WorldWideScience

Sample records for candu power plants

  1. CANDU 9 nuclear power plant simulator

    International Nuclear Information System (INIS)

    Kattan, M.; MacBeth, M.J.; Lam, K.

    1995-01-01

    Simulators are playing, an important role in the design and operations of CANDU reactors. They are used to analyze operating procedures under standard and upset conditions. The CANDU 9 nuclear power plant simulator is a low fidelity, near full scope capability simulator. It is designed to play an integral part in the design and verification of the control centre mock-up located in the AECL design office. It will also provide CANDU plant process dynamic data to the plant display system (PDS), distributed control system (DCS) and to the mock-up panel devices. The simulator model employs dynamic mathematical models of the various process and control components that make up a nuclear power plant. It provides the flexibility to add, remove or update user supplied component models. A block oriented process input is provided with the simulator. Individual blocks which represent independent algorithms of the model are linked together to generate the required overall plant model. As a design tool the simulator will be used for control strategy development, human factors studies (information access, readability, graphical display design, operability), analysis of overall plant control performance, tuning estimates for major control loops and commissioning strategy development. As a design evaluation tool, the simulator will be used to perform routine and non-routine procedures, practice 'what if' scenarios for operational strategy development, practice malfunction recovery procedures and verify human factors activities. This paper will describe the CANDU 9 plant simulator and demonstrate its implementation and proposed utility as a tool in the control system and control centre design of a CANDU 9 nuclear power plant. (author). 2 figs

  2. Distributed control system for CANDU 9 nuclear power plant

    International Nuclear Information System (INIS)

    Harber, J.E.; Kattan, M.K.; Macbeth, M.J.

    1996-01-01

    Canadian designed CANDU pressurized heavy water nuclear reactors have been world leaders in electrical power generation. The CANDU 9 project is AECL's next reactor design. The CANDU 9 plant monitoring, annunciation, and control functions are implemented in two evolutionary systems; the distributed control system (DCS) and the plant display system (PDS). The CDS implements most of the plant control functions in a single hardware platform. The DCS communicates with the PDS to provide the main operator interface and annunciation capabilities of the previous control computer designs along with human interface enhancements required in a modern control system. (author)

  3. Design requirements, criteria and methods for seismic qualification of CANDU power plants

    International Nuclear Information System (INIS)

    Singh, N.; Duff, C.G.

    1979-10-01

    This report describes the requirements and criteria for the seismic design and qualification of systems and equipment in CANDU nuclear power plants. Acceptable methods and techniques for seismic qualification of CANDU nuclear power plants to mitigate the effects or the consequences of earthquakes are also described. (auth)

  4. Experience with digital instrumentation and control systems for CANDU power plant modifications

    International Nuclear Information System (INIS)

    Basu, S.

    1997-01-01

    Over the last years, Ontario Hydro CANDU power plants have gone through many modifications. This includes modification from analog hardwired controls to digital and solid state controls and replacement of the existing digital controls with the latest hardware and software technology. Examples of digital modifications at Bruce A and other CANDU power plants are briefly described and categorized. Most of the I and C technology development has been supported by the CANDU Owners Group (COG) a consortium of Canadian nuclear utilities and the Atomic Energy Canada Limited (AECL). (author)

  5. Experience with digital instrumentation and control systems for CANDU power plant modifications

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S [Ontario Hydro, Toronto, ON (Canada)

    1997-07-01

    Over the last years, Ontario Hydro CANDU power plants have gone through many modifications. This includes modification from analog hardwired controls to digital and solid state controls and replacement of the existing digital controls with the latest hardware and software technology. Examples of digital modifications at Bruce A and other CANDU power plants are briefly described and categorized. Most of the I and C technology development has been supported by the CANDU Owners Group (COG) a consortium of Canadian nuclear utilities and the Atomic Energy Canada Limited (AECL). (author).

  6. Low Power Shutdown PSA for CANDU Type Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yeon Kyoung; Kim, Myung Su [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    KHNP also have concentrated on full power PSA. Some recently constructed OPR1000 type plants and APR1400 type plants have performed the low power and shutdown (LPSD) PSA. The purpose of LPSD PSA is to identify the main contributors on the accident sequences of core damage and to find the measure of safety improvement. After the Fukushima accident, Korean regulatory agency required the shutdown severe accident management guidelines (SSAMG) development for safety enhancement. For the reliability of SSAMG, KHNP should develop the LPSD PSA. Especially, the LPSD PSA for CANDU type plant had developed for the first time in Korea. This paper illustrates how the LPSD PSA for CANDU type developed and the core damage frequency (CDF) is different with that of full power PSA. KHNP performed LPSD PSA to develop the SSAMG after the Fukushima accidents. The results show that risk at the specific operation mode during outage is higher than that of full power operation. Also, the results indicated that recovery failure of class 4 power at the POS 5A, 5B contribute dominantly to the total CDF from importances analysis. LPSD PSA results such as CDF with initiating events and POSs, risk results with plant damage state, and containment failure probability and frequency with POSs can be used by inputs for developing the SSAMG.

  7. Periodic inspection of CANDU nuclear power plant containment components

    International Nuclear Information System (INIS)

    1989-09-01

    This Standard is one in a series intended to provide uniform requirements for CANDU nuclear power plants. It provides requirements for the periodic inspection of containment components including the containment pressure suppression systems

  8. Study of candu fuel elements irradiated in a nuclear power plant

    International Nuclear Information System (INIS)

    Ionescu, S.; Uta, O.; Mincu, M.; Anghel, D.; Prisecaru, I.

    2015-01-01

    The object of this work is the behaviour of CANDU fuel elements after service in nuclear power plant. The results are analysed and compared with previous result obtained on unirradiated samples and with the results obtained on samples irradiated in the TRIGA reactor of INR Pitesti. Zircaloy-4 is the material used for CANDU fuel sheath. The importance of studying its behaviour results from the fact that the mechanical properties of the CANDU fuel sheath suffer modifications during normal and abnormal operation. In the nuclear reactor, the fuel elements endure dimensional and structural changes as well as cladding oxidation, hydriding and corrosion. These changes can lead to defects and even to the loss of integrity of the cladding. This paper presents the results of examinations performed in the Post Irradiation Examination Laboratory (PIEL) of INR Pitesti on samples from fuel elements after they were removed out of the nuclear power plant: - dimensional and macrostructural characterization; - microstructural characterization by metallographic analyses; - determination of mechanical properties; - fracture surface analysis by scanning electron microscopy (SEM). A full set of non-destructive and destructive examinations concerning the integrity, dimensional changes, oxidation, hydriding and mechanical properties of the cladding was performed. The obtained results are typical for CANDU 6-type fuel. The obtained data could be used to evaluate the security, reliability and nuclear fuel performance, and for the improvement of the CANDU fuel. (authors)

  9. Strategic provisioning of replacement parts for CANDU power plants

    International Nuclear Information System (INIS)

    Mizuno, G.; Tume, P.; Prentice, J.

    2000-01-01

    Provisioning of replacement parts and management of critical spares are key factors in optimizing maintenance programs for CANDU power plants. With a view to supply assurance, Atomic Energy Canada Limited (AECL) has created a Spare Parts Branch (SPB) to provide a clear pipeline from the client to the delivered replacement part(s). SPB provides the client with assured access to a qualified supplier database, computer aided design, engineering and manufacturing services and material upgrades and design registration through the authorized inspection agency. The AECL spare parts strategic provisioning service plan that has four thrusts: 1) the efficient delivery of cost-effective replacement parts; 2) obsolete parts resolution; 3) a website that will provide our clients with real-time access to replacement part data; and 4) inventory recovery opportunities. Thrusts one and two are actively ensuring plant maintenance for on-shore and off-shore CANDU clients. Thrusts three and four are longer-term commitments. This paper will explore these thrusts in the context of our CANDU business practices. (author)

  10. Requirements for the support power systems of CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1990-08-01

    This Standard covers principal criteria and requirements for design, fabrication, installation, qualification, inspection, and documentation for assurance that support power will be available as required. The minimum requirements for support power are determined by the special safety systems and other safety-related systems that must function to ensure that the public health risk is acceptably low. Support power systems of a CANDU nuclear power plant include those parts of the electrical systems and instrument air systems that are necessary for the operation of safety-related systems

  11. Instrumentation and control systems for CANDU-PHW nuclear power plants

    International Nuclear Information System (INIS)

    Lepp, R.M.; Watkins, L.M.

    1982-02-01

    The instrumentation and control of CANDU nuclear power plants takes advantage of modern electronics technology in the extensive computerization of important control and man-machine functions. A description of these functions as well as those of the four Special Safety Systems is provided

  12. Emergency core cooling systems in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1981-12-01

    This report contains the responses by the Advisory Committee on Nuclear Safety to three questions posed by the Atomic Energy Control Board concerning the need for Emergency Core Cooling Systems (ECCS) in CANDU nuclear power plants, the effectiveness requirement for such systems, and the extent to which experimental evidence should be available to demonstrate compliance with effectiveness standards

  13. Future CANDU nuclear power plant design requirements document executive summary

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; S. A. Usmani

    1996-03-01

    The future CANDU Requirements Document (FCRED) describes a clear and complete statement of utility requirements for the next generation of CANDU nuclear power plants including those in Korea. The requirements are based on proven technology of PHWR experience and are intended to be consistent with those specified in the current international requirement documents. Furthermore, these integrated set of design requirements, incorporate utility input to the extent currently available and assure a simple, robust and more forgiving design that enhances the performance and safety. The FCRED addresses the entire plant, including the nuclear steam supply system and the balance of the plant, up to the interface with the utility grid at the distribution side of the circuit breakers which connect the switchyard to the transmission lines. Requirements for processing of low level radioactive waste at the plant site and spent fuel storage requirements are included in the FCRED. Off-site waste disposal is beyond the scope of the FCRED. 2 tabs., 1 fig. (Author) .new

  14. Integrated control centre concepts for CANDU power plants

    International Nuclear Information System (INIS)

    Lupton, L.R.; Davey, E.C.; Lapointe, P.A.; Shah, R.R.

    1990-01-01

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre

  15. Integrated control centre concepts for CANDU power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lupton, L. R.; Davey, E. C.; Lapointe, P. A.; Shah, R. R.

    1990-01-15

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre.

  16. Tricon hardware controller implementation of CANDU nuclear power plant shutdown system

    International Nuclear Information System (INIS)

    Zahedi, P.

    2007-01-01

    This paper introduces the implementation of logic functions associated with the shutdown systems of CANDU nuclear power plants. The experimental aspects of this work include development of control program embedded in shutdown systems of CANDU based NPPs. A physical test environment is designed to simulate the measurements of in-core flux detector (ICFD) and ion chamber (I/C) signals. The programmable logic used in this experimentation provides Triple Modular Redundant (TMR) architecture as well as a voting mechanism used upon execution of control program on each independent channel. (author)

  17. General requirements for concrete containment structures for CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1993-07-01

    This standard provides the general requirements used in the design, construction, testing, and commissioning of concrete containment structures for CANDU nuclear power plants designated as class containment and is directed to the owners, designers, manufacturers, fabricators, and constructors of the concrete components and parts

  18. General requirements for pressure-retaining systems and components in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1991-11-01

    This standard specifies the general requirements for the design, fabrication and installation of pressure-retaining systems, components, and their supports in CANDU nuclear power plants. (16 figs., 2 tabs., 25 refs.)

  19. Evolutionary CANDU 9 plant improvements

    International Nuclear Information System (INIS)

    Yu, S.K.W.

    1999-01-01

    The CANDU 9 is a 935 MW(e) nuclear power plant (NPP) based on the multi-unit Darlington and Bruce B designs with additional enhancements from our ongoing engineering and research programs. Added to the advantages of using proven systems and components, CANDU 9 offers improvement features with enhanced safety, improved operability and maintenance including a control centre with advanced man-machine interface, and improved project delivery in both engineering and construction. The CANDU 9 NPP design incorporated safety enhancements through careful attention to emerging licensing and safety issues. The designers assessed, revised and evolved such systems as the moderator, end shield, containment and emergency core cooling (ECC) systems while providing an integrated final design that is more passive and severe-accident-immune. AECL uses a feedback process to incorporate lessons learned from operating plants, from current projects experiences and from the implementation or construction phase of previous projects. Most of the requirements for design improvements are based on a systematic review of current operating CANDU stations in the areas of design and reliability, operability, and maintainability. The CANDU 9 Control Centre provides plant staff with improved operability and maintainability capabilities due to the combination of systematic design with human factors engineering and enhanced operating and diagnostics features. The use of advanced engineering tools and modem construction methods will reduce project implementation risk on project costs and schedules. (author)

  20. Preliminary evaluation of licensing issues associated with U.S.-sited CANDU-PHW nuclear power plants

    International Nuclear Information System (INIS)

    van Erp, J.B.

    1977-12-01

    The principal safety-related characteristics of current CANDU-PHW power plants are described, and a distinction between those characteristics which are intrinsic to the CANDU-PHW system and those that are not is presented. An outline is given of the main features of the Canadian safety and licensing approach. Differences between the U.S. and Canadian approach to safety and licensing are discussed. Some of the main results of the safety analyses, routinely performed for CANDU-PHW reactors, are presented. U.S.-NRC General Design Criteria are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to its conformance to the U.S.-NRC General Design Criteria. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S

  1. Preliminary evaluation of licensing issues associated with U. S. -sited CANDU-PHW nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    van Erp, J B

    1977-12-01

    The principal safety-related characteristics of current CANDU-PHW power plants are described, and a distinction between those characteristics which are intrinsic to the CANDU-PHW system and those that are not is presented. An outline is given of the main features of the Canadian safety and licensing approach. Differences between the U.S. and Canadian approach to safety and licensing are discussed. Some of the main results of the safety analyses, routinely performed for CANDU-PHW reactors, are presented. U.S.-NRC General Design Criteria are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to its conformance to the U.S.-NRC General Design Criteria. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S.

  2. Licensing evaluation of CANDU-PHW nuclear power plants relative to U.S. regulatory requirements

    International Nuclear Information System (INIS)

    Erp, J.B. van

    1978-01-01

    Differences between the U.S. and Canadian approach to safety and licensing are discussed. U.S. regulatory requirements are evaluated as regards their applicability to CANDU-PHW reactors; vice-versa the CANDU-PHW reactor is evaluated with respect to current Regulatory Requirements and Guides. A number of design modifications are proposed to be incorporated into the CANDU-PHW reactor in order to facilitate its introduction into the U.S. These modifications are proposed solely for the purpose of maintaining consistency within the current U.S. regulatory system and not out of a need to improve the safety of current-design CANDU-PHW nuclear power plants. A number of issues are identified which still require resolution. Most of these issues are concerned with design areas not (yet) covered by the ASME code. (author)

  3. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-15

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century.

  4. Development situation about the Canadian CANDU Nuclear Power Generating Stations

    International Nuclear Information System (INIS)

    Jeon, Yu Mi; Kim, Yong Hee; Park, Joo Hwan

    2009-07-01

    The CANDU reactor is the most versatile commercial power reactor in the world. The acronym 'CANDU', a registered trademark of Atomic Energy of Canada Limited, stands for 'CANada Deuterium Uranium'. CANDU uses heavy water as moderator and uranium (originally, natural uranium) as fuel. All current power reactors in Canada are of the CANDU type. Canada exports CANDU type reactor in abroad. CANDU type is used as the nuclear power plants to produce electrical. Today, there are 41 CANDU reactors in use around the world, and the design has continuously evolved to maintain into unique technology and performance. The CANDU-6 power reactor offers a combination of proven, superior and state-of-the-art technology. CANDU-6 was designed specifically for electricity production, unlike other major reactor types. One of its characteristics is a very high operating and fuel efficiency. Canada Nuclear Power Generating Stations were succeeded in a commercial reactor of which the successful application of heavy water reactor, natural uranium method and that on-power fuelling could be achieved. It was achieved through the joint development of a major project by strong support of the federal government, public utilities and private enterprises. The potential for customization to any country's needs, with competitive development and within any level of domestic industrial infrastructure, gives CANDU technology strategic importance in the 21st century

  5. Cernavoda nuclear power plant: Modifications in the fire protection measures of the CANDU 6 standard design

    International Nuclear Information System (INIS)

    Covalschi, V.

    1998-01-01

    Having as purpose the improvement of fire safety at the Cernavoda NPP - both in the prevention and the protection aspects in the case of fire - we implemented some modifications in the CANDU 6 standard design. These improvements are inspired, mainly, from two sources: the world-wide achievements in the field of fire protection techniques, introduced in nuclear power plants since the middle of 70's, when the CANDU 6 design was completed; the national practice and experience in fire protection, usually applied in industrial objectives (conventional power plants, in particular). The absence of any incident may be considered as a proof of the efficiency of the implemented fire preventing and protection measures. (author)

  6. A study for good regulatin of the CANDU's in Korea. Development of safety regulatory requirement for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Ki; Shin, Y. K.; Kim, J. S.; Yu, Y. J.; Lee, Y. J. [Ajou Univ., Suwon (Korea, Republic of)

    2001-03-15

    The objective of project is to derive the policy recommendations to improve the efficiency of CANDU plants regulation. These policy recommendations will eventually contribute to the upgrading of Korean nuclear regulatory system and safety enhancement. During the first phase of this 2 years study, following research activities were done. On-site survey and analysis on CANDU plants regulation. Review on CANDU plants regulating experiences and current constraints. Review and analysis on the new Canadian regulatory approach.

  7. Passive safety features for next generation CANDU power plants

    International Nuclear Information System (INIS)

    Natalizio, A.; Hart, R.S.; Lipsett, J.J.; Soedijono, P.; Dick, J.E.

    1989-01-01

    CANDU offers an evolutionary approach to simpler and safer reactors. The CANDU 3, an advanced CANDU, currently in the detailed design stage, offers significant improvements in the areas of safety, design simplicity, constructibility, operability, maintainability, schedule and cost. These are being accomplished by retaining all of the well known CANDU benefits, and by relying on the use of proven components and technologies. A major safety benefit of CANDU is the moderator system which is separate from the coolant. The presence of a cold moderator reduces the consequences arising from a LOCA or loss of heat sink event. In existing CANDU plants even the severe accident - LOCA with failure of the emergency core cooling system - is a design basis event. Further advances toward a simpler and more passively safe reactor will be made using the same evolutionary approach. Building on the strength of the moderator system to mitigate against severe accidents, a passive moderator cooling system, depending only on the law of gravity to perform its function, will be the next step of development. AECL is currently investigating a number of other features that could be incorporated in future evolutionary CANDU designs to enhance protection against accidents, and to limit off-site consequences to an acceptable level, for even the worst event. The additional features being investigated include passive decay heat removal from the heat transport system, a simpler emergency core cooling system and a containment pressure suppression/venting capability for beyond design basis events. Central to these passive decay heat removal schemes is the availability of a short-term heat sink to provide a decay heat removal capability of at least three days, without any station services. Preliminary results from these investigations confirm the feasibility of these schemes. (author)

  8. Experience teaching CD-ROM-based course on CANDU nuclear-power-plant systems and operation

    International Nuclear Information System (INIS)

    Rouben, Benjamin

    2008-01-01

    This paper presents personal experience garnered from teaching a CD-ROM-based course on CANDU Power-Plant Systems and Operation. This course was originally developed by Prof. G.T. Bereznai as research in distance-learning techniques when he was directing the Thai-Canadian Human Resources Development Project at Chulalongkorn University in Bangkok. The course has been offered in a number of universities, including McMaster University and the University of Ontario Institute of Technology. All the course material, including lectures, assignments, and a simulator, is provided on a CD-ROM. Lectures include a spoken soundtrack covering the material. The class often includes both undergraduate and graduate students. I found that most students appreciate having the material on electronic format, which they can view and review at will and on their own time. Students find this course quite intensive - it covers all major systems in the CANDU reactor and power plant in detail. A very important component of the course is the simulator, which teaches students how systems operate in normal operation, in power manoeuvres, and during process-system malfunctions. Effort in absorbing the material and performing assignments can often exceed 10 hours per week. Some of the simulator assignments involve tricky manoeuvres, requiring several tries to achieve the expected result. Some assignments may take several hours, especially if the manoeuvres requiring repetition take 30 minutes or more in real time. I found that some instruction in the basic theory of reactor physics and systems is appreciated by students. A few possible enhancements to the simulator model were identified. Graduate students taking the course are required to do an additional project; I assigned an investigation of the effects of xenon-concentration changes during 1 week of load cycling. In summary, this course provides to students the opportunity to learn a great deal about the workings of CANDU-plant systems. (author)

  9. MAAP4 CANDU analysis of a generic CANDU-6 plant: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, S.M.; Mathew, P.M

    2001-10-01

    To support the generic probabilistic safety analysis (PSA) program at AECL, in particular to conduct Level 2 PSA analysis of a CANDU 6 plant undergoing a postulated severe accident, the capability to conduct severe accident consequence analysis for a CANDU plant is required. For this purpose, AECL selected MAAP4 CANDU from a number of other severe accident codes. The necessary models for a generic CANDU 6 station have been implemented in the code, and the code version 0.2 beta was tested using station data, which were assembled for a generic CANDU 6 station. This paper describes the preliminary results of the consequence analysis using MAAP4 CANDU for a generic CANDU 6 station, when it undergoes a station blackout and a large loss-of-coolant accident scenario. The analysis results show that the plant response is consistent with the physical phenomena modeled and the failure criteria used. The results also confirm that the CANDU design is robust with respect to severe accidents, which is reflected in the calculated long times that are available for administering accident management measures to arrest the accident progression before the calandria vessel or containment become at risk. (author)

  10. Life extension, power upgrade, and return to service work for Pickering NGS and other PWR and CANDU plants

    International Nuclear Information System (INIS)

    Millman, J.; Idvorian, N.; Schneider, W.

    2002-01-01

    Work on life extension, power upgrade and return to service has been performed and is in progress for a number of PWR and CANDU plants. For PWR plants, power upgrade work has been done for the new replacement steam generators in several cases. This work consists of redoing the formal equipment qualification analysis and reports for the uprated operating conditions to support the application for license adjustment. Life extension assessments have been performed for several CANDU plants. These are highly detailed assessments in which the particular steam generator is reassessed part by part as to the ability of each to sustain full life operation and also extended life operation. Return to service work for Pickering NGSA specifically has included this type of assessment and also specific repair, cleaning and retrofit activities including secondary side inspection, waterlancing, divider plate repair, eddy current inspection, etc. Steam generator modifications and retrofit work have been performed in a number of cases. The paper discusses various life extension, power upgrade, equipment modification and return to service activities all of which are part of the renewed drive in the industry to realise the full potential of nuclear plants by getting more and better performance from the extended service of existing plants. (author)

  11. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Charlebois, P.; Hart, R.S.; Hopkins, J.R.

    1998-01-01

    Commercial versions of CANDU reactors were put into service starting more than 25 years ago. The first unit of Ontario Hydro's Pickering A station was put into service in 1971, and Bruce A in 1977. Most CANDU reactors, however, are only now approaching their mid-life of 15 to 20 years of operation. In particular, the first series of CANDU 6 plants which entered service in the early 1980's were designed for a 30 year life and are now approaching mid life. The current CANDU 6 design is based on a 40 year life as a result of advancement in design and materials through research and development. In order to assure safe and economic operation of these reactors, a comprehensive CANDU Plant Life Management (PLIM) program is being developed from the knowledge gained during the operation of Ontario Hydro's Pickering, Bruce, and Darlington stations, worldwide information from CANDU 6 stations, CANDU research and development programs, and other national and international sources. This integration began its first phase in 1994, with the identification of most of the critical systems structures and components in these stations, and a preliminary assessment of degradation and mechanisms that could affect their fitness for service for their planned life. Most of these preliminary assessments are now complete, together with the production of the first iteration of Life Management Plans for several of the systems and components. The Generic CANDU 6 PLIM program is now reaching its maturity, with formal processes to systematically identify and evaluate the major CSSCs in the station, and a plan to ensure that the plant surveillance, operation, and maintenance programs monitor and control component degradation well within the original design specifications essential for the plant life attainment. A Technology Watch program is being established to ensure that degradation mechanisms which could impact on plant life are promptly investigated and mitigating programs established. The

  12. Economics of CANDU

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.

    1981-02-01

    The cost of producing electricity from CANDU reactors is discussed. The total unit energy cost of base-load electricity from CANDU reactors is compared with that of coal-fired plants in Ontario. In 1980 nuclear power was 8.41 m$/kW.h less costly for plants of similar size and vintage. Comparison of CANDU with pressurized water reactors indicated that the latter would be about 26 percent more costly in Ontario

  13. The CANDU 3 containment structure

    International Nuclear Information System (INIS)

    1994-01-01

    The design of the CANDU 3 nuclear power plant is being developed by AECL CANDU's Saskatchewan office. There are 24 CANDU nuclear power units operating in Canada and abroad and eight units are under construction is Romania and South Korea. The design of the CANDU 3 plant has evolved on the basis of the proven CANDU design. The experiences gained during construction, commissioning and operation of the existing CANDU plants are considered in the design. Many technological enhancements have been implemented in the design processes in all areas. The object has been to develop an improved reactor design that is suitable for the current and the future markets worldwide. Throughout the design phase of CANDU 3, emphasis has been placed in reducing the cost and construction schedule of the plant. This has been achieved by implementing design improvements and using new construction techniques. Appropriate changes and improvements to the design to suit new requirements are also adopted. In CANDU plants, the containment structure acts as an ultimate barrier against the leakage of radioactive substances during normal operations and postulated accident conditions. The concept of the structural design of the containment structure has been examined in considerable detail. This has resulted in development of a new conceptual design for the containment structure for CANDU 3. This paper deals with this new design of the containment structure

  14. The development of emergency core cooling systems in the PWR, BWR, and HWR Candu type of nuclear power plants

    International Nuclear Information System (INIS)

    Mursid Djokolelono.

    1976-01-01

    Emergency core cooling systems in the PWR, BWR, and HWR-Candu type of nuclear power plant are reviewed. In PWR and BWR the emergency cooling can be catagorized as active high pressure, active low pressure, and a passive one. The PWR uses components of the shutdown cooling system: whereas the BWR uses components of pressure suppression contaiment. HWR Candu also uses the shutdown cooling system similar to the PWR except some details coming out from moderator coolant separation and expensive cost of heavy water. (author)

  15. Tritium inventory prediction in a CANDU plant

    International Nuclear Information System (INIS)

    Song, M.J.; Son, S.H.; Jang, C.H.

    1995-01-01

    The flow of tritium in a CANDU nuclear power plant was modeled to predict tritium activity build-up. Predictions were generally in good agreement with field measurements for the period 1983--1994. Fractional contributions of coolant and moderator systems to the environmental tritium release were calculated by least square analysis using field data from the Wolsong plant. From the analysis, it was found that: (1) about 94% of tritiated heavy water loss came from the coolant system; (2) however, about 64% of environmental tritium release came from the moderator system. Predictions of environmental tritium release were also in good agreement with field data from a few other CANDU plants. The model was used to calculate future tritium build-up and environmental tritium release at Wolsong site, Korea, where one unit is operating and three more units are under construction. The model predicts the tritium inventory at Wolsong site to increase steadily until it reaches the maximum of 66.3 MCi in the year 2026. The model also predicts the tritium release rate to reach a maximum of 79 KCi/yr in the year 2012. To reduce the tritium inventory at Wolsong site, construction of a tritium removal facility (TRF) is under consideration. The maximum needed TRF capacity of 8.7 MCi/yr was calculated to maintain tritium concentration effectively in CANDU reactors

  16. On the speed of response of an FPGA-based shutdown system in CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    She Jingke, E-mail: jshe2@uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario, N6A 5B9 (Canada); Jiang Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario, N6A 5B9 (Canada)

    2011-06-15

    Highlights: > Design and implementation of an FPGA-based CANDU SDS1. > Hardware-in-the-loop simulation for performance evaluation involved with an NPP simulator. > Comparison of the response time between FPGA-based trip channel and software-based PLC. - Abstract: Several issues in an FPGA based implementation of shutdown systems in CANDU nuclear power plants have been investigated in this paper. A particular attention is on the response time of an FPGA implementation of safety shutdown systems in comparison with operating system based software solutions as in existing CANDU plants. The trip decision logic under 'steam generator (SG) level low' condition has been examined in detail. The design and implementation of this logic on an FPGA platform have been carried out. The functionality tests are performed in a hardware-in-the-loop (HIL) environment by connecting the FPGA based system to an NPP simulator, and replacing one channel of Shutdown System Number 1 (SDS1) in the simulator by the FPGA implementation. The response time of the designed system is also measured through multiple tests under different conditions, and statistical data analysis has been performed. The results of the response time tests are compared against those of a software-based implementation of the same trip logic.

  17. Corrosion control in CANDU nuclear power reactors

    International Nuclear Information System (INIS)

    Lesurf, J.E.

    1974-01-01

    Corrosion control in CANDU reactors which use pressurized heavy water (PHW) and boiling light water (BLW) coolants is discussed. Discussions are included on pressure tubes, primary water chemistry, fuel sheath oxidation and hydriding, and crud transport. It is noted that corrosion has not been a significant problem in CANDU nuclear power reactors which is a tribute to design, material selection, and chemistry control. This is particularly notable at the Pickering Nuclear Generating Station which will have four CANDU-PHW reactors of 540 MWe each. The net capacity factor for Pickering-I from first full power (May 1971) to March 1972 was 79.5 percent, and for Pickering II (first full power November 1971) to March 1972 was 83.5 percent. Pickering III has just reached full power operation (May 1972) and Pickering IV is still under construction. Gentilly CANDU-BLW reached full power operation in May 1972 after extensive commissioning tests at lower power levels with no major corrosion or chemistry problems appearing. Experience and operating data confirm that the value of careful attention to all aspects of corrosion control and augur well for future CANDU reactors. (U.S.)

  18. Enhancing plant performance in newer CANDU plants utilizing PLiM methodologies

    International Nuclear Information System (INIS)

    Azeez, S.; Krishnan, V.S.; Nickerson, J.H.; Kakaria, B.

    2002-01-01

    Over the past 5 years, Atomic Energy of Canada Ltd. (AECL) has been working with CANDU utilities on comprehensive and integrated CANDU PLiM programs for successful and reliable operation through design life and beyond. Considerable progress has been made in the development of CANDU PLiM methodologies and implementation of the outcomes at the plants. The basis of CANDU PLiM programs is to understand the ageing degradation mechanisms, prevent/minimize the effects of these phenomena in the Critical Structures, Systems and Components (CSSCs), and maintain the CSSC condition as close as possible in the best operating condition. Effective plant practices in surveillance, maintenance, and operations are the primary means of managing ageing. From the experience to date, the CANDU PLiM program will modify and enhance, but not likely replace, existing plant programs that address ageing. However, a successful PLiM program will provide assurance that these existing plant programs are both effective and can be shown to be effective, in managing ageing. This requires a structured and managed approach to both the assessment and implementation processes

  19. CANDU combined cycles featuring gas-turbine engines

    International Nuclear Information System (INIS)

    Vecchiarelli, J.; Choy, E.; Peryoga, Y.; Aryono, N.A.

    1998-01-01

    In the present study, a power-plant analysis is conducted to evaluate the thermodynamic merit of various CANDU combined cycles in which continuously operating gas-turbine engines are employed as a source of class IV power restoration. It is proposed to utilize gas turbines in future CANDU power plants, for sites (such as Indonesia) where natural gas or other combustible fuels are abundant. The primary objective is to eliminate the standby diesel-generators (which serve as a backup supply of class III power) since they are nonproductive and expensive. In the proposed concept, the gas turbines would: (1) normally operate on a continuous basis and (2) serve as a reliable backup supply of class IV power (the Gentilly-2 nuclear power plant uses standby gas turbines for this purpose). The backup class IV power enables the plant to operate in poison-prevent mode until normal class IV power is restored. This feature is particularly beneficial to countries with relatively small and less stable grids. Thermodynamically, the advantage of the proposed concept is twofold. Firstly, the operation of the gas-turbine engines would directly increase the net (electrical) power output and the overall thermal efficiency of a CANDU power plant. Secondly, the hot exhaust gases from the gas turbines could be employed to heat water in the CANDU Balance Of Plant (BOP) and therefore improve the thermodynamic performance of the BOP. This may be accomplished via several different combined-cycle configurations, with no impact on the current CANDU Nuclear Steam Supply System (NSSS) full-power operating conditions when each gas turbine is at maximum power. For instance, the hot exhaust gases may be employed for feedwater preheating and steam reheating and/or superheating; heat exchange could be accomplished in a heat recovery steam generator, as in conventional gas-turbine combined-cycle plants. The commercially available GateCycle power plant analysis program was applied to conduct a

  20. Approach for seismic risk analysis for CANDU plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B-S; Kim, T; Kang, S-K [Korea Power Engineering Co., Seoul (Korea, Republic of); Hong, S-Y; Roh, S-R [Korea Electric Power Corp., Taejon (Korea, Republic of). Research Centre

    1996-12-31

    A seismic risk analysis for CANDU type plants has never been performed. The study presented here suggested that the approach generally applied to LWR type plants could lead to unacceptable result, if directly applied to CANDU plants. This paper presents a modified approach for the seismic risk analysis of CANDU plants. (author). 5 refs., 2 tabs., 2 figs.

  1. Value added services to CANDU plants

    International Nuclear Information System (INIS)

    Kakaria, B.K.

    2003-01-01

    Over the last decade or so, nuclear power plants, just like other types of electricity generating plants, have been facing a number of challenges. Depending on the operating environment of the utility, these challenges are forcing plant owners to examine all facets of the operating costs. Privatization, deregulation and economics of alternative electricity generation methods are exerting enormous pressure on nuclear power plants to streamline costs and improve their operational performance. CANDU reactors are no exception to these forces and face similar pressures. In particular, operating plants that are contemplating plant life extensions are being required to clearly demonstrate the economics of continued operation over other forms of power generation available to the utility. Improvement of capacity factors has the effect of increasing the revenues from the plant and as these revenues increase, the fixed portion of the plant costs including OM and A costs become a smaller percentage of the total revenues. Similar results can be achieved by aiming to reduce the plant OM and A costs. In reality, most well-planned intervention schemes directed at reducing OM and A costs tend to also increase the plant availability. Following plant turnover after commissioning, AECL has been supporting the CANDU owners and utilities with an assortment of products and services dealing with plant operations and outage management issues. AECL has taken the lead in arranging specialized resources, products and services by teaming with other complementary organizations to provide a complete suite of services. Recent examples of such support to operating CANDU plants will be described in the paper. AECL is responding to this changing business environment in two important ways. First, AECL is changing from simply providing a service to its clients towards providing value, something much more important. To this end, AECL is looking to other organizations to form alliances, partnerships and

  2. CANDU 9 operator plant display system

    International Nuclear Information System (INIS)

    Trueman, R.; Webster, A.; MacBeth, M.J.

    1997-01-01

    To meet evolving client and regulatory needs, AECL has adopted an evolutionary approach to the design of the CANDU 9 control centre. That is, the design incorporates feedback from existing stations, reflects the growing diversity in the roles and responsibilities of the operating staff, and reduces costs associated with plant capital and operations, maintenance and administration (OM and A), through the appropriate introduction of new technologies. Underlying this approach is a refined engineering design process that cost-effectively integrates operational feedback and human factors engineering to define the operating staff information and information presentation requirements. Based on this approach, the CANDU 9 control centre will provide utility operating staff with the means to achieve improved operations and reduced OM and A costs. One of the design features that will contribute to the improved operational capabilities of the control centre is a new Plant Display System (PDS) that is separate from the digital control system. The PDS will be used to implement non-safety panel, and console video display systems within the CANDU 9 main control room (MCR). This paper presents a detailed description of the CANDU 9 Plant Display System and features that provide increased operational capabilities. (author)

  3. Enhanced CANDU 6 Reactor

    International Nuclear Information System (INIS)

    Azeez, S.; Alizadeh, A.; Girouard, P.

    2005-01-01

    Full text: The CANDU 6 power reactor is visionary in its approach, remarkable for its on-power refuelling capability and proven over years of safe, economical and reliable power production. Developed by Atomic Energy of Canada Ltd, the CANDU 6 design offers excellent performance utilizing state-of-the-art technology. The first CANDU 6 plants went into service in the early 1980's as leading edge technology and the design has been continuously advanced to maintain superior performance with an outstanding safety record. The first CANDU 6 plants- Gentilly 2 and Point Lepreau in Canada, Embalse in Argentina and Wolsong- Unit 1 in Korea have been in service for more than 21 years and are still producing electricity at peak performance and to the end of 2004, their average lifetime Capacity Factor was 83.2%. The newer CANDU 6 units in Romania (Cernavoda 1), Korea (Wolsong-Units 2, 3 and 4) and Qinshan (Phase III- Units 1 and 2) have also been performing at outstanding levels. The average lifetime Capacity Factor of the 10 CANDU 6 operating units around the world has been 87% to the end of 2004. Building on these successes, AECL is committed to the further development of this highly successful design, now focussing on meeting customer's needs for reduced costs, further improvements to plant operation and performance, enhanced safety and incorporating up-to-date technology as warranted. This has resulted in AECL embarking on improving the CANDU 6 design through an upgraded product termed as the 'Enhanced CANDU 6' (EC6)- which incorporates several attractive but proven features that will make the CANDU 6 reactor even more economical, safer and easier to operate. Some of the key features that will be incorporated in the EC6 include increasing the plant's power output, shortening the overall project schedule, decreasing the capital cost, dealing with obsolescence issues, optimizing maintenance outages and incorporating lessons learnt through feedback obtained from the

  4. Ex-vessel molten core debris interactions at CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M J; Oyinloye, J O; Chambers, I [Electrowatt Consulting Engineers and Scientists, Warrington, Cheshire (United Kingdom); Scott, C K [Atlantic Nuclear Services, Fredericton, NB (Canada); Omar, A M [Atomic Energy Control Board, Ottawa, ON (Canada)

    1991-12-31

    Currently, the Atomic Energy Control Board (AECB) of Canada is sponsoring a project with a long term objective of obtaining an evaluation, independent of the industry, of the consequences to the public and the environment of postulated severe accidents at a Canadian nuclear power plant. Phase 1 of this project is a scoping study conducted to establish the relative consequences of a number of postulated event sequences. The studies in this paper model a multi-unit CANDU reactor at which pre-defined initiating events and their consequences could lead to severe core damage and relocation of the core debris onto the floor of the concrete reactor vault. Depending on the accident sequence assumptions made, an overlying pool of water may or may not be present. The US-NRC computer code CORCON Mod 2.0 was used to calculate the behaviour of the core material interacting with the concrete. The code calculates the decomposition of concrete by the molten core, and also the gases produced, which are released into the containment. The challenges to containment integrity are described, from the viewpoint of foundation decomposition and failure due to overpressure. The containment thermal-hydraulic behaviour is examined using an in-house computer code (CREM) written for this purpose. It is found that the containment envelope, in the absence of mitigating operator actions or design safety features, even for a case involving early core disassembly with the vacuum building unavailable, is unlikely to be failed within the 48 hours time frame examined. The paper identifies several areas for improvement in the models for future studies of core-concrete interactions for CANDU reactor plants. (author). 8 refs., 1 tab., 5 figs.

  5. Ex-vessel molten core debris interactions at CANDU nuclear power plants

    International Nuclear Information System (INIS)

    Lewis, M.J.; Oyinloye, J.O.; Chambers, I.; Scott, C.K.; Omar, A.M.

    1990-01-01

    Currently, the Atomic Energy Control Board (AECB) of Canada is sponsoring a project with a long term objective of obtaining an evaluation, independent of the industry, of the consequences to the public and the environment of postulated severe accidents at a Canadian nuclear power plant. Phase 1 of this project is a scoping study conducted to establish the relative consequences of a number of postulated event sequences. The studies in this paper model a multi-unit CANDU reactor at which pre-defined initiating events and their consequences could lead to severe core damage and relocation of the core debris onto the floor of the concrete reactor vault. Depending on the accident sequence assumptions made, an overlying pool of water may or may not be present. The US-NRC computer code CORCON Mod 2.0 was used to calculate the behaviour of the core material interacting with the concrete. The code calculates the decomposition of concrete by the molten core, and also the gases produced, which are released into the containment. The challenges to containment integrity are described, from the viewpoint of foundation decomposition and failure due to overpressure. The containment thermal-hydraulic behaviour is examined using an in-house computer code (CREM) written for this purpose. It is found that the containment envelope, in the absence of mitigating operator actions or design safety features, even for a case involving early core disassembly with the vacuum building unavailable, is unlikely to be failed within the 48 hours time frame examined. The paper identifies several areas for improvement in the models for future studies of core-concrete interactions for CANDU reactor plants. (author). 8 refs., 1 tab., 5 figs

  6. Improving CANDU plant operation and maintenance through retrofit information technology systems

    International Nuclear Information System (INIS)

    Lupton, L.R.; Judd, R.A.; MacBeth, M.J.

    1998-01-01

    CANDU plant owners are facing an increasingly competitive environment for the generation of electricity. To meet this challenge, all owners have identified that information technology offers opportunities for significant improvements in CANDU operation, maintenance and administration (OM and A) costs. Targeted information technology application areas include instrumentation and control, engineering, construction, operations and plant information management. These opportunities also pose challenges and issues that must be addressed if the full benefits of the advances in information technology are to be achieved. Key among these are system hardware and software maintenance, and obsolescence protection; AECL has been supporting CANDU stations with the initial development and evaluation of systems to improve plant performance and cost. Key initiatives that have been implemented or are in the process of being implemented in some CANDU plants to achieve operational benefits include: critical safety parameter monitor system; advanced computerized annunciation system; plant historical data system; and plant display system. Each system will be described in terms of its role in enhancing current CANDU plant performance and how they will contribute to future CANDU plant performance

  7. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Hopkins, J.R.

    1998-01-01

    An integrated approach to plant life management has been developed for CANDU reactors. Strategies, methods, and procedures have been developed for assessment of critical systems structures and components and for implementing a reliability centred maintenance program. A Technology Watch program is being implemented to eliminate 'surprises'. Specific work has been identified for 1998. AECL is working on the integrated program with CANDU owners and seeks participation from other CANDU owners

  8. Improving CANDU plant operation and maintenance through retrofit information technology systems

    International Nuclear Information System (INIS)

    Lupton, L. R.; Judd, R. A.

    1998-01-01

    CANDU plant owners are facing an increasingly competitive environment for the generation of electricity. To meet this challenge, all owners have identified that information technology offers opportunities for significant improvements in CANDU operation, maintenance and administration (OM and A) costs. Targeted information technology application areas include instrumentation and control, engineering, construction, operations and plant information management. These opportunities also pose challenges and issues that must be addressed if the full benefits of the advances in information technology are to be achieved. Key among these are system hardware and software maintenance, and obsolescence protection. AECL has been supporting CANDU stations with the initial development and evaluation of systems to improve plant performance and cost. Five key initiatives that have been implemented or are in the process of being implemented in some CANDU plants to achieve cooperational benefits include: critical safety parameter monitor system; advanced computerized annunciation system; plant historical data system; plant display system; and digital protection system. Each system will be described in terms of its role in enhancing current CANDU plant performance and how they will contribute to future CANDU plant performance. (author). 8 refs., 3 figs

  9. Enhanced candu 6 reactor: status

    International Nuclear Information System (INIS)

    Azeez, S.; Girouard, P.

    2006-01-01

    The CANDU 6 power reactor is visionary in its approach, renowned for its on-power refuelling capability and proven over years of safe, economical and reliable power production. Developed by Atomic Energy of Canada Limited (AECL), the CANDU 6 design offers excellent performance utilizing state-of-the-art technology. The first CANDU 6 plants went into service in the early 1980s as leading edge technology and the design has been continuously advanced to maintain superior performance with an outstanding safety record. The first set of CANDU 6 plants - Gentilly 2 and Point Lepreau in Canada, Embalse in Argentina and Wolsong- Unit 1 in Korea - have been in service for more than 22 years and are still producing electricity at peak performance; to the end of 2004, their average Lifetime Capacity Factor was 83.2%. The newer CANDU 6 units in Romania (Cernavoda 1), Korea (Wolsong-Units 2, 3 and 4) and Qinshan (Phase III- Units 1 and 2) have also been performing at outstanding levels. The average lifetime Capacity Factor of the 10 CANDU 6 operating units around the world has been 87% to the end of 2004. Building on these successes, AECL is committed to the further development of this highly successful design, now focussing on meeting customers' needs for reduced costs, further improvements to plant operation and performance, enhanced safety and incorporating up-to-date technology, as warranted. This has resulted in AECL embarking on improving the CANDU 6 design through an upgraded product termed the ''Enhanced CANDU 6'' (EC6), which incorporates several attractive but proven features that make the CANDU 6 reactor even more economical, safer and easier to operate. Some of the key features that are being incorporated into the EC6 include increasing the plant's power output, shortening the overall project schedule, decreasing the capital cost, dealing with obsolescence issues, optimizing maintenance outages and incorporating lessons learnt through feedback obtained from the

  10. CANDU plant maintenance: Recent developments

    International Nuclear Information System (INIS)

    Charlebois, P.

    2000-01-01

    CANDU units have long been recognized for their exceptional safety and reliability. Continuing development in the maintenance area has played a key role in achieving this performance level. For over two decades, safety system availability has been monitored closely and system maintenance programs adjusted accordingly to maintain high levels of performance. But as the plants approach mid life in a more competitive environment and component aging becomes a concern, new methods and techniques are necessary. As a result, recent developments are moving the maintenance program largely from a corrective and preventive approach to predictive and condition based maintenance. The application of these techniques is also being extended to safety related systems. These recent developments include use of reliability centred methods to define system maintenance requirements and strategies. This approach has been implemented on a number of systems at Canadian CANDU plants with positive results. The pilot projects demonstrated that the overall maintenance effort remained relatively constant while the system performance improved. It was also possible to schedule some of the redundant component maintenance during plant operation without adverse impact on system availability. The probabilistic safety assessment was found to be useful in determining the safety implications of component outages. These new maintenance strategies are now making use of predictive and condition based maintenance techniques to anticipate equipment breakdown and schedule preventive maintenance as the need arises rather than time based. Some of these techniques include valve diagnostics, vibration monitoring, oil analysis, thermography. Of course, these tools and techniques must form part of an overall maintenance management system to ensure that maintenance becomes a living program. To facilitate this process and contain costs, new information technology tools are being introduced to provide system engineers

  11. Expert systems use in present and future CANDU nuclear power supply systems

    International Nuclear Information System (INIS)

    Lupton, L.R.; Basso, R.A.J.; Anderson, L.L.; Anderson, J.W.D.

    1989-11-01

    As CANDU nuclear power plants become more complex, and are operated under tighter constraints for longer periods between outages, plant operations staff will have to absorb more information to correctly and rapidly respond to upsets. A development program is underway at Atomic Energy of Canada Limited to use expert systems and interactive media tools to assist operations staff of existing and future CANDU plants. The complete system for plant information access and display, on-line advice and diagnosis, and interactive operating procedures is called the Operator Companion. A prototype, consisting of operator consoles, expert systems and simulation modules in a distributed architecture, is currently being developed to demonstrate the concepts of the Operator Companion. Specialized advisors are also being developed using expert system technology to meet specific operational and design needs

  12. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  13. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  14. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  15. The transition criteria of circulating flow pattern of moderator in the calandria tank of CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Jung, Yun Sik; Lee, Jae Young; Kim, Man Woong

    2004-01-01

    The moderator cooling system to the Calandria tank of CANDU nuclear power plant provides an alternative pass of heat sink during the hypothetical loss of coolant accident. Also, the neutron population in the CANDU plant can be affected by the moderator temperature change which strongly depends on the circulating flow pattern in the Calandria tank. It has been known that there are three distinguished flow patterns: the buoyancy dominated flow, the momentum dominated flow, and the mixed type flow. The Canadian Nuclear Safety Commission (CNSC) recommended that a series of experimental works should be performed to verify the three dimensional codes. Two existing facilities, SPEL (1982) and STERN (1990), have produced experimental data for these purposes. The present work is also motivated to build up a new scaled experimental facility named HGU for the same purposes. CANDU-6 was selected as the target plant to be scaled down. In the design for the scaled facility, the knowledge on the flow regime transitions in the circulating flow was imperative. In the present study, to pave the way for the scaling, the flow pattern maps of circulating flow were constructed based on the Reynolds number and Archimedes number. The CFX code was employed with real meshes to represent all calandria tubes in the tank. The flow pattern maps were constructed for SPEL, STERN, HGU, and CANDU6. As the key transition criterion useful for scaling law, a new Archimedes number considering the jet impingement of the feed water in the Calandria tank was found. The transition of flow patterns was made with the same Archimedes number for CANDU6, STERN and HGU. However, SPEL which has third of the modified Archimedes number showed different maps in the wider region of mixed flow pattern was observed. It was found that the Archimedes number considering the inlet nozzle velocity plays the key role in patterns classification. Also, it can be suggested that the moderator cooling system needs to be designed

  16. Requirements for class 1, 2, and 3 pressure-retaining systems and components in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1991-09-01

    This third edition of CAN/CSA-N285.1 supersedes the 1981 and 1975 editions. It provides the specific requirements for design, fabrication, and installation of Class 1, 2 and 3 pressure-retaining systems and components in CANDU nuclear power plants, and over pressure protection of the heat transport system. The general requirements for pressure-retaining systems and components are given in CSA Standard CAN/CSA-N285.0, with which Class 1, 2 and 3 systems and components must also comply

  17. The licensing process of the design modifications of Cernavoda 2 NPP resulting from the operating experience of CANDU plants

    International Nuclear Information System (INIS)

    Goicea, L.

    2005-01-01

    The CANDU 6 plant now under construction in Cernavoda include over two hundred significant improvements made in order to comply with current codes and standards and licensing requirements relative to the operating CANDU 6 in Romania. These evolutionary improvements are incorporated in CANDU 6 design taking advance of CANDU operating experience, of the designer company research and development and technical advances worldwide in order to further enhance safety, reliability and economics. This paper gives a general idea of the evaluation of the modifications of the Cernavoda 2 nuclear power plant against the design of Cernavoda 1 and states the safety principles and requirements which are the basis for this evaluation. (author)

  18. Simulation of LOCA power transients of CANDU6 by SCAN/RELAP-CANDU coupled code system

    International Nuclear Information System (INIS)

    Hong, In Seob; Kim, Chang Hyo; Hwang, Su Hyun; Kim, Man Woong; Chung, Bub Dong

    2004-01-01

    As can be seen in the standalone application of RELAP-CANDU for LOCA analysis of CANDU-PHWR, the system thermal-hydraulic code alone cannot predict the transient behavior accurately. Therefore, best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. The purpose of this research is to develop and test a coupled neutronics and thermal-hydraulics analysis code, SCAN (SNU CANDU-PHWR Neutronics) and RELAP-CANDU, for transient analysis of CANDU-PHWR's. For this purpose, a spatial kinetics calculation module of SCAN, a 3-D CANDU-PHWR neutronics design and analysis code, is dynamically coupled with RELAP-CANDU, the system thermal-hydraulic code for CANDU-PHWR. The performance of the coupled code system is examined by simulation of reactor power transients caused by a hypothetical Loss Of Coolant Accident (LOCA) in Wolsong units, which involves the insertion of positive void reactivity into the core in the course of transients. Specifically, a 40% Reactor Inlet Header (RIH) break LOCA was assumed for the test of the SCAN/RELAP-CANDU coupled code system analysis

  19. Current activities in support of CANDU plant life management: an industry perspective

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Price, E.G.; Hopkins, J.; Charlebois, P.

    1998-01-01

    The current focus of the CANDU industry is to position the nuclear option as a cost competitive, safe and reliable means of electricity production. To achieve its goal the CANDU industry as a whole is undertaking steps to improve further its performance and safety of its nuclear power plants. A number of programs have been planned and implemented particularly for plants in the mid-life range. Some of these programs include life assessment studies of critical systems, Structures and Components (SSCS), refurbishment and upgrading programs and monitoring and periodic inspection programs. Some elements of the programs have been in place from station start up and some are being instituted as part of the aging management and performance improvement program. The industry recognizes that the key to sustaining high performance over the life of the plant is the implementation of an integrated aging management program that encompasses all elements of plant operation and maintenance. A systematically implemented program on optimized maintenance and inspection strategy, standardized work processes, component rehabilitation programs, and applying lessons learned are some of the elements of a sustainable high performance and an effective plant life assurance program. The paper will describe the elements of an integrated program, the multiphase approach defined for CANDU PLIM and some of the activities undertaken by the industry to further improve and sustain plant safety, reliability and performance. (author)

  20. The next generation CANDU 6

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    1999-01-01

    AECL's product line of CANDU 6 and CANDU 9 nuclear power plants are adapted to respond to changing market conditions, experience feedback and technological development by a continuous improvement process of design evolution. The CANDU 6 Nuclear Power Plant design is a successful family of nuclear units, with the first four units entering service in 1983, and the most recent entering service this year. A further four CANDU 6 units are under construction. Starting in 1996, a focused forward-looking development program is under way at AECL to incorporate a series of individual improvements and integrate them into the CANDU 6, leading to the evolutionary development of the next-generation enhanced CANDU 6. The CANDU 6 improvements program includes all aspects of an NPP project, including engineering tools improvements, design for improved constructability, scheduling for faster, more streamlined commissioning, and improved operating performance. This enhanced CANDU 6 product will combine the benefits of design provenness (drawing on the more than 70 reactor-years experience of the seven operating CANDU 6 units), with the advantages of an evolutionary next-generation design. Features of the enhanced CANDU 6 design include: Advanced Human Machine Interface - built around the Advanced CANDU Control Centre; Advanced fuel design - using the newly demonstrated CANFLEX fuel bundle; Improved Efficiency based on improved utilization of waste heat; Streamlined System Design - including simplifications to improve performance and safety system reliability; Advanced Engineering Tools, -- featuring linked electronic databases from 3D CADDS, equipment specification and material management; Advanced Construction Techniques - based on open top equipment installation and the use of small skid mounted modules; Options defined for Passive Heat Sink capability and low-enrichment core optimization. (author)

  1. Non-electrical CANDU applications

    International Nuclear Information System (INIS)

    Hopwood, Jerry; Kuran, Sermet; Zhou, Xi; Ivanco, Michael; Rolfe, Brian; Mancuso, Connie; Duffey, Romney

    2005-01-01

    AECL has performed studies to utilize CANDU nuclear energy in areas other than electrical generation. The studies presented in this paper include using CANDU for applications in non-traditional areas which expand the use of zero-greenhouse gas energy source. The Oil sands industry demands significant energy input and the majority of the energy required for bitumen extraction is steam and hot water. As the primary production of a CANDU plant is steam, it can satisfy the steam and hot water requirement without a major modification to the Nuclear Steam Plant (NSP). Reverse Osmosis (RO) has been identified by the IAEA as the most promising method for nuclear desalination. Since the RO desalination efficiency increases as its feedwater temperature rises, using condenser cooling water from a CANDU plant as the feedwater for a RO plant and sharing other facilities between these two plants results in significant benefits in capital and operating costs of a desalination plant. Electrolysis powered by nuclear-generated electricity is the technology currently available to produce hydrogen without greenhouse gas emissions. By using the cheaper electricity available at off-peak periods in an open electricity market, this technology could be economically competitive, improve overall energy system efficiency and reduce overall energy system carbon intensity. The paper summarizes the background, technical approaches, feasibility considerations, along with economic comparisons between CANDU nuclear energy and the traditional energy sources for each study. The results show that the CANDU technology is a promising energy source for various industries. (author)

  2. Trends in CANDU licensing

    International Nuclear Information System (INIS)

    Snell, V.G.; Grant, S.D.

    1997-01-01

    Modern utilities view nuclear power more and more as a commodity - it must compete 'today' with current alternatives to attract their investment. With its long construction times and large capital investment, nuclear plants are vulnerable to delays once they have been committed. There are two related issues. Where the purchaser and the regulator are experienced in CANDU, the thrust is a very practical one: to identify and resolve major licensing risks at a very early stage in the project. Thus for a Canadian project, the designer (AECL) and the prospective purchaser would deal directly with the AECB. However CANDU has also been successfully licensed in other countries, including Korea, Romania, Argentina, India and Pakistan. Each of these countries has its own regulatory agency responsible for licensing the plant. In addition, however, the foreign customer and regulator may seek input from the AECB, up to and including a statement of licensability in Canada; this is not normally needed for a ''repeat'' plant and/or if the customer is experienced in CANDU, but can be requested if the plant configuration has been modified significantly from an already-operating CANDU. It is thus the responsibility of the designer to initiate early discussions with the AECB so the foreign CANDU meets the expectations of its customers

  3. CANDU safety under severe accidents

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.; Frescura, G.M.; King, F.; Rogers, J.T.; Tamm, H.

    1988-01-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10 -6 /year. CANDU nuclear plant designers and owner/operators share information and operational experience nationally and internationally through the CANDU Owners' Group (COG). The research program generally emphasizes the unique aspects of the CANDU concept, such as heat removal through the moderator, but it has also contributed significantly to areas generic to most power reactors such as hydrogen combustion, containment failure modes, fission product chemistry, and high temperature fuel behaviour. Abnormal plant operating procedures are aimed at first using event-specific emergency operating procedures, in cases where the event can be diagnosed. If this is not possible, generic procedures are followed to control Critical Safety Parameters and manage the accident. Similarly, the on-site contingency plans include a generic plan covering overall plant response strategy, and a specific plan covering each category of contingency

  4. Assessment and management of ageing of major nuclear power plant components important to safety: CANDU reactor assemblies

    International Nuclear Information System (INIS)

    2001-02-01

    At present, there are over four hundred operational nuclear power plants (NPPs) in IAEA Member States. Operating experience has shown that ineffective control of the ageing degradation of the major NPP components (e.g. caused by unanticipated phenomena and by operating, maintenance, design or manufacturing errors) can jeopardize plant safety and also plant life. Ageing in these NPPs must therefore be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling within acceptable limits the ageing degradation and wearout of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations and a widely accepted Methodology for the Management of Ageing of NPP Components Important to Safety which was issued by the IAEA in 1992. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring, and mitigation of ageing degradation of selected components of Canada deuterium-uranium (CANDU) reactors, boiling water reactors (BWRs), pressurized water reactors (PWRs) including the Soviet designed water moderated and water cooled energy reactors (WWERs), are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age-related licensing issues. Since the reports are written from a safety perspective, they do not address life or life-cycle management of the plant components, which

  5. Learning from experience: feedback to CANDU design

    International Nuclear Information System (INIS)

    Allen, P.J.; Hopwood, J.M.; Rousseau, G.P.

