text Available There are limitations in pre-clinical settings using mice as a basis for clinical development in humans. In cancer, similarities exist between humans and dogs; thus, the dog patient can be a link in the transition from laboratory research on mouse models to clinical trials in humans. Knowledge of the peptides presented on MHC molecules is fundamental for the development of highly specific T cell-based immunotherapies. This information is available for human MHC molecules but is absent for the canine MHC. In the present study, we characterized the binding motif of dog leukocyte antigen (DLA class I allele DLA-88*50101, using human C1R and K562 transfected cells expressing the DLA-88*50101 heavy chain. MHC class I immunoaffinity-purification revealed 3720 DLA-88*50101 derived peptides, which enabled the determination of major anchor positions. The characterized binding motif of DLA-88*50101 was similar to HLA-A*02:01. Peptide binding analyses on HLA-A*02:01 and DLA-88*50101 via flow cytometry showed weak binding of DLA-88*50101 derived peptides to HLA-A*02:01, and vice versa. Our results present for the first time a detailed peptide binding motif of the canine MHC class I allelic product DLA-88*50101. These data support the goal of establishing dogs as a suitable animal model for the evaluation and development of T cell-based cancer immunotherapies, benefiting both dog and human patients.

  11. The effects of canine bone marrow stromal cells on neuritogenesis from dorsal root ganglion neurons in vitro.

    Science.gov (United States)

    Kamishina, Hiroaki; Cheeseman, Jennifer A; Clemmons, Roger M

    2009-10-01

    The present in vitro study was designed to evaluate whether canine bone marrow stromal cells (BMSCs) promote neurite outgrowth from dorsal root ganglion (DRG) neurons. Bone marrow aspirates were collected from iliac crests of three young adult dogs. DRG neurons were cultured on BMSCs, fibroblasts, or laminin substrates. DRG neurons were also cultured in BMSC- or fibroblast-conditioned media. DRG neurons grown on BMSCs extended longer neurites and developed a much more elaborate conformation of branching neurites compared to those on fibroblasts or laminin. Quantitative analysis revealed that these effects were associated with the emergence of increased numbers of primary and branching neurites. The effect appears to be dependent upon cell-cell interactions rather than by elaboration of diffusible molecules. With more extensive investigations into the basic biology of canine BMSCs, their ability for promoting neurite outgrowth may be translated into a novel therapeutic strategy for dogs with a variety of neurological disorders.

  12. A novel derivative of doxorubicin, AD198, inhibits canine transitional cell carcinoma and osteosarcoma cells in vitro.

    Science.gov (United States)

    Rathore, Kusum; Cekanova, Maria

    2015-01-01

    Doxorubicin (DOX) is one of the most commonly used chemotherapeutic treatments for a wide range of cancers. N-benzyladriamycin-14-valerate (AD198) is a lipophilic anthracycline that has been shown to target conventional and novel isoforms of protein kinase C (PKC) in cytoplasm of cells. Because of the adverse effects of DOX, including hair loss, nausea, vomiting, liver dysfunction, and cardiotoxicity, novel derivatives of DOX have been synthesized and validated. In this study, we evaluated the effects of DOX and its derivative, AD198, on cell viability of three canine transitional cell carcinoma (K9TCC) (K9TCC#1-Lillie, K9TCC#2-Dakota, K9TCC#4-Molly) and three canine osteosarcoma (K9OSA) (K9OSA#1-Zoe, K9OSA#2-Nashville, K9OSA#3-JJ) primary cancer cell lines. DOX and AD198 significantly inhibited cell proliferation in all tested K9TCC and K9OSA cell lines in a dose-dependent manner. AD198 inhibited cell viability of tested K9TCC and K9OSA cell lines more efficiently as compared to DOX at the same concentration using MTS (3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium) assay. AD198 had lower IC50 values as compared to DOX for all tested K9TCC and K9OSA cell lines. In addition, AD198 increased apoptosis in all tested K9TCC and K9OSA cell lines. AD198 increased the caspase activity in tested K9TCC and K9OSA cell lines, which was confirmed by caspase-3/7 assay, and cleavage of poly (ADP-ribose) polymerase (PARP) was confirmed by Western blotting analysis. In addition, AD198 cleaved PKC-δ, which subsequently activated the p38 signaling pathway, resulting in the apoptosis of tested K9TCC and K9OSA cell lines. Inhibition of the p38 signaling pathway by SB203580 rescued DOX- and AD198-induced apoptosis in tested K9TCC and K9OSA cell lines. Our in vitro results suggest that AD198 might be considered as a new treatment option for K9TCC and K9OSA cell lines cancers in vivo.

  13. Display of neutralizing epitopes of Canine parvovirus and a T-cell epitope of the fusion protein of Canine distemper virus on chimeric tymovirus-like particles and its use as a vaccine candidate both against Canine parvo and Canine distemper.

    Science.gov (United States)

    Chandran, Dev; Shahana, Pallichera Vijayan; Rani, Gudavelli Sudha; Sugumar, Parthasarthy; Shankar, Chinchkar Ramchandra; Srinivasan, Villuppanoor Alwar

    2009-12-10

    Expression of Physalis mottle tymovirus coat protein in Escherichia coli was earlier shown to self-assemble into empty capsids that were nearly identical to the capsids formed in vivo. Amino acid substitutions were made at the N-terminus of wild-type Physalis mottle virus coat protein with neutralizing epitopes of Canine parvovirus containing the antigenic sites 1-2, 4 and 6-7 and T-cell epitope of the fusion protein of Canine distemper virus in various combinations to yield PhMV1, PhMV2, PhMV3, PhMV4 and PhMV5. These constructs were cloned and expressed in E. coli. The chimeric proteins self-assembled into chimeric tymovirus-like particles (TVLPs) as determined by electron microscopy. The TVLPs were purified by ultracentrifugation and injected into guinea pigs and dogs to determine their immunogenicity. Initial immunogenicity studies in guinea pigs indicated that PhMV3 gave a higher response in comparison to the other TVLPs for both CPV and CDV and hence all further experiments in dogs were done with PhMV3. HI was done against different isolates obtained from various parts of the country. Protective titres indicated the broad spectrum of the vaccine. In conclusion the study indicated that the above chimeric VLP based vaccine could be used in dogs to generate a protective immune response against diseases caused by both Canine parvo and Canine distemper virus.

  14. Cell proliferation and expression of connexins differ in melanotic and amelanotic canine oral melanomas.

    Science.gov (United States)

    Teixeira, Tarso Felipe; Gentile, Luciana Boffoni; da Silva, Tereza Cristina; Mennecier, Gregory; Chaible, Lucas Martins; Cogliati, Bruno; Roman, Marco Antonio Leon; Gioso, Marco Antonio; Dagli, Maria Lucia Zaidan

    2014-03-01

    Melanoma is a malignant neoplasm occurring in several animal species, and is the most frequently found tumor in the oral cavity in dogs. Melanomas are classified into two types: melanotic and amelanotic. Prior research suggests that human amelanotic melanomas are more aggressive than their melanotic counterparts. This study evaluates the behavior of canine melanotic and amelanotic oral cavity melanomas and quantifies cell proliferation and the expression of connexins. Twenty-five melanomas (16 melanotic and 9 amelanotic) were collected from dogs during clinical procedures at the Veterinary Hospital of the School of Veterinary Medicine and Animal Science of the University of São Paulo, Brazil. After diagnosis, dogs were followed until death or euthanasia. Histopathology confirmed the gross melanotic or amelanotic characteristics and tumors were classified according to the WHO. HMB45 or Melan A immunostainings were performed to confirm the diagnosis of amelanotic melanomas. Cell proliferation was quantified both by counting mitotic figures and PCNA positive nuclei. Expressions of connexins 26 and 43 were evaluated by immunohistochemistry, qRT-PCR and Western blot. Dogs bearing amelanotic melanomas presented a shorter lifespan in comparison to those with melanotic melanomas. Cell proliferation was significantly higher in amelanotic melanomas. Expressions of Connexins 26 and 43 were significantly reduced in amelanotic melanomas. The results presented here suggest that oral cavity melanotic and amelanotic melanomas differ regarding their behavior, cell proliferation and connexin expression in dogs, indicating a higher aggressiveness of amelanotic variants.

  15. Gastrin receptor characterization: affinity cross-linking of the gastrin receptor on canine gastric parietal cells

    International Nuclear Information System (INIS)

    Matsumoto, M.; Park, J.; Yamada, T.

    1987-01-01

    The authors applied affinity cross-linking methods to label the gastrin receptor on isolated canine gastric parietal cells in order to elucidate the nature of its chemical structure. 125 I-labeled Leu 15 -gastrin and 125 I-labeled gastrin/sub 2-17/ bound to intact parietal cells and their membranes with equal affinity, and half-maximal inhibition of binding was obtained at an incubation concentration of 3.2 x 10 -10 M unlabeled gastrin. 125 I-gastrin/sub 2-17/ was cross-linked to plasma membranes or intact parietal cells by incubation in disuccinimidyl suberate. The membrane pellets were solubilized with or without dithiothreitol and applied to electrophoresis on 7.5% sodium dodecyl sulfate polyacrylamide gels. Autoradiograms revealed a band of labeling at M/sub r/ 76,000 and labeling of this band was inhibited in a dose-dependent fashion by addition of unlabeled gastrin to the incubation mixture. Dithiothreitol in concentrations as high as 100 mM did not later the electrophoretic mobility of the labeled band. After taking into account the molecular weight of 125 I-gastrin/sub 2-17/, the results suggest that the gastrin receptor on parietal cells is a single protein of M/sub r/ 74,000 without disulfide-linked subunits

  16. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Directory of Open Access Journals (Sweden)

    Susanne C. Hammer

    2016-09-01

    Full Text Available Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

  17. Expression of stem cell markers in the human fetal kidney.

    Directory of Open Access Journals (Sweden)

    Sally Metsuyanim

    Full Text Available In the human fetal kidney (HFK self-renewing stem cells residing in the metanephric mesenchyme (MM/blastema are induced to form all cell types of the nephron till 34(th week of gestation. Definition of useful markers is crucial for the identification of HFK stem cells. Because wilms' tumor, a pediatric renal cancer, initiates from retention of renal stem cells, we hypothesized that surface antigens previously up-regulated in microarrays of both HFK and blastema-enriched stem-like wilms' tumor xenografts (NCAM, ACVRIIB, DLK1/PREF, GPR39, FZD7, FZD2, NTRK2 are likely to be relevant markers. Comprehensive profiling of these putative and of additional stem cell markers (CD34, CD133, c-Kit, CD90, CD105, CD24 in mid-gestation HFK was performed using immunostaining and FACS in conjunction with EpCAM, an epithelial surface marker that is absent from the MM and increases along nephron differentiation and hence can be separated into negative, dim or bright fractions. No marker was specifically localized to the MM. Nevertheless, FZD7 and NTRK2 were preferentially localized to the MM and emerging tubules (50% of HFK cells and predominantly co-express EpCAM(bright, indicating they are mostly markers of differentiation. Furthermore, localization of NCAM exclusively in the MM and in its nephron progenitor derivatives but also in stroma and the expression pattern of significantly elevated renal stem/progenitor genes Six2, Wt1, Cited1, and Sall1 in NCAM(+EpCAM(- and to a lesser extent in NCAM(+EpCAM(+ fractions confirmed regional identity of cells and assisted us in pinpointing the presence of subpopulations that are putative MM-derived progenitor cells (NCAM(+EpCAM(+FZD7(+, MM stem cells (NCAM(+EpCAM(-FZD7(+ or both (NCAM(+FZD7(+. These results and concepts provide a framework for developing cell selection strategies for human renal cell-based therapies.

  18. Effect of selenodiglutathione on the metabolism of canine mammary tumor cells

    International Nuclear Information System (INIS)

    Fico-Santoro, M.; Lebowitz, A.; Milner, J.A.

    1986-01-01

    Selenodiglutathione (SDG) has been shown to be an effective inhibitor of tumor growth. The present studies were designed to evaluate altered metabolism in canine mammary tumor cells (CMT-13) exposed to various concentrations of SDG. Addition of SDG at 0.025 μg Se/ml did not inhibit growth of CMT-13 cells after 24 h of incubation. At this concentration of SDG, approximately 25% of 75 Se- 35 S-SDG was retained in these tumor cells after 24 h of incubation. The nuclear fraction contained 96% of the 75 Se and 35 S radioactivity. The ratio of 75 Se to 35 S was 1 to 4.5 in the whole cell and in the nuclear fraction. SDG increased glutathione peroxidase activity by 40% compared to CMT-13 cells not exposed to SDG. Glutathione reductase activity was decreased by 63% by the addition of SDG. In addition, supplemental SDG resulted in a 55% decrease in GSH content but did not alter GSSG concentrations. After 4d of incubation, SDG at 0.1 and 0.5 μg Se/ml caused a 43 and 58% inhibition of growth of CMT-13 cells. Addition of GSH (100μM) partially prevented, 68% and 54%, the growth inhibition caused by SDG at concentrations of 0.1 and 0.5 μg Se per ml respectively during the 4d incubation period. Preincubation of CMT-13 cells with GSH for 48 h before addition of SDG (0.5 μg Se/ml) completely prevented the growth inhibition caused by this seleno-compound

  19. The 5-lipoxygenase inhibitor tepoxalin induces oxidative damage and altered PTEN status prior to apoptosis in canine osteosarcoma cell lines.

    Science.gov (United States)

    Loftus, J P; Cavatorta, D; Bushey, J J; Levine, C B; Sevier, C S; Wakshlag, J J

    2016-06-01

    The 5-lipoxygenase (5-LOX) inhibitor tepoxalin has been shown to slow canine osteosarcoma (OSA) tumour xenografts growth, yet the mechanisms are poorly elucidated. Further examination of tepoxalin in canine OSA cell lines shows that tepoxalin treated cells undergo apoptosis through caspase-3 activation and annexin staining. Interestingly, apoptosis is superseded by an increase in reactive oxygen species (ROS), as measured by activation of dihydrorhodamine 123 and mitosox. This increase in ROS appears to be related to the 5-LOX inhibitor regardless of cellular 5-LOX status, and was not observed after treatment with the tepoxalin metabolite RWJ20142. Additionally, 5-LOX inhibition by tepoxalin appears to increase phosphatase and tensin (PTEN) homolog activity by preventing its alkylation or oxidation. PTEN modification or inhibition allows phosphoinositide-3 (PI3) kinase activity thereby heightening activation of protein kinase B (AKT) phosphorylation. Our data suggest that off target oxidation and LOX inhibition play roles in the apoptotic response. © 2014 John Wiley & Sons Ltd.

  20. The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line.

    Science.gov (United States)

    Bracha, Shay; Viall, Austin; Goodall, Cheri; Stang, Bernadette; Ruaux, Craig; Seguin, Bernard; Chappell, Patrick E

    2013-12-12

    The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists. 5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability. These findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular

  1. Establishing an in vivo model of canine prostate carcinoma using the new cell line CT1258

    Directory of Open Access Journals (Sweden)

    Winkler Susanne

    2008-08-01

    Full Text Available Abstract Background Prostate cancer is a frequent finding in man. In dogs, malignant disease of the prostate is also of clinical relevance, although it is a less common diagnosis. Even though there are numerous differences in origin and development of the disease, man and dog share many similarities in the pathological presentation. For this reason, the dog might be a useful animal model for prostate malignancies in man. Although prostate cancer is of great importance in veterinary medicine as well as in comparative medicine, there are only few cell lines available. Thus, it was the aim of the present study to determine whether the formerly established prostate carcinoma cell line CT1258 is a suitable tool for in vivo testing, and to distinguish the growth pattern of the induced tumours. Methods For characterisation of the in vivo behaviour of the in vitro established canine prostate carcinoma cell line CT1258, cells were inoculated in 19 NOD.CB17-PrkdcScid/J (in the following: NOD-Scid mice, either subcutaneously or intraperitoneally. After sacrifice, the obtained specimens were examined histologically and compared to the pattern of the original tumour in the donor. Cytogenetic investigation was performed. Results The cell line CT 1258 not only showed to be highly tumourigenic after subcutaneous as well as intraperitoneal inoculation, but also mimicked the behaviour of the original tumour. Conclusion Tumours induced by inoculation of the cell line CT1258 resemble the situation in naturally occurring prostate carcinoma in the dog, and thus could be used as in vivo model for future studies.

  2. Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos.

    Science.gov (United States)

    Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E

    2009-09-01

    Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (Ptip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.

  3. Rapamycin protects kidney against ischemia reperfusion injury through recruitment of NKT cells.

    Science.gov (United States)

    Zhang, Chao; Zheng, Long; Li, Long; Wang, Lingyan; Li, Liping; Huang, Shang; Gu, Chenli; Zhang, Lexi; Yang, Cheng; Zhu, Tongyu; Rong, Ruiming

    2014-08-19

    NKT cells play a protective role in ischemia reperfusion (IR) injury, of which the trafficking in the body and recruitment in injured organs can be influenced by immunosuppressive therapy. Therefore, we investigated the effects of rapamycin on kidneys exposed to IR injury in early stage and on trafficking of NKT cells in a murine model. Balb/c mice were subjected to kidney 30 min ischemia followed by 24 h reperfusion. Rapamycin (2.5 ml/kg) was administered by gavage daily, starting 1 day before the operation. Renal function and histological changes were assessed. The proportion of NKT cells in peripheral blood, spleen and kidney was detected by flow cytometry. The chemokines and corresponding receptor involved in NKT cell trafficking were determined by RT-PCR and flow cytometry respectively. Rapamycin significantly improved renal function and ameliorated histological injury. In rapamycin-treated group, the proportion of NKT cells in spleen was significantly decreased but increased in peripheral blood and kidney. In addition, the CXCR3+ NKT cell in the kidney increased remarkably in the rapamycin-treated group. The chemokines, CXCL9 and CXCL10, as the ligands of CXCR3, were also increased in the rapamycin-treated kidney. Rapamycin may recruit NKT cells from spleen to the IR-induced kidney to ameliorate renal IR injury in the early stage.

  4. Action of diclofenac on kidney mitochondria and cells

    International Nuclear Information System (INIS)

    Ng, Lin Eng; Vincent, Annette S.; Halliwell, Barry; Wong, Kim Ping

    2006-01-01

    The mitochondrial membrane potential measured in isolated rat kidney mitochondria and in digitonin-permeabilized MDCK type II cells pre-energized with succinate, glutamate, and/or malate was reduced by micromolar diclofenac dose-dependently. However, ATP biosynthesis from glutamate/malate was significantly more compromised compared to that from succinate. Inhibition of the malate-aspartate shuttle by diclofenac with a resultant decrease in the ability of mitochondria to generate NAD(P)H was demonstrated. Diclofenac however had no effect on the activities of NADH dehydrogenase, glutamate dehydrogenase, and malate dehydrogenase. In conclusion, decreased NAD(P)H production due to an inhibition of the entry of malate and glutamate via the malate-aspartate shuttle explained the more pronounced decreased rate of ATP biosynthesis from glutamate and malate by diclofenac. This drug, therefore affects the bioavailability of two major respiratory complex I substrates which would normally contribute substantially to supplying the reducing equivalents for mitochondrial electron transport for generation of ATP in the renal cell

  5. Canine Mesenchymal Stem Cell Potential and the Importance of Dog Breed: Implication for Cell-Based Therapies.

    Science.gov (United States)

    Bertolo, Alessandro; Steffen, Frank; Malonzo-Marty, Cherry; Stoyanov, Jivko

    2015-01-01

    The study of canine bone marrow-derived mesenchymal stem cells (MSCs) has a prominent position in veterinary cell-based applications. Yet the plethora of breeds, their different life spans, and interbreed variations provide unclearness on what can be achieved specifically by such therapies. In this study, we compared a set of morphological, physiological, and genetic markers of MSCs derived from large dog breeds, namely, Border collie, German shepherd, Labrador, Malinois, Golden retriever, and Hovawart. We compared colony-forming units (CFUs) assay, population doubling time (PDT), senescence-associated β-galactosidase (SA-β-gal) activity, telomere length, and gene expression of MSCs, as well as the ability of cells to differentiate to osteogenic, adipogenic, and chondrogenic phenotypes. The influence of the culture media α-MEM, low-glucose DMEM, and high-glucose DMEM, used in cell isolation and expansion, was investigated in the presence and absence of basic fibroblast growth factor (bFGF). Initial cell yield was not affected by culturing medium, but MSCs expanded best in α-MEM supplemented with bFGF. After isolation, the number of MSCs was similar among breeds--as shown by equivalent CFUs--except in the Hovawart samples, which had fivefold less CFU. Telomere lengths were similar among breeds. MSCs divided actively only for 4 weeks in culture (PDT = ∼50 h/division), except Border collie cells divided for a longer time than cells from other groups. The percentage of senescent cells increased linearly in all breeds with time, with a faster rate in German shepherd, Labrador, and Golden retriever. Border collie cells underwent efficient osteogenic differentiation, Hovawart cells performed the best in chondrogenic differentiation, and Labrador cells in both, while German shepherd cells had the lower differentiation potential. MSCs from all breeds preserved the same adipogenic differentiation potential. In conclusion, despite variations, isolated MSCs can be

  6. Suppression of vascular endothelial growth factor expression by cannabinoids in a canine osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Figueiredo AS

    2013-07-01

    Full Text Available Andreza S Figueiredo,1 Hiram J García-Crescioni,1 Sandra C Bulla,1 Matthew K Ross,2 Chelsea McIntosh,1 Kari Lunsford,3 Camilo Bulla11Department of Pathobiology and Population Medicine, 2Department of Basic Sciences, 3Department of Clinical Sciences and Animal Health Center, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USAAbstract: Vascular endothelial growth factor (VEGF is a key regulator in both physiologic and pathologic angiogenesis, and cannabinoids decrease VEGF release in human and murine cancer cells. The aim of this study was to assess the in vitro effects of a synthetic cannabinoid, WIN-55,212-2, on the expression of the proangiogenic factor VEGF-A in the canine osteosarcoma cell line 8. After analysis of gene expression by quantitative real-time polymerase chain reaction, the compound decreased VEGF-A expression by 35% ± 10% (P < 0.0001 as compared with the control. This synthetic cannabinoid shows promise as a potential inhibitor of angiogenesis, and further studies are warranted to investigate its in vivo effects and to explore the potential of this and related compounds as adjuvant cancer therapy in the dog.Keywords: dog, cancer, angiogenesis, cannabinoids

  7. In Vitro Action of Flavonoids in the Canine Malignant Histiocytic Cell Line DH82

    Directory of Open Access Journals (Sweden)

    Gabriel Silva

    2013-12-01

    Full Text Available Cancer is commonly diagnosed in dogs over the age of 10 and is a leading cause of death due to the lack of effective drugs. Flavonoids possess antioxidant, anti-inflammatory and anticarcinogenic properties and have been studied as chemopreventive agents in human cancer therapy. However, the literature on dogs is sparse. In this study, we analyzed the effect of nine flavonoids on cell viability, DNA damage and topoisomerase IIa/IIb gene expression in a canine tumor cell line (DH82. Apigenin, luteolin, trans-chalcone and 4-methoxychalcone showed the highest degree of cytotoxicity in the absence of considerable DNA damage, whereas genistein exhibited low cytotoxicity but induced a high level of DNA damage. These five flavonoids inhibited topoisomerase IIa and IIb gene expression to variable extents and with variable specificity. Genistein exerted a lower inhibitory effect on the two topoisomerases than luteolin and apigenin. trans-Chalcone and 4-methoxychalcone exerted greater inhibition of topoisomerase IIa expression than topoisomerase IIb. The differences in the effects between genistein and luteolin and apigenin might be explained by the position of ring B, whereas the more specific effect of chalcones on topoisomerase IIa might be due to their open chain structure.

  8. Canine adenovirus type 1 in a fennec fox (Vulpes zerda).

    Science.gov (United States)

    Choi, Jeong-Won; Lee, Hyun-Kyoung; Kim, Seong-Hee; Kim, Yeon-Hee; Lee, Kyoung-Ki; Lee, Myoung-Heon; Oem, Jae-Ku

    2014-12-01

    A 10-mo-old female fennec fox (Vulpes zerda) with drooling suddenly died and was examined postmortem. Histologic examination of different tissue samples was performed. Vacuolar degeneration and diffuse fatty change were observed in the liver. Several diagnostic methods were used to screen for canine parvovirus, canine distemper virus, canine influenza virus, canine coronavirus, canine parainfluenza virus, and canine adenovirus (CAdV). Only CAdV type 1 (CAdV-1) was detected in several organs (liver, lung, brain, kidney, spleen, and heart), and other viruses were not found. CAdV-1 was confirmed by virus isolation and nucleotide sequencing.

  9. β-Catenin transcriptional activity is minimal in canine osteosarcoma and its targeted inhibition results in minimal changes to cell line behaviour.

    Science.gov (United States)

    Piskun, Caroline M; Stein, Timothy J

    2016-06-01

    Canine osteosarcoma (OS) is an aggressive malignancy associated with poor outcomes. Therapeutic improvements are likely to develop from an improved understanding of signalling pathways contributing to OS development and progression. The Wnt signalling pathway is of interest for its role in osteoblast differentiation, its dysregulation in numerous cancer types, and the relative frequency of cytoplasmic accumulation of β-catenin in canine OS. This study aimed to determine the biological impact of inhibiting canonical Wnt signalling in canine OS, by utilizing either β-catenin siRNA or a dominant-negative T-cell factor (TCF) construct. There were no consistent, significant changes in cell line behaviour with either method compared to parental cell lines. Interestingly, β-catenin transcriptional activity was three-fold higher in normal canine primary osteoblasts compared to canine OS cell lines. These results suggest canonical Wnt signalling is minimally active in canine OS and its targeted inhibition is not a relevant therapeutic strategy. © 2013 John Wiley & Sons Ltd.

  10. Growing kidney tissue from stem cells: how far from ‘party trick’ to medical application?

    Science.gov (United States)

    Little, Melissa H

    2016-01-01

    The successful generation of kidney-like structures from human pluripotent stem cells, although slower to come than other tissue types, brings the hope of new therapies. While the demand for alternative treatments for kidney failure is acute, huge challenges remain to move these exciting but preliminary results towards clinical use. PMID:27257757

  11. Podoplanin Expression in Canine Melanoma

    OpenAIRE

    Ogasawara, Satoshi; Honma, Ryusuke; Kaneko, Mika K.; Fujii, Yuki; Kagawa, Yumiko; Konnai, Satoru; Kato, Yukinari

    2016-01-01

    A type I transmembrane protein, podoplanin (PDPN), is expressed in several normal cells such as lymphatic endothelial cells or pulmonary type I alveolar cells. We recently demonstrated that anticanine PDPN monoclonal antibody (mAb), PMab-38, recognizes canine PDPN of squamous cell carcinomas, but does not react with lymphatic endothelial cells. Herein, we investigated whether PMab-38 reacts with canine melanoma. PMab-38 reacted with 90% of melanoma cells (9/10 cases) using immunohistochemistr...

  12. Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a dog glioma clinical trial.

    Directory of Open Access Journals (Sweden)

    Weidong Xiong

    2010-06-01

    Full Text Available Glioblastoma multiforme (GBM is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK. This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs, in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF.Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-alpha and IFN-gamma. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation.These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials.

  13. A cyclized peptide derived from alpha fetoprotein inhibits the proliferation of ER-positive canine mammary cancer cells.

    Science.gov (United States)

    Torres, Cristian Gabriel; Pino, Ana María; Sierralta, Walter Daniel

    2009-06-01

    The effects of estradiol (E2) and of an AFP-derived cyclized peptide (cP) on the proliferation of primary cultures of cancer cells isolated from spontaneous canine mammary tumors were studied. The cellular response to E2 and cP was related to the expression of estradiol receptor (isoforms alpha and beta). In ER-positive cells, 2 nM estradiol increased cell proliferation and the phosphorylation of ERK1/2; 2 microg/ml cP inhibited all these effects. Estradiol also increased HER2 immunoreactivity in ER-positive cells, an effect that was reverted to its basal values by cP. Estradiol stimulated in these cells the release of MMP2 and MMP9 and the shedding of HB-EGF, effects that the cP did not affect. ER-negative cells were refractory to estradiol or cP. All canine mammary tumor cells in culture responded to treatments analogously to human mammary cancer cells. Our results support the proposal of cP as a new, potentially effective therapeutic agent for the management of mammary cancer.

  14. Chondrogenic potential of canine articular cartilage derived cells (cACCs

    Directory of Open Access Journals (Sweden)

    Nowak Urszula

    2016-01-01

    Full Text Available In the present paper, the potential of canine articular cartilage-derived cells (cACCs for chondrogenic differentiation was evaluated. The effectiveness of cACCs’ lineage commitment was analyzed after 14 days of culture in chondorgenic and non-chondrogenic conditions. Formation of proteoglycan-rich extracellular matrix was assessed using histochemical staining – Alcian Blue and Safranin-O, while elemental composition was determined by means of SEM-EDX. Additionally, ultrastructure of cACCs was evaluated using TEM. The expression of genes involved in chondrogenesis was monitored with quantitative Real Time PCR. Results obtained indicate that the potential of cACCs for cartilagous extracellular matrix formation may be maintained only in chondrogenic cultures. The formation of specific chondro-nodules was not observed in a non-chondrogenic culture environment. The analysis of cACCs’ ultrastructure, both in non-chondrogenic and chondrogenic cultures, revealed well-developed rough endoplasmatic reticulum and presence of mitochondria. The cACCs in chondrogenic medium shed an increased number of microvesicles. Furthermore, it was shown that the extracellular matrix of cACCs in chondrogenic cultures is rich in potassium and molybdenum. Additionally, it was determined that gene expression of collagen type II, aggrecan and SOX-9 was significantly increased during chondrogenic differentiation of cACCs. Results obtained indicate that the culture environment may significantly influence the cartilage phenotype of cACCs during long term culture.

  15. The effect of Zhangfei/CREBZF on cell growth, differentiation, apoptosis, migration, and the unfolded protein response in several canine osteosarcoma cell lines.

    Science.gov (United States)

    Zhang, Rui; Thamm, Douglas H; Misra, Vikram

    2015-02-07

    We had previously shown that the bLZip domain-containing transcription factor, Zhangfei/CREBZF inhibits the growth and the unfolded protein response (UPR) in cells of the D-17 canine osteosarcoma (OS) line and that the effects of Zhangfei are mediated by it stabilizing the tumour suppressor protein p53. To determine if our observations with D-17 cells applied more universally to canine OS, we examined three other independently isolated canine OS cell lines--Abrams, McKinley and Gracie. Like D-17, the three cell lines expressed p53 proteins that were capable of activating promoters with p53 response elements on their own, and synergistically with Zhangfei. Furthermore, as with D-17 cells, Zhangfei suppressed the growth and UPR-related transcripts in the OS cell lines. Zhangfei also induced the activation of osteocalcin expression, a marker of osteoblast differentiation and triggered programmed cell death. Osteosarcomas are common malignancies in large breeds of dogs. Although there has been dramatic progress in their treatment, these therapies often fail, leading to recurrence of the tumour and metastatic spread. Our results indicate that induction of the expression of Zhangfei in OS, where p53 is functional, may be an effective modality for the treatment of OS.

  16. Combinatorial treatment of DNA and chromatin-modifying drugs cause cell death in human and canine osteosarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Venugopal Thayanithy

    Full Text Available Downregulation of microRNAs (miRNAs at the 14q32 locus stabilizes the expression of cMYC, thus significantly contributing to osteosarcoma (OS pathobiology. Here, we show that downregulation of 14q32 miRNAs is epigenetically regulated. The predicted promoter regions of miRNA clusters at 14q32 locus showed no recurrent patterns of differential methylation, but Saos2 cells showed elevated histone deacetylase (HDAC activity. Treatment with 4-phenylbutyrate increased acetylation of histones associated with 14q32 miRNAs, but interestingly, robust restoration of 14q32 miRNA expression, attenuation of cMYC expression, and induction of apoptosis required concomitant treatment with 5-Azacytidine, an inhibitor of DNA methylation. These events were associated with genome-wide gene expression changes including induction of pro-apoptotic genes and downregulation of cell cycle genes. Comparable effects were achieved in human and canine OS cells using the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA/Vorinostat and the DNA methylation inhibitor Zebularine (Zeb, with significantly more pronounced cytotoxicity in cells whose molecular phenotypes were indicative of aggressive biological behavior. These results suggested that the combination of these chromatin-modifying drugs may be a useful adjuvant in the treatment of rapidly progressive OS.

  17. First detection of canine parvovirus type 2b from diarrheic dogs in Himachal Pradesh

    DEFF Research Database (Denmark)

    Sharma, Shalini; Dhar, Prasenjit; Thakur, Aneesh

    2016-01-01

    AIM: The present study was conducted to detect the presence of canine parvovirus (CPV) among diarrheic dogs in Himachal Pradesh and to identify the most prevalent antigenic variant of CPV based on molecular typing and sequence analysis of VP2 gene. MATERIALS AND METHODS: A total of 102 fecal...... for the detection of CPV-2c. CPV-2b isolate was cultured on Madin-Darby canine kidney (MDCK) cell lines and sequenced using VP2 structural protein gene. Multiple alignment and phylogenetic analysis was done using ClustalW and MEGA6 and inferred using the Neighbor-Joining method. RESULTS: No sample was found...