    1998-01-01

    AECL's main product line is based on two single unit CANDU nuclear power plant designs; CANDU 6 and CANDU 9, each of which is based on successfully operating CANDU plants. AECL's CANDU development program is based upon evolutionary improvement. The evolutionary design approach ensures the maximum degree of operational provenness. It also allows successful features of today's plants to be retained while incorporating improvements as they develop to the appropriate level of design maturity. A key component of this evolutionary development is a formal process of gathering and responding to feedback from: NPP operation, construction and commissioning; regulatory input; equipment supplier input; R and D results; market input. The progresses for gathering and implementing the experience feedback and a number of recent examples of design improvements from this feedback process are described in the paper. (author)

  6. Used fuel packing plant for CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Menzies, I.; Thayer, B.; Bains, N., E-mail: imenzies@atsautomation.com [ATS Automation, Cambridge, ON (Canada); Murchison, A., E-mail: amurchison@nwmo.ca [NWMO, Toronto, ON (Canada)

    2015-07-01

    Large forgings have been selected to containerize Light Water Reactor used nuclear fuel. CANDU fuel, which is significantly smaller in size, allows novel approaches for containerization. For example, by utilizing commercially available extruded ASME pipe a conceptual design of a Used Fuel Packing Plant for containerization of used CANDU fuel in a long lived metallic container has been developed. The design adopts a modular approach with multiple independent work cells to transfer and containerize the used fuel. Based on current technologies and concepts from proven industrial systems, the Used Fuel Packing Plant can assemble twelve used fuel containers per day considering conservative levels of process availability. (author)

  7. Moderator heat recovery of CANDU reactors

    International Nuclear Information System (INIS)

    Fath, H.E.S.; Ahmed, S.T.

    1986-01-01

    A moderator heat recovery scheme is proposed for CANDU reactors. The proposed circuit utilizes all the moderator heat to the first stages of the plant feedwater heating system. CANDU-600 reactors are considered with moderator heat load varying from 120 to 160 MWsub(th), and moderator outlet temperature (from calandria) varying from 80 to 100 0 C. The steam saved from the turbine extraction system was found to produce an additional electric power ranging from 5 to 11 MW. This additional power represents a 0.7-1.7% increase in the plant electric output power and a 0.2-0.7% increase in the plant thermal efficiency. The outstanding features and advantages of the proposed scheme are presented. (author)

  8. Next generation CANDU plants

    International Nuclear Information System (INIS)

    Hedges, K.R.; Yu, S.K.W.

    1998-01-01

    Future CANDU designs will continue to meet the emerging design and performance requirements expected by the operating utilities. The next generation CANDU products will integrate new technologies into both the product features as well as into the engineering and construction work processes associated with delivering the products. The timely incorporation of advanced design features is the approach adopted for the development of the next generation of CANDU. AECL's current products consist of 700MW Class CANDU 6 and 900 MW Class CANDU 9. Evolutionary improvements are continuing with our CANDU products to enhance their adaptability to meet customers ever increasing need for higher output. Our key product drivers are for improved safety, environmental protection and improved cost effectiveness. Towards these goals we have made excellent progress in Research and Development and our investments are continuing in areas such as fuel channels and passive safety. Our long term focus is utilizing the fuel cycle flexibility of CANDU reactors as part of the long term energy mix

  9. CANDU fuel - fifteen years of power reactor experience

    International Nuclear Information System (INIS)

    Fanjoy, G.R.; Bain, A.S.

    1977-01-01

    CANDU (Canada Deuterium Uranium) fuel has operated in power reactors since 1962. Analyses of performance statistics, supplemented by examinations of fuel from power reactors and experimental loops have yielded: (a) A thorough understanding of the fundamental behaviour of CANDU fuel. (b) Data showing that the predicted high utilization of uranium has been achieved. Actual fuelling costs in 1976 at the Pickering Generating Station are 1.2 m$/kWh (1976 Canadian dollars) with the simple oncethrough natural-UO 2 fuel cycle. (c) Criteria for operation, which have led to the current very low defect rate of 0.03% of all assemblies and to ''CANLUB'' fuel, which has a graphite interlayer between the fuel and sheath to reduce defects on power increases. (d) Proof that the short length (500 mm), collapsible cladding features of the CANDU bundle are successful and that the fuel can operate at high-power output (current peak outer-element linear power is 58 +- 15% kW/m). Involvement by the utility in all stages of fuel development has resulted in efficient application of this fundamental knowledge to ensure proper fuel specifications, procurement, scheduling into the reactor and feedback to developers, designers and manufacturers. As of mid-1976 over 3 x 10 6 individual elements have been built in a well-estabilished commercially competitive fuel fabrication industry and over 2 x 10 6 elements have been irradiated. Only six defects have been attributed to faulty materials or fabrication, and the use of high-density UO 2 with low-moisture content precluded defects from hydrogen contamination and densification. Development work on UO 2 and other fuel cycles (plutonium and thorium) is continuing, and, because CANDU reactors use on-power fuelling, bundles can be inserted into power reactors for testing. Thus new fuel designs can be quickly adopted to ensure that the CANDU system continues to provide low-cost energy with high reliability

  10. Diagnostic Technology Development for Core Internal Structure in CANDU reactor

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Cheong, Y. M.; Lee, Y. S. and others

    2005-04-01

    Degradation of critical components of nuclear power plants has become important as the operating years of plants increase. The necessity of degradation study including measurement and monitoring technology has increased continuously. Because the fuel channels and the neighboring sensing tubes and control rods are particularly one of the critical components in CANDU nuclear plant, they are treated as a major research target in order to counteract the possible problems and establish the counterplan for the CANDU reactor safety improvement. To ensure the core structure integrity in CANDU nuclear plant, the following 2 research tasks were performed: Development of NDE technologies for the gap measurement between the fuel channels and LIN tubes. Development of vibration monitoring technology of the fuel channels and sensing tubes. The technologies developed in this study could contribute to the nuclear safety and estimation of the remaining life of operating CANDU nuclear power plants

  11. Deuterium ingress at rolled joints in Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Ramos Nervi, J. E.; Schroeter, F.

    2013-01-01

    Deuterium ingress model at the Rolled Joint has been extensively used for CANDU Nuclear Power Plants Operators in the Life Management of the Pressure Tubes. The importance of understanding the model is vital to avoid delayed hydride cracking at the Rolled Joint. This work reports the first step on develop the model presented on literature to be used in Argentinean CANDU 6, Embalse Nuclear Power Plant. (author)

  12. CANDU nuclear power system

    International Nuclear Information System (INIS)

    1981-01-01

    This report provides a summary of the components that make up a CANDU reactor. Major emphasis is placed on the CANDU 600 MW(e) design. The reasons for CANDU's performance and the inherent safety of the system are also discussed

  13. The final report of ''on-the-job training'' on the CANDU reactor

    International Nuclear Information System (INIS)

    Kim, D.H.; Koh, B.J.

    1983-01-01

    This is the final Report for the technical ''on-the-job traning'' for the Wolsung CANDU nuclear power plant which is the first Pressurized Heavy Water Reactor setting up in Korea. The technical ''on-the-job traning'' was established to increase the capability for the nuclear safety evaluation in order to contribute the future safe operation of the CANDU nuclear power plant. The training has been excuted through three level courses as elementary, intermediate and ''on-the-job training'' at Wolsung power plant. The elementary course was introduction to the CANDU basics and fundamentals. The intermediate course was the more advanced course, and the detailed concepts and engineering explanations of the CANDU system had been instructed. The third course was the ''on-the-job training'' at the Wolsung plant site, which was the most emphasized course during the project. (Author)

  14. Numerical simulator of the CANDU fueling machine driving desk

    International Nuclear Information System (INIS)

    Doca, Cezar

    2008-01-01

    As a national and European premiere, in the 2003 - 2005 period, at the Institute for Nuclear Research Pitesti two CANDU fueling machine heads, no.4 and no.5, for the Nuclear Power Plant Cernavoda - Unit 2 were successfully tested. To perform the tests of these machines, a special CANDU fueling machine testing rig was built and was (and is) available for this goal. The design of the CANDU fueling machine test rig from the Institute for Nuclear Research Pitesti is a replica of the similar equipment operating in CANDU 6 type nuclear power plants. High technical level of the CANDU fueling machine tests required the using of an efficient data acquisition and processing Computer Control System. The challenging goal was to build a computer system (hardware and software) designed and engineered to control the test and calibration process of these fuel handling machines. The design takes care both of the functionality required to correctly control the CANDU fueling machine and of the additional functionality required to assist the testing process. Both the fueling machine testing rig and staff had successfully assessed by the AECL representatives during two missions. At same the time, at the Institute for Nuclear Research Pitesti was/is developed a numerical simulator for the CANDU fueling machine operators training. The paper presents the numerical simulator - a special PC program (software) which simulates the graphics and the functions and the operations at the main desk of the computer control system. The simulator permits 'to drive' a CANDU fueling machine in two manners: manual or automatic. The numerical simulator is dedicated to the training of operators who operate the CANDU fueling machine in a nuclear power plant with CANDU reactor. (author)

  15. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  16. The CANDU 9 distributed control system design process

    International Nuclear Information System (INIS)

    Harber, J.E.; Kattan, M.K.; Macbeth, M.J.

    1997-01-01

    Canadian designed CANDU pressurized heavy water nuclear reactors have been world leaders in electrical power generation. The CANDU 9 project is AECL's next reactor design. Plant control for the CANDU 9 station design is performed by a distributed control system (DCS) as compared to centralized control computers, analog control devices and relay logic used in previous CANDU designs. The selection of a DCS as the platform to perform the process control functions and most of the data acquisition of the plant, is consistent with the evolutionary nature of the CANDU technology. The control strategies for the DCS control programs are based on previous CANDU designs but are implemented on a new hardware platform taking advantage of advances in computer technology. This paper describes the design process for developing the CANDU 9 DCS. Various design activities, prototyping and analyses have been undertaken in order to ensure a safe, functional, and cost-effective design. (author)

  17. Development of a web-based CANDU core management procedures automation system

    International Nuclear Information System (INIS)

    Lee, S.; Park, D.; Yeom, C.; Suh, H.

    2007-01-01

    Introduce CANDU core management procedures automation system (COMPAS) - A web-based application which semi-automates several CANDU core management tasks. It provides various functionalities including selection and evaluation of refueling channel, detector calibration, coolant flow estimation and thermal power calculation through automated interfacing with analysis codes (RFSP, NUCIRC, etc.) and plant data. It also utilizes brand new .NET computing technology such as ASP.NET, smart client, web services and so on. Since almost all functions are abstracted from the previous experiences of the current working members of the Wolsong Nuclear Power Plant (NPP), it will lead to an efficient and safe operation of CANDU plants. (author)

  18. Development of a web-based CANDU core management procedures automation system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Park, D.; Yeom, C. [Inst. for Advanced Engineering (IAE), Yongin (Korea, Republic of); Suh, H. [Korea Hydro and Nuclear Power (KHNP), Wolsong (Korea, Republic of)

    2007-07-01

    Introduce CANDU core management procedures automation system (COMPAS) - A web-based application which semi-automates several CANDU core management tasks. It provides various functionalities including selection and evaluation of refueling channel, detector calibration, coolant flow estimation and thermal power calculation through automated interfacing with analysis codes (RFSP, NUCIRC, etc.) and plant data. It also utilizes brand new .NET computing technology such as ASP.NET, smart client, web services and so on. Since almost all functions are abstracted from the previous experiences of the current working members of the Wolsong Nuclear Power Plant (NPP), it will lead to an efficient and safe operation of CANDU plants. (author)

  19. Impact of aging and material structure on CANDU plant performance

    International Nuclear Information System (INIS)

    Nadeau, E.; Ballyk, J.; Ghalavand, N.

    2011-01-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  20. Study of seismic responses of Candu-3 reactor building using isolator bearings

    International Nuclear Information System (INIS)

    Biswas, J.K.

    1992-01-01

    Seismic isolator bearings are known to increase reliability, reduce cost and increase the potential sitings for nuclear power plants located in regions of high seismicity. High seismic activities in Canada occur mainly in the western coast, the Grand Banks and regions of Quebec along the St. Lawrence river. In Canada, nuclear power plants are located in Ontario, Quebec and New Brunswick where the seismicity levels are low to moderate. Consequently, seismic isolator bearings have not been used in the existing nuclear power plants in Canada. The present paper examines the effect of using seismic isolator bearings in the design for the new CANDU3 which would be suitable for regions having high seismicity. The CANDU3 Nuclear Power Plant is rated at 450 MW of net output power and is a smaller version of its predecessor CANDU6 successfully operating in Canada and abroad. The design of CANDU3 is being developed by AECL CANDU. Advanced technologies for design, construction and plant operation have been utilized. During the conceptual development of the CANDU3 design, various design options including the use of isolator bearings were considered. The present paper presents an overview of seismic isolation technology and summarizes the analytical work for predicting the seismic behavior of the CANDU3 reactor building. A lumped-parameter dynamic model for the reactor building is used for the analysis. The characteristics of the bearings are utilized in the analysis work. The time-history modal analysis has been used to compute the seismic responses. Seismic responses of the reactor building with and without isolator bearings are compared. The isolator bearings are found to reduce the accelerations of the reactor building. As a result, a lower level of seismic qualification for components and systems would be required. The use of these bearings however increases rigid body seismic displacements of the structure requiring special considerations in the layout and interfaces for

  1. Stochastic maintenance optimization at Candu power plants

    International Nuclear Information System (INIS)

    Doyle, E.K.; Duchesne, T.; Lee, C.G.; Cho, D.I.

    2004-01-01

    The use of various innovative maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems as previously reported at ICONE 6 in New Orleans (1996). Further refinement of the station maintenance strategy was evaluated via the applicability of statistical analysis of historical failure data. The viability of stochastic methods in Candu maintenance was illustrated at ICONE 10 in Washington DC (2002). The next phase consists of investigating the validity of using subjective elicitation techniques to obtain component lifetime distributions. This technique provides access to the elusive failure statistics, the lack of which is often referred to in the literature as the principal impediment preventing the use of stochastic methods in large industry. At the same time the technique allows very valuable information to be captured from the fast retiring 'baby boom generation'. Initial indications have been quite positive. The current reality of global competition necessitates the pursuit of all financial optimizers. The next construction phase in the power generation industry will soon begin on a worldwide basis. With the relatively high initial capital cost of new nuclear generation all possible avenues of financial optimization must be evaluated and implemented. (authors)

  2. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    therapy machines. Today the majority of the cancer therapy cobalt-60 sources used in the world are manufactured using material from the NRU reactor in Chalk River. The same technology that was used for producing cobalt-60 in a research reactor was then adapted and transferred for use in a CANDU power reactor. In the early 1970s, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production was initiated in the four Pickering A CANDU reactors located east of Toronto. This was the first full scale production of millions of curies of cobalt-60 per year. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology in additional CANDUs. Over the years MDS Nordion has partnered with CANDU reactor owners to produce cobalt-60 at various sites. CANDU reactors that have, or are still producing cobalt-60, include Pickering A, Pickering B, Gentilly 2, Embalse in Argentina, and Bruce B. In conclusion, the technology for cobalt-60 production in CANDU reactors, designed and developed by MDS Nordion and Atomic Energy of Canada, has been safely, economically and successfully employed in CANDU reactors with over 195 reactor years of production. Today over forty percent of the world's disposable medical supplies are made safer through sterilization using cobalt-60 sources from MDS Nordion. Over the past 40 years, MDS Nordion with its CANDU reactor owner partners, has safely and reliably shipped more than 500 million curies of cobalt-60 sources to customers around the world. MDS Nordion is presently adding three more CANDU power reactors to its supply chain. These three additional cobalt producing CANDU's will help supplement the ability of the health care industry to provide safe, sterile, medical disposable products to people around the world. As new applications for cobalt-60 are identified, and the demand for bulk cobalt-60 increases, MDS Nordion and AECL

  3. A JAVA applet to simulate a CANDU reactor

    International Nuclear Information System (INIS)

    Varin, E.; Desarmenien, J.

    2004-01-01

    Here we present a CANDU nuclear power plant simulator, directly available on a web page. The developed applet has two mains objectives: to expose the CANDU technology to a large public on the internet; and to construct a realistic simulator to be used as a pedagogical tool for nuclear introduction to high school or under-graduate students. The neutronic behavior and control algorithms of the reactor are simulated. Java programming language enables a very flexible environment for public information and user interaction with the plant. Examples of shutdown and power maneuver are explained. (author)

  4. A foundation for allocating control functions to humans and machines in future CANDU nuclear power plants

    International Nuclear Information System (INIS)

    Lupton, L.R.; Lipsett, J.J.; Davey, E.C.; Olmstead, R.A.

    1990-06-01

    Since the control room for the Atomic Energy of Canada Limited CANDU 6 plant was designed in the 1970s, requirements for control rooms have changed dramatically as a result of new licensing requirements, evolution of major new standards for control centre design and technological advances. The role of the human operator has become prominent in the design and operation of industrial and, in particular, nuclear plants. Major industrial accidents in the last decade have highlighted the need for paying significantly more attention to the requirements of the human as an integral part of the plant control system. A Functional Design Methodology has been defined that addresses the issues related to maximizing the strengths of the human and the machine in the next generation of CANDU plants. This method is based, in part, on the recently issued international standard IEC 964. The application of this method will lead to the definition of the requirements for detailed design of the control room, including man-machine interfaces, preliminary operating procedures, staffing and training. Further, it provides a basis for the verification and validation of the allocation of functions to the operator and the machine

  5. Improved operability of the CANDU 9 control centre

    International Nuclear Information System (INIS)

    Macbeth, M. J.; Webster, A.

    1996-01-01

    The next generation CANDU nuclear power plant being designed by AECL is the 900 MWe class CANDU 9 station. It is based upon the Darlington CANDU station design which is among the world leaders in capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This Control Centre design includes the proven functionality of existing CANDU control centres (including the Wolsong 2,3, and 4 control centre improvements, such as the Emergency Core Cooling panels), the characteristics identified by systematic design with human factors analysis of operations requirements and the advanced features needed to improve station operability which is made possible by the application of new technology. The CANDU 9 Control Centre provides plant staff with an improved operability capability due to the combination of proveness, systematic design with human factors engineering and enhanced operating features. Significant features which contribute to this improved operability include: · Standard NSP, BOP and F/H panels with controls and indicators integrated by a standard display/presentation philosophy. · Common plant parameter signal database for extensive monitoring, checking, display and annunciation. · Powerful annunciation system allowing alarm filtering, prioritizing and interrogation to enhance staff recognition of events, plant state and required corrective procedural actions. · The use of an overview display to present immediate and uncomplicated plant status information to facilitate operator awareness of unit status in a highly readable and recognizable format. · Extensive cross checking of similar process parameters amongst themselves, with the counterpart safety system parameters and as well as with 'signature' values obtained from known steady state conditions. · Powerful calculation capabilities, using the plant wide database, providing immediate recognizable and readable and readable output data on plant state information and plant state change

  6. Operating experiences with Neutron Overpower Trip Systems in Ontario Hydro's CANDU nuclear plants

    International Nuclear Information System (INIS)

    Hnik, J.; Kozak, J.

    1991-01-01

    Operating experiences with Neutron Over Power Trip (NOP) Systems in different Ontario Hydro CANDU nuclear power plants are discussed. Lessons learned from the system operation and their impact on design improvements are presented. Retrofitting of additional tools, such as Shutdown System Monitoring computers, to improve operator interaction with the system is described. Experiences with the reliability of some of the NOP system components is also discussed. Options for future enhancements of system performance and operability are identified. (author)

  7. MATLAB/SIMULINK platform for simulation of CANDU reactor control system

    International Nuclear Information System (INIS)

    Javidnia, H.; Jiang, J.

    2007-01-01

    In this paper a simulation platform for CANDU reactors' control system is presented. The platform is built on MATLAB/SIMULINK interactive graphical interface. Since MATLAB/SIMULINK are powerful tools to describe systems mathematically, all the subsystems in a CANDU reactor are represented in MATLAB's language and are implemented in SIMULINK graphical representation. The focus of the paper is on the flux control loop of CANDU reactors. However, the ideas can be extended to include other parts in CANDU power plants and the same technique can be applied to other types of nuclear reactors and their control systems. The CANDU reactor model and xenon feedback model are also discussed in this paper. (author)

  8. Requirements for class 1C, 2C, and 3C pressure-retaining components and supports in CANDU nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    This Standard applies to pressure-retaining components of CANDU nuclear power plants that have a code classification of Class 1C, 2C or 3C. These are pressure-retaining components where, because of the design concept, the rules of the ASME Boiler and Pressure Vessel Code do not exist, are not applicable, or are not sufficient. The Standard provides rules for the design, fabrication, installation, examination and inspection of these components and supports. It provides rules intended to ensure the pressure-retaining integrity of components, not the operability. It also provides rules for the support of fueling machines. The Standard applies only to new construction prior to the plant being declared in service

  9. Impact of aging and material structure on CANDU plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, E.; Ballyk, J.; Ghalavand, N. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  10. Cernavoda CANDU severe accident evaluation

    International Nuclear Information System (INIS)

    Negut, G.; Marin, A.

    1997-01-01

    The papers present the activities dedicated to Romania Cernavoda Nuclear Power Plant first CANDU Unit severe accident evaluation. This activity is part of more general PSA assessment activities. CANDU specific safety features are calandria moderator and calandria vault water capabilities to remove the residual heat in the case of severe accidents, when the conventional heat sinks are no more available. Severe accidents evaluation, that is a deterministic thermal hydraulic analysis, assesses the accidents progression and gives the milestones when important events take place. This kind of assessment is important to evaluate to recovery time for the reactor operators that can lead to the accident mitigation. The Cernavoda CANDU unit is modeled for the of all heat sinks accident and results compared with the AECL CANDU 600 assessment. (orig.)

  11. CANDU technology for generation III + AND IV reactors

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    2005-01-01

    Atomic Energy of Canada Limited (AECL) is the original developer of the CANDU?reactor, one of the three major commercial power reactor designs now used throughout the world. For over 60 years, AECL has continued to evolve the CANDU design from the CANDU prototypes in the 1950s and 1960s through to the second generation reactors now in operation, including the Generation II+ CANDU 6. The next phase of this evolution, the Generation III+ Advanced CANDU ReactorTM (ACRTM), continues the strategy of basing next generation technology on existing CANDU reactors. Beyond the ACR, AECL is developing the Generation IV CANDU Super Critical Water Reactor. Owing to the evolutionary nature of these advanced reactors, advanced technology from the development programs is also being applied to operating CANDU plants, for both refurbishments and upgrading of existing systems and components. In addition, AECL is developing advanced technology that covers the entire life cycle of the CANDU plant, including waste management and decommissioning. Thus, AECL maintains state-of-the-art expertise and technology to support both operating and future CANDU plants. This paper outlines the scale of the current core knowledge base that is the foundation for advancement and support of CANDU technology. The knowledge base includes advancements in materials, fuel, safety, plant operations, components and systems, environmental technology, waste management, and construction. Our approach in each of these areas is to develop the underlying science, carry out integrated engineering scale tests, and perform large-scale demonstration testing. AECL has comprehensive R and D and engineering development programs to cover all of these elements. The paper will show how the ongoing expansion of the CANDU knowledge base has led to the development of the Advanced CANDU Reactor. The ACR is a Generation III+ reactor with substantially reduced costs, faster construction, and enhanced passive safety and operating

  12. Advanced CANDU reactors

    International Nuclear Information System (INIS)

    Dunn, J.T.; Finlay, R.B.; Olmstead, R.A.

    1988-12-01

    AECL has undertaken the design and development of a series of advanced CANDU reactors in the 700-1150 MW(e) size range. These advanced reactor designs are the product of ongoing generic research and development programs on CANDU technology and design studies for advanced CANDU reactors. The prime objective is to create a series of advanced CANDU reactors which are cost competitive with coal-fired plants in the market for large electricity generating stations. Specific plant designs in the advanced CANDU series will be ready for project commitment in the early 1990s and will be capable of further development to remain competitive well into the next century

  13. Sensitivity Study for Feed and Bleed Operation for Domestic CANDU Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S; Kim, B. S.; Yoo, H. K.; Kim, H. J. [Atomic Creative Technology Co., Daejeon (Korea, Republic of); Whang, S. W. [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this paper is to evaluate the effects of the feed and bleed operation using DCT(Degassing Condenser Tank) over-pressure protection valves when LOCL4 with LOCL3 occurs during LPSD mid-loop operation. The CDF(Core Damage Frequency) of Level-1 Internal Event for Wolsong NPP Unit 1 during LPSD POS5A/5B accounts for about 89.08%(POS5A: 30.04%, POS5B: 59.04%) of the total CDF. For Wolsong NPP Unit 1 LPSD External Event, seismic analysis is excluded from this study because it is PSA-based SMA(Seismic Margin Assessment based Probabilistic Safety Assessment). For the domestic CANDU NPP, the feed and bleed operation using DCT over-pressure protection valves has been incorporated as an additional measure to mitigate the consequences during LPSD mid-loop operation. Since LOCL4 with LOCL3 is considered to be the event with highest frequency among all initial events, the effect of the feed and bleed operation on the safety of Nuclear Power Plant has been evaluated using PSA methodology.

  14. Development of Operational Safety Monitoring System and Emergency Preparedness Advisory System for CANDU Reactors (I)

    International Nuclear Information System (INIS)

    Kim, Ma Woong; Shin, Hyeong Ki; Lee, Sang Kyu; Kim, Hyun Koon; Yoo, Kun Joong; Ryu, Yong Ho; Son, Han Seong; Song, Deok Yong

    2007-01-01

    As increase of operating nuclear power plants, an accident monitoring system is essential to ensure the operational safety of nuclear power plant. Thus, KINS has developed the Computerized Advisory System for a Radiological Emergency (CARE) system to monitor the operating status of nuclear power plant continuously. However, during the accidents or/and incidents some parameters could not be provided from the process computer of nuclear power plant to the CARE system due to limitation of To enhance the CARE system more effective for CANDU reactors, there is a need to provide complement the feature of the CARE in such a way to providing the operating parameters using to using safety analysis tool such as CANDU Integrated Safety Analysis System (CISAS) for CANDU reactors. In this study, to enhance the safety monitoring measurement two computerized systems such as a CANDU Operational Safety Monitoring System (COSMOS) and prototype of CANDU Emergency Preparedness Advisory System (CEPAS) are developed. This study introduces the two integrated safety monitoring system using the R and D products of the national mid- and long-term R and D such as CISAS and ISSAC code

  15. Operations quality assurance for nuclear power plants

    International Nuclear Information System (INIS)

    1987-01-01

    This standard covers the quality assurance of all activities concerned with the operation and maintenance of plant equipment and systems in CANDU-based nuclear power plants during the operations phase, the period between the completion of commissioning and the start of decommissioning

  16. CANDU-BLW-250

    Energy Technology Data Exchange (ETDEWEB)

    Pon, G A

    1967-09-15

    The plant 'La Centrale nucleaire de Gentilly' is located between Montreal and Quebec City on the south shore of the St. Lawrence River and start-up is scheduled for 1971. A CANDU-BLW reactor is the nuclear steam generator. his reactor utilizes a heavy water moderator, natural uranium oxide fuel, and a boiling light water coolant. To be economic, this type of plant must have a minimum light water inventory in the reactor core. A minimum inventory is obtained (a) by reducing the cross-sectional area for coolant flow to a minimum, and (b) by operating at a low-coolant density. In CANDU-BLW-250, this is accomplished by operating a closed spaced fuel rod bundle at high steam quality. These features and others in the BLW concept lead to a number of areas of concern and they are summarized below: (1) Heat Transfer: It is intended that under normal operating conditions the fuel sheaths will always be wetted with coolant. (ii) Hydrodynamic Stability: Experiments and analysis indicate that the plant has a considerable over-power capacity before instability is predicted. (iii) Control: This plant does have a positive power coefficient and the transient performance with various disturbances are detailed. (iv) Safety: The positive power coefficient leads to concern over the loss of coolant accident. The results of some accident analysis are presented. (author)

  17. The Canadian R and D program targeted at CANDU reactors

    International Nuclear Information System (INIS)

    Moeck, E.O.

    1988-01-01

    CANDU reactors produce electricity cheaply and reliably, with miniscule risk to the population and minimal impact on the environment. About half of Ontario's electricity and a third of New Brunswick's are generated by CANDU power plants. Hydro Quebec and utilities in Argentina, India, Pakistan, and the Republic of Korea also successfully operate CANDU reactors. Romania will soon join their ranks. The proven record of excellent performance of CANDUs is due in part to the first objective of the vigorous R and D program: namely, to sustain and improve existing CANDU power-plant technology. The second objective is to develop improved nuclear power plants that will remain competitive compared with alternative energy supplies. The third objective is to continue to improve our understanding of the processes underlying reactor safety and develop improved technology to mitigate the consequences of upset conditions. These three objectives are addressed by individual R and D programs in the areas of CANDU fuel channels, reduced operating costs, reduced capital costs, reactor safety research, and IAEA safeguards. The work is carried out mainly at three centres of Atomic Energy of Canada Limited--the Chalk River Nuclear Laboratories, the Whiteshell Nuclear Research Establishment, and the Sheridan Park Engineering Laboratories--and at Ontario Hydro's Research Laboratories. Canadian universities, consultants, manufacturers, and suppliers also provide expertise in their areas of specialization

  18. Seismic design features of the ACR Nuclear Power Plant

    International Nuclear Information System (INIS)

    Elgohary, M.; Saudy, A.; Aziz, T.

    2003-01-01

    Through their worldwide operating records, CANDU Nuclear Power Plants (NPPs) have repeatedly demonstrated safe, reliable and competitive performance. Currently, there are fourteen CANDU 6 single unit reactors operating or under construction worldwide. Atomic Energy of Canada Limited's (AECL) Advanced CANDU Reactor - the ACR. - is the genesis of a new generation of technologically advanced reactors founded on the CANDU reactor concept. The ACR is the next step in the evolution of the CANDU product line. The ACR products (ACR-700 and ACR-1000) are based on CANDU 6 (700 MWe class) and CANDU 9 (900 MWe class) reactors, therefore continuing AECL's successful approach of offering CANDU plants that appeal to a broad segment of the power generation market. The ACR products are based on the proven CANDU technology and incorporate advanced design technologies. The ACR NPP seismic design complies with Canadian standards that were specifically developed for nuclear seismic design and also with relevant International Atomic Energy Agency (IAEA) Safety Design Standards and Guides. However, since the ACR is also being offered to several markets with many potential sites and different regulatory environments, there is a need to develop a comprehensive approach for the seismic design input parameters. These input parameters are used in the design of the standard ACR product that is suitable for many sites while also maintaining its economic competitiveness. For this purpose, the ACR standard plant is conservatively qualified for a Design Basis Earthquake (DBE) with a peak horizontal ground acceleration of 0.3g for a wide range of soil/rock foundation conditions and Ground Response Spectra (GRS). These input parameters also address some of the current technical issues such as high frequency content and near field effects. In this paper, the ACR seismic design philosophy and seismic design approach for meeting the safety design requirements are reviewed. Also the seismic design

  19. CANDU 9 Design improvements based on experience feedback

    International Nuclear Information System (INIS)

    Yu, S. K. W.; Bonechi, M.; Snell, V. G.

    2000-01-01

    An evolutionary approach utilizing advance technologies has been implenented for the enhancement introduced in the CANDU 9 Nuclear Power Plant (NPP) design. The design of these systems and associated equipment has also benfited from experience feedback from operating CANDU stations and from including advanced products from CANDU engineering and research programs. This paper highlights the design features that contribute to the safety improvements of the CANDU 9 design, summarizes the analysis results which demonstrate the improved performance and also emphasizes design features which reduce operation and maintenance (Q and M) costs. The safety design features highlighted include the increased use of passive devices and heat sinks to achieve extensive system simplification; this also improves reliability and reduces maintenance workloads. System features that contribute to improved operability are also described. The CANDU 9 Control Center provides plant staff with enhanced operating, maintenance and diagnostics features which significantly improve operability, testing and maintainability due to the integration of human factors engineering with a systematic design process. (author)

  20. Risk monitor riskangel for risk-informed applications in nuclear power plants

    International Nuclear Information System (INIS)

    Wang, Fang; Wang, Jiaqun; Wang, Jin; Li, Yazhou; Hu, Liqin; Wu, Yican

    2016-01-01

    Highlights: • A general risk monitor riskangel with high-speed cutsets generator engine. • Benchmarks of actual nuclear power plant (NPP) instantaneous risk models. • Applications in daily operation, maintenance plan and component out of service. - Abstract: This paper studied the requirements of risk monitor software and its applications as a plant specific risk monitor, which supports risk-informed configuration risk management for the two CANDU 6 units at the Third Qinshan nuclear power plant (TQNPP) in China. It also describes the regulatory prospective on risk-informed Probabilistic Safety Assessment (PSA) applications and the use of risk monitor at operating nuclear power plants, high level technical and functional requirements for the development of CANDU specific risk monitor software, and future development trends.

  1. Design of a multivariable controller for a CANDU 600 MWe nuclear power plant using the INA method

    International Nuclear Information System (INIS)

    Roy, N.; Boisvert, J.; Mensah, S.

    1984-04-01

    The development of large and complex nuclear and process plants requires high-performance control systems, designed with rigorous multivariable techniques. This work is part of an analytical study demonstrating the real potential of multivariable methods. It covers every step in the design of a multi-variable controller for a Gentilly-2 type CANDU 600 MWe nuclear power plant using the Inverse Nyquist Array (INA) method. First the linear design model and its preliminary modifications are described. The design tools are reviewed and the operations required to achieve open-loop diagonal dominance are thoroughly described. Analysis of the closed-loop system is then performed and a feedback matrix is selected to meet the design specifications. The performance of the controller on the linear model is verified by simulation. Finally, the controller is implemented on the reference non-linear model to assess its overall performance. The results show that the INA method can be used successfully to design controllers for large and complex systems

  2. Canadian CANDU plant data systems for technical surveillance and analysis

    International Nuclear Information System (INIS)

    Deverno, M.; Pothier, H.; Xian, C.; Grosbois, J. De; Bosnich, M.

    1996-01-01

    Plant data systems are emerging as a critical plant support system technology. In particular, plant-wide Historical Data Systems (HDS) are pivotal to the successful implementation of technical surveillance and analysis programs supporting plant operations, maintenance, safety, and licensing activities. In partnership with Canadian CANDU utility and design organizations, AECL has conducted a review of current Canadian CANDU HDS approaches with emphasis on understanding the existing functionality and uses of plant historical data systems, their future needs and benefits. The results is a vision of a plant-wide HDS providing seamless access to both near real-time and historical data, user tool-kits for data visualization and analysis, and data management of the large volume of data acquired during the life of a plant. The successful implementation of the HDS vision will lead to higher capability and capacity factors while minimizing Operations, Maintenance, and Administration (OM and A) costs. (author). 5 refs, 3 figs

  3. Canadian CANDU plant data systems for technical surveillance and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Deverno, M; Pothier, H; Xian, C [Atomic Energy of Canada Ltd., Control Centre Technology Branch, Fredericton, NB (Canada); Grosbois, J De; Bosnich, M [Atomic Energy of Canada Ltd., Control Centre Technology Branch, Chalk River, ON (Canada). Chalk River Labs.

    1997-12-31

    Plant data systems are emerging as a critical plant support system technology. In particular, plant-wide Historical Data Systems (HDS) are pivotal to the successful implementation of technical surveillance and analysis programs supporting plant operations, maintenance, safety, and licensing activities. In partnership with Canadian CANDU utility and design organizations, AECL has conducted a review of current Canadian CANDU HDS approaches with emphasis on understanding the existing functionality and uses of plant historical data systems, their future needs and benefits. The results is a vision of a plant-wide HDS providing seamless access to both near real-time and historical data, user tool-kits for data visualization and analysis, and data management of the large volume of data acquired during the life of a plant. The successful implementation of the HDS vision will lead to higher capability and capacity factors while minimizing Operations, Maintenance, and Administration (OM and A) costs. (author). 5 refs, 3 figs.

  4. CANDU-BLW-250

    Energy Technology Data Exchange (ETDEWEB)

    Pon, G. A. [Atomic Energy of Canada Ltd, Sheridan Park, ON (Canada)

    1968-04-15

    The plant ''La Centrale nucleaire de Gentiliy'' is located between Montreal and Quebec City on the south shore of the St. Lawrence River. Startup is scheduled for 1971. A CANDU-BLW reactor is the nuclear steam generator. This reactor utilizes a heavy-water moderator, natural uranium oxide fuel, and a boiling light-water coolant. To be economic, this type of plant must have a minimum light-water inventory in the reactor core. A minimum inventory is obtained (a) by reducing the cross-sectional area for coolant flow to a minimum, and (b) by operating at a low coolant density. In CANDU-BLW-250, this is accomplished by operating a closed spaced fuel rod bundle at high steam quality. These features and others in the BLW concept lead to a number of areas of concern and they are summarized below: (i) Heat transfer. It is intended that under normal operating conditions the fuel sheaths will always be wetted with coolant. Some experiments and backup calculations are presented to support this specification. (ii) Hydrodynamic stability. Experiments and analysis indicate that the plant has a considerable over-power capacity before instability is predicted. (iii) Control. This plant does have a positive power coefficient and the transient performance with various disturbances is detailed. (iv) Safety. The positive power coefficient leads to concern over the loss of coolant accident. The results of some accident analyses are presented. (author)

  5. CANDU fuel - fifteen years of power reactor experience

    International Nuclear Information System (INIS)

    Fanjoy, G.R.; Bain, A.S.

    1977-05-01

    Analyses of performance statistics, supplemented by examinations of fuel from power reactors and experimental loops have yielded: (a) a thorough understanding of the fundamental behaviour of CANDU fuel; (b) data showing that the predicted high utilization of uranium has been achieved; (c) criteria for operation, which have led to the current very low defect rate of 0.03% of all assemblies and to 'CANLUB' fuel, which has a graphite interlayer between the fuel and sheath to reduce defects on power increases; (d) proof that the short length (500 mm), collapsible cladding features of the CANDU bundle are successful and that the fuel can operate at high-power output (current peak outer-element linear power is 58 +- 15% kW/m). As of mid-1976 over 3 x 10 6 individual elements have been built and over 2 x 10 6 elements have been irradiated. Only six defects have been attributed to faulty materials or fabrication, and the use of high-density UO 2 with low-moisture content precluded defects from hydrogen contamination and densification

  6. Conceptual designs for very high-temperature CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushby, S.J.; Dimmick, G.R.; Duffey, R.B. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    2000-07-01

    Although its environmental benefits are demonstrable, nuclear power must be economically competitive with other energy sources to ensure it retains, or increases, its share of the changing and emerging energy markets of the next decades. In recognition of this, AECL is studying advanced reactor concepts with the goal of significant reductions in capital cost through increased thermodynamic efficiency and plant simplification. The program, generically called CANDU-X, examines concepts for the future, but builds on the success of the current CANDU designs by keeping the same fundamental design characteristics: excellent neutron economy for maximum flexibility in fuel cycle; an efficient heavy-water moderator that provides a passive heat sink under upset conditions; and, horizontal fuel channels that enable on-line refueling for optimum fuel utilization and power profiles. Retaining the same design fundamentals takes maximum advantage of the existing experience base, and allows technological and design improvements developed for CANDU-X to be incorporated into more evolutionary CANDU plants in the short to medium term. Three conceptual designs have been developed that use supercritical water (SCW) as a coolant. The increased coolant temperature results in the thermodynamic efficiency of each CANDU-X concept being significantly higher than conventional nuclear plants. The first concept, CANDU-X Mark 1, is a logical extension of the current CANDU design to higher operating temperatures. To take maximum advantage of the high heat capacity of water at the pseudo-critical temperature, water at nominally 25 MPa enters the core at 310{sup o}C, and exits at {approx}410{sup o}C. The high specific heat also leads to high heat transfer coefficients between the fuel cladding and the coolant. As a result, Zr-alloys can be used as cladding, thereby retaining relatively high neutron economy. The second concept, CANDU-X NC, is aimed at markets that require smaller simpler distributed

  7. Conceptual designs for very high-temperature CANDU reactors

    International Nuclear Information System (INIS)

    Bushby, S.J.; Dimmick, G.R.; Duffey, R.B.

    2000-01-01

    Although its environmental benefits are demonstrable, nuclear power must be economically competitive with other energy sources to ensure it retains, or increases, its share of the changing and emerging energy markets of the next decades. In recognition of this, AECL is studying advanced reactor concepts with the goal of significant reductions in capital cost through increased thermodynamic efficiency and plant simplification. The program, generically called CANDU-X, examines concepts for the future, but builds on the success of the current CANDU designs by keeping the same fundamental design characteristics: excellent neutron economy for maximum flexibility in fuel cycle; an efficient heavy-water moderator that provides a passive heat sink under upset conditions; and, horizontal fuel channels that enable on-line refueling for optimum fuel utilization and power profiles. Retaining the same design fundamentals takes maximum advantage of the existing experience base, and allows technological and design improvements developed for CANDU-X to be incorporated into more evolutionary CANDU plants in the short to medium term. Three conceptual designs have been developed that use supercritical water (SCW) as a coolant. The increased coolant temperature results in the thermodynamic efficiency of each CANDU-X concept being significantly higher than conventional nuclear plants. The first concept, CANDU-X Mark 1, is a logical extension of the current CANDU design to higher operating temperatures. To take maximum advantage of the high heat capacity of water at the pseudo-critical temperature, water at nominally 25 MPa enters the core at 310 o C, and exits at ∼410 o C. The high specific heat also leads to high heat transfer coefficients between the fuel cladding and the coolant. As a result, Zr-alloys can be used as cladding, thereby retaining relatively high neutron economy. The second concept, CANDU-X NC, is aimed at markets that require smaller simpler distributed power plants

  8. ROP design for Enhanced CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.; Scherbakova, D; Kastanya, D.; Ovanes, M. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    The Enhanced CANDU 6 (EC6) nuclear power plant is a mid-sized pressurized heavy water reactor design, based on the highly successful CANDU 6 (C6) family of power plants, upgraded to meet today's Canadian and international safety requirements and to satisfy Generation III expectations. The EC6 reactor is equipped with two independent Regional Overpower Protection (ROP) systems to prevent overpowers in the reactor fuel. The ROP system design, retaining the traditional C6 methodology, is determined to cover the End-of-Life (EOL) reactor core condition since the reactor operating/thermal margin gradually decreases as plant equipment ages. Several design changes have been incorporated into the reference C6 plant to mitigate the ageing effect on the ROP trip margin. This paper outlines the basis for the EC6 ROP physics design and presents the ROP related improvements made in the EC6 design to ensure that full power operation is not limited by the ROP throughout the entire life of the reactor. (author)

  9. A feasible approach to implement a commercial scale CANDU fuel manufacturing plant in Egypt

    International Nuclear Information System (INIS)

    El-Shehawy, I.; El-Sharaky, M.; Yasso, K.; Selim, I.; Graham, N.; Newington, D.

    1995-01-01

    Many planning scenarios have been examined to assess and evaluate the economic estimates for implementing a commercial scale CANDU fuel manufacturing plant in Egypt. The cost estimates indicated strong influence of the annual capital costs on total fuel manufacturing cost; this is particularly evident in a small initial plant where the proposed design output is only sufficient to supply reload fuel for a single CANDU-6 reactor. A modular approach is investigated as a possible way, to reduce the capital costs for a small initial fuel plant. In this approach the plant would do fuel assembly operations only and the remainder of a plant would be constructed and equipped in the stages when high production volumes can justify the capital expenses. Such approach seems economically feasible for implementing a small scale CANDU fuel manufacturing plant in developing countries such as Egypt and further improvement could be achieved over the years of operation. (author)

  10. CANDU: study and review

    International Nuclear Information System (INIS)

    Morad, César M.; Santos, Thiago A. dos

    2017-01-01

    The CANDU (Canadian Deuterium Uranium) is a nuclear reactor developed by AECL (Atomic Energy of Canada Limited). The first small-scale reactor is known as NPD and was made in 1955 and commenced operation in 1962. It is a pressurized heavy water reactor and uses D2O as moderator and coolant and therefore uses natural uranium as fuel. There have been two major types of CANDU reactors, the original design of around 500 MWe that was intended to be used in multi-reactor installations in large plants, and the rationalized CANDU6 which has units in Argentina, South Korea, Pakistan, Romania and China. Throughout the 1980s and 90s the nuclear power market suffered a major crash, with few new plants being constructed in North America or Europe. Design work continued through, however, and a number of new design concepts were introduced that dramatically improved safety, capital costs, economics and overall performance. These Generation III+ and Generation IV machines became a topic of considerable interest in the early 2000s as it appeared a nuclear renaissance was underway and large numbers of new reactors would be built over the next decade. The present work aims to study the reactors of the CANDU type, exploring from its creation to studies directed to G-III and G-IV reactors. (author)

  11. CANDU: study and review

    Energy Technology Data Exchange (ETDEWEB)

    Morad, César M., E-mail: cesar.morad@usp.br [Universidade de São Paulo (POLI/USP), SP (Brazil). Escola Politécnica; Stefani, Giovanni L. de, E-mail: giovanni.stefani@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santos, Thiago A. dos, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil)

    2017-07-01

    The CANDU (Canadian Deuterium Uranium) is a nuclear reactor developed by AECL (Atomic Energy of Canada Limited). The first small-scale reactor is known as NPD and was made in 1955 and commenced operation in 1962. It is a pressurized heavy water reactor and uses D2O as moderator and coolant and therefore uses natural uranium as fuel. There have been two major types of CANDU reactors, the original design of around 500 MWe that was intended to be used in multi-reactor installations in large plants, and the rationalized CANDU6 which has units in Argentina, South Korea, Pakistan, Romania and China. Throughout the 1980s and 90s the nuclear power market suffered a major crash, with few new plants being constructed in North America or Europe. Design work continued through, however, and a number of new design concepts were introduced that dramatically improved safety, capital costs, economics and overall performance. These Generation III+ and Generation IV machines became a topic of considerable interest in the early 2000s as it appeared a nuclear renaissance was underway and large numbers of new reactors would be built over the next decade. The present work aims to study the reactors of the CANDU type, exploring from its creation to studies directed to G-III and G-IV reactors. (author)

  12. Operating performance and reliability of CANDU PHWR fuel channels in Canada

    International Nuclear Information System (INIS)

    Strachan, B.; Brown, D.R.

    1983-03-01

    CANDU nuclear plants use many small-diameter high-pressure fuel channels. Good operating performance from the CANDU fuel channels has made a major contribution to the world-leading operating record of the CANDU nuclear power plants. As of 1982 December 31, there were 7,480 fuel channels installed in 18 CANDU reactors over 500 MW(e) in size. Eight of these reactors have been declared in-service and have accumulated 24,000 fuel channel-years of operation. The only significant operating problems with fuel channels have been the occurrence of leaking cracks in 70 fuel channels and a larger amount of axial creep on the early reactors than was originally provided for in the design. Both of these problems have been corrected on all CANDU reactors built since the Bruce GS 'A' station and the newer reactors should exhibit even better performance

  13. CANDU advanced fuel cycles

    International Nuclear Information System (INIS)

    Slater, J.B.

    1986-03-01

    This report is based on informal lectures and presentations made on CANDU Advanced Fuel Cycles over the past year or so, and discusses the future role of CANDU in the changing environment for the Canadian and international nuclear power industry. The changing perspectives of the past decade lead to the conclusion that a significant future market for a CANDU advanced thermal reactor will exist for many decades. Such a reactor could operate in a stand-alone strategy or integrate with a mixed CANDU-LWR or CANDU-FBR strategy. The consistent design focus of CANDU on enhanced efficiency of resource utilization combined with a simple technology to achieve economic targets, will provide sufficient flexibility to maintain CANDU as a viable power producer for both the medium- and long-term future

  14. The next generation of CANDU technologies: profiling the potential for hydrogen fuel

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2001-01-01

    This report discusses the Next-generation CANDU Power Reactor technologies currently under development at AECL. The innovations introduced into proven CANDU technologies include a compact reactor core design, which reduces the size by a factor of one third for the same power output; improved thermal efficiency through higher-pressure steam turbines; reduced use of heavy water (one quarter of the heavy water required for existing plants), thus reducing the cost and eliminating many material handling concerns; use of slightly enriched uranium to extend fuel life to three times that of existing natural uranium fuel and additions to CANDU's inherent passive safety. With these advanced features, the capital cost of constructing the plant can be reduced by up to 40 per cent compared to existing designs. The clean, affordable CANDU-generated electricity can be used to produce hydrogen for fuel cells for the transportation sector, thereby reducing emissions from the transportation sector

  15. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  16. CANDU - Canadian experience and expectations with the heavy-water reactor

    International Nuclear Information System (INIS)

    Foster, J.S.; Russell, S.H.

    1977-05-01

    The paper describes the evolution of the CANDU nuclear-power plants with particular reference to the objectives of safety, reliability and economy; the development of industrial capacity for the supply of fuel, components and heavy water; and the prospective development of advanced fuel cycles and the projected results. It provides data on radiation, releases, and exposures, internal and external to the power plants; plant availability, capacity factors and other performance data; heavy water production data with reference to safety, reliability, and economics; projections of the performance of CANDU reactors operating on a thorium-U-233 cycle and the development required to establish this cycle; and intent with respct to spent-fuel management and radioactive-waste storage. (author)

  17. Manufacturing opportunities in the Canadian CANDU and heavy water programs

    International Nuclear Information System (INIS)

    Reny, J.P.

    The volume of business available to Canadian manufacturers of CANDU power plant and heavy water plant components is analyzed over about the next 10 years. Implications of exported nuclear technology and plants are explored. (E.C.B.)

  18. Multi-purpose use of the advanced CANDU compact simulator

    International Nuclear Information System (INIS)

    Lam, K.Y.; MacBeth, M.J.

    1997-01-01

    A near full-scope dynamic model of a CANDU-PHWR (Canadian Deuterium Uranium Pressurized Heavy Water) nuclear power plant was constructed as a multi-purpose advanced Compact Simulator using CASSIM (Cassiopeia Simulation) development system. This Compact Simulator has played an integral part in the design and verification of the CANDU 900 MW control centre mock-up located in the Atomic Energy of Canada (AECL) design office, providing CANDU plant process dynamic data to the Plant Display System (PDS) and the Distributed Control System (DCS), as well as mock-up panel devices. As a design tool, the Compact Simulator is intended to be used for control strategy development, human factors studies, analysis of overall plant control performance, tuning estimates for major control loops. As a plant commissioning and operational strategy development tool, the simulation is intended to be used to evaluate routine and non-routine operational procedures, practice 'what-if' scenarios for operational strategy development, practice malfunction recovery procedures and verify human factors activities

  19. CANDU steam generator life management: laboratory data and plant experience

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.H.; Subash, N.; Wright, M.D.

    2001-10-01

    As CANDU reactors enter middle age, and the potential value of the plants in a deregulated market is realized, life management and life extension issues become increasingly important. An accurate assessment of critical components, such as the CANDU 6 steam generators (SGs), is crucial for successful life extension, and in this context, material issues are a key factor. For example, service experience with Alloy 900 tubing indicates very low levels of degradation within CANDU SGs; the same is also noted worldwide. With little field data for extrapolation, life management and life extension decisions for the tube bundles rely heavily on laboratory data. Similarly, other components of the SGs, in particular the secondary side internals, have only limited inspection data upon which to base a condition assessment. However, in this case there are also relatively little laboratory data. Decisions on life management and life extension are further complicated--not only is inspection access often restricted, but repair or replacement options for internal components are, by definition, also limited. The application of CANDU SG life management and life extension requires a judicious blend of in-service data, laboratory research and development (R and D) and materials and engineering judgment. For instance, the available laboratory corrosion and fretting wear data for Alloy 800 SG tubing have been compared with plant experience (with all types of tubing), and with crevice chemistry simulations, in order to provide an appropriate inspection guide for a 50-year SG life. A similar approach has been taken with other SG components, where the emphasis has been on known degradation mechanisms worldwide. This paper provides an outline of the CANDU SG life management program, including the results to date, a summary of the supporting R and D program showing the integration with condition assessment and life management activities, and the approach taken to life extension for a typical

  20. Qinshan Phase III (CANDU) nuclear power project quality assurance

    International Nuclear Information System (INIS)

    Wang Lingen; Du Jinxiang

    2001-01-01

    The completion and implementation of quality assurance system of Qinshan Phase III (CANDU) nuclear power project are presented. Some comments and understanding with consideration of the project characteristics are put forward

  1. Advancement of safeguards inspection technology for CANDU nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Park, W S; Cha, H R; Ham, Y S; Lee, Y G; Kim, K P; Hong, Y D

    1999-04-01

    The objectives of this project are to develop both inspection technology and safeguards instruments, related to CANDU safeguards inspection, through international cooperation, so that those outcomes are to be applied in field inspections of national safeguards. Furthermore, those could contribute to the improvement of verification correctness of IAEA inspections. Considering the level of national inspection technology, it looked not possible to perform national inspections without the joint use of containment and surveillance equipment conjunction with the IAEA. In this connection, basic studies for the successful implementation of national inspections was performed, optimal structure of safeguards inspection was attained, and advancement of safeguards inspection technology was forwarded. The successful implementation of this project contributed to both the improvement of inspection technology on CANDU reactors and the implementation of national inspection to be performed according to the legal framework. In addition, it would be an opportunity to improve the ability of negotiating in equal shares in relation to the IAEA on the occasion of discussing or negotiating the safeguards issues concerned. Now that the national safeguards technology for CANDU reactors was developed, the safeguards criteria, procedure and instruments as to the other item facilities and fabrication facilities should be developed for the perfection of national inspections. It would be desirable that the recommendations proposed and concreted in this study, so as to both cope with the strengthened international safeguards and detect the undeclared nuclear activities, could be applied to national safeguards scheme. (author)

  2. Joint studies on large CANDU

    International Nuclear Information System (INIS)

    Lee, Ikhwan; Yu, S. K. W.

    1994-01-01

    CANDU PHWRs have demonstrated generic benefits which will be continued in future designs. These include economic benefits due to low operating costs, business potential, strategic benefits due to fuel cycle flexibility and operational benefits. These benefits have been realized in Korea through the operation of Wolsong 1, resulting in further construction of PHWRs at the same site. The principal benefit, low electricity cost, is due to the high capacity factor and the low fuel cost for CANDU. The CANDU plant at Wolsong has proven to be a safe, reliable and economical electricity producer. The ability of PHWR to burn natural uranium ensures security of fuel supply. Following successful Technology Transfer via the Wolsong 2,3 and 4 project, future opportunity exists between Korea and Canada for continuing co-operation in research and development to improve the technology base, for product development partnerships, and business opportunities in marketing and building PHWR plants in third countries. High reliability, through excellent design, well-controlled operation, efficient maintenance and low operating costs is critical to the economic viability of nuclear plants. CANDU plants have an excellent performance record. The four operating CANDU 6 plants, operated by four utilities in three countries, are world performance leaders. The CANDU 9 design, with higher output capacity, will help to achieve better site utilization and lower electricity costs. Being an evolutionary design, CANDU 9 assures high performance by utilizing proven systems, and component designs adapted from operating CANDU plants (Bruce B, Darlington and CANDU 6). All system and operating parameters are within the operating proven range of current plants. KAERI and AECL have an agreement to perform joint studies on future PHWR development. The objective of the joint studies is to establish the requirements for the design of future advanced CANDU PHWR including the utility need for design improvements

  3. Computational fluid dynamics analysis for flow accelerated corrosion in CANDU6 feeder pipes

    International Nuclear Information System (INIS)

    Catana, A.; Pauna, E.; Ioan, M.

    2013-01-01

    CANDU6 plant management over a long time period includes various ageing and degradation mechanisms like FAC manifested mainly at first and second elbow of CANDU6 outlet feeders. FAC take place at all CANDU6 built before 2000 year with feeders made from SA106 grade B low alloy carbon-steel (with chromium at 0.02%). CFD method is used in this paper to investigate the feeder's wall thinning process taking place mainly due local flow conditions in complex 3D geometrical configurations. The 380 outlet feeders grouped in 2.5'' (320) and 2.0'' feeders (60). The objective of this paper is to help, as much as possible, to focus investigation on most probable maximum thinning rate locations through 3D distribution of some TH parameters. Application of CFD methods in CANDU6 nuclear reactors implies the knowledge of real plant operating data like: long term time averaged channel power and mass flow as well as temperature, pressure, pHa etc allowing the optimization and cost reduction of wall thinning monitoring process at CANDU6 nuclear power plants. (authors)

  4. Design, construction and operation of Ontario Hydro's CANDU plants

    International Nuclear Information System (INIS)

    Campbell, P.G.

    1981-06-01

    Ontario Hydro has been producing electricity commercially from nuclear power since 1968, using CANDU reactors which have proved enormously successful. The 206-MW Douglas Point station, nearly 10 times larger than the first Canadian power reactor, NPD-2, resulted from a cooperative effort between Atomic Energy of Canada Ltd., the provincial government of Ontario, and Ontario Hydro. This approach led to a basic working relationship between the parties, with Ontario Hydro acting as project manager and builder, and AECL acting as consultant with respect to the nuclear components. Before Douglas Point was fully commissioned Ontario Hydro was ready to commit itself to more nuclear stations, and work was started on the four-unit Pickering nuclear generating station. Multi-unit stations were adopted to achieve economies of scale, and the concept has been retained for all subsequent nuclear power plants constructed in the province. The organization of Ontario Hydro's project management, construction, and operation of nuclear generating stations is described. Performance of the existing stations and cost of the power they produce have been entirely acceptable

  5. Advantages of butterfly valves for power plants

    International Nuclear Information System (INIS)

    Lapadat, J.T.