  18. In vitro evaluation of chondrosarcoma cells and canine chondrocytes on layer-by-layer (LbL) self-assembled multilayer nanofilms

    International Nuclear Information System (INIS)

    Shaik, J; Mohammed, J Shaikh; McShane, M J; Mills, D K

    2013-01-01

    Short-term cell–substrate interactions of two secondary chondrocyte cell lines (human chondrosarcoma cells, canine chondrocytes) with layer-by-layer self-assembled multilayer nanofilms were investigated for a better understanding of cellular-behaviour dependence on a number of nanofilm layers. Cell–substrate interactions were studied on polyelectrolyte multilayer nanofilms (PMNs) of eleven different biomaterials. Surface characterization of PMNs performed using AFM showed increasing surface roughness with increasing number of layers for most of the biomaterials. LDH-L and MTT assays were performed on chondrosarcoma cells and canine chondrocytes, respectively. A major observation was that 10-bilayer nanofilms exhibited lesser cytotoxicity towards human chondrosarcoma cells than their 5-bilayer counterparts. In the case of canine chondrocytes, BSA enhanced cell metabolic activity with increasing number of layers, underscoring the importance of the multilayer nanofilm architecture on cellular behaviour. (paper)

  19. Species diversity regarding the presence of proximal tubular progenitor cells of the kidney

    Directory of Open Access Journals (Sweden)

    J. Hansson

    2016-02-01

    Full Text Available The cellular source for tubular regeneration following kidney injury is a matter of dispute, with reports suggesting a stem or progenitor cells as the regeneration source while linage tracing studies in mice seemingly favor the classical theory, where regeneration is performed by randomly surviving cells. We, and others have previously described a scattered cell population localized to the tubules of human kidney, which increases in number following injury. Here we have characterized the species distribution of these proximal tubular progenitor cells (PTPCs in kidney tissue from chimpanzee, pig, rat and mouse using a set of human PTPC markers. We detected PTPCs in chimpanzee and pig kidneys, but not in mouse tissue. Also, subjecting mice to the unilateral urethral obstruction model, caused clear signs of tubular injury, but failed to induce the PTPC phenotype in renal tubules.

  20. The archetype enhancer of simian virus 40 DNA is duplicated during virus growth in human cells and rhesus monkey kidney cells but not in green monkey kidney cells

    International Nuclear Information System (INIS)

    O'Neill, Frank J.; Greenlee, John E.; Carney, Helen

    2003-01-01

    Archetype SV40, obtained directly from its natural host, is characterized by a single 72-bp enhancer element. In contrast, SV40 grown in cell culture almost invariably exhibits partial or complete duplication of the enhancer region. This distinction has been considered important in studies of human tumor material, since SV40-associated tumor isolates have been described having a single enhancer region, suggesting natural infection as opposed to possible contamination by laboratory strains of virus. However, the behavior of archetypal SV40 in cultured cells has never been methodically studied. In this study we reengineered nonarchetypal 776-SV40 to contain a single 72-bp enhancer region and used this reengineered archetypal DNA to transfect a number of simian and human cell lines. SV40 DNA recovered from these cells was analyzed by restriction endonuclease analysis, PCR, and DNA sequencing. Reengineered archetype SV40 propagated in green monkey TC-7 or BSC-1 kidney cells remained without enhancer region duplication even after extensive serial virus passage. Archetype SV40 grown in all but one of the rhesus or human cell lines initially appeared exclusively archetypal. However, when virus from these cell types was transferred to green monkey cells, variants with partial enhancer duplication appeared after as little as a single passage. These findings suggest (1) that virus with a single 72-bp enhancer may persist in cultured cells of simian and human origin; (2) that variants with partially duplicated enhancer regions may arise within cell lines in quantities below limits of detection; (3) that these variants may enjoy a selective advantage in cell types other than those from which they arose (e.g., green monkey kidney cells); and (4) that certain cell lines may support a selective growth advantage for the variants without supporting their formation. Our data indicate that enhancer duplication may also occur in human as well as rhesus kidney cells. Thus, detection of

  1. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    International Nuclear Information System (INIS)

    Delpeut, Sebastien; Noyce, Ryan S.; Richardson, Christopher D.

    2014-01-01

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction

  2. The V domain of dog PVRL4 (nectin-4) mediates canine distemper virus entry and virus cell-to-cell spread

    Energy Technology Data Exchange (ETDEWEB)

    Delpeut, Sebastien; Noyce, Ryan S. [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); Richardson, Christopher D., E-mail: chris.richardson@dal.ca [The Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); IWK Health Centre, Canadian Center for Vaccinology, Goldbloom Pavilion, Halifax, Nova Scotia, Canada B3H 1X5 (Canada); The Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia (Canada)

    2014-04-15

    The entry of canine distemper virus (CDV) is a multistep process that involves the attachment of CDV hemagglutinin (H) to its cellular receptor, followed by fusion between virus and cell membranes. Our laboratory recently identified PVRL4 (nectin-4) to be the epithelial receptor for measles and canine distemper viruses. In this study, we demonstrate that the V domain of PVRL4 is critical for CDV entry and virus cell-to-cell spread. Furthermore, four key amino acid residues within the V domain of dog PVRL4 and two within the CDV hemagglutinin were shown to be essential for receptor-mediated virus entry. - Highlights: • PVRL4 (nectin-4) is the epithelial cell receptor for measles and canine distemper viruses. • V domain of PVRL4 is critical for CDV entry, cell-to-cell spread, and syncytia formation. • Chimeric PVRL1 backbone substituted with the V domain of PVRL4 can function as a receptor. • Amino acids (F132/P133/A134/G135) within the V domain are essential for PVRL4 receptor activity. • Amino acids (P493/Y539) within CDV H protein are essential for PVRL4 receptor interaction.

  3. Dynamic changes of Foxp3(+) regulatory T cells in spleen and brain of canine distemper virus-infected dogs.

    Science.gov (United States)

    Qeska, V; Barthel, Y; Iseringhausen, M; Tipold, A; Stein, V M; Khan, M A; Baumgärtner, W; Beineke, A

    2013-12-15

    Canine distemper virus (CDV) infection causes immunosuppression and demyelinating leukoencephalitis in dogs. In viral diseases, an ambiguous function of regulatory T cells (Treg), with both beneficial effects by reducing immunopathology and detrimental effects by inhibiting antiviral immunity, has been described. However, the role of Treg in the pathogenesis of canine distemper remains unknown. In order to determine the effect of CDV upon immune homeostasis, the amount of Foxp3(+) Treg in spleen and brain of naturally infected dogs has been determined by immunohistochemistry. In addition, splenic cytokine expression has been quantified by reverse transcriptase polymerase chain reaction. Splenic depletion of Foxp3(+) Treg was associated with an increased mRNA-expression of tumor necrosis factor and decreased transcription of interleukin-2 in the acute disease phase, indicative of disturbed immunological counter regulation in peripheral lymphoid organs. In the brain, a lack of Foxp3(+) Treg in predemyelinating and early demyelinating lesions and significantly increased infiltrations of Foxp3(+) Treg in chronic demyelinating lesions were observed. In conclusion, disturbed peripheral and CNS immune regulation associated with a reduction of Treg represents a potential prerequisite for excessive neuroinflammation and early lesion development in canine distemper leukoencephalitis. © 2013 Elsevier B.V. All rights reserved.

  4. Immunohistochemical investigation of cell cycle and apoptosis regulators (Survivin, β-Catenin, P53, Caspase 3 in canine appendicular osteosarcoma

    Directory of Open Access Journals (Sweden)

    Bongiovanni Laura

    2012-06-01

    Full Text Available Abstract Background Osteosarcoma (OSA represents the most common canine primary bone tumour. Despite several pathways have been investigated so far, few molecules have been identified as prognostic tools or potential therapeutic targets, and there is still the need to find out molecular pathways with specific influence over OSA progression to facilitate earlier prognosis and treatment. Aims of the present study were to evaluate the immunohistochemical pattern and levels of expression of a panel of molecules (survivin, β-catenin, caspase 3 -inactive and active forms- and p53 involved in cell cycle and apoptosis regulation in canine OSA samples, known to be of interest in the study also of human OSA, and to detect specific relations among them and with histological tumour grade, disease free interval (DFI and overall survival (OS. Results Nuclear β-catenin immunostaining was detected in normal osteoblasts adjacent to the tumour, and in 47% of the cases. Cytoplasmic and/or membranous immunostaining were also observed. Nuclear survivin and p53 positive cells were found in all cases. Moderate/high cytoplasmic β-catenin expression (≥10% positive cells was significantly associated with the development of metastasis (P = 0.014; moderate/high nuclear p53 expression (≥10% positive cells was significantly associated with moderate/high histological grade (P = 0.017 and shorter OS (P = 0.049. Moderate/high nuclear survivin expression (≥15% positive cells showed a tendency toward a longer OS (P = 0,088. Conclusions The present results confirmed p53 as negative prognostic marker, while suggested survivin as a potential positive prognostic indicator, rather than indicative of a poor prognosis. The detection of nuclear β-catenin immunostaining in normal osteoblasts and the absent/low expression in most of the OSAs, suggested that this pathway could not play a major role in oncogenic transformation of canine osteoblasts. Further studies

  5. Assessment of Canine Mast Cell Tumor Mortality Risk Based on Clinical, Histologic, Immunohistochemical, and Molecular Features.

    Science.gov (United States)

    Horta, Rodrigo S; Lavalle, Gleidice E; Monteiro, Lidianne N; Souza, Mayara C C; Cassali, Geovanni D; Araújo, Roberto B

    2018-03-01

    Mast cell tumor (MCT) is a frequent cutaneous neoplasm in dogs that is heterogeneous in clinical presentation and biological behavior, with a variable potential for recurrence and metastasis. Accurate prediction of clinical outcomes has been challenging. The study objective was to develop a system for classification of canine MCT according to the mortality risk based on individual assessment of clinical, histologic, immunohistochemical, and molecular features. The study included 149 dogs with a histologic diagnosis of cutaneous or subcutaneous MCT. By univariate analysis, MCT metastasis and related death was significantly associated with clinical stage ( P < .0001, r P = -0.610), history of tumor recurrence ( P < .0001, r P = -0.550), Patnaik ( P < .0001, r P = -0.380) and Kiupel grades ( P < .0001, r P = -0.500), predominant organization of neoplastic cells ( P < .0001, r P = -0.452), mitotic count ( P < .0001, r P = -0.325), Ki-67 labeling index ( P < .0001, r P = -0.414), KITr pattern ( P = .02, r P = 0.207), and c-KIT mutational status ( P < .0001, r P = -0.356). By multivariate analysis with Cox proportional hazard model, only 2 features were independent predictors of overall survival: an amendment of the World Health Organization clinical staging system (hazard ratio [95% CI]: 1.824 [1.210-4.481]; P = .01) and a history of tumor recurrence (hazard ratio [95% CI]: 9.250 [2.158-23.268]; P < .001]. From these results, we propose an amendment of the WHO staging system, a method of risk analysis, and a suggested approach to clinical and laboratory evaluation of dogs with cutaneous MCT.

  6. Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury.

    Science.gov (United States)

    Kim, Myung-Gyu; Boo, Chang Su; Ko, Yoon Sook; Lee, Hee Young; Cho, Won Yong; Kim, Hyoung Kyu; Jo, Sang-Kyung

    2010-09-01

    Recent studies provided evidence of the potential role of CD11c(+) F4/80(+) dendritic subset in mediating injury and repair. The purpose of this study was to examine the role of kidney CD11c(+) F4/80(+) dendritic subset in the recovery phase of ischaemia/reperfusion injury (IRI). Following ischaemia/reperfusion (I/R), liposome clodronate or phosphate buffered saline (PBS) was administered, and on day 7 biochemical and histologic kidney damage was assessed. Activation and depletion of CD11c(+) F4/80(+) dendritic subset were confirmed by flow cytometry. Isolation of kidney CD11c(+) cells on days 1 and 7 with in vitro culture for measuring cytokines was performed to define functional characteristics of these cells, and adoptive transfer of CD11c(+) cells was also done. Following kidney IRI, the percentage of CD11c(+) F4/80(+) kidney dendritic cell subset that co-expresses maturation marker increased. Liposome clodronate injection after I/R resulted in preferential depletion of CD11c(+) F4/80(+) kidney dendritic subset, and depletion of these cells was associated with persistent kidney injury, more apoptosis, inflammation and impaired tubular cell proliferation. CD11c(+) F4/80(+) cell depletion was also associated with higher tissue levels of pro-inflammatory cytokines and lower level of IL-10, indicating the persistence of inflammatory milieu. Isolated kidney CD11c(+) cells on day 7 showed different phenotype with increased production of IL-10 compared with those on day 1. Adoptive transfer of CD11c(+) cells partially reversed impaired tissue recovery. Our results suggest that kidney CD11c(+) F4/80(+) dendritic subset might contribute to the recovery process by dynamic phenotypic change from pro-inflammatory to anti-inflammatory with modulation of immune response.

  7. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    International Nuclear Information System (INIS)

    Bonon, Anna; Mangolini, Alessandra; Pinton, Paolo; Senno, Laura del; Aguiari, Gianluca

    2013-01-01

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G 0 /G 1 phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new opportunities

  8. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  9. Change in expression of cyclin G2 in kidney cancer cell and its significance.

    Science.gov (United States)

    Cui, D W; Sun, G G; Cheng, Y J

    2014-04-01

    This study aims to analyze the expression and clinical significance of cyclin G2 (CCNG2) in kidney carcinoma, and the biological effect in its cell line by CCNG2 overexpression. Immunohistochemistry and western blot were used to analyze CCNG2 protein expression in 63 cases of kidney cancer and normal tissues to study the relationship between CCNG2 expression and clinical factors. CCNG2 lentiviral vector and empty vector were respectively transfected into kidney ACHN cell line. During immunohistochemistry, the level of CCNG2 protein expression was found to be significantly lower in kidney cancer tissue than normal tissues (P kidney cancer tissue was respectively found to be significantly lower than in normal tissues (P 0.05), but it was correlated with lymph node metastasis, clinic stage, and histological grade (P kidney cancer and correlated significantly with lymph node metastasis, clinical stage, histological grade, and poor overall survival, suggesting that CCNG2 may play important roles as a negative regulator to kidney cancer ACHN cell by promoting degradation of CDK2.

  10. Arginase treatment prevents the recovery of canine lymphoma and osteosarcoma cells resistant to the toxic effects of prolonged arginine deprivation.

    Science.gov (United States)

    Wells, James W; Evans, Christopher H; Scott, Milcah C; Rütgen, Barbara C; O'Brien, Timothy D; Modiano, Jaime F; Cvetkovic, Goran; Tepic, Slobodan

    2013-01-01

    Rapidly growing tumor cells require a nutrient-rich environment in order to thrive, therefore, restricting access to certain key amino acids, such as arginine, often results in the death of malignant cells, which frequently display defective cell cycle check-point control. Healthy cells, by contrast, become quiescent and remain viable under arginine restriction, displaying full recovery upon return to arginine-rich conditions. The use of arginase therapy to restrict available arginine for selectively targeting malignant cells is currently under investigation in human clinical trials. However, the suitability of this approach for veterinary uses is unexplored. As a prelude to in vivo studies in canine malignancies, we examined the in vitro effects of arginine-deprivation on canine lymphoid and osteosarcoma cell lines. Two lymphoid and 2 osteosarcoma cell lines were unable to recover following 6 days of arginine deprivation, but all remaining cell lines displayed full recovery upon return to arginine-rich culture conditions. These remaining cell lines all proved susceptible to cell death following the addition of arginase to the cultures. The lymphoid lines were particularly sensitive to arginase, becoming unrecoverable after just 3 days of treatment. Two of the osteosarcoma lines were also susceptible over this time-frame; however the other 3 lines required 6-8 days of arginase treatment to prevent recovery. In contrast, adult progenitor cells from the bone marrow of a healthy dog were able to recover fully following 9 days of culture in arginase. Over 3 days in culture, arginase was more effective than asparaginase in inducing the death of lymphoid lines. These results strongly suggest that short-term arginase treatment warrants further investigation as a therapy for lymphoid malignancies and osteosarcomas in dogs.

  11. Arginase treatment prevents the recovery of canine lymphoma and osteosarcoma cells resistant to the toxic effects of prolonged arginine deprivation.

    Directory of Open Access Journals (Sweden)

    James W Wells

    Full Text Available Rapidly growing tumor cells require a nutrient-rich environment in order to thrive, therefore, restricting access to certain key amino acids, such as arginine, often results in the death of malignant cells, which frequently display defective cell cycle check-point control. Healthy cells, by contrast, become quiescent and remain viable under arginine restriction, displaying full recovery upon return to arginine-rich conditions. The use of arginase therapy to restrict available arginine for selectively targeting malignant cells is currently under investigation in human clinical trials. However, the suitability of this approach for veterinary uses is unexplored. As a prelude to in vivo studies in canine malignancies, we examined the in vitro effects of arginine-deprivation on canine lymphoid and osteosarcoma cell lines. Two lymphoid and 2 osteosarcoma cell lines were unable to recover following 6 days of arginine deprivation, but all remaining cell lines displayed full recovery upon return to arginine-rich culture conditions. These remaining cell lines all proved susceptible to cell death following the addition of arginase to the cultures. The lymphoid lines were particularly sensitive to arginase, becoming unrecoverable after just 3 days of treatment. Two of the osteosarcoma lines were also susceptible over this time-frame; however the other 3 lines required 6-8 days of arginase treatment to prevent recovery. In contrast, adult progenitor cells from the bone marrow of a healthy dog were able to recover fully following 9 days of culture in arginase. Over 3 days in culture, arginase was more effective than asparaginase in inducing the death of lymphoid lines. These results strongly suggest that short-term arginase treatment warrants further investigation as a therapy for lymphoid malignancies and osteosarcomas in dogs.

  12. Agonist-induced desensitization of human β3-adrenoceptors expressed in human embryonic kidney cells

    NARCIS (Netherlands)

    Michel-Reher, Martina B.; Michel, Martin C.

    2013-01-01

    β3-Adrenoceptors are resistant to agonist-induced desensitization in some cell types but susceptible in others including transfected human embryonic kidney (HEK) cells. Therefore, we have studied cellular and molecular changes involved in agonist-induced β3-adrenoceptor desensitization in HEK cells.

  13. Canine osteosarcoma cell lines from patients with differing serum alkaline phosphatase concentrations display no behavioural differences in vitro.

    Science.gov (United States)

    Holmes, K E; Thompson, V; Piskun, C M; Kohnken, R A; Huelsmeyer, M K; Fan, T M; Stein, T J

    2015-09-01

    Osteosarcoma is an aggressive malignancy and represents the most frequent primary bone malignancy of dogs and humans. Prognostic factors reported for osteosarcoma include tumour size, presence of metastatic disease and serum alkaline phosphatase (ALP) concentration at the time of diagnosis. To date, there have been no studies to determine whether the behaviour of osteosarcoma cells differ based on serum ALP concentration. Here, we report on the generation of six canine osteosarcoma cell lines from osteosarcoma-bearing dogs with differences in serum ALP concentration. To determine whether in vitro behaviour differs between primary osteosarcoma cell lines generated from patients with normal or increased serum ALP, assays were performed to evaluate proliferation, migration, invasion and chemosensitivity. There were no significant differences in cell proliferation, migration, invasion or chemosensitivity between cell lines associated with normal or increased serum ALP concentration. © 2013 Blackwell Publishing Ltd.

  14. Canine osteosarcoma cell lines from patients with differing serum alkaline phosphatase concentrations display no behavioral differences in vitro

    Science.gov (United States)

    Holmes, Katie E.; Thompson, Victoria; Piskun, Caroline M.; Kohnken, Rebecca A.; Huelsmeyer, Michael K.; Fan, Timothy M.; Stein, Timothy J.

    2013-01-01

    Osteosarcoma is an aggressive malignancy and represents the most frequent primary bone malignancy of dogs and humans. Prognostic factors reported for osteosarcoma include tumor size, presence of metastatic disease, and serum alkaline phosphatase (ALP) concentration at the time of diagnosis. To date, there have been no studies to determine whether the behavior of osteosarcoma cells differ based on serum ALP concentration. Here we report on the generation of six canine osteosarcoma cell lines from osteosarcoma-bearing dogs with differences in serum ALP concentration. To determine whether in vitro behavior differs between primary osteosarcoma cell lines generated from patients with normal or increased serum ALP assays were performed to evaluate proliferation, migration, invasion, and chemosensitivity. There were no significant differences in cell proliferation, migration, invasion, or chemosensitivity between cell lines associated normal or increased serum ALP concentration. PMID:23489774

  15. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.

    Science.gov (United States)

    Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio

    2017-10-01

    Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29 + , CD44 + , CD73 + , CD90 + , CD34 - , CD45 - and MHC-II - with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90 + , CD73 + , CD105 + , CD44 + , CD13 + , CD29 + , Oct-4 + gene and CD31 - and CD45 - expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Differentiated neuroprogenitor cells incubated with human or canine adenovirus, or lentiviral vectors have distinct transcriptome profiles.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Several studies have demonstrated the potential for vector-mediated gene transfer to the brain. Helper-dependent (HD human (HAd and canine (CAV-2 adenovirus, and VSV-G-pseudotyped self-inactivating HIV-1 vectors (LV effectively transduce human brain cells and their toxicity has been partly analysed. However, their effect on the brain homeostasis is far from fully defined, especially because of the complexity of the central nervous system (CNS. With the goal of dissecting the toxicogenomic signatures of the three vectors for human neurons, we transduced a bona fide human neuronal system with HD-HAd, HD-CAV-2 and LV. We analysed the transcriptional response of more than 47,000 transcripts using gene chips. Chip data showed that HD-CAV-2 and LV vectors activated the innate arm of the immune response, including Toll-like receptors and hyaluronan circuits. LV vector also induced an IFN response. Moreover, HD-CAV-2 and LV vectors affected DNA damage pathways--but in opposite directions--suggesting a differential response of the p53 and ATM pathways to the vector genomes. As a general response to the vectors, human neurons activated pro-survival genes and neuron morphogenesis, presumably with the goal of re-establishing homeostasis. These data are complementary to in vivo studies on brain vector toxicity and allow a better understanding of the impact of viral vectors on human neurons, and mechanistic approaches to improve the therapeutic impact of brain-directed gene transfer.

  17. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid

    Energy Technology Data Exchange (ETDEWEB)

    Löfling, Jonas [Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093 (United States); Michael Lyi, Sangbom; Parrish, Colin R. [Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 (United States); Varki, Ajit, E-mail: a1varki@ucsd.edu [Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, 9500 Gilman Drive, University of California, San Diego, La Jolla, CA 92093 (United States)

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. - Highlights: ► Feline and canine parvoviruses recognize Neu5Gc but not Neu5Ac, which differ by one oxygen atom. ► The underlying linkage of these sialic acids does not affect recognition. ► Induced Neu5Gc expression on target cells that normally express Neu5Ac did not enhance infection. ► Thus, the conserved binding preference plays an important yet unknown role in in vivo infections. ► Population and breed variations in Neu5Gc expression occur, likely by regulating the gene CMAH.

  18. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid

    International Nuclear Information System (INIS)

    Löfling, Jonas; Michael Lyi, Sangbom; Parrish, Colin R.; Varki, Ajit

    2013-01-01

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. - Highlights: ► Feline and canine parvoviruses recognize Neu5Gc but not Neu5Ac, which differ by one oxygen atom. ► The underlying linkage of these sialic acids does not affect recognition. ► Induced Neu5Gc expression on target cells that normally express Neu5Ac did not enhance infection. ► Thus, the conserved binding preference plays an important yet unknown role in in vivo infections. ► Population and breed variations in Neu5Gc expression occur, likely by regulating the gene CMAH

  19. Recombination between vaccine and field strains of canine parvovirus is revealed by isolation of virus in canine and feline cell cultures.

    Science.gov (United States)

    Mochizuki, Masami; Ohshima, Takahisa; Une, Yumi; Yachi, Akiko

    2008-12-01

    Canine parvovirus type 2 (CPV) is a pathogen that causes severe hemorrhagic gastroenteritis with a high fatality rate in pups worldwide. Since CPV emerged in the late 1970s, its origin has been explored with the conclusion that CPV originated from feline panleukopenia virus or a closely related virus. Both high mutation rate and recombination are assumed to be key factors in the evolution of parvoviruses. Here we provide evidence for natural recombination in CPV isolated from dogs in cell culture. Antigenic and genetic properties of isolates from 10 diseased pups were elucidated. Six pups had been vaccinated beforehand with live combined vaccine containing original antigenic type CPV (CPV-2). Six isolates recovered from 4 vaccinated pups in cell cultures were found to contain either CPV-2 or CPV-2-like viruses. The other isolates, including all those from non-vaccinated pups, were CPV-2b viruses. Antigenic typing of two CPV-2-like isolates, 03-029/M and 1887/f, with a monoclonal antibody panel suggested they were a mixture of CPV-2 and CPV-2a (03-029/M) and a recombinant of CPV-2 and CPV-2b (1887/f). Genetic analysis of the VP1 gene indicated that isolate 03-029/M was a mixture of CPV-2, CPV-2a and a recombinant of CPV-2 and CPV-2a viruses, while isolate 1887/f was composed of a recombinant of CPV-2 and CPV-2b viruses. This is the first demonstration of natural CPV recombination in the field and suggests that recombination in the evolution of CPV is a more frequent and important process than previously believed.

  20. Polycystin-1 promotes PKCα-mediated NF-κB activation in kidney cells

    International Nuclear Information System (INIS)

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky; Mangolini, Alessandra; Pinton, Paolo; Witzgall, Ralph; Rizzuto, Rosario; Senno, Laura del

    2006-01-01

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-κB signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293 CTT ), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-κB nuclear levels and NF-κB-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-κB promoter activation was mediated by PKCα because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293 CTT cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-κB inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKCα-mediated NF-κB signalling and cell survival

  1. Kidney tubular-cell secretion of osteoblast growth factor is increased by kaempferol: a scientific basis for "the kidney controlling the bone" theory of Chinese medicine.

    Science.gov (United States)

    Long, Mian; Li, Shun-xiang; Xiao, Jiang-feng; Wang, Jian; Lozanoff, Scott; Zhang, Zhi-guang; Luft, Benjamin J; Johnson, Francis

    2014-09-01

    To study, at the cytological level, the basic concept of Chinese medicine that "the Kidney (Shen) controls the bone". Kaempferol was isolated form Rhizoma Drynariae (Gu Sui Bu, GSB) and at several concentrations was incubated with opossum kidney (OK) cells, osteoblasts (MC3T3 E1) and human fibroblasts (HF) at cell concentrations of 2×10(4)/mL. Opossum kidney cell-conditioned culture media with kaempferol at 70 nmol/L (70kaeOKM) and without kaempferol (0OKM) were used to stimulate MC3T3 E1 and HF proliferation. The bone morphological protein receptors I and II (BMPR I and II) in OK cells were identified by immune-fluorescence staining and Western blot analysis. Kaempferol was found to increase OK cell growth (Pkaempferol increases kidney cell secretion of OGF. Neither of these media had any significant effect on HF growth. Kaempferol also was found to increase the level of the BMPR II in OK cells. This lends strong support to the original idea that the Kidney has a significant influence over bone-formation, as suggested by some long-standing Chinese medical beliefs, kaempferol may also serve to stimulate kidney repair and indirectly stimulate bone formation.

  2. Kidney stone matrix proteins ameliorate calcium oxalate monohydrate induced apoptotic injury to renal epithelial cells.

    Science.gov (United States)

    Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2016-11-01

    Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Increased osmolarity and cell clustering preserve canine notochordal cell phenotype in culture

    NARCIS (Netherlands)

    Spillekom, S.; Smolders, L.A.; Grinwis, G.C.M.; Arkesteijn, I.T.M.; Ito, K.; Meij, B.P.; Tryfonidou, M.A.

    2014-01-01

    Degeneration of the intervertebral disc (IVD) is associated with a loss of notochordal cells (NCs) from the nucleus pulposus (NP) and their replacement by chondrocyte-like cells. NCs are known to maintain extracellular matrix quality and stimulate the chondrocyte-like NP cells, making NCs attractive

  4. Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells.

    Science.gov (United States)

    Lefevre, James G; Chiu, Han S; Combes, Alexander N; Vanslambrouck, Jessica M; Ju, Ali; Hamilton, Nicholas A; Little, Melissa H

    2017-03-15

    Human pluripotent stem cells, after directed differentiation in vitro , can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation. © 2017. Published by The Company of Biologists Ltd.

  5. Mapping of Carboxypeptidase M in Normal Human Kidney and Renal Cell Carcinoma

    Science.gov (United States)

    Denis, Catherine J.; Van Acker, Nathalie; De Schepper, Stefanie; De Bie, Martine; Andries, Luc; Fransen, Erik; Hendriks, Dirk; Kockx, Mark M.

    2013-01-01

    Although the kidney generally has been regarded as an excellent source of carboxypeptidase M (CPM), little is known about its renal-specific expression level and distribution. This study provides a detailed localization of CPM in healthy and diseased human kidneys. The results indicate a broad distribution of CPM along the renal tubular structures in the healthy kidney. CPM was identified at the parietal epithelium beneath the Bowman’s basement membrane and in glomerular mesangial cells. Capillaries, podocytes, and most interstitial cells were CPM negative. Tumor cells of renal cell carcinoma subtypes lose CPM expression upon dedifferentiation. Tissue microarray analysis demonstrated a correlation between low CPM expression and tumor cell type. CPM staining was intense on phagocytotic tumor-associated macrophages. Immunoreactive CPM was also detected in the tumor-associated vasculature. The absence of CPM in normal renal blood vessels points toward a role for CPM in angiogenesis. Coexistence of CPM and the epidermal growth factor receptor (EGFR) was detected in papillary renal cell carcinoma. However, the different subcellular localization of CPM and EGFR argues against an interaction between these h proteins. The description of the distribution of CPM in human kidney forms the foundation for further study of the (patho)physiological activities of CPM in the kidney. PMID:23172796

  6. Towards Mesenchymal Stem Cell Therapy in Kidney Transplant Recipients

    NARCIS (Netherlands)

    M. Roemeling-Van Rhijn (Marieke)

    2014-01-01

    markdownabstract__Abstract__ Body homeostasis is maintained by vital organs such as the heart, lungs, kidney and liver. Organ failure due to injury or disease will ultimately result in a life threatening situation. Heart and lung function can be supported and even temporarily replaced by

  7. Detection of intracellular canine distemper virus antigen in mink inoculated with an attenuated or a virulent strain of canine distemper virus.

    Science.gov (United States)

    Blixenkrone-Møller, M

    1989-09-01

    Using an indirect immunofluorescence technique, the distribution of viral antigen in various tissues and blood mononuclear leukocytes was studied in wild mink, either vaccinated with an attenuated vaccine strain of canine distemper virus (CDV) or experimentally inoculated with the virulent Snyder-Hill strain of CDV. Viral antigen was detected in cells of the lymphoid system 6 to 12 days after vaccination. From 2 to 3 days after inoculation with the virulent strain, CDV antigen was demonstrated in cells of the lymphoid system and, during the incubation period, the antigen had spread to the epithelia and brain at days 6 and 12, respectively. In clinical cases of acute fatal canine distemper, the viral antigen was detected in a wide variety of tissues, including the cells of the lymphoid system, epithelial cells of skin, mucous membranes, lung, kidney, and cells of the CNS. The diagnostic importance of CDV antigen detection is discussed on the basis of these findings.

  8. Profiling of kidney vascular endothelial cell plasma membrane proteins by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Liu, Zan; Xu, Bo; Nameta, Masaaki; Zhang, Ying; Magdeldin, Sameh; Yoshida, Yutaka; Yamamoto, Keiko; Fujinaka, Hidehiko; Yaoita, Eishin; Tasaki, Masayuki; Nakagawa, Yuki; Saito, Kazuhide; Takahashi, Kota; Yamamoto, Tadashi

    2013-06-01

    Vascular endothelial cells (VECs) play crucial roles in physiological and pathologic conditions in tissues and organs. Most of these roles are related to VEC plasma membrane proteins. In the kidney, VECs are closely associated with structures and functions; however, plasma membrane proteins in kidney VECs remain to be fully elucidated. Rat kidneys were perfused with cationic colloidal silica nanoparticles (CCSN) to label the VEC plasma membrane. The CCSN-labeled plasma membrane fraction was collected by gradient ultracentrifugation. The VEC plasma membrane or whole-kidney lysate proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and digested with trypsin in gels for liquid chromatography-tandem mass spectrometry. Enrichment analysis was then performed. The VEC plasma membrane proteins were purified by the CCSN method with high yield (approximately 20 μg from 1 g of rat kidney). By Mascot search, 582 proteins were identified in the VEC plasma membrane fraction, and 1,205 proteins were identified in the kidney lysate. In addition to 16 VEC marker proteins such as integrin beta-1 and intercellular adhesion molecule-2 (ICAM-2), 8 novel proteins such as Deltex 3-like protein and phosphatidylinositol binding clathrin assembly protein (PICALM) were identified. As expected, many key functions of plasma membranes in general and of endothelial cells in particular (i.e., leukocyte adhesion) were significantly overrepresented in the proteome of CCSN-labeled kidney VEC fraction. The CCSN method is a reliable technique for isolation of VEC plasma membrane from the kidney, and proteomic analysis followed by bioinformatics revealed the characteristics of in vivo VECs in the kidney.

  9. Authentication of primordial characteristics of the CLBL-1 cell line prove the integrity of a canine B-cell lymphoma in a murine in vivo model.