    1977-01-01

    Butterfly valves are increasingly used in nuclear power plants. They are used in CANDU reactors for class 2 and 3 service, to provide emergency and tight shutoff valves for all inlets and outlets of heat exchangers and all calandria penetrations. Guidelines for meeting nuclear power plant valve specifications are set out in ASME Section 3, Nuclear Power Plant Components. Some details of materials of construction, type of actuator, etc., for various classes of nuclear service are tabulated in the present article. The 'fishtail' butterfly valve is an improved design with reduced drag, as is illustrated and explained. (N.D.H.)

  6. Standard compliance - NDE performance demonstration/inspection in the CANDU industry

    International Nuclear Information System (INIS)

    Choi, E.

    2011-01-01

    CANDU nuclear power plants are operated in 3 provinces in Canada for electric power generation. A table in the paper will show the built and operating plants in Ontario, Quebec, New Brunswick and overseas. The regulator for nuclear power in Canada is the Canadian Nuclear Safety Commission (CNSC). The CNSC holds the plant licensees accountable for compliance to CSA N285.4 for periodic inspections. The Standard basically specifies the 'what, when, where, how, how much and how frequently' NDE is to be done on pressure retaining systems and components in CANDU nuclear power plants. In inspection methods, the Standard specifies they must be non-destructive. The NDE methods were grouped into visual, dimensional, surface, volumetric and integrative. The Standard also specifies that the licensees are responsible for the performance demonstration (PD) of the adequacy of the procedures and the proficiency of the personnel. This paper describes the Standard's requirement in NDE qualification and presents a joint project participated by Canadian and overseas CANDU owners. The sub-project for NDE included providing evidence and technical justification on the adequacy of the procedures and the proficiency of the personnel. The paper describes the qualification methodology followed by the participants. This will be followed by how the participants produced Inspection Specification, tools and procedures, personnel training and qualification programs, test and qualification samples, independent peer reviews and Technical Justification. (author)

  7. Technology transfer: The CANDU approach

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    The many and diverse technologies necessary for the design, construction licensing and operation of a nuclear power plant can be efficiently assimilated by a recipient country through an effective technology transfer program supported by the firm long term commitment of both the recipient country organizations and the supplier. AECL's experience with nuclear related technology transfer spans four decades and includes the construction and operation of CANDU plants in five countries and four continents. A sixth country will be added to this list with the start of construction of two CANDU 6 plants in China in early 1997. This background provides the basis for addressing the key factors in the successful transfer of nuclear technology, providing insights into the lessons learned and introducing a framework for success. This paper provides an overview of AECL experience relative to the important factors influencing technology transfer, and reviews specific country experiences. (author)

  8. The evolution of the CANDU energy system - ready for Europe's energy future

    International Nuclear Information System (INIS)

    Hedges, K. R.; Hopwood, J. M.

    2001-01-01

    As air quality and climate change issues receive increasing attention, the opportunity for nuclear to play a larger role in the coming decades also increases. The good performance of the current fleet of nuclear plants is crucial evidence of nuclear's potential. The excellent record of Cernavoda-1 is an important part of this, and demonstrates the maturity of the Romanian program and of the CANDU design approach. However, the emerging energy market also presents a stringent economic challenge. Current NPP designs, while established as reliable electricity producers, are seen as limited by high capital costs. In some cases, the response to the economic challenge is to consider radical changes to new design concepts, with attendant development risks from lack of provenness. Because of the flexibility of the CANDU system, it is possible to significantly extend the mid-size CANDU design, creating a Next Generation product, without sacrificing the extensive design, delivery and operations information base for CANDU. This enables a design with superior safety characteristics while at the same time meeting the economic challenge of emerging markets. The Romanian nuclear program has progressed successfully forward, leading to the successful operation of Cernavoda-1, and the project to bring Cernavoda-2 to commercial operation. The Romanian nuclear industry has become a full-fledged member of the CANDU community, with all areas of nuclear technology well established and benefiting from international cooperation with other CANDU organizations. AECL is an active partner with Romanian nuclear organizations, both through cooperative development programs, commercial contracts, and also through the activities of the CANDU owners' Group (COG). The Cernavoda project is part of the CANDU 6 family of nuclear power plants developed by AECL. The modular fuel channel reactor concept can be modified extensively, through a series of incremental changes, to improve economics, safety

  9. CANDU 3000

    International Nuclear Information System (INIS)

    Keillor, Mac

    1987-01-01

    In this article, the CANDU 300 design, and the team that designed it, are featured. The CANDU 300 will operate at an energy cost similar to that of the larger CANDU units, but is sized for emerging markets. Ease of construction is an important feature: for example, full 360-degree access is available to each of the five buildings during construction; and the whole plant consists of about 90 modules, which can be built in separate locations, and hoisted into place

  10. CANDU project development

    International Nuclear Information System (INIS)

    Hedges, K.R.

    1995-01-01

    Advanced CANDU reactor design strategy follows an evolutionary approach, taking manageable steps in the development of power plants from today's available designs, and in parallel carrying out longer-term studies to develop future-generation reactor concepts. The major emphasis is on safety, on on reducing cost and schedule. New features are developed and thoroughly proof-tested before introduction into designs, in order to maximize owner confidence. (author). 4 figs

  11. CANDU project development

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, K R [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    Advanced CANDU reactor design strategy follows an evolutionary approach, taking manageable steps in the development of power plants from today`s available designs, and in parallel carrying out longer-term studies to develop future-generation reactor concepts. The major emphasis is on safety, on on reducing cost and schedule. New features are developed and thoroughly proof-tested before introduction into designs, in order to maximize owner confidence. (author). 4 figs.

  12. Trends in the capital costs of CANDU generating stations

    International Nuclear Information System (INIS)

    Yu, A.M.

    1982-09-01

    This paper consolidates the actual cost experience gained by Atomic Energy of Canada Limited, Ontario Hydro, and other Canadian electric utlities in the planning, design and construction of CANDU-PHWR (CANada Deuterium Uranium-Pressurized Heavy Water Reactor) generating stations over the past 30 years. For each of the major CANDU-PHWR generating stations in operation and under construction in Canada, an analysis is made to trace the evolution of the capital cost estimates. Major technical, economic and other parameters that affect the cost trends of CANDU-PHWR generating stations are identified and their impacts assessed. An analysis of the real cost of CANDU generating stations is made by eliminating interest during construction and escalation, and the effects of planned deferment of in-service dates. An historical trend in the increase in the real cost of CANDU power plants is established. Based on the cost experience gained in the design and construction of CANDU-PHWR units in Canada, as well as on the assessment of parameters that influence the costs of such projects, the future costs of CANDU-PHWRs are presented

  13. Advancing the CANDU reactor: From generation to generation

    International Nuclear Information System (INIS)

    Hopwood, Jerry; Duffey, Romney B.; Yu, Steven; Torgerson, Dave F.

    2006-01-01

    Emphasizing safety, reliability and economics, the CANDU reactor development strategy is one of continuous improvement, offering value and assured support to customers worldwide. The Advanced CANDU Reactor (ACR-1000) generation, designed by Atomic Energy of Canada Limited (AECL), meets the new economic expectation for low-cost power generation with high capacity factors. The ACR is designed to meet customer needs for reduced capital cost, shorter construction schedule, high plant capacity factor, low operating cost, increased operating life, simple component replacement, enhanced safety features, and low environmental impact. The ACR-1000 design evolved from the internationally successful medium-sized pressure tube reactor (PTR) CANDU 6 and incorporates operational feedback from eight utilities that operate 31 CANDU units. This technical paper provides a brief description of the main features of the ACR-1000, and its major role in the development path of the generations of the pressure tube reactor concept. The motivation, philosophy and design approach being taken for future generation of CANDU pressure tube reactors are described

  14. Systems analysis of the CANDU 3 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wolfgong, J.R.; Linn, M.A.; Wright, A.L.; Olszewski, M.; Fontana, M.H. [Oak Ridge National Lab., TN (United States)

    1993-07-01

    This report presents the results of a systems failure analysis study of the CANDU 3 reactor design; the study was performed for the US Nuclear Regulatory Commission. As part of the study a review of the CANDU 3 design documentation was performed, a plant assessment methodology was developed, representative plant initiating events were identified for detailed analysis, and a plant assessment was performed. The results of the plant assessment included classification of the CANDU 3 event sequences that were analyzed, determination of CANDU 3 systems that are ``significant to safety,`` and identification of key operator actions for the analyzed events.

  15. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely.

  16. Analysis of Multiple Spurious Operation Scenarios for Decay Heat Removal Function of CANDU Reactors

    International Nuclear Information System (INIS)

    Lee, Youngseung; Bae, Yeon-kyoung; Kim, Myungsu

    2016-01-01

    The worst fire broke out in the Browns Ferry Nuclear Power Plant on March 22, 1975. A fire occurrence in a nuclear power plant has recognized a latently serious incident. Nuclear power plants should achieve and maintain the safe shutdown conditions during and after the occurrence of a fire. Functions of the safe shutdown are five such as the shutdown function, the decay heat removal function, the containment function, monitoring and control function, and the supporting function for CANDU type reactors. The purpose of this paper is to analyze that the decay heat removal function of the safe shutdown functions for CANDU type reactors is achieved under the fire induced multiple spurious operation. The scenarios of the fire induced multiple spurious operations (MSO) for the systems used for the decay heat cooling were analyzed. Additionally, Integrated Severe Accident Analysis code for CANDU plants (ISAAC) for determining success criteria of thermal hydraulic analysis was used. Decay heat cooling systems of CANDU reactors are the auxiliary feedwater system, the emergency water supply system, and the shutdown cooling system. A big fire can threat the safety of nuclear power plants, and safe shutdown conditions. The regulatory body in Korea requires the fire hazard analysis including fire induced MSOs. The safe shutdown functions for CANDU reactors are the shutdown function, the decay heat removal function, the containment function, the monitoring and control function, and the supporting service function. The number of spurious operations for the auxiliary feedwater system is more than six and that for the emergency water supply system is one. Additionally, misoperations for the shutdown cooling system are more than two. Accordingly, if total nine components could be spuriously operated, the decay heat removal function would be lost entirely

  17. Maintenance, rehabilitation, long life-the CANDU potential

    International Nuclear Information System (INIS)

    Torgerson, D.F.; Charlebois, P.; Hopkins, J.

    1998-01-01

    Plant life extension beyond the original design life is becoming an attractive economic consideration in the nuclear industry. Plant Life Management and life extension considerations have been built into the complete life cycle of the CANDU plant. The plant life management studies demonstrate that life extension for operating plants beyond 30 years is economically viable. The new CANDU designs benefit from this experience feedback and as a result, the plant design basis is now 40 years or better with potential for economical life extension. AECL is therefore confident that the new CANDU designs will exceed the performance record of the first generation CANDU 6 units and is committed to providing continued support and services during the operating life of the plant

  18. Review on the application of system engineer model in nuclear power plant

    International Nuclear Information System (INIS)

    Chen Guocai

    2005-01-01

    system engineer was adopted deeply and play important roles in nuclear power plants in United States and Canada, the plant performance indicates that system engineer mode is a good practice. Qinshan CANDU nuclear power plant, established the system engineer mode since commissioning, as a core, system engineer took charge of the preparation of commissioning procedures, organization, coordination and guidance of commissioning execution. Unit 1 was put into commercial operation 43 days in advance and 112 days ahead of schedule for Unit 2 with excellent quality. Commissioning period are just 10.5 and 7.8 months for both Units respectively. Which is the shortest record in the history of CANDU nuclear power plant commissioning up to now. During operation, systems engineer has strength in routine operating and units reliability improvement. Based on the practice of Qinshan CANDU nuclear power plant commissioning and production technical management, the main form of the article in the era of knowledge: its characteristics and advantage and operating mode of the system engineer mode. System engineer is different from project engineer, he act as the master of systems and takes full responsibility for systems technical management. System engineer should do many jobs and improvement schedule to ensure his system in health status. System health monitor is a basic tool in system management, which is useful for equipment performance improvement. At last, the author made a forecast and comment on the prospects for the system engineer in the future. (author)

  19. Qinshan CANDU NPP outage performance improvement through benchmarking

    International Nuclear Information System (INIS)

    Jiang Fuming

    2005-01-01

    With the increasingly fierce competition in the deregulated Energy Market, the optimization of outage duration has become one of the focal points for the Nuclear Power Plant owners around the world. People are seeking various ways to shorten the outage duration of NPP. Great efforts have been made in the Light Water Reactor (LWR) family with the concept of benchmarking and evaluation, which great reduced the outage duration and improved outage performance. The average capacity factor of LWRs has been greatly improved over the last three decades, which now is close to 90%. CANDU (Pressurized Heavy Water Reactor) stations, with its unique feature of on power refueling, of nuclear fuel remaining in the reactor all through the planned outage, have given raise to more stringent safety requirements during planned outage. In addition, the above feature gives more variations to the critical path of planned outage in different station. In order to benchmarking again the best practices in the CANDU stations, Third Qinshan Nuclear Power Company (TQNPC) have initiated the benchmarking program among the CANDU stations aiming to standardize the outage maintenance windows and optimize the outage duration. The initial benchmarking has resulted the optimization of outage duration in Qinshan CANDU NPP and the formulation of its first long-term outage plan. This paper describes the benchmarking works that have been proven to be useful for optimizing outage duration in Qinshan CANDU NPP, and the vision of further optimize the duration with joint effort from the CANDU community. (authors)

  20. Dura Seal recommendations for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Reactor systems (BWR, PWR and Candu) are briefly reviewed with reference to the pumping services encountered in each system, to indicate the conditions imposed on mechanical seals for nuclear power plant liquid handling equipment. A description of the Dura Seals used in each service is included. (U.K.)

  1. Improvement of Candu-1000 MW(e) power cycle by moderator heat recovery

    International Nuclear Information System (INIS)

    Fath, H.E.S.

    1988-01-01

    Four different moderator heat recovery circuits are proposed for CANDU-1000 MW(e) reactors. The proposed circuits utilize all, or part, of the 155 MW(th) moderator heat load (at 70 0 C moderator outlet temperature from calandria) to the first stage of the feed water heating system. An economics study was carried out and indicated that the direct circulation of feed water through the moderator heat exchanger (with full heat recovery) is the most economical scheme. For this scheme the saved steam from the turbine extraction was found to produce additional electric power of 8 MW(e). This additional power represents a 0.7% increase in the plants nominal electric output. The outstanding features and advantages of the selected scheme are also presented. (author)

  2. The CANDU 80

    International Nuclear Information System (INIS)

    Hart, R.S.

    1998-01-01

    AECL has completed the conceptual design of a small CANDU plant with an output, in the range of 300 MWth (called the CANDU 80), suitable for a variety of electrical and co-generation applications including desalination, oil sands oil extraction and processing, and the provision of electricity and heat to areas with low demand. This paper provides a brief overview of the CANDU 80, and discusses key features contributing to safety and operational margins

  3. Lessons learned from current Qinshan CANDU project and the impact on future NPP's

    International Nuclear Information System (INIS)

    Hedges, K. R.; Didsbury, R.; Yu, S. K. W.

    2000-01-01

    AECL has adopted an evolutionary approach to the development of the CANDU 6 and CANDU 9 Nuclear Power Plant (NPP) designs. Each new NPP project benefits from previous projects and contains an increasing number of fully proven enhancements. In accordance with this evolutionary design approach, AECL has built on the Wolsong and Qinshan successes and the solid performance of the reference CANDU stations to define, review and implement the enhancements for the CANDU 9 NPP. Some of these enhancements include fully integrated project information systems and databases, safety enhancements coming from PSA studies and licensing activities, distributed control systems for plant-wide control and an advanced control center which addresses human factors engineering concepts. Examples of the Qinshan CANDU project delivery enhancements are the utilization of electronic engineering tools for the complete plant, and the linking of these tools with the project material management system and document management systems. The project information is reviewed and approved at the engineering office in Canada and then transmitted to site electronically. Once the electronic data is at site the information packages are extracted as necessary to enable construction and facilitate contract needs with minimum effort. This paper will provide details of the CANDU Qinshan project experiences as well as describing some of the corresponding CANDU 9 enhancements. (author)

  4. CANDU in the next century

    International Nuclear Information System (INIS)

    Meneley, D.A.; Torgerson, D.F.

    1997-01-01

    AECL's main product line is available today in two designs, designated as CANDU 6 and CANDU 9. Each of these is based on successfully operating pressurized-heavy-water nuclear plants. Several new CANDU stations are under construction or planned around the world. The author presents plant concepts which may evolve from today's products during the 21st century, indicating the particular development directions which might be followed by AECL product development depending on the future competitive environment, economics, and market circumstances. This study shows that the CANDU energy supply system is sufficiently flexible to be adapted into widely varying circumstances over the next century and beyond

  5. A short history of the CANDU nuclear power system

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, G L

    1993-04-01

    This paper provides a short historical summary of the evolution of the CANDU nuclear power system with emphasis on the roles played by Ontario Hydro and private sector companies in Ontario in collaboration with Atomic Energy of Canada Limited (AECL). (author). 1 fig., 61 refs.

  6. A short history of the CANDU nuclear power system

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1993-04-01

    This paper provides a short historical summary of the evolution of the CANDU nuclear power system with emphasis on the roles played by Ontario Hydro and private sector companies in Ontario in collaboration with Atomic Energy of Canada Limited (AECL). (author). 1 fig., 61 refs

  7. Prediction of hydrogen distribution in the reactor building in CANDU6 plant

    International Nuclear Information System (INIS)

    Jin, Y.; Song, Y.

    2008-01-01

    The CANDU plants have a lot of zircaloy. The fuel cladding, calandria tubes and pressure tubes are made of zircaloy. The zircaloy can be oxidized and hydrogen is generated during severe accident progression. The detonation or deflagration to detonation transition (DDT) due to hydrogen combustion may occur if the local hydrogen concentration or global hydrogen concentration exceeds certain value. The detonation may result in the rupture of the reactor building. The inside of the reactor building of CANDU plants is complex. So prediction of hydrogen distribution in the reactor building is important. This prediction is made using ISAAC code and GOTHIC code. ISAAC code partitioned the reactor building in to 7 compartments. GOTHIC code modeled the CANDU6 reactor building using 12 nodes. The hydrogen concentrations in the various compartments in the reactor building are compared. GOTHIC code slightly underpredicts hydrogen concentration in the F/M rooms than ISAAC code, but trend is same. The hydrogen concentration in the boiler room and the moderator room shows almost same as for both codes. (author)

  8. Dimensional response of CANDU fuel to power changes

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, P J [Fuel Engineering Branch, Chalk River Nuclear Laboratories, Atomic Energy of Canada Limited, Chalk River, ON (Canada); Hastings, I J; Morel, P A; Sage, R D; Smith, A D [Fuel Materials Branch, Chalk River Nuclear Laboratories, Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    1983-06-01

    The introduction of CANLUB-coated fuel cladding, modified fuel management schemes, and revisions to the sequence of control rod movements, have eliminated power ramping fuel failures in CANDU power reactors. However, an irradiation program continues at Chalk River Nuclear Laboratories to determine the effect of various design and operating parameters on the dimensional response of UO{sub 2} fuel elements to power changes, over a range of conditions outside those normally experienced by CANDU power reactor fuel. We have investigated the effect of power changes on element diameter for UO{sub 2} fuel with starting densities of 10.6 and 10.8 Mg/m{sup 3} clad in 0.4 mm thick Zircaloy, at burnups from 0 to 100 MW.h/kg U. Element diameter measurements were obtained at power using an In-Reactor Diameter Measuring Rig (IRDMR). Rates of power change over the range 0.0005 to 0.03 kW.m{sup -1}.s{sup -1} were achieved by a combination of reactor power control and use of a Helium-3 power cycling facility. Total diameter increases in unirradiated elements were about 1% at pellet interface locations for both fuel densities during the initial power increase to 60 kW/m. Diameter changes during subsequent power cycles of these elements from 55 to 100% maximum power were significantly larger for the higher density fuel, ranging from 0.3 to 0.5% compared to less than 0.1% for the standard density (10.6 Mg/m{sup 3}) fuel. In elements pre-irradiated at 27 kW/m to burnups of about 100 MW.h/kg U prior to power ramping, the diameter increases measured after ramping to 55 kW/m also varied with starting fuel density. Diameter changes at pellet interface locations were about 0.9% and 0.6% for higher density and standard density fuel respectively. (author)

  9. AECL's advanced CANDU reactor - the ACR

    International Nuclear Information System (INIS)

    Alizadeh, Ala; Allsop, Peter; Hedges, Ken; Hopwood, Jerry; Yu, Stephen

    2003-01-01

    The ACR, the next generation CANDU design, represents the next step in development of the CANDU family of designs. AECL has achieved significant incremental improvements to the mid-size CANDU 6 nuclear power plant through successive projects, both in design and in project delivery. Building on this knowledge base, AECL is continuing to adapt the CANDU design to develop the ACR. This paper summarizes the ACR design features, which include major improvements in economics, inherent safety characteristics, performance and construction methods. Aimed at producing electrical power at a capital cost significantly less than that of the current reactor designs, the ACR is an evolutionary design based on the very successful CANDU 6 reactor. The new ACR product is specifically designed to produce power at a cost competitive with other forms of power generation while achieving short construction times, improved safety, international licensability, high investor returns, and low investor risk. It achieves these targets by taking advantage of the latest advances in both pressure-tube and pressure-vessel reactor technologies and experience. The flexibility and development potential of the fuel channel approach also enables designs to be developed that address priorities identified in international long-term specification programs such as the US Department of Energy (DOE) sponsored Generation IV program and IAEA hosted INPRO program. ACR-700 can be built in 36 months with a 48 month project duration, and deliver a lifetime capacity factor in excess of 90%. Overall, the ACR design represents a balance of proven design basis and innovations to give step improvements in safety, reliability and economics. The ACR development program, now well into the detail design stage, includes parallel formal licensing in the USA and Canada. Based on the status of the ACR design and AECL's on-going experience delivering reactor projects on-time and on-budget, the first ACR could be in service by

  10. Team CANDU : ready for the marketplace

    International Nuclear Information System (INIS)

    Howieson, J.Q.

    2007-01-01

    This paper outlines the partnership between AECL and a number of leading global nuclear suppliers to market the Candu power reactor. The mission of the CANDU team is to develop market opportunities for CANDU technology and deliver successful CANDU projects

  11. CANDU 3 - Modularization

    International Nuclear Information System (INIS)

    McAskie, M.J.

    1991-01-01

    The CANDU 3 Heavy Water Reactor is the newest design developed by AECL CANDU. It has set as a major objective, the achievement of significant reductions in both cost and schedule over previous designs. The basic construction strategy is to incorporate extensive modularization of the plant in order to parallel the civil and mechanical installation works. This results in a target 38 month construction schedule from first concrete to in-service compared to 68 months for the Wolsong-1 CANDU 6 actually achieved and the 54 months envisaged for an improved CANDU 6. This paper describes the module concepts that have been developed and explains how they contribute to the overall construction program and achieve the desired cost and schedule targets set for the CANDU 3. (author). 7 figs, 2 tabs

  12. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    International Nuclear Information System (INIS)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin

    2016-01-01

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future

  13. Feasibility Study for Cobalt Bundle Loading to CANDU Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Park, Donghwan; Kim, Youngae; Kim, Sungmin [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    CANDU units are generally used to produce cobalt-60 at Bruce and Point Lepreau in Canada and Embalse in Argentina. China has started production of cobalt-60 using its CANDU 6 Qinshan Phase III nuclear power plant in 2009. For cobalt-60 production, the reactor’s full complement of stainless steel adjusters is replaced with neutronically equivalent cobalt-59 adjusters, which are essentially invisible to reactor operation. With its very high neutron flux and optimized fuel burn-up, the CANDU has a very high cobalt-60 production rate in a relatively short time. This makes CANDU an excellent vehicle for bulk cobalt-60 production. Several studies have been performed to produce cobalt-60 using adjuster rod at Wolsong nuclear power plant. This study proposed new concept for producing cobalt-60 and performed the feasibility study. Bundle typed cobalt loading concept is proposed and evaluated the feasibility to fuel management without physics and system design change. The requirement to load cobalt bundle to the core was considered and several channels are nominated. The production of cobalt-60 source is very depend on the flux level and burnup directly. But the neutron absorption characteristic of cobalt bundle is too high, so optimizing design study is needed in the future.

  14. Evaluation of CANDU6 PCR (power coefficient of reactivity) with a 3-D whole-core Monte Carlo Analysis

    International Nuclear Information System (INIS)

    Motalab, Mohammad Abdul; Kim, Woosong; Kim, Yonghee

    2015-01-01

    Highlights: • The PCR of the CANDU6 reactor is slightly negative at low power, e.g. <80% P. • Doppler broadening of scattering resonances improves noticeably the FTC and make the PCR more negative or less positive in CANDU6. • The elevated inlet coolant condition can worsen significantly the PCR of CANDU6. • Improved design tools are needed for the safety evaluation of CANDU6 reactor. - Abstract: The power coefficient of reactivity (PCR) is a very important parameter for inherent safety and stability of nuclear reactors. The combined effect of a relatively less negative fuel temperature coefficient and a positive coolant temperature coefficient make the CANDU6 (CANada Deuterium Uranium) PCR very close to zero. In the original CANDU6 design, the PCR was calculated to be clearly negative. However, the latest physics design tools predict that the PCR is slightly positive for a wide operational range of reactor power. It is upon this contradictory observation that the CANDU6 PCR is re-evaluated in this work. In our previous study, the CANDU6 PCR was evaluated through a standard lattice analysis at mid-burnup and was found to be negative at low power. In this paper, the study was extended to a detailed 3-D CANDU6 whole-core model using the Monte Carlo code Serpent2. The Doppler broadening rejection correction (DBRC) method was implemented in the Serpent2 code in order to take into account thermal motion of the heavy uranium nucleus in the neutron-U scattering reactions. Time-average equilibrium core was considered for the evaluation of the representative PCR of CANDU6. Two thermal hydraulic models were considered in this work: one at design condition and the other at operating condition. Bundle-wise distributions of the coolant properties are modeled and the bundle-wise fuel temperature is also considered in this study. The evaluated nuclear data library ENDF/B-VII.0 was used throughout this Serpent2 evaluation. In these Monte Carlo calculations, a large number

  15. Thermal Hydraulic Assessment for Loss of SDCS Event During the Outage of CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghyun [Gnest, Inc. Taejon (Korea, Republic of); Lee, Kwangho; Oh, Haechol; Jun, Hwangyong [KEPRI, Taejon (Korea, Republic of)

    2006-07-01

    During the outage(overhaul) of the nuclear power plant, there are several operating states other than the full power state, that is 'Hot-Zero Power', 'Depressurized-Cooldown', and 'Partially Drained'. Until now safety assessment has not been done much for this operating state of CANDU type reactor worldwide. For the accuracy and confidence of PSA for the CANDU outage, the safety analysis is necessary. At the first stage, we analyzed the thermal hydraulic characteristics and safety of the postulated event of loss of shutdown cooling system (SDCS) during the partially drained state which is the longest one in the middle of outage period. As an analysis tool, this study uses the best estimate thermal hydraulic code, RELAP5/CANDU which was modified according to the CANDU specific characteristics and based on RELAP5.Mod3.

  16. CANDU 6 - the highly successful medium sized reactor

    International Nuclear Information System (INIS)

    Hedges, K. R.; Allen, P. J.; Hopwood, J. M.

    2000-01-01

    The CANDU 6 Pressurized Heavy Water Reactor system, featuring horizontal fuel channels and heavy water moderator continues to evolve, supported by AECL's strong commitment to comprehensive R and D programs. The initial CANDU 6 design started in the 1970's. The first plants went into service in 1983, and the latest version of the plant is under construction in China. With each plant the technology has evolved giving the dual advantages of proveness and modern technology. CANDU 6 delivers important advantages of the CANDU system with benefit to small and medium-sized grids. This technology has been successfully adopted by, and localized to varying extents in, each of the CANDU 6 markets. For example, all CANDU owners obtain their fuel from domestic suppliers. Progressive CANDU development continues at AECL to enhance this medium size product CANDU 6. There are three key CANDU development strategic thrusts: improved economics, fuel cycle flexibility, and enhanced safety. The CANDU 6 product is also enhanced by incorporating improvements and advanced features that will be arising from our CANDU Technology R and D programs in areas such as heavy water and tritium, control and instrumentation, fuel and fuel cycles, systems and equipment and safety and constructability. (author)

  17. The CANDU 9

    International Nuclear Information System (INIS)

    Hart, R.S.

    1994-01-01

    The CANDU 9 plants are single unit versions of the Bruce B design, incorporating relevant technical advances made in CANDU 6, and the newer Darlington and CANDU 3 designs. This paper describes the CANDU 9 480/SEU, with an electrical output of about 1050 MW. In this designation, 480 refers to the number of fuel channels, and SEU to slightly enriched uranium. Emphasis is placed on evolutionary design, and the use of well proven design features, to ensure regulatory licensability and reliable operation. Safety is enhanced through simplification and improvement of key systems and components. Relatively low energy costs result from reduced specific capital cost, reduced operating and maintenance cost, and reduced radiation exposure to personnel. Standardization is emphasized inasmuch as all key components (steam generators, heat transport pumps, pressure tubes fuelling machines etc.) ar of the same design as those in operating CANDU stations. Advanced CANDU fuel cycles are readily accommodated. 1 ref., 1 tab., 11 figs

  18. Seismic sensitivity study of a generic CANDU nuclear power plant: Soil-structure interaction

    International Nuclear Information System (INIS)

    Lee, L.S.S.; Duff, C.G.

    1983-01-01

    The seismic sensitivity and capability study for a generic CANDU Plant is part of an overall development program of design standardization. The purpose of this paper is to investigate the sensitivities of structural responses and floor response spectra (FRS) to variations of structural and soil parameters. In the seismic design standardization, a wide range of soil conditions is considered and the envelopes of the resulting site spectra (soil-structure interaction effect) are then used for the design of the generic plant. The nuclear island structures considered herein have different relative stiffness and one of them has two layout/structure schemes: one is relatively flexible and the other is moderately stiff. In the preliminary phase of the seismic sensitivity study presented hereby, the soil-structure interaction seismic analysis is based on the half-space modelling (soil-spring lumped-mass) method and the response spectrum method for the seismic responses. Distinct patterns and sensitivity of the site spectrum analysis for structure schemes of different relative stiffness and for different structural elevations are observed and discussed. (orig.)

  19. Application of fuel management calculation codes for CANDU reactor

    International Nuclear Information System (INIS)

    Ju Haitao; Wu Hongchun

    2003-01-01

    Qinshan Phase III Nuclear Power Plant adopts CANDU-6 reactors. It is the first time for China to introduce this heavy water pressure tube reactor. In order to meet the demands of the fuel management calculation, DRAGON/DONJON code is developed in this paper. Some initial fuel management calculations about CANDU-6 reactor of Qinshan Phase III are carried out using DRAGON/DONJON code. The results indicate that DRAGON/DONJON can be used for the fuel management calculation for Qinshan Phase III

  20. Prediction of power-ramp defects in CANDU fuel

    International Nuclear Information System (INIS)

    Gillespie, P.; Wadsworth, S.; Daniels, T.

    2010-01-01

    Power ramps result in fuel pellet expansion and can lead to fuel sheath failures by fission product induced stress corrosion cracking (SCC). Historically, empirical models fit to experimental test data were used to predict the onset of power-ramp failures in CANDU fuel. In 1988, a power-ramped fuel defect event at PNGS-1 led to the refinement of these empirical models. This defect event has recently been re-analyzed and the empirical model updated. The empirical model is supported by a physically based model which can be used to extrapolate to fuel conditions (density, burnup) outside of the 1988 data set. (author)

  1. Role of operator response guidelines in CANDU 9 design program

    International Nuclear Information System (INIS)

    Jaitly, R.K.

    2000-01-01

    The CANDU 9 is a large version of the CANDU Pressurized Heavy Water Reactor (PHWR) system developed in Canada. With an electrical output of approximately 935 MWe, the CANDU 9 complements the established mid-size CANDU 6 (700 MWe) and makes use of proven technology updated with state of the art features resulting from ongoing development. The CANDU 9 builds on the reactor and process system designs of the operating Darlington and Bruce B plants, and incorporates a modified CANDU 6 station layout, as well as improved construction methods and operational features. A high level of standardization has always been a feature of CANDU reactors. This theme is emphasized in the CANDU 9; all key components (reactor core, steam generators, coolant pumps, pressure tubes, etc.) are of the same design as those proven in service in the operating CANDU power stations. Including Probabilistic Safety Assessment (PSA) as part of the CANDU 9 design process from the outset of the program was seen as key to ensuring completeness of safety related requirements. The PSA work provided an in-depth understanding of the plant response to various postulated accidents. As well, the time frame for recovery and the related operator actions were identified. This information together with AECL's experience in supporting the development of Emergency Operating Procedures (EOPs) for the operating CANDU reactors are the basis for preparation of CANDU 9 Operator Response Guidelines (ORGs). Technical content, format and human factors considerations adopted for the ORGs are such that these can be readily converted to EOPs. The scope of ORGs includes generic as well as event specific ORGs. This dual approach is required to provide defense-in-depth. This paper describes the process used to prepare ORGs for the CANDU 9 reactor and discusses important benefits gained from the application of ORGs as input to the control center design and future preparation of the EOPs. (author)

  2. Object-oriented simulator of the dynamics of Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Boroni, Gustavo A.; Cuadrado, M.; Clausse, Alejandro

    2000-01-01

    LUDWIG is an object-oriented simulator of the dynamics of the CANDU Nuclear power plant Embalse Rio Tercero. The tool consists in a numerical plant analyzer by means of a model of the plant dynamics during normal operation, and a graphic environment for configuration and visualization of results. The simulator was validated against plant transients occurred in the plant and recorded in the past. (author)

  3. Electrical, control and information systems in the Enhanced CANDU 6

    International Nuclear Information System (INIS)

    De Grosbois, J.; Raiskums, G.; Soulard, M.

    2011-01-01

    This paper describes the electrical, control, and information system (EC and I) design feature improvements of the Enhanced CANDU 6 (EC6). These additional features are carefully integrated into the EC6 design platform, and are engineered with consideration of operational feedback, human factors, and leveraging the advantages of digital instrumentation and control (I and C) technology to create a coherent I and C architecture in support of safe and high performance operation. The design drivers for the selection of advanced features are also discussed. The EC6 nuclear power plant is a mid-sized Pressurized Heavy Water Reactor design, based on the highly successful CANDU 6 family of power plants, and upgraded to meet today's Canadian and international safety requirements and to satisfy Generation 3 design expectations. (author)

  4. Development of first full scope commercial CANDU-6 fuel handling simulator

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, W., E-mail: BCrawford@atlanticnuclear.ca [Atlantic Nuclear Services Inc., Fredericton, NB (Canada); McInerney, J. M., E-mail: JMcInerney@nbpower.com [Point Lepreau Generating Station, Maces Bay, NB (Canada); Moran, E.S.; Nice, J. W.; Sinclair, D.M.; Somerville, S.; Usalp, E.C.; Usalp, M., E-mail: EMoran@atlanticnuclear.ca, E-mail: JNice@atlanticnuclear.ca, E-mail: DSinclair@atlanticnuclear.ca, E-mail: SSomerville@atlanticnuclear.ca, E-mail: ECUsalp@atlanticnuclear.ca, E-mail: MUsalp@atlanticnuclear.ca [Atlantic Nuclear Services Inc., Fredericton, NB (Canada)

    2015-07-01

    Unique to CANDU reactors is continuous on-power refueling. In the CANDU-6 design, the fuel bundles are contained within 380 pressure tubes. Fuelling machines, one on either side of the reactor face move on a bridge and carriage system to the appointed channel and fuel under computer control. The fuelling machine is an immensely complicated mechanical device. None of the original Canadian full scope simulators incorporated the interaction of the fuel handling system. Traditionally, the final stages of Fuel Handling Operator qualification utilizes on the job training in a production environment carried out in the station main control room. For the purpose of supporting continual improvement in fuel handling training at the Third Qinshan Nuclear Plant Company (TQNPC), Atlantic Nuclear Services in a joint project with New Brunswick Power, developed the first commercial full scope CANDU-6 Fuel Handling simulator, integrated into the existing TQNPC Full Scope Simulator framework. The TQNPC Fuel Handling simulator is capable of supporting all normal on-power and off-power refuelling procedures as well as other abnormal operating conditions, which will allow training to be conducted, based on the plant specific operating procedures. This paper will discuss its development, the importance of this tool and its advantages over past training practices. (author)

  5. Development of first full scope commercial CANDU-6 fuel handling simulator

    International Nuclear Information System (INIS)

    Crawford, W.; McInerney, J. M.; Moran, E.S.; Nice, J. W.; Sinclair, D.M.; Somerville, S.; Usalp, E.C.; Usalp, M.

    2015-01-01

    Unique to CANDU reactors is continuous on-power refueling. In the CANDU-6 design, the fuel bundles are contained within 380 pressure tubes. Fuelling machines, one on either side of the reactor face move on a bridge and carriage system to the appointed channel and fuel under computer control. The fuelling machine is an immensely complicated mechanical device. None of the original Canadian full scope simulators incorporated the interaction of the fuel handling system. Traditionally, the final stages of Fuel Handling Operator qualification utilizes on the job training in a production environment carried out in the station main control room. For the purpose of supporting continual improvement in fuel handling training at the Third Qinshan Nuclear Plant Company (TQNPC), Atlantic Nuclear Services in a joint project with New Brunswick Power, developed the first commercial full scope CANDU-6 Fuel Handling simulator, integrated into the existing TQNPC Full Scope Simulator framework. The TQNPC Fuel Handling simulator is capable of supporting all normal on-power and off-power refuelling procedures as well as other abnormal operating conditions, which will allow training to be conducted, based on the plant specific operating procedures. This paper will discuss its development, the importance of this tool and its advantages over past training practices. (author)

  6. The CANDU man-machine interface and simulator training

    International Nuclear Information System (INIS)

    Hinchley, E.M.; Yanofsky, N.

    1982-09-01

    The most significant features of the man-machine interface for CANDU power stations are the extensive use of computer-driven colour graphics displays and the small number of manual controls. The man-machine interface in CANDU stations is designed to present the operator with concise, easy-to-understand information. Future developments in the use of computers in safety shutdown systems, and the use of data highway technologies in plant regulating systems will present special requirements and new opportunities in the application of human factors engineering to the control room. Good man-machine interaction depends on operator training as much as on control room design. In Canada computerized training simulators, which indicate plant response to operator action, are being introducted for operator training. Such simulators support training in normal operation of all plant systems and also in the fault management tasks following malfunctions

  7. CANDU: Meeting the demand for energy self-sufficiency

    International Nuclear Information System (INIS)

    Lawson, D.S.

    1985-01-01

    The success of the CANDU program can been seen quickly by examining the comparison of typical electricity bills in various provinces of Canada. The provinces of Quebec and Manitoba benefit b extensive hydro electric schemes, many of which were constructed years ago at low capital cost. In Ontario, the economic growth has outstripped these low cost sources of hydro power and hence the province has to rely on thermal sources of electricity generation. The success of the CANDU program is shown by the fact that it can contribute over a third of electricity in Ontario while keeping the total electricity rate comparable with that of those provinces that can rely on low cost hydro sources. Energy self-sufficiency encompasses a spectrum of requirements. One consideration would be the reliable supply and control of fuel during the operating life of a power plant: A greater degree of self-sufficiency would be obtained by having an involvement in the building and engineering of the power plant prior to its operation

  8. Applying operating experience to design the CANDU 3 process

    International Nuclear Information System (INIS)

    Harris, D.S.; Hinchley, E.M.; Pauksens, J.; Snell, V.; Yu, S.K.W.

    1991-01-01

    The CANDU 3 is an advanced, smaller (450 MWe), standardized version of the CANDU now being designed for service later in the decade and beyond. The design of this evolutionary nuclear power plant has been carefully planned and organized to gain maximum benefits from new technologies and from world experience to date in designing, building, commissioning and operating nuclear power stations. The good performance record of existing CANDU reactors makes consideration of operating experience from these plants a particularly vital component of the design process. Since the completion of the first four CANDU 6 stations in the early 1980s, and with the continuing evolution of the multi-unit CANDU station designs since then, AECL CANDU has devised several processes to ensure that such feedback is made available to designers. An important step was made in 1986 when a task force was set up to review and process ideas arising from the commissioning and early operation of the CANDU 6 reactors which were, by that time, operating successfully in Argentina and Korea, as well as the Canadian provinces of Quebec and New Brunswick. The task force issued a comprehensive report which, although aimed at the design of an improved CANDU 6 station, was made available to the CANDU 3 team. By that time also, the Institute of Power Operations (INPO) in the U.S., of which AECL is a Supplier Participant member, was starting to publish Good Practices and Guidelines related to the review and the use of operating experiences. In addition, details of significant events were being made available via the INPO SEE-IN (Significant Event Evaluation and Information Network) Program, and subsequently the CANNET network of the CANDU Owners' Group (COG). Systematic review was thus possible by designers of operations reports, significant event reports, and related documents in a continuing program of design improvement. Another method of incorporating operations feedback is to involve experienced utility

  9. Applying operating experience to design the CANDU 3 process

    Energy Technology Data Exchange (ETDEWEB)

    Harris, D S; Hinchley, E M; Pauksens, J; Snell, V; Yu, S K.W. [AECL-CANDU, Ontario (Canada)

    1991-04-01

    The CANDU 3 is an advanced, smaller (450 MWe), standardized version of the CANDU now being designed for service later in the decade and beyond. The design of this evolutionary nuclear power plant has been carefully planned and organized to gain maximum benefits from new technologies and from world experience to date in designing, building, commissioning and operating nuclear power stations. The good performance record of existing CANDU reactors makes consideration of operating experience from these plants a particularly vital component of the design process. Since the completion of the first four CANDU 6 stations in the early 1980s, and with the continuing evolution of the multi-unit CANDU station designs since then, AECL CANDU has devised several processes to ensure that such feedback is made available to designers. An important step was made in 1986 when a task force was set up to review and process ideas arising from the commissioning and early operation of the CANDU 6 reactors which were, by that time, operating successfully in Argentina and Korea, as well as the Canadian provinces of Quebec and New Brunswick. The task force issued a comprehensive report which, although aimed at the design of an improved CANDU 6 station, was made available to the CANDU 3 team. By that time also, the Institute of Power Operations (INPO) in the U.S., of which AECL is a Supplier Participant member, was starting to publish Good Practices and Guidelines related to the review and the use of operating experiences. In addition, details of significant events were being made available via the INPO SEE-IN (Significant Event Evaluation and Information Network) Program, and subsequently the CANNET network of the CANDU Owners' Group (COG). Systematic review was thus possible by designers of operations reports, significant event reports, and related documents in a continuing program of design improvement. Another method of incorporating operations feedback is to involve experienced utility

  10. Future generations of CANDU: advantages and development with passive safety

    International Nuclear Information System (INIS)

    Duffey, R. B.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) advances water reactor and CANDLT technology using an evolutionary development strategy. This strategy ensures that innovations are based firmly on current experience and keeps our development programs focused on one reactor concept, reducing risks, development costs, and product development cycle times. It also assures our customers that our products will never become obsolete or unsupported, and the continuous line of water reactor development is secure and supported into the future. Using the channel reactor advantage of modularity, the subdivided core has the advantage of passive safety by heat removal to the low- pressure moderator. With continuous improvements, the Advanced CANDU Reactor TM (ACR-1000TM) concept will likely remain highly competitive for a number of years and leads naturally to the next phase of CANDU development, namely the Generation IV CANDU -SCWR concept. This is conventional water technology, since supercritical boilers and turbines have been operating for some time in coal-fired power plants. Significant cost, safety, and performance advantages would result from the CANDU-SCWR concept, plus the flexibility of a range of plant sizes suitable for both small and large electric grids, and the ability for co-generation of electric power, process heat, and hydrogen. In CANDU-SCWR, novel developments are included in the primary circuit layout and channel design. The R and D in Canada is integrated with the Generation IV international Forum (GIF) plans, and has started on examining replaceable insulating liners that would ensure channel life, and on providing completely passive reactor decay heat removal directly to the moderator heat sink without forced cooling. In the interests of sustainability, hydrogen production by a CANDU- SCWR is also be included as part of the system requirements, where the methods for hydrogen production will depend on the outlet temperature of the reactor

  11. CANDU severe accident management guidance update

    International Nuclear Information System (INIS)

    Jones, L.; Popov, N.; Gilbert, L.; Weed, J.

    2014-01-01

    The CANDU Owners Group (COG) developed a set of generic and initial station-specific Severe Accident Management Guidance (SAMG) documents to mitigate the consequences to the public in the event of a severe accident. The generic portion of the COG SAMG was completed in 2006; the overall project including the station-specific phase was completed in April 2007. Over the years, the CANDU industry and utilities have continuously increased the knowledge base for SAMG and have incorporated various engineered features based on the knowledge obtained. As a result of the event that occurred at the Fukushima Daiiachi nuclear power plant (NPP) in Japan, the Canadian Nuclear Safety Commission (CNSC) established the CNSC Fukushima Task Force. The results of the task force were documented in INFO-0828, CNSC Staff Action Plan on the CNSC Fukushima Task Force Recommendations. Among the recommendation documented in INFO-828 were Fukushima Action Items (FAIs) directed towards the CANDU utilities in Canada; a portion of which are related to SAMG documentation updates and directed at enhancing SAM response. A COG joint project was established to support the closure of the CNSC FAIs and to revise the current CANDU documentation accordingly. This paper provides a high level summary of the COG project scope and results. It also demonstrates that the CANDU SAMG programs in Canada provide robust protection and mitigation of severe accidents. (author)

  12. CANDU severe accident management guidance update

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L., E-mail: lisa.m.jones@opg.com [Ontario Power Generation, Pickering, ON (Canada); Popov, N., E-mail: nik.popov@rogers.com [Candu Owners Group, Toronto, ON (Canada); Gilbert, L., E-mail: lovell.gilbert@brucepower.com [Bruce Power, Tiverton, ON (Canada); Weed, J., E-mail: jeff.weed@candu.gov [Candu Owners Group, Toronto, ON (Canada)

    2014-07-01

    The CANDU Owners Group (COG) developed a set of generic and initial station-specific Severe Accident Management Guidance (SAMG) documents to mitigate the consequences to the public in the event of a severe accident. The generic portion of the COG SAMG was completed in 2006; the overall project including the station-specific phase was completed in April 2007. Over the years, the CANDU industry and utilities have continuously increased the knowledge base for SAMG and have incorporated various engineered features based on the knowledge obtained. As a result of the event that occurred at the Fukushima Daiiachi nuclear power plant (NPP) in Japan, the Canadian Nuclear Safety Commission (CNSC) established the CNSC Fukushima Task Force. The results of the task force were documented in INFO-0828, CNSC Staff Action Plan on the CNSC Fukushima Task Force Recommendations. Among the recommendation documented in INFO-828 were Fukushima Action Items (FAIs) directed towards the CANDU utilities in Canada; a portion of which are related to SAMG documentation updates and directed at enhancing SAM response. A COG joint project was established to support the closure of the CNSC FAIs and to revise the current CANDU documentation accordingly. This paper provides a high level summary of the COG project scope and results. It also demonstrates that the CANDU SAMG programs in Canada provide robust protection and mitigation of severe accidents. (author)

  13. Results of fuel management at Embalse nuclear power plant. Analysis of performance at other plants

    International Nuclear Information System (INIS)

    Paz, A.O. de; Moreno, C.A.; Vinez, J.C.

    1987-01-01

    The operating experience of fuel management at the Embalse nuclear power plant from new core to the present situation (approximately 937 days at full power) is described. The average core burnup is about 4000 MW d/t U and the monthly averaged discharge burnup about 7800 MW d/t U. The neutron flux distribution is calculated by means of program PUMA-C, which is periodically checked by comparison between calculated and measured values of 102 vanadium detectors. A comparison of the performance of other reactors type CANDU 600 (Point Lepreau, Gentilly 2, Wolsung) from the point of view of fuel strategy is also presented. The data to perform the comparison were obtained by means of the CANDU system of information exchange between users (COG). (Author)

  14. CANDU fuel

    International Nuclear Information System (INIS)

    MacEwan, J.R.; Notley, M.J.F.; Wood, J.C.; Gacesa, M.

    1982-09-01

    The direction of CANDU fuel development was set in 1957 with the decision to build pressure tube reactors. Short - 50 cm long - rodded bundles of natural UO 2 clad in Zircaloy were adopted to facilitate on-power fuelling to improve uranium utilization. Progressive improvements were made during 25 years of development, involving 650 man years and 180 million dollars. Today's CANDU bundle is based on the knowledge gained from extensive irradiation testing and experience in power reactors. The main thrust of future development is to demonstrate that the present bundle is suitable, with minor modifications, for thorium fuels

  15. Project planning and scheduling techniques for the CANDU programme - an overview

    International Nuclear Information System (INIS)

    Wong, P.T.; Sebastian, P.R.

    1978-01-01

    The energy crisis and higher costs have imposed the need for tighter control of completion time for the construction of CANDU nuclear power plants. System procedures and techniques to meet this challenge are described

  16. Steps to Advanced CANDU 600

    International Nuclear Information System (INIS)

    Oh, Yongshick; Brooks, G. L.

    1988-01-01

    The CANDU nuclear power system was developed from merging of AECL heavy water reactor technology with Ontario Hydro electrical power station expertise. The original four units of Ontario Hydro's Pickering Generating Station are the first full-scale commercial application of the CANDU system. AECL and Ontario Hydro then moved to the next evolutionary step, a more advanced larger scale design for four units at the Bruce Generating Station. CANDU 600 followed as a single unit nuclear electric power station design derived from an amalgam of features of the multiple unit Pickering and Bruce designs. The design of the CANDU 600 nuclear steam supply system is based on the Pickering design with improvements derived from the Bruce design. For example, most CANDU 600 auxiliary systems are based on Bruce systems, whereas the fuel handling system is based on the Pickering system. Four CANDU 600 units are in operation, and five are under construction in Romania. For the additional four units at Pickering Generating Station 'B', Ontario Hydro selected a replica of the Pickering 'A' design with limited design changes to maintain a high level of standardization across all eight units. Ontario Hydro applied a similar policy for the additional four units at Bruce Generating Station 'B'. For the four unit Darlington station, Ontario Hydro selected a design based on Bruce with improvements derived from operating experience, the CANDU 600 design and development programs

  17. Disturbance analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Sillamaa, M.A.

    Disturbance analysis is any systematic procedure that helps an operator determine what has failed. This paper describes the typical information currently provided in CANDU power plants to help the operator respond to a disturbance. It presents a simplified model of how an operator could get into trouble, and briefly reviews development work on computerized disturbance analysis systems for nuclear power plants being done in various countries including Canada. Disturbance analysis systems promise to be useful tools in helping operators improve their response to complex situations. However, the originality and complexity of the work for a disturbance analysis system and the need to develop operator confidence and management support require a 'walk before you run' approach

  18. Experience of oil in CANDU moderator during A831 planned outage at Bruce Power

    International Nuclear Information System (INIS)

    Ma, G.; Nashiem, R.; Matheson, S.; Stuart, C.; Roberts, J.G.

    2011-01-01

    In their address to the Nuclear Plant Chemistry Conference 2009, Bruce Power staff will describe the effects of oil ingress to the moderator of a CANDU reactor. During the A831 planned outage of Bruce Power Unit 3, an incident of oil ingress into moderator was discovered on Oct 17, 2008. An investigation identified the cause of the oil ingress. Atomic Energy of Canada Ltd. (AECL) assessed operability of the reactor with the oil present and made recommendations with respect to the effect on unit start-up with oil present. The principal concern was the radiolytic generation of deuterium from the breakdown of the oil in-core. Various challenges were presented during start-up which were overcome via innovative approaches. The subsequent actions and consequential effects on moderator chemistry are discussed in this paper. Examination of the plant chemistry data revealed some interesting aspects of moderator system chemistry under upset conditions which will also be presented. (author)

  19. Experience of oil in CANDU moderator during A831 planned outage at Bruce Power

    Energy Technology Data Exchange (ETDEWEB)

    Ma, G.; Nashiem, R.; Matheson, S. [Bruce Power, Tiverton, Ontario (Canada); Stuart, C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Roberts, J.G. [CANTECH Associates Ltd., Burlington, Ontario (Canada)

    2011-03-15

    In their address to the Nuclear Plant Chemistry Conference 2009, Bruce Power staff will describe the effects of oil ingress to the moderator of a CANDU reactor. During the A831 planned outage of Bruce Power Unit 3, an incident of oil ingress into moderator was discovered on Oct 17, 2008. An investigation identified the cause of the oil ingress. Atomic Energy of Canada Ltd. (AECL) assessed operability of the reactor with the oil present and made recommendations with respect to the effect on unit start-up with oil present. The principal concern was the radiolytic generation of deuterium from the breakdown of the oil in-core. Various challenges were presented during start-up which were overcome via innovative approaches. The subsequent actions and consequential effects on moderator chemistry are discussed in this paper. Examination of the plant chemistry data revealed some interesting aspects of moderator system chemistry under upset conditions which will also be presented. (author)

  20. Man-machine interaction in Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Olmstead, R.A.

    1994-01-01

    The design of man-machine interaction in the CANDU plants has evolved considerably over several generations of plants, from the first Douglas Point plant through to the next generation of plants represented by new designs like CANDU 3. In the early plants, the control room configuration was based on designers' projections of control interface requirements. With succeeding generations of designs, there has been an evolution towards a more systematic consideration of human strengths and weaknesses, increasing attention to formal requirements definition, and incorporation of a larger base of operational experience. This paper describes the design of the man-machine interaction for third generation CANDU-3 control rooms for improved operator reliability and reduced costs. (author). 13 refs., 3 figs

  1. 9th International conference on CANDU maintenance

    International Nuclear Information System (INIS)

    2011-01-01

    The 9th International Conference on CANDU Maintenance was held in Toronto, Ontario, Canada on December 4-6, 2011. The conference focused on Nuclear plant reliability and maintenance. Equipment reliability is a critical factor in achieving safe and reliable Nuclear Power Plant operations for many reasons. For one it reduces the challenges upon the operating staff and allows station personnel to 'go on the offence' instead of having to play defense in a reactive mode. Plant reliability ensures that there is time to study the issues in detail and develop solutions for long-term success. Let us not forget that the owner carries the burden of demonstrating the return on investment, and plant reliability goes a long way in helping to make the case for plant life extension. A good reputation for plant reliability provides the public capital necessary to build confidence and facilitate the licensing process. The proceedings papers and presentations given at the 9th International Conference on Candu Maintenance covered topics that include: Managing Worker; Radiation Dose; Full Life Cycle Management; Managing Maintenance Refurbishment; Designing for Maintainability; Inspection Techniques; and, Mitigating Degradation.

  2. Feasibility study of CANDU-9 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jeong Ki; Jo, C. H.; Kim, H. M.

    1996-12-01

    CANDU`s combination of natural uranium, heavy water and on-power refuelling is unique in its design and remarkable for reliable power production. In order to offer more output, better site utilization, shorter construction time, improved station layout, safety enhancements and better control panel layout, CANDU-9 is now under development with design improvement added to all proven CANDU advantages or applicable technologies. One of its major improvement has been applied to fuel handling system. This system is very similar to that of CANDU-3, and some parts of the system are applied to those of the existing CANDU-6 or CANDU-9. Design concepts and design requirements of fuel handling system for CANDU-9 have been identified to compare with those of the existing CANDU and the design feasibilities have been evaluated. (author). 4 tabs., 13 figs., 9 refs.

  3. Experimental validation of Pu-Sm evolution model for CANDU-6 power transients

    International Nuclear Information System (INIS)

    Coutsiers, Eduardo E.; Pomerantz, Marcelo E.; Moreno, Carlos A.

    2000-01-01

    Development of a methodology to evaluate the reactivity produced by Pu-Sm transient, effect displayed after power transients. This methodology allows to predict the behavior of liquid zones with which the fine control of CANDU reactor power is made. With this information, it is easier to foresee the refueling demand after power movements. The comparison with experimental results showed good agreement. (author)

  4. A study to develop the domestic functional requirements of the specific safety systems of CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Woong [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Lee, Jae Young; Park, Kun Chul [Handong Global Univ., Pohang (Korea, Republic of)] (and others)

    2003-03-15

    The present research has been made to develop and review critically the functional requirements of the specific safety systems of CANDU such as SDS-1, SDS2, ECCS, and containment. Based on R documents for this, a systematic study was made to develop the domestic regulation statements. Also, the conventional laws are carefully reviewed to see the compatibility to CANDU. Also, the safety assessment method for CANDU was studied by reviewing C documents and recommendation of IAEA. Through the present works, the vague policy in the CANDU safety regulation is cleaning up in a systematic form and a new frame to measure the objective risk of nuclear power plants was developed.

  5. A study to develop the domestic functional requirements of the specific safety systems of CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Woong; Lee, Jae Young; Bang, Kwang Hyun [Handong Global Univ., Pohang (Korea, Republic of)] (and others)

    2001-03-15

    The present research has been made to develop and review critically the functional requirements of the specific safety systems of CANDU such as SOS-1, SOS-2, ECCS and containment. Based on R documents for this, a systematic study was made to develop the domestic regulation statements. Also, the conventional laws are carefully reviewed to see the compatibility to CANDU. Also, the safety assessment method for CANDU was studied by reviewing C documents and recommendation of IAEA. Through the present works, the vague policy in the CANDU safety regulation is cleaning up in a systematic form and a new frame to measure the objective risk of nuclear power plants was developed.

  6. CANDU development

    International Nuclear Information System (INIS)

    Brooks, G.L.