    Directory of Open Access Journals (Sweden)

    Barbara C Rütgen

    Full Text Available Cell lines are key tools in cancer research allowing the generation of neoplasias in animal models resembling the initial tumours able to mimic the original neoplasias closely in vivo. Canine lymphoma is the major hematopoietic malignancy in dogs and considered as a valuable spontaneous large animal model for human Non-Hodgkin's Lymphoma (NHL. Herein we describe the establishment and characterisation of an in vivo model using the canine B-cell lymphoma cell line CLBL-1 analysing the stability of the induced tumours and the ability to resemble the original material. CLBL-1 was injected into Rag2(-/-γ(c (-/- mice. The generated tumor material was analysed by immunophenotyping and histopathology and used to establish the cell line CLBL-1M. Both cell lines were karyotyped for detection of chromosomal aberrations. Additionally, CLBL-1 was stimulated with IL-2 and DSP30 as described for primary canine B-cell lymphomas and NHL to examine the stimulatory effect on cell proliferation. CLBL-1 in vivo application resulted in lymphoma-like disease and tumor formation. Immunophenotypic analysis of tumorous material showed expression of CD45(+, MHCII(+, CD11a(+ and CD79αcy(+. PARR analysis showed positivity for IgH indicating a monoclonal character. These cytogenetic, molecular, immunophenotypical and histological characterisations of the in vivo model reveal that the induced tumours and thereof generated cell line resemble closely the original material. After DSP30 and IL-2 stimulation, CLBL-1 showed to respond in the same way as primary material. The herein described CLBL-1 in vivo model provides a highly stable tool for B-cell lymphoma research in veterinary and human medicine allowing various further in vivo studies.

  10. Authentication of primordial characteristics of the CLBL-1 cell line prove the integrity of a canine B-cell lymphoma in a murine in vivo model.

    Science.gov (United States)

    Rütgen, Barbara C; Willenbrock, Saskia; Reimann-Berg, Nicola; Walter, Ingrid; Fuchs-Baumgartinger, Andrea; Wagner, Siegfried; Kovacic, Boris; Essler, Sabine E; Schwendenwein, Ilse; Nolte, Ingo; Saalmüller, Armin; Murua Escobar, Hugo

    2012-01-01

    Cell lines are key tools in cancer research allowing the generation of neoplasias in animal models resembling the initial tumours able to mimic the original neoplasias closely in vivo. Canine lymphoma is the major hematopoietic malignancy in dogs and considered as a valuable spontaneous large animal model for human Non-Hodgkin's Lymphoma (NHL). Herein we describe the establishment and characterisation of an in vivo model using the canine B-cell lymphoma cell line CLBL-1 analysing the stability of the induced tumours and the ability to resemble the original material. CLBL-1 was injected into Rag2(-/-)γ(c) (-/-) mice. The generated tumor material was analysed by immunophenotyping and histopathology and used to establish the cell line CLBL-1M. Both cell lines were karyotyped for detection of chromosomal aberrations. Additionally, CLBL-1 was stimulated with IL-2 and DSP30 as described for primary canine B-cell lymphomas and NHL to examine the stimulatory effect on cell proliferation. CLBL-1 in vivo application resulted in lymphoma-like disease and tumor formation. Immunophenotypic analysis of tumorous material showed expression of CD45(+), MHCII(+), CD11a(+) and CD79αcy(+). PARR analysis showed positivity for IgH indicating a monoclonal character. These cytogenetic, molecular, immunophenotypical and histological characterisations of the in vivo model reveal that the induced tumours and thereof generated cell line resemble closely the original material. After DSP30 and IL-2 stimulation, CLBL-1 showed to respond in the same way as primary material. The herein described CLBL-1 in vivo model provides a highly stable tool for B-cell lymphoma research in veterinary and human medicine allowing various further in vivo studies.

  11. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    Full Text Available Nuclear hormone receptors (NHRs are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN, the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m, and cell lines of mesangial (MES13, podocyte (MPC, proximal tubular epithelial (mProx24 and collecting duct (mIMCD3 origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77, nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  12. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines

    International Nuclear Information System (INIS)

    Fenger, Joelle M.; Roberts, Ryan D.; Iwenofu, O. Hans; Bear, Misty D.; Zhang, Xiaoli; Couto, Jason I.; Modiano, Jaime F.; Kisseberth, William C.; London, Cheryl A.

    2016-01-01

    MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified

  13. A rapid method for establishment of a reverse genetics system for canine parvovirus.

    Science.gov (United States)

    Yu, Yongle; Su, Jun; Wang, Jigui; Xi, Ji; Mao, Yaping; Hou, Qiang; Zhang, Xiaomei; Liu, Weiquan

    2017-12-01

    Canine parvovirus (CPV) is an important and highly prevalent pathogen of dogs that causes acute hemorrhagic enteritis disease. Here, we describe a rapid method for the construction and characterization of a full-length infectious clone (rCPV) of CPV. Feline kidney (F81) cells were transfected with rCPV incorporating an engineered EcoR I site that served as a genetic marker. The rescued virus was indistinguishable from that of wild-type virus in its biological properties.

  14. Induced synthesis of metallothionein by pig kidney cells in vitro in response to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M; Daniel, M

    1975-01-01

    Cells of a line (K7), derived from the cortex of the adult pig kidney, synthesize and accumulate high levels of metallothionein when grown in vitro in the presence of low concentrations (0.5 ..mu..g/ml) of Cd/sup 2 +/. This indicates that the accumulation of this protein in the kidneys of animals exposed to cadmium is due at least partly to synthesis in situ, and not solely to uptake by the renal cells of metallothionein produced by the liver. It is suggested that the ability to synthesize large amounts of metallothionein indicates the tubular origin of the cells of this line.

  15. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Arianne van Koppen

    Full Text Available Chronic kidney disease (CKD is a major health care problem, affecting more than 35% of the elderly population worldwide. New interventions to slow or prevent disease progression are urgently needed. Beneficial effects of mesenchymal stem cells (MSC have been described, however it is unclear whether the MSCs themselves or their secretome is required. We hypothesized that MSC-derived conditioned medium (CM reduces progression of CKD and studied functional and structural effects in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX combined with L-NNA and 6% NaCl diet in Lewis rats. Six weeks after SNX, CKD rats received either 50 µg CM or 50 µg non-CM (NCM twice daily intravenously for four consecutive days. Six weeks after treatment CM administration was functionally effective: glomerular filtration rate (inulin clearance and effective renal plasma flow (PAH clearance were significantly higher in CM vs. NCM-treatment. Systolic blood pressure was lower in CM compared to NCM. Proteinuria tended to be lower after CM. Tubular and glomerular damage were reduced and more glomerular endothelial cells were found after CM. DNA damage repair was increased after CM. MSC-CM derived exosomes, tested in the same experimental setting, showed no protective effect on the kidney. In a rat model of established CKD, we demonstrated that administration of MSC-CM has a long-lasting therapeutic rescue function shown by decreased progression of CKD and reduced hypertension and glomerular injury.

  16. Immunotherapy using dendritic cells and cytokine-induced killer for kidney cancer

    International Nuclear Information System (INIS)

    Chen Lijun; Xu Yuanbin; Zhao Li; Qu Nan; Sun Zhenpeng; Li Xuechao; Zhao Jiyu; Wang Bin; Wang Huixian

    2008-01-01

    Objective: To investigate the clinical efficacy of immunotherapy using dendritic cells (DC) and cytokine-induced killer (CIK)in treatment of patients with kidney cancer. Methods: Sixty patients with kidney cancer were divided into 2 groups randomly: the control group and immunotherapy group. Peripheral blood mononuclear cells (PBMC) were seperated from the patients who received immunotherapy first, then DC and CIK were induced and cultured with GM-CSF and IL4 in vitro. The immunotherapy group received DC four times and CIK twice at an interval of 14 days after routine treatment. The control group received only chemotherapy. T lymphocyte subtypes and NK cells in peripheral blood, the white cells and the values of liver and kidney biochemistry of two group of patients were analyzed and clinical efficacy were ob- served, so were side effects. Results: Clinical efficacy showed significant statistical difference between the two groups (P + , CD4 + , CD4 + /CD8 + and NK cell in the immunotherapy group increased after treatment, which showed significant statistical difference compared with those before treatment(P value was 0.010, 0.026, 0.021, 0.016, respectively). Changes in cell immune indexes (CD3 + , CD4 + , CD4 + /CD8 + ) in immunotherapy group and Control group showed significant statistical difference (P value was 0.001,0.023,0.012, respectively). Conclusion: Immunotherapy using dendritic cells and cytokine-induced killer combined with routine treatment can improve T lymphocyte subtypes and NK cell ratio in peripheral blood of the patients with kidney cancer, and may play an important role in the treatment of kidney cancer. It can enhance clinical efficacy in patients with kidney cancer and can improve prognosis. (authors)

  17. Prevalence of 5-lipoxygenase expression in canine osteosarcoma and the effects of a dual 5-lipoxygenase/cyclooxygenase inhibitor on osteosarcoma cells in vitro and in vivo.

    Science.gov (United States)

    Goupil, R C; Bushey, J J; Peters-Kennedy, J; Wakshlag, J J

    2012-09-01

    Canine osteosarcoma is an insidious disease with few effective treatment modalities; therefore, use of pharmacologic intervention to improve mortality or morbidity is constantly sought. The use of cyclooxygenase enzyme inhibitors has been an area of interest with limited efficacy based on retrospective examination of tumor expression and in vivo cell proliferation models. Recently, examination of dual cyclooxygenase and 5-lipoxygenase inhibitors in human and canine oncology suggests that 5-lipoxygenase inhibitors may be an effective approach in vitro and during tumor induction in rodent models. Therefore, the authors decided to examine 5-lipoxygenase expression in primary canine osteosarcoma samples and have shown that approximately 65% of osteosarcomas label positive for cytoplasmic 5-lipoxygenase. Further examination of a cell culture and xenograft model shows similar 5-lipoxygenase expression. Surprisingly, a canine 5-lipoxygenase inhibitor (tepoxalin) significantly reduced cell proliferation at physiologic doses in vitro and diminished xenograft tumor growth in nude mice, suggesting that further investigation is needed. Traditionally, 5-lipoxygense leads to production of lipid mediators, such as leukotriene B(4) and 5-oxo-eicosatetraenoic acid, which, when added back to the media of tepoxalin-treated cells, did not recover cell proliferation. The lack of nuclear staining in primary and xenografted tumors and the lack of response to eicoasanoids suggest that lipid mediator production is not the primary means by which tepoxalin acts to alter proliferation. Regardless of the mechanisms involved in retarding cell proliferation, future investigation is warranted.

  18. Genetics of Kidney Cancer (Renal Cell Cancer) (PDQ®)—Health Professional Version

    Science.gov (United States)

    Genetics of Kidney Cancer (Renal Cell) includes the hereditary cancer syndromes von Hippel-Lindau disease, hereditary leiomyomatosis and renal cell cancer, Birt-Hogg-Dubé syndrome, and hereditary papillary renal carcinoma. Get comprehensive information on these syndromes in this clinician summary.

  19. Giant kidney worms in a patient with renal cell carcinoma

    OpenAIRE

    Kuehn, Jemima; Lombardo, Lindsay; Janda, William M; Hollowell, Courtney M P

    2016-01-01

    Dioctophyma renale (D. renale), or giant kidney worms, are the largest nematodes that infect mammals. Approximately 20 cases of human infection have been reported. We present a case of a 71-year-old man with a recent history of unintentional weight loss and painless haematuria, passing elongated erythematous tissue via his urethra. CT revealed a left renal mass with pulmonary nodules and hepatic lesions. On microscopy, the erythematous tissue passed was identified as D. renale. On subsequent ...

  20. RESECTION OF THE S-SHAPED CROSSED DYSTOPIC KIDNEY IN A PATIENT WITH RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2012-01-01

    Full Text Available Renal cell carcinoma (RCC is one of the most urgent topics in modern oncourology. This is attributable to the high morbidity and mortality rates associated with this pathology. Renal dystopia is a rather rare developmental anomaly. The literature data describing cases of the diagnosis and treatment in patients with dystopic kidney malignancies are scarce. Moreover, if a tumor is present in the solitary dystopic kidney, it is often extremely difficult to perform an organ-saving operation for a number of features of the anatomic structure of the dystopic kidney and its vascular architectonics. The paper describes a clinical case of S-shaped crossed dystopic kidney resection in a patient with RCC.

  1. RESECTION OF THE S-SHAPED CROSSED DYSTOPIC KIDNEY IN A PATIENT WITH RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2014-07-01

    Full Text Available Renal cell carcinoma (RCC is one of the most urgent topics in modern oncourology. This is attributable to the high morbidity and mortality rates associated with this pathology. Renal dystopia is a rather rare developmental anomaly. The literature data describing cases of the diagnosis and treatment in patients with dystopic kidney malignancies are scarce. Moreover, if a tumor is present in the solitary dystopic kidney, it is often extremely difficult to perform an organ-saving operation for a number of features of the anatomic structure of the dystopic kidney and its vascular architectonics. The paper describes a clinical case of S-shaped crossed dystopic kidney resection in a patient with RCC.

  2. Lithium Impairs Kidney Development and Inhibits Glycogen Synthase Kinase-3β in Collecting Duct Principal Cells

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    level significantly whereas total GSK-3β abundance was unaltered. Li+ treatment increased α-Smooth Muscle Actin (α-SMA) protein level significantly whereas E-cadherin expression was unaltered. In summary, Li+ treatment impairs postnatal development of the kidney cortex and outer medulla and increases pGSK......The postnatal rat kidney is highly susceptible to Lithium (Li+), which leads to significant tissue injury. We hypothesized that Li+ impairs development of the kidney through entry into epithelial cells of the distal nephron, inhibition of Glycogen Synthase Kinase-3β (GSK-3β) through phosphorylation...... on serine9 (pGSK-3β)and subsequent epithelial to mesenchymal dedifferentiation (EMT). GSK-3β immunoreactive protein was associated with collecting ducts in developing and adult human and rat kidney. Total GSK-3β protein abundance was stable in medulla while it decreased in cortex in the postnatal period...

  3. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney

    Science.gov (United States)

    Camarata, Troy; Howard, Alexis; Elsey, Ruth M.; Raza, Sarah; O’Connor, Alice; Beatty, Brian; Conrad, Jack; Solounias, Nikos; Chow, Priscilla; Mukta, Saima; Vasilyev, Aleksandr

    2016-01-01

    New nephron formation (nephrogenesis) ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds) and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles) may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates) showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population. PMID:27144443

  4. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney.

    Science.gov (United States)

    Camarata, Troy; Howard, Alexis; Elsey, Ruth M; Raza, Sarah; O'Connor, Alice; Beatty, Brian; Conrad, Jack; Solounias, Nikos; Chow, Priscilla; Mukta, Saima; Vasilyev, Aleksandr

    2016-01-01

    New nephron formation (nephrogenesis) ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds) and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles) may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates) showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population.

  5. Challenges and opportunities for stem cell therapy in patients with chronic kidney disease.

    Science.gov (United States)

    Hickson, LaTonya J; Eirin, Alfonso; Lerman, Lilach O

    2016-04-01

    Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. Canine thymoma

    International Nuclear Information System (INIS)

    Aronsohn, M.

    1985-01-01

    Thymoma is an uncommon canine neoplasm of thymic epithelial cells. It is seen in various breeds but may occur more frequently in German Shepherd Dogs. Middle-aged or older dogs can be affected and no sex predilection exists. A paraneoplastic syndrome of myasthenia gravis, nonthymic malignant tumors, and/or polymyositis occurs in a significant number of dogs with thymoma. Clinical signs are variable and are related to a space-occupying cranial mediastinal mass and/or manifestations of the paraneo-plastic syndrome. Dyspnea is the most common presenting clinical sign. Thoracic radiographs usually show a cranial mediastinal mass. Lymphoma is the main differential diagnosis. A definitive diagnosis may be made by closed biopsy but is more likely to be confirmed by thoracotomy. Thymomas may be completely contained within the thymic capsule or may spread by local invasion or metastasis. A staging system allows for an accurate prognosis and a therapeutic plan. Surgical removal of encapsulated thymomas may result in long-term survival or cure. Invasive or metastatic thymomas carry a guarded prognosis. Manifestations of the paraneoplastic syndrome complicate treatment. Adjuvant radiation and chemotherapy may be of value for advanced cases; however, adequate clinical trials have not been done in the dog

  7. Bilateral renal cell carcinoma in a horseshoe kidney: preoperative assessment with MRI and digital subtraction angiography

    International Nuclear Information System (INIS)

    Schubert, R.A.; Soeldner, J.; Kaiser, W.A.; Steiner, T.; Schubert, J.

    1998-01-01

    Renal cell carcinoma in a horseshoe kidney is an unusual entity. To our knowledge, only 123 cases have been published to date. We report the first bilateral case of two clear-cell carcinomas in an asymmetrically fused kidney. Optimum preservation of renal function after radical tumor removal requires accurate preoperative imaging. Since the vascular supply in fusion anomalies is extremely variable, angiography is mandatory. Magnetic resonance imaging was most suitable to predict the tumor extent and localization, because it simultaneously gave the most comprehensive anatomical overview of the malformation. (orig.)

  8. A synthetic peptide derived from the animo acid sequence of canine parvovirus structural proteins which defines a B cell epitope and elicits antiviral antibody in BALB c mice.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractSynthetic peptides, recombinant fusion proteins and mouse monoclonal antibodies were used to delineate a B cell epitope of the VP'2 structural protein of canine parvovirus (CPV). Although this epitope is not preferentially recognized in the normal antibody response to CPV, virus-specific

  9. A fusion of minicircle DNA and nanoparticle delivery technologies facilitates therapeutic genetic engineering of autologous canine olfactory mucosal cells.

    Science.gov (United States)

    Delaney, Alexander M; Adams, Christopher F; Fernandes, Alinda R; Al-Shakli, Arwa F; Sen, Jon; Carwardine, Darren R; Granger, Nicolas; Chari, Divya M

    2017-06-29

    Olfactory ensheathing cells (OECs) promote axonal regeneration and improve locomotor function when transplanted into the injured spinal cord. A recent clinical trial demonstrated improved motor function in domestic dogs with spinal injury following autologous OEC transplantation. Their utility in canines offers promise for human translation, as dogs are comparable to humans in terms of clinical management and genetic/environmental variation. Moreover, the autologous, minimally invasive derivation of OECs makes them viable for human spinal injury investigation. Genetic engineering of transplant populations may augment their therapeutic potential, but relies heavily on viral methods which have several drawbacks for clinical translation. We present here the first proof that magnetic particles deployed with applied magnetic fields and advanced DNA minicircle vectors can safely bioengineer OECs to secrete a key neurotrophic factor, with an efficiency approaching that of viral vectors. We suggest that our alternative approach offers high translational potential for the delivery of augmented clinical cell therapies.

  10. Primary cell culture and morphological characterization of canine dermal papilla cells and dermal fibroblasts.

    Science.gov (United States)

    Bratka-Robia, Christine B; Mitteregger, Gerda; Aichinger, Amanda; Egerbacher, Monika; Helmreich, Magdalena; Bamberg, Elmar

    2002-02-01

    Skin biopsies were taken from female dogs, the primary hair follicles isolated and the dermal papilla dissected. After incubation in supplemented Amniomax complete C100 medium in 24-well culture plates, the dermal papilla cells (DPC) grew to confluence within 3 weeks. Thereafter, they were subcultivated every 7 days. Dermal fibroblast (DFB) cultures were established by explant culture of interfollicular dermis in serum-free medium, where they reached confluence in 10 days. They were subcultivated every 5 days. For immunohistochemistry, cells were grown on cover slips for 24 h, fixed and stained with antibodies against collagen IV and laminin. DPC showed an aggregative growth pattern and formation of pseudopapillae. Intensive staining for collagen IV and laminin could be observed until the sixth passage. DFB grew as branching, parallel lines and showed only weak staining for collagen IV and laminin.

  11. The peripheral NK cell repertoire after kidney transplantation is modulated by different immunosuppressive drugs

    Directory of Open Access Journals (Sweden)

    Christine eNeudoerfl

    2013-02-01

    Full Text Available In the context of kidney transplantation, little is known about the involvement of NK cells in the immune reaction leading to either rejection or immunological tolerance under immunosuppression. Therefore, the peripheral NK cell repertoire of patients after kidney transplantation was investigated in order to identify NK cell subsets that may be associated with the individual immune status at the time of their protocol biopsies for histopathological evaluation of the graft. Alterations in the peripheral NK cell repertoire could be correlated to the type of immunosuppression, i.e. calcineurin-inhibitors like CyclosporinA vs. Tacrolimus with or without addition of mTOR inhibitors. Here, we could demonstrate that the NK cell repertoire in peripheral blood of kidney transplant patients differs significantly from healthy individuals. The presence of donor-specific antibodies was associated with reduced numbers of CD56dim NK cells. Moreover, in patients, down-modulation of CD16 and CD6 on CD56dim NK cells was observed with significant differences between CyclosporinA- and Tac-treated patients. Tac-treatment was associated with decreased CD69, HLA-DR and increased CD94/NKG2A expression in CD56dim NK cells indicating that the quality of the immunosuppressive treatment impinges on the peripheral NK cell repertoire. In vitro studies with PBMC of healthy donors showed that this modulation of CD16, CD6, CD69, and HLA-DR could also be induced experimentally. The presence of calcineurin or mTOR inhibitors had also functional consequences regarding degranulation and IFN--production against K562 target cells, respectively. In summary, we postulate that the NK cell composition in peripheral blood of kidney transplanted patients represents an important hallmark of the efficacy of immunosuppression and may be even informative for the immune status after transplantation in terms of rejection vs. drug-induced allograft tolerance. Thus,NK cells can serve as sensors

  12. Effects of cyclosporin A on a kidney epithelial cell line (LLC-PK1).

    Science.gov (United States)

    Becker, G M; Gandolfi, A J; Nagle, R B

    1987-05-01

    Cyclosporin A (CSA), a potent immunosuppressant with the adverse side effect of nephrotoxicity, inhibited cell growth of pig kidney tubule cells (LLC-PK1) in culture. CSA (10(-5) M) also induced intense cytoplasmic vacuolation and the formation of dense granules. At the same concentration an analogue of CSA, cyclosporin G, had much less effect. This cell line may prove useful for revealing the mechanism of CSA-nephrotoxicity and testing the nephrotoxic potential of new analogues of cyclosporine.

  13. Human kidney proximal tubule cells are vulnerable to the effects of Rauwolfia serpentina.

    Science.gov (United States)

    Mossoba, Miriam E; Flynn, Thomas J; Vohra, Sanah; Wiesenfeld, Paddy L; Sprando, Robert L

    2015-12-01

    Rauwolfia serpentina (or Snake root plant) is a botanical dietary supplement marketed in the USA for maintaining blood pressure. Very few studies have addressed the safety of this herb, despite its wide availability to consumers. Its reported pleiotropic effects underscore the necessity for evaluating its safety. We used a human kidney cell line to investigate the possible negative effects of R. serpentina on the renal system in vitro, with a specific focus on the renal proximal tubules. We evaluated cellular and mitochondrial toxicity, along with a variety of other kidney-specific toxicology biomarkers. We found that R. serpentina was capable of producing highly detrimental effects in our in vitro renal cell system. These results suggest more studies are needed to investigate the safety of this dietary supplement in both kidney and other target organ systems.

  14. Kidney transplant

    Science.gov (United States)

    ... always take your medicine as directed. Alternative Names Renal transplant; Transplant - kidney Patient Instructions Kidney removal - discharge Images Kidney anatomy Kidney - blood and urine flow Kidneys Kidney transplant - ...

  15. An in vivo photodynamic therapy with diode laser to cell activation of kidney dysfunction

    International Nuclear Information System (INIS)

    Astuti, Suryani Dyah; Prasaja, Brahma Indra; Prijo, Tri Anggono

    2017-01-01

    This study aims to analyze the effect of photodynamic therapy (PDT) low level laser therapy (LLLT) 650 nm in the experimental animals mice ( Musmuculus ) suffering from kidney organ damage in mice ( Musmuculus ) in vivo. Exposure laser acupuncture was performed on the kidney BL-23. The conditioning of kidney damage in mice used carbofuraan 35 at a dose of 0.041697 mg/mice. LLLT 650 nm exposure was done on a wide variety of energy (0.5; 1.0; 1.5; 2.0; 4.0; 5.0; 6.0; 7.0) J. The histopathological kidney cells in mice renal impairment showed that exposure to 650 nm laser energy 1 Joule resulted in the reduction of damaged cells (necrosis) and normal cells were increased with the improvement of renal tubular cells (64.14 ± 8:02)%. Therefore, exposure to 650 nm LLLT on acupuncture points Shenshu (BL-23) has the ability to proliferation of renal tubular cells of mice. (paper)

  16. An in vivo photodynamic therapy with diode laser to cell activation of kidney dysfunction

    Science.gov (United States)

    Dyah Astuti, Suryani; Indra Prasaja, Brahma; Anggono Prijo, Tri

    2017-05-01

    This study aims to analyze the effect of photodynamic therapy (PDT) low level laser therapy (LLLT) 650 nm in the experimental animals mice (Musmuculus) suffering from kidney organ damage in mice (Musmuculus) in vivo. Exposure laser acupuncture was performed on the kidney BL-23. The conditioning of kidney damage in mice used carbofuraan 35 at a dose of 0.041697 mg/mice. LLLT 650 nm exposure was done on a wide variety of energy (0.5; 1.0; 1.5; 2.0; 4.0; 5.0; 6.0; 7.0) J. The histopathological kidney cells in mice renal impairment showed that exposure to 650 nm laser energy 1 Joule resulted in the reduction of damaged cells (necrosis) and normal cells were increased with the improvement of renal tubular cells (64.14 ± 8:02)%. Therefore, exposure to 650 nm LLLT on acupuncture points Shenshu (BL-23) has the ability to proliferation of renal tubular cells of mice.

  17. Unique B cell differentiation profile in tolerant kidney transplant patients.

    Science.gov (United States)

    Chesneau, M; Pallier, A; Braza, F; Lacombe, G; Le Gallou, S; Baron, D; Giral, M; Danger, R; Guerif, P; Aubert-Wastiaux, H; Néel, A; Michel, L; Laplaud, D-A; Degauque, N; Soulillou, J-P; Tarte, K; Brouard, S

    2014-01-01

    Operationally tolerant patients (TOL) display a higher number of blood B cells and transcriptional B cell signature. As they rarely develop an allo-immune response, they could display an abnormal B cell differentiation. We used an in vitro culture system to explore T-dependent differentiation of B cells into plasma cells. B cell phenotype, apoptosis, proliferation, cytokine, immunoglobulin production and markers of differentiation were followed in blood of these patients. Tolerant recipients show a higher frequency of CD20(+) CD24(hi) CD38(hi) transitional and CD20(+) CD38(lo) CD24(lo) naïve B cells compared to patients with stable graft function, correlating with a decreased frequency of CD20(-) CD38(+) CD138(+) differentiated plasma cells, suggestive of abnormal B cell differentiation. B cells from TOL proliferate normally but produce more IL-10. In addition, B cells from tolerant recipients exhibit a defective expression of factors of the end step of differentiation into plasma cells and show a higher propensity for cell death apoptosis compared to patients with stable graft function. This in vitro profile is consistent with down-regulation of B cell differentiation genes and anti-apoptotic B cell genes in these patients in vivo. These data suggest that a balance between B cells producing IL-10 and a deficiency in plasma cells may encourage an environment favorable to the tolerance maintenance. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. CA 15–3 cell lines and tissue expression in canine mammary cancer and the correlation between serum levels and tumour histological grade

    Directory of Open Access Journals (Sweden)

    Manuali Elisabetta

    2012-06-01

    Full Text Available Abstract Background Mammary tumours are the most common malignancy diagnosed in female dogs and a significant cause of mortality and morbidity in this species. Carbohydrate antigen (CA 15–3 is a mucinous glycoprotein aberrantly over-expressed in human mammary neoplasms and one of the most widely used serum tumour markers in women with breast cancer. The aim of this study was to investigate the antigenic analogies of human and canine CA 15–3 and to assess its expression in canine mammary cancer tissues and cell lines. Immunohistochemical expression of CA 15–3 was evaluated in 7 canine mammary cancer cell lines and 50 malignant mammary tumours. As a positive control, the human breast carcinoma cell line MCF7 and tissue were used. To assess CA 15–3 staining, a semi-quantitative method was applied. To confirm the specificity and cross-reactivity of an anti-human CA 15–3 antibody to canine tissues, an immunoblot analysis was performed. We also investigated serum CA 15–3 activity to establish whether its expression could be assigned to several tumour characteristics to evaluate its potential use as a serum tumour marker in the canine mammary oncology field. Results Immunocytochemical analysis revealed CA 15–3 expression in all examined canine mammary cancer cell lines, whereas its expression was confirmed by immunoblot only in the most invasive cells (CMT-W1, CMT-W1M, CMT-W2 and CMT-W2M. In the tissue, an immunohistochemical staining pattern was observed in 34 (68% of the malignant tumours. A high statistical correlation (p = 0.0019 between serum CA 15–3 levels and the degree of tumour proliferation and differentiation was shown, which indicates that the values of this serum marker increase as the tumour stage progresses. Conclusions The results of this study reveal that CA 15–3 is expressed in both canine mammary tumour cell lines and tissues and that serum levels significantly correlate with the histological grade of the

  19. Constitutive activation of alternative nuclear factor kappa B pathway in canine diffuse large B-cell lymphoma contributes to tumor cell survival and is a target of new adjuvant therapies.

    Science.gov (United States)

    Seelig, Davis M; Ito, Daisuke; Forster, Colleen L; Yoon, Una A; Breen, Matthew; Burns, Linda J; Bachanova, Veronika; Lindblad-Toh, Kerstin; O'Brien, Timothy D; Schmechel, Stephen C; Rizzardi, Anthony E; Modiano, Jaime F; Linden, Michael A

    2017-07-01

    Activation of the classical nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway is a common molecular event observed in both human and canine diffuse large B-cell lymphoma (DLBCL). Although the oncogenic potential of the alternative NFκB pathway (ANFκBP) has also been recently identified in DLBCL, its precise role in tumor pathogenesis and potential as a treatment target is understudied. We hypothesized that up-regulation of the ANFκBP plays an important role in the proliferation and survival of canine DLBCL cells, and we demonstrate that the ANFκBP is constitutively active in primary canine DLBCL samples and a cell line (CLBL1). We further demonstrate that a small interfering RNA inhibits the activation of the NFκB pathway and induces apoptosis in canine DLBCL cells. In conclusion, the ANFκBP facilitates survival of canine DLBCL cells, and thus, dogs with spontaneous DLBCL can provide a useful large animal model to study therapies targeting the ANFκBP.

  20. Podoplanin Expression in Canine Melanoma.

    Science.gov (United States)

    Ogasawara, Satoshi; Honma, Ryusuke; Kaneko, Mika K; Fujii, Yuki; Kagawa, Yumiko; Konnai, Satoru; Kato, Yukinari

    2016-12-01

    A type I transmembrane protein, podoplanin (PDPN), is expressed in several normal cells such as lymphatic endothelial cells or pulmonary type I alveolar cells. We recently demonstrated that anticanine PDPN monoclonal antibody (mAb), PMab-38, recognizes canine PDPN of squamous cell carcinomas, but does not react with lymphatic endothelial cells. Herein, we investigated whether PMab-38 reacts with canine melanoma. PMab-38 reacted with 90% of melanoma cells (9/10 cases) using immunohistochemistry. Of interest, PMab-38 stained the lymphatic endothelial cells and cancer-associated fibroblasts in melanoma tissues, although it did not stain any lymphatic endothelial cells in normal tissues. PMab-38 could be useful for uncovering the function of PDPN in canine melanomas.

  1. Cux1 promotes cell proliferation and polycystic kidney disease progression in an ADPKD mouse model.

    Science.gov (United States)

    Porath, Binu; Livingston, Safia; Andres, Erica L; Petrie, Alexandra M; Wright, Joshua C; Woo, Anna E; Carlton, Carol G; Baybutt, Richard; Vanden Heuvel, Gregory B

    2017-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic hereditary disorders in humans characterized by fluid-filled cysts, primarily in the kidneys. Cux1, a cell cycle regulatory gene highly expressed during kidney development, is elevated in the cyst-lining cells of Pkd1 mutant mice, and in human ADPKD cells. However, forced expression of Cux1 is insufficient to induce cystic disease in transgenic mice or to induce rapid cyst formation after cilia disruption in the kidneys of adult mice. Here we report a double mutant mouse model that has a conditional deletion of the Pkd1 gene in the renal collecting ducts together with a targeted mutation in the Cux1 gene (Pkd1 CD ;Cux1 tm2Ejn ). While kidneys isolated from newborn Pkd1 CD mice exhibit cortical and medullary cysts, kidneys isolated from newborn Pkd1 CD ;Cux1 tm2Ejn-/- mice did not show any cysts. Because Cux1 tm2Ejn-/- are perinatal lethal, we evaluated Pkd1 CD mice that were heterozygote for the Cux1 mutation. Similar to the newborn Pkd1 CD ;Cux1 tm2Ejn-/- mice, newborn Pkd1 CD ;Cux1 tm2Ejn+/- mice did not show any cysts. Comparison of Pkd1 CD and Pkd1 CD ;Cux1 tm2Ejn+/- mice at later stages of development showed a reduction in the severity of PKD in the Pkd1 CD ;Cux1 tm2Ejn+/- mice. Moreover, we observed an increase in expression of the cyclin kinase inhibitor p27, a target of Cux1 repression, in the rescued collecting ducts. Taken together, our results suggest that Cux1 expression in PKD is not directly involved in cystogenesis but promotes cell proliferation required for expansion of existing cysts, primarily by repression of p27. Copyright © 2017 the American Physiological Society.

  2. The role of T regulatory cells in kidney transplantation

    OpenAIRE

    Urbanová, Anna

    2011-01-01

    T regulatory lymphocytes (Treg) belong to the CD4+ cell group. They are an essential part of the immunity system. Treg cells prevent from excessive activation of effector T cells and they keep the tolerance to the tissues of the body. They have high expression of CD25 and the transcription factor Foxp3. We distinguish two basic populations of Treg cells: natural Treg cells (nTreg) created in the thym and representing 5-10 % of all CD4+ cells, and induced Treg cells (iTreg), created from naive...

  3. Characterization of kidney epithelial cells from the Florida manatee, Trichechus manatus latirostris.

    Science.gov (United States)

    Sweat JMDunigan, D D; Wright, S D

    2001-06-01

    The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.

  4. A Rare Case of a Renal Cell Carcinoma Confined to the Isthmus of a Horseshoe Kidney

    Directory of Open Access Journals (Sweden)

    Michael Kongnyuy

    2015-01-01

    Full Text Available Horseshoe kidney (HSK is the most common renal anomaly. Reports of the incidence of renal cell carcinoma (RCC in HSK are conflicting. Very few cases of isthmus-located RCC have been reported in the literature. We report a unique case of an isthmus-located RCC. Proper vascular and tumor imaging prior to surgery is key to successful tumor removal.

  5. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease

    NARCIS (Netherlands)

    Krenning, Guido; Dankers, Patricia Y. W.; Drouven, Johannes W.; Waanders, Femke; Franssen, Casper F. M.; van Luyn, Marja J. A.; Harmsen, Martin C.; Popa, Eliane R.

    Krenning G, Dankers PY, Drouven JW, Waanders F, Franssen CF, van Luyn MJ, Harmsen MC, Popa ER. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. Am J Physiol Renal Physiol 296: F1314-F1322, 2009. First published April 1, 2009; doi:

  6. Mite allergoids coupled to nonoxidized mannan from Saccharomyces cerevisae efficiently target canine dendritic cells for novel allergy immunotherapy in veterinary medicine.

    Science.gov (United States)

    Soria, Irene; Alvarez, Javier; Manzano, Ana I; López-Relaño, Juan; Cases, Bárbara; Mas-Fontao, Ana; Cañada, F Javier; Fernández-Caldas, Enrique; Casanovas, Miguel; Jiménez-Barbero, Jesús; Palomares, Oscar; Viñals-Flórez, Luis M; Subiza, José L

    2017-08-01

    We have recently reported that grass pollen allergoids conjugated with nonoxidized mannan of Saccharomyces cerevisae using glutaraldehyde results in a novel hypoallergenic mannan-allergen complex with improved properties for allergen vaccination. Using this approach, human dendritic cells show a better allergen uptake and cytokine profile production (higher IL-10/IL-4 ratio) for therapeutic purposes. Here we aim to address whether a similar approach can be extended to dogs using canine dendritic cells. Six healthy Spanish Greyhound dogs were used as blood donors to obtain canine dendritic cells (DC) derived from peripheral blood monocytes. Allergens from Dermatophagoides farinae mite were polymerized and conjugated with nonoxidized mannan. Nuclear magnetic resonance (NMR), gel electrophoresis (SDS-PAGE), immunoblotting and IgE-ELISA inhibition studies were conducted to evaluate the main characteristics of the allergoid obtained. Mannan-allergen conjugate and controls were assayed in vitro for canine DC uptake and production of IL-4 and IL-10. The results indicate that the conjugation of D. farinae allergens with nonoxidized mannan was feasible using glutaraldehyde. The resulting product was a polymerized structure showing a high molecular weight as detected by NMR and SDS-PAGE analysis. The mannan-allergen conjugate was hypoallergenic with a reduced reactivity with specific dog IgE. An increase in both allergen uptake and IL-10/IL-4 ratio was obtained when canine DCs were incubated with the mannan-allergen conjugate, as compared with the control allergen preparations (unmodified D. farinae allergens and oxidized mannan-allergen conjugate). We conclude that hypoallergenic D. farinae allergens coupled to nonoxidized mannan is a novel allergen preparation suitable for canine allergy immunotherapy targeting dendritic cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Regenerative Medicine, Disease Modelling, and Drug Discovery in Human Pluripotent Stem Cell-Derived Kidney Tissue

    Directory of Open Access Journals (Sweden)

    Navin Gupta

    2017-08-01

    Full Text Available The multitude of research clarifying critical factors in embryonic organ development has been instrumental in human stem cell research. Mammalian organogenesis serves as the archetype for directed differentiation protocols, subdividing the process into a series of distinct intermediate stages that can be chemically induced and monitored for the expression of stage-specific markers. Significant advances over the past few years include established directed differentiation protocols of human embryonic stem cells and human induced pluripotent stem cells (hiPSC into human kidney organoids in vitro. Human kidney tissue in vitro simulates the in vivo response when subjected to nephrotoxins, providing a novel screening platform during drug discovery to facilitate identification of lead candidates, reduce developmental expenditures, and reduce future rates of drug-induced acute kidney injury. Patient-derived hiPSC, which bear naturally occurring DNA mutations, may allow for modelling of human genetic diseases to enable determination of pathological mechanisms and screening for novel therapeutics. In addition, recent advances in genome editing with clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 enable the generation of specific mutations to study genetic disease, with non-mutated lines serving as an ideal isogenic control. The growing population of patients with end-stage kidney disease is a worldwide healthcare problem, with high morbidity and mortality rates, that warrants the discovery of novel forms of renal replacement therapy. Coupling the outlined advances in hiPSC research with innovative bioengineering techniques, such as decellularised kidney and three-dimensional printed scaffolds, may contribute to the development of bioengineered transplantable human kidney tissue as a means of renal replacement therapy.

  8. Mucinous tubular and spindle cell carcinoma of kidney: A clinicopathologic study of six cases

    Directory of Open Access Journals (Sweden)

    Mudassar Hussain

    2012-01-01

    Full Text Available Background: Mucinous tubular and spindle carcinoma (MTSCC of kidney is a rare, low-grade polymorphic tumor. Recent studies have described a wide morphology spectrum of this tumor. Aim: To report the clinico-pathologic features of six cases of MTSCC of kidney. Materials and Methods: Six cases of MTSCC of kidney were studied and literature was reviewed. Immunohistochemistry was done by Envision method. Results: The age of the patients ranged from 44 to 84 years (mean 58.5 years. Four patients were males and two were females. The tumor was located in the left kidney in four cases and in the right kidney in two cases. The tumor size ranged from 4.5 to 15 cm (mean 6.4 cm. All tumors exhibited an admixture of tubules, spindle cells, and mucinous stroma in variable proportions. Tubules were predominant in five cases and spindle cells in one case. Psammomatous calcifications, papillations, and necrosis were seen in two cases. Collections of foamy histiocytes were noted in four cases. Cytoplasmic vacuoles and osseous metaplasia were seen in one case each. All cases were Fuhrman′s nuclear grade II. Five cases were of stage pT1, and one was pT3. All cases stained positive for alcian blue at pH 2.5. Immunohistochemical stain CK7 was positive in all cases and CD10 was positive in 1/1 case. All patients were alive and well at follow-up of 12-59 months (mean 33.5 months. No metastases were detected. Conclusions: We report six cases of MTSCC of kidney, a rare distinct variant of RCC, with a favorable prognosis. A male predominance was seen in our cases. MTSCC shares histologic and immunohistochemical overlap with papillary renal cell carcinoma (PRCC and cytogenetic analysis should be performed in difficult cases to avoid a misdiagnosis.

  9. Vaccines for canine leishmaniasis

    Directory of Open Access Journals (Sweden)

    Clarisa B. Palatnik-De-Sousa

    2012-04-01

    Full Text Available Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global-warming, co-infection with immunosuppressive diseases and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL in the Americas, the Middle East, Central Asia, China and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost-effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine visceral leishmaniasis. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans

  10. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  11. Protocols for Visually Guided Navigation Assessment of Efficacy of Retina-Directed Cell or Gene Therapy in Canines

    Directory of Open Access Journals (Sweden)

    Jean Bennett

    2017-04-01

    Full Text Available There has been marked progress in recent years in developing gene delivery approaches for the treatment of inherited blinding diseases. Many of the proof-of-concept studies have utilized rodent models of retinal degeneration. In those models, tests of visual function include a modified water maze swim test, optokinetic nystagmus, and light-dark activity assays. Test paradigms used in rodents can be difficult to replicate in large animals due to their size and awareness of non-visual aspects of the test system. Two types of visual behavior assays have been utilized in canines: an obstacle avoidance course and a forced choice Y maze. Given the progress in developing cell and gene therapies in large animals, such tests will become more and more valuable. This study provides guidelines for carrying out such tests and assesses the challenges and benefits associated with each test.

  12. Canine gastritis.

    Science.gov (United States)

    Webb, Craig; Twedt, David C

    2003-09-01

    Gastritis--inflammation of the stomach--is a frequently cited differential yet rarely characterized diagnosis in cases of canine anorexia and vomiting. Although the list of rule-outs for acute or chronic gastritis is extensive, a review of the veterinary literature reveals fewer than 15 articles that have focused on clinical cases of canine gastritis over the last 25 years. The dog frequently appears in the human literature as an experimentally manipulated model for the study of endoscopic techniques or the effect of medications on gastric mucosa. In the veterinary patient, cases of acute gastritis are rarely pursued with the complete diagnostic armamentarium, and cases of chronic gastritis are rarely found to occur as an entity isolated from the rest of the gastrointestinal tract. This article focuses on those findings most clinically relevant to cases of canine gastritis in veterinary medicine.

  13. Donor Kidney With Renal Cell Carcinoma Successfully Treated With Radiofrequency Ablation

    DEFF Research Database (Denmark)

    Christensen, S F; Hansen, Jesper Melchior

    2015-01-01

    BACKGROUND: The risk of donor-transmitted cancer is evident. CASE REPORT: We report the case of a 69-year-old woman who was transplanted with a kidney from a deceased donor. Four days after transplantation a routine ultrasound scan revealed a 3-cm tumor in the middle-upper pole of the allograft....... A biopsy showed the tumor to be papillary renal cell carcinoma. The patient was treated with radiofrequency ablation. This procedure was complicated by the development of a cutaneous fistula and open surgery was done with resection of an area of necrosis in the kidney and of the fistula. The maintenance...

  14. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    Science.gov (United States)

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis.

  15. Effects of Serial Passage on the Characteristics and Chondrogenic Differentiation of Canine Umbilical Cord Matrix Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    K. S. Lee

    2013-04-01

    Full Text Available Mesenchymal stem cells (MSCs are often known to have a therapeutic potential in the cell-mediated repair for fatal or incurable diseases. In this study, canine umbilical cord MSCs (cUC-MSCs were isolated from umbilical cord matrix (n = 3 and subjected to proliferative culture for 5 consecutive passages. The cells at each passage were characterized for multipotent MSC properties such as proliferation kinetics, expression patterns of MSC surface markers and self-renewal associated markers, and chondrogenic differentiation. In results, the proliferation of the cells as determined by the cumulative population doubling level was observed at its peak on passage 3 and stopped after passage 5, whereas cell doubling time dramatically increased after passage 4. Expression of MSC surface markers (CD44, CD54, CD61, CD80, CD90 and Flk-1, molecule (HMGA2 and pluripotent markers (sox2, nanog associated with self-renewal was negatively correlated with the number of passages. However, MSC surface marker (CD105 and pluripotent marker (Oct3/4 decreased with increasing the number of subpassage. cUC-MSCs at passage 1 to 5 underwent chondrogenesis under specific culture conditions, but percentage of chondrogenic differentiation decreased with increasing the number of subpassage. Collectively, the present study suggested that sequential subpassage could affect multipotent properties of cUC-MSCs and needs to be addressed before clinical applications.

  16. Disruption of Splenic Lymphoid Tissue and Plasmacytosis in Canine Visceral Leishmaniasis: Changes in Homing and Survival of Plasma Cells.

    Science.gov (United States)

    Silva-O'Hare, Joselli; de Oliveira, Isabela Silva; Klevorn, Thaís; Almeida, Valter A; Oliveira, Geraldo G S; Atta, Ajax M; de Freitas, Luiz Antonio R; Dos-Santos, Washington L C

    2016-01-01

    Visceral leishmaniasis (VL) is a disease caused by Leishmania infantum, which is transmitted by phlebotomine sandflies. Dogs are the main urban reservoir of this parasite and the disease presents similar characteristics in both humans and dogs. In this paper, we investigated the potential pathways involved in plasma cell replacement of normal cell populations in the spleen, with respect to disease severity in dogs from an endemic area for visceral leishmaniasis. To this end, canine spleen samples were grouped into three categories: TYPE1SC- (non-infected dogs or without active infection with organized white pulp), TYPE1SC+ (infected dogs with organized white pulp) or TYPE3SC+ (infected animals with disorganized white pulp). We analyzed the distribution of different plasma cell isotypes (IgA, IgG and IgM) in the spleen. The expression of cytokines and chemokines involved in plasma cell homing and survival were assessed by real time RT-PCR. Polyclonal B cell activation and hypergammaglobulinemia were also evaluated. The proportion of animals with moderate or intense plasmacytosis was higher in the TYPE3SC+ group than in the other groups (Fisher test, Pspleen may contribute to the progression of VL, and impair the spleen's ability to protect against blood borne pathogens.

  17. Collecting Duct Carcinoma of the Kidney Mimicking Invasive Transitional Cell Carcinoma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Joo Nam; Lim, Hyung Guhn; Lim, Sung Chul [Chosun University College of Medicine, Gwangju (Korea, Republic of)

    2007-06-15

    Approximately 100 cases of collecting duct carcinoma have been reported in the medical literature. We herein report on a case of collecting duct carcinoma of the kidney in a 75-year-old patient. The abdominal sonography depicted a relatively poorly defined 7x6 cm sized, isoechoic mass lesion, as compared to the normal parenchyma, at the left kidney lower pole and the affected kidney showed preservation of the reniform shape. CT revealed a heterogeneous poorly defined low-attenuation mass that was mainly located in the medulla with involvement of the cortex and the lower half of the renal pelvis. Retrograde ureter opyelography showed a filling defect at the lower renal pelvis and severe narrowing of the left proximal ureter. We initially thought this lesion was invasive transitional cell carcinoma. Subsequent surgery confirmed a collecting duct carcinoma

  18. Pure red cell aplasia in a simultaneous pancreas-kidney transplantation patient: inside the erythroblast

    Directory of Open Access Journals (Sweden)

    Francesca Labbadia

    2012-09-01

    Full Text Available A case of pure red cell aplasia in a simultaneous kidney-pancreas transplant recipient on immunosuppressive therapy is reported here. The patient presented with anemia unresponsive to erythropoietin treatment. Bone marrow cytomorphology was highly suggestive of parvovirus pure red cell aplasia, which was confirmed with serology and polymerase chain reaction positive for parvovirus B19 DNA in peripheral blood. After the administration of intravenous immunoglobulin the anemia improved with a rising number of the reticulocytes.

  19. Pretransplantation recipient regulatory T cell suppressive function predicts delayed and slow graft function after kidney transplantation.

    Science.gov (United States)

    Nguyen, Minh-Tri J P; Fryml, Elise; Sahakian, Sossy K; Liu, Shuqing; Michel, Rene P; Lipman, Mark L; Mucsi, Istvan; Cantarovich, Marcelo; Tchervenkov, Jean I; Paraskevas, Steven

    2014-10-15

    Delayed graft function (DGF) and slow graft function (SGF) are a continuous spectrum of ischemia-reperfusion-related acute kidney injury (AKI) that increases the risk for acute rejection and graft loss after kidney transplantation. Regulatory T cells (Tregs) are critical in transplant tolerance and attenuate murine AKI. In this prospective observational cohort study, we evaluated whether pretransplantation peripheral blood recipient Treg frequency and suppressive function are predictors of DGF and SGF after kidney transplantation. Deceased donor kidney transplant recipients (n=53) were divided into AKI (n=37; DGF, n=10; SGF, n=27) and immediate graft function (n=16) groups. Pretransplantation peripheral blood CD4CD25FoxP3 Treg frequency was quantified by flow cytometry. Regulatory T-cell suppressive function was measured by suppression of autologous effector T-cell proliferation by Treg in co-culture. Pretransplantation Treg suppressive function, but not frequency, was decreased in AKI recipients (Paccounting for the effects of cold ischemic time and donor age, Treg suppressive function discriminated DGF from immediate graft function recipients in multinomial logistic regression (odds ratio, 0.77; Pfunction is a potential independent pretransplantation predictor of DGF and SGF.

  20. Disruption of Splenic Lymphoid Tissue and Plasmacytosis in Canine Visceral Leishmaniasis: Changes in Homing and Survival of Plasma Cells.

    Directory of Open Access Journals (Sweden)

    Joselli Silva-O'Hare

    Full Text Available Visceral leishmaniasis (VL is a disease caused by Leishmania infantum, which is transmitted by phlebotomine sandflies. Dogs are the main urban reservoir of this parasite and the disease presents similar characteristics in both humans and dogs. In this paper, we investigated the potential pathways involved in plasma cell replacement of normal cell populations in the spleen, with respect to disease severity in dogs from an endemic area for visceral leishmaniasis. To this end, canine spleen samples were grouped into three categories: TYPE1SC- (non-infected dogs or without active infection with organized white pulp, TYPE1SC+ (infected dogs with organized white pulp or TYPE3SC+ (infected animals with disorganized white pulp. We analyzed the distribution of different plasma cell isotypes (IgA, IgG and IgM in the spleen. The expression of cytokines and chemokines involved in plasma cell homing and survival were assessed by real time RT-PCR. Polyclonal B cell activation and hypergammaglobulinemia were also evaluated. The proportion of animals with moderate or intense plasmacytosis was higher in the TYPE3SC+ group than in the other groups (Fisher test, P<0.05. This was mainly due to a higher density of IgG+ plasma cells in the red pulp of this group. The albumin/globulin ratio was lower in the TYPE3SC+ animals than in the TYPE1SC- or TYPE1SC+ animals, which evidences VL-associated dysproteinemia. Interestingly, TYPE3SC+ animals showed increased expression of the BAFF and APRIL cytokines, as well as chemokine CXCL12. Aberrant expression of BAFF, APRIL and CXCL12, together with amplified extrafollicular B cell activation, lead to plasma cell homing and the extended survival of these cells in the splenic red pulp compartment. These changes in the distribution of immunocompetent cells in the spleen may contribute to the progression of VL, and impair the spleen's ability to protect against blood borne pathogens.

  1. Serum Starvation-Induced Voltage-Gated Potassium Channel Kv7.5 Expression and Its Regulation by Sp1 in Canine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Bo Hyung Lee

    2014-01-01

    Full Text Available The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy.

  2. Uncontrolled hypertension secondary to leukemic cell infiltration of kidneys in a hemodialysis patient

    Directory of Open Access Journals (Sweden)

    Kultigin Turkmen

    2010-06-01

    Full Text Available Kultigin Turkmen1, Lutfullah Altintepe2, Ibrahim Guney2, Ismet Aydogdu3, Osman Koc4, Mehmet Ali Erkut5, Halil Zeki Tonbul11Department of Nephrology, Meram School of Medicine, Selcuk University, 2Meram Training and Research Hospital, Selcuk University, 3Department of Hematology, Meram School of Medicine, Selcuk University, 4Department of Radiology, Meram School of Medicine, Selcuk University, 5Department of Hematology, Meram Training and Research Hospital, Selcuk UniversityAbstract: Leukemic infiltration of the kidney is usually silent, and the admission of the patients with renal dysfunction or acute kidney injury is uncommon. We present a 34-year old hemodialysis patient with new onset of uncontrolled hypertension, erythropoietin-resistant anemia, thrombocytopenia, and Bell’s palsy. On admission, his blood pressure (BP was 210/110 mmHg and he had petechiae and purpura at upper and lower extremities. Renal ultrasonography (USG showed bilaterally enlarged kidneys without hydronephrosis, unlike his previous USG, which determined bilaterally atrophic kidneys. Acute lymphoblastic leukemia, hypertensive crisis due to bilateral leukemic cell infiltration of kidneys, tumor lysis syndrome, and leukemic involvement of the facial nerve were diagnosed. Despite intense antihypertensive management, his BP was not controlled. After prednisolone, daunorubicine, and vincristine therapy, the size of kidneys diminished and his BP dropped under normal range. In conclusion, pathological findings such as uncontrolled hypertension, flank pain, skin rashes, and abnormal blood count should be considered carefully, even in patients with end-stage renal disease receiving renal replacement therapy.Keywords: leukemic cell infiltration, uncontrolled hypertension, hemodialysis

  3. Assessment of kidney function in sickle cell anemia patients in Zaria, Nigeria

    Directory of Open Access Journals (Sweden)

    Rasheed Yusuf

    2017-01-01

    Full Text Available Introduction: Sickle cell anemia (SCA patients are prone to kidney injury by various mechanisms including reduced blood flow, ischemia, and papillary necrosis. Sickle cell nephropathy may progress to end-stage renal disease with increased morbidity and mortality. Objective: To assess renal function tests and their relationship with kidney length in steady state SCA patients. Subjects and Methods: Seventy-four adult SCA patients in steady state and 20 hemoglobin AA controls were enrolled into the study. Serum urea, electrolytes, creatinine, and uric acid were assayed while estimated glomerular filtration rate (eGFR was calculated. Renal scan was also performed to assess the kidney length. Results: Serum potassium, phosphate, and uric acid were statistically significantly higher while sodium, chloride, bicarbonate, calcium, and eGFR were significantly lower in SCA patient than in controls (P < 0.05. eGFR of < 90 ml/min was found in 50 (67.6% of SCA patients out of which 7 (9.5% had Stage 3 chronic kidney disease (CKD (<60 ml/min and one patient with Stage 4 CKD who also had shrunken kidneys with elevated serum creatinine (203 μmol/L and urea (11.7 mmol/L concentration. Renal ultrasonography revealed reduced renal size in 20 (27.1% of the patients while 2 (2.7% had a renal enlargement. There was no correlation between renal length and serum electrolytes, urea, creatinine, and eGFR. Conclusion: The majority of steady state SCA patients in Zaria have reduced eGFR and dyselectrolytemia. However, there was no association between the kidney length and the biochemical parameters. We, thus, recommend renal function tests to be routinely requested for proper management of these patients.

  4. Postembryonic Nephrogenesis and Persistence of Six2-Expressing Nephron Progenitor Cells in the Reptilian Kidney.

    Directory of Open Access Journals (Sweden)

    Troy Camarata

    Full Text Available New nephron formation (nephrogenesis ceases in mammals around birth and is completely absent in adults. In contrast, postembryonic nephrogenesis is well documented in the mesonephric kidneys of fishes and amphibians. The transient mesonephros in reptiles (including birds and mammals is replaced by the metanephros during embryogenesis. Thus, one may speculate that postembryonic nephrogenesis is restricted to the mesonephric kidney. Previous reports have suggested the metanephros of non-avian reptiles (hereafter reptiles may continually form nephrons throughout life. We investigated the presence of adult nephrogenesis in reptiles by examining adult kidneys from several species including Trachemys scripta, Chrysemys picta, Boa constrictor, Tupinambis tegu, Anolis carolinensis, and Alligator mississipiensis among others. We found that all major reptilian groups (Testudines, Crocodylia, and Squamates showed the presence of adult nephrogenesis. The total amount of nephrogenesis varied greatly between species with turtles displaying the highest density of nephrogenesis. In contrast, we were unable to detect adult nephrogenesis in monotremes, and in the iguanid A. carolinensis. Nephron progenitor cells express the transcription factor Six2, which in mammals, becomes downregulated as the progenitor cell population is exhausted and nephrogenesis ends. Using the alligator as a model, we were able to detect Six2-positive cap mesenchyme cells in the adult kidney, which spatially correlated with areas of nephrogenesis. These results suggest that the metanephric kidney of reptiles has maintained the ability to continually grow new nephrons during postembryonic life, a process lost early in mammalian evolution, likely due to the persistence of a Six2-expressing progenitor cell population.

  5. Endothelial marker-expressing stromal cells are critical for kidney formation.

    Science.gov (United States)

    Mukherjee, Elina; Maringer, Katherine; Papke, Emily; Bushnell, Daniel; Schaefer, Caitlin; Kramann, Rafael; Ho, Jacqueline; Humphreys, Benjamin D; Bates, Carlton; Sims-Lucas, Sunder

    2017-09-01

    Kidneys are highly vascularized and contain many distinct vascular beds. However, the origins of renal endothelial cells and roles of the developing endothelia in the formation of the kidney are unclear. We have shown that the Foxd1-positive renal stroma gives rise to endothelial marker-expressing progenitors that are incorporated within a subset of peritubular capillaries; however, the significance of these cells is unclear. The purpose of this study was to determine whether deletion of Flk1 in the Foxd1 stroma was important for renal development. To that end, we conditionally deleted Flk1 (critical for endothelial cell development) in the renal stroma by breeding-floxed Flk1 mice ( Flk1 fl/fl ) with Foxd1cre mice to generate Foxd1cre; Flk1 fl/fl ( Flk1 ST-/- ) mice. We then performed FACsorting, histological, morphometric, and metabolic analyses of Flk1 ST-/- vs. control mice. We confirmed decreased expression of endothelial markers in the renal stroma of Flk1 ST-/- kidneys via flow sorting and immunostaining, and upon interrogation of embryonic and postnatal Flk1 ST-/- mice, we found they had dilated peritubular capillaries. Three-dimensional reconstructions showed reduced ureteric branching and fewer nephrons in developing Flk1 ST-/- kidneys vs. Juvenile Flk1 ST-/- kidneys displayed renal papillary hypoplasia and a paucity of collecting ducts. Twenty-four-hour urine collections revealed that postnatal Flk1 ST-/- mice had urinary-concentrating defects. Thus, while lineage-tracing revealed that the renal cortical stroma gave rise to a small subset of endothelial progenitors, these Flk1-expressing stromal cells are critical for patterning the peritubular capillaries. Also, loss of Flk1 in the renal stroma leads to nonautonomous-patterning defects in ureteric lineages. Copyright © 2017 the American Physiological Society.

  6. Assessment of Rod, Cone, and Intrinsically Photosensitive Retinal Ganglion Cell Contributions to the Canine Chromatic Pupillary Response.

    Science.gov (United States)

    Yeh, Connie Y; Koehl, Kristin L; Harman, Christine D; Iwabe, Simone; Guzman, José M; Petersen-Jones, Simon M; Kardon, Randy H; Komáromy, András M

    2017-01-01

    The purpose of this study was to evaluate a chromatic pupillometry protocol for specific functional assessment of rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) in dogs. Chromatic pupillometry was tested and compared in 37 dogs in different stages of primary loss of rod, cone, and combined rod/cone and optic nerve function, and in 5 wild-type (WT) dogs. Eyes were stimulated with 1-s flashes of dim (1 cd/m2) and bright (400 cd/m2) blue light (for scotopic conditions) or bright red (400 cd/m2) light with 25-cd/m2 blue background (for photopic conditions). Canine retinal melanopsin/Opn4 was cloned, and its expression was evaluated using real-time quantitative reverse transcription-PCR and immunohistochemistry. Mean ± SD percentage of pupil constriction amplitudes induced by scotopic dim blue (scDB), scotopic bright blue (scBB), and photopic bright red (phBR) lights in WT dogs were 21.3% ± 10.6%, 50.0% ± 17.5%, and 19.4% ± 7.4%, respectively. Melanopsin-mediated responses to scBB persisted for several minutes (7.7 ± 4.6 min) after stimulus offset. In dogs with inherited retinal degeneration, loss of rod function resulted in absent scDB responses, followed by decreased phBR responses with disease progression and loss of cone function. Primary loss of cone function abolished phBR responses but preserved those responses to blue light (scDB and scBB). Although melanopsin/Opn4 expression was diminished with retinal degeneration, melanopsin-expressing ipRGCs were identified for the first time in both WT and degenerated canine retinas. Pupil responses elicited by light stimuli of different colors and intensities allowed differential functional assessment of canine rods, cones, and ipRGCs. Chromatic pupillometry offers an effective tool for diagnosing retinal and optic nerve diseases.

  7. The Phenotypic Fate of Bone Marrow-Derived Stem Cells in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Guowei Feng

    2013-11-01

    Full Text Available Background: Despite increasing attention on the role of bone marrow derived stem cells in repair or rejuvenation of tissues and organs, cellular mechanisms of such cell-based therapy remain poorly understood. Methods: We reconstituted hematopoiesis in recipient C57BL/6J mice by transplanting syngeneic GFP+ bone marrow (BM cells. Subsequently, the recipients received subcutaneous injection of granulocyte-colony stimulating factor (G-CSF and were subjected to acute renal ischemic injury. Flow cytometry and immunostaining were performed at various time points to assess engraftment and phenotype of BM derived stem cells. Results: Administration of G-CSF increased the release of BM derived stem cells into circulation and enhanced the ensuing recruitment of BM derived stem cells into injured kidney. During the second month post injury, migrated BM derived stem cells lost hematopoietic phenotype (CD45 but maintained the expression of other markers (Sca-1, CD133 and CD44, suggesting their potential of transdifferentiation into renal stem cells. Moreover, G-CSF treatment enhanced the phenotypic conversion. Conclusion: Our work depicted a time-course dependent transition of phenotypic characteristics of BM derived stem cells, demonstrated the existence of BM derived stem cells in damaged kidney and revealed the effects of G-CSF on cell transdifferentiation.

  8. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells

    DEFF Research Database (Denmark)

    Thit, Amalie; Selck, Henriette; Bjerregaard, Henning F.

    2015-01-01

    and levels of reduced glutathione (GSH) and eventually cell death. We show that ROS (Reactive Oxygen Species) generation plays a key role and occurs early in Poly toxicity as Poly-induced DNA damage and cell death could be mitigated by the antioxidant NAC (N-acetyl-cysteine). Here we propose a model...

  9. [Establishment and application of a Vero cell line stably expressing raccoon dog SLAM, the cellular receptor of canine distemper virus].

    Science.gov (United States)

    Zhao, Jianjun; Yan, Ruxun; Zhang, Hailing; Zhang, Lei; Hu, Bo; Bai, Xue; Shao, Xiqun; Chai, Xiuli; Yan, Xijun; Wu, Wei

    2012-12-04

    The signaling lymphocyte activation molecule (SLAM, also known as CD150), is used as a cellular receptor by canine distemper virus (CDV). Wild-type strains of CDVs can be isolated and propagated efficiently in non-lymphoid cells expressing this protein. Our aim is to establish a Vero cells expressing raccoon dog SLAM (rSLAM) to efficiently isolate CDV from pathological samples. A eukaryotic expression plasmid, pIRES2-EGFP-rSLAMhis, containing rSLAM gene fused with six histidine-coding sequence, EGFP gene, and neomycin resistance gene was constructed. After transfection with the plasmid, a stable cell line, Vero-rSLAM, was screened from Vero cells with the identification of EGFP reporter and G418 resistance. Three CD positive specimens from infected foxes and raccoon dogs were inoculated to Vero-rSLAM cells for CDV isolation. Foxes and raccoon dogs were inoculated subcutaneously LN (10)fl strain with 4 x 10(2.39)TCID50 dose to evaluate pathogenicity of CDV isolations. The rSLAMh fused gene was shown to transcript and express stably in Vero-rSLAM cells by RT-PCR and Immunohistochemistry assay. Three CDV strains were isolated successfully in Vero-rSLAM cells 36 -48 hours after inoculation with spleen or lung specimens from foxes and raccoon dogs with distemper. By contrast, no CDV was recovered from those CD positive specimens when Vero cells were used for virus isolation. Infected foxes and raccoon dogs with LN(10)f1 strain all showed typical CD symptoms and high mortality (2/3 for foxes and 3/3 for raccoon dogs) in 22 days post challenge. Our results indicate that Vero-rSLAM cells stably expressing raccoon dog SLAM are highly sensitive to CDV in clinical specimens and the CDV isolation can maintain high virulence to its host animals.

  10. Variations in gene and protein expression in canine chondrodystrophic nucleus pulposus cells following long-term three-dimensional culture.

    Directory of Open Access Journals (Sweden)

    Munetaka Iwata

    Full Text Available Intervertebral disc (IVD degeneration greatly affects quality of life. The nucleus pulposus (NP of chondrodystrophic dog breeds (CDBs is similar to the human NP, because the cells disappear with age and are replaced by fibrochondrocyte-like cells. However, because IVD develops as early as within the first year of life, we used canines as a model to investigate in vitro the mechanisms underlying IVD degeneration. Specifically, we evaluated the potential of a three-dimensional (3D culture of healthy NP as an in vitro model system to investigate the mechanisms of IVD degeneration. Agarose hydrogels were populated with healthy NP cells from beagles after performing magnetic resonance imaging, and mRNA expression profiles and pericellular extracellular matrix (ECM protein distribution were determined. After 25 days of 3D culture, there was a tendency for redifferentiation into the native NP phenotype, and mRNA levels of Col2A1, COMP, and CK18 were not significantly different from those of freshly isolated cells. Our findings suggest that long-term 3D culture promoted chondrodystrophic NP redifferentiation through reconstruction of the pericellular microenvironment. Further, lipopolysaccharide (LPS induced expression of TNF-α, MMP3, MMP13, VEGF, and PGES mRNA in the 3D cultures, creating a molecular milieu that mimics that of degenerated NP. These results suggest that this in vitro model represents a reliable and cost-effective tool for evaluating new therapies for disc degeneration.