    1981-06-01

    Evolution of the 950 MW(e) CANDU reactor is summarized. The design was specifically aimed at the export market. Factors considered in the design were that 900-1000 MW is the maximum practical size for most countries; many countries have warmer condenser cooling water than Canada; the plant may be located on coastal sites; seismic requirements may be more stringent; and the requirements of international, as well as Canadian, standards must be satisfied. These considerations resulted in a 600-channel reactor capable of accepting condenser cooling water at 32 0 C. To satisfy the requirement for a proven design, the 950 MW CANDU draws upon the basic features of the Bruce and Pickering plants which have demonstrated high capacity factors

  7. Evaluation of Required Water Sources during Extended Loss of All AC Power for CANDU NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Woo Jae; Lee, Kyung Jin; Kim, Min Ki; Kim, Keon Yeop; Park, Da Hee; Oh, Seo Bin [FNC Technology Co., Yongin (Korea, Republic of); Chang, Young Jin; Byun, Choong Seop [KHNP, Daejeon (Korea, Republic of)

    2016-10-15

    Fukushima accident was caused by lasting long hours of Station Black-Out (SBO) triggered from natural disaster. This accident had resulted in the reactor core damage. The purpose of this study is to evaluate the required water sources to maintain hot standby conditions until 72 hours during ELAP situation. The analysis was performed with CATHENA code. CATHENA code has been developed for the best-estimated transient simulation of CANDU plants. This study was carried out to evaluate the strategy to maintain hot standby conditions during ELAP situation in CANDU reactors. In this analysis, water was supplied to SG by MSSV open and by the gravity feed. It can cool the core without damage until the dousing tank depletion. Before dousing tank depletion, the emergency water supply pump was available by emergency power restoration. The pump continuously fed water to SG. So it is expected that the reactor core can be cooled down without damage for 72 hours if water source is enough to feed. This result is useful to make a strategy against SBO including ELAP situation.

  8. Nuclear power plant licensing in Canada

    International Nuclear Information System (INIS)

    Tong, J.S.C.; Waddington, J.G.

    1997-01-01

    The Canadian nuclear power plant licensing practice which has evolved over three decades provides a regulatory framework that promotes safe design and operation of CANDU power plants. From the very outset, it recognizes the need for simple and reliable safety systems which are separate from the systems that are normally used to produce electricity. Further, it requires the reliability of safety systems be demonstrated by routine tests during plant operation. Over the three decades, the analysis requirements to demonstrate the performance and reliability of plant systems that have a role in the detection and mitigating of accidents have also evolved. Today's requirements are defined in consultative documents C-6 and C-98. One recurring theme throughout the evolution of the licensing practice is the maxim of prescribing only basic safety requirements and rules so that designers and operators have the freedom to devise the best possible design features and operating practices

  9. Thermal stability of chloroform in the steam condensate cycle of CANDU-PHW nuclear power plant

    International Nuclear Information System (INIS)

    Lepine, Louis; Gilbert, Roland; Ouellet, Lorenzo

    1992-01-01

    Analysis of samples taken at the Gentilly 2 (Quebec) CANDU-PHW (CANadian Deuterium Uranium - Pressurized Heavy Water) plant after chlorination and demineralization revealed the presence of all four trihalomethanes (THMs) (CHCl 3 , CHBrCl 2 , CHBr 2 Cl and CHBr 3 ) and other unidentified halogenated volatile compounds. Among the THMs, chloroform was the major contaminant. A study of its thermal stability in water at different temperatures confirmed the degradation of the CHCl 3 molecule according to the equation CHCl 3 + H2O → CO + 3 HCl. The reaction follows first order kinetics and has an activation energy of 100 kJ/mol. The estimated half-life is six seconds at 260 deg C, the maximum temperature of the steam condensate cycle

  10. Incentives for improvement of CANDU

    International Nuclear Information System (INIS)

    Hart, R.S.; Dunn, J.T.; Finlay, R.B.

    1988-12-01

    CANDU is a relatively young technology which has demonstrated many achievements as an electrical power generation system. These achievements include an unsurpassed safety record, high annual and lifetime capacity factors, low electricity cost and a broad range of other performance strengths which together indicate that the CANDU technology is fundamentally sound. Known capabilities not yet fully exploited, such as advanced fuel cycle options, indicate that CANDU technology will continue to pay strong dividends on research, development and design investment. This provides a strong incentive for the improvement of CANDU on a continuing basis

  11. Response characteristics of self-powered flux detectors in CANDU reactors

    International Nuclear Information System (INIS)

    Allan, C.J.

    1978-05-01

    As part of the development of a new flux-detector assembly for future CANDU reactors, the sensitivities of a variety of vanadium, cobalt and platinum self-powered detectors have been determined in a simulated CANDU core installed in the ZED-2 test reactor at CRNL. While the vanadium and cobalt detectors had solid emitters, the platinum detectors were of two types, having either solid platinum emitters, or emitters consisting of a platinum sheath over an Inconel core. Almost all of the signal from the cobalt and vanadium detectors is due to neutron events in the emitters. For these detectors we have measured the total sensitivities per unit length. For the platinum detectors, reactor γ-rays and neutrons both contribute appreciably to the output signal, and in addition to the total sensitivity, we have determined the individual neutron and γ-ray sensitivities for these detectors. It was found that the detector sensitivities depend primarily on emitter diameter and that the observed variations can be fitted by means of power laws. (author)

  12. Development of a Web-based CANDU Core Management Procedure Automation System

    International Nuclear Information System (INIS)

    Lee, Sanghoon; Kim, Eunggon; Park, Daeyou; Yeom, Choongsub; Suh, Hyungbum; Kim, Sungmin

    2006-01-01

    CANDU reactor core needs efficient core management to increase safety, stability, high performance as well as to decrease operational cost. The most characteristic feature of CANDU is so called 'on-power refueling' i.e., there is no shutdown during refueling in opposition to that of PWR. Although this on-power refueling increases the efficiency of the plant, it requires heavy operational task and difficulties in real time operation such as regulating power distribution, burnup distribution, LZC statistics, the position of control devices and so on. To enhance the CANDU core management, there are several approaches to help operator and reduce difficulties, one of them is the COMOS (CANDU Core On-line Monitoring System). It has developed as an online core surveillance system based on the standard incre instrumentation and the numerical analysis codes such as RFSP (Reactor Fueling Simulation Program). As the procedure is getting more complex and the number of programs is increased, it is required that integrated and cooperative system. So, KHNP and IAE have been developing a new web-based system which can support effective and accurate reactor operational environment called COMPAS that means CANDU cOre Management Procedure Automation System. To ensure development of successful system, several steps of identifying requirements have been performed and Software Requirement Specification (SRS) document was developed. In this paper we emphasis on the how to keep consistency between the requirements and system products by applying requirement traceability methodology

  13. The CANDU 6

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Hum, J.

    1999-01-01

    The CANDU 6 is a modem nuclear power plant designed and developed under the aegis of Atomic Energy of Canada, Limited (AECL) for domestic use and for export to other countries. This design has successfully met criteria for operation and redundant safety features required by Canada and by the International Atomic Energy Agency (IAEA) and has an estimable record of performance in all applications to date. Key to this success is a defined program of design enhancement in which changes are made while retaining fundamental features proven by operating experience. Basic design features and progress toward improvements are presented here. (author)

  14. Probabilistic seismic safety assessment of a CANDU 6 nuclear power plant including ambient vibration tests: Case study

    Energy Technology Data Exchange (ETDEWEB)

    Nour, Ali [Hydro Québec, Montréal, Québec H2L4P5 (Canada); École Polytechnique de Montréal, Montréal, Québec H3C3A7 (Canada); Cherfaoui, Abdelhalim; Gocevski, Vladimir [Hydro Québec, Montréal, Québec H2L4P5 (Canada); Léger, Pierre [École Polytechnique de Montréal, Montréal, Québec H3C3A7 (Canada)

    2016-08-01

    Highlights: • In this case study, the seismic PSA methodology adopted for a CANDU 6 is presented. • Ambient vibrations testing to calibrate a 3D FEM and to reduce uncertainties is performed. • Procedure for the development of FRS for the RB considering wave incoherency effect is proposed. • Seismic fragility analysis for the RB is presented. - Abstract: Following the 2011 Fukushima Daiichi nuclear accident in Japan there is a worldwide interest in reducing uncertainties in seismic safety assessment of existing nuclear power plant (NPP). Within the scope of a Canadian refurbishment project of a CANDU 6 (NPP) put in service in 1983, structures and equipment must sustain a new seismic demand characterised by the uniform hazard spectrum (UHS) obtained from a site specific study defined for a return period of 1/10,000 years. This UHS exhibits larger spectral ordinates in the high-frequency range than those used in design. To reduce modeling uncertainties as part of a seismic probabilistic safety assessment (PSA), Hydro-Québec developed a procedure using ambient vibrations testing to calibrate a detailed 3D finite element model (FEM) of the containment and reactor building (RB). This calibrated FE model is then used for generating floor response spectra (FRS) based on ground motion time histories compatible with the UHS. Seismic fragility analyses of the reactor building (RB) and structural components are also performed in the context of a case study. Because the RB is founded on a large circular raft, it is possible to consider the effect of the seismic wave incoherency to filter out the high-frequency content, mainly above 10 Hz, using the incoherency transfer function (ITF) method. This allows reducing significantly the non-necessary conservatism in resulting FRS, an important issue for an existing NPP. The proposed case study, and related methodology using ambient vibration testing, is particularly useful to engineers involved in seismic re-evaluation of

  15. Report of the COG/IAEA international workshop on managing nuclear safety at CANDU (PHWR) plants. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    The workshop, hosted by COG and co-sponsored by the International Atomic Energy Agency (IAEA, Vienna) was held in Toronto, April 28 - May 1st, 1997. The 40 participants included senior managers from IAEA member countries operating or constructing CANDU (PHWR) stations. All the offshore utilities with PHWR stations in Korea, Romania, India, Argentina, Pakistan, and China were present with their domestic counterparts from Ontario Hydro Nuclear, Hydro Quebec, New Brunswick Power, and AECL. The objectives of the workshop were to: provide a forum for exchange of ideas among nuclear safety managers operating CANDU (PHWR) stations and to learn from each other's experiences; to foster sharing of information on different operating approaches to managing safety and, in particular, to highlight the strategies for controlling the overall plant risk to a low level; to identify and discuss issues of mutual interest pertinent to PHWR stations and to define future follow-up activities. Refs, figs

  16. Report of the COG/IAEA international workshop on managing nuclear safety at CANDU (PHWR) plants. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The workshop, hosted by COG and co-sponsored by the International Atomic Energy Agency (IAEA, Vienna) was held in Toronto, April 28 - May 1st, 1997. The 40 participants included senior managers from IAEA member countries operating or constructing CANDU (PHWR) stations. All the offshore utilities with PHWR stations in Korea, Romania, India, Argentina, Pakistan, and China were present with their domestic counterparts from Ontario Hydro Nuclear, Hydro Quebec, New Brunswick Power, and AECL. The objectives of the workshop were to: provide a forum for exchange of ideas among nuclear safety managers operating CANDU (PHWR) stations and to learn from each other`s experiences; to foster sharing of information on different operating approaches to managing safety and, in particular, to highlight the strategies for controlling the overall plant risk to a low level; to identify and discuss issues of mutual interest pertinent to PHWR stations and to define future follow-up activities. Refs, figs.

  17. THE IMPACT OF POWER COEFFICIENT OF REACTIVITY ON CANDU 6 REACTORS

    Directory of Open Access Journals (Sweden)

    D. KASTANYA

    2013-10-01

    Full Text Available The combined effects of reactivity coefficients, along with other core nuclear characteristics, determine reactor core behavior in normal operation and accident conditions. The Power Coefficient of Reactivity (PCR is an aggregate indicator representing the change in reactor core reactivity per unit change in reactor power. It is an integral quantity which captures the contributions of the fuel temperature, coolant void, and coolant temperature reactivity feedbacks. All nuclear reactor designs provide a balance between their inherent nuclear characteristics and the engineered reactivity control features, to ensure that changes in reactivity under all operating conditions are maintained within a safe range. The CANDU® reactor design takes advantage of its inherent nuclear characteristics, namely a small magnitude of reactivity coefficients, minimal excess reactivity, and very long prompt neutron lifetime, to mitigate the demand on the engineered systems for controlling reactivity and responding to accidents. In particular, CANDU reactors have always taken advantage of the small value of the PCR associated with their design characteristics, such that the overall design and safety characteristics of the reactor are not sensitive to the value of the PCR. For other reactor design concepts a PCR which is both large and negative is an important aspect in the design of their engineered systems for controlling reactivity. It will be demonstrated that during Loss of Regulation Control (LORC and Large Break Loss of Coolant Accident (LBLOCA events, the impact of variations in power coefficient, including a hypothesized larger than estimated PCR, has no safety-significance for CANDU reactor design. Since the CANDU 6 PCR is small, variations in the range of values for PCR on the performance or safety of the reactor are not significant.

  18. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  19. Preliminary analysis for u tube degradation in CANDU steam generator using CATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Shin, So Eun; Lee, Jeong Hun; Park, Tong Kyu; Hwang, Su Hyun [FNC Technology Co., Seoul (Korea, Republic of); Jung, Jong Yeo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The interest in plant safety and integrity has been increasing due to long term operation of nuclear power plants (NPPs) and lots of efforts have been devoted to developing the degradation evaluation model for all the Structure, System, and Components (SSCs) of NPPs in these days. The efforts, however, were mainly concentrated on pressurized light water reactors (PWRs) in domestic. In contrast, the study for the aging degradation of counterparts of CANDU (CANada Deuterium Uranium) reactors has been rarely performed, even though Wolsong unit 1 (WS1), that is a CANDU 6 NPP in Korea, has been operating for almost 30 years. Therefore, the assessment of the aging degradation is required and the proper and exact evaluation model for the aging degradation of SCCs of CANDU, especially WS1, is urgently needed. In this study, the aging degradation of steam generators (SGs) in WS1 was mainly discussed. Based on cases of the aging degradation of SGs in overseas CANDU reactors, the major potential aging mechanisms of SGs were estimated since there has been no case of accident due to degradation in CANDU NPPs in Korea . Some core parameters which are indicators of the degree of degradation were calculated by CATHENA (Canadian algorithm for thermal hydraulic network analysis). In the result of comparing two calculation cases; core parameters for only aged SGs in fresh plant and those for all the aged component, it can be concluded that aging of SGs is a main component in the degradation assessment of CANDU NPPs, and keeping the integrity of steam generator (SG) tubes is important to guarantee the safety of the NPPs.

  20. Testing a CANDU-fueling machine at the Institute for Nuclear Research Pitesti

    International Nuclear Information System (INIS)

    Cojocaru, Virgil

    2006-01-01

    In 2003, as a national and European premiere, the Fueling Machine Head no. 4 (F/M) for the Nuclear Power Plant Cernavoda Unit 2 (NPP) was successfully tested at the Institute for Nuclear Research Pitesti (INR). In 2005, the second Fueling Machine (no. 5) has tested for the Nuclear Power Plant Cernavoda Unit 2. The Institute's main objective is to develop scientific and technological support for the Romanian Nuclear Power Program. Testing the Fueling Machines at INR Pitesti is part of the overall program to assimilate the CANDU technology in Romania. To perform the tests of these machines at INR Pitesti, a special testing rig has built being available for this goal. Both the testing rig and staff had successfully assessed by the AECL representatives during two missions. There was a delivery contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 in Romania before testing activity. As a first conclusion, the Institute for Nuclear Research Pitesti has the facilities, the staff and the experience to perform possible co-operations with any CANDU Reactor owner

  1. Operation of CANDU power reactor in thorium self-sufficient fuel cycle

    Indian Academy of Sciences (India)

    This paper presents the results of calculations for CANDU reactor operation in thorium fuel cycle. Calculations are performed to estimate the feasibility of operation of heavy-water thermal neutron power reactor in self-sufficient thorium cycle. Parameters of active core and scheme of fuel reloading were considered to be the ...

  2. Safety systems and safety analysis of the Qinshan phase III CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Cai Jianping; Shen Sen; Barkman, N.

    1999-01-01

    The author introduces the Canadian nuclear reactor safety philosophy and the Qinshan Phase III CANDU NPP safety systems and safety analysis, which are designed and performed according to this philosophy. The concept of 'defence-in-depth' is a key element of the Canadian nuclear reactor safety philosophy. The design concepts of redundancy, diversity, separation, equipment qualification, quality assurance, and use of appropriate design codes and standards are adopted in the design. Four special safety systems as well as a set of reliable safety support systems are incorporated in the design of Qinshan phase III CANDU for accident mitigation. The assessment results for safety systems performance show that the fundamental safety criteria for public dose, and integrity of fuel, channels and the reactor building, are satisfied

  3. R and D activities on CANDU-type fuel in Indonesia

    International Nuclear Information System (INIS)

    Suripto, A.; Badruzzaman, M.; Latief, A.

    1997-01-01

    The status of R and D activities in Indonesia with respect of CANDU-type fuel development is presented. The activities have been started since the first feasibility study to introduce nuclear power plants was carried out in 1970s. The early research comprised the in-situ pilot production of yellow-cake in Kalimantan (Borneo) experimental mining site, uranium purification and pellet preparation. This program continued to gain a full support from the Government which culminated in the realisation of the construction by BATAN of a large fuel development laboratory in Serpong, starting from 1984 in co-operation with NIRA Ansaldo of Italy. The laboratory, which is called the Power Reactor Experimental Fuel Element Installation (EFEI) was originally designed as an experimental facility to integrate the acquired domestic R and D results gained so far on the CANDU-type fuel technology and the additional know-how received from NIRA Ansaldo which at that time was engaged, in developing a CANDU-type fuel, called the CIRENE fuel design. In the present days the facility houses the power reactor fuel development activities carried out to build up the national capability on power reactor fuel fabrication technology in anticipation to embark upon the nuclear energy era in the near future. (author)

  4. Evolution of on-power fuelling machines on Canadian natural uranium power reactors

    International Nuclear Information System (INIS)

    Isaac, P.

    1984-10-01

    The evolution of the on-power fuel changing process and fuelling machines on CANDU heavy-water pressure tube power reactors from the first nuclear power demonstration plant, 22 MWe NPD, to the latest plants now in design and development is described. The high availability of CANDU's is largely dependent on on-power fuelling. The on-power fuelling performance record of the 16 operating CANDU reactors, covering a 22 year period since the first plant became operational, is given. This shows that on-power fuel changing with light (unshielded), highly mobile and readily maintainable fuelling machines has been a success. The fuelling machines have contributed very little to the incapabilities of the plants and have been a key factor in placing CANDUs in the top ten list of world performance. Although fuel handling technology has reached a degree of maturity, refinements are continuing. A new single-ended fuel changing concept for horizontal reactors under development is described. This has the potential for reducing capital and operating costs for small reactors and increasing the fuelling capability of possible large reactors of the future

  5. Candu 6: versatile and practical fuel technology

    International Nuclear Information System (INIS)

    Hopwood, J. M.; Saroudis, J.

    2013-01-01

    CANDU reactor technology was originally developed in Canada as part of the original introduction of peaceful nuclear power in the 1960s and has been continuously evolving and improving ever since. The CANDU reactor system was defined with a requirement to be able to efficiently use natural uranium (NU) without the need for enrichment. This led to the adaptation of the pressure tube approach with heavy water coolant and moderator together with on-power fuelling, all of which contribute to excellent neutron efficiency. Since the beginning, CANDU reactors have used [NU] fuel as the fundamental basis of the design. The standard [NU] fuel bundle for CANDU is a very simple design and the simplicity of the fuel design adds to the cost effectiveness of CANDU fuelling because the fuel is relatively straightforward to manufacture and use. These characteristics -- excellent neutron efficiency and simple, readily-manufactured fuel -- together lead to the unique adaptability of CANDU to alternate fuel types, and advancements in fuel cycles. Europe has been an early pioneer in nuclear power; and over the years has accumulated various waste products from reactor fuelling and fuel reprocessing, all being stored safely but which with passing time and ever increasing stockpiles will become issues for both governments and utilities. Several European countries have also pioneered in fuel reprocessing and recycling (UK, France, Russia) in what can be viewed as a good neighbor policy to make most efficient use of fuel. The fact remains that CANDU is the most fuel efficient thermal reactor available today [NU] more efficient in MW per ton of U compared to LWR's and these same features of CANDU (on-power fuelling, D 2 O, etc) also enable flexibility to adapt to other fuel cycles, particularly recycling. Many years of research (including at ICN Pitesti) have shown CANDU capability: best at Thorium utilization; can use RU without re-enrichment; can readily use MOX. Our premise is that

  6. Candu reactors with thorium fuel cycles

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Fehrenbach, P.; Duffey, R.; Kuran, S.; Ivanco, M.; Dyck, G.R.; Chan, P.S.W.; Tyagi, A.K.; Mancuso, C.

    2006-01-01

    Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 550 0 C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a

  7. Experience in the application of NUSS and Canadian quality assurance standards for overseas CANDU projects

    International Nuclear Information System (INIS)

    Simmons, R.B.V.; Thomas, R.A.

    1984-10-01

    The Canadian QA standards - the CSA Z299 series for manufacture, which first appeared in 1975, and the CSA N286 series for all other phases of plant life which appeared in 1979, have been based on experience with the CANDU reactor program. The CSA Technical Committee responsible for issue and for updating the two series have a direct liaison with the IAEA Technical Review Committee for Quality Assurance. Ontario Hydro, which has a substantial commitment to nuclear power using CANDU reactors, has played a large part in the Canadian QA standards program. Atomic Energy of Canada Limited has also taken a major part in the development of CSA QA standards. As a main contractor the Company has supplied CANDU plants in Canada and to Argentina, South Korea and Romania. Because of the compatibility of the Canadian QA standards used, the Embalse plant in Argentina and the Wolsung 1 plant in Korea, are essentially in compliance with NUSS QA standards. The plant under construction at Cernavoda in Romania similarly follows Canadian QA standards

  8. Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Cho, Dong Geun; Kook, Dong Hak; Lee, Min Soo; Choi, Heui Joo

    2011-01-01

    There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over 100 .deg. C were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

  9. Localization of CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ala

    2010-09-15

    The CANDU pressurized heavy water reactor's principal design features suit it particularly well for technology transfer and localization. When the first commercial CANDU reactors of 540 MWe entered service in 1971, Canada's population of less than 24 million supported a 'medium' level of industrial development, lacking the heavy industrial capabilities of larger countries like the USA, Japan and Europe. A key motivation for Canada in developing the CANDU design was to ensure that Canada would have the autonomous capacity to build and operate nuclear power reactors without depending on foreign sources for key components or enriched fuel.

  10. Assessment of DUPIC fuel compatibility with CANDU-6

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H B; Roh, G H; Jeong, C J; Rhee, B W; Choi, J W [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    The compatibility of DUPIC fuel with the existing CANDU reactor was assessed. The technical issues of DUPIC fuel compatibility were chosen based on the CANDU physics design requirements and inherent characteristics of DUPIC fuel. The compatibility was assessed for the reference DUPIC fuel composition which was determined to reduce the composition heterogeneity and improve the spent PWR fuel utilization. Preliminary studies on a CANDU core loaded with DUPIC fuel have shown that the nominal power distribution is flatter than that of a natural uranium core when a 2-bundle shift refueling scheme is used, which reduces the reactivity worths of devices in the core and, therefore, the performance of reactivity devices was assessed. The safety of the core was assessed by a LOCA simulation and it was found that the power pulse upon LOCA can be maintained below that in the natural uranium core when a poison material is used in the DUPIC fuel. For the feasibility of handling DUPIC fuel in the plant, it will be necessary to introduce new equipment to load the DUPIC fuel in the refueling magazine. The radiation effect of DUPIC fuel on both the reactor hardware and the environment will require a quantitative analysis later. (author).

  11. [Karachi Nuclear Power Plant (KANUPP), Safety Management

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, S M [Karachi Nuclear Power Plant (KANUPP), Karachi (Pakistan)

    1997-12-01

    The present regime for CANDU safety management in Pakistan has evolved in line with contemporary international practice, and is essential adequate to ensure the continued safety of KANUPP and other future CANDU reactors, as confirmed by international reviews as well. But the small size of Pakistan nuclear power program poses limitations in developing - expert judgment in analysis of in-service inspection data; and own methodology for CANDU safety analysis.

  12. [Karachi Nuclear Power Plant (KANUPP), Safety Management

    International Nuclear Information System (INIS)

    Hasan, S.M.

    1997-01-01

    The present regime for CANDU safety management in Pakistan has evolved in line with contemporary international practice, and is essential adequate to ensure the continued safety of KANUPP and other future CANDU reactors, as confirmed by international reviews as well. But the small size of Pakistan nuclear power program poses limitations in developing - expert judgment in analysis of in-service inspection data; and own methodology for CANDU safety analysis

  13. Mathematical modeling of CANDU-PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)

    2003-07-01

    The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR). This study involved mathematical modeling of CANDU-PHWR to study its thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique. The reactor model includes the neutronic, reactivity, and fuel channel heat transfer. The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and the reactivity feed back due to the changes in the fuel temperature and coolant temperature. The CANDU-PHWR model was coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)

  14. Passive heat removal in CANDU

    International Nuclear Information System (INIS)

    Hart, R.S.

    1997-01-01

    CANDU has a tradition of incorporating passive systems and passive components whenever they are shown to offer performance that is equal to or better than that of active systems, and to be economic. Examples include the two independent shutdown systems that employ gravity and stored energy respectively, the dousing subsystem of the CANDU 6 containment system, and the ability of the moderator to cool the fuel in the event that all coolant is lost from the fuel channels. CANDU 9 continues this tradition, incorporating a reserve water system (RWS) that increases the inventory of water in the reactor building and profiles a passive source of makeup water and/or heat sinks to various key process systems. The key component of the CANDU 9 reserve water system is a large (2500 cubic metres) water tank located at a high elevation in the reactor building. The reserve water system, while incorporating the recovery system functions, and the non-dousing functions of the dousing tank in CANDU 6, embraces other key systems to significantly extend the passive makeup/heat sink capability. The capabilities of the reserve water system include makeup to the steam generators secondary side if all other sources of water are lost; makeup to the heat transport system in the event of a leak in excess of the D 2 O makeup system capability; makeup to the moderator in the event of a moderator leak when the moderator heat sink is required; makeup to the emergency core cooling (ECC) system to assure NPSH to the ECC pumps during a loss of coolant accident (LOCA), and provision of a passive heat sink for the shield cooling system. Other passive designs are now being developed by AECL. These will be incorporated in future CANDU plants when their performance has been fully proven. This paper reviews the passive heat removal systems and features of current CANDU plants and the CANDU 9, and briefly reviews some of the passive heat removal concepts now being developed. (author)

  15. Three Mile Island - a review of the accident and its implications for CANDU safety

    International Nuclear Information System (INIS)

    Pannell, R.J.; Campbell, F.R.

    1980-03-01

    After the accident at the Three Mile Island-2 reactor all Canadian owners of CANDU nuclear power plants were asked by the Atomic Energy Control Board (AECB) to conduct a design review to assess the reliability of feedwater supply to boilers, the availability of backup cooling systems, and the adequacy of routine and emergency operating procedures. The authors studied the available information on the accident and the replies received from licensees. Their report is in three sections: a description of the accident, the authors' opinions of the underlying causes, and recommendations to the AECB regarding what might be done to confirm or improve the safety of CANDU plants

  16. Enhanced CANDU 6 design assist probabilistic safety assessment results and insights

    International Nuclear Information System (INIS)

    Torabi, T.; Bettig, R.; Iliescu, P.; Robinson, J.; Santamaura, P.; Skorupska, B.; Tyagi, A.K.; Vencel, I.

    2013-01-01

    The Enhanced CANDU 6(EC6) is a 700 MWe reactor, which has evolved from the well-established CANDU line of reactors, which are heavy-water moderated, and heavy-water cooled horizontal pressure tube reactors, using natural uranium fuel. The EC6 design retains the generic CANDU design features, while incorporating innovations and state-of-the-art technologies to ensure competitiveness with other design with respect to operation, performance and economics. A design assist probabilistic safety assessment (PSA) was conducted during the design change phase of the project. The purpose of the assessment was to assess internal events during at-power operation and identify the design improvements and additional features needed to comply with the latest regulatory requirements in Canada and compete with other reactor designs, internationally. The PSA results show that the EC6 plant response to the postulated initiating events is well balanced, and the design meets its safety objectives. This paper summarizes the results and insights gained during the development of the PSA models for at-power internal events. (author)

  17. Initiating stochastic maintenance optimization at Candu Power Plants

    International Nuclear Information System (INIS)

    Doyle, E.K.

    2003-01-01

    As previously reported at ICONE 6 in New Orleans (1996), the use of various innovative maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems. Further cost refinement of the station maintenance strategy is being evaluated via the applicability of statistical analysis of historical failure data. Since the statistical evaluation was initiated in 1999 significant progress has been made in demonstrating the viability of stochastic methods in Candu maintenance. Some of the relevant results were presented at ICONE 10 in Washington DC (2002). Success with the graphical displays and the relatively easy to implement stochastic computer programs was sufficient to move the program along to the next significant phase. This next phase consists of investigating the validity of using subjective elicitation techniques to obtain component lifetime distributions. This technique provides access to the elusive failure statistics, the lack of which is often referred to in the literature as the principle impediment preventing the use of stochastic methods in large industry. At the same time the technique allows very valuable information to be captured from the fast retiring 'baby boom generation'. Initial indications have been quite positive. (author)

  18. CANDU fuel cycle economic efficiency assessments using the IAEA-MESSAGE-V code

    International Nuclear Information System (INIS)

    Prodea, Iosif; Margeanu, Cristina Alice; Aioanei, Corina; Prisecaru, Ilie; Danila, Nicolae

    2007-01-01

    The main goal of the paper is to evaluate different electricity generation costs in a CANDU Nuclear Power Plant (NPP) using different nuclear fuel cycles. The IAEA-MESSAGE code (Model for Energy Supply Strategy Alternatives and their General Environmental Impacts) will be used to accomplish these assessments. This complex tool was supplied by International Atomic Energy Agency (IAEA) in 2002 at 'IAEA-Regional Training Course on Development and Evaluation of Alternative Energy Strategies in Support of Sustainable Development' held in Institute for Nuclear Research Pitesti. It is worthy to remind that the sustainable development requires satisfying the energy demand of present generations without compromising the possibility of future generations to meet their own needs. Based on the latest public information in the next 10-15 years four CANDU-6 based NPP could be in operation in Romania. Two of them will have some enhancements not clearly specified, yet. Therefore we consider being necessary to investigate possibility to enhance the economic efficiency of existing in-service CANDU-6 power reactors. The MESSAGE program can satisfy these requirements if appropriate input models will be built. As it is mentioned in the dedicated issues, a major inherent feature of CANDU is its fuel cycle flexibility. Keeping this in mind, some proposed CANDU fuel cycles will be analyzed in the paper: Natural Uranium (NU), Slightly Enriched Uranium (SEU), Recovered Uranium (RU) with and without reprocessing. Finally, based on optimization of the MESSAGE objective function an economic hierarchy of CANDU fuel cycles will be proposed. The authors used mainly public information on different costs required by analysis. (authors)

  19. Development of a graphical animation interactive feature to assess MAAP-CANDU simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Petoukhov, S.M., E-mail: sergei.petoukhov@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada); Karancevic, N., E-mail: karancevic@fauske.com [Fauske and Associates Inc. (FAI), Burr Ridge, IL (United States); Morreale, A.C., E-mail: andrew.morreale@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada); Paik, C.Y., E-mail: paik@fauske.com [Fauske and Associates Inc., Burr Ridge, IL (United States); Brown, M.J., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada); Cole, C., E-mail: christopher.cole@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    MAAP-CANDU is an integrated severe accident analysis code for CANDU plant simulations that necessitates the assessment and post-processing of extensive amounts of information obtained from code run results. The MAAP-CANDU GRaphical Animation Package Extension (GRAPE) is a flexible, efficient, interactive and integrated visualization tool for analyzing plant behaviour during postulated accidents including accident management actions for single and multi-unit CANDU plants. GRAPE was developed by FAI in consultation with CNL (AECL) and CNSC from the FAI MAAP-GRAAPH code used in MAAP (LWR version). CNSC plans to use MAAP-CANDU and GRAPE as one of the tools in their Emergency Operations Centre.(author)

  20. Development of a graphical animation interactive feature to assess MAAP-CANDU simulation results

    International Nuclear Information System (INIS)

    Petoukhov, S.M.; Karancevic, N.; Morreale, A.C.; Paik, C.Y.; Brown, M.J.; Cole, C.

    2015-01-01

    MAAP-CANDU is an integrated severe accident analysis code for CANDU plant simulations that necessitates the assessment and post-processing of extensive amounts of information obtained from code run results. The MAAP-CANDU GRaphical Animation Package Extension (GRAPE) is a flexible, efficient, interactive and integrated visualization tool for analyzing plant behaviour during postulated accidents including accident management actions for single and multi-unit CANDU plants. GRAPE was developed by FAI in consultation with CNL (AECL) and CNSC from the FAI MAAP-GRAAPH code used in MAAP (LWR version). CNSC plans to use MAAP-CANDU and GRAPE as one of the tools in their Emergency Operations Centre.(author)

  1. CANDU 9 fuelling machine carriage

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, D J; Slavik, J F [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1997-12-31

    Continuous, on-power refuelling is a key feature of all CANDU reactor designs and is essential to maintaining high station capacity factors. The concept of a fuelling machine carriage can be traced to the early CANDU designs, such as the Douglas Point Nuclear Generating Station. In the CANDU 9 480NU unit, the combination of a mobile carriage and a proven fuelling machine head design comprises an effective means of transporting fuel between the reactor and the fuel transfer ports. It is a suitable alternative to the fuelling machine bridge system that has been utilized in the CANDU 6 reactor units. The CANDU 9 480NU fuel handling system successfully combines features that meet the project requirements with respect to fuelling performance, functionality, seismic qualification and the use of proven components. The design incorporates improvements based on experience and applicable current technologies. (author). 4 figs.

  2. CANDU 9 fuelling machine carriage

    International Nuclear Information System (INIS)

    Ullrich, D.J.; Slavik, J.F.

    1996-01-01

    Continuous, on-power refuelling is a key feature of all CANDU reactor designs and is essential to maintaining high station capacity factors. The concept of a fuelling machine carriage can be traced to the early CANDU designs, such as the Douglas Point Nuclear Generating Station. In the CANDU 9 480NU unit, the combination of a mobile carriage and a proven fuelling machine head design comprises an effective means of transporting fuel between the reactor and the fuel transfer ports. It is a suitable alternative to the fuelling machine bridge system that has been utilized in the CANDU 6 reactor units. The CANDU 9 480NU fuel handling system successfully combines features that meet the project requirements with respect to fuelling performance, functionality, seismic qualification and the use of proven components. The design incorporates improvements based on experience and applicable current technologies. (author). 4 figs

  3. Advancing CANDU Technology Through R and D

    International Nuclear Information System (INIS)

    Torgerson, David F.

    1993-01-01

    CANDU reactors are evolving to meet future requirements using incremental changes as opposed to revolutionary design changes. The main elements for advancing the technology reducing capital and operating, increasing capacity factors, increasing passive safety, and enhancing fuel/fuel cycle flexibility. These elements are being addressed by carrying out research and development in the areas of safety, plant systems and components, heavy water production, information technology, fuel channels, and fuel/fuel cycle technology. In safety, the focus is on using the inherent features of CANDU to enhance passive or natural safety concepts, such as the use of the moderator as an effective heat sink, and the development of advanced fuels to improve critical heat flux and to reduce source terms. Plant systems and components work includes improvements to plant systems such as steam generators, heat exchangers, pump seals, and advanced control room technology. Heavy water processes are being developed that can be used with existing hydrogen production plants, or that can be used in a stand-alone mode. Information technology is being developed to cover all aspects of CANDU design, construction, and operation. Fuel channel improvements include elucidation and application of basic materials science for life extension, and the development of advanced non-destructive examination methods. Fuel and fuel cycle work is focusing on LWR/CANDU synergy, such as the use of recovered uranium and the direct use of spent PWR fuel in CANDU reactor, advanced fuels to improve burnup and economics (e. g., the joint AECB/KAERI Conflux program), and low void reactivity fuel to enhance passive safety. This paper gives an overview of some of the R and D supporting these activities, with particular emphasis on Alice's vision for advancing CANDU technology over the next 10 years

  4. CANDU flexible and economical fuel technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Mingjun, C. [CNNC Nuclear Power Operation Management Co., Zhejiang (China); Zhenhua, Z.; Zhiliang, M. [CNNC Third Qinshan Nuclear Power Co., Zhejiang (China); Cottrell, C.M.; Kuran, S. [Candu Energy Inc., Mississauga, ON (Canada)

    2014-07-01

    Use in CANDU reactor is one good option of recycled uranium (RU) and thorium (Th) resource. It is also good economy to CANDU fuel. Since 2008 Qinshan CANDU Plant and our partners (Candu Energy and CNNC and NPIC) have made great efforts to develop the engineering technologies of Flexible and Economical Fuel (RU and Th) in CANDU type reactor and finding the CANDU's position in Chinese closed fuel cycle (CFC) system. This paper presents a proposal of developing strategy and implementation plan. Qinshan CANDU reactors will be converted to use recycled and depleted uranium based fuels, a first-of-its-kind. The fuel is composed of both recycled and depleted uranium and simulating natural uranium behavior. This paper discusses its development, design, manufacture and verification tested with success and the full core implementation plan by the end of 2014. (author)

  5. CANDU passive shutdown systems

    Energy Technology Data Exchange (ETDEWEB)

    Hart, R S; Olmstead, R A [AECL CANDU, Sheridan Park Research Community, Mississauga, ON (Canada)

    1996-12-01

    CANDU incorporates two diverse, passive shutdown systems, independent of each other and from the reactor regulating system. Both shutdown systems function in the low pressure, low temperature, moderator which surrounds the fuel channels. The shutdown systems are functionally different, physically separate, and passive since the driving force for SDS1 is gravity and the driving force for SDS2 is stored energy. The physics of the reactor core itself ensures a degree of passive safety in that the relatively long prompt neutron generation time inherent in the design of CANDU reactors tend to retard power excursions and reduces the speed required for shutdown action, even for large postulated reactivity increases. All passive systems include a number of active components or initiators. Hence, an important aspect of passive systems is the inclusion of fail safe (activated by active component failure) operation. The mechanisms that achieve the fail safe action should be passive. Consequently the passive performance of the CANDU shutdown systems extends beyond their basic modes of operation to include fail safe operation based on natural phenomenon or stored energy. For example, loss of power to the SDS1 clutches results in the drop of the shutdown rods by gravity, loss of power or instrument air to the injection valves of SDS2 results in valve opening via spring action, and rigorous self checking of logic, data and timing by the shutdown systems computers assures a fail safe reactor trip through the collapse of a fluctuating magnetic field or the discharge of a capacitor. Event statistics from operating CANDU stations indicate a significant decrease in protection system faults that could lead to loss of production and elimination of protection system faults that could lead to loss of protection. This paper provides a comprehensive description of the passive shutdown systems employed by CANDU. (author). 4 figs, 3 tabs.

  6. Station black out analysis for CANDU 6 plant

    International Nuclear Information System (INIS)

    Baburajan, P.K.; Rao, R.S.; Gupta, S.K.

    2011-01-01

    As part of International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP), 'Benchmarking severe accident computer codes for pressurised heavy water reactor applications', thermal hydraulic analysis of severe accident station black out (SBO) is carried out for a generic CANDU 6 plant. The CRP is conducted in order to improve severe accident analysis capability for heavy water reactors (HWRs) through the benchmarking exercise. The plant simulation is carried out using RELAP5/Mod3.4 best estimate system thermal hydraulic code. The total thermal power of the plant is 2064 MW. There are 380 fuel channels in the core, 12 fuel bundles per channel and each bundle assembly has 37 fuel elements. The primary heat transport system (HTS) consists of two loops. Each loop consist of inlet and exit headers, feeder lines, fuel channels, hot leg and cold leg of steam generator, pumps, pump suction and discharge lines. Ninety five fuel channels in each pass of the loop are simulated as a single channel. The steam generator as the secondary side heat sink consists of annulus down-comer, riser, steam separator, steam drum, steam header and steam lines. Fuel channels (pressure tube) and calandria tube are simulated using SCDAPSIM to study the severe accident code behaviour. The SBO transient is initiated after obtaining the steady state conditions. Present analysis is carried out till the pressure tube failure. Analysis results show that the secondary inventory is lost in about 6500 seconds of the transient. The primary inventory is lost in 10370 seconds of the transient and subsequently the pressure tube failure is predicted as the tube wall temperature exceeded 900 K. Further analysis is to be carried out by incorporating changes in the calandria model and including the modeling of calandria vault and containment. (author)

  7. Heat sink management during CANDU low level operation

    International Nuclear Information System (INIS)

    Wang Liansheng

    2008-01-01

    This paper introduces the practice of low-level operation with opening on the main heat transport system during an outage for a Candu-6 nuclear power plant, analyses the risks of losing heat sink during this condition, and points out the safety measures and management requirement for controlling such risks. This paper can be used as a reference for improving and optimizing the heat sink management for the coming outages. (author)

  8. Luncheon address: Development of the CANDU reactor

    International Nuclear Information System (INIS)

    Bain, A.S.

    1997-01-01

    The paper is a highlight of the some of the achievements in the development of the CANDU Reactor, taken from the book C anada Enters the Nuclear Age . The CANDU reactor is one of Canada's greatest scientific/engineering achievements, that started in the 1940's and bore fruit with the reactors of the 60's, 70's, and 80's. The Government decided in the 1950's to proceed with a demonstration nuclear power reactor (NPD), AECL invited 7 Canadian corporations to bid on a contract to design and construct the NPD plant. General Electric was selected. A utility was also essential for participation and Ontario Hydro was chosen. In May 1957 it was concluded that the minimum commercial size would be about 200MWe and it should use horizontal pressure tubes to contain the fuel and pressurized heavy water coolant. The book also talks of standard out-reactor components such as pumps, valves, steam generators and piping. A major in-reactor component of interest was the fuel, fuel channels and pressure tubes. A very high level of cooperation was required for the success of the CANDU program

  9. Environmental effects on the response of self-powered flux detectors in CANDU reactors

    International Nuclear Information System (INIS)

    Lynch, G.F.; Shields, R.B.; Joslin, C.W.

    1976-01-01

    Self-powered flux detectors are playing an increasingly important role in the control and safety systems of CANDU-type reactors. In this paper we report on recent experiments to determine how local reactor conditions affect the output signals from self-powered detectors with vanadium, platinum and cobalt emitters. The results are interpreted in terms of variations in the local neutron, γ-ray and electron fluxes. (author)

  10. The next generation of CANDU: reactor design to meet future energy markets

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Love, J.W.; Wren, D.J.

    2001-01-01

    Nuclear power plant designs for the future must respond to increasingly demanding market requirements. This means that value can be gained from substantial product development directed at these requirements. For the CANDU system, AECL has adopted the revolutionary approach, accommodating significant changes to design while retaining traditional CANDU strengths. The focus of the new design is to achieve a 40% reduction in capital cost, quicken construction time and higher efficiency. Key aspects of the new design include: light water coolant, smaller core, slightly enriched fuel, higher temperature and pressure coolant. Work is well advanced on the preliminary design

  11. CANDU fuel behaviour under LOCA conditions

    International Nuclear Information System (INIS)

    Kohn, E.

    1989-07-01

    This report summarizes the current understanding of CANDU fuel-element behaviour under loss-of-coolant (LOCA) accidents. It focuses on a key in-reactor verification experiment conducted at Idaho National Engineering Laboratory (INEL) and on three Canadian in-reactor tests. The in-reactor data, and the considerable body of supporting information developed from out-reactor tests, support the general conclusion that CANDU fuel behaviour during LOCA transients is well understood. Four elements of 37-element CANDU fuel-bundle design were tested under conditions typical of a large-break LOCA blowdown in a CANDU reactor. The purpose of the test was to confirm our current understanding of fuel behaviour under loss-of-coolant accident blowdown conditions. The test also provided data for comparison with predictions made with the steady-state and transient fuel-element performance codes ELESIM and ELOCA. Key components of typical LOCA transients were incorporated in the test: namely, a rapid depressurization rate of the hot coolant, a simultaneous power increase before decreasing to decay values (a power pulse), and prototype fuel element under pre-transient power and burnup conditions. The test was successfully completed in the Power Burst Facility (PBF) reactor at INEL under contract to Ontario Hydro and AECL. The three CANDU Owners Group LOCA tests performed at Chalk River Nuclear Laboratories measured both the thermal-mechanical response and fission-gas release resulting from exposure to a LOCA transient. Results from these three tests provided further confirmation that the behaviour of the fuel under LOCA conditions is understood

  12. CANDU reactor - supporting the nuclear renaissance

    International Nuclear Information System (INIS)

    Oberth, R.

    2010-01-01

    'Full text:' The CANDU reactor has proven to be a strong performer in both the Canada, with 22 units constructed in Ontario, New Brunswick and Quebec, as well as in Argentina, Korea, Romania and China where a further nine units are operating and two in the planning stage. The average lifetime capacity factor of the CANDU reactor fleet is 89%. The last seven CANDU projects in Korea, China, and Romania have been completed on budget and on schedule. CANDU reactors have the highest uranium utilization efficiency measures as electricity output per ton of uranium mined. The CANDU fuel channel design using on-power fuelling and a heavy water moderator enables flexible fueling options - from the current natural uranium option to burning uranium recovered from used LWR reactor fuel and even a thorium-based fuel. AECL and the CANDU reactor are poised to participate in the worldwide construction at least 250 new reactors over the next 20 years. (author)

  13. Supporting CANDU operators-CANDU owners group

    International Nuclear Information System (INIS)

    Collingwood, B.R.

    1997-01-01

    The CANDU Owners Group (COG) was formed in 1984 by the Canadian CANDU owning utilities and Atomic Energy of Canada limited (AECL). Participation was subsequently extended to all CANDU owners world-wide. The mandate of the COG organization is to provide a framework for co-operation, mutual assistance and exchange of information for the successful support, development, operation, maintenance and economics of CANDU nuclear electric generating stations. To meet these objectives COG established co-operative programs in two areas: 1. Station Support. 2. Research and Development. In addition, joint projects are administered by COG on a case by case basis where CANDU owners can benefit from sharing of costs

  14. Qinshan CANDU commissioning - a successful partnership

    International Nuclear Information System (INIS)

    Alikhan, S.; Thomson, J.; Jun, G.; Guoyuan, J.

    2004-01-01

    The Qinshan CANDU Nuclear Power Plant consists of 2 x 728 MWe CANDU 6 units, built in Zhejiang Province, China, by the Third Qinshan Nuclear Power Company (TQNPC) as the owner and Atomic Energy of Canada Limited (AECL) as the main contractor. The Contract between China National Nuclear Corporation (CNNC) and AECL was signed in November 1996 and became effective on February 12, 1997 with scheduled completion dates of February 12, 2003 for Unit 1 and November 12, 2003 for Unit 2. Unit 1 was declared in-service on December 31, 2002, 43 days ahead of schedule and Unit 2 was declared in service on July 20, 2003, 115 days ahead of schedule. The successful partnership between AECL, Bechtel, Hitachi and TQNPC working as a team is the key to this success. Total commissioning period from first energization of the system service transformer to in-service for both units was 20.7 months, which is significantly better than the experience at other comparable CANDU 6 units. It has clearly demonstrated the benefits of building two units together, about 6 months apart, to achieve optimum utilization of resources already mobilized for the first unit; the second unit is commissioned with less than 40% of the effort required for the first unit. Since in-service to the end of March 2004, Unit 1 has operated at a gross capacity factor of 93% and Unit 2 at 82.5%, including loss of production for one month in August 2003 to repair the failure of turbine LP blades tie-wire. (author)

  15. Natural uranium equivalent fuel an innovative design for proven CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro, F.; Ho, K.; Khaial, A.; Boubcher, M.; Cottrell, C.; Kuran, S., E-mail: fabricia.pineiro@candu.com [Candu Energy Inc., Mississauga, ON (Canada); Zhenhua, Z.; Zhiliang, M. [Third Qinshan Nuclear Power Company, Haiyan, Zhejiang (China)

    2015-07-01

    The high neutron economy, on-power refuelling capability and fuel bundle design simplicity in CANDU reactors allow for the efficient utilization of alternative fuels. Candu Energy Inc. (Candu), in collaboration with the Third Qinshan Nuclear Power Company (TQNPC), the China North Nuclear Fuel Corporation (CNNFC), and the Nuclear Power Institute of China (NPIC), has successfully developed an advanced fuel called Natural Uranium Equivalent (NUE). This innovative design consists of a mixture of recycled and depleted uranium, which can be implemented in existing CANDU stations thereby bringing waste products back into the energy stream, increasing fuel resources diversity and reducing fuel costs. (author)

  16. Management of a 600 MW CANDU project to facilitate electricity export

    International Nuclear Information System (INIS)

    Gunter, G.E.

    1983-06-01

    The export of electricity from 600-MW CANDU nuclear power plants built in Canada remains feasible providing certain requirements continue to be met. The principal objective in developing nuclear power resources for export is that they must produce economically attractive electricity. A review of the experience of construction and operation of Point Lepreau Unit 1 suggests an inherent ability to reduce construction costs and shorten construction schedules so as to make electrical power output from these stations even more attractive to export customers

  17. Comparative Analysis of Thermohydraulic Margins in Embalse Power Station, CARA Vs. CANDU with Cobra IV-HW

    International Nuclear Information System (INIS)

    Daverio, H; Juanico, L

    2000-01-01

    Comparative analysis of thermohydraulic margins were studied of the CANDU 37 and CARA fuel bundles (FB) in Embalse power station with COBRA IV-HW code ., the geometry of the bundle laying on the channel was particularly modeled and discussing the results in comparison with former calculations with 1/6 simetry .The CARA design with enriched uranium (0.9 %) and extended burn up lets maintain the current thermohydraulic nominal margins , while compared with CANDU 37 rods FB enriched , the CARA design permits widely improve the current margins

  18. Neutronics simulations on hypothetical power excursion and possible core melt scenarios in CANDU6

    International Nuclear Information System (INIS)

    Kim, Yonghee

    2015-01-01

    LOCA (Loss of coolant accident) is an outstanding safety issue in the CANDU reactor system since the coolant void reactivity is strongly positive. To deal with the LOCA, the CANDU systems are equipped with specially designed quickly-acting secondary shutdown system. Nevertheless, the so-called design-extended conditions are requested to be taken into account in the safety analysis for nuclear reactor systems after the Fukushima accident. As a DEC scenario, the worst accident situation in a CANDU reactor system is a unprotected LOCA, which is supposed to lead to a power excursion and possibly a core melt-down. In this work, the hypothetical unprotected LOCA scenario is simulated in view of the power excursion and fuel temperature changes by using a simplified point-kinetics (PK) model accounting for the fuel temperature change. In the PK model, the core reactivity is assumed to be affected by a large break LOCA and the fuel temperature is simulated to account for the Doppler effect. In addition, unlike the conventional PK simulation, we have also considered the Xe-I model to evaluate the impact of Xe during the LOCA. Also, we tried to simulate the fuel and core melt-down scenario in terms of the reactivity through a series of neutronics calculations for hypothetical core conditions. In case of a power excursion and possible fuel melt-down situation, the reactor system behavior is very uncertain. In this work, we tried to understand the impacts of fuel melt and relocation within the pressure vessel on the core reactivity and failure of pressure and calandria tubes. (author)

  19. Korean experience in CANDU-PHWR operation

    International Nuclear Information System (INIS)

    Sang-kee Park

    1987-01-01

    Among KEPCO's 9 nuclear power units, Korea Nuclear Unit No. 3, the Wolsung Nuclear Power Plant is the only CANDU-PHWR Unit, while the rest of 8 others are PWR units. The unit was designed by Atomic Energy of Canada, Ltd(AECL) of Canada, who also perfomed overall project management for the plant construction under the provisions and arrangement of the relevant contracts. The gross electrical output of the plant is 678.7 MWe and thermal output of the reactor is 2061 MWth. While these figures lead to lower plant eficiency than LWR counterparts, unit energy cost for fuel is more favorable than LWRs because natural uranium is utilized for the fuel bundles, some of which are already being fabricated domestically. Annual capacity factors for 1983 and 1984 could have been improved, if two major planned outages for the modification works on steam generator internals and one major forced outage form the heavy water spill incident could be eliminated. The heavy water spill incident in November, 1984 brought plant staffs many lessons to learn and many things to contemplate. Unique design concepts and features such as on-power refuelling, poison prevent mode, versatile plant control system built around digital computers and power step back/set back logics may be credited for these relatively good plant performances. Human related factors such as staff's technical capabilities and strong will toward good performance were other elements which could not be overlooked

  20. Korean experience in CANDU-PHWR operation

    International Nuclear Information System (INIS)

    Park, S.K.

    1988-01-01

    Among KEPCO's 9 nuclear power units, Korea Nuclear Unit No. 3, the Wolsung Nuclear Power Plant is the only CANDU-PHWR Unit, while the rest of 8 others are PWR units. The unit was designed by Atomic Energy of Canada, Ltd. of Canada, who also performed overall project management for the plant construction under the provisions and arrangement of the relevant contracts. The gross electrical output of the plant is 678.7 MWe and thermal output of the reactor is 2061 MWth. While these figures lead to lower plant efficiency than LWR counterparts, unit energy cost for fuel is more favorable than LWRs because natural uranium is utilized for the fuel bundles, some of which are already being fabricated domestically. Annual capacity factors for 1983 and 1984 could have been improved, if two major planned outages for the modification works on steam generator internals and one major forced outage from the heavy water spill incident could be eliminated. The heavy water spill incident in November, 1984 brought plant staffs many lessons to learn and many things to contemplate. Unique design concepts and features such as on-power refuelling, poison prevent mode, versatile plant control system built around digital computers and power step back/set back logics may be credited for these relatively good plant performances. Human related factors such as staff's technical capabilities and strong will toward good performance were other elements which could not be overlooked

  1. Preliminary assessment on compatibility of DUPIC fuel with CANDU-6

    International Nuclear Information System (INIS)

    Choi, Hang-Bok; Roh, G.H.; Jeong, C.J.; Rhee, B.W.; Choi, J.W.; Boss, C.R.

    1997-01-01

    The compatibility of DUPIC fuel with the existing CANDU-6 reactor was assessed. The technical issues of DUPIC fuel compatibility were chosen based on the CANDU physics design requirements and inherent characteristics of DUPIC fuel. The compatibility was assessed for the reference DUPIC fuel composition which was determined to reduce the composition heterogeneity and improve the spent PWR fuel utilization. Preliminary studies on a CANDU core loaded with DUPIC fuel have shown that the nominal power distribution is flatter than that of a natural uranium core when a 2-bundle shift refueling scheme is used, which reduces the reactivity worths of devices in the core and, therefore, the performance of reactivity devices was assessed. The safety of the core was assessed by a LOCA simulation and it was found that the power pulse upon LOCA can be maintained below that in the natural uranium core when a poison material is used in the DUPIC fuel. For the feasibility of handling DUPIC fuel in the plant, it will be necessary to introduce new equipment to load the DUPIC fuel in the refueling magazine. The radiation effect of DUPIC fuel on both the reactor hardware and the environment will be qualitatively analyzed later. (author)

  2. Recent advances in self-powered flux detector development for CANDU reactors

    International Nuclear Information System (INIS)

    Allan, C.J.; Drewell, N.H.; Hall, D.S.

    1983-01-01

    The characteristics of self-powered flux detectors used in CANDU reactors are reviewed. Detectors with emitters of vanadium, platinum, platinum-clad Inconel and Inconel are used. Data on dynamic response, relative neutron and gamma-ray sensitivities, and burnout, obtained both from experiments and from the Monte Carlo code ICARES, are presented. Since the response of a detector depends on the relative magnitudes of the various current-producing mechanisms, the operating principles of self-powered detectors are briefly reviewed. Current research programmes are discussed. These include modifying the design of the platinum-clad Inconel detector in order to match its dynamic response to that of the fuel power and developing a prompt-responding flux-mapping detector. (author)

  3. Nuclear energy in Canada: the CANDU system

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1979-10-01

    Nuclear electricity in Canada is generated by CANDU nuclear power stations. The CANDU reactor - a unique Canadian design - is fuelled by natural uranium and moderated by heavy water. The system has consistently outperformed other comparable nuclear power systems in the western world, and has an outstanding record of reliability, safety and economy. As a source of energy it provides the opportunity for decreasing our dependence on dwindling supplies of conventional fossil fuels. (auth)

  4. The seismic fragility analysis for multi-story steel structure in CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Hwang, K.H.; Lee, B.S.; Kang, S-K.

    1996-01-01

    The Wolsong Unit 2 is a CANDU-6 type plant and is being constructed in the Wolsong site, where Design Basis Earthquake (DBE) was determined to be 0.2g. A seismic PSA for Wolsong Unit 2 is being performed as one of the conditions for the Construction Permit. One of the issues in the seismic PSA is the availability of the seismically non-qualified systems, which are located in the Turbine Building(T/B). Thus, the seismic fragility analysis for the T/B was performed to estimate the operability of the systems. The design seismic loads for the building were based on a ground response spectrum scaled down from the DBE to horizontal peak ground acceleration (pga) of 0.05g. The seismic fragility analysis for the building was performed using a factor of the safety method. It is estimated that the most critical failure is that of masonry walls and its High Confidence and Low Probability of Failure (HCLPF) capacity is 0.13g. The critical failure mode of the structure is identified to be tensile yielding failure of grip angle, and its HCLPF capacity is 0.34g. (author)

  5. Emergency core cooling strainers-the Candu experience

    International Nuclear Information System (INIS)

    Eyvindson, A.; Rhodes, D.; Carson, P.; Makdessi, G.