  11. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    International Nuclear Information System (INIS)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-01-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, 32 P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV

  12. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    Energy Technology Data Exchange (ETDEWEB)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-02-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, /sup 32/P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.

  13. Histologic processing artifacts and inter-pathologist variation in measurement of inked margins of canine mast cell tumors.

    Science.gov (United States)

    Kiser, Patti K; Löhr, Christiane V; Meritet, Danielle; Spagnoli, Sean T; Milovancev, Milan; Russell, Duncan S

    2018-05-01

    Although quantitative assessment of margins is recommended for describing excision of cutaneous malignancies, there is poor understanding of limitations associated with this technique. We described and quantified histologic artifacts in inked margins and determined the association between artifacts and variance in histologic tumor-free margin (HTFM) measurements based on a novel grading scheme applied to 50 sections of normal canine skin and 56 radial margins taken from 15 different canine mast cell tumors (MCTs). Three broad categories of artifact were 1) tissue deformation at inked edges, 2) ink-associated artifacts, and 3) sectioning-associated artifacts. The most common artifacts in MCT margins were ink-associated artifacts, specifically ink absent from an edge (mean prevalence: 50%) and inappropriate ink coloring (mean: 45%). The prevalence of other artifacts in MCT skin was 4-50%. In MCT margins, frequency-adjusted kappa statistics found fair or better inter-rater reliability for 9 of 10 artifacts; intra-rater reliability was moderate or better in 9 of 10 artifacts. Digital HTFM measurements by 5 blinded pathologists had a median standard deviation (SD) of 1.9 mm (interquartile range: 0.8-3.6 mm; range: 0-6.2 mm). Intraclass correlation coefficients demonstrated good inter-pathologist reliability in HTFM measurement (κ = 0.81). Spearman rank correlation coefficients found negligible correlation between artifacts and HTFM SDs ( r ≤ 0.3). These data confirm that although histologic artifacts commonly occur in inked margin specimens, artifacts are not meaningfully associated with variation in HTFM measurements. Investigators can use the grading scheme presented herein to identify artifacts associated with tissue processing.

  14. Cell-Type-Specific Gene Programs of the Normal Human Nephron Define Kidney Cancer Subtypes.

    Science.gov (United States)

    Lindgren, David; Eriksson, Pontus; Krawczyk, Krzysztof; Nilsson, Helén; Hansson, Jennifer; Veerla, Srinivas; Sjölund, Jonas; Höglund, Mattias; Johansson, Martin E; Axelson, Håkan

    2017-08-08

    Comprehensive transcriptome studies of cancers often rely on corresponding normal tissue samples to serve as a transcriptional reference. In this study, we performed in-depth analyses of normal kidney tissue transcriptomes from the TCGA and demonstrate that the histological variability in cellularity, inherent in the kidney architecture, lead to considerable transcriptional differences between samples. This should be considered when comparing expression profiles of normal and cancerous kidney tissues. We exploited these differences to define renal-cell-specific gene signatures and used these as a framework to analyze renal cell carcinoma (RCC) ontogeny. Chromophobe RCCs express FOXI1-driven genes that define collecting duct intercalated cells, whereas HNF-regulated genes, specific for proximal tubule cells, are an integral part of clear cell and papillary RCC transcriptomes. These networks may be used as a framework for understanding the interplay between genomic changes in RCC subtypes and the lineage-defining regulatory machinery of their non-neoplastic counterparts. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys.

    Science.gov (United States)

    Sagrinati, Costanza; Netti, Giuseppe Stefano; Mazzinghi, Benedetta; Lazzeri, Elena; Liotta, Francesco; Frosali, Francesca; Ronconi, Elisa; Meini, Claudia; Gacci, Mauro; Squecco, Roberta; Carini, Marco; Gesualdo, Loreto; Francini, Fabio; Maggi, Enrico; Annunziato, Francesco; Lasagni, Laura; Serio, Mario; Romagnani, Sergio; Romagnani, Paola

    2006-09-01

    Regenerative medicine represents a critical clinical goal for patients with ESRD, but the identification of renal adult multipotent progenitor cells has remained elusive. It is demonstrated that in human adult kidneys, a subset of parietal epithelial cells (PEC) in the Bowman's capsule exhibit coexpression of the stem cell markers CD24 and CD133 and of the stem cell-specific transcription factors Oct-4 and BmI-1, in the absence of lineage-specific markers. This CD24+CD133+ PEC population, which could be purified from cultured capsulated glomeruli, revealed self-renewal potential and a high cloning efficiency. Under appropriate culture conditions, individual clones of CD24+CD133+ PEC could be induced to generate mature, functional, tubular cells with phenotypic features of proximal and/or distal tubules, osteogenic cells, adipocytes, and cells that exhibited phenotypic and functional features of neuronal cells. The injection of CD24+CD133+ PEC but not of CD24-CD133- renal cells into SCID mice that had acute renal failure resulted in the regeneration of tubular structures of different portions of the nephron. More important, treatment of acute renal failure with CD24+CD133+ PEC significantly ameliorated the morphologic and functional kidney damage. This study demonstrates the existence and provides the characterization of a population of resident multipotent progenitor cells in adult human glomeruli, potentially opening new avenues for the development of regenerative medicine in patients who have renal diseases.

  16. High performance liquid chromatographic analysis of insulin degradation products from a cultured kidney cell line

    International Nuclear Information System (INIS)

    Duckworth, W.C.; Hamel, F.G.; Liepnieks, J.; Frank, B.H.; Yagil, C.; Rabkin, R.

    1988-01-01

    The kidney is a major site for insulin removal and degradation, but the subcellular processes and enzymes involved have not been established. We have examined this process by analyzing insulin degradation products by HPLC. Monoiodoinsulin specifically labeled on either the A14 or B26 tyrosine residue was incubated with a cultured kidney epithelial cell line, and both intracellular and extracellular products were examined on HPLC. The products were then compared with products of known structure generated by hepatocytes and the enzyme insulin protease. Intracellular and extracellular products were different, suggesting two different degradative pathways, as previously shown in liver. The extracellular degradation products eluted from HPLC both before and after sulfitolysis similarly with hepatocyte products and products generated by insulin protease. The intracellular products also eluted identically with hepatocyte products. Based on comparisons with identified products, the kidney cell generates two fragments from the A chain of intact insulin, one with a cleavage at A13-A14 and the other at A14-A15. The B chain of intact insulin is cleaved in a number of different sites, resulting in peptides that elute identically with B chain peptides cleaved at B9-B10, B13-B14, B16-B17, B24-B25, and B25-B26. These similarities with hepatocytes and insulin protease suggest that liver and kidney have similar mechanisms for insulin degradation and that insulin protease or a very similar enzyme is involved in both tissues

  17. New insights into the effects of biomaterial chemistry and topography on the morphology of kidney epithelial cells

    NARCIS (Netherlands)

    Hulshof, Frits; Schophuizen, Carolien; Mihajlovic, Milos; van Blitterswijk, Clemens; Masereeuw, Rosalinde; de Boer, Jan; Stamatialis, Dimitrios

    2017-01-01

    Increasing incidence of renal pathology in the western world calls for innovative research for the development of cell-based therapies such as a bioartificial kidney (BAK) device. To fulfil the multitude of kidney functions, the core component of the BAK is a living membrane consisting of a tight

  18. Developmental immunolocalization of the Klotho protein in mouse kidney epithelial cells

    Directory of Open Access Journals (Sweden)

    J.H. Song

    2014-01-01

    Full Text Available A defect in Klotho gene expression in the mouse results in a syndrome that resembles rapid human aging. In this study, we investigated the detailed distribution and the time of the first appearance of Klotho in developing and adult mouse kidney. Kidneys from 16-(F16, 18-(F18 and 20-day-old (F20 fetuses, 1- (P1, 4- (P4, 7- (P7, 14- (P14, and 21-day-old (P21 pups and adults were processed for immunohistochemistry and immunoblot analyses. In the developing mouse kidney, Klotho immunoreactivity was initially observed in a few cells of the connecting tubules (CNT of 18-day-old fetus (F and in the medullary collecting duct (MCD and distal nephron of the F16 developing kidney. In F20, Klotho immunoreactivity was increased in CNT and additionally observed in the outer portion of MCD and tip of the renal papilla. During the first 3 weeks after birth, Klotho-positive cells gradually disappeared from the MCD due to apoptosis, but remained in the CNT and cortical collecting ducts (CCD. In the adult mouse, the Klotho protein was expressed only in a few cells of the CNT and CCD in cortical area. Also, Klotho immunoreactivity was observed in the aquaporin 2-positive CNT, CCD, and NaCl co-transporter-positive distal convoluted tubule (DCT cells and type B and nonA-nonB intercalated cells of CNT, DCT, and CCD. Collectively, our data indicate that immunolocalization of Klotho is closely correlated with proliferation in the intercalated cells of CNT and CCD from aging, and may be involved in the regulation of tubular proliferation.

  19. Specific down-regulation of XIAP with RNA interference enhances the sensitivity of canine tumor cell-lines to TRAIL and doxorubicin

    Directory of Open Access Journals (Sweden)

    Rothuizen Jan

    2006-09-01

    Full Text Available Abstract Background Apoptosis resistance occurs in various tumors. The anti-apoptotic XIAP protein is responsible for inhibiting apoptosis by reducing caspase-3 activation. Our aim is to evaluate whether RNA inhibition against XIAP increases the sensitivity of canine cell-lines for chemotherapeutics such as TRAIL and doxorubicin. We used small interfering RNA's (siRNA directed against XIAP in three cell-lines derived from bile-duct epithelia (BDE, mammary carcinoma (P114, and osteosarcoma (D17. These cell-lines represent frequently occurring canine cancers and are highly comparable to their human counterparts. XIAP down-regulation was measured by means of quantitative PCR (Q-PCR and Western blotting. The XIAP depleted cells were treated with a serial dilution of TRAIL or doxorubicin and compared to mock- and nonsense-treated controls. Viability was measured with a MTT assay. Results All XIAP siRNA treated cell-lines showed a mRNA down-regulation over 80 percent. Western blot analysis confirmed mRNA measurements. No compensatory effect of IAP family members was seen in XIAP depleted cells. The sensitivity of XIAP depleted cells for TRAIL was highest in BDE cells with an increase in the ED50 of 14-fold, compared to mock- and nonsense-treated controls. The sensitivity of P114 and D17 cell-lines increased six- and five-fold, respectively. Doxorubicin treatment in XIAP depleted cells increased sensitivity in BDE cells more than eight-fold, whereas P114 and D17 cell-lines showed an increase in sensitivity of three- and five-fold, respectively. Conclusion XIAP directed siRNA's have a strong sensitizing effect on TRAIL-reduced cell-viability and a smaller but significant effect with the DNA damaging drug doxorubicin. The increase in efficacy of chemotherapeutics with XIAP depletion provides the rationale for the use of XIAP siRNA's in insensitive canine tumors.

  20. Glomerular parietal epithelial cells in kidney physiology, pathology, and repair

    OpenAIRE

    Shankland, Stuart J.; Anders, Hans-Joachim; Romagnani, Paola

    2013-01-01

    Purpose of review We have summarized recently published glomerular parietal epithelial cell (PEC) research, focusing on their roles in glomerular development and physiology, and in certain glomerular diseases. The rationale is that PECs have been largely ignored until the recent availability of cell lineage tracing studies, human and murine PEC culture systems, and potential therapeutic interventions of PECs. Recent findings Several new paradigms involving PECs have emerged demonstrating thei...

  1. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter

    2009-01-01

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper...

  2. Low Radiation Dose and Low Cell Dose Increase the Risk of Graft Rejection in a Canine Hematopoietic Stem Cell Transplantation Model.

    Science.gov (United States)

    Lange, Sandra; Steder, Anne; Glass, Änne; Killian, Doreen; Wittmann, Susanne; Machka, Christoph; Werner, Juliane; Schäfer, Stephanie; Roolf, Catrin; Junghanss, Christian

    2016-04-01

    The canine hematopoietic stem cell transplantation (HSCT) model has become accepted in recent decades as a good preclinical model for the development of new transplantation strategies. Information on factors associated with outcome after allogeneic HSCT are a prerequisite for designing new risk-adapted transplantation protocols. Here we report a retrospective analysis aimed at identifying risk factors for allograft rejection in the canine HSCT model. A total of 75 dog leukocyte antigen-identical sibling HSCTs were performed since 2003 on 10 different protocols. Conditioning consisted of total body irradiation at 1.0 Gy (n = 20), 2.0 Gy (n = 40), or 4.5 Gy (n = 15). Bone marrow was infused either intravenously (n = 54) or intraosseously (n = 21). Cyclosporin A alone or different combinations of cyclosporine A, mycophenolate mofetil, and everolimus were used for immunosuppression. A median cell dose of 3.5 (range, 1.0 to 11.8) total nucleated cells (TNCs)/kg was infused. Cox analyses were used to assess the influence of age, weight, radiation dose, donor/recipient sex, type of immunosuppression, and cell dose (TNCs, CD34(+) cells) on allograft rejection. Initial engraftment occurred in all dogs. Forty-two dogs (56%) experienced graft rejection at median of 11 weeks (range, 6 to 56 weeks) after HSCT. Univariate analyses revealed radiation dose, type of immunosuppression, TNC dose, recipient weight, and recipient age as factors influencing long-term engraftment. In multivariate analysis, low radiation dose (P rejection. Peripheral blood mononuclear cell chimerism ≥30% (P = .008) and granulocyte chimerism ≥70% (P = .023) at 4 weeks after HSCT were independent predictors of stable engraftment. In summary, these data indicate that even in low-dose total body irradiation-based regimens, the irradiation dose is important for engraftment. The level of blood chimerism at 4 weeks post-HSCT was predictive of long-term engraftment in the canine HSCT

  3. Re-epithelialization resulted from prostate basal cells in canine prostatic urethra may represent the ideal healing method after two-micron laser resection of the prostate

    Directory of Open Access Journals (Sweden)

    Ying Cao

    2015-01-01

    Full Text Available The purpose of this study is to characterize the re-epithelialization of wound healing in canine prostatic urethra and to evaluate the effect of this re-epithelialization way after two-micron laser resection of the prostate (TmLRP. TmLRP and partial bladder neck mucosa were performed in 15 healthy adult male crossbred canines. Wound specimens were harvested at 3 days, and 1, 2, 3, and 4 weeks after operation, respectively. The histopathologic characteristics were observed by hematoxylin and eosin staining. The expression of cytokeratin 14 (CK14, CK5, CK18, synaptophysin (Syn, chromogranin A (CgA, uroplakin, transforming growth factor-β1 (TGF-β1 , and TGF-β type II receptor in prostatic urethra wound were examined by immunohistochemistry and real-time polymerase chain reaction, respectively. Van Gieson staining was performed to determine the expression of collagen fibers in prostatic urethra and bladder neck would. The results showed that the re-epithelialization of the prostatic urethra resulted from the mobilization of proliferating epithelial cells from residual prostate tissue under the wound. The proliferating cells expressed CK14, CK5, but not CK18, Syn, and CgA and re-epithelialize expressed uroplakin since 3 weeks. There were enhanced TGF-β1 and TGF-β type II receptor expression in proliferating cells and regenerated cells, which correlated with specific phases of re-epithelialization. Compared with the re-epithelialization of the bladder neck, re-epithelialization of canine prostatic urethra was faster, and the expression of collagen fibers was relatively low. In conclusion, re-epithelialization in canine prostatic urethra resulted from prostate basal cells after TmLRP and this re-epithelialization way may represent the ideal healing method from anatomic repair to functional recovery after injury.

  4. Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence.

    Science.gov (United States)

    Dietzel, Erik; Anderson, Danielle E; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea

    2011-07-01

    In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.

  5. Donor-derived circulating endothelial cells after kidney transplantation

    NARCIS (Netherlands)

    Popa, ER; Kas-Deelen, AM; Hepkema, BG; van Son, WJ; The, TH; Harmsen, MC

    2002-01-01

    Background. In solid-organ transplantation, the allograft vasculature, in particular the endothelium, is prone to injury inflicted by peritransplantational and posttransplantational factors. Previously, we have shown that circulating endothelial cells (cEC) can be detected in the peripheral blood of

  6. Concurrent Multilocular Cystic Renal Cell Carcinoma and Leiomyoma in the Same Kidney: Previously Unreported Association

    Directory of Open Access Journals (Sweden)

    Min Su Cheong

    2010-07-01

    Full Text Available We present an unusual case of concurrent occurrence of a multilocular cystic renal cell carcinoma and a leiomyoma in the same kidney of a patient with no evident clinical symptoms. A 38-year-old man was found incidentally to have a cystic right renal mass on computed tomography. Laparoscopic radical nephrectomy was performed under a preoperative diagnosis of cystic renal cell carcinoma. Histology revealed a multilocular cystic renal cell carcinoma and a leiomyoma. This is the first report of this kind of presentation.

  7. Advances in cell proliferation and apoptosis signal pathway and therapies of polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Xiao-ying LIAN

    2016-12-01

    Full Text Available Polycystic kidney disease (PKD is one of the monogenic inherited diseases. In PKD, excessive cell proliferation and fluid secretion, and disruption of the mechanisms controlling tubular diameter may all lead to cyst formation. Current evidence has demonstrated that intracellular calcium ion and cAMP imbalance drive both abnormal cell proliferation and apoptosis signal pathway. The present paper summarized the evidence implicating calcium ion and cAMP as central players in the signaling pathway of cell proliferation and apoptosis in PKD, and considered the potential therapeutic approaches targeted to slow cyst growth in PKD. DOI: 10.11855/j.issn.0577-7402.2016.11.13

  8. Establishment of a cell line from kidney of seabass, Lates calcarifer (Bloch

    Directory of Open Access Journals (Sweden)

    Phromkunthong, W.

    2003-01-01

    Full Text Available Primary cell culture from caudal fin and kidney of seabass (Lates calcarifer Bloch using tissue explant method were cultured in three different medias with various salt concentrations. Only seabass kidney (SK cells grew well in Leibovitze's-15 medium containing 8 g/l of NaCl supplemented with 10 % fetal bovine serum at an optimum temperature of 25 oC. Over a period of 24 months, SK cells were subcultured over than 75 passages and exhibited epithelial-like cells. The chromosome number of SK cells was 42. The cells were found to be free from bacterial, fungal and mycoplasma contamination. Seabass cells can be kept at -80 oC and/or in liquid nitrogen (-196 oC for at least 24 months with a survival rate of 83.20 and 74.50 %, respectively. Nine fish viruses were tested for their infectivity and this SK cells were susceptible to sand goby virus (SGV, chub reovirus (CRV, snake-head rhabdovirus (SHRV, red seabream iridovirus (RSIV, seabass iridovirus (SIV and grouper iridovirus-2 (GIV-2.

  9. Modeling Red Blood Cell and Iron Dynamics in Patients with Chronic Kidney Disease

    Science.gov (United States)

    2012-02-10

    level in the body. Most patients with CKD have elevated levels of inflammation due to CKD and the presence of other medical issues (e.g., diabetes ...Blood, 37 (1971), 725–732. [11] Chung-Che Chang, Yayan Chen, Kapil Modi , Omar Awar, Clarence P. Alfrey, and Lawrence Rice, Changes of red blood cell...National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2008. [43] M. M. Udden, T. B. Driscoll, M

  10. Spectrum of kidney diseases in Africa: malaria, schistosomiasis, sickle cell disease, and toxins.

    Science.gov (United States)

    Arogundade, Fatiu A; Hassan, Muzamil O; Omotoso, Bolanle A; Oguntola, Stephen O; Okunola, Oluyomi O; Sanusi, Abubakr A; Akinsola, Adewale

    Kidney diseases have assumed epidemic proportions in both developed and developing countries, particularly chronic kidney disease (CKD). While treatment modalities are available and accessible in developed economies with improvement in outcomes, survival, and quality of life, they are either unavailable or inaccessible in nations with emerging economies, particularly in sub-Saharan Africa (SSA), with an attendant worsening outcome and survival for CKD patients. The epidemiology of CKD in SSA has revealed that it preferentially affects adults in their economically productive years, usually below the age of 50 years, with consequent drain on the economy. This derives mainly from the major etiologies in the region, which are infection-induced chronic glomerulonephritis and hypertension, compounded by poverty as well as societal and health underdevelopment, poor resource allocation to health, and underdeveloped health infrastructures. This has made preventive nephrology a major goal in the sub-region, although those who have already developed CKD must be managed up to tertiary levels. In this review, we assessed the contributions of parasitic diseases (i.e., malaria and schistosomiasis), sickle cell disease and nephrotoxins with the aim of espousing their contributions to the burden of kidney disease, and proposing management options with the goal of ultimately reducing the burden of kidney disease in these disadvantaged populations.

  11. DNA methylation profile distinguishes clear cell sarcoma of the kidney from other pediatric renal tumors.

    Directory of Open Access Journals (Sweden)

    Hitomi Ueno

    Full Text Available A number of specific, distinct neoplastic entities occur in the pediatric kidney, including Wilms' tumor, clear cell sarcoma of the kidney (CCSK, congenital mesoblastic nephroma (CMN, rhabdoid tumor of the kidney (RTK, and the Ewing's sarcoma family of tumors (ESFT. By employing DNA methylation profiling using Illumina Infinium HumanMethylation27, we analyzed the epigenetic characteristics of the sarcomas including CCSK, RTK, and ESFT in comparison with those of the non-neoplastic kidney (NK, and these tumors exhibited distinct DNA methylation profiles in a tumor-type-specific manner. CCSK is the most frequently hypermethylated, but least frequently hypomethylated, at CpG sites among these sarcomas, and exhibited 490 hypermethylated and 46 hypomethylated CpG sites in compared with NK. We further validated the results by MassARRAY, and revealed that a combination of four genes was sufficient for the DNA methylation profile-based differentiation of these tumors by clustering analysis. Furthermore, THBS1 CpG sites were found to be specifically hypermethylated in CCSK and, thus, the DNA methylation status of these THBS1 sites alone was sufficient for the distinction of CCSK from other pediatric renal tumors, including Wilms' tumor and CMN. Moreover, combined bisulfite restriction analysis could be applied for the detection of hypermethylation of a THBS1 CpG site. Besides the biological significance in the pathogenesis, the DNA methylation profile should be useful for the differential diagnosis of pediatric renal tumors.

  12. Targeting of SNAP-23 and SNAP-25 in polarized epithelial cells

    NARCIS (Netherlands)

    Low, SH; Roche, PA; Anderson, HA; van Ijzendoorn, SCD; Zhang, M; Mostov, KE; Weimbs, T

    1998-01-01

    SNAP-23 is the ubiquitously expressed homologue of the neuronal SNAP-25, which functions in synaptic vesicle fusion, We have investigated the subcellular localization of SNAP-23 in polarized epithelial cells, In hepatocyte-derived HepG2 cells and in Madin-Darby canine kidney (MDCK) cells, the

  13. Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor.

    Science.gov (United States)

    Fernández-Del-Río, Lucía; Nag, Anish; Gutiérrez Casado, Elena; Ariza, Julia; Awad, Agape M; Joseph, Akil I; Kwon, Ohyun; Verdin, Eric; de Cabo, Rafael; Schneider, Claus; Torres, Jorge Z; Burón, María I; Clarke, Catherine F; Villalba, José M

    2017-09-01

    Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q 10 , but due to its highly lipophilic nature, Q 10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13 C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Direct and Indirect Effects of Cytomegalovirus-induced gamma-delta T Cells after Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Lionel eCouzi

    2015-01-01

    Full Text Available Despite effective anti-viral therapies, cytomegalovirus (CMV is still associated with direct (CMV disease and indirect effects (rejection and poor graft survival in kidney transplant recipients. Recently, an unconventional T cell population (collectively designated as Vδ2neg γδ T cells has been characterized during the anti-CMV immune response in all solid-organ and bone-marrow transplant recipients, neonates, and healthy people. These CMV-induced γδ T cells undergo a dramatic and stable expansion after CMV infection, in a conventional ‘adaptive’ manner. Similarly as CMV-specific CD8+ αβ T cells, they exhibit an effector/memory TEMRA phenotype and cytotoxic effector functions. Activation of Vd2neg gd T cells by CMV-infected cells involves the TCR and still ill-defined co-stimulatory molecules such LFA-1. A multiple of Vd2neg gd TCR ligands are apparently recognized on CMV-infected cells, the first one identified being the MHC-related molecule endothelial protein C receptor (EPCR. A singularity of CMV-induced Vd2neg gd T cells is to acquire CD16 expression and to exert an antibody-dependent cell-mediated inhibition on CMV replication, which is controlled by a specific cytokine microenvironment. Beyond the well-demonstrated direct anti-CMV effect of Vδ2neg γδ T cells, unexpected indirect effects of these cells have been also observed in the context of kidney transplantation. CMV-induced Vδ2neg γδ T cells have been involved in surveillance of malignancy subsequent to long term immunosuppression. Moreover, CMV-induced CD16+ γδ T cells are cell effectors of antibody-mediated rejection of kidney transplants, and represent a new physiopathological contribution to the well-known association between CMV infection and poor graft survival. All these basic and clinical studies paved the road to the development of a future γδ T cell-based immunotherapy. In the meantime, γδ T cell monitoring should prove a valuable immunological

  15. Development of a wearable bioartificial kidney using the Bioartificial Renal Epithelial Cell System (BRECS).

    Science.gov (United States)

    Johnston, Kimberly A; Westover, Angela J; Rojas-Pena, Alvaro; Buffington, Deborah A; Pino, Christopher J; Smith, Peter L; Humes, H David

    2017-11-01

    Cell therapy for the treatment of renal failure in the acute setting has proved successful, with therapeutic impact, yet development of a sustainable, portable bioartificial kidney for treatment of chronic renal failure has yet to be realized. Challenges in maintaining an anticoagulated blood circuit, the typical platform for solute clearance and support of the biological components, have posed a major hurdle in advancement of this technology. This group has developed a Bioartificial Renal Epithelial Cell System (BRECS) capable of differentiated renal cell function while sustained by body fluids other than blood. To evaluate this device for potential use in end-stage renal disease, a large animal model was established that exploits peritoneal dialysis fluid for support of the biological device and delivery of cell therapy while providing uraemic control. Anephric sheep received a continuous flow peritoneal dialysis (CFPD) circuit that included a BRECS. Sheep were treated with BRECS containing 1 × 10 8 renal epithelial cells or acellular sham devices for up to 7 days. The BRECS cell viability and activity were maintained with extracorporeal peritoneal fluid circulation. A systemic immunological effect of BRECS therapy was observed as cell-treated sheep retained neutrophil oxidative activity better than sham-treated animals. This model demonstrates that use of the BRECS within a CFPD circuit embodies a feasible approach to a sustainable and effective wearable bioartificial kidney. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. MR diffusion tensor imaging in the evaluation of neural progenitor cells transplantation to acute injured canine spinal cord

    International Nuclear Information System (INIS)

    Wang Xiaoying; Tan Ke; Ni Shilei; Bao Shengde; Jiang Xuexiang

    2006-01-01

    Objective: To observe the effect of transplantation of telomerase immortalized human neural progenitor cells to acute injured canine spinal cord by using MR diffusion tensor imaging (DTI). Methods: Telomerase immortalized human neural progenitor cells with expression of green fluorescent protein were prepared for transplantation. Eight adult canines with left spinal cord hemisection at the level of T13 were examined by MR diffusion tensor imaging four times sequentially: prior to injury, one week after injury, one week after transplantation (two weeks after injury), and four weeks after transplantation. Results: The ADC values of the injured spinal cord were (1.00 ± 0.15) x 10 -3 mm 2 /s, (1.65 ± 0.45) x 10 -3 mm 2 /s, (1.44 ± 0.48) xl0 -3 mm 2 /s, and (1.43 ± 0.26) x 10 -3 mm 2 /s, respectively. There was statistically significant difference between the data obtained at different times (F= 6.038, P=0.005). The FA values of the injured spinal cord were 0.59±0.11, 0.30±0.17, 0.36±0.25, and 0.34±0.11, respectively. There was also statistically significant difference between the data obtained at different times (F=5.221, P=0.009). The ADC values of the intact spinal cord were (1.01±0.17) x 10 -3 mm 2 /s, (1.32±0.06) x 10 -3 mm 2 /s, (1.10±0.24) x 10 -3 mm 2 /s, and (1.14±0.22) x 10 -3 mm 2 /s, respectively. There was no statistically significant difference between the data obtained at different times (F=1.303, P=0.306). The FA values of the intact spinal cord were 0.60 ± 0.09, 0.38 ± 0.25, 0.46 ± 0.15, and 0.50 ± 0.21, respectively. There was also no statistically significant difference between the data obtained at different times (F=2.797, P=0.072). Conclusion: DTI can provide useful information for spinal cord injury and regeneration in experimental spinal cord injury. (authors)

  17. A cell kinetic model of granulopoiesis under radiation exposure: Extension from rodents to canines and humans

    International Nuclear Information System (INIS)

    Hu, S.; Cucinotta, F. A.

    2011-01-01

    As significant ionising radiation exposure will occur during prolonged space travel in future, it is essential to understand their adverse effects on the radiosensitive organ systems that are important for immediate survival of humans, e.g. the haematopoietic system. In this paper, a bio-mathematical model of granulopoiesis is used to analyse the granulocyte changes seen in the blood of mammalians under acute and continuous radiation exposure. This is one of a set of haematopoietic models that have been successfully utilised to simulate and interpret the experimental data of acute and chronic radiation on rodents. Extension to canine and human systems indicates that the results of the model are consistent with the cumulative experimental and empirical data from various sources, implying the potential to integrate them into one united model system to monitor the haematopoietic response of various species under irradiation. The suppression of granulocytes' level of a space traveller under chronic stress of low-dose irradiation as well as the granulopoietic response when encountering a historically large solar particle event is also discussed. (authors)

  18. Effects of four additive solutions on canine leukoreduced red cell concentrate quality during storage.

    Science.gov (United States)

    Lacerda, Luciana A; Hlavac, Nicole R C; Terra, Silvia R; Back, Franciele P; Jane Wardrop, K; González, Félix H D

    2014-09-01

    Additive solutions (AS) and prestorage leukoreduction (LR) are important tools used to maintain erythrocyte viability during storage and avoid transfusion reactions in recipients, respectively. The purpose of the study was to determine the efficacy of a WBC filter (Immugard IIIRC) and compare the effect of 4 AS (phosphate-adenine-glucose-guanosine-gluconate-mannitol [PAGGGM], saline-adenine-glucose-mannitol [SAGM], Adsol, Optisol) on the in vitro quality of canine leukoreduced packed RBC units (pRBC) stored for 41 days. Five hundred milliliters of blood were collected from 8 healthy dogs each into 70 mL of citrate-phosphate-dextrose (CPD) solution, and were leukoreduced by a polyurethane filter. pRBC of each dog were divided equally into 4 bags containing a different AS. Bags were stored for 41 days at 4°C and evaluated every 10 days. Variables analyzed included pH, PCV, and% hemolysis, and lactate, glucose, potassium, sodium, ATP, and 2,3-diphosphoglycerate (2,3-DPG) concentrations. The LR resulted in residual WBC counts comparable to human standards. During storage, pH, and glucose, 2,3-DPG, and ATP concentrations decreased, and hemolysis, and lactate, sodium, and potassium concentrations increased (P 2,3-DPG concentrations. When compared with day 1 values, significant changes were seen in these variables by day 31 with all AS. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  19. Tetraploidy in monkey kidney epithelial cells exposed to various doses of radiation in vitro and in vivo. Comm.3

    International Nuclear Information System (INIS)

    Machavariani, M.G.

    1979-01-01

    The tetraploidy phenomenon in three and five day cultures of monkey kidney epithelial cells exposed to various doses of X-rays at Gsub(0) stage has been revealed. The data are presented on simple and complex tetraploidal enclo-reduplicated cells in monkey kidney epithelium after whole-body irradiaiton of animals by 60 Co γ-rays in dosage of 620-660 R. The frequency decrease of endoreduplicated cells at the second month coincides with the frequency increase of simple tetraploidal cells. In the investigated culture of monkey kidney epithelial cells, irradiated in vitro, a trend is observed towards the increase of the number of tetraploidal cells. An assumption is made on the possibility of using the frequency of tetraploidal cells ( including lymphocytes) for the purposes of biological dosimetry

  20. Lgr5+ve Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development

    Directory of Open Access Journals (Sweden)

    Nick Barker

    2012-09-01

    Full Text Available Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5+ve cells via in vivo lineage tracing. The appearance and localization of Lgr5+ve cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle’s loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.

  1. Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.

    Science.gov (United States)

    Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y

    2010-04-01

    The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.