    2004-01-01

    The Canadian nuclear industry, including Atomic Energy of Canada Limited (AECL) and the four nuclear utilities (New Brunswick Power, Hydro-Quebec, Ontario Power Generation and Bruce Power) have been heavily involved in strainer clogging issues since the late 1990's. A substantial knowledge base has been obtained with support from various organisations, including the CANDU Owners Group (COG), AECL and the CANDU utilities. Work has included debris assessments at specific stations, debris characterisation, transport, head loss measurements across strainers, head loss models and investigations into paints and coatings. Much of this work was performed at AECL's Chalk River Laboratories and has been used to customize strainer solutions for several CANDU (PWR-type) stations. This paper summarises the CANDU experience, describing problems encountered and lessons learned from strainer implementation at stations. Between 1999 and 2003, AECL supplied strainers to six different CANDU stations, representing 12 units with a total power output of approximately 8.2 GWe. Each station had unique needs with respect to layout, effective area, allowable head loss and installation schedule. Challenges at various sites included installation in a covered trench with single-point access, allowing for field adjustments to accommodate large variations in floor level and pump suction location, on-power installation, very high levels of particulate relative to fibrous debris, and relatively low allowable head loss. The following are key points to consider during any station assessment or strainer implementation: - a realistic testing model and method is essential for accurate predictions of head loss, and the limits of the model must be understood; - assessment of station debris must be sufficiently conservative to overcome uncertainties in debris generation and transport models; - appropriate and reliable data (e.g. flow rate, layout, size of test model, method of debris generation and

  6. Risk analysis due to the extension of STI for CANDU diesel generators

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Moon Hak; Choi, Kwang Hee; Jung, Hyun Jong; Choi, Seong Soo [Korea electric Power Research Institute, Taejon (Korea, Republic of); Lim, Jae Won [Atomic Creative Technology Company, Taejon (Korea, Republic of); Song, Jin Bae [KHNP, Kyungju (Korea, Republic of)

    2005-07-01

    The purpose of this study is to provide technical rationale for the extension of the Surveillance Test Interval (STI) of the Standby Diesel Generator (SDG) and the Emergency Power Supply Diesel Generator (EPSDG) of CANDU plants in Korea in a reliability aspect. The current STI of 2 weeks aims to be extended to 4 weeks through this study.

  7. Fuzzy logic control for improved pressurizer systems in nuclear power plants

    International Nuclear Information System (INIS)

    Brown, Chris; Gabbar, Hossam A.

    2014-01-01

    Highlights: • Improved performance of the pressurizer system in a CANDU nuclear power plant (NPP). • Inventory control for the pressurizer system in NPP. • Compare fuzzy logic with PID in pressurizer system in NPP. • Develop a fuzzy controller to regulate the pressurizer inventory control. • Compare control performance with current proportional controller used at NPP. - Abstract: The pressurizer system in a CANDU nuclear power plant is responsible for maintaining the pressure of the primary heat transport system to ensure the plant is operated within its safe operating envelope. The inventory control for the pressurizer system use a combination of level sensors, feed valves and bleed valves to ensure that there is adequate room in the pressurizer to accommodate any swell or shrinkage in the PHT system. The Darlington Nuclear Generating Station (DNGS) in Ontario, Canada currently uses a proportional controller for the bleed and feed valves to regulate the pressurizer inventory control which can result in large coolant level overshoot along with excessive settling times. The purpose of this paper is to develop a fuzzy controller to regulate the pressurizer inventory control and compare its performance to the current proportional controller used at DNGS. The simulation of the pressurizer inventory control system shows the fuzzy controller performs better than the proportional controller in terms of settling time and overshoot

  8. Aspects regarding the lifetime of a fuel channel in a CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Calinescu, A.

    1998-01-01

    The paper presents the analysis of factors influencing upon the time life of a fuel channel of CANDU reactors built in Romania. Fuel channels are made of Zr-2.5%Nb alloy. Means and methodology to detect cracking of fuel channels are described, as well as improvements to increase life time of Cernavoda NPP fuel channels and national programme in this area. (author)

  9. Seismic analysis during development stage of CANDU Model 2 fueling machine design

    International Nuclear Information System (INIS)

    Lee, L.S.S.; Mansfield, R.A.

    1989-01-01

    The CANDU Model 3 is a new small reactor presently being designed. This reactor is 450 MWe, and as with current operating CANDU's, is based on a heavy water moderated and cooled system using on-power fuelling for the once-through natural uranium fuel cycle. The CANDU 3 Standard plant is designed to be adaptable to a range of world-wide site conditions, i.e. for a peak ground acceleration of 0.3 g and a wide range of soft, medium and hard foundation medium properties. Consequently, a conservatism in the design of structure and equipment is accounted by using enveloped floor response spectra generated by the soil-structure interaction analysis. Seismic qualification of the fuelling machine (F/M) and its support structure are an essential design requirement for maintaining the integrity of the reactor coolant heat transport system (HTS) pressure boundary and the service ports penetrating the containment structure during on-power fueling. This paper deals with the initial conceptual phase of design where the details of the design are in fundamental outline form only and basic mass distribution plus layout geometry is defined

  10. Cost and schedule reduction for next-generation Candu

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Yu, S.; Pakan, M.; Soulard, M.

    2002-01-01

    AECL has developed a suite of technologies for Candu R reactors that enable the next step in the evolution of the Candu family of heavy-water-moderated fuel-channel reactors. These technologies have been combined in the design for the Advanced Candu Reactor TM1 (ACRTM), AECL's next generation Candu power plant. The ACR design builds extensively on the existing Candu experience base, but includes innovations, in design and in delivery technology, that provide very substantial reductions in capital cost and in project schedules. In this paper, main features of next generation design and delivery are summarized, to provide the background basis for the cost and schedule reductions that have been achieved. In particular the paper outlines the impact of the innovative design steps for ACR: - Selection of slightly enriched fuel bundle design; - Use of light water coolant in place of traditional Candu heavy water coolant; - Compact core design with unique reactor physics benefits; - Optimized coolant and turbine system conditions. In addition to the direct cost benefits arising from efficiency improvement, and from the reduction in heavy water, the next generation Candu configuration results in numerous additional indirect cost benefits, including: - Reduction in number and complexity of reactivity mechanisms; - Reduction in number of heavy water auxiliary systems; - Simplification in heat transport and its support systems; - Simplified human-machine interface. The paper also describes the ACR approach to design for constructability. The application of module assembly and open-top construction techniques, based on Candu and other worldwide experience, has been proven to generate savings in both schedule durations and overall project cost, by reducing premium on-site activities, and by improving efficiency of system and subsystem assembly. AECL's up-to-date experience in the use of 3-D CADDS and related engineering tools has also been proven to reduce both engineering and

  11. Pressure test behaviour of embalse nuclear power plant containment structure

    International Nuclear Information System (INIS)

    Bruschi, S.; Marinelli, C.

    1984-01-01

    It's described the structural behaviour of the containment structure during the pressure test of the Embalse plant (CANDU type, 600MW), made of prestressed concrete with an epoxi liner. Displacement, strain, temperature, and pressure measurements of the containment structure of the Embalse Nuclear Power Plant are presented. The instrumentation set up and measurement specifications are described for all variables of interest before, during and after the pressure test. The analytical models to simulate the heat transfer due to sun heating and air convenction and to predict the associated thermal strains and displacements are presented. (E.G.) [pt

  12. Technologies in support of CANDU development

    International Nuclear Information System (INIS)

    Turner, C.; Tapping, B.

    2005-01-01

    Atomic Energy of Canada, Ltd. (AECL) has significant research and development (R and D) programs designed to meet the needs of both existing CANDU reactors and new and evolving CANDU plant designs. These R and D programs cover a wide range of technology, from chemistry and materials support through to inspection and life management tools. Emphasis is placed on effective technology development programs for fuel channels, feeders and steam generators to ensure their operation through design life, and beyond. This paper specifically addresses how the R and D has been applied in the production of longer-lived pressure tubes for the most recent CANDU 6 reactors, and how this technology forms the basis for the pressure tubes of the Advanced CANDU Reactor (ACR). Similarly, AECL has developed solutions for other critical components such as calandria tubes, feeder pipe and steam generators. The paper also discusses how the R and D knowledge has been integrated into aging management databases and health monitoring tools. Since 1997, AECL has been working with CANDU utilities on comprehensive and integrated CANDU Plant Life Management (PLiM) programs for successful and reliable plant operation through design life and beyond. AECL has developed and implemented an advanced chemistry monitoring and diagnostic system, called ChemAND which allows on-line access by the operators to current and past chemistry conditions enabling appropriate responses and facilitating planning of shutdown maintenance actions. An equivalent tool for monitoring, trending and diagnosing thermal and mechanical data has also been developed; this tool is called ThermAND. AECL is developing the Maintenance Information, Monitoring, and Control (MIMC) system, which provide information to the user for condition-based decision-making in maintenance. To enable more effective inspections, surveillance and data collection, AECL has developed unique one-off tooling to carry out unanticipated inspection and repair

  13. Types and properties of elastomer materials used in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    You, Ho Sik; Jeong, Jin Kon [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of)

    1996-05-01

    Properties and kinds of elastomer materials used in a CANDU power plant have been described. The elastomer materials have been used as a sealing material in the components f nuclear power plant since they have many excellent properties that can not be seen in other materials. It is very important to select proper elastomer materials used in the nuclear power plant are required to have resistance to temperature as well as radiation. According to the experimental results performed at some laboratories including the Chalk River Laboratory of AECL, elastomer materials with high resistance to temperature and radiation are Nitrile, Ethylene, Propylene and Butyl. These materials have been used in a lot of components of Wolsong unit 1 and Wolsong 2, 3 and 4 which are under elastomer material. Therefore, the studies on the standardization are currently under way to limit about 10 different kinds of elastomer materials to be used in the plant. 16 tabs., 1 fig., 12 refs. (Author) .new.

  14. Plutonium dispositioning in CANDU

    International Nuclear Information System (INIS)

    Boczar, P.G.; Feinroth, H.; Luxat, J.C.

    1995-07-01

    Recently, the U.S. Department of Energy (DOE) sponsored Atomic Energy of Canada Limited (AECL) to evaluate salient technical, strategic, schedule, and cost-related parameters of using CANDU reactors for dispositioning of weapons-grade plutonium in the form of Mixed OXide (MOX) fuel. A study team, consisting of key staff from the CANDU reactor designers and researchers (AECL), operators (Ontario Hydro) and fuel suppliers, analyzed all significant factors involved in such application, with the objective of identifying an arrangement that would permit the burning of MOX in CANDU at the earliest date. One of Ontario Hydro's multi-unit stations, Bruce A nuclear generating station (4x769 MW(e)), was chosen as the reference for the study. The assessment showed that no significant modifications of reactor or process systems are necessary to operate with a full MOX core. Plant modifications would be limited to fuel handling and modifications necessary to accommodate enhanced security and safeguards requirements. No safety limitations were identified

  15. The future role of thorium in assuring CANDU fuel supplies

    International Nuclear Information System (INIS)

    Slater, J.B.

    1985-01-01

    Atomic Energy of Canada Limited (AECL), in partnership with Canadian industry and power utilities, has developed the CANDU reactor as a safe, reliable and economic means of transforming nuclear fuel into useable power. The use of thorium/uranium-233 recycle gives the possibility of a many-fold increase in energy yield over that which can be obtained from the use of uranium in once-through cycles. The neutronic properties of uranium-233 combine with the inherent neutron economy of the CANDU reactor to offer the possibility of near-breeder cycles in which there is no net consumption of fissile material under equilibrium fuelling conditions. Use of thorium cycles in CANDU will limit the impact of higher uranium prices. When combined with the potential for significant reductions in CANDU capital costs, then the long-term prospect is for generating costs near to current levels. Development of thorium cycles in CANDU will safeguard against possible uranium shortages in the next century, and will maintain and continue the commercial viability of CANDU as a long-term energy technology. (author)

  16. Development of distributed computer systems for future nuclear power plants

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.

    1978-01-01

    Dual computers have been used for direct digital control in CANDU power reactors since 1963. However, as reactor plants have grown in size and complexity, some drawbacks to centralized control appear such as, for example, the surprisingly large amount of cabling required for information transmission. Dramatic changes in costs of components and a desire to improve system performance have stimulated a broad-based research and development effort in distribution systems. This paper outlines work in this area

  17. A design basis for the development of advanced CANDU control centres

    Energy Technology Data Exchange (ETDEWEB)

    Feher, M P; Davey, E C; Lupton, L R [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The basic design for current CANDU control centres was established in the early 1970`s. Plants constructed since then have, for the most part, retained the same basic design. Several factors have led to the need to re-examine CANDU control centre design for plants to be built beyond the year 2000. These factors include the changing roles and responsibilities for the operations staff, an improved understanding of operational issues associated with supervisory control, an improved understanding of human error in operational situations, the opportunity for improved plant performance through the introduction of new technologies, and marketing pressures. This paper describes the proposed design bases for the development of advanced control centres to be implemented in CANDU plants beyond the year 2000. Four areas have been defined covering design goals, design principles, operational bases, and plant functional bases. (author).

  18. A design basis for the development of advanced CANDU control centres

    International Nuclear Information System (INIS)

    Feher, M.P.; Davey, E.C.; Lupton, L.R.

    1995-01-01

    The basic design for current CANDU control centres was established in the early 1970's. Plants constructed since then have, for the most part, retained the same basic design. Several factors have led to the need to re-examine CANDU control centre design for plants to be built beyond the year 2000. These factors include the changing roles and responsibilities for the operations staff, an improved understanding of operational issues associated with supervisory control, an improved understanding of human error in operational situations, the opportunity for improved plant performance through the introduction of new technologies, and marketing pressures. This paper describes the proposed design bases for the development of advanced control centres to be implemented in CANDU plants beyond the year 2000. Four areas have been defined covering design goals, design principles, operational bases, and plant functional bases. (author)

  19. Safety benefits from CANDU reactor replacement - a case study

    International Nuclear Information System (INIS)

    Mottram, R.; Millard, J.W.F.; Purdy, P.

    2011-01-01

    Both total core replacement and core retubing have been used in the CANDU industry. For future plant refurbishments, based on experience both in new construction and in recent refurbishments, the concept of total core replacement has been revisited. This builds on practices for replacement of other large plant equipment like boilers. The Bruce CANDU reactors, with their local shield tanks built around the Calandria and containment closely located around that Calandria Shield Tank Assembly (CSTA), are believed to be good candidates for core replacement. A structured process was used to design a replacement CSTA suitable for Bruce A use. The work started with a study of opportunities for safety enhancements in the core. This progressed into design studies and related design assist safety analysis on the reactor. A key element of the work involved consideration of how verified features from later CANDU designs, and from our new reactor design work, could be tailored to fit this replacement core. The replacement reactor core brings in structural improvements in both calandria and end shield, and safety improvements like the natural circulation enhancing moderator cooling layout and further optimized reactivity layouts to improve shutdown system performance. Bruce Power are currently studying the business implications of this and retube techniques as part of preparation for future refurbishments. The work explained in this paper is in the context of the safety related changes and the work to choose and quantify them. (author)

  20. Safety benefits from CANDU reactor replacement. A case study

    International Nuclear Information System (INIS)

    Mottram, R.; Millard, J.W.F.; Purdy, P.

    2011-01-01

    Both total core replacement and core retubing have been used in the CANDU industry. For future plant refurbishments, based on experience both in new construction and in recent refurbishments, the concept of total core replacement has been revisited. This builds on practices for replacement of other large plant equipment like boilers. The Bruce CANDU reactors, with their local shield tanks built around the Calandria and containment closely located around that Calandria Shield Tank Assembly (CSTA), are believed to be good candidates for core replacement. A structured process was used to design a replacement CSTA suitable for Bruce A use. The work started with a study of opportunities for safety enhancements in the core. This progressed into design studies and related design assist safety analysis on the reactor. A key element of the work involved consideration of how verified features from later CANDU designs, and from our new reactor design work, could be tailored to fit this replacement core. The replacement reactor core brings in structural improvements in both calandria and end shield, and safety improvements like the natural circulation enhancing moderator cooling layout and further optimized reactivity layouts to improve shutdown system performance. Bruce Power are currently studying the business implications of this and retube techniques as part of preparation for future refurbishments. The work explained in this paper is in the context of the safety related changes and the work to choose and quantify them. (author)

  1. Successful completion of the Qinshan phase III nuclear power plant-a successful model for Chinese-Canadian cooperation

    International Nuclear Information System (INIS)

    Peng Xiaoxing

    2004-01-01

    This report documents Qinshan CANDU project construction and commissioning experience as well as management strategies and approaches that contributed to the successful completion of the project. The Qinshan phase III (CANDU) nuclear power plant was built in record times: Unit 1 achieved commercial operation on December 31, 2002 and Unit 2 on July 24, 2003, 43 days and 112 days ahead of schedule respectively. The reference plant design is the Wolsong 3 and 4 CANDU-6 units in the Republic of Korea. Improvements in design and construction methods allowed Unit 1 to be constructed in 51.5 Months from First Concrete to Criticality-a record in China for nuclear power plants. The key factors are project management and project management tools, quality assurance, construction methods (including open top construction, heavy lifts and modularization), electronic documentation with configuration control that provides up-to-date on-line information, CADDS design linked with material management, specialized material control including bar coding, and planning. The introduction of new design and construction techniques was achieved by combining conventional AECL practices with working experiences in China. The most advanced tools and techniques for achieving optimum construction quality, schedule and cost were used. Successful application of advanced project management methods and tools will benefit TQNPC in operation of the station, and the Chinese contractors in advancing their capabilities in future nuclear projects in China and enhancing their opportunities internationally. TQNPC's participation in Quality surveillance (QS) activities of nuclear steam plant (NSP) and Balance of Plant (BOP) offshore equipment benefited TQNPC in acquiring knowledge of specific equipment manufacturing processes, which can be applied to similar activities in China. China has established the capability of manufacturing CANDU fuel and becoming self-reliant in fuel supply. Excellent co-operation and

  2. Thermo-Economic Assessment of Advanced,High-Temperature CANDU Reactors

    International Nuclear Information System (INIS)

    Spinks, Norman J.; Pontikakis, Nikos; Duffey, Romney B.

    2002-01-01

    Research underway on the advanced CANDU examines new, innovative, reactor concepts with the aim of significant cost reduction and resource sustainability through improved thermodynamic efficiency and plant simplification. The so-called CANDU-X concept retains the key elements of the current CANDU designs, including heavy-water moderator that provides a passive heat sink and horizontal pressure tubes. Improvement in thermodynamic efficiency is sought via substantial increases in both pressure and temperature of the reactor coolant. Following on from the new Next Generation (NG) CANDU, which is ready for markets in 2005 and beyond, the reactor coolant is chosen to be light water but at supercritical operating conditions. Two different temperature regimes are being studied, Mark 1 and Mark 2, based respectively on continued use of zirconium or on stainless-steel-based fuel cladding. Three distinct cycle options have been proposed for Mark 1: the High-Pressure Steam Generator (HPSG) cycle, the Dual cycle, and the Direct cycle. For Mark 2, the focus is on simplification via a Direct cycle. This paper presents comparative thermo-economic assessments of the CANDU-X cycle options, with the ultimate goal of ascertaining which particular cycle option is the best overall in terms of thermodynamics and economics. A similar assessment was already performed for the NG CANDU. The economic analyses entail obtaining cost estimates of major plant components, such as heat exchangers, turbines and pumps. (authors)

  3. Evolution of CANDU reactor design

    International Nuclear Information System (INIS)

    Pon, G.A.

    1978-08-01

    The CANDU (CANada Deuterium Uranium) design had its begin-ings in the early 1950's with the preliminary engineering studies that led to the 20 MW(e) NPD (Nuclear Power Demonstration) and the 200 MW(e) Douglas Point station . The next decade saw the first operation of both these stations and the commitment of the 2000 MW(e) Pickering and 3000 MW(e) Bruce plants. The present decade has witnessed the excellent performance of Pickering and Bruce and commitments to construct Gentilly-2, Cordoba, Pt. Lepreau, Wolsung, Pickering B, Bruce B and Darlington. In most cases, successive CANDU designs have meant an increase in plant output. Evolutionary developments have been made to fit the requirements of higher ratings and sizes, new regulations, better reliability and maintainability and lower costs. These changes, which are described system by system, have been introduced in the course of engineering parallel reactor projects with overlapping construction schedules -circumstances which ensure close contact with the practical realities of economics, manufacturing functions, construction activities and performance in commissioning. Features for one project furnished alternative concepts for others still on the drawing board and the experience gained in the first application yielded a sound basis for its re-use in succeeding projects. Thus the experiences gained in NPD, Douglas Point, Gentilly-1 and KANUPP have contributed to Pickering and Bruce, which in turn have contributed to the design of Gentilly-2. (author)

  4. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-04-01

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  5. R and D in support of CANDU plant life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Holt, R.A.

    1999-01-01

    One of the keys to the long-term success of CANDUs is a high capacity factor over the station design life. Considerable R and D in underway at AECL to develop technologies for assessing, monitoring and mitigating the effect of plant ageing and for improving plant performance and extending plant life. To achieve longer service life and to realize high capacity factor from CANDU stations, AECL is developing new technologies to enhance fuel channel and steam generator inspection capabilities, to monitor system health, and to allow preventive maintenance and cleaning (e.g., on-line chemical cleaning processes that produce small volumes of wastes). The life management strategy for fuel channels and steam generators requires a program to inspect components on a routine basis to identify mechanisms that could potentially affect fitness-for-service. In the case of fuel channels, the strategy includes inspections for dimensional changes, flaw detection, and deuterium concentration. New techniques are been developed to enhance these inspection capabilities; examples include accurate measurement of the gap between a pressure tube and its calandria tube and rapid full-length inspections of steam generator tubes for all known flaw types. Central to life management of components are Fitness-for-Service Guidelines (FFSG) that have been developed with the CANDU Owners Group (COG) that provide a standardized method to assess the potential for propagation of flaws detected during in-service inspections, and assessment of any change in fracture characteristics of the material. FFSG continue to be improved with the development of new technologies such as the capability to credit relaxation of stresses due to creep and non-rejectable flaws in pressure tubes. Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that system health is continually monitored and managed. AECL has developed a system Health Monitor

  6. Delivery improvements for CANDU projects

    International Nuclear Information System (INIS)

    Stephen Yu; Ken Hedges

    1998-01-01

    Future CANDU design will continue to meet emerging design and performance requirements as expected by the operating utilities, and will integrate new technologies into both the product features and work processes. Elements of this risk reduction strategy include feedback of lessons learned from operating plants, project experiences from previous projects, and replication of successful systems and equipment. Project implementation risk is minimized by up-front engineering and licensing prior to contract start. Enhanced competitiveness of the CANDU products is ensured by incorporating improvements based on updated technology. This paper summarizes the strategy used to enhance competitiveness of the CANDU products and the measures introduced to minimize risk during project implementation. This strategy provides a balance between innovation and proven designs; and between the desire for safety and operational improvements and the cost to achieve the improvements

  7. Key thrusts in next generation CANDU. Annex 10

    International Nuclear Information System (INIS)

    Shalaby, B.A.; Torgerson, D.F.; Duffey, R.B.

    2002-01-01

    Current electricity markets and the competitiveness of other generation options such as CCGT have influenced the directions of future nuclear generation. The next generation CANDU has used its key characteristics as the basis to leap frog into a new design featuring improved economics, enhanced passive safety, enhanced operability and demonstrated fuel cycle flexibility. Many enabling technologies spinning of current CANDU design features are used in the next generation design. Some of these technologies have been developed in support of existing plants and near term designs while others will need to be developed and tested. This paper will discuss the key principles driving the next generation CANDU design and the fuel cycle flexibility of the CANDU system which provide synergism with the PWR fuel cycle. (author)

  8. Subchannel analysis code development for CANDU fuel channel

    International Nuclear Information System (INIS)

    Park, J. H.; Suk, H. C.; Jun, J. S.; Oh, D. J.; Hwang, D. H.; Yoo, Y. J.

    1998-07-01

    Since there are several subchannel codes such as COBRA and TORC codes for a PWR fuel channel but not for a CANDU fuel channel in our country, the subchannel analysis code for a CANDU fuel channel was developed for the prediction of flow conditions on the subchannels, for the accurate assessment of the thermal margin, the effect of appendages, and radial/axial power profile of fuel bundles on flow conditions and CHF and so on. In order to develop the subchannel analysis code for a CANDU fuel channel, subchannel analysis methodology and its applicability/pertinence for a fuel channel were reviewed from the CANDU fuel channel point of view. Several thermalhydraulic and numerical models for the subchannel analysis on a CANDU fuel channel were developed. The experimental data of the CANDU fuel channel were collected, analyzed and used for validation of a subchannel analysis code developed in this work. (author). 11 refs., 3 tabs., 50 figs

  9. Natural uranium equivalent fuel. An innovative design for proven CANDU technology

    Energy Technology Data Exchange (ETDEWEB)

    Pineiro, F.; Ho, K.; Khaial, A.; Boubcher, M.; Cottrell, C.; Kuran, S. [Candu Energy Inc., Mississauga, Ontario (Canada); Zhenhua, Z.; Zhiliang, M. [Third Qinshan Nuclear Power Co., Haiyan, Zhejiang (China)

    2015-09-15

    The high neutron economy, on-power refuelling capability and fuel bundle design simplicity in CANDU® reactors allow for the efficient utilization of alternative fuels. Candu Energy Inc. (Candu), in collaboration with the Third Qinshan Nuclear Power Company (TQNPC), the China North Nuclear Fuel Corporation (CNNFC), and the Nuclear Power Institute of China (NPIC), has successfully developed an advanced fuel called Natural Uranium Equivalent (NUE). This innovative design consists of a mixture of recycled and depleted uranium, which can be implemented in existing CANDU stations thereby bringing waste products back into the energy stream, increasing fuel resources diversity and reducing fuel costs. (author)

  10. Modularized construction, structural design and analysis of CANDU 3 plant

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, J K; Wollin, S; Selvadurai, S; Saudy, A M [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    CANDU 3 is rated at 450 MW electric, and is a smaller and advanced version of CANDU reactors successfully operating in Canada and abroad. The design uses modularization to minimize the construction schedule and thereby reduce cost. The paper (which is published only as a long summary), deals with the concept of modularization, and with stress analysis of the various civil structures.

  11. Modularized construction, structural design and analysis of CANDU 3 plant

    International Nuclear Information System (INIS)

    Biswas, J.K.; Wollin, S.; Selvadurai, S.; Saudy, A.M.

    1995-01-01

    CANDU 3 is rated at 450 MW electric, and is a smaller and advanced version of CANDU reactors successfully operating in Canada and abroad. The design uses modularization to minimize the construction schedule and thereby reduce cost. The paper (which is published only as a long summary), deals with the concept of modularization, and with stress analysis of the various civil structures

  12. Desktop Severe Accident Graphic Simulator Module for CANDU6 : PSAIS

    International Nuclear Information System (INIS)

    Park, S. Y.; Song, Y. M.

    2015-01-01

    The ISAAC ((Integrated Severe Accident Analysis Code for CANDU Plant) code is a system level computer code capable of performing integral analyses of potential severe accident progressions in nuclear power plants, whose main purpose is to support a Level 2 probabilistic safety assessment or severe accident management strategy developments. The code has the capability to predict a severe accident progression by modeling the CANDU6- specific systems and the expected physical phenomena based on the current understanding of the unique accident progressions. The code models the sequence of accident progressions from a core heatup, pressure tube/calandria tube rupture after an uncovery from inside and outside, a relocation of the damaged fuel to the bottom of the calandria, debris behavior in the calandria, corium quenching after a debris relocation from the calandria to the calandria vault and an erosion of the calandria vault concrete floor, a hydrogen burn, and a reactor building failure. Along with the thermal hydraulics, the fission product behavior is also considered in the primary system as well as in the reactor building

  13. Thermosyphoning in the CANDU reactor

    International Nuclear Information System (INIS)

    Spinks, N.J.; Wright, A.C.D.; Caplan, M.Z.; Prawirosoehardjo, S.; Gulshani, P.

    1984-01-01

    Thermosyphoning is defined as the natural convective flow of primary coolant over the boilers. It is the predicted mode of heat transport from core to boilers in many postulated scenarios for CANDU reactor safety analysis. The scenarios encompass a wide range of boundary conditions in reactor power, secondary temperature and primary coolant inventory. Loss of pumping of the primary coolant is a common feature. Thermosyphoning is single or two-phase depending on the boundary conditions. The paper describes the important thermohydraulic characteristics of thermosyphoning in CANDU reactors with emphasis on two-phase thermosyphoning. It utilizes predictions of a transient thermohydraulics computer code and describes experiments done for the purpose of verifying these predictions. Predictions are compared with single-phase thermosyphoning tests done during commissioning of the Gentilly-2 and Point Lepreau CANDU 600 reactors. (orig.)

  14. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Lee, W. J.; Lim, H. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-03-15

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model if existing PWR auditing tool, i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA analysis. There are three main area of model development, i.e. moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version.

  15. MATLAB/SIMULINK model of CANDU reactor for control studies

    International Nuclear Information System (INIS)

    Javidnia, H.; Jiang, J.

    2006-01-01

    In this paper a MATLAB/SIMULINK model is developed for a CANDU type reactor. The data for the reactor are taken from an Indian PHWR, which is very similar to CANDU in its design. Among the different feedback mechanisms in the core of the reactor, only xenon has been considered which plays an important role in spatial oscillations. The model is verified under closed loop scenarios with simple PI controller. The results of the simulation show that this model can be used for controller design and simulation of the reactor systems. Adding models of the other components of a CANDU reactor would ultimately result in a complete model of CANDU plant in MATLAB/SIMULINK. (author)

  16. CANDU-PHW fuel management

    International Nuclear Information System (INIS)

    Frescura, G.M.; Wight, A.L.

    1982-01-01

    This report covers the material presented in a series of six lectures at the Winter College on Nuclear Physics and Reactors held at the International Centre for Theoretical Physics in Trieste, Italy, Jan 22 - March 28, 1980. The report deals with fuel management in natural uranium fuelled CANDU-PHW reactors. Assuming that the reader has a basic knowledge of CANDU core physics, some of the reactor systems which are more closely related to fuelling are described. This is followed by a discussion of the methods used to calculate the power distribution and perform fuel management analyses for the equilibrium core. A brief description of some computer codes used in fuel management is given, together with an overview of the calculations required to provide parameters for core design and support the accident analysis. Fuel scheduling during approach to equilibrium and equilibrium is discussed. Fuel management during actual reactor operation is discussed with a review of the operating experience for some of the Ontario Hydro CANDU reactors. (author)

  17. Hyperfine 3D neutronic calculations in CANDU supercells

    International Nuclear Information System (INIS)

    Balaceanu, V.; Aioanei, L.; Pavelescu, M.

    2010-01-01

    For an accurate evaluation of the fuel performances, it is very important to have capability to calculate the three dimensional spatial flux distributions in the fuel bundle. According this issue, in our Institute, a multigroup calculation methodology named WIMS-PIJXYZ was especially developed for estimating the local neutronic parameters in CANDU cell/supercells. The objective of this paper is to present this calculation methodology and to use it in performing some hyperfine neutronic calculations in CANDU type supercells. More exactly, after a short description for the WIMS-PIJXYZ methodology, the end effect for some CANDU fuel bundles is estimated. The WIMS-PIJXYZ methodology is based on WIMS and PIJXYZ transport codes. WIMS is a standard lattice-cell code and it is used for generating the multigroup macroscopic cross sections for the materials in the fuel cells. For obtaining the flux and power distributions in CANDU fuel bundles the PIJXYZ code is used. This code is consistent with WIMS lattice-cell calculations and allows a good geometrical representation of the CANDU bundle in three dimensions. The end effect consists in the increasing of the thermal neutron flux in the end region and the increasing of power in the end of the fuel rod. The region separating the CANDU fuel in two adjoining bundles in a channel is called the 'end region' and the end of the last pellet in the fuel stack adjacent to the end region is called the 'fuel end'. The end effect appears because the end region of the bundle is made up of coolant and Zircaloy-4, a very low neutron absorption material. To estimate the end effect, the flux peaking factors and the power peaking factors are calculated. It was taken in consideration CANDU Standard (Natural Uranium, with 37 elements) fuel bundles. In the end of the paper, the results obtained by WIMS-PIJXYZ methodology with the similar LEGENTR results are compared. The comparative analysis shows a good agreement. (authors)

  18. An optimum fuel management method based on CANDU in-core detector readings

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    2001-01-01

    In this study, a new optimal fuel management method is developed for a CANDU 600 MWe (CANDU-6) reactor. At first, an efficient power mapping method has been developed, which provides an accurate core status of an operating CANDU reactor. Secondly, an optimum refueling channel selection method has been developed by an optimization theory. For the power mapping method, the measured detector readings are used as boundary conditions of the diffusion theory calculation with the Kalman filtering (DIKAL) method. The performance of the DIKAL method was assessed for various core states and applied to the calculation of power and flux distribution in the CANDU 6 reactor. Sensitivity studies have shown that DIKAL method is insensitive to the detector random and systematic errors. An optimal refueling simulation method (OPTIMA), practically applicable to a CANDU 6 reactor, has also been developed. The objective of the optimization is to reproduce the reference core performance during refueling simulation, while satisfying the operation limits of channel and bundle powers. The optimization process consists of two stages: i) elimination of candidate refueling channels by several constraints and ii) selection of refueling channels by a direct search method that uses sensitivity coefficients of channel power generated for the reference core. The elimination process sorts out an appropriate number of fuel channels suitable for refueling, considering the channel power, bundle power and fuel burnup. The optimum refueling channels are then selected such that the difference of power distribution from the reference is minimized. In order to demonstrate the applicability of the overall fuel management methodology developed in this study, the DIKAL-OPTIMA method was applied to Wolsong-3 reactor refueling simulation, which is a typical CANDU-6 reactor. The results of refueling simulation have shown that the method can be efficiently used for the performance analysis of the operating

  19. An optimum fuel management method based on CANDU in-core detector readings

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Choi, Hang Bok

    2001-01-01

    In this study, a new optimal fuel management method is developed for a CANDU 600 MWe (CANDU-6) reactor. At first, an efficient power mapping method has been developed, which provides an accurate core status of an operating CANDU reactor. Secondly, an optimum refueling channel selection method has been developed by an optimization theory. For the power mapping method, the measured detector readings are used as boundary conditions of the diffusion theory calculation with the Kalman filtering (DIKAL) method. The performance of the DIKAL method was assessed for various core states and applied to the calculation of power and flux distribution in the CANDU 6 reactor. Sensitivity studies have shown that DIKAL method is insensitive to the detector random and systematic errors. An optimal refueling simulation method (OPTIMA), practically applicable to a CANDU 6 reactor, has also been developed. The objective of the optimization is to reproduce the reference core performance during refueling simulation, while satisfying the operation limits of channel and bundle powers. The optimization process consists of two stages: i) elimination of candidate refueling channels by several constraints and ii) selection of refueling channels by a direct search method that uses sensitivity coefficients of channel power generated for the reference core. The elimination process sorts out an appropriate number of fuel channels suitable for refueling, considering the channel power, bundle power and fuel burnup. The optimum refueling channels are then selected such that the difference of power distribution from the reference is minimized. In order to demonstrate the applicability of the overall fuel management methodology developed in this study, the DIKAL-OPTIMA method was applied to Wolsong-3 reactor refueling simulation, which is a typical CANDU-6 reactor. The results of refueling simulation have shown that the method can be efficiently used for the performance analysis of the operating

  20. Occupational radiation exposures at Canadian CANDU nuclear power stations

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Taylor, G.F.

    1982-09-01

    In Canada, methods to reduce the radiation exposure to workers at nuclear power reactors have been studied and implemented since the early days of the CANDU reactor program. Close collaboration between the designers, the operators, and the manufacturers has reduced the total exposure at each station, the dose requirement to operate and maintain each successive station compared with earlier stations, and the average annual exposure per worker. Specific methods developed to achieve dose reduction include water chemistry; corrosion resistant materials; low cobalt materials; decontamination; hot filtration, improved equipment reliability, maintainability, and accessibility; improved shielding design and location; planning of work for low exposure; improved operating and maintenance procedures; removal of tritium from D 2 O systems and work environments; improved protective clothing; on-power refuelling; worker awareness and training; and many other small improvements. The 1981 occupational dose productivity factors for Pickering A and Bruce A nuclear generating stations were respectively 0.43 and 0.2 rem/MW(e).a

  1. Explaining the absence of Co-58 radiation fields around CANDU reactor primary circuit

    International Nuclear Information System (INIS)

    Burrill, K.A.; Guzonas, D.A.

    2002-01-01

    Radiation fields from Co-58 are rarely detected in CANDU plants. For example, Ge(Li) surveys of the Inconel 600 steam generators at some CANDU plants may show radiation attributed to Co-58 only early in plant life, and most artefacts removed from the primary circuit later in plant operation show no Co-58 present. However, Pressurized Water Reactor plants experience relatively large fields from Co-58 on their isothermal piping, e.g., steam generator channel head, and steam generators tube sampling programs do show deposits in the tubes with significant Co-58 compared to other radionuclides such as Co-60. CANDU reactors have high concentrations of dissolved iron due to the extensive use of carbon steel for the isothermal piping, e.g., feeders, headers, and steam generator channel heads. A dissolved iron transport diagram that was proposed recently for the primary circuit of CANDU plants has been validated by comparison of predicted deposit weights with plant deposit data from various components. One feature of the diagram is dissolved iron precipitation inside the steam generators tubes. An hypothesis is advanced here in which precipitating dissolved iron is proposed to occlude dissolved nickel. This removal mechanism may prevent the solubility of dissolved nickel from being exceeded anywhere around the primary circuit. In particular, this mechanism could avoid NiO precipitation in the core and the generation of large quantities of Co-58. Using this mechanism along with the known solubility behaviour of NiO with temperature, a dissolved nickel transport diagram has been proposed for CANDU plants. (authors)

  2. Mathematical modeling of CANDU-PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)

    2001-07-01

    The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR) system. This study involved mathematical modeling of CANDU PHWR major system components and the developments of software to study the thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique.The integrated CANDU-PHWR model includes the neutronic, reactivity, fuel channel heat transfer, piping and the preheater type U-tube steam generator (PUTSG). The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and reactivity feed back due to the changes in fuel temperature and coolant temperature. The complex operation of the preheater type U-tube steam generator (PUTSG) is represented by a non-linear dynamic model using a state variable, moving boundary and lumped parameter techniques. The secondary side of the PUTSG model has six separate lumps including a preheater region, a lower boiling section, a mixing region, a riser, a chimmeny section, and a down-corner. The tube side of PUTSG has three main thermal zones. The PUTSG model is based on conservation of mass, energy and momentum relation-ships. The CANDU-PHWR integrated model are coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)

  3. Canadian CANDU plant historical data systems. A review and look to the future

    International Nuclear Information System (INIS)

    Deverno, M.; De Grosbois, J.; Pothier, H.

    1996-01-01

    As part of several CANDU Owner's Group (COG) projects, AECL has conducted a review of current approaches and investigated solutions to plant process data collection, management, and use. Emphasis was placed on understanding the existing functionality and uses of plant data systems, their future needs and benefits. The result is a vision of a plant-wide Historical Data System (HDS) providing seamless access to both near real-time and historical data, user tool-kits for data visualization and analysis, and data management of the larger volume of data acquired during the life of a plant. HDS technology is critical to the implementation of technical surveillance and analysis, predictive and preventative maintenance programs, and other efforts necessary to enhance plant safety, availability, production and productivity. HDS technology will lead to higher capability and capacity factors while minimizing operations, maintenance, and administration (OM and A) costs. (author)

  4. Canadian CANDU plant historical data systems. A review and look to the future

    Energy Technology Data Exchange (ETDEWEB)

    Deverno, M; De Grosbois, J [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Pothier, H [Atomic Energy of Canada Limited, Mississauga, ON (Canada); and others

    1997-12-31

    As part of several CANDU Owner`s Group (COG) projects, AECL has conducted a review of current approaches and investigated solutions to plant process data collection, management, and use. Emphasis was placed on understanding the existing functionality and uses of plant data systems, their future needs and benefits. The result is a vision of a plant-wide Historical Data System (HDS) providing seamless access to both near real-time and historical data, user tool-kits for data visualization and analysis, and data management of the larger volume of data acquired during the life of a plant. HDS technology is critical to the implementation of technical surveillance and analysis, predictive and preventative maintenance programs, and other efforts necessary to enhance plant safety, availability, production and productivity. HDS technology will lead to higher capability and capacity factors while minimizing operations, maintenance, and administration (OM and A) costs. (author) 15 refs., 7 figs.

  5. Qinshan CANDU project open top construction method

    International Nuclear Information System (INIS)

    Petrunik, K.J.; Wittann, K.; Khan, A.; Ricciuti, R.; Ivanov, A.; Chen, S.

    2003-01-01

    The significant schedule reductions achieved on the Qinshan CANDU Project were due in large part to the incorporation of advanced construction technologies in project design and delivery. For the Qinshan Project, a number of key advantages were realized through the use of the 'Open Top' construction method. This paper discusses the Qinshan Phase III CANDU Project Open Top implementation method. The Open Top method allowed major equipment to be installed simply, via the use of a Very Heavy Lift (VHL) crane and permitted the use of large-scale modularization. The advantages of Open Top construction, such as simplified access, more flexible project scheduling, improved construction safety and quality, and reduced labours are presented. The large-scale modularization of the Reactor Building Dousing System and the Open Top installation method and advantages relative to traditional CANDU 6 construction practices are also presented. Finally, major improvements for future CANDU plant construction using the Open Top method are discussed. (author)

  6. Valve maintainability in CANDU-PHW nuclear generating stations

    International Nuclear Information System (INIS)

    Pothier, N.E.; Crago, W.A.

    1977-09-01

    Design, application, layout and administrative factors which affect valve maintainability in CANDU-PHW power reactors are identified and discussed. Some of these are illustrated by examples based on prototype reactor operation experience. Valve maintainability improvements resulting from laboratory development and maintainability analysis, have been incorporated in commercial CANDU-PHW nuclear generating stations. These, also, are discussed and illustrated. (author)

  7. CANDU physics considerations for the disposition of weapons-grade plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Pitre, J; Chan, P; Dastur, A [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    At the request of the US Department of Energy AECL has examined the feasibility of using CANDU for the disposition of weapons grade plutonium. Utilizing existing CANDU technology, the feasibility of using MOX (mixed oxide) fuel in an existing CANDU reactor was studied. The results of this study indicate that the target disposition for disposal of weapons grade plutonium can be met without the requirement of any major modifications to existing plant design. (author). 3 refs., 4 tabs., 5 figs.

  8. CANDU physics considerations for the disposition of weapons-grade plutonium

    International Nuclear Information System (INIS)

    Pitre, J.; Chan, P.; Dastur, A.

    1995-01-01

    At the request of the US Department of Energy AECL has examined the feasibility of using CANDU for the disposition of weapons grade plutonium. Utilizing existing CANDU technology, the feasibility of using MOX (mixed oxide) fuel in an existing CANDU reactor was studied. The results of this study indicate that the target disposition for disposal of weapons grade plutonium can be met without the requirement of any major modifications to existing plant design. (author). 3 refs., 4 tabs., 5 figs

  9. Economics of CANDU-PHW

    International Nuclear Information System (INIS)

    Jackson, H.A.; Woodhead, L.W.; Fanjoy, G.R.

    1984-03-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This paper discusses the cost of producing electricity from CANDU, presents actual cost experience of CANDU and coal in Ontario, presents projected CANDU and coal costs in Ontario and compares CANDU and Light Water Reactor cost estimates in Ontario

  10. Economics of CANDU-PHW

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.; Fanjoy, G.R.

    1982-03-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This paper discusses the cost of producing electricity from CANDU, presents actual cost experience of CANDU and coal in Ontario, presents projected CANDU and coal costs in Ontario and compares CANDU and Light Water Reactor cost estimates in Ontario

  11. Economics of CANDU-PHW

    International Nuclear Information System (INIS)

    Jackson, H.A.; Horton, E.P.; Woodhead, L.W.; Fanjoy, G.R.

    1985-03-01

    The CANDU-Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This paper discusses the cost of producing electricity from CANDU, presents actual cost experience of CANDU and coal in Ontario, presents projected CANDU and coal costs in Ontario and compares CANDU and Light Water Reactor cost estimates in Ontario

  12. Assessment and Management of Ageing of Major Nuclear Power Plant Components Important to Safety: Steam Generators. 2011 Update

    International Nuclear Information System (INIS)

    2011-11-01

    At present there are over four hundred forty operational nuclear power plants (NPPs) in IAEA Member States. Ageing degradation of the systems, structures of components during their operational life must be effectively managed to ensure the availability of design functions throughout the plant service life. From the safety perspective, this means controlling, within acceptable limits, the ageing degradation and wear-out of plant components important to safety so that adequate safety margins remain, i.e. integrity and functional capability in excess of normal operating requirements. This IAEA-TECDOC is one in a series of reports on the assessment and management of ageing of the major NPP components important to safety. The reports are based on experience and practices of NPP operators, regulators, designers, manufacturers, and technical support organizations. The current practices for the assessment of safety margins (fitness for service) and the inspection, monitoring and mitigation of ageing degradation of selected components of Canada deuteriumuranium (CANDU) reactor, boiling water reactor (BWR), pressurized water reactor (PWR), and water moderated, water cooled energy reactor (WWER) plants are documented in the reports. These practices are intended to help all involved directly and indirectly in ensuring the safe operation of NPPs, and also to provide a common technical basis for dialogue between plant operators and regulators when dealing with age related licensing issues. Since the reports are written from a safety perspective, they do not address life or life cycle management of the plant components, which involves the integration of ageing management and economic planning. The target audience of the reports consists of technical experts from NPPs and from regulatory, plant design, manufacturing and technical support organizations dealing with specific plant components addressed in the reports. The component addressed in the present publication is the steam

  13. Survey of considerations involved in introducing CANDU reactors into the United States

    International Nuclear Information System (INIS)

    Till, C.E.; Bohn, E.M.; Chang, Y.I.; van Erp, J.B.

    1977-01-01

    The important issues that must be considered in a decision to utilize CANDU reactors in the U.S. are identified in this report. Economic considerations, including both power costs and fuel utilization, are discussed for the near and longer term. Safety and licensing considerations are reviewed for CANDU-PHW reactors in general. The important issues, now and in the future, associated with power generation costs are the capital costs of CANDUs and the factors that impact capital cost comparisons. Fuel utilization advantages for the CANDU depend upon assumptions regarding fuel recycle at present, but the primary issue in the longer term is the utilization of the thorium cycle in the CANDU. Certain safety features of the CANDU are identified as intrinsic to the concept and these features must be examined more fully regarding licensability in the U.S

  14. CANDU Digital Control Computer upgrade options

    International Nuclear Information System (INIS)

    De Jong, M.S.; De Grosbois, J.; Qian, T.

    1997-01-01

    This paper reviews the evolution of Digital Control Computers (DCC) in CANDU power plants to the present day. Much of this evolution has been to meeting changing control or display requirements as well as the replacement of obsolete, or old and less reliable technology with better equipment that is now available. The current work at AECL and Canadian utilities to investigate DCC upgrade options, alternatives, and strategies are examined. The dependence of a particular upgrade strategy on the overall plant refurbishment plans are also discussed. Presently, the upgrade options range from replacement of individual obsolete system components, to replacement of the entire DCC hardware without changing the software, to complete replacement of the DCCs with a functionally equivalent system using new control computer equipment and software. Key issues, constraints and objectives associated with these DCC upgrade options are highlighted. (author)

  15. New approach to derive linear power/burnup history input for CANDU fuel codes

    International Nuclear Information System (INIS)

    Lac Tang, T.; Richards, M.; Parent, G.

    2003-01-01

    The fuel element linear power / burnup history is a required input for the ELESTRES code in order to simulate CANDU fuel behavior during normal operating conditions and also to provide input for the accident analysis codes ELOCA and SOURCE. The purpose of this paper is to present a new approach to derive 'true', or at least more realistic linear power / burnup histories. Such an approach can be used to recreate any typical bundle power history if only a single pair of instantaneous values of bundle power and burnup, together with the position in the channel, are known. The histories obtained could be useful to perform more realistic simulations for safety analyses for cases where the reference (overpower) history is not appropriate. (author)

  16. Change in CANDU-6 reactivity following a power reduction at low PHT purity

    International Nuclear Information System (INIS)

    Whitlock, J.J.; Soulard, M.R.; Baudouin, A.

    1995-01-01

    The reactivity effect of a power reduction in CANDU-6 is examined using a three-dimensional, steady-state, coupled neutronics/thermalhydraulics methodology, starting from a global irradiation distribution matched to site data. The power reduction is sufficient to suppress coolant boiling in the fuel channels, and thus the significant parameters affecting reactivity are an increase in coolant density and a decrease in fuel temperature. These individual components are estimated using infinite-lattice-cell methodology. The effect of using newer methodology, particularly for the thermalhydraulic analysis, is examined by comparison with previous simulations. (author). 10 refs., 7 tabs., 1 fig

  17. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  18. Fuel management simulation for CANFLEX-RU in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Fuel management simulations have been performed for CANFLEX-09% RU fuel in the CANDU 6 reactor. In this study, the bi-directional 4-bundle shift fuelling scheme was assumed. The lattice cell and time-average calculation were carried out. The refuelling simulation calculations were performed for 600 full power days. Time-averaged results show good axial power profile with the CANFLEX-RU fuel. During the simulation period, the maximum channel and bundle power were maintained below the licensing limit of CANDU 6 reactor. 7 refs., 4 figs. (Author)

  19. Fuel management simulation for CANFLEX-RU in CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fuel management simulations have been performed for CANFLEX-09% RU fuel in the CANDU 6 reactor. In this study, the bi-directional 4-bundle shift fuelling scheme was assumed. The lattice cell and time-average calculation were carried out. The refuelling simulation calculations were performed for 600 full power days. Time-averaged results show good axial power profile with the CANFLEX-RU fuel. During the simulation period, the maximum channel and bundle power were maintained below the licensing limit of CANDU 6 reactor. 7 refs., 4 figs. (Author)

  20. Long-term performance of the CANDU-type of vanadium self-powered neutron detectors in NRU

    Energy Technology Data Exchange (ETDEWEB)

    Leung, T.C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)]. E-mail: leungt@aecl.ca

    2007-07-01

    The CANDU-type of in-core vanadium self-powered neutron flux detectors have been installed in NRU to monitor the axial neutron flux distributions adjacent to the loop fuel test sites since 1996. This paper describes how the thermal neutron fluxes were measured at two monitoring sites, and presents a method of correcting the vanadium burn-up effect, which can be up to 2 to 3% per year, depending on the detector locations in the reactor. It also presents the results of measurements from neutron flux detectors that have operated for over eight-years in NRU. There is good agreement between the measured and simulated neutron fluxes, to within {+-} 6.5%, and the long-term performance of the CANDU-type of vanadium neutron flux detectors in NRU is satisfactory. (author)

  1. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P. G.; Fehrenbach, P. J.; Meneley, D. A.

    1996-01-01

    FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU/FBR system, in which the FBR would be operated as a 'fuel factory,'providing the fissile material to power a number of lower-cost, high-efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on-line fuelling provide flexibility to respond to changing fuel-cycle requirements in the short term and in the indefinite future

  2. Candu technology: the next generation now

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Duffey, R.B.; Torgerson, D.F.

    2001-01-01

    We describe the development philosophy, direction and concepts that are being utilized by AECL to refine the CANDU reactor to meet the needs of current and future competitive energy markets. The technology development path for CANDU reactors is based on the optimization of the pressure tube concept. Because of the inherent modularity and flexibility of this basis for the core design, it is possible to provide a seamless and continuous evolution of the reactor design and performance. There is no need for a drastic shift in concept, in technology or in fuel. By continual refinement of the flow and materials conditions in the channels, the basic reactor can be thermally and operationally efficient, highly competitive and economic, and highly flexible in application. Thus, the design can build on the successful construction and operating experience of the existing plants, and no step changes in development direction are needed. This approach minimizes investor, operator and development risk but still provides technological, safety and performance advances. In today's world energy markets, major drivers for the technology development are: (a) reduced capital cost; (b) improved operation; (c) enhanced safety; and (d) fuel cycle flexibility. The drivers provide specific numerical targets. Meeting these drivers ensures that the concept meets and exceeds the customer economic, performance, safety and resource use goals and requirements, including the suitable national and international standards. This logical development of the CANDU concept leads naturally to the 'Next Generation' of CANDU reactors. The major features under development include an optimized lattice for SEU (slightly enriched uranium) fuel, light water cooling coupled with heavy water moderation, advanced fuel channels and CANFLEX fuel, optimization of plant performance, enhanced thermal and BOP (balance of plant) efficiency, and the adoption of layout and construction technology adapted from successful on

  3. Study on the Post-Fire Safe-Shutdown Analysis for CANDU NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Hwan; Kim, Yun Jung; Park, Mun Hee [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The purpose of this paper is to study a method of the Post-Fire Safe-Shutdown Analysis in order to apply to CANDU NPPs when one group of the Safety Structures, Systems and Components(SCCs) is failed by Fire. The purpose of Fire Protection is prevention, suppression of the fire and mitigation of the effect on the Nuclear Safety. When fire takes place at the Nuclear Power Plants(NPPs), the reactor should achieve and maintain safe shut-down condition and minimize radioactive material release to an environment. The purpose of the Post-Fire SSA process is an evaluation process during a fire at NPPs. At this study, the process was conceptually adopted for control room complex of CANDU NPPs. The Core Damage Frequency of the Reactor will be evaluated more accurately if the SSA is adopted adequately at a fire.

  4. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G.

    1999-01-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without re-enrichment, the plutonium as conventional Mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  5. CANDU fuel-cycle vision

    International Nuclear Information System (INIS)

    Boczar, P.G

    1998-05-01

    The fuel-cycle path chosen by a particular country will depend on a range of local and global factors. The CANDU reactor provides the fuel-cycle flexibility to enable any country to optimize its fuel-cycle strategy to suit its own needs. AECL has developed the CANFLEX fuel bundle as the near-term carrier of advanced fuel cycles. A demonstration irradiation of 24 CANFLEX bundles in the Point Lepreau power station, and a full-scale critical heat flux (CHF) test in water are planned in 1998, before commercial implementation of CANFLEX fuelling. CANFLEX fuel provides a reduction in peak linear element ratings, and a significant enhancement in thermalhydraulic performance. Whereas natural uranium fuel provides many advantages, the use of slightly enriched uranium (SEU) in CANDU reactors offers even lower fuel-cycle costs and other benefits, such as uprating capability through flattening the channel power distribution across the core. Recycled uranium (RU) from reprocessing spent PWR fuel is a subset of SEU that has significant economic promise. AECL views the use of SEU/RU in the CANFLEX bundle as the first logical step from natural uranium. High neutron economy enables the use of low-fissile fuel in CANDU reactors, which opens up a spectrum of unique fuel-cycle opportunities that exploit the synergism between CANDU reactors and LWRs. At one end of this spectrum is the use of materials from conventional reprocessing: CANDU reactors can utilize the RU directly without reenrichment, the plutonium as conventional mixed-oxide (MOX) fuel, and the actinide waste mixed with plutonium in an inert-matrix carrier. At the other end of the spectrum is the DUPIC cycle, employing only thermal-mechanical processes to convert spent LWR fuel into CANDU fuel, with no purposeful separation of isotopes from the fuel, and possessing a high degree of proliferation resistance. Between these two extremes are other advanced recycling options that offer particular advantages in exploiting the

  6. Addressing severe accidents in the CANDU 9 design

    International Nuclear Information System (INIS)

    Nijhawan, S.M.; Wight, A.L.; Snell, V.G.

    1998-01-01

    CANDU 9 is a single-unit evolutionary heavy-water reactor based on the Bruce/Darlington plants. Severe accident issues are being systematically addressed in CANDU 9, which includes a number of unique features for prevention and mitigation of severe accidents. A comprehensive severe accident program has been formulated with feedback from potential clients and the Canadian regulatory agency. Preliminary Probabilistic Safety Analyses have identified the sequences and frequency of system and human failures that may potentially lead to initial conditions indicating onset of severe core damage. Severe accident consequence analyses have used these sequences as a guide to assess passive heat sinks for the core, and containment performance. Estimates of the containment response to mass and energy injections typical of postulated severe accidents have been made and the results are presented. We find that inherent CANDU severe accident mitigation features, such as the presence of large water volumes near the fuel (moderator and shield tank), permit a relatively slow severe accident progression under most plant damage states, facilitate debris coolability and allow ample time for the operator to arrest the progression within, progressively, the fuel channels, calandria vessel or shield tank. The large-volume CANDU 9 containment design complements these features because of the long times to reach failure

  7. Implementation of Wolsong Pump Model, Pressure Tube Deformation Model and Off-take Model into MARS Code for Regulatory Auditing of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, C.; Rhee, B. W.; Chung, B. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Y. J.; Kim, M. W. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-05-15

    Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use vendor's code for regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of RELAP5/MOD3/CANDU code to MARS code including quality assurance of the developed models. This first part of the research series presents the implementation and verification of the Wolsong pump model, the pressure tube deformation model, and the off-take model for arbitrary-angled branch pipes.

  8. Implementation of Wolsong Pump Model, Pressure Tube Deformation Model and Off-take Model into MARS Code for Regulatory Auditing of CANDU Reactors

    International Nuclear Information System (INIS)

    Yoon, C.; Rhee, B. W.; Chung, B. D.; Cho, Y. J.; Kim, M. W.

    2008-01-01

    Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use vendor's code for regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of RELAP5/MOD3/CANDU code to MARS code including quality assurance of the developed models. This first part of the research series presents the implementation and verification of the Wolsong pump model, the pressure tube deformation model, and the off-take model for arbitrary-angled branch pipes

  9. Development of a best estimate auditing code for CANDU thermal hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B.D.; Lee, W.J.; Lim, H.S. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a third step of the whole project, and expand the RELAP5/MOD3/CANDU version for implementation of LOCA Analysis. There are three main area of model development, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs. Newly developed version, namely RELAP5/MOD3/CANDU+ is applicable to CANDU plant analysis with keeping the function of light water reactor analysis. The limited validations of model installation were performed. Assessment of CHF model using AECL separated effect test and calculation for Wolsong 2 plant were performed also for the applicability test of the developed version. 15 refs., 37 figs., 8 tabs. (Author)

  10. Fuel deposits, chemistry and CANDU reactor operation

    International Nuclear Information System (INIS)

    Roberts, J.G.

    2013-01-01

    'Hot conditioning' is a process which occurs as part of commissioning and initial start-up of each CANDU reactor, the first being the Nuclear Power Demonstration-2 reactor (NPD). Later, understanding of the cause of the failure of the Pickering Unit 1 G16 fuel channel led to a revised approach to 'hot conditioning', initially demonstrated on Bruce Unit 5, and subsequently utilized for each CANDU unit since. The difference being that during 'hot conditioning' of CANDU heat transport systems fuel was not in-core until Bruce Unit 5. The 'hot conditioning' processes will be briefly described along with the consequences to fuel. (author)

  11. The 2nd international conference on CANDU maintenance. Proceedings

    International Nuclear Information System (INIS)

    1992-01-01

    The conference mainly dealt with all aspects of the maintenance of CANDU power plants, but also included some papers on PWR plants, one on a coal-burning station, and one on robotics for fusion. Volume 1 includes sessions on the following topics: Plenary, Human performance, Maintenance planning and resourcing, Life cycle management, Maintenance cost evaluation and control, Use of special teams, Innovative maintenance techniques, Remote tooling, Reactivity maintenance, Reactor maintenance, Steam generator experience. Out of 34 papers listed under these sessions, one was published as an appendix to Vol. 2, two were published only as loose papers in a virtual supplement, and nine were not published in the proceedings at all. The individual papers have been abstracted separately

  12. Development of Off-take Model, Subcooled Boiling Model, and Radiation Heat Transfer Input Model into the MARS Code for a Regulatory Auditing of CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, C.; Rhee, B. W.; Chung, B. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, S. H.; Kim, M. W. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-05-15

    Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to a lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use a vendor's code for a regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed the RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of the existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of the RELAP5/MOD3/CANDU code to the MARS code including a quality assurance of the developed models.

  13. Development of Off-take Model, Subcooled Boiling Model, and Radiation Heat Transfer Input Model into the MARS Code for a Regulatory Auditing of CANDU Reactors

    International Nuclear Information System (INIS)

    Yoon, C.; Rhee, B. W.; Chung, B. D.; Ahn, S. H.; Kim, M. W.

    2009-01-01

    Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to a lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use a vendor's code for a regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed the RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of the existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of the RELAP5/MOD3/CANDU code to the MARS code including a quality assurance of the developed models

  14. Ultimate pressure capacity of CANDU 6 containment structures

    International Nuclear Information System (INIS)

    Radulescu, J.P.; Pradolin, L.; Mamet, J.C.

    1997-01-01

    This paper summarizes the analytical work carried out and the results obtained when determining the ultimate pressure capacity (UPC) of the containment structures of CANDU 6 nuclear power plants. The purpose of the analysis work was to demonstrate that such containment structures are capable of meeting design requirements under the most severe accident conditions. For this concrete vessel subjected to internal pressure, the UPC was defined as the pressure causing through cracking in the concrete. The present paper deals with the overall behaviour of the containment. The presence of openings, penetrations and the ultimate pressure of the airlocks were considered separately. (author)

  15. Nuclear power in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Rim, C S [Radioactive Waste Management Centre, Korea Atomic Energy Research Institute, Taejon, Choong-Nam (Korea, Republic of)

    1990-07-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea.

  16. Nuclear power in Korea

    International Nuclear Information System (INIS)

    Rim, C.S.

    1990-01-01

    Before addressing the issue of public and utility acceptance of nuclear power in Korea, let me briefly explain the Korean nuclear power program and development plan for a passively safe nuclear power plant in Korea. At present, there are eight PWRs and one CANDU in operation; two PWRs are under construction, and contract negotiations are underway for one more CANDU and two more PWRs, which are scheduled to be completed by 1997,1998 and 1999, respectively. According to a recent forecast for electricity demand in Korea, about fifty additional nuclear power plants with a generating capacity of 1000MWe are required by the year 2030. Until around 2006, Korean standardized nuclear power plants with evolutionary features such as those in the ALWR program are to be built, and a new type of nuclear power plant with passive safety features is expected to be constructed after 2006. The Korean government is making a serious effort to increase public understanding of the safety of nuclear power plants and radioactive waste storage and disposal. In addition, the Korean government has recently introduced a program of benefits for residents near nuclear power plants. By this program, common facilities such as community centers and new roads are constructed, and scholarships are given to the local students. Nuclear power is accepted positively by the utility and reasonably well by the public in Korea

  17. Future fuel cycle development for CANDU reactors

    International Nuclear Information System (INIS)

    Hatcher, S.R.; McDonnell, F.N.; Griffiths, J.; Boczar, P.G.

    1987-01-01

    The CANDU reactor has proven to be safe and economical and has demonstrated outstanding performance with natural uranium fuel. The use of on-power fuelling, coupled with excellent neutron economy, leads to a very flexible reactor system with can utilize a wide variety of fuels. The spectrum of fuel cycles ranges from natural uranium, through slightly enriched uranium, to plutonium and ultimately thorium fuels which offer many of the advantages of the fast breeder reactor system. CANDU can also burn the recycled uranium and/or the plutonium from fuel discharged from light water reactors. This synergistic relationship could obviate the need to re-enrich the reprocessed uranium and allow a simpler reprocessing scheme. Fule management strategies that will permit future fuel cycles to be used in existing CANDU reactors have been identified. Evolutionary design changes will lead to an even greater flexibility, which will guarantee the continued success of the CANDU system. (author)

  18. CANDU fuel performance

    International Nuclear Information System (INIS)

    Ivanoff, N.V.; Bazeley, E.G.; Hastings, I.J.

    1982-01-01

    CANDU fuel has operated successfully in Ontario Hydro's power reactors since 1962. In the 19 years of experience, about 99.9% of all fuel bundles have performed as designed. Most defects occurred before 1979 and subsequent changes in fuel design, fuel management, reactor control, and manufacturing quality control have reduced the current defect rate to near zero. Loss of power production due to defective fuel has been negligible. The outstanding performance continues while maintaining a low unit energy cost for fuel

  19. Advanced CANDU Design With Negative Power Feedback

    International Nuclear Information System (INIS)

    Andang-Widi-Harto; Muslim

    2004-01-01

    The problem of positive power feedback in the recent PHWR-CANDU design, especially related to coolant void increase, will be overcame by the use of dual moderator concept, in which two moderator systems are used, i.e. a main moderator outside the calandria tube and an annular moderator inside the annular space. Annular moderator is allowed to boil in the case of overheating. The numerical calculations have been performed for two core design namely HWR-DM-ST and HWR-DM-XI which can reach burn up of 16,000 and 17,500 MWd/ ton U respectively. The results for the two designs is that the values of k at fully annular moderator filling condition are 1.0054 (HWR-DM-ST) and 1.0019 (HWR-DM-XI), while at completely empty annular moderator condition are 0.9634 (HWR-DM-ST) and 0.9143 (HWR-DM-XI). The decrease of coolant flow rate from 3,043 kg/s to 853 kg/s decrease k values of 0.0109 (HWR-DM-ST) and 0.0232 (HWR-DM-XI). While increasing inlet coolant enthalpy from 2,950 kJ/kg to 3,175 kJ/kg decreases of k values of 0.0074 (HWR-DM-ST) and 0.0239 (HWR-DM-XI). Thus, it can be summarized that the HWR-DM design has negative power reactivity feedback.(author)

  20. Study on advanced nuclear fuel cycle of PWR/CANDU synergism

    International Nuclear Information System (INIS)

    Xie Zhongsheng; Huo Xiaodong

    2002-01-01

    According to the concrete condition that China has both PWR and CANDU reactors, one of the advanced nuclear fuel cycle strategy of PWR/CANDU synergism ws proposed, i.e. the reprocessed uranium of spent PWR fuel was used in CANDU reactor, which will save the uranium resource, increase the energy output, decrease the quantity of spent fuels to be disposed and lower the cost of nuclear power. Because of the inherent flexibility of nuclear fuel cycle in CANDU reactor, the transition from the natural uranium to the recycled uranium (RU) can be completed without any changes of the structure of reactor core and operation mode. Furthermore, because of the low radiation level of RU, which is acceptable for CANDU reactor fuel fabrication, the present product line of fuel elements of CANDU reactor only need to be shielded slightly, also the conditions of transportation, operation and fuel management need not to be changed. Thus this strategy has significant practical and economical benefit

  1. CANDU advanced fuel R and D programs for 1997 - 2006 in Korea

    International Nuclear Information System (INIS)

    Suk, H.C.; Yang, M.S.; Sim, K-S.; Yoo, K.J.

    1997-01-01

    KAERI has a comprehensive product development program of CANFLEX and DUPIC fuels to introduce them into CANDU reactors in Korea and a clear vision of how the product will evolve over the next 10 years. CANDU reactors are not the majority of nuclear power plants in Korea, but they produce significant electricity to contribute Korea's economic growth as well as to satisfy the need for energy. The key targets of the development program are safety enhancement, reduction of spent fuel volume, and economic improvements, using the inherent characteristics and advantages of CANDU technology The CANFLEX and DUPIC R and D programs are conducted currently under the second stage of Korea's Nuclear Energy R and D Project as a national mid- and long-term program over the next 10 years from 1997 to 2006. The specific activities of the programs have taken account of the domestic and international environment concerning on non-proliferation in the Peninsula of Korea. As the first of the development products in the short-term, the CANFLEX-NU fuel will be completely developed jointly by KAERI/AECL and will be useful for the older CANDU-6 Wolsong unit 1. As the second product, the CANFLEX-0.9 % equivalent SEU fuel is expected to be completely developed within the next decade. It will be used in CANDU-6 reactors in Korea immediately after the development, if the existing RU in the world is price competitive with natural uranium. The DUPIC R and D program, as a long term program, is expected to demonstrate the possibility of use of used PWR fuel in CANDU reactors in Korea during the next 10 years. The pilot scale fabrication facility would be completed around 2010. (author)

  2. CANDU advanced fuel R and D programs for 1997 - 2006 in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Suk, H.C.; Yang, M.S.; Sim, K-S.; Yoo, K.J. [Korea Atomic Energy Research Inst., Yusong, Taejon (Korea, Republic of)

    1997-07-01

    KAERI has a comprehensive product development program of CANFLEX and DUPIC fuels to introduce them into CANDU reactors in Korea and a clear vision of how the product will evolve over the next 10 years. CANDU reactors are not the majority of nuclear power plants in Korea, but they produce significant electricity to contribute Korea's economic growth as well as to satisfy the need for energy. The key targets of the development program are safety enhancement, reduction of spent fuel volume, and economic improvements, using the inherent characteristics and advantages of CANDU technology The CANFLEX and DUPIC R and D programs are conducted currently under the second stage of Korea's Nuclear Energy R and D Project as a national mid- and long-term program over the next 10 years from 1997 to 2006. The specific activities of the programs have taken account of the domestic and international environment concerning on non-proliferation in the Peninsula of Korea. As the first of the development products in the short-term, the CANFLEX-NU fuel will be completely developed jointly by KAERI/AECL and will be useful for the older CANDU-6 Wolsong unit 1. As the second product, the CANFLEX-0.9 % equivalent SEU fuel is expected to be completely developed within the next decade. It will be used in CANDU-6 reactors in Korea immediately after the development, if the existing RU in the world is price competitive with natural uranium. The DUPIC R and D program, as a long term program, is expected to demonstrate the possibility of use of used PWR fuel in CANDU reactors in Korea during the next 10 years. The pilot scale fabrication facility would be completed around 2010. (author)

  3. The Thermal-hydraulic Analysis for the Aging Effect of the Component in CANDU-6 Reactor

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Jung, Jong Yeob

    2014-01-01

    CANDU reactor consists of a lot of components, including pressure tube, reactor pump, steam generator, feeder pipe, and so on. These components become to have the aging characteristics as the reactor operates for a long time. The aging phenomena of these components lead to the change of operating parameters, and it finally results to the decrease of the operating safety margin. Actually, due to the aging characteristics of components, CANDU reactor power plant has the operating license for the duration of 30 years and the plant regularly check the plant operating state in the overhaul period. As the reactor experiences the aging, the reactor operators should reduce the reactor power level in order to keep the minimum safety margin, and it results to the deficit of economical profit. Therefore, in order to establish the safety margin for the aged reactor, the aging characteristics for components should be analyzed and the effect of aging of components on the operating parameter should be studied. In this study, the aging characteristics of components are analyzed and revealed how the aging of components affects to the operating parameter by using NUCIRC code. Finally, by scrutinizing the effect of operating parameter on the operating safety margin, the effect of aging of components on the safety margin has been revealed

  4. Modeling and simulation of CANDU reactor and its regulating system

    Science.gov (United States)

    Javidnia, Hooman

    Analytical computer codes are indispensable tools in design, optimization, and control of nuclear power plants. Numerous codes have been developed to perform different types of analyses related to the nuclear power plants. A large number of these codes are designed to perform safety analyses. In the context of safety analyses, the control system is often neglected. Although there are good reasons for such a decision, that does not mean that the study of control systems in the nuclear power plants should be neglected altogether. In this thesis, a proof of concept code is developed as a tool that can be used in the design. optimization. and operation stages of the control system. The main objective in the design of this computer code is providing a tool that is easy to use by its target audience and is capable of producing high fidelity results that can be trusted to design the control system and optimize its performance. Since the overall plant control system covers a very wide range of processes, in this thesis the focus has been on one particular module of the the overall plant control system, namely, the reactor regulating system. The center of the reactor regulating system is the CANDU reactor. A nodal model for the reactor is used to represent the spatial neutronic kinetics of the core. The nodal model produces better results compared to the point kinetics model which is often used in the design and analysis of control system for nuclear reactors. The model can capture the spatial effects to some extent. although it is not as detailed as the finite difference methods. The criteria for choosing a nodal model of the core are: (1) the model should provide more detail than point kinetics and capture spatial effects, (2) it should not be too complex or overly detailed to slow down the simulation and provide details that are extraneous or unnecessary for a control engineer. Other than the reactor itself, there are auxiliary models that describe dynamics of different

  5. Role of water lubricated bearings in Candu reactors

    International Nuclear Information System (INIS)

    Kumar, Ashok N.

    1999-01-01

    During the twentieth century a great emphasis was placed in understanding and defining the operating regime of oil and grease lubricated components. Major advances have been made through elastohydrodynamic lubrication theory in the quantifying the design life of heavily loaded components such as rolling element bearings and gears. Detailed guidelines for the design of oil and grease lubricated components are widely available and are being applied to the successful design of these components. However similar guidelines for water lubricated components are either not available or not well documented. It is often forgotten that the water was used as a lubricant in several components as far back as 1884 B.C. During the twentieth century the water lubricated components continued to play a major role in some high technology industries such as in the power generation plants. In CANDU nuclear reactors water lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication of several critical components always occupied a pride place and in most cases the only practical mode of lubrication. This paper presents some examples of the major water lubricated components in a CANDU reactors. Major part of the paper is focused on presenting an example of successful operating history of water lubricated bearings used in the HT pumps are presented. Both types of bearings have been qualified by tests for operation under normal as well as under more severe postulated condition of loss-of-coolant-accident (LOCA). These bearings have been designed to operate for the 30 years in the existing CANDU 6 (600 MW) reactors. However for the next generation of CANDU 6 reactors which go into service in the year 2003, the HT pump bearing life has been extended to 40 years. (author)

  6. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    International Nuclear Information System (INIS)

    Scott Hower; Luiza Vladu; Adrian Nichisov; Mihai Cretu

    2006-01-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  7. New concepts, requirements and methods concerning the periodic inspection of the CANDU fuel channels

    International Nuclear Information System (INIS)

    Denis, J.R.

    1995-01-01

    Periodic inspection of fuel channels is essential for a proper assessment of the structural integrity of these vital components of the reactor. The development of wet channel technologies for non-destructive examination (NDE) of pressure tubes and the high technical performance and reliability of the CIGAR equipment have led, in less than 1 0 years, to the accumulation of a very significant volume of data concerning the flaw mechanisms and structural behaviour of the CANDU fuel channels. On this basis, a new form of the CAN/CSA-N285.4 Standard for Periodic Inspection of CANDU Nuclear Power Plant components was elaborated, introducing new concepts and requirements, in accord with the powerful NDE methods now available. This paper presents these concepts and requirements, and discusses the NDE methods, presently used or under development, to satisfy these requirements. Specific features regarding the fuel channel inspections of Cernavoda NGS Unit 1 are also discussed. (author)

  8. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    International Nuclear Information System (INIS)

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-01-01

    The Enhanced CANDU 6 R (ECo R ) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  9. Development of advanced CANDU PHWR -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Na, Yeong Hwan; Seok, Soo Dong; Lee, Bo Uk; Kwak, Ho Sang; Kim, Bong Ki; Kim, Seok Nam; Min, Byeong Joo; Park, Jong Ryunl; Shin, Jeong Cheol; Lee, Kyeong Ho; Lee, Dae Hee; Lee, Deuk Soo; Lee, Yeong Uk; Lee, Jeong Yang; Jwon, Jong Seon; Jwon, Chang Joon; Ji, Yong Kwan; Han, Ki Nam; Kim, Kang Soo; Kim, Dae Jin; Kim, Seon Cheol; Kim, Seong Hak; Kim, Yeon Seung; Kim, Yun Jae; Kim, Jeong Kyu; Kim, Jeong Taek; Kim, Hang Bae; Na, Bok Kyun; Namgung, In; Moon, Ki Hwan; Park, Keun Ok; Shon, Ki Chang; Song, In Ho; Shin, Ji Tae; Yeo, Ji Won; Oh, In Seok; Jang, Ik Ho; Jeong, Dae Won; Jeong, Yong Hwan; Ha, Jae Hong; Ha, Jeong Koo; Hong, Hyeong Pyo; Hwang, Jeong Ki

    1994-07-01

    The target of this project is to assess the feasibility of improving PHWR and to establish the parameter of the improved concept and requirements for developing it. To set up the requirements for the Improved Pressurized Heavy Water Reactor: (1) Design requirements of PHWR main systems and Safety Design Regulatory Requirements for Safety Related System i.e. Reactor Shutdown System, Emergency Core Cooling System and Containment System were prepared. (2) Licensing Basis Documents were summarized and Safety Analysis Regulatory. Requirements were reviewed and analyzed. To estimate the feasibility of improving PHWR and to establish the main parameters of the concept of new PHWR in future: (1) technical level/developing trend of PHWR in Korea through Wolsong 2, 3 and 4 design experience and Technical Transfer Program was investigated to analyze the state of basic technology and PHWR improvement potential. (2) CANDU 6 design improvement tendency, CANDU 3 design concept and CANDU 9 development state in other country was analyzed. (3) design improvement items to apply to the reactors after Wolsong 2, 3 and 4 were selected and Plant Design Requirements and Conceptual Design Description were prepared and the viability of improved HWR was estimated by analyzing economics, performance and safety. (4) PHWR technology improving research and development plan was established and international joint study initiated for main design improvement items

  10. The security management of spent filter cartridge in Qinshan phase 3 (heavy water reactor) nuclear power plant

    International Nuclear Information System (INIS)

    Xue Dahai

    2005-01-01

    Qinshan phase 3 nuclear power plant is the first CANDU plant that China fetched in from Canada, and both two units operate under well condition up to now. The radioactive wastes produced during the unit operation mainly include technical waste, spent resin, and spent filter cartridge. The spent filter cartridge is one important part both in the volume and radioactivity of the radioactive waste, and it is the important content of radioactive waste management. Different from PWR, part of high radioactive spent filter in CANDU unit comes from heavy water system such as moderator system. It has to be dried through blowing before replaced from the system. But this working procedure result the filtrate dreg become flexible, and it can bring on the risk of internal or external exposure. It is very important to pay high attention to control the contamination spread during spent filter inside transfer. (authors)

  11. Development of best estimate auditing code for CANDU thermal hydraulic safety analysis

    International Nuclear Information System (INIS)

    Hwnag, M.

    2001-04-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool , i.e. RELAP5/MOD3. This scope of project is a fourth step of the whole project, applying the RELAP5/MOD3/CANDU+ version for the real CANDU plant LOCA Analysis and D2O leakage incident. There are three main models under investigation, i.e. Moody critical flow model, flow regime model of horizontal CANDU bundle, and fuel element heatup model when the stratification occurs, especially when CANDU LOCA is tested. Also, for Wolsung unit 1 D2O leakage incident analysis, the plant behavior is predicited with the newly developed version for the first 1000 seconds after onset of the incident, with the main interest aiming for system pressure, level control system, and thermal hydraulic transient behavior of the secondary system. The model applided for this particular application includes heat transfer model of nuclear fuel assembly, decay heat model, and MOV (Motor Operated Valve) model. Finally, the code maintenance work, mainly correcting the known errors, is presented

  12. Two CANDU fueling machines tested at the Institute For Nuclear Research - Pitesti

    International Nuclear Information System (INIS)

    Doca, Cezar; Cojocaru, Virgil

    2005-01-01

    In 2003, as a national and European premiere, at the Institute for Nuclear Research Pitesti (INR), the Fueling Machine Head no.4 (F/M) for the Nuclear Power Plant Cernavoda - Unit 2 was successfully tested. In 2005, a second Fueling Machine (no.5) was tested for the Nuclear Power Plant Cernavoda - Unit 2. The Institute's main objective is to develop scientific and technological support for the Romanian Nuclear Power Program. Testing the Fueling Machines at INR Pitesti is part of the overall program to assimilate in Romania the CANDU technology. To perform the tests of these machines at INR Pitesti, a special testing rig was built and is available for this goal. Both the testing rig and staff had successfully assessed by the AECL representatives during two missions. There was a delivery contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 in Romania before testing operation. As a first conclusion, the Institute for Nuclear Research Pitesti has the facilities, the staff and the experience to perform possible co-operations with any other CANDU Reactor owner. This experience will support the next steps concerning F/M commissioning in the NPP Cernavoda - Unit 2 and also give the confidence to the end-users that the Institute's team can provide technical assistance during the operation. Also, the obtained results demonstrate that the overall refurbishment of the F/M control system in Unit 1 and Unit 2 will be possible. The paper presents: - a short description of the F/M head;- a short description of the F/M test rig; - the computer control system; - the F/M testing activities; -results and expectations. (authors)

  13. Two CANDU fueling machines tested at the Institute For Nuclear Research - Pitesti

    International Nuclear Information System (INIS)

    Doca, C.; Cojocaru, V.

    2005-01-01

    Full text: In 2003, as a national and European premiere, at the Institute for Nuclear Research Pitesti (INR), the Fueling Machine Head no.4 (F/M) for the Nuclear Power Plant Cernavoda - Unit 2 was successfully tested. In 2005, a second Fueling Machine (no.5) was tested for the Nuclear Power Plant Cernavoda - Unit 2. The Institute's main objective is to develop scientific and technological support for the Romanian Nuclear Power Program. Testing the Fueling Machines at INR Pitesti is part of the overall program to assimilate in Romania the CANDU technology. To perform the tests of these machines at INR Pitesti, a special testing rig was built and is available for this goal. Both the testing rig and staff had successfully assessed by the AECL representatives during two missions. There was a delivery contract between GEC Canada and Nuclear Power Plant Cernavoda - Unit 2 to provide the Fueling Machines no. 4 and no. 5 in Romania before testing operation. As a first conclusion, the Institute for Nuclear Research Pitesti has the facilities, the staff and the experience to perform possible co-operations with any other CANDU Reactor owner. This experience will support the next steps concerning F/M commissioning in the NPP Cernavoda - Unit 2 and also give the confidence to the end-users that the Institute's team can provide technical assistance during the operation. Also, the obtained results demonstrate that the overall refurbishment of the F/M control system in Unit 1 and Unit 2 will be possible. The paper presents: - a short description of the F/M head;- a short description of the F/M test rig; - the computer control system; - the F/M testing activities; -results and expectations. (authors)

  14. Candu Energy's Aging and Obsolescence Program and its Application to Operating Facilities and New Plant Design

    International Nuclear Information System (INIS)

    Dam, R.; Gold, R.; McCrea, L.

    2012-01-01

    While plant aging is inevitable, predictable and 'graceful 'aging' behavior can be achieved through the implementation of a comprehensive and integrated Plant Life Management (PLiM) program. Despite organizations like the IAEA and INPO placing more emphasis on equipment reliability, there is still a lack of completely integrated programs in the industry as evidenced by: - Piece-meal, often crisis-driven, implementation comprising many different, partial solutions; - Duplication of effort often seen when different groups work in 'silos'. A strategy which fits with existing plant processes and programs, and which coordinates a broad range of equipment reliability activities is key to achieving the desired results. An example of such a program is the Aging and Obsolescence Program (AOP). AOP follows application of INPO AP-913 guidance for equipment reliability. The program is augmented to include single point vulnerability identification, unified approach to short and long lived components, risk management, spare parts management, and the identification and resolution of obsolescence issues. The systematic nature of the program provides the needed foundation to old and new stations alike. For existing operating stations some of the key uses include outage interval extension, reduced forced outages, and/or outage time reduction, any of which can translate into improving plant performance, competitiveness, and significant dollars saved. Program elements applied to new plant design are commensurate with the industry direction to 'design for reliability', and has allowed Candu Energy to learn and to improve upon what it can offer to operating stations. This paper intends to describe the basic elements of Candu Energy's Aging and Obsolescence Program and will share some of the experience having applied it to existing operating stations, consider applications to support expanding regulatory requirements, and describe the integration into the design of new plants, promoting

  15. CANDU safety under severe accidents

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.; Alikhan, S.; Frescura, G.M.; King, F.; Rogers, J.T.; Tamm, H.

    1996-01-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10 -6 /year. 95 refs, 3 tabs

  16. CANDU safety under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Snell, V G; Howieson, J Q [Atomic Energy of Canada Ltd. (Canada); Alikhan, S [New Brunswick Electric Power Commission (Canada); Frescura, G M; King, F [Ontario Hydro (Canada); Rogers, J T [Carleton Univ., Ottawa, ON (Canada); Tamm, H [Atomic Energy of Canada Ltd. (Canada). Whiteshell Research Lab.

    1996-12-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10{sup -6}/year. 95 refs, 3 tabs.

  17. Internal dose from tritium at Wolsung nuclear power plant

    International Nuclear Information System (INIS)

    Hee Geun Kim; Jeong Yull Dho; Myung Jae Song

    1995-01-01

    Tritium is produced in large quantities at heavy water nuclear power reactors via the neutron activation reaction 2 H(n,γ) 3 H. At Wolsung nuclear power plant which has a CANDU reactor, the tritium concentrations in coolant and in moderator systems are 1.5 Ci/Kg-D 2 O and 35 Ci/kg-D 2 O, respectively, after 12 years of operation. The airborne tritium concentration in main access area is normally less than 5 MPCa except short-term peaks. The average tritium concentrations in main access controlled areas are normally less than 100 MPCa. Tritium is mainly present in the air of workplace of CANDU reactors as a tritiated water vapour. Airborne tritiated water vapour enters the workers body via inhalation and absorption through skin and can result in a significant dose. The occupational doses from tritium at Wolsung NPP have been maintained below 1 man-Sv per year so far. The tritium contribution to the total plant man-Sv changes between 30 percent and 50 percent. For the mitigation of tritium inhalation, various protective equipment are being used at Wolsung NPP. The respirator system was devised at Wolsung NPP in order to remove tritiated water vapours from the inhaled air. A respirator is connected to a small plastic bottle filled with ice cubes. The system devised shows a good tritium removal efficiency. The air pressure drop through the ice cubes is minimal. The operation cost of the system is also very cheap. Further mitigation of tritium inhalation is heavily dependant on the source term reduction. One of the ultimate solutions is to introduce a tritium removal facility. (author). 7 figs., 3 tabs

  18. Nuclear power: 2006 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2007-01-01

    Last year, 2006, 437 nuclear power plants were available for power supply in 31 countries, 7 plants less than in 2005. One unit was commissioned for the first time, 8 nuclear power plants were decommissioned for good in 2006. At a cumulated gross power of 389,488 MWe and a cumulated net power of 370,441 MWe, respectively, worldwide nuclear generating capacity has reached a high level so far. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D 2 O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of the year, 10 countries operated 29 nuclear power plants with an aggregate gross power of 25,367 MWe and an aggregate net power of 23,953 MWe, respectively. Of these, 21 are light water reactors, 5 are CANDU-type reactors, 2 are fast breeder and 1 a LWGR. 123 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants again reached peak levels: 82% for energy availability, and 83% for operating availability. The 4 nuclear power plants in Finland continue to be in the lead worldwide with a cumulated average operating capacity factor of 94%. (orig.)

  19. Nuclear power. 2008 world report - evaluation

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    In 2008, 438 nuclear power plants were available for power supply in 31 countries, 1 plant less than in 2007. No unit was commissioned for the first time, 1 nuclear power plant was decommissioned for good in 2008. At a cumulated gross power of 392,597 MWe and a cumulated net power of 372,170 MWe, respectively, worldwide nuclear generating capacity has reached a high level. Nine different reactor lines are operated in commercial plants: PWR, PWR-VVER, BWR, CANDU, D2O PWR, GCR, AGR, LWGR, and LMFBR. Light water reactors (PWR and BWR) continue to top the list with 358 plants. By the end of 2008, in 14 countries 43 nuclear power plants with an aggregate gross power of 39,211 MWe and an aggregate net power of 36,953 MWe were under construction. Of these, 37 are light water reactors, 3 are CANDU-type reactors, 2 are fast breeder and 1 D2O-PWR. 124 commercial reactors with an aggregate power in excess of 5 MWe have so far been decommissioned in 19 countries. Most of them are prototype plants of low power. About 70% of the nuclear power plants in operation, namely 304 plants, were commissioned in the eighties and nineties. The energy availability and operating availability factors of the nuclear power plants reached good levels: 80.80% for operating availability and 80,00% for energy availability. The four nuclear power plants in Finland continuecontinue to be in the lead worldwide with a cumulated average operating capacity factor of 91,60%. (orig.)

  20. Fuel-management simulations for once-through thorium fuel cycle in CANDU reactors

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Boczar, P.G.; Ellis, R.J.; Ardeshiri, F.

    1999-01-01

    High neutron economy, on-power refuelling and a simple fuel bundle design result in unsurpassed fuel cycle flexibility for CANDU reactors. These features facilitate the introduction and exploitation of thorium fuel cycles in existing CANDU reactors in an evolutionary fashion. Detailed full-core fuel-management simulations concluded that a once-through thorium fuel cycle can be successfully implemented in an existing CANDU reactor without requiring major modifications. (author)

  1. Thermal gradients caused by the CANDU moderator circulation

    International Nuclear Information System (INIS)

    Mohindra, V.K.; Vartolomei, M.A.; Scharfenberg, R.

    2008-01-01

    The heavy water moderator circulation system of a CANDU reactor, maintains calandria moderator temperature at power-dependent design values. The temperature differentials between the moderator and the cooler heavy water entering the calandria generate thermal gradients in the reflector and moderator. The resultant small changes in thermal neutron population are detected by the out-of-core ion chambers as small, continuous fluctuations of the Log Rate signals. The impact of the thermal gradients on the frequency of the High Log Rate fluctuations and their amplitude is relatively more pronounced for Bruce A as compared to Bruce B reactors. The root cause of the Log Rate fluctuations was investigated using Bruce Power operating plant information data and the results of the investigation support the interpretation based on the thermal gradient phenomenon. (author)

  2. The application of an integrated approach to design, procurement and construction in reducing overall nuclear power plant costs. Annex 19

    International Nuclear Information System (INIS)

    Didsbury, R.; Shalaby, B.A.; Torgerson, D.F.

    2002-01-01

    As part of its on-going efforts to reduce the cost of CANDU nuclear power plants, AECL has embarked on an integrated approach to design, procurement and construction activities associated with new CANDU 6 and CANDU 9 projects. The approach is predicated on the fact there is a vast quantity of information that needs to be managed and controlled over the life of a nuclear power plant project. Therefore, ensuring the completeness and correctness of all the information needed by all project participants, facilitating sharing of this information amongst the project's participants, and automating the various deliverable production processes offers significant potential not only for overall project cost (and schedule) savings but also for reducing operations and maintenance costs once the plant enters service. Facilitating and indeed of key importance to this approach is the use of a suite of integrated information technology-based engineering, procurement and project control tools used throughout the design, engineering, procurement and construction phases of the project. A unique and important feature of these tools is their high degree of integration both from a work process and a data perspective. Use of these tools is well underway on AECL's Qinshan Project which is realizing significant benefits in cost and schedule. This paper will describe the approach AECL is taking, along with the tools it has both put in place, and those additional items planned for the future along with the cost, schedule and quality benefits that arise from their use. Progress to date on the Qinshan project also will be discussed as well as the expected application to the plant once it has gone into service will also be discussed. (author)

  3. Load-following performance and assessment of CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M.; Floyd, M.; Rattan, D.; Xu, Z.; Manzer, A.; Lau, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Kohn, E. [Ontario Power Generation, Fuel and Fuel Channel Analysis Dept., Toronto, Ontario (Canada)

    1999-09-01

    Load following of nuclear reactors is now becoming an economic necessity in some countries. When nuclear power stations are operated in a load-following mode, the reactor and the fuel may be subjected to step changes in power on a weekly, daily, or even hourly basis, depending on the grid's needs. This paper updates the previous surveys of load-following capability of CANDU fuel, focusing mainly on the successful experience at the Bruce B station. As well, initial analytical assessments are provided that illustrate the capability of CANDU fuel to survive conditions other than those for which direct in-reactor evidence is available. (author)

  4. A compact, low cost, tritium removal plant for CANDU-6 reactors

    International Nuclear Information System (INIS)

    Sood, S.K.; Fong, C.; Kalyanam; Woodall, K.B.

    1997-01-01

    Tritium concentrations in CANDU-6 reactors are currently around 40 Ci/kg in moderator systems and around 1.5 Ci/kg in primary heat transport (PHT) systems. It is expected that tritium concentrations in moderator systems will continue to rise and will reach about 80 Ci/kg at maturity. A more detailed description of the increase in tritium concentrations in the moderator and PHT systems of CANDU-6 reactors is given in the next section of this paper. While moderator systems currently contribute more than 50% to tritium emissions, the impact of acute releases of moderator water is more severe at higher tritium concentrations. This impact can be substantially reduced by the addition of an isotope separation system for lowering the tritium level in the moderator system. In addition, lower tritium levels in CANDU systems will inevitably result in reduced occupational exposures, or will provide economic benefits due to ease of maintenance because less protective measures are required and maintenance activities can be more efficient

  5. Evaluation of fuel performance for fresh and aged CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jong Yeob; Bae, Jun Ho; Park, Joo Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Like all other industrial plants, nuclear power plants also undergo degradations, so called ageing, with their operation time. Accordingly, in the recent safety analysis for a refurbished Wolsong 1 NPP, various ageing effects were incorporated into the hydraulic models of a number of the components in the primary heat transport system for conservatism. The ageing data of thermal-hydraulic components for 11 EFPY of Wolsong 1 were derived by using NUCIRC code based on the site operation data and they were modified to the appropriate input data for CATHENA code which is a thermal hydraulic code for a postulated accident analysis. This paper deals with the ageing effect of the PHTS (primary heat transport system) of CANDU reactor on the fuel performance during the normal operation. Initial conditions for fuel performance analysis were derived from the thermal-hydraulic analysis for both fresh and aged core models. Here, fresh core means a core state just right after the refurbishment and the aged core is 11 EFPY state after the refurbishment of Wolsong 1. The fuel performance was analyzed by using ELESTRES code for both fresh and aged core state and the results were compared in order to verify the ageing effect of CANDU HTS on the fuel performance.

  6. Tritium concentration in the heavy water upgrading plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Pop, F.; Titescu, Gh.; Dumitrescu, M.; Ciortea, C.; Stefanescu, I.; Peculea, M.; Pitigoi, Gh.; Trancota, D. . E-mail of corresponding author: croitoru@icsi.ro; Croitoru, C.)

    2005-01-01

    In the course of time heavy water used in CANDU nuclear power plants, as moderator or coolant, degrades, as a result of its impurification with light water and tritium. Concentration diminution below 99.8% mol for moderator and 99.75% mol for coolant causes an inefficient functioning of CANDU reactor. By isotopic distillation, light water is removed. Simultaneously tritium concentration takes place. The heavy water upgrading plant from Cernavoda is an isotopic separation cascade with two stages. The paper presents, for this plant, a theoretical study of the tritium concentration. (author)

  7. Commissioning of Qinshan phase III PHWR nuclear power plant (2 x 700 MW)

    International Nuclear Information System (INIS)

    Gu Jun

    2004-12-01

    As the first CANDU type NPP built in China, the commissioning team established a very efficient and high standard commissioning management system. Unit 1 was put into commercial operation 43 days in advance and 112 days ahead of schedule for Unit 2. Commissioning quality achieved international advanced level. The commissioning period created new world history record of heavy water nuclear power plants. A summary for the practice and the experience of TQNPC obtained in the commissioning of the two unit was given. (authors)

  8. Fuel cycles - a key to future CANDU success

    International Nuclear Information System (INIS)

    Kuran, S.; Hopwood, J.; Hastings, I.J.

    2011-01-01

    Globally, fuel cycles are being evaluated as ways of extending nuclear fuel resources, addressing security of supply and reducing back-end spent-fuel management. Current-technology thermal reactors and future fast reactors are the preferred platform for such fuel cycle applications and as an established thermal reactor with unique fuel-cycle capability, CANDU will play a key role in fulfilling such a vision. The next step in the evolution of CANDU fuel cycles will be the introduction of Recovered Uranium (RU), derived from conventional reprocessing. A low-risk RU option applicable in the short term comprises a combination of RU and Depleted Uranium (DU), both former waste streams, giving a Natural Uranium Equivalent (NUE) fuel. This option has been demonstrated in China, and all test bundles have been removed from the Qinshan 1 reactor. Additionally, work is being done on an NUE full core, a Thorium demonstration irradiation and an Advanced Fuel CANDU Reactor(AFCR). AECL is developing other fuel options for CANDU, including actinide waste burning. AECL has developed the Enhanced CANDU 6 (EC6) reactor, upgraded from its best-performing CANDU 6 design. High neutron economy, on-power refueling and a simple fuel bundle provide the EC6 with the flexibility to accommodate a range of advanced fuels, in addition to its standard natural uranium. (author)

  9. CANDU steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermalhydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. The research and development program, as well as operating experience, has identified where improvements in operating practices and/or designs can be made in order to ensure steam generator design life at an acceptable capacity factory. (author)

  10. CANDU-6 fuel optimization for advanced cycles

    Energy Technology Data Exchange (ETDEWEB)

    St-Aubin, Emmanuel, E-mail: emmanuel.st-aubin@polymtl.ca; Marleau, Guy, E-mail: guy.marleau@polymtl.ca

    2015-11-15

    Highlights: • New fuel selection process proposed for advanced CANDU cycles. • Full core time-average CANDU modeling with independent refueling and burnup zones. • New time-average fuel optimization method used for discrete on-power refueling. • Performance metrics evaluated for thorium-uranium and thorium-DUPIC cycles. - Abstract: We implement a selection process based on DRAGON and DONJON simulations to identify interesting thorium fuel cycles driven by low-enriched uranium or DUPIC dioxide fuels for CANDU-6 reactors. We also develop a fuel management optimization method based on the physics of discrete on-power refueling and the time-average approach to maximize the economical advantages of the candidates that have been pre-selected using a corrected infinite lattice model. Credible instantaneous states are also defined using a channel age model and simulated to quantify the hot spots amplitude and the departure from criticality with fixed reactivity devices. For the most promising fuels identified using coarse models, optimized 2D cell and 3D reactivity device supercell DRAGON models are then used to generate accurate reactor databases at low computational cost. The application of the selection process to different cycles demonstrates the efficiency of our procedure in identifying the most interesting fuel compositions and refueling options for a CANDU reactor. The results show that using our optimization method one can obtain fuels that achieve a high average exit burnup while respecting the reference cycle safety limits.

  11. Economic case for CANDU life extension projects

    International Nuclear Information System (INIS)

    Qureshi, S.; Tenev, T.; Lewi, M.

    2014-01-01

    As CANDU reactors approach their original end of design life utilities are faced with two options: to extend the operating life of the reactor by undergoing a life extension project (LEP), or to commence decommissioning activities. Recent project experience has shown that there is economic merit in extending the life of the operating reactor. There are many benefits to such a decision, the most obvious being the revenue that will be generated from the additional years of electricity production by the utility. Delays in decommissioning are also advantageous since the large costs associated with such a long-term activity are pushed into the future, thereby decreasing the net present value (NPV) of the investment. In addition, relatively few power reactors have been fully decommissioned to date and deferring this activity transfers the associated risks to others that are currently obligated to undertake decommissioning activities sooner. Candu Energy has been involved with the life extension projects of the following CANDU reactors: Point Lepreau (New Brunswick, Canada), Bruce Unit 1 and Unit 2 (Ontario, Canada), and Wolsong Unit 1 (South Korea). These reactors underwent fuel channel replacement programs in addition to replacement of major reactor components. Most recently, both Ontario Power Generation (OPG) and Nucleoelectrica Argentina Sociedad Anonima (NA-SA) have commenced work on life extension projects at the Darlington (Canada) and Embalse (Argentina) sites respectively. The experience gained from previous LEP projects allows Candu Energy to deliver future projects in a timely, efficient, and cost effective manner. (author)

  12. CANDU operating experience

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.; Fanjoy, G.R.

    1982-03-01

    The CANDU Pressurized Heavy Water (CANDU-PHW) type of nuclear electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This paper highlights Ontario Hydro's operating experience using the CANDU-PHW system, with a focus on the operating performance and costs, reliability of system components and nuclear safety considerations both to the workers and the public

  13. Dimensional measurement of fresh fuel bundle for CANDU reactor

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Cho, Moon Sung; Suk, Ho Chun; Koo, Dae Seo; Jun, Ji Su; Jung, Jong Yeob

    2005-01-01

    This report describes the results of the dimensional measurement of fresh fuel bundles for the CANDU reactor in order to estimate the integrity of fuel bundle in two-phase flow in the CANDU-6 fuel channel. The dimensional measurements of fuel bundles are performed by using the 'CANDU Fuel In-Bay Inspection and Dimensional Measurement System', which was developed by this project. The dimensional measurements are done from February 2004 to March 2004 in the CANDU fuel storage of KNFC for the 36 fresh fuel bundles, which are produced by KNFC and are waiting for the delivery to the Wolsong-3 plant. The detail items of dimensional measurements are included fuel rod and bearing pad profiles of the outer ring in fuel bundle, diameter of fuel bundle, bowing of fuel bundle, fuel rod length, and surface profile of end plate profile. The measurement data will be compared with those of the post-irradiated bundles cooled in Wolsong-3 NPP spent fuel pool by using the same bundles and In-Bay Measurement System. So, this analysis of data will be applied for the evaluation of fuel bundle integrity in two-phase flow of the CANDU-6 fuel channel

  14. Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors

    International Nuclear Information System (INIS)

    Margeanu, C.A.; Rizoiu, A.C.

    2009-01-01

    The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO 2 -SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data

  15. Verification tests for CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Chung, Jang Hwan; Suk, Ho Cheon; Jeong, Moon Ki; Park, Joo Hwan; Jeong, Heung Joon; Jeon, Ji Soo; Kim, Bok Deuk

    1994-07-01

    This project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year Out-of-pile hydraulic tests for the prototype of CANFLEX bundle was conducted in the CANDU-hot test loop at KAERI. Thermalhydraulic analysis with the assumption of CANFLEX-NU fuel loaded in Wolsong-1 was performed by using thermalhydraulic code, and the thermal margin and T/H compatibility of CANFLEX bundle with existing fuel for CANDU-6 reactor have been evaluated. (Author)

  16. Nuclear power - replacement of pressure tubes in CANDU reactors

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The CANDU pressure tube reactor is an effective electricity generator. While most units have been built in Canada, units are successfully operated in Argentina and Korea as well as India and Pakistan, which have early versions of the same concept. Units are also under construction in Korea and Romania. The main constructional components of a CANDU core are the calandria vessel, the fuel channels and the reactivity control mechanisms. The fuel channel, in particular the pressure tubes, see an environment comprising high flux, high temperature water at high pressures, which induces changes in the properties and dimensions of the channel components. From the first, fuel channels were designed to be replaced because of the difficulty in predicting the behaviour of zirconium alloys in such service over a long period of time. In fact some phenomena, that were not known at the time of the earliest designs, have led to unacceptable changes in the properties of the channels and these early reactors have had to be retubed at half their intended life. These deficiencies have been corrected in the latest designs and fuel channels in reactors that have commenced operation over the last 10 years, are predicted to reach the intended 30 years life before replacement is necessary. The changing of fuel channels, the details and experience of which are explained, has been shown to be an effective way of refurbishing the CANDU reactor, extending its lifetime a further 25-30 years. (author)

  17. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hower [Zetec Inc. (Romania); Luiza Vladu; Adrian Nichisov; Mihai Cretu [COMPCONTROL ING. (Romania)

    2006-07-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  18. Results of the CANDU 3 probabilistic safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jaitly, R K [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The purpose of the Conceptual Probabilistic Safety Assessment (PSA) of the CANDU 3 reactor was to provide safety assistance in the early stages of design to ensure that the design included adequate redundancy and functional separation of the mitigating systems; the final design should therefore give better results, particularly after modifications involving control, electrical power, instrument air, and service water. The initial PSA gave a total CANDU 3 core damage frequency of 7.8 x 10{sup -6}/year. 4 refs., 1 fig.

  19. Results of the CANDU 3 probabilistic safety assessment

    International Nuclear Information System (INIS)

    Jaitly, R.K.

    1995-01-01

    The purpose of the Conceptual Probabilistic Safety Assessment (PSA) of the CANDU 3 reactor was to provide safety assistance in the early stages of design to ensure that the design included adequate redundancy and functional separation of the mitigating systems; the final design should therefore give better results, particularly after modifications involving control, electrical power, instrument air, and service water. The initial PSA gave a total CANDU 3 core damage frequency of 7.8 x 10 -6 /year. 4 refs., 1 fig

  20. The Romanian experience on introduction of CANDU-600 reactor at the Cernavoda NPP

    International Nuclear Information System (INIS)

    Rapeanu, S.N.; Bujor, A.; Comsa, O.

    1998-01-01

    The Cernavoda Nuclear Power Plant (NPP) Project is a key component of the Romanian nuclear development program. Selection of the CANDU design represents a major contribution to this development, due to the technological feasibility for manufacturing of parts, components and the nuclear fuel based on the uranium resources in Romania. The Romanian nuclear development program also involves a nuclear fuel manufacturing plant, a heavy water production plant and organizations specialized in research, engineering, manufacturing and completion for systems and components. The agreement on technological transfer between Canada and Romania is supporting the Romanian involvement to the achievement of the Project, with a degree of participation that is gradually increasing from the first to the last NPP Unit. (author)

  1. Advanced cycle efficiency: Generating 40% more power from the nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Romney B.; Leung, Laurence

    2010-09-15

    The introduction of supercritical water (SCW) nuclear power plants (NPPs) would improve the overall plant efficiency significantly compared to currently deployed systems. This improvement is attributed to the increase in plant operating conditions. In addition, the implementation of the reheat-channel option into the CANDU SCW NPPs would further enhance the efficiency. Overall, the combination of higher operating conditions and reheat-channel option would lead to overall plant efficiency of about 50% for the CANDU SCW NPPs, compared to 33--35% for currently deployed systems. This represents a whopping 40% improvement in efficiency.

  2. Nuclear safety risk control in the outage of CANDU unit

    International Nuclear Information System (INIS)

    Wu Mingliang; Zheng Jianhua

    2014-01-01

    Nuclear fuel remains in the core during the outage of CANDU unit, but there are still nuclear safety risks such as reactor accidental criticality, fuel element failure due to inability to properly remove residual heat. Furthermore, these risks are aggravated by the weakening plant system configuration and multiple cross operations during the outage. This paper analyzes the phases where there are potential nuclear safety risks on the basis of the typical critical path arrangement of the outage of Qinshan NPP 3 and introduces a series of CANDU-specific risk control measures taken during the past plant outages to ensure nuclear safety during the unit outage. (authors)

  3. Conceptual designs for advanced, high-temperature CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bushby, S.J. [Atomic Energy of Canada Ltd., Corrosion and Surface Science Branch, Chalk River Laboratories, Chalk River, ON (Canada); Dimmick, G.R. [Atomic Energy of Canada Ltd., Fuel Channel Thermmalhydraulics Branch, Chalk River, ON (Canada); Duffey, R.B. [Atomic Energy of Canada Ltd., Principal Scientist, Chalk River Laboratories, Chalk River, On (Canada); Spinks, N.J. [Atomic Energy of Canada Ltd., Researcher Emeritus, Chalk River Laboratories, Chalk River, ON (Canada); Burrill, K.A. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, ON (Canada); Chan, P.S.W. [Atomic Energy of Canada Ltd., Reactor Core Physics Branch, Mississauga, ON (Canada)

    2000-07-01

    AECL is studying advanced reactor concepts with the aim of significant cost reduction through improved thermodynamic efficiency and plant simplification. The program, generically called CANDU-X, also incorporates enhanced safety features, and flexible, proliferation-resistant fuel cycles, whilst retaining the fundamental design characteristics of CANDU: neutron economy, horizontal fuel channels, and a separate D{sub 2}O moderator that provides a passive heat sink. Where possible, proven, existing components and materials would be adopted, so that 'first-of-a-kind' costs and uncertainties are avoided. Three reactor concepts ranging in output from {approx}375 MW(e) to 1150 MW(e) are described. The modular design of a pressure tube reactor allows the plant size for each concept to be tailored to a given market through the addition or removal of fuel channels. Each concept uses supercritical water as the coolant at a nominal pressure of 25 MPa. Core outlet temperatures range from {approx}400degC to 625degC, resulting in substantial improvements in thermodynamic efficiencies compared to current nuclear stations. The CANDU-X Mark 1 concept is an extension of the present CANDU design. An indirect cycle is employed, but efficiency is increased due to higher coolant temperature, and changes to the secondary side; as well, the size and number of pumps and steam generators are reduced. Safety is enhanced through facilitation of thermo-siphoning of decay heat by increasing the temperature of the moderator. The CANDU-X NC concept is also based on an indirect cycle, but natural convection is used to circulate the primary coolant. This approach enhances cycle efficiency and safety, and is viable for reactors operating near the pseudo-critical temperature of water because of large changes in heat capacity and thermal expansion in that region. In the third concept (CANDUal-X), a dual cycle is employed. Supercritical water exits the core and feeds directly into a very high

  4. Advanced CANDU reactor design for operability

    International Nuclear Information System (INIS)

    Hopwood, J.M.; Lalonde, R.; Soulard, M.

    2003-01-01

    This paper outlines design features and engineering processes in the ACR TM development program which contribute to excellence in performance and low operating cost. AECL recognizes that future plant owners will place a high priority in these operational characteristics. A successful next generation plant will have a best-in-class capability, both in its design characteristics, in the engineering philosophy and program adopted during the product development, and in the vendor's approach to operating station support. The ACR program addresses each of these drivers. Operability considerations are built-in to the design at an overall, plant wide level. For example, based on the strong CANDU 6 operating record, targets for standard outage duration, time between outages and component durability are set, while the design engineering is managed to achieve these targets. The ultimate maintenance target for the ACR, once initial operating experience has been gained, is to operate with a 21-day standard maintenance outage at an interval of once every three years. At the detailed design level, close attention is paid to space allocation, to enable good maintenance access. Selection of components also places emphasis on maintainability based on the extensive and current experience with CANDU projects. (author)

  5. Modelling of the tritium dispersion from postulated accidental release of nuclear power plants

    International Nuclear Information System (INIS)

    Soares, Abner Duarte; Simoes Filho, Francisco Fernando Lamego; Cunha, Tatiana Santos da; Aguiar, Andre Silva de; Lapa, Celso Marcelo Franklin

    2011-01-01

    This study has the aim to assess the impact of accidental release of tritium postulate from a nuclear power reactor through environmental modeling of aquatic resources. In order to do that it was used computational models to simulation of tritium dispersion caused by an accident in a Candu reactor located in the ongoing Angra 3 site. The Candu reactor is one that uses heavy water (D 2 O) as moderator and coolant of the core. It was postulated, then, the LOCA accident (without fusion), where was lost 66 m3 of soda almost instantaneously. This inventory contained 35 P Bq and was released a load of 9.7 TBq/s in liquid form near the Itaorna beach, Angra dos Reis - RJ. The models mentioned above were applied in two scenarios (plant stopped or operating) and showed a tritium plume with specific activities larger than the reference level for seawater (1.1 MBq/m 3 ) during the first 14 days after the accident. (author)

  6. Development of an automated system for CANDU secondary coolant circuit chemistry control

    International Nuclear Information System (INIS)

    Dean, J.R.; Stewart, R.B.

    1978-04-01

    This report is a summary of work done to develop a means for automated control of the secondary coolant chemistry of CANDU 600 MW(e) power reactors using on-line analyzers and a minicomputer. The development work was carried out in cooperation with Saskatchewan Power Corporation at Estevan. Results and conclusions of the program are included, as are recommendations for a prototype installation in a domestic CANDU 600 MW steam generator. (author)

  7. CANDU lectures

    International Nuclear Information System (INIS)

    Rouben, B.

    1984-06-01

    This document is a compilation of notes prepared for two lectures given by the author in the winter of 1983 at the Institut de Genie Nucleaire, Ecole Polytechnique, Montreal. The first lecture gives a physical description of the CANDU reactor core: the nuclear lattice, the reactivity mechanisms, their functions and properties. This lecture also covers various aspects of reactor core physics and describes different calculational methods available. The second lecture studies the numerous facets of fuel management in CANDU reactors. The important variables in fuel management, and the rules guiding the refuelling strategy, are presented and illustrated by means of results obtained for the CANDU 600

  8. Validation of the COBRA code for dry out power calculation in CANDU type advanced fuels

    International Nuclear Information System (INIS)

    Daverio, Hernando J.

    2003-01-01

    Stern Laboratories perform a full scale CHF testing of the CANFLEX bundle under AECL request. This experiment is modeled with the COBRA IV HW code to verify it's capacity for the dry out power calculation . Good results were obtained: errors below 10 % with respect to all data measured and 1 % for standard operating conditions in CANDU reactors range . This calculations were repeated for the CNEA advanced fuel CARA obtaining the same performance as the CANFLEX fuel. (author)

  9. Prediction model for exhausted point of ion exchange resin column of moderator purification circuit at Korean CANDU plant

    International Nuclear Information System (INIS)

    Sohn, Wook; Kang, Duck-Won; Ahn, Hyun Kyoung; Rhee, In Hyoung

    2005-01-01

    Most of the carbon-14 produced at CANDU plants are removed by an Ion eXchange (IX) resin column of the moderator purification circuit, and a column is replaced based on an empirical guideline. Since the amount of carbon-14 released from CANDU plants is governed by the performance of a column, optimal operation of IX resin columns through the timely replacement based on an objective criterion is very important. For this, the model for predicting the exhausted point of an IX resin column has been developed based on local chemical equilibrium. The performance evaluation at Wolsong Unit 3 showed that the model was able to simulate the removal of species by an IX resin column to such a high degree that the model could provide an objective criterion to replace an IX resin column timely. The derived maximum service time of a fresh IX resin column was 4,080 h, about twice that of the existing empirical guideline (up to 2,000h). Accordingly, if the maximum service time derived in this paper is applied to Wolsong Unit 3, it is expected to reduce the cost needed for the replacement of IX resin column by about 50%. (author)

  10. A Model to Reproduce the Response of the Gaseous Fission Product Monitor (GFPM) in a CANDU{sup R} 6 Reactor (An Estimate of Tramp Uranium Mass in a Candu Core)

    Energy Technology Data Exchange (ETDEWEB)

    Mostofian, Sara; Boss, Charles [AECL Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga Ontario L5K 1B2 (Canada)

    2008-07-01

    In a Canada Deuterium Uranium (Candu) reactor, the fuel bundles produce gaseous and volatile fission products that are contained within the fuel matrix and the welded zircaloy sheath. Sometimes a fuel sheath can develop a defect and release the fission products into the circulating coolant. To detect fuel defects, a Gaseous Fission Product Monitoring (GFPM) system is provided in Candu reactors. The (GFPM) is a gamma ray spectrometer that measures fission products in the coolant and alerts the operator to the presence of defected fuel through an increase in measured fission product concentration. A background fission product concentration in the coolant also arises from tramp uranium. The sources of the tramp uranium are small quantities of uranium contamination on the surfaces of fuel bundles and traces of uranium on the pressure tubes, arising from the rare defected fuel element that released uranium into the core. This paper presents a dynamic model that reproduces the behaviour of a GFPM in a Candu 6 plant. The model predicts the fission product concentrations in the coolant from the chronic concentration of tramp uranium on the inner surface of the pressure tubes (PT) and the surface of the fuel bundles (FB) taking into account the on-power refuelling system. (authors)

  11. The relationship between natural uranium and advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Lane, A.D.; McDonnell, F.N.; Griffiths, J.

    1988-11-01

    CANDU is the most uranium-economic type of thermal power reactor, and is the only type used in Canada. CANDU reactors consume approximately 15% of Canadian uranium production and support a fuel service industry valued at ∼$250 M/a. In addition to their once-through, natural-uranium fuel cycle, CANDU reactors are capable of operating with slightly-enriched uranium (SEU), uranium-plutonium and thorium cycles, more efficiently than other reactors. Only SEU is economically attractive in Canada now, but the other cycles are of interest to countries without indigenous fuel resources. A program is underway to establish the fuel technologies necessary for the use of SEU and the other fuel cycles in CANDU reactors. 22 refs

  12. 8th International conference on CANDU maintenance. Conference proceedings

    International Nuclear Information System (INIS)

    2008-01-01

    The 8th International Conference on CANDU Maintenance was held in Toronto, Ontario, Canada on November 16-18, 2008. The theme of the conference was operational excellence: achieving competent, tightly-managed support services and was of interest to people working on the front lines of operations, maintenance and refurbishment. Equipment reliability is a critical factor in achieving safe and reliable Nuclear Power Plant operations for many reasons. For one it reduces the challenges upon the operating staff and allows station personnel to 'go on the offence' instead of having to play defense in a reactive mode. Plant reliability ensures that there is time to study the issues in detail and develop solutions for long-term success. Let us not forget that the owner carries the burden of demonstrating the return on investment, and plant reliability goes a long way in helping to make the case for plant life extension. A good reputation for plant reliability provides the public capital necessary to build confidence and facilitate the licensing process.