  2. Short-term high dose of quercetin and resveratrol alters aging markers in human kidney cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Abharzanjani

    2017-01-01

    Full Text Available Background: Hyperglycemia-mediated oxidative stress implicates in etiology of kidney cell aging and diabetic nephropathy. We evaluated the effects of different doses of resveratrol and quercetin and their combination therapy on aging marker in human kidney cell culture under hyperglycemia condition. Methods: Human embryonic kidney cell (HEK-293 was cultured in Dulbecco's Modified Eagle Medium (DMEM containing 100 mM (18 mg/L for 24 h. The cells were treated with resveratrol (2.5, 5, 10 μm, quercetin (3, 6, 12 μm, and combination of these (R 2.5 μm, Q 3 μm and (R 5 μm, Q 6 μm and (R 10 μm, Q 12 μm for 48 h, and then, cells were lysed to access RNA and lysate. Results: The analysis of data showed that beta-galactosidase enzyme gene expression as an aging marker in all treatment groups has reduced in a dose-dependent manner. Gene expression of Sirtuin1 and thioredoxin (Trx in all treated groups in comparison to control group increased in a dose-dependent fashion. Trx interacting protein (TXNIP gene expression decreased in a dose-dependent manner in all treated groups, especially in resveratrol and combination therapy. Conclusions: According to the results of this research, quercetin, resveratrol, and especially combination treatments with increased expression levels of antioxidants, can reduce aging markers in HEK cell line in hyperglycemia conditions. These results lead us to use flavonoids such as resveratrol for anti-aging potential.

  3. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney.

    Science.gov (United States)

    Nastase, Madalina-Viviana; Zeng-Brouwers, Jinyang; Beckmann, Janet; Tredup, Claudia; Christen, Urs; Radeke, Heinfried H; Wygrecka, Malgorzata; Schaefer, Liliana

    2017-12-15

    Th1 and Th17 cells, T helper (Th) subtypes, are key inducers of renal fibrosis. The molecular mechanisms of their recruitment into the kidney, however, are not well understood. Here, we show that biglycan, a proteoglycan of the extracellular matrix, acting in its soluble form as a danger signal, stimulates autonomously the production of Th1 and Th17 chemoattractants CXCL10 and CCL20 in macrophages. In the presence of IFNγ, biglycan synergistically stimulates CXCL9. In macrophages deficient for TLR2, TLR4, and their adaptor molecules MyD88 or TRIF, we identified highly selective mechanisms of biglycan-dependent Th1/17 chemoattraction. Thus, the expression of CXCL9 and CXCL10, common chemoattractants for CXCR3-positive Th1 and Th17 cells, is triggered in a biglycan-TLR4/TRIF-dependent manner. By contrast, biglycan induces CCL20 chemokine production, responsible for CCR6-positive Th17 cell recruitment, in a TLR2/4/MyD88-dependent manner. Importantly, at the onset of diabetes mellitus and lupus nephritis we provide evidence for biglycan-dependent recruitment of Th1 and Th17 cells, IFNγ and IL-17 production, and development of albuminuria in mice lacking or overexpressing soluble biglycan. Furthermore, by genetic ablation of Cxcl10 we showed in vivo involvement of this chemokine in biglycan-dependent recruitment of Th1 and Th17 cells into the kidney. Finally, a positive correlation of biglycan and CXCL10/CXCL9 levels was detected in plasma from patients with diabetic nephropathy and lupus nephritis. Taken together, we identified biglycan as a novel trigger of Th1 and Th17 cell recruitment into the kidney and we postulate that interfering with biglycan/TLR/TRIF/MyD88-signaling might provide novel therapeutic avenues for renal fibrosis. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  4. The effects of topical mesenchymal stem cell transplantation in canine experimental cutaneous wounds

    Science.gov (United States)

    Kim, Ju-Won; Lee, Jong-Hwan; Lyoo, Young S; Jung, Dong-In; Park, Hee-Myung

    2013-01-01

    Background Adult stem cells have been widely investigated in bioengineering approaches for tissue repair therapy. We evaluated the clinical value and safety of the application of cultured bone marrow-derived allogenic mesenchymal stem cells (MSCs) for treating skin wounds in a canine model. Hypothesis Topical allogenic MSC transplantation can accelerate the closure of experimental full-thickness cutaneous wounds and attenuate local inflammation. Animals Adult healthy beagle dogs (n = 10; 3–6 years old; 7.2–13.1 kg) were studied. Methods Full-thickness skin wounds were created on the dorsum of healthy beagles, and allogenic MSCs were injected intradermally. The rate of wound closure and the degree of collagen production were analysed histologically using haematoxylin and eosin staining and trichrome staining. The degree of cellular proliferation and angiogenesis was evaluated by immunocytochemistry using proliferating cell nuclear antigen-, vimentin- and α-smooth muscle actin-specific antibodies. Local mRNA expression levels of interleukin-2, interferon-γ, basic fibroblast growth factor and matrix metalloproteinase-2 were evaluated by RT-PCR. Results Compared with the vehicle-treated wounds, MSC-treated wounds showed more rapid wound closure and increased collagen synthesis, cellular proliferation and angiogenesis. Moreover, MSC-treated wounds showed decreased expression of pro-inflammatory cytokines (interleukin-2 and interferon-γ) and wound healing-related factors (basic fibroblast growth factor and matrix metalloproteinase-2). Conclusion and clinical importance Topical transplantation of MSCs results in paracrine effects on cellular proliferation and angiogenesis, as well as modulation of local mRNA expression of several factors related to cutaneous wound healing. Résumé Contexte Les cellules souches adultes ont été largement étudiées dans les approches de bio-ingénierie pour la thérapie de réparation tissulaire. Nous évaluons l

  5. Dual roles for coactivator activator and its counterbalancing isoform coactivator modulator in human kidney cell tumorigenesis.

    Science.gov (United States)

    Kang, Yun Kyoung; Schiff, Rachel; Ko, Lan; Wang, Tao; Tsai, Sophia Y; Tsai, Ming-Jer; O'Malley, Bert W

    2008-10-01

    Coactivator activator (CoAA) has been reported to be a coactivator that regulates steroid receptor-mediated transcription and alternative RNA splicing. Herein, we show that CoAA is a dual-function coregulator that inhibits G(1)-S transition in human kidney cells and suppresses anchorage-independent growth and xenograft tumor formation. Suppression occurs in part by down-regulating c-myc and its downstream effectors ccnd1 and skp2 and causing accumulation of p27/Kip1 protein. In this cellular setting, CoAA directly represses the proto-oncogene c-myc by recruiting HDAC3 protein and decreasing both the acetylation of histone H3 and the presence of RNA polymerase II on the c-myc promoter. Interestingly, a splicing isoform of CoAA, coactivator modulator (CoAM), antagonizes CoAA-induced G(1)-S transition and growth inhibition by negatively regulating the mRNA levels of the endogenous CoAA isoform. In addition, we found that expression of CoAA protein is significantly decreased in human renal cell carcinoma compared with normal kidney. Our study presents evidence that CoAA is a potential tumor suppressor in renal carcinoma and that CoAM is a counterbalancing splice isoform. This is, thus far, the only example of a nuclear receptor coregulator involved in suppression of kidney cancer and suggests potentially significant new roles for coregulators in renal cancer biology.

  6. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure.

    Science.gov (United States)

    Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro

    2017-02-01

    Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.

  7. Chest wall reconstruction in a canine model using polydioxanone mesh, demineralized bone matrix and bone marrow stromal cells.

    Science.gov (United States)

    Tang, Hua; Xu, Zhifei; Qin, Xiong; Wu, Bin; Wu, Lihui; Zhao, XueWei; Li, Yulin

    2009-07-01

    Extensive chest wall defect reconstruction remains a challenging problem for surgeons. In the past several years, little progress has been made in this area. In this study, a biodegradable polydioxanone (PDO) mesh and demineralized bone matrix (DBM) seeded with osteogenically induced bone marrow stromal cells (BMSCs) were used to reconstruct a 6 cm x 5.5 cm chest wall defect. Four experimental groups were evaluated (n=6 per group): polydioxanone (PDO) mesh/DBMs/BMSCs group, polydioxanone (PDO) mesh/DBMs group, polydioxanone (PDO) mesh group, and a blank group (no materials) in a canine model. All the animals survived except those in the blank group. In all groups receiving biomaterial implants, the polydioxanone (PDO) mesh completely degraded at 24 weeks and was replaced by fibrous tissue with thickness close to that of the normal intercostal tissue (P>0.05). In the polydioxanone (PDO) mesh/DBMs/BMSCs group, new bone formation and bone-union were observed by radiographic and histological examination. More importantly, the reconstructed rib could maintain its original radian and achieve satisfactory biomechanics close to normal ribs in terms of bending stress (P>0.05). However, in the other two groups, fibrous tissue was observed in the defect and junctions, and the reconstructed ribs were easily distorted under an outer force. Based on these results, a surgical approach utilizing biodegradable polydioxanone (PDO) mesh in combination with DBMs and BMSCs could repair the chest wall defect not only in function but also in structure.

  8. IDENTIFICATION OF CANINE VISCERAL LEISHMANIASIS IN A PREVIOUSLY UNAFFECTED AREA BY CONVENTIONAL DIAGNOSTIC TECHNIQUES AND CELL-BLOCK FIXATION

    Directory of Open Access Journals (Sweden)

    Tuanne Rotti ABRANTES

    2016-01-01

    Full Text Available After the report of a second case of canine visceral leishmaniasis (CVL in São Bento da Lagoa, Itaipuaçu, in the municipality of Maricá, Rio de Janeiro State, an epidemiological survey was carried out, through active search, totaling 145 dogs. Indirect immunofluorescence assay (IFA, enzyme-linked immunosorbent assay (ELISA, and rapid chromatographic immunoassay based on dual-path platform (DPP(r were used to perform the serological examinations. The parasitological diagnosis of cutaneous fragments was performed by parasitological culture, histopathology, and immunohistochemistry. In the serological assessment, 21 dogs were seropositive by IFA, 17 by ELISA, and 11 by DPP(r, with sensitivity of 66.7%, 66.7% and 50%, and specificity of 87.2%, 90.2% and 94%, respectively for each technique. The immunohistochemistry of bone marrow using the cell-block technique presented the best results, with six positive dogs found, three of which tested negative by the other parasitological techniques. Leishmania sp. was isolated by parasitological culture in three dogs. The detection of autochthonous Leishmania infantum in Itaipuaçu, and the high prevalence of seropositive dogs confirm the circulation of this parasite in the study area and alert for the risk of expansion in the State of Rio de Janeiro.

  9. Laser Capture Microdissection and Multiplex-Tandem PCR Analysis of Proximal Tubular Epithelial Cell Signaling in Human Kidney Disease

    Science.gov (United States)

    Wilkinson, Ray; Wang, Xiangju; Kassianos, Andrew J.; Zuryn, Steven; Roper, Kathrein E.; Osborne, Andrew; Sampangi, Sandeep; Francis, Leo; Raghunath, Vishwas; Healy, Helen

    2014-01-01

    Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue. PMID:24475278

  10. Cytogenetic effects of irradiation in epithelial kidney cells of monkeys and possibilities of using these data for evaluation of chromosome aberration level in kidneys of persons subjected to radiotherapy

    International Nuclear Information System (INIS)

    Machavariani, M.G.

    1983-01-01

    Data on somatic mutagenesis, induced by radiation, in epithelial kidney cells of monkeys are presented. It is noted that chromosomal aberrations in the kideny cells of monkeys can be indicator of estimation of hUman kideny state during radiotherapy

  11. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Directory of Open Access Journals (Sweden)

    T.I. Wodewotzky

    2012-12-01

    Full Text Available Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  12. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    International Nuclear Information System (INIS)

    Wodewotzky, T.I.; Lima-Neto, J.F.; Pereira-Júnior, O.C.M.; Sudano, M.J.; Lima, S.A.F.; Bersano, P.R.O.; Yoshioka, S.A.; Landim-Alvarenga, F.C.

    2012-01-01

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium

  13. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wodewotzky, T.I.; Lima-Neto, J.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Pereira-Júnior, O.C.M. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Departamento de Cirurgia e Anestesiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Sudano, M.J.; Lima, S.A.F. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Bersano, P.R.O. [Departamento de Patologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil); Yoshioka, S.A. [Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP (Brazil); Landim-Alvarenga, F.C. [Departamento de Reprodução Animal e Radiologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual de São Paulo, Botucatu, SP (Brazil)

    2012-09-21

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

  14. Embryonic Stem Cells-loaded Gelatin Microcryogels Slow Progression of Chronic Kidney Disease

    Science.gov (United States)

    Geng, Xiao-Dong; Zheng, Wei; Wu, Cong-Mei; Wang, Shu-Qiang; Hong, Quan; Cai, Guang-Yan; Chen, Xiang-Mei; Wu, Di

    2016-01-01

    Background: Chronic kidney disease (CKD) has become a public health problem. New interventions to slow or prevent disease progression are urgently needed. In this setting, cell therapies associated with regenerative effects are attracting increasing interest. We evaluated the effect of embryonic stem cells (ESCs) on the progression of CKD. Methods: Adult male Sprague–Dawley rats were subjected to 5/6 nephrectomy. We used pedicled greater omentum flaps packing ESC-loaded gelatin microcryogels (GMs) on the 5/6 nephrectomized kidney. The viability of ESCs within the GMs was detected using in vitro two-photon fluorescence confocal imaging. Rats were sacrificed after 12 weeks. Renal injury was evaluated using serum creatinine, urea nitrogen, 24 h protein, renal pathology, and tubular injury score results. Structural damage was evaluated by periodic acid-Schiff and Masson trichrome staining. Results: In vitro, ESCs could be automatically loaded into the GMs. Uniform cell distribution, good cell attachment, and viability were achieved from day 1 to 7 in vitro. After 12 weeks, in the pedicled greater omentum flaps packing ESC-loaded GMs on 5/6 nephrectomized rats group, the plasma urea nitrogen levels were 26% lower than in the right nephrectomy group, glomerulosclerosis index was 62% lower and tubular injury index was 40% lower than in the 5/6 nephrectomized rats group without GMs. Conclusions: In a rat model of established CKD, we demonstrated that the pedicled greater omentum flaps packing ESC-loaded GMs on the 5/6 nephrectomized kidney have a long-lasting therapeutic rescue function, as shown by the decreased progression of CKD and reduced glomerular injury. PMID:26879011

  15. B cell repertoires in HLA-sensitized kidney transplant candidates undergoing desensitization therapy.

    Science.gov (United States)

    Beausang, John F; Fan, H Christina; Sit, Rene; Hutchins, Maria U; Jirage, Kshama; Curtis, Rachael; Hutchins, Edward; Quake, Stephen R; Yabu, Julie M

    2017-01-13

    Kidney transplantation is the most effective treatment for end-stage renal disease. Sensitization refers to pre-existing antibodies against human leukocyte antigen (HLA) protein and remains a major barrier to successful transplantation. Despite implementation of desensitization strategies, many candidates fail to respond. Our objective was to determine whether measuring B cell repertoires could differentiate candidates that respond to desensitization therapy. We developed an assay based on high-throughput DNA sequencing of the variable domain of the heavy chain of immunoglobulin genes to measure changes in B cell repertoires in 19 highly HLA-sensitized kidney transplant candidates undergoing desensitization and 7 controls with low to moderate HLA sensitization levels. Responders to desensitization had a decrease of 5% points or greater in cumulated calculated panel reactive antibody (cPRA) levels, and non-responders had no decrease in cPRA. Dominant B cell clones were not observed in highly sensitized candidates, suggesting that the B cells responsible for sensitization are either not present in peripheral blood or present at comparable levels to other circulating B cells. Candidates that responded to desensitization therapy had pre-treatment repertoires composed of a larger fraction of class-switched (IgG and IgA) isotypes compared to non-responding candidates. After B cell depleting therapy, the proportion of switched isotypes increased and the mutation frequencies of the remaining non-switched isotypes (IgM and IgD) increased in both responders and non-responders, perhaps representing a shift in the repertoire towards memory B cells or plasmablasts. Conversely, after transplantation, non-switched isotypes with fewer mutations increased, suggesting a shift in the repertoire towards naïve B cells. Relative abundance of different B cell isotypes is strongly perturbed by desensitization therapy and transplantation, potentially reflecting changes in the relative

  16. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  17. Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches

    Directory of Open Access Journals (Sweden)

    Victoria Moreno-Manzano

    2012-08-01

    Full Text Available Osteoarticular pathologies very often require an implementation therapy to favor regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on osteoarticular complications in dogs constitute an ideal model for human clinical translational applications. The adipose-derived mesenchymal stem cells (ASCs have already been used to accelerate and facilitate the regenerative process. ASCs can be maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a good tool for cell replacement therapies in human and veterinary medicine. Although ACSs can be easily obtained from adipose tissue, the amplification process is usually performed by a time consuming process of successive passages. In this work, we use canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and aseptic method for production of sufficient stem cells with potential further use in clinical applications. We show that plasma rich in growth factors (PRGF treatment positively contributes to viability and proliferation of canine ASCs into caprolactone 2-(methacryloyloxy ethyl ester (CLMA scaffolds. This biomaterial does not need additional modifications for cASCs attachment and proliferation. Here we propose a framework based on a combination of approaches that may contribute to increase the therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for bone and connective tissue regeneration.

  18. Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches

    Science.gov (United States)

    Rodríguez-Jiménez, Francisco Javier; Valdes-Sánchez, Teresa; Carrillo, José M.; Rubio, Mónica; Monleon-Prades, Manuel; García-Cruz, Dunia Mercedes; García, Montserrat; Cugat, Ramón; Moreno-Manzano, Victoria

    2012-01-01

    Osteoarticular pathologies very often require an implementation therapy to favor regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on osteoarticular complications in dogs constitute an ideal model for human clinical translational applications. The adipose-derived mesenchymal stem cells (ASCs) have already been used to accelerate and facilitate the regenerative process. ASCs can be maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a good tool for cell replacement therapies in human and veterinary medicine. Although ACSs can be easily obtained from adipose tissue, the amplification process is usually performed by a time consuming process of successive passages. In this work, we use canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and aseptic method for production of sufficient stem cells with potential further use in clinical applications. We show that plasma rich in growth factors (PRGF) treatment positively contributes to viability and proliferation of canine ASCs into caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) scaffolds. This biomaterial does not need additional modifications for cASCs attachment and proliferation. Here we propose a framework based on a combination of approaches that may contribute to increase the therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for bone and connective tissue regeneration. PMID:24955632

  19. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  20. In vivo measurement of cell proliferation in canine brain tumor using C-11-labeled FMAU and PET

    International Nuclear Information System (INIS)

    Conti, Peter S.; Bading, James R.; Mouton, Peter P.; Links, Jonathan M.; Alauddin, Mian M.; Fissekis, John D.; Ravert, Hayden T.; Hilton, John; Wong, Dean F.; Anderson, James H.

    2008-01-01

    measured by direct tissue analysis with BUdR in a canine brain tumor model, suggesting that [ 11 C]FMAU is useful for the imaging of cell proliferation in cancers

  1. Culture in embryonic kidney serum and xeno-free media as renal cell carcinoma and renal cell carcinoma cancer stem cells research model.

    Science.gov (United States)

    Krawczyk, Krzysztof M; Matak, Damian; Szymanski, Lukasz; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M

    2018-04-01

    The use of fetal bovine serum hinders obtaining reproducible experimental results and should also be removed in hormone and growth factor studies. In particular hormones found in FBS act globally on cancer cell physiology and influence transcriptome and metabolome. The aim of our study was to develop a renal carcinoma serum free culture model optimized for (embryonal) renal cells in order to select the best study model for downstream auto-, para- or endocrine research. Secondary aim was to verify renal carcinoma stem cell culture for this application. In the study, we have cultured renal cell carcinoma primary tumour cell line (786-0) as well as human kidney cancer stem cells in standard 2D monolayer cultures in Roswell Park Memorial Institute Medium or Dulbecco's Modified Eagle's Medium and Complete Human Kidney Cancer Stem Cell Medium, respectively. Serum-free, animal-component free Human Embryonic Kidney 293 media were tested. Our results revealed that xeno-free embryonal renal cells optimized culture media provide a useful tool in RCC cancer biology research and at the same time enable effective growth of RCC. We propose bio-mimic RCC cell culture model with specific serum-free and xeno-free medium that promote RCC cell viability.

  2. Effect of adipose-derived mesenchymal stem cell transplantation on vascular calcification in rats with adenine-induced kidney disease

    OpenAIRE

    Yokote, Shinya; Katsuoka, Yuichi; Yamada, Akifumi; Ohkido, Ichiro; Yokoo, Takashi

    2017-01-01

    Previous studies have investigated the use of mesenchymal stem cells (MSCs) to treat damaged kidneys. However, the effect of adipose-derived MSCs (ASCs) on vascular calcification in chronic kidney disease (CKD) is still poorly understood. In the present study, we explored the potential of ASCs for the treatment of CKD and vascular calcification. CKD was induced in male Sprague-Dawley rats by feeding them a diet containing 0.75% adenine for 4 weeks. ASCs transplantation significantly reduced s...

  3. Cytogenetic analysis of CpG-oligonucleotide DSP30 plus Interleukin-2-Stimulated canine B-Cell lymphoma cells reveals the loss of one X Chromosome as the sole abnormality.

    Science.gov (United States)

    Reimann-Berg, N; Murua Escobar, H; Kiefer, Y; Mischke, R; Willenbrock, S; Eberle, N; Nolte, I; Bullerdiek, J

    2011-01-01

    Human and canine lymphoid neoplasms are characterized by non-random cytogenetic abnormalities. However, due to the low mitotic activity of the B cells, cytogenetic analyses of B-cell lymphoid proliferations are difficult to perform. In the present study we stimulated canine B-cell lymphoma cells with the immunostimulatory CpG-oligonucleotide DSP30 in combination with interleukin-2 (IL-2) and obtained an adequate number of metaphases. Cytogenetic analyses revealed the loss of one X chromosome as the sole cytogenetic aberration. Chromosome analysis of the corresponding blood showed a normal female karyotype. Monosomy X as the sole clonal chromosomal abnormality is found in human hematopoietic malignancies as well, thus the dog may serve as a promising animal model. Copyright © 2011 S. Karger AG, Basel.

  4. Tetraethylammonium block of water flux in Aquaporin-1 channels expressed in kidney thin limbs of Henle's loop and a kidney-derived cell line.

    Directory of Open Access Journals (Sweden)

    Pannabecker Thomas L

    2002-03-01

    Full Text Available Abstract Background Aquaporin-1 (AQP1 channels are constitutively active water channels that allow rapid transmembrane osmotic water flux, and also serve as cyclic-GMP-gated ion channels. Tetraethylammonium chloride (TEA; 0.05 to 10 mM was shown previously to inhibit the osmotic water permeability of human AQP1 channels expressed in Xenopus oocytes. The purpose of the present study was to determine if TEA blocks osmotic water flux of native AQP1 channels in kidney, and recombinant AQP1 channels expressed in a kidney derived MDCK cell line. We also demonstrate that TEA does not inhibit the cGMP-dependent ionic conductance of AQP1 expressed in oocytes, supporting the idea that water and ion fluxes involve pharmacologically distinct pathways in the AQP1 tetrameric complex. Results TEA blocked water permeability of AQP1 channels in kidney and kidney-derived cells, demonstrating this effect is not limited to the oocyte expression system. Equivalent inhibition is seen in MDCK cells with viral-mediated AQP1 expression, and in rat renal descending thin limbs of Henle's loops which abundantly express native AQP1, but not in ascending thin limbs which do not express AQP1. External TEA (10 mM does not block the cGMP-dependent AQP1 ionic conductance, measured by two-electrode voltage clamp after pre-incubation of oocytes in 8Br-cGMP (10–50 mM or during application of the nitric oxide donor, sodium nitroprusside (2–4 mM. Conclusions TEA selectively inhibits osmotic water permeability through native and heterologously expressed AQP1 channels. The pathways for water and ions in AQP1 differ in pharmacological sensitivity to TEA, and are consistent with the idea of independent solute pathways within the channel structure. The results confirm the usefulness of TEA as a pharmacological tool for the analysis of AQP1 function.

  5. The transcriptome of the Didelphis virginiana opossum kidney OK proximal tubule cell line.

    Science.gov (United States)

    Eshbach, Megan L; Sethi, Rahil; Avula, Raghunandan; Lamb, Janette; Hollingshead, Deborah J; Finegold, David N; Locker, Joseph D; Chandran, Uma R; Weisz, Ora A

    2017-09-01

    The OK cell line derived from the kidney of a female opossum Didelphis virginiana has proven to be a useful model in which to investigate the unique regulation of ion transport and membrane trafficking mechanisms in the proximal tubule (PT). Sequence data and comparison of the transcriptome of this cell line to eutherian mammal PTs would further broaden the utility of this culture model. However, the genomic sequence for D. virginiana is not available and although a draft genome sequence for the opossum Monodelphis domestica (sequenced in 2012 by the Broad Institute) exists, transcripts sequenced from both species show significant divergence. The M. domestica sequence is not highly annotated, and the majority of transcripts are predicted rather than experimentally validated. Using deep RNA sequencing of the D. virginiana OK cell line, we characterized its transcriptome via de novo transcriptome assembly and alignment to the M. domestica genome. The quality of the de novo assembled transcriptome was assessed by the extent of homology to sequences in nucleotide and protein databases. Gene expression levels in the OK cell line, from both the de novo transcriptome and genes aligned to the M. domestica genome, were compared with publicly available rat kidney nephron segment expression data. Our studies demonstrate the expression in OK cells of numerous PT-specific ion transporters and other key proteins relevant for rodent and human PT function. Additionally, the sequence and expression data reported here provide an important resource for genetic manipulation and other studies on PT cell function using these cells. Copyright © 2017 the American Physiological Society.

  6. Mastocitoma cutâneo canino: estudo de 45 casos Canine cutaneous mast cell tumor: study of 45 cases

    Directory of Open Access Journals (Sweden)

    R.R. Rech

    2004-08-01

    Full Text Available Quarenta e cinco mastocitomas cutâneos caninos foram graduados histologicamente com o uso de hematoxilina-eosina. Foram empregados os métodos azul de toluidina e região organizadora nucleolar argirofílica (AgNOR para, respectivamente, evidenciar os grânulos citoplasmáticos e avaliar o índice de proliferação celular. Diversas características histológicas foram observadas, como distribuição das células na pele, tamanho, forma, aspecto de citoplasma e núcleo, quantidade de estroma, presença de eosinófilos e alterações associadas. Com base nessas caracteríscas, 37,8% dos mastocitomas foram classificados como grau I, 51,1% como grau II e 11,1% como grau III. A média geral de AgNOR nos mastocitomas foi de 1,9 (1,2 a 4,3 e as médias para os graus I, II e III foram, respectivamente, de 1,5, 1,85 e 3,25. A técnica de AgNOR mostrou ser de fácil execução, custo acessível e confiável como meio auxiliar para estimar um prognóstico mais objetivo para os mastocitomas.Forty-five cutaneous canine mast cell tumors were graded histologically on haematoxylin and eosin-stained sections. Toluidine blue and AgNOR methods were employed to enhance the intracytoplasmic granules and to assess cell proliferation, respectively. From these 45 samples histological features were observed as cell distribution, size, shape, nuclear and cytoplasmic appearance, amount of stroma, presence of eosinophils and some associated changes. Based on those features, 37.8% of the mast cell tumors were classified as grade I, 51.1% as grade II and 11.1% as grade III. General AgNOR mean value was 1.9 (range 1.2-4.3 whereas the means for grades I, II and III were, respectively, 1.2, 1.85 and 3.25. The AgNOR method proved to be feasible, inexpensive and a reliable tool to predict a more accurate prognosis for mast cell tumors.

  7. [Case report of rare co-occurrence of renal cell carcinoma and crossed renal dystopia (L-shaped kidney)].

    Science.gov (United States)

    Bakov, V N; Los, M S

    2017-10-01

    L-shaped kidney refers to a rare anomaly of the relative kidney positioning. Due to low prevalence, the literature on the co-occurrence of this anomaly with malignancy is lacking. And, if the diagnosis of a renal anomaly does not present difficulties, if a tumor is detected in such a kidney, even MSCT does not always help differentiate a pelvic tumor from a tumor of the renal parenchyma spreading to the pelvicalyceal system. This has important implications for choosing an appropriate surgical strategy. A feature of the presented clinical observation is the co-occurrence of the rare anomaly of kidney position and locally advanced renal cell carcinoma spreading to the renal pelvis. Due to the massive spread of the tumor, an organ-sparing surgery was not feasible. Due to the suspicion of tumor spread to the renal pelvis, the patient underwent nephrureterectomy of the L-shaped kidney. Introduction to renoprival state with transfer to chronic hemodialysis became the only option to maintain homeostasis and extend the patients life. Histological examination revealed clear cell renal cell carcinoma with invasion of the pelvis and renal capsule, with no clear demarcation between the fused kidneys.

  8. Primitive neuroectodermal tumor or small cell carcinoma of the kidney, arare neoplasm: Case Report

    International Nuclear Information System (INIS)

    Radhi, A.; Ratnakar, K.S.; Al-Durazi, M.; Khalifa, F.

    2002-01-01

    Small cell carcinoma is a malignancy primarily recognized in thebronchopulmonary region. Extrapulmonary locations are extremely uncommon. Wereport here a case of renal tumor encountered in a 34-year-old female, withextensive metastases in liver, lung and bone. Histological examination wasmost compatible with primitive neuroectodermal tumor (PNET) small cellcarcinoma. There were negative immunohistochemical markers for cytokeratin,any hormonal peptides and epithelial membrane antigens, which is consistentwith the designation of neoplasm as PNET. Previously reported cases have allbeen in the elderly and, to the best of our knowledge, this is the first caseof proven PNET of the kidney described in a young female. (author)

  9. Cytogenetic consequence of radiation in epithelial kidney cells of a monkey

    International Nuclear Information System (INIS)

    Kosichenko, L.P.; Trots, A.A.

    1980-01-01

    The cytogenetic consequence of radiation in kidney epithelial cells of monkeys are studied 3.5-9 years after the cessation of everyday irradiation in small doses (2.99-4.9 R daily) and 6.0-12.5 years after single 550-652 R irradiation. The increased amount of reconstructed chromosomes is mainly conditioned by stable chromosome exchange; reconstructions of the non-stable type are also preserved. The cytogenetic consequence of irradiation is determined by various factors, radiation conditions and the total dose of radiation, in particular

  10. Canine ovarian neoplasms: a clinicopathologic study of 71 cases, including histology of 12 granulosa cell tumors.

    Science.gov (United States)

    Patnaik, A K; Greenlee, P G

    1987-11-01

    In a retrospective study of 71 primary ovarian tumors in the dog, epithelial tumors (46%) were more common than sex cord stromal (34%) and germ cell tumors (20%). There were more adenocarcinomas (64%) than adenomas. Sex cord stromal tumors were equally divided into Sertoli-Leydig (12/24) and granulosa cell tumors (12/24). There were equal numbers (7/14) of dysgerminomas and teratomas among the germ cell tumors. Most teratomas (6/7) were malignant. Most granulosa cell tumors were solid; two were mostly cystic. Patterns included sheets of round and ovoid to spindle-shaped cells separated by thin, fibrovascular stroma; neoplastic cells formed rosettes or Call-Exner bodies. In some areas, neoplastic cells were in cords or columns and formed cyst-like structures. Four granulosa cell tumors were macrofollicular, having cysts lined with granulosa cells. Median ages of dogs with different ovarian neoplasms were similar; all were more than 10 years old, except the dogs with teratoma (mean age, 4 years). Most neoplasms were unilateral (84%), except the Sertoli-Leydig cell tumors, many of which were bilateral (36%). Size of ovarian neoplasms varied (2 cm3 to 15,000 cm3). Twenty-nine percent of neoplasms metastasized; adenocarcinomas (48%) and malignant teratomas (50%) had the highest rates, and distant metastasis was more common in malignant teratoma. Endometrial hyperplasia was in 67% of the dogs; it was most common in dogs with sex cord stromal tumors (95%). Uterine malignancy was not seen in dogs with granulosa cell tumors, although hyperplasia endometrium was in all dogs with this tumor. Cysts in the contralateral ovaries were most common in dogs with sex cord stromal tumors.

  11. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Hoon Young Choi

    Full Text Available We recently demonstrated the use of in vitro expanded kidney-derived mesenchymal stem cells (KMSC protected peritubular capillary endothelial cells in acute renal ischemia-reperfusion injury. Herein, we isolated and characterized microparticles (MPs from KMSC. We investigated their in vitro biologic effects on human endothelial cells and in vivo renoprotective effects in acute ischemia-reperfusion renal injury. MPs were isolated from the supernatants of KMSC cultured in anoxic conditions in serum-deprived media for 24 hours. KMSC-derived MPs demonstrated the presence of several adhesion molecules normally expressed on KMSC membranes, such as CD29, CD44, CD73, α4, 5, and 6 integrins. Quantitative real time PCR confirmed the presence of 3 splicing variants of VEGF-A (120, 164, 188, bFGF and IGF-1 in isolated MPs. MPs labeled with PKH26 red fluorescence dye were incorporated by cultured human umbilical vein endothelial cells (HUVEC via surface molecules such as CD44, CD29, and α4, 5, and 6 integrins. MP dose dependently improved in vitro HUVEC proliferation and promoted endothelial tube formation on growth factor reduced Matrigel. Moreover, apoptosis of human microvascular endothelial cell was inhibited by MPs. Administration of KMSC-derived MPs into mice with acute renal ischemia was followed by selective engraftment in ischemic kidneys and significant improvement in renal function. This was achieved by improving proliferation, of peritubular capillary endothelial cell and amelioration of peritubular microvascular rarefaction. Our results support the hypothesis that KMSC-derived MPs may act as a source of proangiogenic signals and confer renoprotective effects in ischemic kidneys.

  12. Secreted Factors from Bone Marrow Stromal Cells Upregulate IL-10 and Reverse Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Jack M. Milwid

    2012-01-01

    Full Text Available Acute kidney injury is a devastating syndrome that afflicts over 2,000,000 people in the US per year, with an associated mortality of greater than 70% in severe cases. Unfortunately, standard-of-care treatments are not sufficient for modifying the course of disease. Many groups have explored the use of bone marrow stromal cells (BMSCs for the treatment of AKI because BMSCs have been shown to possess unique anti-inflammatory, cytoprotective, and regenerative properties in vitro and in vivo. It is yet unresolved whether the primary mechanisms controlling BMSC therapy in AKI depend on direct cell infusion, or whether BMSC-secreted factors alone are sufficient for mitigating the injury. Here we show that BMSC-secreted factors are capable of providing a survival benefit to rats subjected to cisplatin-induced AKI. We observed that when BMSC-conditioned medium (BMSC-CM is administered intravenously, it prevents tubular apoptosis and necrosis and ameliorates AKI. In addition, we observed that BMSC-CM causes IL-10 upregulation in treated animals, which is important to animal survival and protection of the kidney. In all, these results demonstrate that BMSC-secreted factors are capable of providing support without cell transplantation, and the IL-10 increase seen in BMSC-CM-treated animals correlates with attenuation of severe AKI.

  13. Phosphocitrate inhibits mitochondrial and cytosolic accumulation of calcium in kidney cells in vivo.

    Science.gov (United States)

    Tew, W P; Malis, C D; Howard, J E; Lehninger, A L

    1981-01-01

    Synthetic 3-phosphocitrate, an extremely potent inhibitor of calcium phosphate crystallization as determined in a nonbiological physical-chemical assay, has many similarities to a mitochondrial factor that inhibits crystallization of nondiffracting amorphous calcium phosphate. In order to determine whether phosphocitrate can prevent uptake and crystallization of calcium phosphate in mitochondria in vivo, it was administered intraperitoneally to animals given large daily doses of calcium gluconate or parathyroid hormone, a regimen that causes massive accumulation and crystallization of calcium phosphate in the mitochondria and cytosol of renal tubule cells in vivo. Administration of phosphocitrate greatly reduced the net uptake of Ca2+ by the kidneys and prevented the appearance of apatite-like crystalline structures within the mitochondrial matrix and cytosol of renal tubule cells. Phosphocitrate, which is a poor chelator of Ca2+, did not reduce the hypercalcemia induced by either agent. These in vivo observations therefore indicate that phosphocitrate acts primarily at the cellular level to prevent the extensive accumulation of calcium phosphate in kidney cells by inhibiting the mitochondrial accumulation or crystallization of calcium phosphate. Images PMID:6946490

  14. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model.

    Science.gov (United States)

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that

  15. Immunohistochemical Characterization of Canine Lymphomas

    Directory of Open Access Journals (Sweden)

    Roxana CORA

    2017-11-01

    Full Text Available Lymphomas occur by clonal expansion of lymphoid cells and have distinctive morphological and immunophenotypic features. Determination of canine lymphoma immunophenotype is useful for accurate prognosis and further therapy. In the suggested study, we performed an immunohistochemical evaluation of some cases with canine lymphoma diagnosed in the Department of Pathology (Faculty of Veterinary Medicine, Cluj-Napoca, Romania, in order to characterize them. The investigation included 39 dogs diagnosed with different anatomical forms of lymphoma, following necropsy analysis or assessment of biopsies. The diagnosis of lymphoma was confirmed by necropsy and histopathology (Hematoxylin-eosin stain examinations. The collected specimens were analyzed by immunohistochemistry technique (automatic method using the following antibodies: CD3, CD20, CD21 and CD79a. The analyzed neoplasms were characterized as follows: about 64.10% of cases were diagnosed as B-cell lymphomas, 33.34% of cases as T-cell lymphomas, whereas 2.56% of cases were null cell type lymphomas (neither B nor T. Most of multicentric (80%, mediastinal (60% and primary central nervous system lymphomas (100% had B immunophenotype, while the majority of cutaneous (80% and digestive (100% lymphomas had T immunophenotype. Immunohistochemical description of canine lymphomas can deliver some major details concerning their behavior and malignancy. Additionally, vital prognosis and efficacy of some therapeutic protocols are relying on the immunohistochemical features of canine lymphoma.

  16. Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells.

    Directory of Open Access Journals (Sweden)

    Ding Zhang

    Full Text Available Cadmium ions (Cd2+ have been reported to accumulate in bovine tissues, although Cd2+ cytotoxicity has not been investigated thoroughly in this species. Zinc ions (Zn2+ have been shown to antagonize the toxic effects of heavy metals such as Cd2+ in some systems. The present study investigated Cd2+ cytotoxicity in Madin-Darby bovine kidney (MDBK epithelial cells, and explored whether this was modified by Zn2+. Exposure to Cd2+ led to a dose- and time-dependent increase in apoptotic cell death, with increased intracellular levels of reactive oxygen species and mitochondrial damage. Zn2+ supplementation alleviated Cd2+-induced cytotoxicity and this protective effect was more obvious when cells were exposed to a lower concentration of Cd2+ (10 μM, as compared to 50 μM Cd2+. This indicated that high levels of Cd2+ accumulation might induce irreversible damage in bovine kidney cells. Metallothioneins (MTs are metal-binding proteins that play an essential role in heavy metal ion detoxification. We found that co-exposure to Zn2+ and Cd2+ synergistically enhanced RNA and protein expression of MT-1, MT-2, and the metal-regulatory transcription factor 1 in MDBK cells. Notably, addition of Zn2+ reduced the amounts of cytosolic Cd2+ detected following MDBK exposure to 10 μM Cd2+. These findings revealed a protective role of Zn2+ in counteracting Cd2+ uptake and toxicity in MDBK cells, indicating that this approach may provide a means to protect livestock from excessive Cd2+ accumulation.

  17. Evaluation of Iranian Snake ‘Macrovipera lebetina’ Venom Cytotoxicity in Kidney Cell Line HEK-293

    Directory of Open Access Journals (Sweden)

    Hourieh Esmaeili Jahromi

    2016-03-01

    Full Text Available Background:Envenomation by Macrovipera lebetina (M. lebetina is characterized by prominent local tissue damage, hemorrhage, abnormalities in the blood coagulation system, necrosis, and edema. However, the main cause of death after a bite by M. lebetina has been attributed to acute renal failure (ARF. It is unclear whether the venom components have a direct or indirect action in causing ARF. To investigate this point, we looked at the in vitro effect of M. lebetina crude venom, using cultured human embryonic kidney (HEK-293 mono layers as a model. Methods: The effect of M. lebetina snake venom on HEK-293 growth inhibition was determined by the MTT assay and the neutral red uptake assay. The integrity of the cell membrane through LDH release was measured with the Cytotoxicity Detection Kit. Morphological changes in HEK-293 cells were also evaluated using an inverted microscope. Results: In the MTT assay, crude venom showed a significant cytotoxic effect on HEK-293 cells at 24 hours of exposure and was confirmed by the neutral red assay. Also, at 24 hours exposure, crude venom caused a non-significant increase in LDH activity of the culture medium at concentrations above 20 μg/ml. Various morphological abnormalities were observed in cells exposed to the venom and showed loss of their common polygonal shape, appearing as several roughly rounded cells of variable size. The M. lebetina crude venom induced detachment of cells from the plate. Conclusion: Based on the results obtained in this study, it can be concluded that the Iranian snake M. lebetina venom causes a cytotoxic effect on kidney tissue not by necrotic mechanism but rather by secondary effects, including hypotension, hemolysis, hemoglobinuria, rhabdomyolysis, myoglobinuria and disseminated intravascular coagulation (DIC, which may lead to ARF.

  18. Immunocytochemical characterization of primary cell culture in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Luis M.M. Flórez

    Full Text Available Abstract: Immunochemistry with anti-vimentin, anti-lysozyme, anti-alpha 1 antitrypsin, anti-CD3 and anti-CD79α antibodies has been used for characterization of primary cell culture in the transmissible venereal tumor (TVT. Samples for primary cell culture and immunohistochemistry assays were taken from eight dogs with cytological and clinical diagnosis of TVT. To validate the immunochemical results in the primary cell culture of TVT, a chromosome count was performed. For the statistical analysis, the Mann-Whitney test with p<0.05 was used. TVT tissues and culture cells showed intense anti-vimentin immunoreactivity, lightly to moderate immunoreactivity for anti-lysozyme, and mild for anti-alpha-antitrypsin. No marking was achieved for CD3 and CD79α. All culture cells showed chromosomes variable number of 56 to 68. This is the first report on the use of immunocytochemical characterization in cell culture of TVT. Significant statistic difference between immunochemistry in tissue and culture cell was not established, what suggests that the use of this technique may provide greater certainty for the confirmation of tumors in the primary culture. This fact is particularly important because in vitro culture of tumor tissues has been increasingly used to provide quick access to drug efficacy and presents relevant information to identify potential response to anticancer medicine; so it is possible to understand the behavior of the tumor.

  19. EFFECT OF LIPOSOMAL CLODRONATE-DEPENDENT DEPLETION OF PROFESSIONAL ANTIGEN PRESENTING CELLS ON NUMBERS AND PHENOTYPE OF CANINE CD4+CD25+FOXP3+ REGULATORY T CELLS

    Science.gov (United States)

    Weaver, Kriston F.; Stokes, John V.; Gunnoe, Sagen A.; Follows, Joyce S.; Shafer, Lydia; Ammari, Mais G.; Archer, Todd M.; Thomason, John M.; Mackin, Andrew J.; Pinchuk, Lesya M.

    2015-01-01

    Regulatory T cells (Tregs) are known to control autoreactivity during and subsequent to the development of the peripheral immune system. Professional antigen presenting cells (APCs), dendritic cells (DCs) and monocytes, have an important role in inducing Tregs. For the first time, this study evaluated proportions and phenotypes of Tregs in canine peripheral blood depleted of professional APCs, utilizing liposomal clodronate (LC) and multicolor flow cytometry analysis. Our results demonstrate that LC exposure promoted short term decreases followed by significant increases in the proportions or absolute numbers of CD4+CD25+FOXP3+ Tregs in dogs. In general, the LC-dependent Treg fluctuations were similar to the changes in the levels of CD14+ monocytes in Walker hounds. However, the proportions of monocytes showed more dramatic changes compared to the proportions of Tregs that were visually unchanged after LC treatment over the study period. At the same time, absolute Treg numbers showed, similarly to the levels of CD14+ monocytes, significant compensatory gains as well as the recovery during the normalization period. We confirm the previous data that CD4+ T cells with the highest CD25 expression were highly enriched for FOXP3. Furthermore, for the first time, we report that CD4+CD25lowFOXP3+ is the major regulatory T cell subset affected by LC exposure. The increases within the lowest CD25 expressers of CD4+FOXP3+ cells together with compensatory gains in the proportion of CD14+ monocytes during compensatory and normalization periods suggest the possible direct or indirect roles of monocytes in active recruitment and generation of Tregs from naïve CD4+ T cells. PMID:25950023

  20. Expression of platelet-derived growth factor BB, erythropoietin and erythropoietin receptor in canine and feline osteosarcoma.

    Science.gov (United States)

    Meyer, F R L; Steinborn, R; Grausgruber, H; Wolfesberger, B; Walter, I

    2015-10-01

    The discovery of expression of the erythropoietin receptor (EPO-R) on neoplastic cells has led to concerns about the safety of treating anaemic cancer patients with EPO. In addition to its endocrine function, the receptor may play a role in tumour progression through an autocrine mechanism. In this study, the expression of EPO, EPO-R and platelet-derived growth factor BB (PDGF-BB) was analysed in five feline and 13 canine osteosarcomas using immunohistochemistry (IHC) and reverse transcription polymerase chain reaction (RT-PCR). EPO expression was positive in all tumours by IHC, but EPO mRNA was only detected in 38% of the canine and 40% of the feline samples. EPO-R was expressed in all samples by quantitative RT-PCR (RT-qPCR) and IHC. EPO-R mRNA was expressed at higher levels in all feline tumours, tumour cell lines, and kidney when compared to canine tissues. PDGF-BB expression was variable by IHC, but mRNA was detected in all samples. To assess the functionality of the EPO-R on tumour cells, the proliferation of canine and feline osteosarcoma cell lines was evaluated after EPO administration using an alamarBlue assay and Ki67 immunostaining. All primary cell lines responded to EPO treatment in at least one of the performed assays, but the effect on proliferation was very low indicating only a weak responsiveness of EPO-R. In conclusion, since EPO and its receptor are expressed by canine and feline osteosarcomas, an autocrine or paracrine tumour progression mechanism cannot be excluded, although in vitro data suggest a minimal role of EPO-R in osteosarcoma cell proliferation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines.

    Science.gov (United States)

    Paget, V; Sergent, J A; Grall, R; Altmeyer-Morel, S; Girard, H A; Petit, T; Gesset, C; Mermoux, M; Bergonzo, P; Arnault, J C; Chevillard, S

    2014-08-01

    Although nanodiamonds (NDs) appear as one of the most promising nanocarbon materials available so far for biomedical applications, their risk for human health remains unknown. Our work was aimed at defining the cytotoxicity and genotoxicity of two sets of commercial carboxylated NDs with diameters below 20 and 100 nm, on six human cell lines chosen as representative of potential target organs: HepG2 and Hep3B (liver), Caki-1 and Hek-293 (kidney), HT29 (intestine) and A549 (lung). Cytotoxicity of NDs was assessed by measuring cell impedance (xCELLigence® system) and cell survival/death by flow cytometry while genotoxicity was assessed by γ-H2Ax foci detection, which is considered the most sensitive technique for studying DNA double-strand breaks. To validate and check the sensitivity of the techniques, aminated polystyrene nanobeads were used as positive control in all assays. Cell incorporation of NDs was also studied by flow cytometry and luminescent N-V center photoluminescence (confirmed by Raman microscopy), to ensure that nanoparticles entered the cells. Overall, we show that NDs effectively entered the cells but NDs do not induce any significant cytotoxic or genotoxic effects on the six cell lines up to an exposure dose of 250 µg/mL. Taken together these results strongly support the huge potential of NDs for human nanomedicine but also their potential as negative control in nanotoxicology studies.

  2. Intralesional Application of Autologous Bone Marrow Stem Cells with Scaffold in Canine for Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Justin William B

    2009-01-01

    Full Text Available A three year old male non-descriptive companion dog was presented to the Small Animal Orthopedic Unit of Madras Veterinary College Teaching Hospital (MVC with paraplegia of fourth degree neurological deficit of hind limbs due to automobile trauma. Radiographic views were suggestive of dislocation at T8-T9 vertebral segment with fracture of L2 vertebra. Myelography confirmed the signs of abrupt stoppage of the contrast column cranial to dislocated area and was interpretive of transected spinal cord at L2 level. Construct was prepared with bone marrow mononuclear cells (BMMNC isolated from bone marrow aspirate of femur and the cells were seeded in Thermoreversible Gelatin Polymer (TGP at the cell processing facility of Nichi-In Centre for Regenerative Medicine (NCRM as per GMP protocols and was engrafted after hemilaminectomy and durotomy procedures in the MVC. Postoperatively the animal was clinically stable; however the animal died on the 7th day. Autopsy revealed co-morbid conditions like cystitis, nephritis and transmissible venereal tumor. Histopathology of the engrafted area revealed sustainability of aggregated stem cells that were transplanted revealing an ideal biocompatibility of the construct prepared with bone marrow mononuclear cells and polymer hydrogel for spinal cord regeneration in dogs. Further studies in similar cases will have to be undertaken to prove the long term efficacy.

  3. Glucagon-like-peptide-1 secretion from canine L-cells is increased by glucose-dependent-insulinotropic peptide but unaffected by glucose

    DEFF Research Database (Denmark)

    Damholt, A B; Buchan, A M; Kofod, Hans

    1998-01-01

    dependently stimulated the release of GLP-1 and resulted in a 2-fold increase at 100 nM GIP. This effect was fully inhibited by 10 nM somatostatin. However, neither basal or GIP stimulated GLP-1 secretion were affected by ambient glucose concentrations from 5-25 mM. The receptor-independent secretagogues beta...... but not by staurosporine. These results indicate that glucose does not directly stimulate canine L-cells. It is more probable that glucose releases GIP from the upper intestine that in turn stimulates GLP-1 secretion. The ability of GIP to stimulate GLP-1 secretion is probably mediated through activation of protein kinase...

  4. Canine mammary minute oncocytomas with neuroendocrine differentiation associated with multifocal acinar cell oncocytic metaplasia.

    Science.gov (United States)

    Nagahara, Rei; Kimura, Masayuki; Itahashi, Megu; Sugahara, Go; Kawashima, Masashi; Murayama, Hirotada; Yoshida, Toshinori; Shibutani, Makoto

    2016-11-01

    Two solitary and minute tumors of 1 and 1.5 mm diameter were identified by microscopy in the left fourth mammary gland of a 13-year-old female Labrador Retriever dog, in addition to multiple mammary gland tumors. The former tumors were well circumscribed and were composed of small-to-large polyhedral neoplastic oncocytes with finely granular eosinophilic cytoplasm, and were arranged in solid nests separated by fine fibrovascular septa. Scattered lumina of variable sizes containing eosinophilic secretory material were evident. Cellular atypia was minimal, and no mitotic figures were visible. One tumor had several oncocytic cellular foci revealing cellular transition, with perivascular pseudorosettes consisting of columnar epithelial cells surrounding the fine vasculature. Scattered foci of mammary acinar cell hyperplasia showing oncocytic metaplasia were also observed. Immunohistochemically, the cytoplasm of neoplastic cells of the 2 microtumors showed diffuse immunoreactivity to anti-cytokeratin antibody AE1/AE3, and finely granular immunoreactivity for 60-kDa heat shock protein, mitochondrial membrane ATP synthase complex V beta subunit, and chromogranin A. One tumor also had oncocytic cellular foci forming perivascular pseudorosettes showing cellular membrane immunoreactivity for neural cell adhesion molecule. The tumors were negative for smooth muscle actin, neuron-specific enolase, vimentin, desmin, S100, and synaptophysin. Ultrastructural observation confirmed the abundant mitochondria in the cytoplasm of both neoplastic and hyperplastic cells, the former cells also having neuroendocrine granule-like electron-dense bodies. From these results, our case was diagnosed with mammary oncocytomas accompanied by neuroendocrine differentiation. Scattered foci of mammary oncocytosis might be related to the multicentric occurrence of these oncocytomas. © 2016 The Author(s).

  5. Novel treatment strategies for feline chronic kidney disease: A critical look at the potential of mesenchymal stem cell therapy.

    Science.gov (United States)

    Quimby, J M; Dow, S W

    2015-06-01

    Stem cell therapy is an innovative field of scientific investigation with tremendous potential for clinical application that holds promise for the treatment of a variety of diseases in veterinary medicine. Based on the known desirable properties of mesenchymal stem cells, the therapy has potential for treatment of both acute kidney injury and chronic kidney disease in cats. This review details terminology commonly used in this field of study, sources of mesenchymal stem cells and their proposed mechanism of action particularly as it relates to renal repair. Studies performed in rodent models of chronic kidney disease and feline clinical trial results are also summarized with the aim of providing an overview of the current status of this treatment modality and its potential for the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. New therapeutic strategies for canine liver disease; Growth factors and liver progenitor cells

    NARCIS (Netherlands)

    Arends, B.

    2008-01-01

    The liver has the unique capacity to regulate its mass after loss of functional liver cells due to liver disease, injury, and/or toxicity. Unfortunately, in the course of chronic liver disease this meticulously regulated regeneration process is imbalanced resulting in a decreased regenerative

  7. The modulation of canine mesenchymal stem cells by nano-topographic cues

    International Nuclear Information System (INIS)

    Wood, Joshua A.; Ly, Irene; Borjesson, Dori L.; Nealey, Paul F.; Russell, Paul; Murphy, Christopher J.

    2012-01-01

    Mesenchymal stem cells (MSCs) represent a promising cellular therapeutic for the treatment of a variety of disorders. On transplantation, MSCs interact with diverse extracellular matrices (ECMs) that vary dramatically in topographic feature type, size and surface order. In order to investigate the impact of these topographic cues, surfaces were fabricated with either isotropically ordered holes or anisotropically ordered ridges and grooves. To simulate the biologically relevant nano through micron size scale, a series of topographically patterned substrates possessing features of differing pitch (pitch=feature width+groove width) were created. Results document that the surface order and size of substratum topographic features dramatically modulate fundamental MSC behaviors. Topographically patterned (ridge+groove) surfaces were found to significantly impact MSC alignment, elongation, and aspect ratio. Novel findings also demonstrate that submicron surfaces patterned with holes resulted in increased MSC alignment to adjacent cells as well as increased migration rates. Overall, this study demonstrates that the presentation of substratum topographic cues dramatically influence MSC behaviors in a size and shape dependent manner. The response of MSCs to substratum topographic cues was similar to other cell types that have been studied previously with regards to cell shape on ridge and groove surfaces but differed with respect to proliferation and migration. This is the first study to compare the impact of anisotropically ordered ridge and groove topographic cues to isotropically order holed topographic cues on fundamental MSC behaviors across a range of biologically relevant size scales.

  8. The modulation of canine mesenchymal stem cells by nano-topographic cues

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Joshua A.; Ly, Irene [Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis (United States); Borjesson, Dori L. [Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis (United States); Nealey, Paul F. [Department of Chemical and Biological Engineering, School of Engineering, University of Wisconsin-Madison (United States); Russell, Paul [Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis (United States); Murphy, Christopher J., E-mail: cjmurphy@ucdavis.edu [Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis (United States); Department of Ophthalmology and Vision Sciences, School of Medicine, University of California, Davis (United States)

    2012-11-15

    Mesenchymal stem cells (MSCs) represent a promising cellular therapeutic for the treatment of a variety of disorders. On transplantation, MSCs interact with diverse extracellular matrices (ECMs) that vary dramatically in topographic feature type, size and surface order. In order to investigate the impact of these topographic cues, surfaces were fabricated with either isotropically ordered holes or anisotropically ordered ridges and grooves. To simulate the biologically relevant nano through micron size scale, a series of topographically patterned substrates possessing features of differing pitch (pitch=feature width+groove width) were created. Results document that the surface order and size of substratum topographic features dramatically modulate fundamental MSC behaviors. Topographically patterned (ridge+groove) surfaces were found to significantly impact MSC alignment, elongation, and aspect ratio. Novel findings also demonstrate that submicron surfaces patterned with holes resulted in increased MSC alignment to adjacent cells as well as increased migration rates. Overall, this study demonstrates that the presentation of substratum topographic cues dramatically influence MSC behaviors in a size and shape dependent manner. The response of MSCs to substratum topographic cues was similar to other cell types that have been studied previously with regards to cell shape on ridge and groove surfaces but differed with respect to proliferation and migration. This is the first study to compare the impact of anisotropically ordered ridge and groove topographic cues to isotropically order holed topographic cues on fundamental MSC behaviors across a range of biologically relevant size scales.

  9. Metastatic clear cell carcinoma of the kidney: therapeutic role of bevacizumab

    International Nuclear Information System (INIS)

    Bukowski, Ronald M

    2010-01-01

    The biology and pathogenesis of clear cell carcinoma of the kidney has been extensively investgated, and the role of von Hipple-Landau gene inactivation and tumor associated angiogenesis is now recognized. Development of vascular endothelial growth factor inhibitors and phase 3 clinical trials utilizing this class of agents has produced a new treatment paradigm for patients with metastatic renal cell carcinoma (RCC). One of the active regimens identified is the combination of bevacizumab and interferon-α. Recently published reports provided evidence of the clinical and biologic activity of this therapy. The current manuscript reviews the background and rationale for the activity of bevacizumab in RCC, and results from recent clinical trials with this agent alone or in combination with targeted agents or cytokines. The role of this therapy in contrast to other targeted agents is reviewed, and the potential utility as well as questions raised by recent studies are discussed

  10. Coumarin–pyrene conjugate: Synthesis, structure and Cu-selective fluorescent sensing in mammalian kidney cells

    Energy Technology Data Exchange (ETDEWEB)

    Wani, Manzoor Ahmad [Department of Chemistry, Dr. H. S. Gour Central University Sagar, MP 470003 (India); Singh, Pankaj Kumar [Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Pandey, Rampal, E-mail: rpvimlesh@gmail.com [Department of Chemistry, Dr. H. S. Gour Central University Sagar, MP 470003 (India); Pandey, Mrituanjay D., E-mail: mdpandey@dhsgsu.ac.in [Department of Chemistry, Dr. H. S. Gour Central University Sagar, MP 470003 (India)

    2016-03-15

    In this work, we report a coumarin–pyrene based fluorescent probes (E)-7-(diethylamino)-3-((pyren-1-ylimino)methyl)-2H-chromen-2-one (1) and (E)-7-(diethylamino)-3-((pyren-1-ylmethylimino)methyl)-2H-chromen-2-one (2) for the selective detection of Cu{sup 2+} ion. Receptor 1 upon binding with Cu{sup 2+} exhibited substantial fluorescence quenching as a detection response. Probe 1 induces green fluorescence in a cell lines derived from monkey kidney tissue and subsequent quenching of fluorescence in these cells manifest that 1 can probably be used as a potential fluorescent sensor for the detection of Cu{sup 2+} in biological samples too. However, 2 does not reveal any significant fluorescence change in presence of different metal ions. It is assumed that conjugation might be accountable for the discrete fluorescent behavior of 1 and 2.

  11. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology.

    Science.gov (United States)

    Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin

    2018-01-01

    Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.

  12. Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells.

    Science.gov (United States)

    Ji, Jian; Zhu, Pei; Sun, Chao; Sun, Jiadi; An, Lu; Zhang, Yinzhi; Sun, Xiulan

    2017-01-01

    3-Chloropropane-1,2-diol (3-MCPD) is a heat-produced contaminant formed during the preparation of soy sauce worldwide. The present investigation was conducted to determine the molecular aspects of 3-MCPD toxicity on human embryonic kidney cells (HEK293). Cell viability and apoptosis were assessed in response to exposure to 3-MCPD using the MTT assay and high-content screening (HCS). DNA damage, intracellular reactive oxygen species (ROS) and apoptosis-related proteins were evaluated. Genes related with apoptosis were detected by qPCR-array for further understanding the 3-MCPD induced cell apoptosis signaling pathway. Our results clearly showed that 3-MCPD treatment inhibits cell proliferation and reactive oxygen species generation. qPCR-array indicated that nine apoptotic genes were up-regulated more than 2-fold and six down-regulated more than 2-fold. Genes associated with the mitochondrial apoptotic pathway, especially BCL2 family genes, changed significantly, indicating that the mitochondrial apoptotic pathway is activated. Death receptor pathway-related genes, TNFRSF11B and TNFRSF1A, changed significantly, indicating that the death receptor pathway is also activated, resulting in the inhibition of cell growth and proliferation as well as induction of apoptosis. To sum up, the experiment results indicated that 3-MCPD induced HEK293 cell toxicity through the death receptor pathway and mitochondrial pathway.

  13. Compensatory Structural and Functional Adaptation after Radical Nephrectomy for Renal Cell Carcinoma According to Preoperative Stage of Chronic Kidney Disease.

    Science.gov (United States)

    Choi, Don Kyoung; Jung, Se Bin; Park, Bong Hee; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun

    2015-10-01

    We investigated structural hypertrophy and functional hyperfiltration as compensatory adaptations after radical nephrectomy in patients with renal cell carcinoma according to the preoperative chronic kidney disease stage. We retrospectively identified 543 patients who underwent radical nephrectomy for renal cell carcinoma between 1997 and 2012. Patients were classified according to preoperative glomerular filtration rate as no chronic kidney disease--glomerular filtration rate 90 ml/minute/1.73 m(2) or greater (230, 42.4%), chronic kidney disease stage II--glomerular filtration rate 60 to less than 90 ml/minute/1.73 m(2) (227, 41.8%) and chronic kidney disease stage III--glomerular filtration rate 30 to less than 60 ml/minute/1.73 m(2) (86, 15.8%). Computerized tomography performed within 2 months before surgery and 1 year after surgery was used to assess functional renal volume for measuring the degree of hypertrophy of the remnant kidney, and the preoperative and postoperative glomerular filtration rate per unit volume of functional renal volume was used to calculate the degree of hyperfiltration. Among all patients (mean age 56.0 years) mean preoperative glomerular filtration rate, functional renal volume and glomerular filtration rate/functional renal volume were 83.2 ml/minute/1.73 m(2), 340.6 cm(3) and 0.25 ml/minute/1.73 m(2)/cm(3), respectively. The percent reduction in glomerular filtration rate was statistically significant according to chronic kidney disease stage (no chronic kidney disease 31.2% vs stage II 26.5% vs stage III 12.8%, p kidney was not statistically significant (no chronic kidney disease 18.5% vs stage II 17.3% vs stage III 16.5%, p=0.250). The change in glomerular filtration rate/functional renal volume was statistically significant (no chronic kidney disease 18.5% vs stage II 20.1% vs stage III 45.9%, p chronic kidney disease stage (p <0.001). Patients with a lower preoperative glomerular filtration rate had a smaller reduction in

  14. High cumulative incidence of urinary tract transitional cell carcinoma after kidney transplantation in Taiwan.

    Science.gov (United States)

    Wu, Ming-Ju; Lian, Jong-Da; Yang, Chi-Rei; Cheng, Chi-Hung; Chen, Cheng-Hsu; Lee, Wen-Chin; Shu, Kuo-Hsiung; Tang, Ming-Jer

    2004-06-01

    Cancer is a well-documented complication after kidney transplantation. Increased incidence of bladder cancer had been reported in long-term hemodialysis patients in Taiwan. Herein, the authors report a very high cumulative incidence of transitional cell carcinoma (TCC) of the urinary tract after kidney transplantation in Taiwan. The authors retrospectively reviewed the clinical data, medical records, and outcome of 730 kidney transplant (KT) recipients. The cumulative incidence of TCC was computed. The Cox regression method was used to analysis the role of potential risk factors. After a mean follow-up duration of 72.2 +/- 54.4 months, 69 cancers were diagnosed in 63 (8.6%) KT recipients. Of them, 30 cases (4.1%) were TCC. The cumulative incidence for TCC was 3.0% after 3 years of graft survival, increasing to 7.2% at 6 years and 17.5% at 10 years. Compared with the general population in Taiwan, the standardized mortality ratio was 398.4 (male, 192.6; female, 875.6). Painless gross hematuria was the cardinal initial symptom in 22 (73.3%) of the 30 KT recipients with TCC. Another 4 (13.3%) KT recipients with TCC presented with chronic urinary tract infection (UTI). Bilateral nephroureterectomy with removal of bladder cuffs was performed in 18 (60%) patients. Synchronous TCC in bilateral upper urinary tracts was confirmed in 11 (36.7%) of KT recipients with TCC. The age at the time of KT, female sex, compound analgesics usage, Chinese herb usage, and underground water intake had statistical significance as risk factors (P Taiwan, with an incidence of 4.1%. This study indicates that hematuria and chronic UTI are the initial presentation of TCC in KT recipients. Carefully urologic screening is indicated for patients with high risk for TCC, including those with older age, compound analgesics usage, Chinese herbs usage, and underground water intake as well as women.

  15. Survivin inhibition via EZN-3042 in canine lymphoma and osteosarcoma.

    Science.gov (United States)

    Shoeneman, J K; Ehrhart, E J; Charles, J B; Thamm, D H

    2016-06-01

    Canine lymphoma (LSA) and osteosarcoma (OS) have high mortality rates and remain in need of more effective therapeutic approaches. Survivin, an inhibitor of apoptosis (IAP) family member protein that inhibits apoptosis and drives cell proliferation, is commonly elevated in human and canine cancer. Survivin expression is a negative prognostic factor in dogs with LSA and OS, and canine LSA and OS cell lines express high levels of survivin. In this study, we demonstrate that survivin downregulation in canine LSA and OS cells using a clinically applicable locked nucleic acid antisense oligonucleotide (EZN-3042, Enzon Pharmaceuticals, Piscataway Township, NJ, USA) inhibits growth, induces apoptosis and enhances chemosensitivity in vitro, and inhibits survivin transcription and protein production in orthotopic canine OS xenografts. Our findings strongly suggest that survivin-directed therapies might be effective in treatment of canine LSA and OS and support evaluation of EZN-3042 in dogs with cancer. © 2014 John Wiley & Sons Ltd.

  16. Canine osteosarcoma karyotypes from an original tumor, its metastasis, and tumor cells in tissue culture

    International Nuclear Information System (INIS)

    Taylor, N.; Shifrine, M.; Wolf, H.G.; Trommershausen-Smith, A.