  13. CANDU reactors, their regulation in Canada, and the identification of relevant NRC safety issues

    International Nuclear Information System (INIS)

    Charak, I.; Kier, P.H.

    1995-04-01

    Atomic Energy of Canada, Limited (AECL) and its subsidiary in the US, are considering submitting the CANDU 3 design for standard design certification under 10 CFR Part 52. CANDU reactors are pressurized heavy water power reactors. They have some substantially different safety responses and safety systems than the LWRs that the commercial power reactor licensing regulations of the US Nuclear Regulatory Commission (NRC) have been developed to deal with. In this report, the authors discuss the basic design characteristics of CANDU reactors, specifically of the CANDU 3 where possible, and some safety-related consequences of these characteristics. The authors also discuss the Canadian regulatory provisions, and the CANDU safety systems that have evolved to satisfy the Canadian regulatory requirements as of December 1992. Finally, the authors identify NRC regulations, mainly in 10 CFR Parts 50 and 100, with issues for CANDU 3 reactor designs. In all, eleven such regulatory issues are identified. They are: (1) the ATWS rule (section 50.62); (2) station blackout (section 50.63); (3) conformance with Standard Review Plan (SRP); (4) appropriateness of the source term (section 50.34(f) and section 100.11); (5) applicability of reactor coolant pressure boundary (RCPB) requirements (section 50.55a, etc); (6) ECCS acceptance criteria (section 50.46)(b); (7) combustible gas control (section 50.44, etc); (8) power coefficient of reactivity (GDC 11); (9) seismic design (Part 100); (10) environmental impacts of the fuel cycle (section 51.51); and (11) (standards section 50.55a)

  14. The integrity of CANDU fuel during load following

    International Nuclear Information System (INIS)

    Tayal, M.; Manzer, A.M.; Sejnoha, R.; Hains, A.J.

    1989-08-01

    This paper summarizes data and analyses of integrity and of physics of CANDU fuel during load following. Measurements of irradiated fuel show that power cycles do not enhance release of fission gas. Data from research reactors show that the power cycles cause cyclic strains in the sheath. Finite element analyses show that the cyclic strains give highly multiaxial stresses in the sheath. The stresses and the strains are well into the plastic range. The cyclic loads 'use up' some fraction of the sheath's resistance to environmentally-assisted cracking (EAC), depending on the details of the fuel design and of then power cycles. The balance of the sheath's resistance to EAC continues to be available to counteract static loads. Thousands of fuel bundles have experienced many power cycles in research and in commercial reactors. Overall integrity of fuel bundles is well over 99%. Thus, CANDU fuel continues to show good performance in both base-load and load-following reactors

  15. A fast-running fuel management program for a CANDU reactor

    International Nuclear Information System (INIS)

    Choi, Hangbok

    2000-01-01

    A fast-running fuel management program for a CANDU reactor has been developed. The basic principle of this program is to select refueling channels such that the reference reactor conditions are maintained by applying several constraints and criteria when selecting refueling channels. The constraints used in this program are the channel and bundle power and the fuel burnup. The final selection of the refueling channel is determined based on the priority of candidate channels, which enhances the reactor power distribution close to the time-average model. The refueling simulation was performed for a natural uranium CANDU reactor and the results were satisfactory

  16. The future for CANDU

    International Nuclear Information System (INIS)

    Foster, J.S.

    1977-06-01

    Canada could have 60,000 MW(e) of installed nuclear-electric generating capacity by the year 2000 and have exported the plan to generate a further 5,000 MW(e). While the CANDU reactor can readily be scaled up to larger unit sizes, its real potential lies in the even greater efficiency that can be obtained by using alternative fuel cycles. The thorium - uranium-233 fuel cycle, for instance, makes it possible to attain a conversion factor of unity, or a little better, on a feed of pure thorium in a substantially unmodified CANDU reactor. Further developments, such as spallation, offer means of converting fertile to fissile material to provide a fissile inventory for an expanding system. The coincidence of expected future shortages of other energy supplies with continuing good experience in the nuclear field should assist in creating a climate that will permit accelerated nuclear power development. (author)

  17. CANDU fuel cycles - present and future

    International Nuclear Information System (INIS)

    Mooradian, A.J.

    1976-05-01

    The present commercially proven Canadian nuclear power system is based on a once-through natural uranium fuel cycle characterized by high uranium utilization and a high conversion efficiency. The cycle closes with secure retrievable storage of spent fuel. This cycle is based on a CANDU reactor concept which is now well understood. Both active and passive fuel storage options have been investigated and will be described in this paper. Future development of the CANDU system is focussed on conservation of uranium by plutonium and thorium recycle. The full exploitation of these options requires continued emphasis on neutron conservation, efficiency of extraction and fuel refabrication processes. The results of recent studies are discussed in this paper. (author)

  18. Evolution of the CANDU control centre retrofit and new stations

    International Nuclear Information System (INIS)

    Olmstead, R.A.; Mitchell, W.

    1991-01-01

    Significant event data from operating nuclear plants in many countries consistently indicates human errors are the root cause for 40-60% of operating station significant events. Because so much information is already in digital form, opportunities exist to improve the CANDU control centre with retrofits that exploit this information. These opportunities are enhanced because of rapid technological development in computers and electronics, coupled with significant progress in the behavioural sciences that greatly increases our knowledge of the cognitive strengths and weaknesses of human beings. CANDU control rooms are undergoing retrofits and for future CANDU stations, a new concept of the control centre is emerging. The objective is to significantly reduce the incidence of human error, reduce operations and maintenance costs and improve both reliability and safety

  19. Evolution of the CANDU control centre retrofit and new stations

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, R A [AECL-CANDU, ON (Canada); Mitchell, W [Ontario Hydro, Darlington Nuclear Generating Station, Bowmanville, ON (Canada)

    1991-04-01

    Significant event data from operating nuclear plants in many countries consistently indicates human errors are the root cause for 40-60% of operating station significant events. Because so much information is already in digital form, opportunities exist to improve the CANDU control centre with retrofits that exploit this information. These opportunities are enhanced because of rapid technological development in computers and electronics, coupled with significant progress in the behavioural sciences that greatly increases our knowledge of the cognitive strengths and weaknesses of human beings. CANDU control rooms are undergoing retrofits and for future CANDU stations, a new concept of the control centre is emerging. The objective is to significantly reduce the incidence of human error, reduce operations and maintenance costs and improve both reliability and safety.

  20. Wet steam turbines for CANDU-Reactors

    International Nuclear Information System (INIS)

    Westmacott, C.H.L.

    1977-01-01

    The technical characteristics of 4 wet steam turbine aggregates used in the Pickering nuclear power station are reported on along with operational experience. So far, the general experience was positive. Furthermore, plans are mentioned to use this type of turbines in other CANDU reactors. (UA) [de

  1. Overview of nuclear power plant equipment qualification issues and practices

    International Nuclear Information System (INIS)

    Torr, K.G.

    1989-01-01

    This report presents a view of and commentary on the current status of equipment qualification (EQ) in nuclear industries of the major western nations. The introductory chapters discuss the concepts of EQ, the elements of EQ process and highlight some of the key issues in EQ. A brief review of industry practices and some of the prevalent industrial standards is presented, followed by an overview of current regulatory positions in the USA, France, Germany and Sweden. A summary and commentary on the latest research findings on issues relating to accident simulation, to aging simulation and some special topics related to EQ, has been contributed by Franklin Research Centre of Philadelphia. The last part of the report deals with equipment qualification in Canada and gives recommendations on EQ for new plants as well as currently operational CANDU nuclear power plants

  2. Economics of CANDU-PHW

    International Nuclear Information System (INIS)

    McConnell, L.G.; Woodhead, L.W.

    1981-01-01

    Nuclear and coal stations are the primary options in Ontario for new power generation over the period 1980-2000. The former are the best for base-load requirements, and the latter for peaking. In 1980 the total unit energy cost for Pickering A was 12.77 mill/kWh, compared with 21.18 mill/kWh for power from the Lambton coal-fired station. With on-power fuelling, CANDU-PHW units have achieved a 77 percent capacity factor since first electricity production and 79 percent since their in-service dates. Assuming a 67 percent capacity factor for PWR performance, the power costs with PWR units would be 26 percent higher. (D.N.)

  3. An experimental study of a flashing-driven CANDU moderator cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Khartabil, H F; Spinks, N J [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The results of an experimental study to investigate the feasibility of using a passive flashing-driven natural circulation loop for CANDU-reactor moderator heat rejection are presented. A scaled loop was constructed and tested at conditions approximating those of a CANDU calandria cooling system. The results showed that stable loop operation was possible at simulated powers approaching normal full power. At lower powers, flow oscillations occurred as the flow in the hot-leg periodically changed from two-phase to single-phase. The results from earlier numerical predictions using the CATHENA thermalhydraulics code showed good qualitative agreement with the experimental results. (author). 6 refs., 11 figs.

  4. Status of advanced technologies for CANDU reactors

    International Nuclear Information System (INIS)

    Lipsett, J.J.

    1989-01-01

    The future development of the CANDU reactor is a continuation of a successful series of reactors, the most recent of which are nine CANDU 6 Mk 1* units and four Darlington units. There are three projects underway that continue the development of the CANDU reactor. These new design projects flow from the original reactor designs and are a natural progression of the CANDU 6 Mk 1, two units of which are operating successfully in Canada, one each in Argentina and Korea, with five more being built in Rumania. These new design projects are known as: CANDU 6 Mk 2, an improved version of CANDU 6 Mk 1; CANDU 3, a small, advanced version of the CANDU 6 Mk 1; CANDU 6 Mk 3, a series of advanced CANDU reactors. A short description of modified versions of CANDU reactors is given in this paper. 5 figs

  5. The CANDU 9 fuel transfer system

    International Nuclear Information System (INIS)

    Keszthelyi, Z.G.; Morikawa, D.T.

    1996-01-01

    The CANDU 9 fuel transfer system is based on the CANDU 6 and the Ontario Hydro Darlington NGD designs, modified to suit the CANDU 9 requirements. The CANDU 9 new fuel transfer system is very similar to the CANDU 6, with modifications to allow new fuel loading from outside containment, similar to Darlington. The CANDU 9 irradiated fuel transfer system is based on the Darlington irradiated fuel transfer system, with modifications to meet the more stringent containment requirements, improve performance, and match station layout. (author). 2 refs., 6 figs

  6. The CANDU 9 fuel transfer system

    Energy Technology Data Exchange (ETDEWEB)

    Keszthelyi, Z G [Canadian General Electric Co. Ltd., Peterborough, ON (Canada); Morikawa, D T [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1997-12-31

    The CANDU 9 fuel transfer system is based on the CANDU 6 and the Ontario Hydro Darlington NGD designs, modified to suit the CANDU 9 requirements. The CANDU 9 new fuel transfer system is very similar to the CANDU 6, with modifications to allow new fuel loading from outside containment, similar to Darlington. The CANDU 9 irradiated fuel transfer system is based on the Darlington irradiated fuel transfer system, with modifications to meet the more stringent containment requirements, improve performance, and match station layout. (author). 2 refs., 6 figs.

  7. Improved containment isolation for CANDU plants

    Energy Technology Data Exchange (ETDEWEB)

    Stretch, A H [Atomic Energy of Canada Ltd., Mississauga, ON (Canada)

    1996-12-31

    The publication of Regulatory Policy Statement R- 7 in February 1991 by the Atomic Energy Control Board imposes new requirement for the isolation of fluid piping penetrating the containment boundary. The Appendix of R-7 describes the detailed requirements for metal extensions of the containment envelope, including the code classification qf the pressure retaining portions and isolation requirements for fluid piping and tubing.The application of these new requirements to the existing CANDU 6 design resulted in a number of design changes, including the addition of manual and automatic isolation valves, changes in code classification, and leakage monitoring considerations. (author). 3 refs., 3 figs.

  8. Assessment of System Behavior and Actions Under Loss of Electric Power For CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Kang, San Ha; Moon, Bok Ja; Kim, Seoung Rae [Nuclear Engineering Service and Solution Co., Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    For the analysis, the CANDU-6 plant in Korea is considered and only the passive components are operable. The other systems are assumed to be at failed condition due to the loss of electric power. At this accident, only the inventories remained in the primary heat transport system (PHTS) and steam generator can be used for the decay heat removal. Due to the transfer of decay heat, the inventory of steam generator secondary side is discharged to the air through passive operation of main steam safety valves (MSSVs). After the steam generators are dried, the PHTS is over-pressurized and the coolant is discharged to fuelling machine vault through passive operation of degasser condenser tank relief valves (DCRVs). Under this situation, the maintenance of the integrity of PHTS is important for the protection of radionuclides release to the environment. Thus, deterministic analysis using CATHENA code is carried out for the simulation of the accident and the appropriate operator action is considered. The loss of electric power results in the depletion of steam generator inventory which is necessary for the decay heat removal. If only the passive system is credited, the PT can be failed after the steam generator is depleted. For the prevention of the PT failure, the feedwater should be supplied to the steam generator before 4,800s after the accident. The feedwater can be supplied using water in dousing tank if the steam generators are depressurized. The decay heat from the core is removed through natural circulation if the feedwater can be supplied continuously.

  9. Design and analysis of CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Park, Kwang Seok; Kim, Bong Ki; Lee, Yeong Uk; Jeong, Chang Joon; Oh, Deok Joo; Lee, Ui Joo; Park, Joo Hwan; Lee, Sang Yong; Jeong, Beop Dong; Choi, Han Rim; Lee, Yeong Jin; Choi, Cheol Jin; Choi, Jong Ho; Lee, Kwang Won; Cho, Cheon Hyi; On, Myeong Ryong; Kim, Taek Mo; Lim, Hong Sik; Lee, Kang Moon; Lee, Nam Ho; Lee, Kyu Hyeong

    1994-07-01

    It has been projected that a total of 5 pressurized heavy water reactors (PHWR) including Wolsong 1 under operation and Wolsong 2, 3 and 4 under construction will be operated by 2006, and so about 500 ton of natural uranium will be consumed every year and a lot of spent fuels will be generated. Therefore, the ultimate goal of this R and D project is to develop the CANDU advanced fuel having the following capabilities compared with existing standard fuel: (1) To reduce linear heat generation rating by more than 15% (i.e., less than 50 kW/m), (2) To extend fuel burnup by more than 3 times (i.e., higher than 21,000 MWD/MTU), and (3) To increase critical channel power by more than 5%. In accordance, the followings are performed in this fiscal year: (1) Undertake CANFLEX-NU design and thermalmechanical performance analysis, and prepare design documents, (2) Establish reactor physics analysis code system, and investigate the compativility of the CANFLEX-NU fuel with the standard 37-element fuel in the CANDU-6 reactor. (3) Establish safety analysis methodology with the assumption of the CANFLEX-NU loaded CANDU-6 reactor, and perform the preliminary thermalhydraulic and fuel behavior for the selected DBA accidents, (4) Investigate reactor physics analysis code system as pre-study for CANFLEX-SEU loaded reactors

  10. Thermal analysis model for the temperature distribution of the CANDU spent fuel assembly

    International Nuclear Information System (INIS)

    Choi, Hae Yun; Kwon, Jong Soo; Park, Seong Hoon; Kim, Seong Rea; Lee, Gi Won

    1996-01-01

    The purpose of this technical is to introduce the methodology and experimental process for the experimental research work with the mock-up test performed to verify and validate the MAXROT code which is a thermal analysis method for Wolsong (CANDU) spent fuel dry storage canister. The experiment was conducted simulating the heat transfer characteristics of combinations of equilateral triangular and square pitch arrays of heater rods, similar to a CANDU spent fuel bundle. After assembly of the heater rod bundle into the containment vessel, the experimental apparatus was operated under the same operating and boundary conditions as an interim dry storage condition at the nuclear power plant site. The reduced data from this experiment has been utilized to verity a model developed to predict the maximum fuel rod surface temperature in a fuel bundle. These test procedures and the experiment can be utilized to establish the fine thermal analysis method applicable to dry storage system for the spent fuel. 12 figs., 5 tabs., 36 refs. (Author) .new

  11. Thermal analysis model for the temperature distribution of the CANDU spent fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Yun; Kwon, Jong Soo; Park, Seong Hoon; Kim, Seong Rea; Lee, Gi Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-01-01

    The purpose of this technical is to introduce the methodology and experimental process for the experimental research work with the mock-up test performed to verify and validate the MAXROT code which is a thermal analysis method for Wolsong (CANDU) spent fuel dry storage canister. The experiment was conducted simulating the heat transfer characteristics of combinations of equilateral triangular and square pitch arrays of heater rods, similar to a CANDU spent fuel bundle. After assembly of the heater rod bundle into the containment vessel, the experimental apparatus was operated under the same operating and boundary conditions as an interim dry storage condition at the nuclear power plant site. The reduced data from this experiment has been utilized to verity a model developed to predict the maximum fuel rod surface temperature in a fuel bundle. These test procedures and the experiment can be utilized to establish the fine thermal analysis method applicable to dry storage system for the spent fuel. 12 figs., 5 tabs., 36 refs. (Author) .new.

  12. Development of CANDU core monitoring system

    International Nuclear Information System (INIS)

    Yoon, M. Y.; Yeam, C. S.; Kwon, O. H.; Kim, K. H.

    2003-01-01

    The research was performed to develop a CANDU Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong Nuclear Power Plant(NPP) No. 1. CCMS uses RFSP(Reactor Fueling Simulation Program) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from DCC(Digital Control Computer) for the purpose of producing basic input data. CCMS could be largely divided into two modules; CCMS server program and CCMS client program. CCMS server program plays the role in automatic and continuous RFSP run and management of the past output data resulting from the run using Data Base Management System(DBMS). CCMS client program enables users to monitor current and past core status with GUI(Graphic-User Interface) environment predefined. The effectiveness of CCMS was verified by comparing the data resulted from field-test of the system for about 43 hours with the data used in the field of Wolsong NPP No. 1

  13. Development of CANDU core monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, M. Y.; Yeam, C. S.; Kwon, O. H.; Kim, K. H. [Institute for Advanced Engineering, Yongin (Korea, Republic of)

    2003-07-01

    The research was performed to develop a CANDU Core Monitoring System(CCMS) that enables operators to have efficient core management by monitoring core power distribution, burnup distribution, and the other important core variables and managing the past core history for Wolsong Nuclear Power Plant(NPP) No. 1. CCMS uses RFSP(Reactor Fueling Simulation Program) for continuous core calculation by integrating the algorithm and assumptions validated and uses the information taken from DCC(Digital Control Computer) for the purpose of producing basic input data. CCMS could be largely divided into two modules; CCMS server program and CCMS client program. CCMS server program plays the role in automatic and continuous RFSP run and management of the past output data resulting from the run using Data Base Management System(DBMS). CCMS client program enables users to monitor current and past core status with GUI(Graphic-User Interface) environment predefined. The effectiveness of CCMS was verified by comparing the data resulted from field-test of the system for about 43 hours with the data used in the field of Wolsong NPP No. 1.

  14. Distributed control and instrumentation systems for future nuclear power plants

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.

    1976-01-01

    The centralized dual computer system philosophy has evolved as the key concept underlying the highly successful application of direct digital control in CANDU power reactors. After more than a decade, this basis philosophy bears re-examination in the light of advances in system concepts--notably distributed architectures. A number of related experimental programs, all aimed at exploring the prospects of applying distributed systems in Canadian nuclear power plants are discussed. It was realized from the outset that the successful application of distributed systems depends on the availability of a highly reliable, high capacity, low cost communications medium. Accordingly, an experimental facility has been established and experiments have been defined to address such problem areas as interprocess communications, distributed data base design and man/machine interfaces. The design of a first application to be installed at the NRU/NRX research reactors is progressing well

  15. Support analysis for safety analysis development for CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Bedreaga, L.; Florescu, Gh.; Apostol, M.; Nitoi, M.

    2004-01-01

    Probabilistic Safety Assessment analysis (PSA) is a technique used to assess the safety of a nuclear power plant. Assessments of the nuclear plant systems/components from safety point of view consist in accomplishment of a lot of support analyses that are the base for the main analysis, in order to evaluate the impact of occurrences of abnormal states for these systems. Evaluation of initiating events frequency and components failure rate is based on underlying probabilistic theory and mathematic statistics. Some of these analyses are detailed analyses and are known very well in PSA. There are also some analyses, named support analyses for PSA, which are very important but less applicable because they involve a huge human effort and hardware facilities to accomplish. The usual methods applicable in PSA such as input data extracted from the specific documentation (operation procedures, testing procedures, maintenance procedures and so on) or conservative evaluation provide a high level of uncertainty for both input and output data. The paper describes support analysis required to improve the certainty level in evaluation of reliability parameters and also in the final results (either risk, reliability or safety assessment). (author)

  16. Construction of new nuclear power plant in Bulgaria - incentives and problems

    International Nuclear Information System (INIS)

    Popov, M.; Bataklieva, L.; Hinovski, I.

    2002-01-01

    Advantages and disadvantages of constriction of new nuclear power plant in Bulgaria are discussed. Several options for further development are considered: Completion of the Belene NPP; Evolutionary design installations PWR technology, 600 MW (AP-600 Westinghouse design; B-407 Russian design); Standard design of Framatome, 900 MW; Standard design - heavy water technology CANDU-6 (700 MW) and other.The results of the preliminary economic analyses show that the first two options are approximately equal, but the all options are acceptable from investment point of view, considering an average macro economic environment. The need of assessment of all aspects (technical, economical, financial, social, environmental, national infrastructure) of nuclear sector development is outlined

  17. Methodology used to calculate moderator-system heat load at full power and during reactor transients in CANDU reactors

    International Nuclear Information System (INIS)

    Aydogdu, K.

    1998-01-01

    Nine components determine the moderator-system heat load during full-power operation and during a reactor power transient in a CANDU reactor. The components that contribute to the total moderator-system heat load at any time consist of the heat generated in the calandria tubes, guide tubes and reactivity mechanisms, moderator and reflector; the heat transferred from calandria shell, the inner tubesheets and the fuel channels; and the heat gained from moderator pumps and heat lost from piping. The contributions from each of these components will vary with time during a reactor transient. The sources of heat that arise from the deposition of nuclear energy can be divided into two categories, viz., a) the neutronic component (which is directly proportional to neutronic power), which includes neutron energy absorption, prompt-fission gamma absorption and capture gamma absorption; and b) the fission-product decay-gamma component, which also varies with time after initiation of the transient. An equation was derived to calculate transient heat loads to the moderator. The equation includes two independent variables that are the neutronic power and fission-product decay-gamma power fractions during the transient and a constant term that represents the heat gained from moderator pumps and heat lost from piping. The calculated heat load in the moderator during steady-state full-power operation for a CANDU 6 reactor was compared with available measurements from the Point Lepreau, Wolsong 1 and Gentilly-2 nuclear generating stations. The calculated and measured values were in reasonably good agreement. (author)

  18. Transmutation of minor actinides in a Candu thorium borner

    International Nuclear Information System (INIS)

    Sahin, S.; Sahin, H. M.; Acir, A.; Yalcin, S.; Yildiz, K.; Sahin, N.; Altinok, T.; Alkan, M.

    2007-01-01

    The paper investigates the prospects of exploitation of rich world thorium reserves in CANDU reactors. Large quantities of plutonium have been accumulated in the nuclear waste of civilian LWRs and CANDU reactors. Reactor grade plutonium can be used as a booster fissile fuel material in form of mixed ThO 2 /PuO 2 fuel in a CANDU fuel bundle in order to assure reactor criticality. Two different fuel compositions have been selected for investigations: 1) 96% thoria (ThO 2 ) + 4% PuO 2 and 2) 91% ThO 2 + 5% UO 2 + 4 PuO 2 . The latter is used for the purpose of denaturing the new 2 33U fuel with 2 38U. The behavior of the criticality k ∞ and the burn-up values of the reactor have been pursued by full power operation for > ∼ 8 years. The reactor starts with k ∞ = ∼ 1.39 and the criticality drops down asymptotically to values k ∞ > 1.06, still tolerable and usable in a CANDU reactor. Reactor criticality k ∞ remains nearly constant between the 4th year and 7th year of plant operation and then a slight increase is observed thereafter, along with a continuous depletion of thorium fuel. After the 2nd year, the CANDU reactor begins to operate practically as a thorium burner. Very high burn up can be achieved with the same fuel (> 160 000 MW.D/MT). The reactor criticality would be sufficient until a great fraction of the thorium fuel is burnt up, provided that the fuel rods could be fabricated to withstand such high burn up levels. Fuel fabrication costs and nuclear waste mass for final disposal per unit energy could be reduced drastically. There is a great quantity of weapon grade plutonium accumulated in nuclear stockpiles. In the second phase of investigations, weapon grade plutonium is used as a booster fissile fuel material in form of mixed ThO 2 /PuO 2 fuel in a CANDU fuel bundle in order to assure the initial criticality at startup. Two different fuel compositions have been used: 1) 97% thoria (ThO 2 ) + 3% PuO 2 and 2) 92% ThO 2 + 5% UO 2 + 3% PuO 2 . The

  19. Assessment and management of ageing of major nuclear power plant components important to safety: CANDU pressure tubes

    International Nuclear Information System (INIS)

    1998-08-01

    The report documents the current practices for assessment and management of the ageing of the pressure tubes in CANDU reactors and Indian PHWTRs. Chapter headings are: fuel channel and pressure tube description, design basis for the fuel channel and pressure tube, degradation mechanisms and ageing concerns for pressure tubes, inspection and monitoring methods for pressure tubes,assessment methods and fitness-for-service guidelines for pressure tubes, mitigation methods for pressure tubes, and pressure tube ageing management programme

  20. The structural aging assessment program: ranking methodology for CANDU nuclear generating station concrete components

    International Nuclear Information System (INIS)

    Philipose, K.E.; Muhkerjee, P.K.; McColm, E.J.

    1997-01-01

    Most of the major structural components in CANDU nuclear generating stations are constructed of reinforced concrete. Although passive in nature, these structures perform many critical safety functions in the operation of each facility. Aging can affect the structural capacity and integrity of structures. The reduction in capacity due to aging is not addressed in design codes. Thus a program is warranted to monitor the aging of safety-related CANDU plant structures and to prioritize those that require maintenance and repairs. Prioritization of monitoring efforts is best accomplished by focusing on those structures judged to be the most critical to plant performance and safety. The safety significance of each sub-element and its degradation with time can be evaluated using a numerical rating system. This will simplify the utility's efforts, thereby saving maintenance costs while providing a higher degree of assurance that performance is maintained. This paper describes the development of a rating system (ranking procedure) as part of the Plant Life Management of CANDU generating station concrete structures and illustrates its application to an operating plant. (author)

  1. A New In-core Production Method of Co-60 in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jinqi; Kim, Woosong; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of); Park, Younwon [BEES Inc, Daejeon (Korea, Republic of)

    2016-05-15

    This study introduces an innovative method for Co-60 production in the CANDU6 core. In this new scheme, the central fuel element is replaced by a Co-59 target and Co-60 is obtained after the fuel bundle is discharged. It has been shown that the new method can produce significantly higher amount of Co-60 than the conventional Co production method in CANDU6 reactors without compromising the fuel burnup by removing some (<50%) of the adjuster rods in the whole core. The coolant void reactivity is noticeably reduced when a Co-59 target is loaded into the central pin of the fuel bundle. Meanwhile, the peak power in a fuel bundle is just a little higher due to the central Co-59 target than in conventional CANDU6 fuel design. The basic technology for Co-60 producing was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) in 1946 and the same technology was adapted and applied in CANDU6 power reactors. The standard CANDU6 reactor has 21 adjuster rods which are fully inserted into the core during normal operation. The stainless steel adjuster rods are replaced with neutronically-equivalent Co-59 adjusters to produce Co-60. Nowadays, the roles of the adjuster rods are rather vague since nuclear reactors cannot be quickly restarted after a sudden reactor trip due to more stringent regulations. In some Canadian CANDU6 reactors, some or all the adjuster rods are removed from the core to maximize the uranium utilization.

  2. CANDU fuel deposits and chemistry optimizations. Recent regulatory experience in Canadian Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kameswaran, Ram

    2014-01-01

    Water chemistry of the Primary Heat Transport System (PHT) of CANDU – Pressurised Heavy Water Reactors profoundly influences the transport of corrosion products around the Heat Transport System (HTS), where they can be deposited as crud on steam generators, feeder pipes and on the fuel. Fuel cladding can be covered with deposits which have precipitated from the coolant as a result of temperature changes or non-optimal coolant pH. Precipitation of deposits in-core must be avoided as far as possible, as it leads to fouling of the fuel, loss of heat transfer efficiency, and increased radiation fields. In the recent years a Canadian NPP experienced increased instances of black deposits being observed on fuel bundles discharged from one of the units. The black deposits were initially observed in 2008 during in-bay fuel inspections. Since then it has been determined that all the discharged fuel bundles have black deposits on them and that observed deposits have been increasing in size (thickness and surface area). This negative trend has persisted through to 2012, when one of fuel bundles was observed with significantly larger deposit than previously seen. Initial analysis of the deposit indicated it to be iron oxide (magnetite). Flow Accelerated Corrosion (FAC) of carbon steel feeder pipes is the primary source of iron, which deposits as magnetite on HTS surfaces. The black deposits have predominantly been located immediately downstream of the bearing pads of the fuel bundle. Deposits have also tended to form on the bottom-downstream quadrant of the fuel bundles. The deposits were most prevalent in low power channels, but some deposits have been observed on high power channels. It was reported by the utility that the PHT system chemistry has been maintained in specification for most of the time during normal operation but the chemistry control during outages was inadequate. Due to design constraints, purification circuit was not available during outages and ion

  3. Seismic fragility analysis of a CANDU containment structure for near-fault ground motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Choun, Young Sun; Seo, Jeong Moon; Ahn, Seong Moon

    2005-01-01

    The R. G. 1.60 spectrum used for the seismic design of Korean nuclear power plants provides a generally conservative design basis due to its broadband nature. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near these faults. The probability based scenario earthquakes were identified as near-field earthquakes. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. It is necessary to estimate the near-fault ground motion effects on the nuclear power plant structures and components located near the faults. In this study, the seismic fragility analysis of a CANDU containment structure was performed based on the results of nonlinear dynamic time-history analyses

  4. 1200 FPD refuelling simulation of RUFIC fuel in a CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon Young; Jeong, Chang Joon; Min, Byung Joo; Suk, Ho Chun

    2001-07-01

    The refuelling strategy of RUFIC (Recovered Uranium Fuel in CANDU) fuel as a high-burnup fuel for a CANDU 6 reactor is studied to determine the achievable operation characteristics of the fuel and reactor. In this study, three refuelling schemes of 4-, 2-, and 3-bundle shift for 0.92 w/o RUFIC fuel in an CANDU 6 reactor were individually evaluated through 1200 FPD(Full Power Day)refuelling simulaltions where the 0.92 w/o RUFIC is equivalent to CANFLEX 0.9 w/o SEU(Slightly Enriched Uranium) in reactivity and burnup respects. The computer code system used for this study is WIMS-AECL/DRAGON/RFSP. The results simulated for the case of 4-bundle shift refueling scheme shows that the peak maximum channel power and peak maximum CPPF(Channel Power Peaking Factor)of 7228 kW and 1.175, respectively, seems too high to maintain the available operating margins, because some data of the maximum channel power exceed the operating limit(7070 kW based on the Technical Specifications of Wolsong 3 and 4 Units). Whereas, the results simulated for the case of 2-bundle shift refuelling scheme shows that sufficient operating margin could be secured where the peak maximum channel power and peak maximum CPPF were 6889 kW and 1.094, respectively. However, the channel refuelling rate (channels/day) of the 2-bundle shift refuelling scheme is twice that of the 4-bundle shift refuelling scheme, and hence the 2-bundle shift refuelling would not be an economical refuelling scheme for the RUFIC fuel bundles. Therefore, a 3-bundle shift refuelling scheme for the RUFIC fuel in CANDU 6 reactor was also studied by the 1200 FPD refuelling simulation. As a result, it is found that all the operating parameters in the 3-bundle shift case are achivable for the CANDU 6 reactor operation, and the channel refuelling rate of 2.88 channels/day seems to be attractive compared to the refuelling rate of 4.32 channels/day in the 2-bundle shift case.

  5. The status of safeguarding 600 MW(e) CANDU reactors

    International Nuclear Information System (INIS)

    Von Baeckmann, A.; Rundquist, D.E.; Pushkarjov, V.; Smith, R.M.; Zarecki, C.W.

    1982-09-01

    There has been extensive work in the development of CANDU safeguards since the last International Conference on Nuclear Power, and this has resulted in the development of improved equipment for the safeguards system now being installed in the 600 MW(e) CANDU generating stations. The overall system is designed to improve on the existing IAEA safeguards and to provide adequate coverage for each plausible nuclear material diversion route. There is sufficient sensitivity and redundancy to enable the timely detection of the possible diversion of significant quantities of nuclear material

  6. Pressure drop variation as a function of axial and radial power distribution in CANDU fuel channel with standard and CANFLEX 43 bundles

    International Nuclear Information System (INIS)

    Catana, Alexandru; Department of Energy Danila, Nicolae; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    CANDU 600 nuclear reactors are usually fuelled with STANDARD (STD), 37 rods fuel bundles. Natural uranium (NU) dioxide (UO 2 ), is used as fuel composition. A new fuel bundle geometry called CANFLEX (CFX) with 43 rods is proposed and some new fuel composition are considered. Flexibility is the key word for the attempt to use some different fuel geometries and compositions for CANDU 600 nuclear reactors as well as for innovative ACR-700/1000 nuclear reactors. The fuel bundle considered in this paper is CFX-RU-0.90 that encodes the CANFLEX geometry, recycled dioxide uranium (RU) with 0.90% enrichment. The goal of this proposal is ambitious: a higher average discharge burn-up up to 14000 MWd/tU and, for the same amount of generated electric power, reduction in nuclear fuel fabrication, reduction of spent nuclear fuel radioactive waste and reduction of refueling operational work by using fewer bundles. An improved sub-channel approach for thermal-hydraulic analysis is used in this paper to compute some flow parameters, mainly the pressure drop along the CANDU 600 fuel channel when STD or CFX-RU-0.90 fuel bundles. Also an intermediate CFX-NU fuel bundle are used, for gradual comparison. For CFX-RU- 0.90 four fuel bundle shift refueling scheme is used instead of eight, that will determine different axial power distributions. At the same time radial power distribution is affected by the geometry and by the fuel composition of fuel bundle type used. Some other thermal-hydraulic flow parameters will be influenced, too. One of the most important parameter is pressure drop (PD) along the fuel channel because of its importance in drag force evaluation. We start with an axial power distribution, which is characteristic for a refueling scheme of eight or four fuel bundles on a shift. Comparative results are presented between STD37, CFX-NU CFX-RU-0.90 fuel bundles in a CANDU nuclear reactor operating conditions. Neutron flux distribution analysis shows that four bundle shift

  7. Nuclear power: benefits for the future

    International Nuclear Information System (INIS)

    Vultur, G.; Vultur, C.

    2000-01-01

    This paper explains how nuclear power was implemented in Romania, why Romania chose nuclear energy, and what the impact of building a power plant is on the industry and environment of Romania. In the 1960's, Romania started discussions with different partners to cooperate in the development and application of atomic energy for a peaceful purpose. In 1977, the Romanian Government decided that the Candu-600 would be the basic unit for its nuclear program. The contract between Romania and Canada was for 5 units. In 1979, the construction of the first Candu unit started in Cernavoda, on the Danube 160 km east of Bucharest. (authors)

  8. ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles

    International Nuclear Information System (INIS)

    Rao, Y.F.; Cheng, Z.; Waddington, G.M.; Nava-Dominguez, A.

    2014-01-01

    Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles

  9. Fuel Management Study for a CANDU reactor Using New Physics Codes Suite

    International Nuclear Information System (INIS)

    Kim, Won Young; Kim, Bong Ghi; Park, Joo Hwan

    2008-01-01

    A CANDU reactor is a heavy-water-moderated, natural uranium fuelled reactor with a pressure tube. The reactor contains a horizontal cylindrical vessel (calandria) and each pressure tube is isolated from the heavy-water moderator in a calandria. This allows the moderator system to be operated of a high-pressure and of a high-temperature coolant in pressure tube. The primary reactivity control in a CANDU reactor is the on-power refueling on a daily basis and an additional reactivity control is provided through an individual reactivity device movement, which includes 21 adjusters, 6 liquid zone controllers, 4 mechanical control absorbers and 2 shutdown systems. The refueling in CANDU is carried out on power and this makes the in-core fuel management different from that in a reactor refueled during shutdowns. The objective of a fuel management is to determine a fuel loading and fuel replacement procedure which will result in a minimum total unit energy cost in a safe and reliable operation. In this article, the in-core fuel management for the CANDU reactor was studied by using the new physics code suite of WIMS-IST/DRAGON-IST/RFSP-IST with the model of Wolsong-1 NPP

  10. ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Y.F., E-mail: raoy@aecl.ca; Cheng, Z., E-mail: chengz@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca; Nava-Dominguez, A., E-mail: navadoma@aecl.ca

    2014-08-15

    Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles.

  11. Recent IAEA activities on CANDU-PHWR fuels and fuel cycles

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Ganguly, C.

    2005-01-01

    Pressurized Heavy Water Reactors (PHWR), widely known as CANDU, are in operation in Argentina, Canada, China, India, Pakistan, Republic of Korea and Romania and account for about 6% of the world's nuclear electricity production. The CANDU reactor and its fuel have several unique features, like horizontal calandria and coolant tubes, on-power fuel loading, thin-walled collapsible clad coated with graphite on the inner surface, very high density (>96%TD) natural uranium oxide fuel and amenability to slightly enriched uranium oxide, mixed uranium plutonium oxide (MOX), mixed thorium plutonium oxide, mixed thorium uranium (U-233) oxide and inert matrix fuels. Several Technical Working Groups (TWG) of IAEA periodically discuss and review CANDU reactors, its fuel and fuel cycle options. These include TWGs on water-cooled nuclear power reactor Fuel Performance and Technology (TWGFPT), on Nuclear Fuel Cycle Options and spent fuel management (TWGNFCO) and on Heavy Water Reactors (TWGHWR). In addition, IAEA-INPRO project also covers Advanced CANDU Reactors (ACR) and DUPIC fuel cycles. The present paper summarises the Agency's activities in CANDU fuel and fuel cycle, highlighting the progress during the last two years. In the past we saw HWR and LWR technologies and fuel cycles separate, but nowadays their interaction is obviously growing, and their mutual influence may have a synergetic character if we look at the world nuclear fuel cycle as at an integrated system where the both are important elements in line with fast neutron, gas cooled and other advanced reactors. As an international organization the IAEA considers this challenge and makes concrete steps to tackle it for the benefit of all Member States. (author)

  12. The burnable poisons utilization for fissile enriched CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Serghiuta, D; Nainer, O [Team 3 Solutions, Don Mills, ON (Canada)

    1996-12-31

    Utilization of burnable poison for the fissile enriched fueled CANDU 6 Mk1 core is investigated. The main incentives for this analysis are the reduction of void reactivity effects, the maximization of the fissile content of fresh fuel bundles, and the achievement of better power shape control, in order to preserve the power envelope of the standard 37 rod fuel bundle. The latter allows also the preservation of construction parameters of the standard core (for example: number and location of reactivity devices). It also permits the use of regular shift fueling schemes. The paper makes analyses of MOX weapons-grade plutonium and 1.2% SEU fueled CANDU 6 Mk 1 cores. (author). 6 refs., 4 tabs., 10 figs.

  13. Enhancement of safety analysis reliability for a CANDU-6 reactor using RELAP-CANDU/SCAN coupled code system

    International Nuclear Information System (INIS)

    Kim, Man Woong; Choi, Yong Seog; Sin, Chul; Kim, Hyun Koon; Kim, Hho Jung; Hwang, Su Hyun; Hong, In Seob; Kim, Chang Hyo

    2005-01-01

    In LOCA analysis of the CANDU reactor, the system thermal-hydraulic code, RELAP-CANDU, alone cannot predict the transient behavior accurately. Therefore, the best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. To perform on-line calculation of safety analysis for CANDU reactor, a coupled thermal hydraulics-neutronics code system was developed in such a way that the best-estimate thermal-hydraulic system code for CANDU reactor, RELAP-CANDU, is coupled with the full three-dimensional reactor core kinetic code

  14. Development and applications of reactor noise analysis at Ontario Hydro's CANDU reactors

    International Nuclear Information System (INIS)

    Gloeckler, O.; Tulett, M.V.

    1995-01-01

    In 1992 a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro's CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. The dynamic characteristics of critical plant components, instrumentation and processes are monitored on a regular basis. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes induced by moderator flow, (6) estimating the dynamics and response time of RTD (Resistance Temperature Detector) temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (10) detecting coolant boiling in fully instrumented fuel channels, (11) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as-needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the use of noise analysis technology. (author

  15. Applications of ASTEC integral code on a generic CANDU 6

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Gabriela, E-mail: gabriela.radu@nuclear.ro [Institute for Nuclear Research, Campului 1, 115400 Mioveni, Arges (Romania); Prisecaru, Ilie [Power Engineering Department, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest (Romania)

    2015-05-15

    Highlights: • Short overview of the models included in the ASTEC MCCI module. • MEDICIS/CPA coupled calculations for a generic CANDU6 reactor. • Two cases taking into account different pool/concrete interface models. - Abstract: In case of a hypothetical severe accident in a nuclear power plant, the corium consisting of the molten reactor core and internal structures may flow onto the concrete floor of containment building. This would cause an interaction between the molten corium and the concrete (MCCI), in which the heat transfer from the hot melt to the concrete would cause the decomposition and the ablation of the concrete. The potential hazard of this interaction is the loss of integrity of the containment building and the release of fission products into the environment due to the possibility of a concrete foundation melt-through or containment over-pressurization by the gases produced from the decomposition of the concrete or by the inflammation of combustible gases. In the safety assessment of nuclear power plants, it is necessary to know the consequences of such a phenomenon. The paper presents an example of application of the ASTECv2 code to a generic CANDU6 reactor. This concerns the thermal-hydraulic behaviour of the containment during molten core–concrete interaction in the reactor vault. The calculations were carried out with the help of the MEDICIS MCCI module and the CPA containment module of ASTEC code coupled through a specific prediction–correction method, which consists in describing the heat exchanges with the vault walls and partially absorbent gases. Moreover, the heat conduction inside the vault walls is described. Two cases are presented in this paper taking into account two different heat transfer models at the pool/concrete interface and siliceous concrete. The corium pool configuration corresponds to a homogeneous configuration with a detailed description of the upper crust.

  16. Periodic Safety Review of Tendon Pre-stress of Concrete Containment Building for a CA U-Type clear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Kwang Ho; Lim, Woo Sang [Korea Hydro and clear Power Co., Daejeon (Korea, Republic of)

    2009-10-15

    Generally, as the tendon pre-stress of concrete containment buildings at nuclear power plants decreases as time passes due to the concrete creep, concrete shrinkage and the relaxation of tendon strands, the tendon pre-stress must secure the structural integrity of these buildings by maintaining its value higher than that of the designed pre-stress during the overall service life of the nuclear power plants. Moreover, if necessary, the degree of tendon pre-stress must also guarantee the structural integrity of concrete containment buildings over their lifetimes. This paper evaluated the changes in the tendon pre-stress of a concrete containment building subject to time-limited aging as an item in a periodic safety review (PSR) of Wolsong unit 1, a CANDU-type nuclear power plant to ensure that the structural integrity can be maintained until the next PSR period after the designed lifetime.

  17. Ontario Hydro CANDU operating experience

    International Nuclear Information System (INIS)

    Bartholomew, R.W.; Woodhead, L.W.; Horton, E.P.; Nichols, M.J.; Daly, I.N.

    1987-01-01

    The CANDU Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report highlights Ontario Hydro's operating experience using the CANDU-PHW system, with a focus on worker and public safety, operating performance and costs, and reliability of system components

  18. Methodologies for optimizing ROP detector layout for CANDU (registered) reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kastanya, Doddy, E-mail: kastanyd@aecl.c [Reactor Core Physics Branch, Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, ON, L5K 1B2 (Canada); Caxaj, Victor [Reactor Core Physics Branch, Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, ON, L5K 1B2 (Canada)

    2011-01-15

    The regional overpower protection (ROP) systems protect CANDU (registered) reactors against overpower in the fuel that would reduce the safety margin-to-dryout. Both a localized power peaking within the core (for example, as a result of certain reactivity device configuration) or a general increase in the core power level during a slow-loss-of-regulation (SLOR) event could cause overpower in the fuel. This overpower could lead to fuel sheath dryout. In the CANDU (registered) 600 MW (CANDU 6) design, there are two ROP systems in the core, one for each fast-acting shutdown systems. Each ROP system includes a number of fast-responding, self-powered flux detectors suitably distributed throughout the core within vertical and horizontal assemblies. Traditionally, the placement of these detectors was done using a method called the detector layout optimization (DLO). A new methodology for designing the detector layout for the ROP system has been developed recently. The new method, called the DETPLASA algorithm, utilizes the simulated annealing (SA) technique to optimize the placement of the detectors in the core. Both methodologies will be discussed in detail in this paper. Numerical examples are employed to better illustrate how each method works. Results from some sensitivity studies on three SA parameters are also presented.

  19. Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm

    International Nuclear Information System (INIS)

    Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI

    2006-01-01

    This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for the refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)

  20. A framework for operator support systems for CANDU

    International Nuclear Information System (INIS)

    Lupton, L.R.; Lipsett, J.J.; Shah, R.R.

    1989-11-01

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is a general agreement that both plant safety and availability can be enhanced by providing the operator with more operational support if than can be done without overloading him/her with unnecessary information. Recent advances in computer technology provide opportunities for implementing operator support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and the related technologies will play a major role in the development of innovative methods for information processing and presentation. Our approach to these technologies is that they must be integrated into the overall management and control philosophy of the plant and are not to be treated as vehicles to implement point solutions. The underlying philosophy behind this approach and the design objectives and goals for the CANDU 3 control centre are discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. There is also a role for such systems in assisting the operator to be a situation manager, organizing, managing and planning the running of the plant. Four support systems that incorporate the underlying philosophy are described

  1. A framework for operator support systems for CANDU

    International Nuclear Information System (INIS)

    Lupton, L.R.; Lipsett, J.J.; Shah, R.R.

    1990-01-01

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is a general agreement that both plant safety and availability can be enhanced by providing the operator with more operational support if that can be cone without overloading him/her with unnecessary information. Recent advances in computer technology provide opportunities for implementing operator support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence (AI) and the related technologies will play a major role in the development of innovative methods for information processing and presentation. Our approach to these technologies is that they must be integrated into the overall management and control philosophy of the plant and are not to be treated as vehicles to implement point solutions. The underlying philosophy behind this approach and the design objectives and goals for the CANDU 3 control centre are discussed in this paper. Operator support systems will integrate into the overall controll philosophy by complementing the operator. There is also a role for such systems in assisting the operator be a 'situation manager' organizing, managing and planning the running of the plant. Four support systems that invorporate the underlying philosophy are described

  2. Safety assessment to support NUE fuel full core implementation in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fan, H.Z.; Laurie, T.; Siddiqi, A.; Li, Z.P.; Rouben, D.; Zhu, W.; Lau, V.; Cottrell, C.M. [CANDU Energy Inc., Mississauga, Ontario (Canada)

    2013-07-01

    The Natural Uranium Equivalent (NUE) fuel contains a combination of recycled uranium and depleted uranium, in such a manner that the resulting mixture is similar to the natural uranium currently used in CANDU® reactors. Based on successful preliminary results of 24 bundles of NUE fuel demonstration irradiation in Qinshan CANDU 6 Unit 1, the NUE full core implementation program has been developed in cooperation with the Third Qinshan Nuclear Power Company and Candu Energy Inc, which has recently received Chinese government policy and funding support from their National-Level Energy Innovation program. This paper presents the safety assessment results to technically support NUE fuel full core implementation in CANDU reactors. (author)

  3. Axial shuffling fuel-management schemes for 1.2% SEU in CANDU

    International Nuclear Information System (INIS)

    Younis, M.H.; Boczar, P.G.

    1989-11-01

    The use of slightly enriched uranium (SEU) in CANDU (CANada Deuterium Uranium) requires a different fuel-management strategy than that usually employed with natural uranium fuel. Axial shuffling is a fuel-management strategy in which some or all of the fuel bundles are removed from the channel, rearranged, and reinserted into the same channel, along with fresh fuel. An axial shuffling scheme has been devised for 1.2% SEU which results in excellent power profiles, from the perspectives of both good axial flattening and power histories. With the CANFLEX (CANdu FLEXible fuelling) advanced fuel bundle, fuel rating can be reduced to below 40kW/m, with consequent safety benefits

  4. Effect of DUPIC cycle on CANDU reactor safety parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Nader M. A. [Atomic Energy Authority, ETRR-2, Cairo (Egypt); Badawi, Alya [Dept. of Nuclear and Radiation Engineering, Alexandria University, Alexandria (Egypt)

    2016-10-15

    Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by UO{sub 2} enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

  5. Development Directions For CANDU and Slowpoke Reactors

    International Nuclear Information System (INIS)

    Brooks, Gordon L.

    1990-01-01

    This paper provides a broader-based discussion of overall development directions foreseen for CANDU reactors, particularly those which have further evolved sine the earlier paper. The paper then discusses development directions for the Slowpokes Energy System which is a small nuclear heat source intended to meet local heating needs for building complexes and municipal heating systems. In evolving a sound development direction, it is necessary, firstly, to address the question of requirements, viz., what are the requirements which future nuclear power plants must satisfy if they are to be successful? Today, some in the nuclear industry believe that the most important of such requirements relates to the need for 'safer' reactors. Indeed, some proponents of this view would seem to suggest that if only we could develop such 'safer' reactors, suddenly all of our problem s with public acceptance would disappear and utilities would form long lines waiting to purchase such marvellous machines. I do not share such a simplistic view nor, indeed, do many of my colleagues in the international nuclear power industry

  6. Improving CANDU annunciation - Current R and D and future directions

    International Nuclear Information System (INIS)

    Lupton, L.R.; Feher, M.P.; Davey, E.C.; Guo, K.Q.; Bhuiyan, S.H.

    1994-01-01

    Annunciation is used to ensure that control room staff are promptly alerted to important changes in plant conditions that may impact on safety and production goals. We are carrying out research and development to improve CANDU annunciation, in partnership with Canadian CANDU utility and design organizations. The main goal is to solve the ''information overload'' problem that occurs during major plant upsets, while providing operators with annunciation information needed to prevent, mitigate, and accommodate plant disturbances. To data, a set of annunciation concepts has been developed based on operational needs in a complex supervisory control environment. A prototype annunciation system has been developed and demonstrated with Point Lepreau Generating Station operations staff. Preliminary evaluations show that the system has the potential to solve many of the current problems associated with upset management. Further evaluation of this system is planned for 1994/95. This paper summarizes the project, including the current status, lessons learned to data, future directions of the research, and implementation by plants. (author). 9 refs, 3 figs, 1 tab

  7. Heavy water cycle in the CANDU reactor

    International Nuclear Information System (INIS)

    Nanis, R.

    2000-01-01

    Hydrogen atom has two isotopes: deuterium 1 H 2 and tritium 1 H 3 . The deuterium oxide D 2 O is called heavy water due to its density of 1105.2 Kg/m 3 . Another important physical property of the heavy water is the low neutron capture section, suitable to moderate the neutrons into natural uranium fission reactor as CANDU. Due to the fact that into this reactor the fuel is cooled into the pressure tubes surrounded by a moderator, the usage of D 2 O as primary heat transport (PHT) agent is mandatory. Therefore a large amount of heavy water (approx. 500 tons) is used in a CANDU reactor. Being a costly resource - it represents 20% of the initial plant capital cost, D 2 O management is required to preserve it. (author)

  8. Evaluation on operation of liquid relief valves for steam line break accidents by RELAP5/CANDU+ code

    International Nuclear Information System (INIS)

    Yang, C. Y.; Bang, Y. S.; Kim, H. J.

    2001-01-01

    A development of RELAP5/CANDU+ code for regulatory audits of accident analysis of CANDU nuclear power plants is on progress. This paper is undertaken in a procedure of a verification and validation for RELAP5/CANDU+ code by analyzing main steam line break accidents of WS 2/3/4. Following the ECC injection in sequence of the steam line breaks, the mismatch in heat transfer between the primary and the secondary systems makes pressure of the primary system instantly peaked to the open setpoint of liquid relief valves. The event sequence follows the result of WS 2/3/4 FSAR, but there is a difference in pressure transient after ECC injection. Sensitivity analysis for main factors dependent on the peak pressure such as control logics of liquid relief valves. ECC flow path and feedwater flow is performed. Because the pressure increase is continued for a long time and its peaking is high, open and close of the liquid relief valves are repeated several times, which is obviously different from those of WS 2/3/4 FSAR. As a result, it is evaluated that conservative modeling for the above variables is required in the analysis

  9. Ontario Hydro CANDU operating experience

    International Nuclear Information System (INIS)

    Jackson, H.A.; Woodhead, L.W.; Fanjoy, G.R.

    1984-03-01

    The CANDU Pressurized Heavy Water (CANDU-PHW) type of nuclear-electric generating station has been developed jointly by Atomic Energy of Canada Limited and Ontario Hydro. This report highlights Ontario Hydro's operating experience using the CANDU-PHW system, with a focus on the operating performance and costs, reliability of system components and nuclear safety considerations for the workers and the public

  10. Homogeneous Thorium Fuel Cycles in Candu Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hyland, B.; Dyck, G.R.; Edwards, G.W.R.; Magill, M. [Chalk River Laboratories, Atomic Energy of Canada Limited (Canada)

    2009-06-15

    The CANDU{sup R} reactor has an unsurpassed degree of fuel-cycle flexibility, as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle [1]. These features facilitate the introduction and full exploitation of thorium fuel cycles in Candu reactors in an evolutionary fashion. Because thorium itself does not contain a fissile isotope, neutrons must be provided by adding a fissile material, either within or outside of the thorium-based fuel. Those same Candu features that provide fuel-cycle flexibility also make possible many thorium fuel-cycle options. Various thorium fuel cycles can be categorized by the type and geometry of the added fissile material. The simplest of these fuel cycles are based on homogeneous thorium fuel designs, where the fissile material is mixed uniformly with the fertile thorium. These fuel cycles can be competitive in resource utilization with the best uranium-based fuel cycles, while building up a 'mine' of U-233 in the spent fuel, for possible recycle in thermal reactors. When U-233 is recycled from the spent fuel, thorium-based fuel cycles in Candu reactors can provide substantial improvements in the efficiency of energy production from existing fissile resources. The fissile component driving the initial fuel could be enriched uranium, plutonium, or uranium-233. Many different thorium fuel cycle options have been studied at AECL [2,3]. This paper presents the results of recent homogeneous thorium fuel cycle calculations using plutonium and enriched uranium as driver fuels, with and without U-233 recycle. High and low burnup cases have been investigated for both the once-through and U-233 recycle cases. CANDU{sup R} is a registered trademark of Atomic Energy of Canada Limited (AECL). 1. Boczar, P.G. 'Candu Fuel-Cycle Vision', Presented at IAEA Technical Committee Meeting on 'Fuel Cycle Options for LWRs and HWRs', 1998 April 28 - May 01, also Atomic Energy

  11. CANDU with supercritical water coolant: conceptual design features

    International Nuclear Information System (INIS)

    Spinks, N.

    1997-01-01

    An advanced CANDU reactor, with supercritical water as coolant, has many attractive design features. The pressure exceeds 22 MPa but coolant temperatures in excess of 370 degrees C can be reached without encountering the two-phase region with its associated fuel-dry-out and flow-instability problems. Increased coolant temperature leads to increased plant thermodynamic efficiency reducing unit energy cost through reduced specific capital cost and reduced fueling cost. Increased coolant temperature leads to reduced void reactivity via reduced coolant in-core density. Light water becomes a coolant option. To preserve neutron economy, an advanced fuel channel is needed and is described below. A supercritical-water-cooled CANDU can evolve as fuel capabilities evolve to withstand increasing coolant temperatures. (author)

  12. Designing for human performance - CANDU electrical panels - then and now

    International Nuclear Information System (INIS)

    Patterson, B.K.