    1975-01-01

    Radiation-induced osteosarcoma, its metastasis, and cells grown in tissue culture were karyotyped. Both hypodiploid and hyperdiploid stem lines were observed. The hypodiploid line contained 45-55 chromosomes with 10 to 15 abnormal metacentric and submetacentric chromosomes and one subtelocentric marker. The hyperdiploid line contained 90 to 105 chromosomes with 20 to 30 abnormal metacentric and submetacentric chromosomes with two subtelocentric markers. Karyotypic analysis can be used to monitor osteosarcomas maintained in tissue culture

  17. CD4 T cell knockout does not protect against kidney injury and worsens cancer.

    Science.gov (United States)

    Ravichandran, Kameswaran; Wang, Qian; Ozkok, Abdullah; Jani, Alkesh; Li, Howard; He, Zhibin; Ljubanovic, Danica; Weiser-Evans, Mary C; Nemenoff, Raphael A; Edelstein, Charles L

    2016-04-01

    Most previous studies of cisplatin-induced acute kidney injury (AKI) have been in models of acute, high-dose cisplatin administration that leads to mortality in non-tumor-bearing mice. The aim of the study was to determine whether CD4 T cell knockout protects against AKI and cancer in a clinically relevant model of low-dose cisplatin-induced AKI in mice with cancer. Kidney function, serum neutrophil gelatinase-associated lipocalin (NGAL), acute tubular necrosis (ATN), and tubular apoptosis score were the same in wild-type and CD4 -/- mice with AKI. The lack of protection against AKI in CD4 -/- mice was associated with an increase in extracellular signal-regulated kinase (ERK), p38, CXCL1, and TNF-α, mediators of AKI and fibrosis, in both cisplatin-treated CD4 -/- mice and wild-type mice. The lack of protection was independent of the presence of cancer or not. Tumor size was double, and cisplatin had an impaired therapeutic effect on the tumors in CD4 -/- vs. wild-type mice. Mice depleted of CD4 T cells using the GK1.5 antibody were not protected against AKI and had larger tumors and lesser response to cisplatin. In summary, in a clinically relevant model of cisplatin-induced AKI in mice with cancer, (1) CD4 -/- mice were not protected against AKI; (2) ERK, p38, CXCL1, and TNF-α, known mediators of AKI, and interstitial fibrosis were increased in CD4 -/- kidneys; and (3) CD4 -/- mice had faster tumor growth and an impaired therapeutic effect of cisplatin on the tumors. The data warns against the use of CD4 T cell inhibition to attenuate cisplatin-induced AKI in patients with cancer. A clinically relevant low-dose cisplatin model of AKI in mice with cancer was used. CD4 -/- mice were not functionally or histologically protected against AKI. CD4 -/- mice had faster tumor growth. CD4 -/- mice had an impaired therapeutic effect of cisplatin on the tumors. Mice depleted of CD4 T cells were not protected against AKI and had larger tumors.

  18. Oncogenic roles of TOPK and MELK, and effective growth suppression by small molecular inhibitors in kidney cancer cells.

    Science.gov (United States)

    Kato, Taigo; Inoue, Hiroyuki; Imoto, Seiya; Tamada, Yoshinori; Miyamoto, Takashi; Matsuo, Yo; Nakamura, Yusuke; Park, Jae-Hyun

    2016-04-05

    T-lymphokine-activated killer cell-originated protein kinase (TOPK) and maternal embryonic leucine zipper kinase (MELK) have been reported to play critical roles in cancer cell proliferation and maintenance of stemness. In this study, we investigated possible roles of TOPK and MELK in kidney cancer cells and found their growth promotive effect as well as some feedback mechanism between these two molecules. Interestingly, the blockade of either of these two kinases effectively caused downregulation of forkhead box protein M1 (FOXM1) activity which is known as an oncogenic transcriptional factor in various types of cancer cells. Small molecular compound inhibitors against TOPK (OTS514) and MELK (OTS167) effectively suppressed the kidney cancer cell growth, and the combination of these two compounds additively worked and showed the very strong growth suppressive effect on kidney cancer cells. Collectively, our results suggest that both TOPK and MELK are promising molecular targets for kidney cancer treatment and that dual blockade of OTS514 and OTS167 may bring additive anti-tumor effects with low risk of side effects.

  19. Detrimental effects of rat mesenchymal stromal cell pre-treatment in a model of acute kidney rejection

    Directory of Open Access Journals (Sweden)

    Martina eSeifert

    2012-07-01

    Full Text Available Mesenchymal stromal cells (MSC have shown immunomodulatory and tissue repair potential including partial tolerance induction by pre-treatment of donor-specific cells in a rat heart transplantation model. Very recently, we could show that autologous MSC attenuated ischemia reperfusion injury in a highly mismatched donor-recipient rat kidney transplant model. Therefore, we investigated donor-specific MSC pre-treatment in this rat kidney transplantation model to study whether graft function could be improved, or if tolerance could be induced.Donor- and recipient-type MSC or PBS as a control were injected i.v. four days before kidney transplantation. Mycophenolate mofetil (MMF immunosuppression (20 mg/kg body weight was applied for 7 days. Kidney grafts and spleens were harvested between days 8-10 and analyzed by quantitative RT-PCR and immunohistology. In addition, creatinine levels in the blood were measured and serum was screened for the presence of donor-specific antibodies.Surprisingly, application of both donor- and recipient-specific MSC resulted in enhanced humoral immune responses verified by intragraft B cell infiltration and complement factor C4d deposits. Moreover, signs of inflammation and rejection were generally enhanced in both MSC-treated groups relative to PBS control group. Additionally, pre-treatment with donor-specific MSC significantly enhanced the level of donor-specific antibody formation when compared with PBS- or recipient-MSC-treated groups. Pre-treatment with both MSC types resulted in a higher degree of kidney cortex tissue damage and elevated creatinine levels at the time point of rejection. Thus, MSC pre-sensitization in this model impairs the allograft outcome.Our data from this pre-clinical kidney transplantation model indicate that pre-operative MSC administration may not be optimal in kidney transplantation and caution must be exerted before moving forward with clinical studies in order to avoid adverse effects.

  20. Establishment of a novel high-affinity IgE receptor-positive canine mast cell line with wild-type c-kit receptors

    International Nuclear Information System (INIS)

    Amagai, Yosuke; Tanaka, Akane; Ohmori, Keitaro; Matsuda, Hiroshi

    2008-01-01

    Much is known regarding participations of mast cells with innate and acquired immunity by secreting various cytokines and chemical mediators. However, details of mast cell biology still remain unclear. In this study, we successfully established a novel growth factor-independent mast cell line (MPT-1) derived from canine mast cell tumor. MPT-1 cells manifested factor-independent proliferation as floating cells containing a large amount of histamine, as well as chymase-like dog mast cell protease 3, in cytosolic granules. Particularly, MPT-1 cells expressed high-affinity IgE receptors (FcεRI) and wild-type c-kit receptors. Degranulation of MPT-1 cells was induced not only by stimulation with calcium ionophore but also by cross-linkage of the surface IgE. Given that MPT-1 is the first mast cell line with FcεRI which has no c-kit mutations, MPT-1 cells may provide great contribution for investigation of IgE-mediated activation mechanisms of mast cells, leading to development of effective treatment for allergic disorders

  1. Evaluation of apoptotic cell death in normal and chondrodystrophic canine intervertebral discs

    Directory of Open Access Journals (Sweden)

    Marie Klauser

    2012-02-01

    Full Text Available Disc degeneration occurs commonly in dogs. A variety of factors is thought to contribute an inappropriate disc matrix that isolate cells in the disc and lead to apoptosis. Disc herniation with radiculopathy and discogenic pain are the results of the degenerative process. The objective of this prospective study was to determine the extent of apoptosis in intact and herniated intervertebral discs of chondrodystrophic dogs and non-chondrodystrophic dogs. In addition, the nucleus pulposus (NP was histologically compared between non-chondrodystrophic and chondrodystrophic dogs. Thoracolumbar intervertebral discs and parts of the extruded nucleus pulposus were harvested from 45 dogs. Samples were subsequently stained with haematoxylin-eosin and processed to detect cleaved caspase-3 and poly(ADP-ribose polymerase. A significant greater degree of apoptosis was observed in herniated NPs of chondrodystrophic dogs compared to non- chondrodystrophic dogs with poly (ADP-ribose polymerase and cleaved caspase- 3 detection. Within the group of chondrodystrophic dogs, dogs with an intact disc and younger than 6 years showed a significant lower incidence of apoptosis in the NP compared to the herniated NP of chondrodystrophic dogs. The extent of apoptosis in the annulus fibrosus was not different between the intact disc from chondrodystrophic and non- chondrodystrophic dogs. An age-related increase of apoptotic cells in NP and annulus fibrosus was found in the intact non-herniated intervertebral discs. Histologically, absence of notochordal cells and occurrence of chondroid metaplasia were observed in the nucleus pulposus of chondrodystrophic dogs. As a result, we found that apoptosis plays a role in disc degeneration in chondrodystrophic dogs.

  2. Canine distemper virus infection in fennec fox (Vulpes zerda).

    Science.gov (United States)

    Woo, Gye-Hyeong; Jho, Yeon-Sook; Bak, Eun-Jung

    2010-08-01

    Fifteen 8-month-old fennec foxes imported from Sudan showed fever, mucopurulent ocular discharge, diarrhea, severe emaciation, seizures, and generalized ataxia, and died. Three of the 15 animals were presented for diagnostic investigation. Severe dehydration, brain congestion, and gastric ulcers were observed in all animals. In one animal, the lungs had failed to collapse and were multifocally dark red in appearance. Histopathologically, there were lymphohistiocytic meningoencephalitis with malacia, mild interstitial pneumonia, lymphoid depletion of lymphoid tissues and organs, and intestinal villous atrophy with intralesional coccidia. There were many intracytoplasmic and/or intranuclear inclusion bodies in the epithelial cells of the medullary velum, lungs, liver, kidneys, trachea, pancreas, stomach, gall bladder, urinary bladder, and ureters, and in macrophages of malacia foci and lymphocytes and macrophages of lymphoid organs. Additionally, intestinal coccidia were confirmed to be Isospora species by a fecal test. To our knowledge, this is the first report of canine distemper with intestinal coccidiosis in fennec fox.

  3. ET-1 deletion from endothelial cells protects the kidney during the extension phase of ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Arfian, Nur [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Vignon-Zellweger, Nicolas; Nakayama, Kazuhiko; Yagi, Keiko [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Hirata, Ken-ichi [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ischemia/reperfusion injury (IRI) induced increased endothelin-1 (ET-1) expression. Black-Right-Pointing-Pointer IRI was accompanied by tubular injury and remodeling of renal arteries. Black-Right-Pointing-Pointer IRI increased oxidative stress and inflammation. Black-Right-Pointing-Pointer Genetic suppression of ET-1 in endothelial cells attenuates IRI in the kidney. Black-Right-Pointing-Pointer The mechanisms include the inhibition of oxidative stress and inflammation. -- Abstract: Background: The prognosis of patients after acute kidney injury (AKI) is poor and treatment is limited. AKI is mainly caused by renal ischemia/reperfusion injury (IRI). During the extension phase of IRI, endothelial damage may participate in ischemia and inflammation. Endothelin-1 (ET-1) which is mostly secreted by endothelial cells is an important actor of IRI, particularly through its strong vasoconstrictive properties. We aimed to analyze the specific role of ET-1 from the endothelial cells in AKI. Methods: We used mice lacking ET-1 in the vascular endothelial cells (VEETKO). We induced IRI in VEETKO mice and wild type controls by clamping both kidneys for 30 min. Sham operated mice were used as controls. Mice were sacrificed one day after IRI in order to investigate the extension phase of IRI. Kidney function was assessed based on serum creatinine concentration. Levels of expression of ET-1, its receptor ET{sub A}, protein kinase C, eNOS, E-Cadherin and inflammation markers were evaluated by real time PCR or western blot. Tubular injury was scored on periodic acid Schiff stained kidney preparations. Lumen and wall area of small intrarenal arteries were measured on kidney slices stained for alpha smooth muscle cell actin. Oxidative stress, macrophage infiltration and cell proliferation was evaluated on slices stained for 8-hydroxy-2 Prime -deoxyguanosine, F4/80 and PCNA, respectively. Results: IRI induced kidney failure and increased ET-1 and

  4. Cellular distribution of inorganic mercury and its relation to cytotoxicity in bovine kidney cell cultures

    International Nuclear Information System (INIS)

    Bracken, W.M.; Sharma, R.P.; Bourcier, D.R.

    1984-01-01

    A bovine kidney cell culture system was used to assess what relationship mercuric chloride (HgCl 2 ) uptake and subcellular distribution had to cytotoxicity. Twenty-four-hour incubations with 0.05-50 μM HgCl 2 elicited a concentration-related cytotoxicity. Cellular accumulation of 203 Hg was also concentration-related, with 1.0 nmol/10 6 cells at the IC50. Measurement of Hg uptake over the 24-h exposure period revealed a multiphasic process. Peak accumulation was attained by 1 h and was followed by extrusion and plateauing of intracellular Hg levels. Least-squares regression analysis of the cytotoxicity and cellular uptake data indicated a potential relationship between the Hg uptake and cytotoxicity. However, the subcellular distribution of Hg was not concentration-related. Mitochondria and soluble protein fractions accounted for greater than 65% of the cell-associated Hg at all concentrations. The remaining Hg was distributed between the microsomal (6-10%) and nuclear and cell debris (11-22%) fractions at all concentrations tested. Less than 20% of the total cell-associated Hg was bound with metallothionein-like protein. 31 references, 4 figures, 3 tables

  5. Effects of the food additive, citric acid, on kidney cells of mice.

    Science.gov (United States)

    Chen, Xg; Lv, Qx; Liu, Ym; Deng, W

    2015-01-01

    Citric acid is a food additive that is widely used in the food and drink industry. We investigated the effects of citric acid injection on mouse kidney. Forty healthy mice were divided into four groups of 10 including one control group and three citric acid-treated groups. Low dose, middle dose and high dose groups were given doses of 120, 240 and 480 mg/kg of citric acid, respectively. On day 7, kidney tissues were collected for histological, biochemical and molecular biological examination. We observed shrinkage of glomeruli, widened urinary spaces and capillary congestion, narrowing of the tubule lumen, edema and cytoplasmic vacuolated tubule cells, and appearance of pyknotic nuclei. The relation between histopathological changes and citric acid was dose dependent. Compared to the control, T-SOD and GSH-Px activities in the treated groups decreased with increasing doses of citric acid, NOS activity tended to increase, and H2O2 and MDA contents gradually decreased, but the differences between any treated group and the control were not statistically significant. The apoptosis assay showed a dose-dependent increase of caspase-3 activity after administering citrate that was statistically significant. DNA ladder formation occurred after treatment with any dose of citric acid. We concluded that administration of citric acid may cause renal toxicity in mice.

  6. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney

    Science.gov (United States)

    Roy, Angshumoy; Kumar, Vijetha; Zorman, Barry; Fang, Erica; Haines, Katherine M.; Doddapaneni, HarshaVardhan; Hampton, Oliver A.; White, Simon; Bavle, Abhishek A.; Patel, Nimesh R.; Eldin, Karen W.; John Hicks, M.; Rakheja, Dinesh; Leavey, Patrick J.; Skapek, Stephen X.; Amatruda, James F.; Nuchtern, Jed G.; Chintagumpala, Murali M.; Wheeler, David A.; Plon, Sharon E.; Sumazin, Pavel; Parsons, D. Williams

    2015-01-01

    The X-linked BCL-6 co-repressor (BCOR) gene encodes a key constituent of a variant polycomb repressive complex (PRC) that is mutated or translocated in human cancers. Here we report on the identification of somatic internal tandem duplications (ITDs) clustering in the C terminus of BCOR in 23 of 27 (85%) pediatric clear cell sarcomas of the kidney (CCSK) from two independent cohorts. We profile CCSK tumours using a combination of whole-exome, transcriptome and targeted sequencing. Identical ITD mutations are found in primary and relapsed tumour pairs but not in adjacent normal kidney or blood. Mutant BCOR transcripts and proteins are markedly upregulated in ITD-positive tumours. Transcriptome analysis of ITD-positive CCSKs reveals enrichment for PRC2-regulated genes and similarity to undifferentiated sarcomas harbouring BCOR–CCNB3 fusions. The discovery of recurrent BCOR ITDs defines a major oncogenic event in this childhood sarcoma with significant implications for diagnostic and therapeutic approaches to this tumour. PMID:26573325

  7. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK cells

    Directory of Open Access Journals (Sweden)

    Akira Marine

    2014-01-01

    Full Text Available Superoxide is widely regarded as the primary reactive oxygen species (ROS which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ, a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS inhibitor demonstrated that peroxynitrite (at low micromolar levels induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.

  8. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy?

    Directory of Open Access Journals (Sweden)

    Usha Panchapakesan

    Full Text Available Sodium/glucose cotransporter 2 (SGLT2 inhibitors are oral hypoglycemic agents used to treat patients with diabetes mellitus. SGLT2 inhibitors block reabsorption of filtered glucose by inhibiting SGLT2, the primary glucose transporter in the proximal tubular cell (PTC, leading to glycosuria and lowering of serum glucose. We examined the renoprotective effects of the SGLT2 inhibitor empagliflozin to determine whether blocking glucose entry into the kidney PTCs reduced the inflammatory and fibrotic responses of the cell to high glucose. We used an in vitro model of human PTCs. HK2 cells (human kidney PTC line were exposed to control 5 mM, high glucose (HG 30 mM or the profibrotic cytokine transforming growth factor beta (TGFβ1; 0.5 ng/ml in the presence and absence of empagliflozin for up to 72 h. SGLT1 and 2 expression and various inflammatory/fibrotic markers were assessed. A chromatin immunoprecipitation assay was used to determine the binding of phosphorylated smad3 to the promoter region of the SGLT2 gene. Our data showed that TGFβ1 but not HG increased SGLT2 expression and this occurred via phosphorylated smad3. HG induced expression of Toll-like receptor-4, increased nuclear deoxyribonucleic acid binding for nuclear factor kappa B (NF-κB and activator protein 1, induced collagen IV expression as well as interleukin-6 secretion all of which were attenuated with empagliflozin. Empagliflozin did not reduce high mobility group box protein 1 induced NF-κB suggesting that its effect is specifically related to a reduction in glycotoxicity. SGLT1 and GLUT2 expression was not significantly altered with HG or empagliflozin. In conclusion, empagliflozin reduces HG induced inflammatory and fibrotic markers by blocking glucose transport and did not induce a compensatory increase in SGLT1/GLUT2 expression. Although HG itself does not regulate SGLT2 expression in our model, TGFβ increases SGLT2 expression through phosphorylated smad3.

  9. DNA methylation analysis in rat kidney epithelial cells exposed to 3-MCPD and glycidol.

    Science.gov (United States)

    Senyildiz, Mine; Alpertunga, Buket; Ozden, Sibel

    2017-10-01

    3-Monochloropropane-1,2-diol (3-MCPD) is a well-known food processing contaminant that has been regarded as a rat carcinogen, which is known to induce Leydig-cell and mammary gland tumors in males, as well as kidney tumors in both genders. 3-MCPD is highly suspected to be a non-genotoxic carcinogen. 2,3-Epoxy-1-propanol (glycidol) can be formed via dehalogenation from 3-MCPD. We aimed to investigate the cytotoxic effects of 3-MCPD and glycidol, then to demonstrate the possible epigenetic mechanisms with global and gene-specific DNA methylation in rat kidney epithelial cells (NRK-52E). IC 50 value of 3-MCPD was determined as 48 mM and 41.39 mM, whereas IC 50 value of glycidol was 1.67 mM and 1.13 mM by MTT and NRU test, respectively. Decreased global DNA methylation at the concentrations of 100 μM and 1000 μM for 3-MCPD and 100 μM and 500 μM for glycidol were observed after 48 h exposure by using 5-methylcytosine (5-mC) ELISA kit. Methylation changes were detected in promoter regions of c-myc and Rassf1a in 3-MCPD and glycidol treated NRK-52E cells by using methylation-specific PCR (MSP), whereas changes on gene expression of c-myc and Rassf1a were observed by using real-time PCR. However, e-cadherin, p16, VHL and p15 genes were unmethylated in their CpG promoter regions in response to treatment with 3-MCPD and glycidol. Alterations in DNA methylation might be key events in the toxicity of 3-MCPD and glycidol.

  10. Expression of methionine adenosyltransferase 2A in renal cell carcinomas and potential mechanism for kidney carcinogenesis

    International Nuclear Information System (INIS)

    Wang, Xuliang; Guo, Xiaoqiang; Yu, Wenshui; Li, Cailing; Gui, Yaoting; Cai, Zhiming

    2014-01-01

    Methionine adenosyltransferase 2A (MAT2A) is an enzyme that catalyzes the formation of S-adenosylmethionine (SAMe) by joining methionine and ATP. SAMe is a methyl donor for transmethylation and has an important role for DNA and/or protein methylation. MAT2A is expressed widely in many tissues especially in kidney. Several studies have demonstrated that there are abnormal expressions of MAT2A in several kinds of cancers such as liver and colon cancers. But the relationship of MAT2A between renal cell carcinomas (RCC) is less understood. The mRNA expression level of the MAT2A gene was determined in 24 RCC patients and 4 RCC cell lines, using real-time quantitative-polymerase chain reaction (RT-PCR). The MAT2A protein content was measured by western blotting and immunohistochemical analysis in 55 RCC patients. The mRNA levels of heme oxygenase-1 (HO-1) and cyclooxygenase-2 (COX-2) were also analysized in patients using RT-PCR. The correlations between the MAT2A and HO-1 as well as COX-2 were analyzed with nonparametric Spearman method. MAT2A transcript was significantly downregulated in cancer tissues compared to normal tissues (P < 0.05). Immunohistochemical analysis and western blotting indicated that level of MAT2A protein was decreased in cancer tissues. The statistical analysis reveals a negative correlation between MAT2A and HO-1 expression in RCC patients and cell lines (P < 0.01). This study demonstrated that MAT2A was lower expression in cancer tissues, suggesting that it may be involved in the development of RCC. MAT2A is a transcriptional corepressor for HO-1 expression by supplying SAM for methyltransferases, which may be one of potential mechanism of MAT2A as tumor suppressor in kidney carcinogenesis

  11. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues

    OpenAIRE

    Yokoo, Takashi; Ohashi, Toya; Shen, Jin Song; Sakurai, Ken; Miyazaki, Yoichi; Utsunomiya, Yasunori; Takahashi, Masanori; Terada, Yoshio; Eto, Yoshikatsu; Kawamura, Tetsuya; Osumi, Noriko; Hosoya, Tatsuo

    2005-01-01

    The use of stem cells has enabled the successful generation of simple organs. However, anatomically complicated organs such as the kidney have proven more refractory to stem-cell-based regenerative techniques. Given the limits of allogenic organ transplantation, an ultimate therapeutic solution is to establish self-organs from autologous stem cells and transplant them as syngrafts back into donor patients. To this end, we have striven to establish an in vitro organ factory to build up complex...

  12. The Use of Fibrous, Supramolecular Membranes and Human Tubular Cells for Renal Epithelial Tissue Engineering : Towards a Suitable Membrane for a Bioartificial Kidney

    NARCIS (Netherlands)

    Dankers, Patricia Y. W.; Boomker, Jasper M.; Huizinga-van der Vlag, Ali; Smedts, Frank M. M.; Harmsen, Martin C.; van Luyn, Marja J. A.

    2010-01-01

    A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We

  13. The use of fibrous, supramolecular membranes and human tubular cells for renal epithelial tissue engineering: towards a suitable membrane for a bioartificial kidney,

    NARCIS (Netherlands)

    Dankers, P.Y.W.; Boomker, J.M.; Huizinga-van der Vlag, A.; Smedts, F.M.M.; Harmsen, M.C.; Luyn, van M.J.A.

    2010-01-01

    A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We

  14. Effects of the prescription of reinforcing kidney, nourishing blood, improving eyesight on ARPE-19 cells induced by acrolein

    Directory of Open Access Journals (Sweden)

    Man Li

    2015-05-01

    Full Text Available AIM: To explore the effects of the prescription of reinforcing kidney, nourishing blood, improving eyesight on the oxidative stress model of ARPE-19 cells induced by acrolein. METHODS: SD rats serum containing the prescription of reinforcing kidney, nourishing blood, improving eyesight and the content of distilled water in serum were prepared. The effects of the prescription and distilled water in serum at different concentration(2.5%, 5%, 10%, 20% and 40%on cell vitality was observed by cell counting kit(CCK-8assay. the logarithmic phase of ARPE-19 cells were pretreated by different concentrations(1.25%, 2.5% and 5%of the prescription serum and distilled water in serum for 24h. Then it was treated with 75μmol/L acrolein for 24h. Cell vitality was observed by CCK-8 assay. The change of cell nucleus was detected by DAPI staining.RESULTS: 2.5% and 5% serum had no effect on cell viability(P>0.05, while 10%, 20%, 40% serum could inhibit cell viability(PPCONCLUSION: The prescription of reinforcing kidney, nourishing blood, improving eyesight has the protective effect on ARPE-19 cell damage induced by acrolein.

  15. Pilot study utilizing Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography for glycolytic phenotyping of canine mast cell tumors.

    Science.gov (United States)

    Griffin, Lynn R; Thamm, Doug H; Selmic, Laura E; Ehrhart, E J; Randall, Elissa

    2018-03-23

    The goal of this prospective pilot study was to use naturally occurring canine mast cell tumors of various grades and stages as a model for attempting to determine how glucose uptake and markers of biologic behavior are correlated. It was hypothesized that enhanced glucose uptake, as measured by 2-[fluorine-18]fluoro-d-glucose-positron emission tomography/computed tomography (F18 FDG PET-CT), would correlate with histologic grade. Dogs were recruited for this study from a population referred for treatment of cytologically or histologically confirmed mast cell tumors. Patients were staged utilizing standard of care methods (abdominal ultrasound and three view thoracic radiographs), followed by a whole body F18 FDG PET-CT. Results of the F18 FDG PET-CT were analyzed for possible metastasis and standard uptake value maximum (SUV max ) of identified lesions. Incisional or excisional biopsies of the accessible mast cell tumors were obtained and histology performed. Results were then analyzed to look for a possible correlation between the grade of mast cell tumors and SUV max . A total of nine animals were included in the sample. Findings indicated that there was a correlation between grade of mast cell tumors and SUV max as determined by F18 FDG PET-CT (p-value = 0.073, significance ≤ 0.1). Based on the limited power of this study, it is felt that further research to examine the relationship between glucose utilization and biologic aggressiveness in canine mast cell tumors is warranted. This study was unable to show that F18 FDG PET-CT was a better staging tool than standard of care methods. © 2018 American College of Veterinary Radiology.

  16. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression.

    Science.gov (United States)

    Law, Becker M P; Wilkinson, Ray; Wang, Xiangju; Kildey, Katrina; Lindner, Mae; Rist, Melissa J; Beagley, Kenneth; Healy, Helen; Kassianos, Andrew J

    2017-07-01

    Natural killer (NK) cells are a population of lymphoid cells that play a significant role in mediating innate immune responses. Studies in mice suggest a pathological role for NK cells in models of kidney disease. In this study, we characterized the NK cell subsets present in native kidneys of patients with tubulointerstitial fibrosis, the pathological hallmark of chronic kidney disease. Significantly higher numbers of total NK cells (CD3 - CD56 + ) were detected in renal biopsies with tubulointerstitial fibrosis compared with diseased biopsies without fibrosis and healthy kidney tissue using multi-color flow cytometry. At a subset level, both the CD56 dim NK cell subset and particularly the CD56 bright NK cell subset were elevated in fibrotic kidney tissue. However, only CD56 bright NK cells significantly correlated with the loss of kidney function. Expression of the tissue-retention and -activation molecule CD69 on CD56 bright NK cells was significantly increased in fibrotic biopsy specimens compared with non-fibrotic kidney tissue, indicative of a pathogenic phenotype. Further flow cytometric phenotyping revealed selective co-expression of activating receptor CD335 (NKp46) and differentiation marker CD117 (c-kit) on CD56 bright NK cells. Multi-color immunofluorescent staining of fibrotic kidney tissue localized the accumulation of NK cells within the tubulointerstitium, with CD56 bright NK cells (NKp46 + CD117 + ) identified as the source of pro-inflammatory cytokine interferon-γ within the NK cell compartment. Thus, activated interferon-γ-producing CD56 bright NK cells are positioned to play a key role in the fibrotic process and progression to chronic kidney disease. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Xiaofang Yu

    Full Text Available Mesenchymal stem cell (MSC administration is known to enhance the recovery of the kidney following injury. Here we tested the potential of hypoxic-preconditioned-MSC transplantation to enhance the efficacy of cell therapy on acute kidney injury (AKI by improving MSC migration to the injured kidney. Cobalt was used as hypoxia mimetic preconditioning (HMP. MSC were subjected to HMP through 24 h culture in 200 µmol/L cobalt. Compared to normoxia cultured MSC (NP-MSC, HMP significantly increased the expression of HIF-1α and CXCR4 in MSC and enhanced the migration of MSC in vitro. This effect was lost when MSC were treated with siRNA targeting HIF-1α or CXCR4 antagonist. SPIO labeled MSC were administered to rats with I/R injury followed immediately by magnetic resonance imaging. Imaging clearly showed that HMP-MSC exhibited greater migration and a longer retention time in the ischemic kidney than NP-MSC. Histological evaluation showed more HMP-MSC in the glomerular capillaries of ischemic kidneys than in the kidneys receiving NP-MSC. Occasional tubules showed iron labeling in the HMP group, while no tubules had iron labeling in NP group, indicating the possibility of tubular transdifferentiation after HMP. These results were also confirmed by fluorescence microscopy study using CM-DiI labeling. The increased recruitment of HMP-MSC was associated with reduced kidney injury and enhanced functional recovery. This effect was also related to the increased paracrine action by HMP-MSC. Thus we suggest that by enhancing MSC migration and prolonging kidney retention, hypoxic preconditioning of MSC may be a useful approach for developing AKI cell therapy.

  18. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells

    Directory of Open Access Journals (Sweden)

    Malik Mohammed T

    2005-01-01

    Full Text Available Abstract Background Pituitary tumor transforming gene1 (PTTG1 is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3 cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293 cells. Results We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8. Conclusions Our results

  19. Epithelial-Mesenchymal Transition in Kidney Tubular Epithelial Cells Induced by Globotriaosylsphingosine and Globotriaosylceramide.

    Directory of Open Access Journals (Sweden)

    Yeo Jin Jeon

    Full Text Available Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A (α-gal A, which results in the deposition of globotriaosylceramide (Gb3 in the vascular endothelium. Globotriaosylsphingosine (lyso-Gb3, a deacylated Gb3, is also increased in the plasma of patients with Fabry disease. Renal fibrosis is a key feature of advanced Fabry disease patients. Therefore, we evaluated the association of Gb3 and lyso-Gb3 accumulation and the epithelial-mesenchymal transition (EMT on tubular epithelial cells of the kidney. In HK2 cells, exogenous treatments of Gb3 and lyso-Gb3 increased the expression of TGF-β, EMT markers (N-cadherin and α-SMA, and phosphorylation of PI3K/AKT, and decreased the expression of E-cadherin. Lyso-Gb3, rather than Gb3, strongly induced EMT in HK2 cells. In the mouse renal mesangial cell line, SV40 MES 13 cells, Gb3 strongly induced phenotype changes. The EMT induced by Gb3 was inhibited by enzyme α-gal A treatment, but EMT induced by lyso-Gb3 was not abrogated by enzyme treatment. However, TGF-β receptor inhibitor (TRI, SB525334 inhibited the activation of TGF-β and EMT markers in HK2 cells with Gb3 and lyso-Gb3 treatments. This study suggested that increased plasma lyso-Gb3 has a crucial role in the development of renal fibrosis through the cell-specific induction of the EMT in Fabry disease, and that TRI treatment, alongside enzyme replacement therapy, could be a potential therapeutic option for patients with Fabry disease.

  20. Elevated pulse pressure is associated with hemolysis, proteinuria and chronic kidney disease in sickle cell disease.

    Directory of Open Access Journals (Sweden)

    Enrico M Novelli

    Full Text Available A seeming paradox of sickle cell disease is that patients do not suffer from a high prevalence of systemic hypertension in spite of endothelial dysfunction, chronic inflammation and vasculopathy. However, some patients do develop systolic hypertension and increased pulse pressure, an increasingly recognized major cardiovascular risk factor in other populations. Hence, we hypothesized that pulse pressure, unlike other blood pressure parameters, is independently associated with markers of hemolytic anemia and cardiovascular risk in sickle cell disease. We analyzed the correlates of pulse pressure in patients (n  =  661 enrolled in a multicenter international sickle cell trial. Markers of hemolysis were analyzed as independent variables and as a previously validated hemolytic index that includes multiple variables. We found that pulse pressure, not systolic, diastolic or mean arterial pressure, independently correlated with high reticulocyte count (beta  =  2.37, p  =  0.02 and high hemolytic index (beta  =  1.53, p = 0.002 in patients with homozygous sickle cell disease in two multiple linear regression models which include the markers of hemolysis as independent variables or the hemolytic index, respectively. Pulse pressure was also independently associated with elevated serum creatinine (beta  =  3.21, p  =  0.02, and with proteinuria (beta  =  2.52, p  =  0.04. These results from the largest sickle cell disease cohort to date since the Cooperative Study of Sickle Cell Disease show that pulse pressure is independently associated with hemolysis, proteinuria and chronic kidney disease. We propose that high pulse pressure may be a risk factor for clini