    2003-01-01

    Experience has shown that few changes are made to CANDU control center panels once plants are in service. There are several reasons for this, for example, operational conservatism, outage minimization, avoidance of retraining effort, and perhaps lack of appreciation of improvement opportunities. Since the initial CANDU 6 plants were designed, the industry has moved forward with adoption of new approaches to control room interface design that have introduced changes in design principles and emphasis. At Point Lepreau, the electrical panels have remained virtually unchanged since initial design. The author, the original electrical system commissioning engineer, reviews the design considerations that led to the initial panel design, reviews some of the operational limitations discovered during use, and offers some suggestions on improvement directions, if these panels were being designed today, that would offer an implementation to better support operator tasks. (author)

  13. Advancing CANDU technology AECL's Development program

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1997-01-01

    AECL has a comprehensive product development program that is advancing all aspects of CANDU technology including fuel and fuel cycles, fuel channels, heavy water and tritium technology, safety technology, components and systems, constructability, health and environment, and control and instrumentation. The technology arising from these programs is being incorporated into the CANDU design through an evolutionary process. This evolutionary process is focused on improving economics, enhancing safety and ensuring fuel cycle flexibility to secure fuel supply for the foreseeable future. This strategic thrusts are being used by CANDU designers and researchers to set priorities and goals for AECL's development activities. The goals are part of a 25-year development program that culminates in the 'CANDU X'. The 'CANDU X' is not a specific design - it is a concept that articulates our best extrapolation of what is achievable with the CANDU design over the next 25 years, and includes the advanced features arising from the R and D and engineering to be done over that time. AECL's current product, the 700 MWe class CANDU 6 and the 900 MWe class CANDU 9, both incorporate output from the development programs as the technology become available. A brief description of each development areas is given below. The paper ends with the conclusion that AECL has a clear vision of how CANDU technology and products will evolve over the next several years, and has structured a comprehensive development program to take full advantage of the inherent characteristics of heavy water reactors. (author)

  14. Management of Spent Nuclear Fuel from Nuclear Power Plant Reactor

    International Nuclear Information System (INIS)

    Wati, Nurokhim

    2008-01-01

    Management of spent nuclear fuel from Nuclear Power Plant (NPP) reactor had been studied to anticipate program of NPP operation in Indonesia. In this paper the quantity of generated spent nuclear fuel (SNF) is predicted based on the national electrical demand, power grade and type of reactor. Data was estimated using Pressurized Water Reactor (PWR) NPP type 1.000 MWe and the SNF management overview base on the experiences of some countries that have NPP. There are four strategy nuclear fuel cycle which can be developed i.e: direct disposal, reprocessing, DUPlC (Direct Use of Spent PWR Fuel In Candu) and wait and see. There are four alternative for SNF management i.e : storage at the reactor building (AR), away from reactor (AFR) using wet centralized storage, dry centralized storage AFR and prepare for reprocessing facility. For the Indonesian case, centralized facility of the wet type is recommended for PWR or BWR spent fuel. (author)

  15. Development and applications of reactor noise analysis at Ontario Hydro`s CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckler, O [Ontario Hydro, Toronto, ON (Canada); Tulett, M V [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station

    1996-12-31

    In 1992 a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro`s CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. The dynamic characteristics of critical plant components, instrumentation and processes are monitored on a regular basis. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes induced by moderator flow, (6) estimating the dynamics and response time of RTD (Resistance Temperature Detector) temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (10) detecting coolant boiling in fully instrumented fuel channels, (11) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as-needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the use of noise analysis technology. (author

  16. A Preliminary Assessment of the Adjuster Rod Depletion Effect in the CANDU Reactor

    International Nuclear Information System (INIS)

    Kim, Yonghee; Roh, Gyuhong; Kim, Won Young; Kim, Hak Sung; Park, Joo Hwan

    2008-01-01

    Lifetime of the Wolsong-1 CANDU reactor, which will be shutdown in April, 2009. Major reactor components such as the pressure tube are to be replaced and it is expected that the CANDU reactor can be operated for additional 25-30 years. Meanwhile, all the reactivity devices including the adjuster rods (ADJ) are supposed to be continuously used without any change. In the CANDU reactor, 21 stainless steel (SS) ADJs are used to control the core power distribution and compensate for some reactivity loss during several abnormal cases. The ADJs are normally fully inserted and the SS absorber should undergo a slow depletion through neutron irradiation for a long time. In April, 2009, the accumulated FPY (Full Power Day) of Wolsong-1 is about 23 years. Depletion of ADJs should result in a smaller ADJ worth and a higher fuel burnup and the core power distribution should also be affected by the ADJ depletion. In this work, the effects of the ADJ depletion have been assessed in terms of ADJ worth, time-average core characteristics

  17. A Comparative Study on the Refueling Simulation Method for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Do, Quang Binh; Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The Canada deuterium uranium (CANDU) reactor calculation is typically performed by the RFSP code to obtain the power distribution upon a refueling. In order to assess the equilibrium behavior of the CANDU reactor, a few methods were suggested for a selection of the refueling channel. For example, an automatic refueling channel selection method (AUTOREFUEL) and a deterministic method (GENOVA) were developed, which were based on a reactor's operation experience and the generalized perturbation theory, respectively. Both programs were designed to keep the zone controller unit (ZCU) water level within a reasonable range during a continuous refueling simulation. However, a global optimization of the refueling simulation, that includes constraints on the discharge burn-up, maximum channel power (MCP), maximum bundle power (MBP), channel power peaking factor (CPPF) and the ZCU water level, was not achieved. In this study, an evolutionary algorithm, which is indeed a hybrid method based on the genetic algorithm, the elitism strategy and the heuristic rules for a multi-cycle and multi-objective optimization of the refueling simulation has been developed for the CANDU reactor. This paper presents the optimization model of the genetic algorithm and compares the results with those obtained by other simulation methods.

  18. The evolution of Candu fuel cycles and their potential contribution to world peace

    International Nuclear Information System (INIS)

    Whitlock, J.

    2001-01-01

    The Candu(r) reactor is the most versatile commercial power reactor in the world. It has the potential to extend resource utilization significantly, to allow countries with developing industrial infrastructures access to clean and abundant energy, and to destroy long-lived nuclear waste or surplus weapons plutonium. These benefits are available by choosing from an array of possible fuel cycles. Several factors, including Canada's early focus on heavy-water technology, limited heavy-industry infrastructure at the time, and a desire for both technological autonomy and energy self-sufficiency, contributed to the creation of the first Candu reactor in 1962. With the maturation of the CANDU industry, the unique design features of the now-familiar product - on-power refuelling, high neutron economy, and simple fuel design - make possible the realization of its potential fuel-cycle versatility. Several fuel-cycle options currently under development are described. (authors)

  19. Physics characteristics of CANDU cores with advanced fuel cycles

    International Nuclear Information System (INIS)

    Garvey, P.M.

    1985-01-01

    The current generation of CANDU reactors, of which some 20 GWE are either in operations or under construction worldwide, have been designed specifically for the natural uranium fuel cycle. The CANDU concept, due to its D 2 O coolant and moderator, on-power refuelling and low absorption structural materials, makes the most effective utilization of mined uranium of all currently commercialized reactors. An economic fuel cycle cost is also achieved through the use of natural uranium and a simple fuel bundle design. Total unit energy costs are achieved that allow this reactor concept to effectively compete with other reactor types and other forms of energy production. There are, however, other fuel cycles that could be introduced into this reactor type. These include the slightly enriched uranium fuel cycle, fuel cycles in which plutonium is recycled with uranium, and the thorium cycle in which U-233 is recycled. There is also a special range of fuel cycles that could utilize the spent fuel from LWR's. Two specific variants are a fuel cycle that only utilizes the spent uranium, and a fuel cycle in which both the uranium and plutonium are recycled into a CANDU. For the main part these fuel cycles are characterized by a higher initial enrichment, and hence discharge burnup, than the natural uranium cycle. For these fuel cycles the main design features of both the reactor and fuel bundle would be retained. Recently a detailed study of the use in a CANDU of mixed plutonium and uranium oxide fuel from an LWR has been undertaken by AECL. This study illustrates many of the generic technical issues associated with the use of Advanced Fuel Cycles. This paper will report the main findings of this evaluation, including the power distribution in the reactor and fuel bundle, the choice of fuel management scheme, and the impact on the control and safety characteristics of the reactor. These studies have not identified any aspects that significantly impact upon the introduction of

  20. Development of the CANDU 66-group SN transport library

    International Nuclear Information System (INIS)

    Tsang, K.T.

    2001-01-01

    The design of the shield configuration around a nuclear reactor is strongly dependent on the neutron and photon spatial and energy distributions. The nuclear heat deposition and material damage in and surrounding the reactor core are also a function of the neutron and photon distributions. Therefore, to ensure a suitable configuration of materials for shielding or heat transfer, an accurate calculation of the particle fluxes in the reactor systems is essential. The CANDU 66-group library was developed to update the cross sections that are needed to assess the performance of CANDU bulk shields. Since about 1980, shielding analysts at Atomic Energy of Canada Limited (AECL) and Ontario Power Generation Inc. (OPGI) have been using a 38-group CANDU-specific library to perform S N transport calculations. In 1994, a new CANDU 67-group cross-section library was developed. The 67-group cross-section library was developed to provide radiation-physics analysts with up-to-date nuclear data to correct deficiencies with documentation of the old library. Although there were improvements over the 38-group library, initial use showed there were some deficiencies in the 67-group library. To correct these deficiencies, the CANDU 66-group S N transport cross-section library was developed. The 66-group library is based on the 241-group cross-section library VITAMIN-B6. Collapsing and weighting of the 241-group cross sections into 66 groups were performed using the modular code system SCALE 4.4. This paper describes how the modules in the SCALE system were applied to generate the 66-group library. The CANDU 66-group library includes both core-weighted and lattice-weighted cross sections of 235 U, 238 U, and 239 Pu with, and without, delayed fission-product photons. In addition, the 66-group library contains more response functions than did the 67-group library. Finally, the CANDU 66-group library has been validated against one-dimensional benchmark problems. The results generated with

  1. The application of CANDU neutron economy for the annihilation of the minor actinides

    International Nuclear Information System (INIS)

    Dastur, Adi; Gagnon, Nathalie

    1995-01-01

    A strategically indispensable role, comparable to the one of operating with natural uranium, is proposed for CANDU as an incentive to ensure future CANDU sales in an environment where enrichment and reprocessing technology are globally available. Because of their high neutron economy, CANDU reactors can operate with minimal fissile content and consequently at high neutron flux. This is especially so in the absence of uranium, i.e. when transuranic actinides are used as fuel. The low fissile requirement and the on-power refuelling capability of CANDU can be exploited to achieve a once-through cycle for actinide annihilation. This avoids recycling and refabrication costs and provides relatively high annihilation rates. In addition, CANDUs ability to operate without uranium and extract energy from the minor actinides makes it the ultimate resource conserver and gives it a unique role in sustainable energy growth. (author)

  2. Distributed computer control systems in future nuclear power plants

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.; Watkins, L.M.

    1978-09-01

    Good operating experience with computer control in CANDU reactors over the last decade justifies a broadening of the role of digital electronic and computer related technologies in future plants. Functions of electronic systems in the total plant context are reappraised to help evolve an appropriate match between technology and future applications. The systems research, development and demonstration program at CRNL is described, focusing on the projects pertinent to the real-time data acquisition and process control requirements. (author)

  3. Analysis of power variation in a CANDU-6 with a loss of moderator

    International Nuclear Information System (INIS)

    Fan, Y.

    2008-01-01

    A loss of heavy water in a postulated small failure in the horizontal unpressurized calandria vessel of a CANDU-6 reactor will lead to a drop in the moderator level in the reactor core. The STEPBACK and SETBACK functions at the initial moment of the drop in moderator level ensure a reactor shutdown and a reduction in total reactor power during this 900 seconds postulated transient. If the STEPBACK and SETBACK functions are unavailable, the reactor's regulating system will try to compensate for the negative reactivity resulting from the loss of the moderator. This kind of compensation will lead to power distortions from top to bottom in the reactor core. .Comparisons of different moderator leakage rates were used in the analysis to determine the relationships between the power and the moderator leakage rates. Maximum bundle and channel powers obtained were insensitive to the moderator leakage rate. .In a complete analysis for a moderator leakage rate of 40 1/s, it was found that, without the STEPBACK and SETBACK functions, serious power distortions would occur during the 900 seconds transient. The maximization of bundle and channel power during this transient happened in the bottom part of the reactor , and the regulating system worsened this power distortion. .From the above analysis, it was concluded that the maximum bundle power attained during the loss of the moderator was 1.18% of its initial value. The risk of bundle dryout was, therefore, quite small. (author)

  4. Licensing assessment of the Candu Pressurized Heavy Water Reactor. Preliminary safety information document. Volume II

    International Nuclear Information System (INIS)

    1977-06-01

    ERDA has requested United Engineers and Constructors (UE and C) to evaluate the design of the Canadian natural uranium fueled, heavy water moderated (CANDU) nuclear reactor power plant to assess its conformance with the licensing criteria and guidelines of the U.S. Nuclear Regulatory Commission (USNRC) for light water reactors. This assessment was used to identify cost significant items of nonconformance and to provide a basis for developing a detailed cost estimate for a 1140 MWe, 3-loop Pressurized Heavy Water Reactor (PHWR) located at the Middletown, USA Site

  5. Integrated evolution of the medium power CANDU{sup MD} reactors; Evolution integree des reacteurs CANDU{sup MD} de moyenne puissance

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, F. [AECL Accelerators, Kanata, ON (Canada)

    2002-07-01

    The aim of this document is the main improvements of the CANDU reactors in the economic, safety and performance domains. The presentation proposes also other applications as the hydrogen production, the freshening of water sea and the bituminous sands exploitation. (A.L.B.)

  6. Nuclear power: benefits for the future in Romania

    International Nuclear Information System (INIS)

    Vultur, C.

    2001-01-01

    This paper explains how nuclear power was implemented in Romania, why Romania chose nuclear energy and what the impact of building a power plant is on the industry and environment of Romania. In the 1960's, Romania started discussions with different partners to cooperate in the development and application of atomic energy for peaceful purpose. In 1977 Romanian Government decided that the Candu-600 to be the basic unit for its nuclear program. The contract between Romania and Canada was for 5 units. In 1979, the construction of the first Candu - 600 unit started in Cernavoda, on the right side of Danube River, about 160 km east of Bucharest. (author)

  7. INR Recent Contributions to Thorium-Based Fuel Using in CANDU Reactors

    International Nuclear Information System (INIS)

    Prodea, I.; Mărgeanu, C. A.; Rizoiu, A.; Olteanu, G.

    2014-01-01

    The paper summarizes INR Pitesti contributions and latest developments to the Thorium-based fuel (TF) using in present CANDU nuclear reactors. Earlier studies performed in INR Pitesti revealed the CANDU design potential to use Recovered Uranium (RU) and Slightly Enriched Uranium (SEU) as alternative fuels in PHWRs. In this paper, we performed both lattice and CANDU core calculations using TF, revealing the main neutron physics parameters of interest: k-infinity, coolant void reactivity (CVR), channel and bundle power distributions over a CANDU 6 reactor core similar to that of Cernavoda, Unit 1. We modelled the so called Once Through Thorium (OTT) fuel cycle, using the 3D finite-differences DIREN code, developed in INR. The INR flexible SEU-43 bundle design was the candidate for TF carrying. Preliminary analysis regarding TF burning in CANDU reactors has been performed using the finite differences 3D code DIREN. TFs showed safety features improvement regarding lower CVRs in the case of fresh fuel use. Improvements added to the INR ELESIMTORIU- 1 computer code give the possibility to fairly simulate irradiation experiments in INR TRIGA research reactor. Efforts are still needed in order to get better accuracy and agreement of simulations to the experimental results. (author)

  8. 3D simulation of CANDU reactor regulating system

    International Nuclear Information System (INIS)

    Venescu, B.; Zevedei, D.; Jurian, M.

    2013-01-01

    Present paper shows the evaluation of the performance of the 3-D modal synthesis based reactor kinetic model in a closed-loop environment in a MATLAB/SIMULINK based Reactor Regulating System (RRS) simulation platform. A notable advantage of the 3-D model is the level of details that it can reveal as compared to the coupled point kinetic model. Using the developed RRS simulation platform, the reactor internal behaviours can be revealed during load-following tests. The test results are also benchmarked against measurements from an existing (CANDU) power plant. It can be concluded that the 3-D reactor model produces more realistic view of the core neutron flux distribution, which is closer to the real plant measurements than that from a coupled point kinetic model. It is also shown that, through a vectorization process, the computational load of the 3-D model is comparable with that of the 14-zone coupled point kinetic model. Furthermore, the developed Graphical User Interface (GUI) software package for RRS implementation represents a user friendly and independent application environment for education training and industrial utilizations. (authors)

  9. Advanced operator interface design for CANDU-3 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Arapakota, D [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System`. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author).

  10. Advanced operator interface design for CANDU-3 fuel handling system

    International Nuclear Information System (INIS)

    Arapakota, D.

    1995-01-01

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System'. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author)

  11. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  12. Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2004-01-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions

  13. Assessment of reactivity devices for CANDU-6 with DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-01-01

    Reactivity device characteristics for a CANDU-6 reactor loaded with DUPIC fuel have been assessed. A transport code WIMS-AECL and a three-dimensional diffusion code RFSP were used for the lattice parameter generation and the core calculation, respectively. Three major reactivity devices have been assessed for their inherent functions. For the zone controller system, damping capability for spatial oscillation was investigated. The restart capability of the adjuster system was investigated. The shim operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster rod system. The mechanical control absorber was assessed for the capability to compensate the temperature reactivity feedback following a power reduction. This study has shown that the current reactivity device systems retain their functions when used in a DUPIC fuel CANDU reactor

  14. Safety design guides for grouping and separation for CANDU 9

    International Nuclear Information System (INIS)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young; A. C. D. Wright

    1996-03-01

    This safety design guide for grouping and separation describes the philosophy of physical and functional separation for systems, structures and components in CANDU 9 plants and provides the requirements for the implementation of the philosophy in the detailed plant design. The separation of the safety systems is to ensure that common cause events and functional interconnections between systems do not impair the capability to perform the required safety functions for accident conditions. The separation requirements are also applied to the design by grouping the plant systems into two basic groups. Group 1 includes the power production systems and Group 2 includes the safety related systems required for the mitigation of serious process failure. The Group 2 is further separated into subgroups to ensure that events that could cause failure of a special safety system in one subgroup can be mitigated by the other subgroup. The change status for the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 2 tabs., 6 figs. (Author) .new

  15. Safety design guides for grouping and separation for CANDU 9

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duk Su; Chang, Woo Hyun; Lee, Nam Young [Korea Atomic Energy Research Institute, Daeduk (Korea, Republic of); Wright, A C.D. [Atomic Energy of Canada Ltd., Toronto (Canada)

    1996-03-01

    This safety design guide for grouping and separation describes the philosophy of physical and functional separation for systems, structures and components in CANDU 9 plants and provides the requirements for the implementation of the philosophy in the detailed plant design. The separation of the safety systems is to ensure that common cause events and functional interconnections between systems do not impair the capability to perform the required safety functions for accident conditions. The separation requirements are also applied to the design by grouping the plant systems into two basic groups. Group 1 includes the power production systems and Group 2 includes the safety related systems required for the mitigation of serious process failure. The Group 2 is further separated into subgroups to ensure that events that could cause failure of a special safety system in one subgroup can be mitigated by the other subgroup. The change status for the regulatory requirements, code and standards should be traced and this safety design guide shall be updated accordingly. 2 tabs., 6 figs. (Author) .new.

  16. Detection of gaseous heavy water leakage points in CANDU 6 pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Park, T-K.; Jung, S-H.

    1996-01-01

    During reactor operation, the heavy water filled primary coolant system in a CANDU 6 Pressurized Heavy Water (PHWR) may leak through routine operations of the plant via components, mechanical joints, and during inadvertent operations etc. Early detection of leak points is therefore important to maintain plant safety and economy. There are many independent systems to monitor and recover heavy water leakage in a CANDU 6 PHWR. Methodology for early detection based on operating experience from these systems, is investigated in this paper. In addition, the four symptoms of D 2 O leakage, the associated process for clarifying and verifying the leakage, and the probable points of leakage are discussed. (author)

  17. Ninth international conference on CANDU fuel, 'fuelling a clean future'

    International Nuclear Information System (INIS)

    2005-01-01

    The Canadian Nuclear Society's 9th International Conference on CANDU fuel took place in Belleville, Ontario on September 18-21, 2005. The theme for this year's conference was 'Fuelling a Clean Future' bringing together over 80 delegates ranging from: designers, engineers, manufacturers, researchers, modellers, safety specialists and managers to share the wealth of their knowledge and experience. This international event took place at an important turning point of the CANDU technology when new fuel design is being developed for commercial application, the Advanced CANDU Reactor is being considered for projects and nuclear power is enjoying a renaissance as the source energy for our future. Most of the conference was devoted to the presentation of technical papers in four parallel sessions. The topics of these sessions were: Design and Development; Fuel Safety; Fuel Modelling; Fuel Performance; Fuel Manufacturing; Fuel Management; Thermalhydraulics; and, Spent Fuel Management and Criticalty

  18. A study for good regulation of the CANDU's in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Ki; Shin, Y. K.; Joe, S. K.; Kim, J. S.; Yu, Y. J.; Lee, Y. J. [Ajou Univ., Suwon (Korea, Republic of)

    2002-03-15

    The objective of project is to derive the policy recommendations to improve the efficiency of CANDU plants regulation. These policy recommendations will eventually contribute to the upgrading of Korean nuclear regulatory system and safety enhancement. During the second phase of this 2 years study, following research activities were done. Review the technical basis and framework of the new Canadian Regulation System and IAEA. Analysis on the interview of Wolsung operation staffs to identify important safety issues and regulation problems experienced at operation. Providing a plan of CANDU regulation system enhancement program.

  19. CANDU - a versatile reactor for plutonium disposition or actinide burning

    International Nuclear Information System (INIS)

    Chan, P.S.W.; Gagnon, M.J.N.; Boczar, P.G.; Ellis, R.J.; Verrall, R.A.

    1997-10-01

    High neutron economy, on-line refuelling, and a simple fuel-bundle design result in a high degree of versatility in the use of the CANDU reactor for the disposition of weapons-derived plutonium and for the annihilation of long-lived radioactive actinides, such as plutonium, neptunium, and americium isotopes, created in civilian nuclear power reactors. Inherent safety features are incorporated into the design of the bundles carrying the plutonium and actinide fuels. This approach enables existing CANDU reactors to operate with various plutonium-based fuel cycles without requiring major changes to the current reactor design. (author)

  20. Five years of successful CANDU-6 fuel manufacturing in Romania

    International Nuclear Information System (INIS)

    Galeriu, A.C.; Pascu, A.; Andrei, G.; Bailescu, A.

    1999-01-01

    This paper describes the evolution of CANDU-6 nuclear fuel manufacturing in Romania at FCN Pitesti, after the completion of the qualification in 1994. Commercial production was resumed early 1995 and fuel bundles produced were entirely delivered to Cernavoda Plant and charged in the reactor. More than 12,000 fuel bundles have been produced in the last five years and the fuel behaved very well. Defective bundles represents less than 0.06% from the total irradiated fuel, and the most defects are associated to the highest power positions. After qualification, FCN focused the effort to improve braze quality and also to maintain a low residual hydrogen content in graphite coated sheaths. The production capacity was increased especially for component manufacturing, appendages tack welding and brazing. A new graphite baking furnace with increased capacity, is under design. In the pelleting area, a rotating press will replace the older hydraulic presses used for pelleting. Plant development taken inter consideration the future demands for Cernavoda Unit 2. (author)

  1. Development of the Advanced CANDU Reactor control centre

    International Nuclear Information System (INIS)

    Malcolm, S.; Leger, R.

    2004-01-01

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  2. Development of the advanced CANDU reactor control centre

    International Nuclear Information System (INIS)

    Malcolm, S.; Leger, R.

    2004-01-01

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  3. Validation of WIMS-CANDU using Pin-Cell Lattices

    International Nuclear Information System (INIS)

    Kim, Won Young; Min, Byung Joo; Park, Joo Hwan

    2006-01-01

    The WIMS-CANDU is a lattice code which has a depletion capability for the analysis of reactor physics problems related to a design and safety. The WIMS-CANDU code has been developed from the WIMSD5B, a version of the WIMS code released from the OECD/NEA data bank in 1998. The lattice code POWDERPUFS-V (PPV) has been used for the physics design and analysis of a natural uranium fuel for the CANDU reactor. However since the application of PPV is limited to a fresh fuel due to its empirical correlations, the WIMS-AECL code has been developed by AECL to substitute the PPV. Also, the WIMS-CANDU code is being developed to perform the physics analysis of the present operating CANDU reactors as a replacement of PPV. As one of the developing work of WIMS-CANDU, the U 238 absorption cross-section in the nuclear data library of WIMS-CANDU was updated and WIMS-CANDU was validated using the benchmark problems for pin-cell lattices such as TRX-1, TRX-2, Bapl-1, Bapl-2 and Bapl-3. The results by the WIMS-CANDU and the WIMS-AECL were compared with the experimental data

  4. Assessment of CANDU-6 reactivity devices for DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-11-01

    Reactivity device characteristics for a CANDU 6 reactor loaded with DUPIC fuel have been assessed. The lattice parameters were generated by WIMS-AECL code and the core calculations were performed by RFSP code with a 3-dimensional full core model. The reactivity devices studied are the zone controller, adjusters, mechanical control absorber and shutoff rods. For the zone controller system, damping capability for spatial oscillation was investigated. For the adjusters, the restart capability was investigated. For the adjusters, the restart capability was investigated. The shin operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster system. The mechanical control absorber was assessed for the function of compensating temperature reactivity feedback following a power reduction. And shutoff rods were also assessed to investigate the following a power reduction. And shutoff rods were also assessed to investigate the static reactivity worth. This study has shown that the current reactivity device system of CANDU-6 core with the DUPIC fuel. (author). 9 refs., 17 tabs., 7 figs

  5. Collaborative machining solution extends the operating life of a nuclear power plant

    International Nuclear Information System (INIS)

    Gilmore, Geoff; Becker, Andrew; Vandenberg, James

    2007-01-01

    Examination of a CANDU 6 nuclear power plant's steam generators during a scheduled maintenance outage revealed that the manway ports, part of the ASME Section III, Class 1 pressure boundary, needed repair. The port's inner cover gasket was not seating properly. Integrity was at risk. It was determined that this operation would required a specialized machine to successfully repair the manway port. The solution included the modification of a standard portable boring machine with a custom mounting option to enlarge the counterbore in the primary head shell from a round shape to an obround shape (76 mm of shell thickness, 16 mm radially). The shape change was needed to accommodate the new obround cover and gasket seal design. Once the new major shape was machined, the repair was finished with a Computer Numerically Controlled (CNC) machine developed by the service team to achieve the necessary gasket face location and sizing. The final result met all of the plant's expectations and was completed well within the time allotted during the maintenance shut down. This success was due to the positive partnership and collaboration of the service team and the machine tool manufacture working together to successfully extend the operating life of the nuclear power plant. (author)

  6. Development of safety analysis methodology for moderator system failure of CANDU-6 reactor by thermal-hydraulics/physics coupling

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Jin, Dong Sik; Chang, Soon Heung

    2013-01-01

    Highlights: • Developed new safety analysis methodology of moderator system failures for CANDU-6. • The new methodology used the TH-physics coupling concept. • Thermalhydraulic code is CATHENA, physics code is RFSP-IST. • Moderator system failure ends to the subcriticality through self-shutdown. -- Abstract: The new safety analysis methodology for the CANDU-6 nuclear power plant (NPP) moderator system failure has been developed by using the coupling technology with the thermalhydraulic code, CATHENA and reactor core physics code, RFSP-IST. This sophisticated methodology can replace the legacy methodology using the MODSTBOIL and SMOKIN-G2 in the field of the thermalhydraulics and reactor physics, respectively. The CATHENA thermalhydraulic model of the moderator system can simulate the thermalhydraulic behaviors of all the moderator systems such as the calandria tank, head tank, moderator circulating circuit and cover gas circulating circuit and can also predict the thermalhydraulic property of the moderator such as moderator density, temperature and water level in the calandria tank as the moderator system failures go on. And these calculated moderator thermalhydraulic properties are provided to the 3-dimensional neutron kinetics solution module – CERBRRS of RFSP-IST as inputs, which can predict the change of the reactor power and provide the calculated reactor power to the CATHENA. These coupling calculations are performed at every 2 s time steps, which are equivalent to the slow control of CANDU-6 reactor regulating systems (RRS). The safety analysis results using this coupling methodology reveal that the reactor operation enters into the self-shutdown mode without any engineering safety system and/or human interventions for the postulated moderator system failures of the loss of heat sink and moderator inventory, respectively

  7. Report of the Federal Ministry for the Environment, Nature Conservation, Buildings and Nuclear Safety (BMUB) on the topical peer review aging management in nuclear power plants and research reactors

    International Nuclear Information System (INIS)

    2017-01-01

    The report of the Federal Environmental Ministry (BMUB) on the topical peer review aging management in nuclear power plants and research reactors covers the following issues: comprehensive requirements for aging management and its implementation, electric cables, non accessible pipes, reactor pressure vessel, calandria/pressure tubes (CANDU), concrete containment, pre-stressed concrete reactor pressure vessel (AGR).

  8. Feedback of operation and maintenance experience into evolutionary plant design (HWRs)

    International Nuclear Information System (INIS)

    Hedges, K.R.; Sanatkumar, A.; Kwon, Oh-Cheol

    1999-01-01

    The process of feeding back operation and maintenance information into the CANDU plant design process has been in constant evolution since the beginning of the CANDU program. The commissioning and operation experience from the first commercial reactors at Pickering A and Bruce A was used extensively in the design of the first generation CANDU 6 Plants. These units have been in operation for 15 years, producing electricity at an average lifetime capacity factor of about 85%. In further advancing the CANDU 6 and 9 design, greater emphasis is placed on enhancements that can reduce operational costs and further improve plant performance by reducing the planned outage time. The plant design has been improved to facilitate maintenance scheduling, equipment isolation, maintenance and post maintenance testing. Individual tasks have been analyzed as well as the interaction between tasks during outages to reduce the down time required and simplify the execution of the work. This results in shorter outages, reduced radioactive dose and reduced costs. The Utilities have continued to play an important role in CANDU 6 Evolution. Specifically; the Korea Utility KEPCO has one of the original four CANDU 6 Plants and three of the most modem. Their feedback to the designers has been very helpful. One of the most important feedback processes is through the CANDU Owners Group, which provides information exchange between members. In India eight PHWRs of 220 MWe capacity are in operation. Four reactors, also of 220 MWe capacity are in advanced stages of construction. Site construction work of two units of 500 MWe PHWRs at Tarapur will be taken up shortly. Over the years, during construction and operation of these power stations, a large amount of experience has been accumulated. Operation and maintenance experience is shared with operating stations by intensive participation of design engineers in Station Operation Review meetings, trouble shooting and root cause analysis of problems

  9. New flux detectors for CANDU 6 reactors

    International Nuclear Information System (INIS)

    Cuttler, J.M.; Medak, N.

    1992-06-01

    CANDU reactors utilize large numbers of in-core self-powered detectors for control and protection. In the original design, the detectors (coaxial cables) were wound on carrier tubes and immersed in the heavy water moderator. Failures occurred due to corrosion and other factors, and replacement was very costly because the assemblies were not designed with maintenance in mind. A new design was conceived based on straight detectors, of larger diameter, in a sealed package of individual 'well' tubes. This protected the detectors from hostile environments and enabled individual failed sensors to be replaced by inserting spares in vacant neighbouring tubes. The new design was made retrofittable to older CANDU reactors. Provision was made for on-line scanning of the core with a miniature fission chamber. The modified detectors were tested in a lengthy development program and found to exhibit superior performance to that of the original detectors. Most of the CANDU reactors have now adopted the new design. In the case of the Gentilly-2 and Point Lepreau reactors, advantage was taken of the opportunity to redesign the detector layout (using better codes and the increased flexibility in positioning detectors) to achieve better coverage of abnormal events, leading to higher trip setpoints and wider operating margins

  10. Managing ageing of Karachi nuclear power plant (KANUPP)

    International Nuclear Information System (INIS)

    Hoda, M. Qamrul; Jamal-ur-Rahman

    2002-01-01

    Full text: Karachi Nuclear power Plant (KANUPP), a 137 MWe CANDU plant, was built on a turn-key basis by the Canadian General Electric (CGE) in the late sixties. The plant with a design life of thirty years went into commercial operation in October, 1972. After nearly three decades of operation, KANUPP like all other plants has faced the problem of equipment ageing and obsolescence. KANUPP has been striving hard to combat these problems with the assistance from IAEA, COG and WANO. During early eighties IAEA expert missions were called at KANUPP on various safety issues and on their recommendations various projects such as Safe Operation of KANUPP, Technical Upgradation Project, Balancing, Modernization and Rehabilitation project were initiated to combat equipment ageing and obsolescence. KANUPP has made substantial progress in the implementation of the tasks under these projects and the operating life of the plant is expected to be extended by 15 years. Three IAEA expert missions were invited at KANUPP during 1999-2000 to carry out assessment of the ongoing activities related to plant ageing management. On the basis of their recommendations an ageing Management Programme has been formally established at KANUPP to manage age-related degradation of plant systems, structures and components important to safety and to ensure that the required safety functions are available for the extended life of the plant. Being close to completion of its nominal design life in October 2002, KANUPP has already applied to Pakistan Nuclear Regulatory Authority for renewal of operating license. This paper briefly describes the activities related to ageing management of KANUPP to fulfil the requirement for its continued operation beyond its design life. (author)

  11. Marketing CANDU internationally

    International Nuclear Information System (INIS)

    Langstaff, J.H.

    1980-06-01

    The market for CANDU reactor sales, both international and domestic, is reviewed. It is reasonable to expect that between five and ten reactors can be sold outside Canada before the end of the centry, and new domestic orders should be forthcoming as well. AECL International has been created to market CANDU, and is working together with the Canadian nuclear industry to promote the reactor and to assemble an attractive package that can be offered abroad. (L.L.)

  12. Quality Products - The CANDU Approach

    International Nuclear Information System (INIS)

    Ingolfsrud, L. John

    1989-01-01

    The prime focus of the CANDU concept (natural uranium fuelled-heavy water moderated reactor) from the beginning has economy, heavy water losses and radiation exposures also were strong incentives for ensuring good design and reliable equipment. It was necessary to depart from previously accepted commercial standards and to adopt those now accepted in industries providing quality products. Also, through feedback from operating experience and specific design and development programs to eliminate problems and improve performance, CANDU has evolved into today's successful product and one from which future products will readily evolve. Many lessons have been learned along the way. On the one hand, short cuts of failures to understand basic requirements have been costly. On the other hand, sound engineering and quality equipment have yielded impressive economic advantages through superior performance and the avoidance of failures and their consequential costs. The achievement of lifetime economical performance demands quality products, good operation and good maintenance. This paper describes some of the basic approaches leading to high CANDU station reliability and overall excellent performance, particularly where difficulties have had to be overcome. Specific improvements in CANDU design and in such CANDU equipment as heat transport pumps, steam generators, valves, the reactor, fuelling machines and station computers, are described. The need for close collaboration among designers, nuclear laboratories, constructors, operators and industry is discussed. This paper has reviewed some of the key components in the CANDU system as a means of indicating the overall effort that is required to provide good designs and highly reliable equipment. This has required a significant investment in people and funding which has handsomely paid off in the excellent performance of CANDU stations. The close collaboration between Atomic Energy of Canada Limited, Canadian industry and the

  13. The CANDU experience in Romania

    International Nuclear Information System (INIS)

    Smith, A.I.

    1984-01-01

    The CANDU program in Romania is now well established. The Cernavoda Nuclear Station presently under construction will consist of 5-CANDU 600 MWE Units and another similar size station is planned to be in operation in the next decade. Progress on the multi-unit station at Cernavoda was stalled for 18 months in 1982/83 as the Canadian Export Development Corporation had suspended their loan disbursements while the Romanian National debt was being rescheduled. Since resumption of the financing in August 1983 contracts worth almost 200M dollars have been placed with Canadian Companies for the supply of major equipment for the first two units. The Canadian design is that which was used in the latest 600 MWE CANDU station at Wolsong, Korea. The vast construction site is now well developed with the cooling water systems/channels and service buildings at an advanced stage of completion. The perimeter walls of the first two reactor buildings are already complete and slip-forming for the 3rd Unit is imminent. Many Romanian organizations are involved in the infrastructure which has been established to handle the design, manufacture, construction and operation of the CANDU stations. The Romanian manufacturing industry has made extensive preparations for the supply of CANDU equipment and components, and although a major portion of the first two units will come from Canada their intentions are to become largely self-supporting for the ensuing CANDU program. Quality assurance programs have been prepared already for many of the facilities

  14. Technical basis for the CANDU steam generator tube fitness-for-service guidelines

    International Nuclear Information System (INIS)

    Kozluk, M.J.; Scarth, D.A.; Graham, D.B.

    2002-01-01

    Active degradation mechanisms in steam generators and preheaters in Canadian CANDU T M generating stations are managed through Steam Generator Programs that incorporate tube inspection, maintenance (cleaning), fitness-for-service assessment, and preventative plugging as part of the overall steam generator management strategy. Steam generator and preheater tubes are inspected in accordance with the CSA Standard CAN/CSA-N285.4-94[l]. When a detected flaw indication does not satisfy the criteria of acceptance by examination, CSA-N285.4-94 permits a fitness-for-service assessment to determine acceptability. In 1999 Ontario Power Generation issued, for trial use, fitness-for-service guidelines for steam generator and preheater tubes in CANDU nuclear power plants. The main objectives of the Fitness-for-Service Guidelines are to provide reasonable assurance that tube structural integrity is maintained, and to provide reasonable assurance that there are adequate margins between estimated accumulated dose and applicable site dose limits. The Fitness-for-Service Guidelines are intended to provide industry-standard acceptance criteria and evaluation procedures for assessing the condition of steam generator and preheater tubes in terms of tube structural integrity, operational leak rate, and consequential leakage during an upset or abnormal event. This paper describes the technical basis for the minimum required safety factors specified in Table IC-1 of the Fitness-for-Service Guidelines and for the flaw models used to develop the flaw stability requirements in the nonmandatory, Appendix C of the Fitness-for-Service Guidelines. (author)

  15. Canada's nuclear power programme

    International Nuclear Information System (INIS)

    Peden, W.

    1976-01-01

    Although Canada has developed the CANDU type reactor, and has an ambitious programme of nuclear power plant construction, there has been virtually no nuclear controversy. This progress was seen as a means to bring Canada out of the 'resource cow' era, and onto a more equal footing with technologically elite nations. However the Indian nuclear explosion test, waste storage problems, contamination problems arising from use of uranium ore processing waste as land fill and subsidised sale of nuclear power plants to Argentina and South Korea have initiated public and parliamentary interest. Some economists have also maintained that Canada is approaching over-supply of nuclear power and over-investment in plant. Canada has no official overall energy production plan and alternative sources have not been evaluated. (JIW)

  16. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  17. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  18. Development of CANDU advanced fuel bundle

    International Nuclear Information System (INIS)

    Suk, H. C.; Hwang, W.; Rhee, B. W.; Jung, S. H.; Chung, C. H.

    1992-05-01

    This research project is underway in cooperation with AECL to develop the CANDU advanced fuel bundle (so-called, CANFLEX) which can enhance reactor safety and fuel economy in comparison with the current CANDU fuel and which can be used with natural uranium, slightly enriched uranium and other advanced fuel cycle. As the final schedule, the advanced fuel will be verified by carrying out a large scale demonstration of the bundle irradiation in a commercial CANDU reactor for 1996 and 1997, and consequently will be used in the existing and future CANDU reactors in Korea. The research activities during this year include the detail design of CANFLEX fuel with natural enriched uranium (CANFLEX-NU). Based on this design, CANFLEX fuel was mocked up. Out-of-pile hydraulic scoping tests were conducted with the fuel in the CANDU Cold Test Loop to investigate the condition under which maximum pressure drop occurs and the maximum value of the bundle pressure drop. (Author)

  19. CANDU severe accident analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    Romania is a EU member since January first 2007. This country faces now new challenges which imply also the nuclear power reactors now in operation. Romania operates since 1996 a CANDU nuclear power reactor and soon will start up a second unit. In EU PWR reactors are mostly operated, so that the Romania's reactors have to meet EU standards. Safety analysis guidelines require to model severe accidents for reactors of this type. Starting from previous studies a thermal-hydraulic model for a degraded CANDU core was developed. The initiating event is assumed to be a LOCA with simultaneous loss of moderator and coolant and the failure of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the decay heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) uncover, then disintegrate and fall down to the calandria vessel bottom. All the quantity of calandria moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield water tank surrounding the calandria vessel. The thermal hydraulics phenomena described above are modeled, analyzed and compared with the existing data. (authors)

  20. Study of characteristics of Th-U cycle in CANDU SCWR

    International Nuclear Information System (INIS)

    Shi, J.; Shi, G.

    2010-01-01

    The flexibility of CANDU technology allows the use of different fuel cycles including various uranium-driven thorium cycles. Direct self-recycle method and heterogeneous cycle modes with supercritical water as coolant were studied for (U,Th)O 2 CANFLEX fuel bundle. Lattice pitch and enrichment of driver fuel were treated as independent variables, taking account of coolant void reactivity, fuel burnup, and linear power uneven factor. In the end, appropriate cycle mode and parameters of bundle were chosen for (U,Th)O 2 cycle in CANDU SCWR. Calculations were processed by the two-dimensional multigroup neutron transport code WIMS-AECL release 3.1.2.1. (author)

  1. A three-dimensional operational transient simulation of the CANDU core with typical reactor regulating system

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, Choong Sub; Kim, Hyun Dae; Park, Kyung Seok; Park, Jong Woon [Institute for Advanced Engineering, Taejon (Korea, Republic of)

    1995-07-01

    This paper describes the results of simulation of a CANDU operational transient problem (re-startup after short shutdown) using the Coupled Reactor Kinetics(CRKIN) code developed previously with CANDU Reactor Regulating System (RRS) logic. The performance in the simulation is focused on investigating the behaviours of neutron power and regulating devices in accordance with the changes of xenon concentration following the operation of the RRS.

  2. Database and prediction model for CANDU pressure tube diameter

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.Y.; Park, J.H. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2014-07-01

    The pressure tube (PT) diameter is basic data in evaluating the CCP (critical channel power) of a CANDU reactor. Since the CCP affects the operational margin directly, an accurate prediction of the PT diameter is important to assess the operational margin. However, the PT diameter increases by creep owing to the effects of irradiation by neutron flux, stress, and reactor operating temperatures during the plant service period. Thus, it has been necessary to collect the measured data of the PT diameter and establish a database (DB) and develop a prediction model of PT diameter. Accordingly, in this study, a DB for the measured PT diameter data was established and a neural network (NN) based diameter prediction model was developed. The established DB included not only the measured diameter data but also operating conditions such as the temperature, pressure, flux, and effective full power date. The currently developed NN based diameter prediction model considers only extrinsic variables such as the operating conditions, and will be enhanced to consider the effect of intrinsic variables such as the micro-structure of the PT material. (author)

  3. Molybdenum-99-producing 37-element fuel bundle neutronically and thermal-hydraulically equivalent to a standard CANDU fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: Eleodor.Nichita@uoit.ca; Haroon, J., E-mail: Jawad.Haroon@uoit.ca

    2016-10-15

    Highlights: • A 37-element fuel bundle modified for {sup 99}Mo production in CANDU reactors is presented. • The modified bundle is neutronically and thermal-hydraulically equivalent to the standard bundle. • The modified bundle satisfies all safety criteria satisfied by the standard bundle. - Abstract: {sup 99m}Tc, the most commonly used radioisotope in diagnostic nuclear medicine, results from the radioactive decay of {sup 99}Mo which is currently being produced at various research reactors around the globe. In this study, the potential use of CANDU power reactors for the production of {sup 99}Mo is investigated. A modified 37-element fuel bundle, suitable for the production of {sup 99}Mo in existing CANDU-type reactors is proposed. The new bundle is specifically designed to be neutronically and thermal-hydraulically equivalent to the standard 37-element CANDU fuel bundle in normal, steady-state operation and, at the same time, be able to produce significant quantities of {sup 99}Mo when irradiated in a CANDU reactor. The proposed bundle design uses fuel pins consisting of a depleted-uranium centre surrounded by a thin layer of low-enriched uranium. The new molybdenum-producing bundle is analyzed using the lattice transport code DRAGON and the diffusion code DONJON. The proposed design is shown to produce 4081 six-day Curies of {sup 99}Mo activity per bundle when irradiated in the peak-power channel of a CANDU core, while maintaining the necessary reactivity and power rating limits. The calculated {sup 99}Mo yield corresponds to approximately one third of the world weekly demand. A production rate of ∼3 bundles per week can meet the global demand of {sup 99}Mo.

  4. Assessment of ASSERT-PV for prediction of critical heat flux in CANDU bundles

    International Nuclear Information System (INIS)

    Rao, Y.F.; Cheng, Z.; Waddington, G.M.

    2014-01-01

    Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for CHF prediction. • CANDU 28-, 37- and 43-element bundle CHF experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of CHF model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against five full-scale CANDU bundle experiments conducted in 1990s and in 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element (CANFLEX) bundles. A total of 15 CHF test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for CANDU reactors. Code predictions of channel dryout power and axial and radial CHF locations were compared against measurements from the SL CHF tests to quantify the code prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, the sensitivity studies evaluated the contribution of each CHF model change or enhancement to the improvement in CHF prediction. Overall, the assessment demonstrated significant improvement in prediction of channel dryout power and axial and radial CHF locations in horizontal fuel channels containing CANDU bundles

  5. Material control and accounting at a CANDU reactor: the instrumented safeguards scheme

    International Nuclear Information System (INIS)

    Stirling, A.J.; Payne, E.

    1985-01-01

    While CANDU reactors differ from LWRs quite markedly in the way they operate, the principles of materials accounting and safeguards are equally applicable. Indeed, since CANDU fuel is not reprocessed, the relatively simple procedure of item accounting is sufficient for CANDUs. However, on-power refueling means that automatic item counting is needed to independently confirm operator records. Surveillance and sealing techniques for spent fuel are needed for a practical system. The equipment developed has allowed the IAEA to apply safeguards at reasonable cost and with minimal interference to the utility operating the station

  6. Development of Evaluation Technology for Hydrogen Combustion in containment and Accident Management Code for CANDU

    International Nuclear Information System (INIS)

    Kim, S. B.; Kim, D. H.; Song, Y. M.

    2011-08-01

    For a licensing of nuclear power plant(NPP) construction and operation, the hydrogen combustion and hydrogen mitigation system in the containment is one of the important safety issues. Hydrogen safety and its control for the new NPPs(Shin-Wolsong 1 and 2, Shin-Ulchin 1 and 2) have been evaluated in detail by using the 3-dimensional analysis code GASFLOW. The experimental and computational studies on the hydrogen combustion, and participations of the OEDE/NEA programs such as THAI and ISP-49 secures the resolving capabilities of the hydrogen safety and its control for the domestic nuclear power plants. ISAAC4.0, which has been developed for the assessment of severe accident management at CANDU plants, was already delivered to the regulatory body (KINS) for the assessment of the severe accident management guidelines (SAMG) for Wolsong units 1 to 4, which are scheduled to be submitted to KINS. The models for severe accident management strategy were newly added and the graphic simulator, CAVIAR, was coupled to addition, the ISAAC computer code is anticipated as a platform for the development and maintenance of Wolsong plant risk monitor and Wolsong-specific SAMG

  7. A generalized perturbation program for CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)

    1999-12-31

    A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)

  8. A generalized perturbation program for CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Yang, Won Sik [Chosun University, Kwangju (Korea, Republic of)

    1998-12-31

    A generalized perturbation program has been developed for the purpose of estimating zonal power variation of a CANDU reactor upon refueling operation. The forward and adjoint calculation modules of RFSP code were used to construct the generalized perturbation program. The numerical algorithm for the generalized adjoint flux calculation was verified by comparing the zone power estimates upon refueling with those of forward calculation. It was, however, noticed that the truncation error from the iteration process of the generalized adjoint flux is not negligible. 2 refs., 1 figs., 1 tab. (Author)

  9. Advanced CANDU reactor development: a customer-driven program

    International Nuclear Information System (INIS)

    Hopwood, J.M.

    2005-01-01

    The Advanced CANDU Reactor (ACR) product development program is well under way. The development approach for the ACR is to ensure that all activities supporting readiness for the first ACR project are carded out in parallel, as parts of an integrated whole. In this way design engineering, licensing, development and testing, supply chain planning, construct ability and module strategy, and planning for commissioning and operations, all work in synergy with one another. Careful schedule management :ensures that program focus stays on critical path priorities.'This paper provides an overview of the program, with an emphasis on integration to ensure maximum project readiness, This program management approach is important now that AECL is participating as the reactor vendor in Dominion Energy's DOE-sponsored Combined Construction/Operating License (COL) program. Dominion Energy selected the ACR-700 as their reference reactor technology for purposes of demonstrating the COL process. AECL's development of the ACR is unique in that pre-licensing activities are being carded out parallel in the USA and Canada, via independent, but well-communicated programs. In the short term, these programs are major drivers of ACR development. The ACR design approach has been to optimize to achieve major design objectives: capital cost reduction, robust design with ample margins, proveness by using evolutionary change from existing :reference plants, design for ease :of operability. The ACR development program maintains these design objectives for each of the program elements: Design: .Carefully selected design innovations based on the SEU fuel/light water coolant:/heavy water moderator approach. Emphasis on lessons-learned review from operating experience and customer feedback Licensing: .Safety case based on strengths of existing CANDU plus benefits of optimised design Development and Test: Choice of materials, conditions to enable incremental testing building on existing CANDU and LWR

  10. Safety of CANDU nuclear power stations

    International Nuclear Information System (INIS)

    Snell, V.G.

    1978-11-01

    A nuclear plant contains a large amount of radioactive material which could be a potential threat to public health. The plant is therefore designed, built and operated so that the risk to the public is low. Careful design of the normal reactor systems is the first line of defense. These systems are highly resistant to an accident happening in the first place, and can also be effective in stopping it if it does happen. Independent and redundant safety sytems minimize the effects of an accident, or stop it completely. They include shutdown systems, emergency core cooling systems, and containment systems. Massive impairment of any one safety system together with an accident can be tolerated. This 'defence in depth' approach recognizes that men and machines are imperfect and that the unexpected happens. The nuclear power plant need not be perfect to be safe. To allow meaningful judgements we must know how safe the plant is. The Atomic Energy Control Board guidelines give one such measure, but they may overestimate the true risk. We interpret these guidelines as an upper limit to the total risk, and trace their evolution. (author)

  11. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author).

  12. Development of the advanced PHWR technology -Verification tests for CANDU advanced fuel-

    International Nuclear Information System (INIS)

    Jung, Jang Hwan; Suk, Hoh Chun; Jung, Moon Kee; Oh, Duk Joo; Park, Joo Hwan; Shim, Kee Sub; Jang, Suk Kyoo; Jung, Heung Joon; Park, Jin Suk; Jung, Seung Hoh; Jun, Ji Soo; Lee, Yung Wook; Jung, Chang Joon; Byun, Taek Sang; Park, Kwang Suk; Kim, Bok Deuk; Min, Kyung Hoh

    1995-07-01

    This is the '94 annual report of the CANDU advanced fuel verification test project. This report describes the out-of pile hydraulic tests at CANDU-hot test loop for verification of CANFLEX fuel bundle. It is also describes the reactor thermal-hydraulic analysis for thermal margin and flow stability. The contents in this report are as follows; (1) Out-of pile hydraulic tests for verification of CANFLEX fuel bundle. (a) Pressure drop tests at reactor operation condition (b) Strength test during reload at static condition (c) Impact test during reload at impact load condition (d) Endurance test for verification of fuel integrity during life time (2) Reactor thermal-hydraulic analysis with CANFLEX fuel bundle. (a) Critical channel power sensitivity analysis (b) CANDU-6 channel flow analysis (c) Flow instability analysis. 61 figs, 29 tabs, 21 refs. (Author)

  13. Extension of the time-average model to Candu refueling schemes involving reshuffling

    International Nuclear Information System (INIS)

    Rouben, Benjamin; Nichita, Eleodor

    2008-01-01

    Candu reactors consist of a horizontal non-pressurized heavy-water-filled vessel penetrated axially by fuel channels, each containing twelve 50-cm-long fuel bundles cooled by pressurized heavy water. Candu reactors are refueled on-line and, as a consequence, the core flux and power distributions change continuously. For design purposes, a 'time-average' model was developed in the 1970's to calculate the average over time of the flux and power distribution and to study the effects of different refueling schemes. The original time-average model only allows treatment of simple push-through refueling schemes whereby fresh fuel is inserted at one end of the channel and irradiated fuel is removed from the other end. With the advent of advanced fuel cycles and new Candu designs, novel refueling schemes may be considered, such as reshuffling discharged fuel from some channels into other channels, to achieve better overall discharge burnup. Such reshuffling schemes cannot be handled by the original time-average model. This paper presents an extension of the time-average model to allow for the treatment of refueling schemes with reshuffling. Equations for the extended model are presented, together with sample results for a simple demonstration case. (authors)

  14. A proposed structural, risk-informed approach to the periodicity of CANDU-6 nuclear containment integrated leak rate testing

    Energy Technology Data Exchange (ETDEWEB)

    Saliba, N. [McGill Univ., Dept. of Civil Engineering and Applied Mechanics, Montreal, Quebec (Canada); Komljenovic, D. [Hydro-Quebec, Gentilly-2 Nuclear Power Plant, Becancour, Quebec (Canada); Chouinard, L. [McGill Univ., Dept. of Civil Engineering and Applied Mechanics, Montreal, Quebec (Canada); Vaillancourt, R.; Chretien, G. [Hydro-Quebec, Gentilly-2 Nuclear Power Plant, Becancour, Quebec (Canada); Gocevski, V. [Hydro-Quebec Equipements, Montreal, Quebec (Canada)

    2010-07-01

    As ultimate lines of defense against leakage of large amounts of radioactive material to the environment in case of major reactor accidents, containments have been monitored through well designed periodic tests to ensure their proper performance. Regulatory organizations have imposed types and frequencies of containment tests based on highly-conservative deterministic approaches, and judgments of knowledgeable experts. Recent developments in the perception and methods of risk evaluation have been applied to rationalize the leakage-rate testing frequencies while maintaining risks within acceptable levels, preserving the integrity of containments, and respecting the defense-in-depth philosophy. The objective of this paper is to introduce a proposed risk-informed decision making framework on the periodicity of nuclear containment ILRTs for CANDU-6 nuclear power plants based on five main decision criteria, namely: 1) the containment structural integrity; 2) inputs from PSA Level-2; 3) the requirements of deterministic safety analyses and defense-in-depth concepts; 4- the obligations under regulatory and standard requirements; and 5) the return of experience from nuclear containments historic performance. The concepts of dormant reliability and structural fragility will guide the assessment of the containment structural integrity, within the general context of a global containment life cycle management program. This study is oriented towards the requirements of CANDU-6 reactors, in general, and Hydro-Quebec's Gentilly-2 nuclear power plant, in particular. The present article is the first part in a series of papers that will comprehensively detail the proposed research. (author)

  15. A proposed structural, risk-informed approach to the periodicity of CANDU-6 nuclear containment integrated leak rate testing

    International Nuclear Information System (INIS)

    Saliba, N.; Komljenovic, D.; Chouinard, L.; Vaillancourt, R.; Chretien, G.; Gocevski, V.

    2010-01-01

    As ultimate lines of defense against leakage of large amounts of radioactive material to the environment in case of major reactor accidents, containments have been monitored through well designed periodic tests to ensure their proper performance. Regulatory organizations have imposed types and frequencies of containment tests based on highly-conservative deterministic approaches, and judgments of knowledgeable experts. Recent developments in the perception and methods of risk evaluation have been applied to rationalize the leakage-rate testing frequencies while maintaining risks within acceptable levels, preserving the integrity of containments, and respecting the defense-in-depth philosophy. The objective of this paper is to introduce a proposed risk-informed decision making framework on the periodicity of nuclear containment ILRTs for CANDU-6 nuclear power plants based on five main decision criteria, namely: 1) the containment structural integrity; 2) inputs from PSA Level-2; 3) the requirements of deterministic safety analyses and defense-in-depth concepts; 4- the obligations under regulatory and standard requirements; and 5) the return of experience from nuclear containments historic performance. The concepts of dormant reliability and structural fragility will guide the assessment of the containment structural integrity, within the general context of a global containment life cycle management program. This study is oriented towards the requirements of CANDU-6 reactors, in general, and Hydro-Quebec's Gentilly-2 nuclear power plant, in particular. The present article is the first part in a series of papers that will comprehensively detail the proposed research. (author)

  16. Some novel on-power refuelling features of CANDU stations

    International Nuclear Information System (INIS)

    Erwin, D.; Pendlebury, B.; Watson, J.F.; Welch, A.C.

    1976-01-01

    Part A of the paper describes the reasons for, and advantages resulting from, the use of flow assisted refuelling in the CANDU type nuclear reactors at the Pickering Generating Station. A separate fuel handling system is used for each reactor unit, as distinct from the system employed at the Bruce Generating station, where the fuel handling system is shared among several units. Part B of the paper describes some of the advantages of the shared concept with particular emphasis on the availability of the fuel handling system. (author)

  17. Development of best estimate auditing code for CANDU thermal-hydraulic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bub Dong; Lee, Won Jae; Hwang, Moon Kyu; Lim, Hong Sik [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    The main purpose of this study is to develop a thermal hydraulic auditing code for the CANDU reactor, modifying the model of existing PWR auditing tool, i.e. RELAP5/MOD3.The study was performed by reconsideration of the previous code assessment works and phenomena identification for essential accident scenario. Improvement areas of model development for auditing tool were identified based on the code comparison and PIRT results. Nine models have been improved significantly for the analysis of LOCA and Mon LOCA event. Conceptual problem or separate effect assessment have been performed to verify the model improvement. The linking calculation with CONTAIN 2.0 has been also enabled to establish the unified auditing code system. Analysis for the CANDU plant real transient and hypothetical LOCA bas been performed using the improved version. It has been concluded that the developed version can be utilized for the auditing analysis of LOCA and non-LOCA event for the CANDU reactor. 25 refs., 84 figs., 36 tabs. (Author)

  18. Self powered platinum flux detector application for shutdown system

    International Nuclear Information System (INIS)

    Su Guoquan

    2005-01-01

    This article introduce Neutron Flux Detector application in Candu Power Plant, including: design purpose, location in the site, dynamic compensation, differential compensation, detector assembly pressurized with high pure helium etc. And shielding grounding improvement is suggested because of detector signal and setpoint signal noise. (authors)

  19. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  20. LNG plant combined with power plant

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, I; Kikkawa, Y [Chiyoda Chemical Engineering and Construction Co. Ltd., Tokyo (Japan)

    1997-06-01

    The LNG plant consumers a lot of power of natural gas cooling and liquefaction. In some LNG plant location, a rapid growth of electric power demand is expected due to the modernization of area and/or the country. The electric power demand will have a peak in day time and low consumption in night time, while the power demand of the LNG plant is almost constant due to its nature. Combining the LNG plant with power plant will contribute an improvement the thermal efficiency of the power plant by keeping higher average load of the power plant, which will lead to a reduction of electrical power generation cost. The sweet fuel gas to the power plant can be extracted from the LNG plant, which will be favorable from view point of clean air of the area. (Author). 5 figs.